WO2015109893A1 - 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法 - Google Patents

快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法 Download PDF

Info

Publication number
WO2015109893A1
WO2015109893A1 PCT/CN2014/092698 CN2014092698W WO2015109893A1 WO 2015109893 A1 WO2015109893 A1 WO 2015109893A1 CN 2014092698 W CN2014092698 W CN 2014092698W WO 2015109893 A1 WO2015109893 A1 WO 2015109893A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aging
treatment
novel
response characteristics
Prior art date
Application number
PCT/CN2014/092698
Other languages
English (en)
French (fr)
Inventor
郭明星
庄林忠
张济山
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2015109893A1 publication Critical patent/WO2015109893A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention belongs to the technical field of aluminum alloys, relates to a novel Al-Mg-Si-Cu-Zn alloy which can be industrially applied and a preparation method thereof, and is specially developed for an aluminum alloy with rapid aging response characteristics which is urgently needed in the automobile field, and can be developed. To ensure the high requirements of high forming performance and high baking hardening performance of aluminum alloy for automobile lightweight body.
  • Typical aluminum alloys for automobile body panels are 2xxx, 5xxx and 6xxx alloys, of which 6xxx alloys are commonly used in AA6009, AA6010, AA6016, AA6111 and AA6022.
  • the heat-treating Al-Mg-Si alloy has good comprehensive performance, it has been found in the research and application process that the alloy has good forming property if it is directly subjected to solution hardening treatment at 500-570 °C. However, most of the actual production process needs to transport the sheet to the automobile manufacturer for subsequent stamping. During this period, the alloy sheet will have a certain degree of strength rise during the natural placement process, which will reduce the forming properties of the alloy sheet and the subsequent Baking hardening performance, this phenomenon is called the natural aging deterioration effect.
  • the preparation process commonly used in the preparation process of 6xxx series aluminum alloys for automobiles is as follows: alloy smelting casting ⁇ homogenization ⁇ hot rolling ⁇ cold rolling ⁇ solid solution ⁇ pre-aging (T4P treatment) ⁇ stamping ⁇ brushing ⁇ 170- 185 ° C paint processing and other processes. Due to the special nature of automobile sheet preparation, it is inevitable that the alloy has a lower strength in the T4P state before forming, and the alloy strength can be greatly improved during the baking process (ie, T8X state), thus ensuring the alloy sheet has a higher quality. Good resistance to dents, etc., so alloy composition design and heat treatment process development is the key way to solve this problem.
  • MgZn 2 strengthening phase can greatly increase the strength of the Al-Zn-Mg-Cu alloy, it is possible to simultaneously utilize two main strengthening phases of the Al-Mg-Si and Al-Zn-Mg-Cu alloys.
  • Mg 2 Si and MgZn 2 or their transition phase act as a strengthening phase of the novel Al-Mg-Si alloy, achieving multiphase synergistic precipitation and achieving multiphase synergistic strengthening.
  • the developed alloy will definitely exhibit excellent fast aging. Response characteristics.
  • the present invention is based on this design idea to carry out new alloy composition design and process development.
  • the present invention develops a novel Al-Mg-Si-Cu-Zn with rapid aging response characteristics in view of the fact that the conventional Al-Mg-Si alloy has insufficient aging response speed and age hardening property.
  • the alloy is fully utilized by the multiphase synergistic precipitation and synergistic strengthening of Mg 2 Si and MgZn 2 to greatly improve the overall performance of the alloy.
  • the alloy of the invention is particularly suitable for the manufacture of an aluminum alloy for an automobile body outer panel, and has excellent paint hardening performance after the outer panel of the vehicle body is formed by press molding.
  • the invention first selects the composition range of the Al-Mg-Si-Cu-Zn alloy with multi-phase structure by component design and optimization, and then prepares the designed alloy through the process of smelting casting and studies the aging precipitation behavior.
  • the new Al-Mg-Si-Cu-Zn alloy composition with fast aging response was finally determined.
  • the specific preparation process is as follows: FactSage phase diagram calculation ⁇ Al-Mg-Si alloy composition selection ⁇ alloy preparation and smelting casting ⁇ ingot homogenization ⁇ hot rolling deformation ⁇ intermediate annealing ⁇ cold rolling deformation ⁇ solution quenching ⁇ multi-stage aging deal with.
  • a first object of the present invention is to provide a novel Al-Mg-Si-Cu-Zn series aluminum alloy having fast aging response characteristics, characterized in that the chemical composition and mass percentage of the alloy are: Zn: 0.10. ⁇ 3.7 wt%, Mg 0.3 to 1.2 wt%, Si 0.3 to 1.2 wt%, Cu 0.05 to 0.7 wt%, Fe ⁇ 0.3 wt%, Mn ⁇ 0.3 wt%, Cr ⁇ 0.2 wt%, Ti ⁇ 0.2 wt%, The balance is Al.
  • the chemical composition has a Zn content ranging from 0.4 to 3.5% by weight.
  • the mass ratio of Mg/Si of the chemical components Mg and Si ranges from 0.5 to 1.
  • the chemical composition of Si and Cu ranges from 0.8 to 1.1 wt% of Si and 0.15 to 0.35 wt% of Cu.
  • a second object of the present invention is to provide a method for preparing the above-mentioned novel Al-Mg-Si-Cu-Zn series aluminum alloy having rapid aging response characteristics, the preparation method comprising the following steps:
  • Step one smelting casting
  • Step three hot rolling deformation
  • Step four intermediate annealing
  • Step five cold rolling deformation
  • Step 6 Solution treatment above 540 ° C;
  • Step seven water quenching treatment
  • Step eight multi-level aging treatment.
  • the two-stage homogenization of the second step is specifically: the alloy sample after the smelting and casting is started to be heated from room temperature to 470-485 ° C for 2 to 5 hours at a temperature increase rate of 20 to 40 ° C / h, and then 20 ⁇ 40 °C / h continue to raise the temperature to 545 ⁇ 555 ° C for 14 ⁇ 20h, and finally at 20 ⁇ 40 ° C / h cooling rate with the furnace when the temperature is reduced to 100 ° C.
  • the hot rolling deformation of the third step is specifically: the rolling temperature is 545-555 ° C, the total hot rolling deformation is >90%, and the finishing rolling temperature is ⁇ 300 ° C;
  • the intermediate annealing in the fourth step is specifically: the alloy sample after hot rolling deformation is directly placed in a heat treatment furnace at 350 to 450 ° C for intermediate annealing for 1 to 3 hours, and then air cooled.
  • the total cold rolling deformation of the cold rolling deformation in the step 5 is between 50% and 75%, and the pass reduction is between 15% and 25%.
  • the solution treatment of 540 ° C or more in the step 6 is specifically: performing a solution treatment in a salt bath furnace at 545 to 555 ° C / 1-6 min; and the water quenching treatment in the step 7 is a solution treatment; The subsequent alloy sample was directly subjected to water quenching.
  • the multi-stage aging treatment of the step 8 is: transferring the water-quenched alloy sample to the pre-aging furnace for pre-aging treatment at 70-140 ° C / 9-15 h in 2 to 5 min, and then Leave at room temperature for 14 days, and finally perform artificial aging at 185 °C; or transfer the alloy sample after water quenching to a 70-140 °C pre-aging furnace at a cooling rate of 1-15 °C / h to 2 to 5 minutes. It was taken out at 20 to 40 ° C, then left at room temperature for 14 days, and finally subjected to artificial aging at 185 ° C.
  • the present invention has the following advantages: the novel Al-Mg-Si-Cu-Zn alloy of the present invention can fully utilize the elements of the main alloying elements Mg, Si, Cu and Zn in the matrix. Interaction, through a suitable heat treatment regulation, a variety of strengthening phases are synergistically precipitated. Finally, a large number of different types of strengthening phases are uniformly dispersed in the alloy matrix, so that the alloy can obtain a large intensity increase in a short aging time, that is, Achieve the so-called fast aging response characteristics.
  • the alloy of the invention is very suitable for further development and production of aluminum alloy outer panel materials for automobiles which are currently studied.
  • Fig.1 shows the hardness change law of artificial aging immediately after solid solution quenching of several new aluminum alloys.
  • Fig. 2 shows the law of hardness change of natural aging after several kinds of new aluminum alloys are solution-quenched.
  • Figure 3 shows the results of DSC analysis after 14 days of natural aging after solid solution quenching of several new aluminum alloys.
  • Fig. 4 shows the change of hardness of several new aluminum alloys after solid solution quenching after natural aging for 14 days and then artificial aging at 185 °C.
  • Figure 5 shows the variation of hardness of several new aluminum alloys during natural aging after pre-aging treatment.
  • Figure 6 shows the results of DSC analysis of several new aluminum alloys after 14 days of pre-aging + natural aging.
  • Fig. 7 shows the change of hardness of several new aluminum alloys after pre-aging + natural aging for 14 days and then at 185 °C.
  • Fig. 8 TEM microstructure of the T4P alloy 5# alloy heated to 250 ° C at 10 ° C / min.
  • the raw materials were respectively 99.9 wt% of high purity aluminum, industrial pure Mg, industrial pure Zn, intermediate alloy Al-20 wt% Si, Al-50 wt% Cu, Al-20 wt% Fe, Al-10 wt% Mn, and the like.
  • the specific smelting process in the resistance furnace is to first add pure aluminum to the crucible, set the furnace temperature to 850 ° C, and add Al-20 wt% Si, Al-50 wt% Cu, Al-20 wt% Fe after the pure aluminum is melted.
  • the measured value of the component is higher than the design value, a certain amount of metal pure aluminum is appropriately added according to the excess value for dilution; After rising to 740 ° C, slag is added, and a refining agent is added for degassing refining; then, when the melt temperature is lowered to about 720 ° C, Al-5 wt% Ti-1 wt% B grain refiner is added and stirred appropriately, and finally After the temperature is kept for 10 minutes, the melt is cast to four. Within a water-cooled steel.
  • Table 1 The specific chemical compositions of the inventive alloys are shown in Table 1.
  • Table 1 shows the chemical composition of the alloy of the invention (mass percentage, wt%)
  • the invention ingot is homogenized in a circulating air furnace, and the treatment process is: placing the alloy ingot into a circulating air furnace, turning on the power supply, and starting to heat up at a heating rate of 20 to 70 ° C / h, until the temperature reaches 460 to 490 °C for 1 ⁇ 7h, and then continue to raise the temperature to 540 ⁇ 560 ° C for 10 ⁇ 25h at 20 ⁇ 70 ° C / h, and then take the temperature drop of 20 ⁇ 70 ° C / h with the furnace to 100 ° C when the sample is taken out; Then the ingot is subjected to hot rolling deformation ⁇ intermediate annealing ⁇ cold rolling deformation for better optimization.
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature is maintained at 470 to 485 ° C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555 ° C for 14 ⁇ 20h at 20 ⁇ 40 ° C / h, and then take the sample at the temperature drop rate of 20 ⁇ 40 ° C / h when the furnace is cooled to 100 ° C.
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for solution treatment at 545-555 ° C / 1-6 min (ie, 1-6 min in a salt bath furnace at 545-555 ° C).
  • the solution treatment and water quenching treatment were carried out directly into the 185 ° C aging furnace for artificial aging at different times to compare the aging precipitation behavior of various alloys (see Figure 1 for details).
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature reaches 470. Heat at ⁇ 485°C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555°C for 14 ⁇ 20h at 20 ⁇ 40°C/h, then take off the sample when the temperature is lowered to 100°C with the cooling rate of 20 ⁇ 40°C/h. .
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for 545-555 ° C / 1-6 min solution and water quenching treatment, and then directly subjected to natural aging at room temperature to measure the alloy.
  • the change of hardness with natural aging time see Figure 2 for details.
  • the DSC analysis was carried out on the 14-day natural aging sample.
  • the specific implementation scheme was as follows: a disc having a diameter of 3 mm ⁇ 1 mm and a mass of about 15 mg was cut out, and differential scanning analysis was performed by differential scanning calorimeter Q2000 (DSC). High purity Al was used as a standard and heated from 20 ° C to 400 ° C at a heating rate of 10 ° C / min. Based on this, the difference in aging precipitation behavior of different alloys is further grasped (see Figure 3 for details).
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature reaches 470. Heat at ⁇ 485°C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555°C for 14 ⁇ 20h at 20 ⁇ 40°C/h, then take off the sample when the temperature is lowered to 100°C with the cooling rate of 20 ⁇ 40°C/h. .
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for 545-555 ° C / 1-6 min solution and water quenching treatment, and then subjected to natural aging for 14 days at room temperature (T4 State), the natural aging samples were subjected to artificial aging treatment at 185 ° C for different times to measure the hardness change of the alloy (see Figure 4 for details).
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature reaches 470. Heat at ⁇ 485°C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555°C for 14 ⁇ 20h at 20 ⁇ 40°C/h, then take off the sample when the temperature is lowered to 100°C with the cooling rate of 20 ⁇ 40°C/h. .
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for 545-555 ° C / 1-6 min solution and water quenching treatment, and then transferred to the pre-aging furnace within 2 to 5 minutes.
  • the pre-aging treatment is carried out at 70-140 ° C / 9 ⁇ 15 h, and finally the pre-aging sample is subjected to natural aging at room temperature, and the variation of the hardness of the alloy with the natural aging time is measured (as shown in Fig. 5).
  • a corresponding DSC analysis was also carried out.
  • the specific implementation scheme is: cutting a wafer with a diameter of 3 mm ⁇ 1 mm and a mass of about 15 mg, using a differential scanning calorimeter Q2000 (DSC) Differential thermal analysis was performed using high purity Al as a standard and heating from 20 ° C to 400 ° C at a heating rate of 10 ° C / min. The corresponding DSC curve is shown in Figure 6.
  • DSC differential scanning calorimeter Q2000
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature reaches 470. Heat at ⁇ 485°C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555°C for 14 ⁇ 20h at 20 ⁇ 40°C/h, then take off the sample when the temperature is lowered to 100°C with the cooling rate of 20 ⁇ 40°C/h. .
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for 545-555 ° C / 1-6 min solution and water quenching treatment, and then transferred to the pre-aging furnace within 2 to 5 minutes.
  • the pre-aging treatment is carried out at 70-140 ° C / 9-15 h, and the pre-aging sample is placed at room temperature for 14-angstrom alloy to be stable (ie, T4P (1) state), and finally the T4P (1) state sample is subjected to 185 ° C artificial aging treatment at different times, measuring the hardness change of the alloy (see Figure 7 for details).
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature rise starts at a temperature increase rate of 20 to 40 ° C / h, and the temperature reaches 470. Heat at ⁇ 485°C for 2 ⁇ 5h, then continue to raise the temperature to 545 ⁇ 555°C for 14 ⁇ 20h at 20 ⁇ 40°C/h, then take off the sample when the temperature is lowered to 100°C with the cooling rate of 20 ⁇ 40°C/h. .
  • the sample is directly cut out on the homogenized block material and placed in a salt bath furnace for 545-555 ° C / 1-6 min solution and water quenching treatment, and then transferred to 70-140 within 2 to 5 minutes.
  • the temperature is lowered to 20 ⁇ 40 °C at a cooling rate of 1-15 °C/h, and the pre-aging sample is placed at room temperature for 14-amber alloy performance (ie T4P(2) state), and finally The T4P (2) sample was subjected to artificial aging treatment at 185 ° C / 20 min, and the hardness increment of the alloy was measured (see Table 2 for details).
  • the homogenization treatment is carried out, and the treatment process is as follows: the temperature is raised at a heating rate of 20 to 40 ° C / h, and the temperature is maintained at 470 to 485 ° C for 2 to 5 hours, and then Continue to heat up at 20 ⁇ 40 ° C / h The sample was incubated at 545-555 ° C for 14-20 h, and then the sample was taken out at a cooling rate of 20-40 ° C/h as the furnace was cooled to 100 ° C. After homogenization, the ingot is cut into a face and reheated to 545-555 °C for hot rolling.
  • the total deformation of hot rolling is >90%, the final rolling temperature is ⁇ 300 °C, and the thickness of hot rolling finishing is 4.0 mm;
  • the back sheet is annealed at 350-450 ° C / 1-3 h, then cold rolled to 1 mm thick, the pass reduction is 15-25%, and the total deformation is 75%;
  • the cold rolled sheet is 545 ⁇ 555 ° C / 1-6 min solution and water quenching treatment, and then ensure that within 2 ⁇ 5min transfer to 70-140 ° C pre-aging furnace at a cooling rate of 1-15 ° C / h to cool down to 20 ⁇ 40 ° C to take out,
  • the pre-aging samples were placed at room temperature for 14-star alloy stability (ie T4P(2) state), and finally T4P(2) samples were subjected to artificial aging treatment at 185 °C/20 min to measure T4P(2).
  • Tensile properties of alloys and high temperature artificial aging alloys see Table 3 for details).
  • the Al-Mg-Si-Cu alloy after the addition of element Zn has a high temperature aging precipitation rate. Accelerated, but with the change of Zn content, the aging precipitation rate is quite different, which is mainly due to the influence of the content of each main alloy element on its interaction. Although the addition of a certain amount of element Zn can accelerate the high temperature aging precipitation rate of the T4 alloy, the precipitation rate is still not ideal. If the alloy is subjected to the corresponding pre-aging treatment (Example 4), the performance of several alloys is relatively stable during room temperature placement, and similar to the Zn-free 1# alloy, the solid solution quenched alloy does not appear in natural aging. The hardness rise in the process (as shown in Fig.
  • the present invention optimizes the interaction between the main alloying elements Mg, Si, Cu and Zn in the novel Al-Mg-Si-Cu-Zn alloy by optimizing the composition design and processing heat treatment process.
  • the ground control makes the alloy have more excellent fast aging response characteristics than the conventional Al-Mg-Si alloy.
  • the newly developed preparation process not only accelerates the aging response of the alloy, but also suppresses the natural aging deterioration effect of the solution-quenched Al-Mg-Si alloy, so that the alloy sheet has excellent formability and paint hardening property.
  • the alloy and the process of the invention are not only very suitable for the manufacture of aluminum alloy for automobile lightweight body panels, but also have certain guiding significance for the development, processing and application of new aluminum alloys with fast aging response in other fields, and it is worthwhile.
  • Automobile manufacturers and aluminum alloy companies pay attention to the alloys and related preparation processes of the invention, so that they can be promoted and applied in this field as soon as possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

一种具有快速时效响应的Al-Mg-Si-Cu-Zn系列合金及其制备方法,该合金的化学成分及其质量百分比含量为:Zn: 0.10∼3.7wt%,Mg 0.3∼1.2wt%,Si 0.3∼1.2wt%,Cu 0.05∼0.7wt%,Fe≤0.3wt%,Mn≤0.3wt%,Cr≤0.2wt%,Ti≤0.2wt%,余量为Al。该合金在经过热轧冷轧后进行固溶,之后进行水淬和多级时效制成。

Description

快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法 技术领域
本发明属于铝合金技术领域,涉及一种可工业化应用的新型Al-Mg-Si-Cu-Zn系合金及其制备方法,特别针对汽车领域急需的具有快速时效响应特性的铝合金而开发,可以保证汽车轻量化车身外板用铝合金对高成形性能和高烤漆硬化性能的双重要求。
背景技术
近年来随着汽车轻量化进程的不断加快,汽车用铝合金板材的开发和相关研究也取得较大进展,特别由于铝合金兼具有低密度、高强度、耐腐蚀以及高的成形性能等优点,其在汽车轻量化过程中的应用也得到快速增加。典型的汽车车身板用铝合金有2xxx、5xxx和6xxx系合金,其中6xxx系合金常见的有AA6009、AA6010、AA6016、AA6111和AA6022等。
虽然可热处理Al-Mg-Si系合金综合性能较好,但是研究和应用过程中均发现,该系合金如果直接经500~570℃固溶淬火处理后进行冲压成形,其成形性能较好。但是实际生产过程中大部分均需要将板材运送到汽车生产厂家进行后续的冲压成形,这期间合金板材在自然放置过程中会发生一定程度的强度上升,进而会降低合金板材的成形性能以及后续的烤漆硬化性能,此现象即所谓的自然时效恶化效应。因此,目前汽车用6xxx系铝合金制备过程中普遍采用的制备工艺如下:合金熔炼铸造→均匀化→热轧→冷轧→固溶→预时效(T4P处理)→冲压成形→刷漆→170-185℃的烤漆处理等工序。由于汽车板材制备的特殊性,这就必然期望合金在成形之前的T4P态具有较低的强度,而在烤漆过程中合金强度能够得到大幅度提升(即T8X态),这样可以保证合金板材具有较好的抗凹陷能力等,因此合金成分设计和热处理工艺开发是解决这一问题的关键途径。
在过去这些年针对如何提高合金烤漆硬化性能,无论从新合金设计,如优化Mg/Si、Cu含量,还是预时效工艺优化等方面已经进行了大量研究,如专利US6267922B1,US6117252,EP1967599A1以及CN818123A等专利,但是合金烤漆硬化增量仍然不够理想,即使商用AA6016和AA6111合金的烤漆硬化增量也仅为80MPa左右。因此,大幅度提高合金时效响应速度不仅对于汽车用铝合金烤漆硬化性能的进一步提高以及汽车轻量化进程的加快具有重要意义,而且对于新型铝合金的开发也具有重要指导意义。
考虑到降低溶质元素Mg、Si、Cu以及Fe含量等可以降低T4态合金强度进而提高合金的成形性能,但是Mg、Si和Cu元素的降低同时也会降低合金的烤漆硬化能力。此外,考虑到MgZn2强化相可以大幅度提高Al-Zn-Mg-Cu系合金的强度,因此如果能够同时利用Al-Mg-Si和 Al-Zn-Mg-Cu系合金的两种主要强化相Mg2Si和MgZn2或者其过渡相作为新型Al-Mg-Si系合金的强化相,实现多相协同析出进而实现多相协同强化的目的,所开发的合金一定会表现出非常优异的快速时效响应特性。本发明就是根据这一设计思想而进行新合金成分设计和工艺开发的。
发明内容
本发明为了克服现有技术的不足,针对常规Al-Mg-Si系合金时效响应速度和时效硬化性能不够理想的特点,开发一种具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系合金,充分利用Mg2Si和MgZn2多相协同析出和协同强化从而使合金综合性能得到大幅度提高。该发明合金特别适合应用于汽车车身外板用铝合金的制造,使车身外板冲压成形后具有优异的烤漆硬化性能。
本发明通过成分设计和优化首先对具有多相组织的Al-Mg-Si-Cu-Zn系合金的成分范围进行选择,然后通过熔炼铸造等工序制备所设计合金并对其时效析出行为进行研究,最终确定具有快速时效响应的新型Al-Mg-Si-Cu-Zn系合金成分。具体的制备工艺如下:FactSage相图计算→Al-Mg-Si系合金成分选择→合金配制和熔炼铸造→铸锭均匀化→热轧变形→中间退火→冷轧变形→固溶淬火→多级时效处理。
本发明的第一目的在于提出的一种具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金,其特征是在于该合金的化学成分及其质量百分比含量为:Zn:0.10~3.7wt%,Mg 0.3~1.2wt%,Si 0.3~1.2wt%,Cu 0.05~0.7wt%,Fe≤0.3wt%,Mn≤0.3wt%,Cr≤0.2wt%,Ti≤0.2wt%,余量为Al。
优选地,其化学成分的Zn含量范围为0.4~3.5wt%。
优选地,其化学成分Mg、Si的Mg/Si质量比范围为0.5~1。
优选地,其化学成分Si、Cu含量范围分别为:Si 0.8~1.1wt%,Cu 0.15~0.35wt%。
本发明的第二目的在于提出一种上述具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,所述制备方法包括以下步骤:
步骤一、熔炼铸造;
步骤二、双级均匀化;
步骤三、热轧变形;
步骤四、中间退火;
步骤五、冷轧变形;
步骤六、540℃以上的固溶处理;
步骤七、水淬处理;
步骤八、多级时效处理。
优选地,所述步骤二的双级均匀化具体为:将熔炼铸造后的合金试样以20~40℃/h升温速率开始从室温升温到470~485℃保温2~5h,然后再以20~40℃/h继续升温到545~555℃保温14~20h,最后再以20~40℃/h的降温速率随炉降温至100℃时取出。
优选地,所述步骤三的热轧变形具体为:开轧温度在545~555℃,热轧总变形量>90%,终轧温度≥300℃;
优选地,所述步骤四的中间退火具体为,将热轧变形后的合金试样直接放入350~450℃的热处理炉中进行1~3h的中间退火,然后空冷。
优选地,所述步骤五的冷轧变形的冷轧总变形量处于50%~75%之间,道次压下量处于15%~25%之间。
优选地,所述步骤六的540℃以上的固溶处理具体为:在盐浴炉中进行545~555℃/1-6min的固溶处理;所述步骤七的水淬处理是将固溶处理后的合金试样直接进行水淬。
优选地,所述步骤八的多级时效处理是将水淬处理后的合金试样在2~5min内转移到预时效炉中进行70-140℃/9-15h的预时效处理,然后再在室温放置14天,最后进行185℃人工时效;或是将水淬处理后的合金试样在2~5min内转移到70-140℃预时效炉中以1-15℃/h的降温速率降温到20~40℃取出,然后再在室温放置14天,最后进行185℃人工时效。
通过采用上述的技术方案,本发明具有如下优越性:本发明的新型Al-Mg-Si-Cu-Zn系合金可以充分利用基体内的各主要合金元素Mg、Si、Cu和Zn元素之间的相互作用,通过合适的热处理调控使得多种强化相协同析出,最终合金基体内均匀弥散分布有大量不同种类的强化相使合金在较短的时效时间内即可获得较大幅度的强度提高,即实现所谓的快速时效响应特性。本发明合金非常适合应用于目前研究较多的汽车用铝合金外板材料的进一步开发和生产等。
附图说明
图1几种新型铝合金固溶淬火后直接进行人工时效的硬度变化规律。
图2几种新型铝合金固溶淬火后直接进行自然时效的硬度变化规律。
图3几种新型铝合金固溶淬火后经自然时效14天后的DSC分析结果。
图4几种新型铝合金固溶淬火后经自然时效14天后再经185℃人工时效的硬度变化规律。
图5几种新型铝合金经预时效处理后在自然时效过程中的硬度变化规律。
图6几种新型铝合金经预时效+自然时效14天后的DSC分析结果。
图7几种新型铝合金经预时效+自然时效14天后再在185℃时效的硬度变化规律。
图8T4P态5#合金以10℃/min升温到250℃时的TEM显微组织。
具体实施方式
下面结合具体实施方案对本发明做进一步的补充和说明。
原材料分别采用99.9wt%的高纯铝、工业纯Mg、工业纯Zn、中间合金Al-20wt%Si、Al-50wt%Cu、Al-20wt%Fe、Al-10wt%Mn等。在电阻炉中的具体熔炼过程为,首先将纯铝全部加入坩埚,将炉温设定在850℃,待纯铝熔化后加入Al-20wt%Si、Al-50wt%Cu、Al-20wt%Fe、Al-10wt%Mn中间合金,并加入覆盖剂(50wt%NaCl+50wt%KCl);继续加热熔体,待中间合金熔化,熔体温度达到750℃后对其进行搅拌使溶质元素混合均匀,然后在750℃保温30min后设定炉温使熔体降温到710℃,然后向熔体中加入纯Zn和纯Mg,并充分搅拌使其彻底溶解;待熔体温度再次达到730℃时取样分析成分,如果成分测量值低于设计值,根据烧损情况适当添加一定量的中间合金,如果成分测量值高于设计值,根据过量值适当添加一定量的金属纯铝进行稀释;继续待熔体升至740℃后扒渣、加入精炼剂进行除气精炼;然后将熔体温度降至约720℃时加入Al-5wt%Ti-1wt%B晶粒细化剂并进行适当搅拌,最后在此温度保温10min后将熔体浇铸到四周水冷的钢模内。实施发明合金的具体化学成分见表1。
表1实施发明合金化学成分(质量百分数,wt%)
  Mg Si Cu Fe Mn Zn Cr Ti Al
1# 0.6 0.9 0.2 0.1 0.07 0 ≤0.2wt% ≤0.01wt% 余量
2# 0.6 0.9 / 0.1 0.07 3.0 ≤0.2wt% ≤0.01wt% 余量
3# 0.6 0.9 0.2 0.1 0.07 0.5 ≤0.2wt% ≤0.01wt% 余量
4# 0.6 0.9 0.2 0.1 0.07 1.5 ≤0.2wt% ≤0.01wt% 余量
5# 0.6 0.9 0.2 0.1 0.07 3.0 ≤0.2wt% ≤0.01wt% 余量
发明合金铸锭在循环空气炉中进行均匀化处理,处理工艺为:将合金铸锭放入循环空气炉内,打开电源,以20~70℃/h升温速率开始升温,待温度达到460~490℃保温1~7h,然后再以20~70℃/h继续升温到540~560℃保温10~25h,然后再以20~70℃/h的降温速率随炉降温至100℃时取出试样;然后对铸锭进行热轧变形→中间退火→冷轧变形,为了更好地优化成 分,一部分试样直接取自均匀化态,一部分取自冷轧态,然后将切取的块状试样放入540~560℃的盐浴炉中进行1-10min的固溶处理,随后进行水淬处理。最后对淬火试样进行单级或多级时效处理,并对其进行DSC分析、显微硬度和拉伸性能测量分析合金析出行为和快速时效响应的变化情况。具体的实施方式如下:
实施例1
从实施发明合金1#、2#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,然后再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。然后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶处理(即在545~555℃的盐浴炉中进行1-6min的固溶处理)和水淬处理,随后直接放入185℃时效炉中进行不同时间的人工时效,比较各种合金的时效析出行为(详见图1所示)。
实施例2
从实施发明合金1#、2#、3#、4#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。随后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶和水淬处理,然后直接在室温状态下进行自然时效,测量合金硬度随自然时效时间的变化规律(详见图2所示)。此外还对14天自然时效态试样进行DSC分析,具体实施方案为:切出直径3mm×1mm,质量约为15mg的圆片,利用差示扫描量热仪Q2000(DSC)进行差热分析,用高纯Al作为标样,以10℃/min的加热速率从20℃加热到400℃。据此进一步掌握不同成分合金的时效析出行为差异(详见图3所示)。
实施例3
从实施发明合金1#、2#、3#、4#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。随后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶和水淬处理,然后在室温状态下进行14天自然时效(T4态),最后对自然时效态试样进行185℃不同时间的人工时效处理,测量合金的硬度变化规律(详见图4所示)。
实施例4
从实施发明合金1#、2#、3#、4#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。随后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶和水淬处理,然后保证在2~5min内转移到预时效炉中进行70~140℃/9~15h的预时效处理,最后将预时效态试样在室温状态下进行自然时效,测量合金硬度随自然时效时间的变化规律(如图5所示)。此外,为了对比不同成分合金的析出行为差异,还进行了相应的DSC分析,具体实施方案为:切出直径3mm×1mm,质量约为15mg的圆片,利用差示扫描量热仪Q2000(DSC)进行差热分析,用高纯Al作为标样,以10℃/min的加热速率从20℃加热到400℃。相应的DSC曲线见图6所示。
实施例5
从实施发明合金1#、2#、3#、4#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。随后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶和水淬处理,然后保证在2~5min内转移到预时效炉中进行70-140℃/9-15h的预时效处理,并将预时效态试样在室温状态放置14天使合金性能稳定(即T4P(1)态),最后对T4P(1)态试样进行185℃不同时间的人工时效处理,测量合金的硬度变化规律(详见图7所示)。
实施例6
从实施发明合金1#、2#、3#、4#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。随后再在均匀化处理后的块体材料上直接切取试样置于盐浴炉中进行545~555℃/1-6min固溶和水淬处理,然后保证在2~5min内转移到70-140℃预时效炉中以1-15℃/h的降温速率降温到20~40℃取出,并将预时效态试样在室温状态放置14天使合金性能稳定(即T4P(2)态),最后对T4P(2)态试样进行185℃/20min的人工时效处理,测量合金的硬度增量(详见表2所示)。
实施例7
从实施发明合金1#和5#经熔炼铸造后,对其进行均匀化处理,处理工艺为:以20~40℃/h升温速率开始升温,待温度达到470~485℃保温2~5h,再以20~40℃/h继续升温到 545~555℃保温14~20h,然后再以20~40℃/h的降温速率随炉降温至100℃时取出试样。均匀化后将铸锭切头铣面,重新加热到545~555℃供热轧,热轧总变形量>90%,终轧温度≥300℃,热轧终轧厚度为4.0mm;对热轧后的板材进行350-450℃/1-3h的退火处理,然后将其冷轧到1mm厚,道次压下量处于15~25%,总变形量为75%;对冷轧后的板材进行545~555℃/1-6min固溶和水淬处理,然后保证在2~5min内转移到70-140℃预时效炉中以1-15℃/h的降温速率降温到20~40℃取出,并将预时效态试样在室温状态放置14天使合金性能稳定(即T4P(2)态),最后对T4P(2)态试样进行185℃/20min的人工时效处理,分别测量T4P(2)态和高温人工时效态合金的拉伸性能(详见表3所示)。
表2不同状态合金经185℃20min时效处理后硬度增量
Figure PCTCN2014092698-appb-000001
表3合金板材T4P(2)态和高温人工时效态力学性能
Figure PCTCN2014092698-appb-000002
Figure PCTCN2014092698-appb-000003
由于合金成分、显微组织以及热处理制度均对Al-Mg-Si系合金的沉淀析出行为有影响,为了消除热加工和冷加工过程中形成的变形组织对合金析出行为的影响,从而保证更好地优化出具有快速时效响应的新型Al-Mg-Si-Cu-Zn系合金成分,不同热处理状态所用合金均取自均匀化处理后的铸锭试样。实施例1-6经不同热处理工艺处理后的Al-Mg-Si-Cu-Zn系合金硬度变化和相应的DSC曲线如图1-7所示。由图1可以看出,相对于不含Zn的1#合金,无论不含Cu的2#合金还是含Cu的5#合金,固溶淬火后直接进行185℃不同时间的人工时效,其时效析出速度均快于不含Zn的1#合金的,而且峰值硬度也均高于1#合金的。由图2可以看出,无论含Zn还是不含Zn的Al-Mg-Si系合金,固溶淬火态试样在室温放置过程均会发生一定程度的硬度上升最后趋于稳定,不过含1.5wt%Zn的4#合金上升较小。对几种典型合金进行相应的DSC分析可以明显看出,添加一定量Zn的Al-Mg-Si-Cu-Zn系合金低温析出峰和回溶峰均发生明显变化,特别是当Zn含量添加到3.0wt%时,峰值温度为250℃的β″相析出发生明显的前移,说明即使经自然时效处理后的合金,添加一定量的元素Zn也对主要强化相—β″相的析出具有一定的促进作用。根据实施例3,如果对几种自然时效态合金再进行相应的185℃高温人工时效处理,由图4可以看出,添加元素Zn之后的Al-Mg-Si-Cu系合金高温时效析出速度明显加快,不过随着Zn含量的变化,时效析出速度差异较大,这主要由于各主合金元素含量变化对其相互作用产生影响所致。虽然添加一定量的元素Zn可以加快T4态合金高温时效析出速度,但是该析出速度仍然不够理想。如果对发明合金进行相应的预时效处理(实施例4),几种合金在室温放置过程中性能相对较为稳定,与不含Zn的1#合金类似均不会出现固溶淬火态合金在自然时效过程中的硬度上升现象(如图5所示),而且对T4P态试样进行DSC分析可以发现,低温析出峰均消失,添加元素Zn之后,峰值温度为250℃的β″相析出峰同样发生明显的前移。如果对预时效态合金再加14天自然时效放置的试样进行高温人工时效(实施例5),由图7可以看出,合金添加元素Zn之后高温时效析出速度均有较大程度的增加,特别是2#、3#和5#合金,而且透射电镜下观察含Zn合金很容易析出大量球形沉淀相(如图8所示)。
此外,考虑到具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系合金更加适合应用于汽车车身用外板合金的制造,因此,可以进一步对比几种合金T4态和T4P态在185℃时效20min的硬度增量(如表2所示)。由表可以看出,T4态的1#合金由于自然时效恶化效应严重,其经185℃/20min时效后甚至出现硬度下降现象,但是添加元素Zn之后,这一现象可以彻底避免。此外,添加元素Zn之后的几种合金,除4#合金之外,其它几种T4P态合金进行185℃20min 时效后硬度增量均高于T4P态1#合金的硬度增量,特别是采用实施例6处理后的试样,这进一步说明新型Al-Mg-Si-Cu-Zn系合金经合适的热处理工艺处理后基体内的几种强化相可以实现较好的协同析出而快速强化基体。根据上述结果,再选用部分合金(1#和5#)进行实施例7的进一步对比,由表3可以发现5#合金经185℃/20min的短时人工时效处理,其屈服强度增量将近150MPa,此增量远高于汽车外板常用的AA6016和AA6111合金80MPa左右的增量。
综上所述,本发明通过成分设计和加工热处理工艺优化,对新型Al-Mg-Si-Cu-Zn系合金内各主合金元素Mg、Si、Cu和Zn之间的相互作用进行了很好地调控,使该系合金较常规Al-Mg-Si系合金具有更加优异的快速时效响应特性。此外,新开发的制备工艺不仅可以使合金时效响应速度加快,而且还可以抑制固溶淬火态Al-Mg-Si系合金的自然时效恶化效应,使合金板材具有优异的成形性能和烤漆硬化性能。因此,此发明合金和工艺不仅非常适合应用于汽车轻量化车身外板用铝合金的制造,而且对于其他领域用快速时效响应的新型铝合金的开发、加工和应用也具有一定的指导意义,值得汽车生产厂家和铝合金企业对此发明合金和相关的制备工艺加以重视,使其尽早能够在这一领域得到推广和应用。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (10)

  1. 一种具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金,其特征是在于该合金的化学成分及其质量百分比含量为:Zn:0.10~3.7wt%,Mg 0.3~1.2wt%,Si 0.3~1.2wt%,Cu0.05~0.7wt%,Fe≤0.3wt%,Mn≤0.3wt%,Cr≤0.2wt%,Ti≤0.2wt%,余量为Al。
  2. 根据权利要求1所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金,其特征是:其化学成分的Zn、Si和Cu含量范围分别为:Zn0.4~3.5wt%,Si 0.8~1.1wt%,Cu 0.15~0.35wt%。
  3. 根据权利要求1所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金,其特征是:其化学成分Mg、Si的Mg/Si质量比范围为0.5~1。
  4. 根据权利要求1-3任一项所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,所述制备方法包括以下步骤:
    步骤一、熔炼铸造;
    步骤二、双级均匀化;
    步骤三、热轧变形;
    步骤四、中间退火;
    步骤五、冷轧变形;
    步骤六、540℃以上的固溶处理;
    步骤七、水淬处理;
    步骤八、多级时效处理。
  5. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤二的双级均匀化具体为:将熔炼铸造后的合金试样以20~40℃/h升温速率开始从室温升温到470~485℃保温2~5h,然后再以20~40℃/h继续升温到545~555℃保温14~20h,最后再以20~40℃/h的降温速率随炉降温至100℃时取出。
  6. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤三的热轧变形具体为:开轧温度在545~555℃,热轧总变形量>90%,终轧温度≥300℃;
  7. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤四的中间退火具体为,将热轧变形后的合金试样直接放入350~450℃的热处理炉中进行1~3h的中间退火,然后空冷。
  8. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤五的冷轧变形的冷轧总变形量处于50%~75%之间,道次压下量处于15%~25%之间。
  9. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤六的540℃以上的固溶处理具体为:在盐浴炉中进行545~555℃/1-6min的固溶处理;所述步骤七的水淬处理是将固溶处理后的合金试样直接进行水淬。
  10. 如权利要求4所述的具有快速时效响应特性的新型Al-Mg-Si-Cu-Zn系列铝合金的制备方法,其特征在于:所述步骤八的多级时效处理是将水淬处理后的合金试样在2~5min内转移到预时效炉中进行70-140℃/9-15h的预时效处理,然后再在室温放置14天,最后进行185℃人工时效;或是将水淬处理后的合金试样在2~5min内转移到70-140℃预时效炉中以1-15℃/h的降温速率降温到20~40℃取出,然后再在室温放置14天,最后进行185℃人工时效。
PCT/CN2014/092698 2014-01-22 2014-12-01 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法 WO2015109893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410030681.6A CN103789583B (zh) 2014-01-22 2014-01-22 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
CN201410030681.6 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015109893A1 true WO2015109893A1 (zh) 2015-07-30

Family

ID=50665633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092698 WO2015109893A1 (zh) 2014-01-22 2014-12-01 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法

Country Status (2)

Country Link
CN (1) CN103789583B (zh)
WO (1) WO2015109893A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160201158A1 (en) * 2015-01-12 2016-07-14 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
EP3486343A1 (de) * 2017-11-16 2019-05-22 Amag Rolling GmbH Aushärtbare aluminiumlegierung
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
CN113881878A (zh) * 2021-10-08 2022-01-04 长沙理工大学 一种Mg-Al-Ca镁合金锻件的制备工艺
CN114411002A (zh) * 2022-01-25 2022-04-29 西安交通大学 一种铝合金的制备方法
CN114635066A (zh) * 2022-03-23 2022-06-17 山东博源精密机械有限公司 一种Al-Si-Fe系电机转子合金及其制备方法和应用
CN114717492A (zh) * 2022-04-02 2022-07-08 南通雨奇金属制品有限公司 一种用于高强韧铝合金形变的热处理方法
CN114774744A (zh) * 2022-05-26 2022-07-22 广东澳美铝业有限公司 一种低变形抗力高耐腐蚀的6系铝合金
CN114959373A (zh) * 2022-04-29 2022-08-30 常熟希那基汽车零件有限公司 6010铝合金材料、挤压工艺及挤压成型件
CN115011848A (zh) * 2022-05-11 2022-09-06 北京理工大学 一种高纯铝合金导线及其制备方法
CN115074645A (zh) * 2022-07-09 2022-09-20 浙江佑丰新材料股份有限公司 一种新能源汽车用铝合金电池壳均匀化热处理工艺
CN115386817A (zh) * 2022-08-01 2022-11-25 中车工业研究院有限公司 一种提升7b05合金综合性能的方法
CN115466889A (zh) * 2022-09-02 2022-12-13 中国航发北京航空材料研究院 一种高强韧、高抗疲劳铝合金及其制备方法
CN115821128A (zh) * 2022-11-21 2023-03-21 中钢天源股份有限公司 一种高成形性铝合金双极板基板及其制备方法
CN116103548A (zh) * 2022-12-20 2023-05-12 吉林大学 一种高时效硬化响应的Al-Mg-Si系铝合金及其制备方法
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789583B (zh) * 2014-01-22 2016-06-08 北京科技大学 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
CN103757507B (zh) * 2014-02-25 2016-04-27 北京科技大学 一种汽车车身外板用高烤漆硬化铝合金材料及其制备方法
CN104313413B (zh) * 2014-10-24 2016-08-24 北京科技大学 一种Al-Mg-Zn系合金及其合金板材的制备方法
JP2016141841A (ja) * 2015-02-02 2016-08-08 富士ゼロックス株式会社 円筒状支持体、電子写真感光体、プロセスカートリッジ、画像形成装置、及び円筒状支持体の製造方法
CN104862551B (zh) * 2015-05-21 2017-09-29 北京科技大学 Al‑Mg‑Cu‑Zn系铝合金及铝合金板材制备方法
CN105671464B (zh) * 2015-12-14 2017-08-22 宝鸡吉利发动机零部件有限公司 一种平衡轴铝套热处理工艺
CN106435416A (zh) * 2016-04-22 2017-02-22 昆山捷安特轻合金科技有限公司 一种超高强Al‑Zn‑Mg‑Cu合金的热挤压工艺
CN105839036B (zh) * 2016-04-27 2017-10-27 贵州航天风华精密设备有限公司 一种铝镁合金的热处理方法
JP6208389B1 (ja) 2016-07-14 2017-10-04 株式会社Uacj 曲げ加工性及び耐リジング性に優れたアルミニウム合金からなる成形加工用アルミニウム合金圧延材の製造方法
CN106756672B (zh) * 2016-12-07 2018-02-23 北京科技大学 一种提高汽车用Al‑Mg‑Si‑Cu系合金强度的处理方法
CN109706412A (zh) * 2019-01-09 2019-05-03 中车青岛四方机车车辆股份有限公司 一种高强度Al-Zn-Mg系合金及其制备方法和应用
CN110714176B (zh) * 2019-11-06 2020-12-29 天津大学 一种可实现铝合金快速时效的热处理方法
CN112322947B (zh) * 2020-11-11 2021-09-07 西北工业大学 一种汽车用高强塑性Al-Mg-Si-Zn合金及其制备方法
CN113846279A (zh) * 2021-09-26 2021-12-28 浙江大学 一种用于7075铝合金的超快速时效工艺及其应用
CN113981281B (zh) * 2021-10-15 2022-08-09 华峰铝业有限公司 一种高强度快速时效铝合金及其制备方法
CN115305391B (zh) * 2022-08-10 2023-06-06 中南大学 一种低能耗铝硅镁合金及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597707A (zh) * 2009-07-13 2009-12-09 中南大学 一种铝镁硅铜合金及其制备方法
CN101698914A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型超高强铝合金及其制备方法
JP2011058047A (ja) * 2009-09-10 2011-03-24 Furukawa-Sky Aluminum Corp 強度および延性に優れたアルミニウム合金厚板の製造方法
CN102115859A (zh) * 2010-01-06 2011-07-06 通用汽车环球科技运作有限责任公司 用于加强慢速淬火/冷却铸铝部件的方法
JP2012172192A (ja) * 2011-02-21 2012-09-10 Mitsubishi Alum Co Ltd 耳率が低い缶ボディ用アルミニウム合金板の製造方法および耳率が低いボトル型飲料缶用アルミニウム合金板の製造方法
CN103173661A (zh) * 2013-02-27 2013-06-26 北京科技大学 一种汽车车身用铝合金板材及其制备方法
CN103255326A (zh) * 2012-02-16 2013-08-21 株式会社神户制钢所 电磁成形用铝合金中空挤压材
CN103509980A (zh) * 2013-10-12 2014-01-15 北京科技大学 Al-Mg-Si-Cu-Zn系铝合金、其制备方法及其应用
CN103757507A (zh) * 2014-02-25 2014-04-30 北京科技大学 一种汽车车身外板用高烤漆硬化铝合金材料及其制备方法
CN103789583A (zh) * 2014-01-22 2014-05-14 北京科技大学 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
CN104018040A (zh) * 2014-06-23 2014-09-03 北京科技大学 一种汽车用高成形性铝合金材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597707A (zh) * 2009-07-13 2009-12-09 中南大学 一种铝镁硅铜合金及其制备方法
JP2011058047A (ja) * 2009-09-10 2011-03-24 Furukawa-Sky Aluminum Corp 強度および延性に優れたアルミニウム合金厚板の製造方法
CN101698914A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型超高强铝合金及其制备方法
CN102115859A (zh) * 2010-01-06 2011-07-06 通用汽车环球科技运作有限责任公司 用于加强慢速淬火/冷却铸铝部件的方法
JP2012172192A (ja) * 2011-02-21 2012-09-10 Mitsubishi Alum Co Ltd 耳率が低い缶ボディ用アルミニウム合金板の製造方法および耳率が低いボトル型飲料缶用アルミニウム合金板の製造方法
CN103255326A (zh) * 2012-02-16 2013-08-21 株式会社神户制钢所 电磁成形用铝合金中空挤压材
CN103173661A (zh) * 2013-02-27 2013-06-26 北京科技大学 一种汽车车身用铝合金板材及其制备方法
CN103509980A (zh) * 2013-10-12 2014-01-15 北京科技大学 Al-Mg-Si-Cu-Zn系铝合金、其制备方法及其应用
CN103789583A (zh) * 2014-01-22 2014-05-14 北京科技大学 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
CN103757507A (zh) * 2014-02-25 2014-04-30 北京科技大学 一种汽车车身外板用高烤漆硬化铝合金材料及其制备方法
CN104018040A (zh) * 2014-06-23 2014-09-03 北京科技大学 一种汽车用高成形性铝合金材料及其制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540085B1 (en) 2015-01-12 2021-10-20 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
US9828652B2 (en) * 2015-01-12 2017-11-28 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
EP3245309B1 (en) 2015-01-12 2019-06-12 Novelis, Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
US20160201158A1 (en) * 2015-01-12 2016-07-14 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
US11920229B2 (en) 2015-12-18 2024-03-05 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
EP3486343A1 (de) * 2017-11-16 2019-05-22 Amag Rolling GmbH Aushärtbare aluminiumlegierung
US11851736B2 (en) 2017-11-16 2023-12-26 Amag Rolling Gmbh Hardenable aluminum alloy
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same
CN113881878A (zh) * 2021-10-08 2022-01-04 长沙理工大学 一种Mg-Al-Ca镁合金锻件的制备工艺
CN114411002A (zh) * 2022-01-25 2022-04-29 西安交通大学 一种铝合金的制备方法
CN114635066A (zh) * 2022-03-23 2022-06-17 山东博源精密机械有限公司 一种Al-Si-Fe系电机转子合金及其制备方法和应用
CN114717492A (zh) * 2022-04-02 2022-07-08 南通雨奇金属制品有限公司 一种用于高强韧铝合金形变的热处理方法
CN114959373A (zh) * 2022-04-29 2022-08-30 常熟希那基汽车零件有限公司 6010铝合金材料、挤压工艺及挤压成型件
CN115011848A (zh) * 2022-05-11 2022-09-06 北京理工大学 一种高纯铝合金导线及其制备方法
CN114774744A (zh) * 2022-05-26 2022-07-22 广东澳美铝业有限公司 一种低变形抗力高耐腐蚀的6系铝合金
CN115074645A (zh) * 2022-07-09 2022-09-20 浙江佑丰新材料股份有限公司 一种新能源汽车用铝合金电池壳均匀化热处理工艺
CN115386817A (zh) * 2022-08-01 2022-11-25 中车工业研究院有限公司 一种提升7b05合金综合性能的方法
CN115466889A (zh) * 2022-09-02 2022-12-13 中国航发北京航空材料研究院 一种高强韧、高抗疲劳铝合金及其制备方法
CN115821128A (zh) * 2022-11-21 2023-03-21 中钢天源股份有限公司 一种高成形性铝合金双极板基板及其制备方法
CN116103548A (zh) * 2022-12-20 2023-05-12 吉林大学 一种高时效硬化响应的Al-Mg-Si系铝合金及其制备方法

Also Published As

Publication number Publication date
CN103789583A (zh) 2014-05-14
CN103789583B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2015109893A1 (zh) 快速时效响应型Al-Mg-Si-Cu-Zn系合金及其制备方法
WO2015127805A1 (zh) 一种汽车车身外板用高烤漆硬化铝合金材料及其制备方法
JP6458003B2 (ja) 自動車車体パネルの製造に好適なアルミニウム合金材料およびその生成方法
WO2021008428A1 (zh) 一种超高强铝锂合金及其制备方法
CN111575548B (zh) 综合性能优异的6系铝合金汽车外板及其制备方法
CN108330419B (zh) 一种Al-Mg-Mn-Er-Zr合金板材的热变形及其稳定化工艺
JP2019534947A (ja) 高強度7xxxシリーズアルミニウム合金およびその作製方法
CN100453671C (zh) 一种汽车用Al-Mg-Si-Cu合金及其加工工艺
CN108994267B (zh) 一种能够提升加工成形性与时效强化效果的6xxx系铝轧板制备方法
JP5918158B2 (ja) 室温時効後の特性に優れたアルミニウム合金板
CN110629075A (zh) 一种高强度高延伸率铝合金板材及其制造方法
CN112458344B (zh) 一种高强耐蚀的铝合金及其制备方法和应用
CN109897995B (zh) 一种高强度高塑性铝合金板材及其制造方法
WO2019025227A1 (en) 6XXXX SERIES LAMINATE SHEET PRODUCT WITH ENHANCED FORMABILITY
CN111074121B (zh) 铝合金及其制备方法
JPWO2019167469A1 (ja) Al−Mg−Si系アルミニウム合金材
CN113528900A (zh) 一种短流程高导电6系铝合金板带材及其制备方法
CN110073017B (zh) 铝合金及其制作方法
CN110983129B (zh) 一种提高汽车用铝合金板材弯边性能的一体化过程调控方法
CN112501482B (zh) 一种Si微合金化AlZnMgCu合金及其制备方法
JPH06240424A (ja) 成形性および焼付硬化性に優れたアルミニウム合金板の製造方法
CN112626384A (zh) 一种中强高塑性的铝合金及其制备方法和应用
JPH083702A (ja) 成形性と加熱硬化性に優れたアルミニウム合金板材の製造方法
JPH08176764A (ja) 成形加工用アルミニウム合金板の製造方法
JP2016037632A (ja) アルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879650

Country of ref document: EP

Kind code of ref document: A1