WO2015108194A1 - Imaging optical system, imaging device, and mobile terminal - Google Patents

Imaging optical system, imaging device, and mobile terminal Download PDF

Info

Publication number
WO2015108194A1
WO2015108194A1 PCT/JP2015/051289 JP2015051289W WO2015108194A1 WO 2015108194 A1 WO2015108194 A1 WO 2015108194A1 JP 2015051289 W JP2015051289 W JP 2015051289W WO 2015108194 A1 WO2015108194 A1 WO 2015108194A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
optical system
image
coating layer
Prior art date
Application number
PCT/JP2015/051289
Other languages
French (fr)
Japanese (ja)
Inventor
古後将司
地大英隆
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015108194A1 publication Critical patent/WO2015108194A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an imaging optical system used for a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor, an imaging device provided with the imaging optical system, and a portable terminal provided with the imaging device.
  • a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor
  • an imaging device provided with the imaging optical system and a portable terminal provided with the imaging device.
  • an infrared (IR) cut filter needs to be placed in front of the image sensor.
  • IR infrared
  • a sufficient distance between the most image side surface of the lens and the imaging element leads to an increase in the overall length of the imaging lens. It becomes.
  • the IR cut filter due to the characteristics of the IR cut filter, if the incident angle to the filter surface (the angle formed by the filter surface normal and the light beam) differs greatly for each light beam that forms an image at each position of the image sensor, the IR cut effect is effective.
  • the IR cut filter placed between the most image side surface of the lens and the image sensor, which has been conventionally used, is removed, and instead the IR cut coat is applied to the lens surface, thereby reducing the number of parts of the optical system.
  • An imaging optical system capable of reducing the height has been proposed (see Patent Document 1). Specifically, the imaging optical system described in Patent Document 1 minimizes the incident angle difference on the IR cut coat surface from the light beam that forms an image at the center of the image sensor to the light beam that forms an image around the image sensor. Therefore, an IR cut coat is applied to the lens surface whose center of curvature is substantially at the aperture center of the stop.
  • An object of the present invention is to provide an imaging optical system having a compact and good imaging performance in which the adverse effect on the color due to near infrared rays is suppressed over the entire field angle.
  • an object of this invention is to provide an imaging device provided with the above-mentioned imaging optical system, and a portable terminal provided with the said imaging device.
  • an imaging optical system includes a coating layer for suppressing transmittance in a wavelength region of 700 nm or more on at least one surface of a lens, and the lens surface having the coating layer has the following conditional expression: Satisfied. 1.5 ⁇ [he 2 /(2.R)]/Sag(he) ⁇ 29 (1)
  • R Distance on the optical axis from the apex of the surface having the coating layer to the center of the aperture stop (the image side is defined as +)
  • he Effective radius of the target surface (the target surface is a surface having a coating layer)
  • Sag (he): Sag amount at the height he on the target surface (the image side is set to +)
  • Conditional expression (1) is a conditional expression for achieving good imaging performance while keeping the imaging optical system compact. By exceeding the lower limit of conditional expression (1), it is possible to prevent the coating surface from being excessively curved, and to make the thickness of the coating film substantially uniform at the center and the periphery of the lens. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject.
  • the imaging optical system can be made compact.
  • the incident angle difference on the coating surface is made as small as possible from the light beam focused on the center of the image sensor to the light beam focused on the periphery. Can do.
  • an imaging apparatus includes the above-described imaging optical system and an imaging element that photoelectrically converts an image formed on the imaging surface by the imaging optical system.
  • the portable terminal according to the present invention includes an imaging apparatus having a compact and good imaging performance in which the adverse effect of the color due to the near infrared rays is suppressed in the entire angle of view as described above.
  • FIG. 2 is a cross-sectional view of an imaging lens of Example 1.
  • FIG. 7A to 7C are aberration diagrams of the imaging lens of Example 1.
  • FIG. 6 is a cross-sectional view of an imaging lens of Example 2.
  • FIG. 9A to 9C are aberration diagrams of the imaging lens of Example 2.
  • FIG. 6 is a cross-sectional view of an imaging lens of Example 3.
  • FIG. 11A to 11C are aberration diagrams of the imaging lens of Example 3.
  • the imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
  • FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
  • the camera module 50 includes an imaging lens 10 that is an imaging optical system that forms a subject image, an imaging element 51 that detects a subject image formed by the imaging lens 10, and holds the imaging element 51 from behind and wiring and the like.
  • a wiring board 52 having the imaging lens 10 and the like, and a lens barrel portion 54 having an opening OP through which a light beam from the object side is incident.
  • the imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51.
  • the camera module 50 is used by being incorporated in an imaging device 100 described later, but it is also called an imaging device alone.
  • the imaging lens 10 forms a subject image on the imaging surface (projected surface) I of the image sensor 51, and in order from the object side, the first lens L1, the second lens L2, and the third lens L3. And a fourth lens L4 and a fifth lens L5.
  • the aperture stop S is disposed on the object side surface S11 side of the first lens L1.
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
  • the photoelectric conversion surface of the photoelectric conversion unit 51a as the light receiving unit is an image surface or an imaging surface (projected surface) I.
  • the wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54).
  • the wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
  • the parallel plate F is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
  • the lens barrel portion 54 houses and holds the imaging lens 10.
  • the lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L5 constituting the imaging lens 10 along the optical axis AX.
  • it has a drive mechanism 55a.
  • the drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX.
  • the drive mechanism 55a includes, for example, a voice coil motor and a guide.
  • the drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like.
  • the mobile communication terminal 300 is a smartphone-type mobile communication terminal or mobile terminal, and wireless communication for realizing various information communication between the imaging apparatus 100 having the camera module 50 and an external system or the like via the antenna 331. Part 330.
  • the mobile communication terminal 300 includes an operation unit including a power switch and a storage unit (ROM or the like) storing necessary data such as a system program, various processing programs, and a terminal ID. Also equipped.
  • the imaging apparatus 100 includes an optical system driving unit 101, an imaging interface (I / F) 102, an image processing circuit (ISP) 103, a temporary storage unit (RAM) 104, a data storage unit (EEPROM) 105, CPU 106, display operation unit interface 107, auxiliary storage unit interface 108, display operation unit (LCD) 310, auxiliary storage unit (SD card, etc.) 320, and the like.
  • the imaging interface 102, the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, the CPU 106, the display operation unit interface 107, and the auxiliary storage unit interface 108 are the control unit 110 for driving the camera module 50 and the like.
  • the control unit 110 also includes a communication unit interface 109.
  • the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, and the CPU 106 serve as an image processing unit 111 that processes an image signal output from the camera module 50.
  • the optical system driving unit 101 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the CPU 106.
  • the optical system driving unit 101 can cause the imaging lens 10 to perform a focusing operation by operating the driving mechanism 55a to appropriately move specific or all lenses in the imaging lens 10 along the optical axis AX.
  • the imaging interface 102 is a part for receiving the image signal output from the imaging element 51 to the control unit 110.
  • the image processing circuit 103 performs image processing on the image signal output from the image sensor 51.
  • the image processing circuit 103 performs processing on the frame image constituting the image signal, for example, corresponding to a moving image.
  • the image processing circuit 103 executes distortion correction processing on the image signal based on the lens correction data read from the data storage unit 105 in addition to normal image processing such as color correction, gradation correction, and zooming. .
  • the temporary storage unit 104 is used as a work area for temporarily storing various processing programs executed by the control unit 110, data necessary for the execution, processing data, imaging data by the imaging apparatus 100, and the like.
  • the data storage unit 105 stores lens correction data used for image processing. Specifically, in addition to data for color correction, gradation correction, etc., parameters for distortion correction are stored.
  • the CPU 106 comprehensively controls each unit and executes a program corresponding to each process.
  • the CPU 106 performs various image processing such as color correction, gradation correction, and distortion correction on the signal before processing by the image processing circuit 103 based on the lens correction data read from the data storage unit 105.
  • image signal processed by the image processing circuit 103 can be subjected to the same processing as the image processing circuit 103, compression, or other image processing.
  • the display operation unit interface 107 transfers the image signal output from the image processing circuit 103 or the CPU 106 to the display operation unit 310 and transfers the operation signal from the display operation unit 310 to the CPU 106.
  • the auxiliary storage unit interface 108 outputs the moving image and the image data as a still image output from the image processing circuit 103 or the like to the auxiliary storage unit 320.
  • the display operation unit 310 is a touch panel that displays data related to communication, captured images, and the like and accepts user operations.
  • the auxiliary storage unit 320 is detachable and is a part that records and stores the image signal processed by the image processing unit 111.
  • the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described.
  • subject monitoring through image display
  • image shooting execution are performed.
  • an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51.
  • the image sensor 51 is scanned and driven by an image sensor drive unit (not shown), and outputs one frame of a digital signal obtained by digitizing a photoelectric conversion output corresponding to an optical image formed at a fixed period.
  • the digital signal is input to the image processing circuit 103 and the like, and an image signal (video signal) subjected to image processing is generated and output to the display operation unit 310 and the auxiliary storage unit 320.
  • the image signal from the image sensor 51 or the image processing circuit 103 is temporarily stored in the temporary storage unit 104.
  • the display operation unit 310 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 101 based on an operation input performed by the user via the display operation unit 310 at any time.
  • still image data is captured when the user appropriately operates the display operation unit 310.
  • One frame of image data (imaging data) is read and compressed according to the operation content of the display operation unit 310.
  • the compressed image data is recorded in the temporary storage unit 104 or the like via the control unit 110, for example.
  • the image signal output from the camera module 50 including the imaging lens 10 is input to the control unit 110 via the imaging interface 102.
  • the image signal to be displayed corresponds to a still image
  • the image signal is stored in the temporary storage unit 104
  • the CPU 106 reads out the lens correction data from the data storage unit 105, and the CPU 106 or the image processing circuit.
  • 103 performs various image processing on the image signal based on the correction data, and returns the image signal to the temporary storage unit 104.
  • the image processing includes image processing for displaying on the display operation unit 310 and image processing for storing in the auxiliary storage unit 320.
  • the image signal to be displayed corresponds to a moving image
  • the image signal is input only to the image processing circuit 103, and the image processing circuit 103 reads the image signal based on the lens correction data read from the correction data.
  • Various image processing is performed on the image.
  • the image signal subjected to the image processing is displayed on the display operation unit 310 via the display operation unit interface 107. Further, the image signal subjected to image processing can be recorded in the auxiliary storage unit 320 via the auxiliary storage unit interface 108.
  • the above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
  • the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), tablet personal computer, mobile personal computer, digital still camera, video camera, or the like.
  • PDA Personal Digital Assistant
  • the imaging lens 10 shown in FIG. 1 includes, in order from the object side, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5. Become.
  • the imaging lens 10 is composed of two or more lenses, and it is easy to have a good imaging performance with well-suppressed aberrations.
  • the aperture stop S is disposed on the object side of the first lens L1.
  • a coating layer that suppresses the transmittance in the wavelength region of 700 nm or more is provided on at least one surface of the lens constituting the imaging lens 10.
  • the coating layer is provided on the image side surface S32 of the third lens L3.
  • the coating layer may also be provided on the object side surface S11 of the first lens L1, the object side surface S41 of the fourth lens L4, the object side surface S51 of the fifth lens L5, and the image side surface S52 of the fifth lens L5.
  • the coating layer is made of a high refractive index material such as TiO 2 , ZrO 2 , Ta 2 O 2 , and Nb 2 O 5 and a low refractive index such as SiO 2 and MgF 2 with respect to the lens surface by using a vapor deposition device or the like. It is formed of a dielectric multilayer film in which a plurality of materials are alternately stacked to form several tens of layers.
  • FIG. 4 shows an example of the transmission characteristics of the coating layer.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents transmittance (%).
  • the illustrated coating layer has a transmission window in the wavelength range of about 410 nm to 700 m.
  • All the lenses L1 to L5 are assumed to be plastic lenses. Between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed.
  • the parallel plate F is assumed to be an optical low-pass filter, a seal glass of a solid-state image sensor, or the like. Note that an optical low-pass filter or the like is not necessarily provided as the parallel plate F.
  • at least one lens is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays.
  • the lens 10 for imaging with good imaging performance in which there is almost no color difference due to the IR cut effect between the center and the periphery of the subject.
  • the third lens L3 is formed of a resin material including an infrared absorbing material that absorbs infrared rays.
  • the infrared absorbing material include fine particles of ITO (indium tin oxide) and ATO (antimony-doped tin oxide).
  • the coating layer that cuts infrared rays may not be one that does not transmit the entire wavelength region of 700 nm or more.
  • the transmittance of a lens to which an infrared absorbing material is added can be suppressed to 1% or less in the wavelength range of 700 to 800 nm
  • the transmittance at a wavelength of 800 nm or more may be suppressed by the coating layer.
  • the transmittance at a wavelength of 800 nm to 1200 nm is set to 1% or less by the coating layer.
  • any of the lenses L1, L2, L3, L4, and L5 constituting the imaging lens 10 or two or more of these lenses can be made of a resin material containing an infrared absorbing material.
  • the lens on which the coating layer for cutting infrared rays is formed is the third lens L3 as in this embodiment, when the third lens L3 is made of a resin material containing an infrared absorbing material, infrared infrared rays are used.
  • An infrared shielding coating layer is provided on the lens surface of the lens made of an absorption resin material.
  • the lens provided with the infrared blocking coating layer has a shape that is easy to mold without having a large curvature.
  • the lens on which the coating layer for cutting infrared rays is formed is the third lens L3 as in this embodiment, when a lens other than the third lens L3 is made of an infrared absorbing resin material, for example, By using an infrared absorbing resin material for a lens having a smaller volume than the three lenses L3, the cost of the lens can be reduced. Infrared absorbing resin materials generally tend to be more expensive than ordinary optical resin materials.
  • the lens on which the infrared cut coating layer is formed is the third lens L3 as in this embodiment, not only the third lens L3 but also the lenses other than the third lens L3 are made of an infrared absorbing resin material.
  • the effect of blocking infrared rays incident on the image sensor can be enhanced. That is, the greater the length of the infrared absorbing material, the greater the effect of infrared cutting, so that the infrared rays can be blocked almost completely by a plurality of lenses.
  • the infrared cut coating layer is formed on the third lens L3.
  • an infrared cut coating layer may be formed on a lens other than the third lens L3.
  • the imaging lens 10 by providing a coating layer that suppresses transmittance in a wavelength region of 700 nm or more on at least one surface of the lenses L1 to L5, for example, infrared rays are provided between the fifth lens L5 as the final lens and the imaging element 51. Since it is not necessary to arrange a cut filter, the back focus can be shortened, and the imaging lens 10 can be reduced in height.
  • the lens surface having the coating layer satisfies the following conditional expression. 1.5 ⁇ [he 2 /(2.R)]/Sag(he) ⁇ 29 (1)
  • R is the distance on the optical axis AX of the aperture stop S center from the vertex of the surface having the coating layer
  • he is the effective radius of the target surface
  • Sag (he) is the height he at the target surface.
  • the target surface is a surface having a coating layer.
  • the image side is set to +.
  • conditional expression (1) is a conditional expression for achieving good imaging performance while keeping the imaging lens 10 that is an imaging optical system compact.
  • the length from a certain lens surface (for example, the object side surface S41 of the fourth lens L4) to the intersection of the aperture stop S and the optical axis AX is the ideal radius of curvature of the lens surface (for example, R (S41)).
  • the ideal radius of curvature means that if the radius of curvature of the surface shape is R, the angle of incidence of the light beam is reduced by the off-axis ray bundle from the center, and the radius of curvature becomes a shape suitable for the surface to which IR cut coating is applied. Means.
  • Conditional expression (1) expresses by a ratio how much the shape of a lens surface is the same as a spherical shape having an ideal radius of curvature.
  • the sag amount Sag (he) at an effective diameter of a lens surface should be [he 2 / (2 ⁇ R)] if the lens surface has a spherical shape having an ideal radius of curvature. That is, conditional expression (1) represents the ratio of the sag amount when the shape of a certain lens surface is a spherical shape having an ideal radius of curvature and the actual sag amount.
  • the surface to which the IR cut coating is applied is a surface where the degree of concentric with respect to the aperture stop S satisfies the condition (1).
  • conditional expression (1) By exceeding the lower limit value of conditional expression (1), it is possible to prevent the coating surface from being excessively curved, and to make the thickness of the coating film substantially uniform at the center portion (near the optical axis AX) and the peripheral portion of the lens. be able to. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject. In addition, since the degree of bending of the lens does not become too large, it is not necessary to increase the distance between the front and rear optical elements, and the imaging optical system can be made compact.
  • the difference in the incident angle on the coating surface is made as small as possible from the light beam focused on the center of the image sensor 51 to the light beam focused on the periphery. be able to.
  • an imaging optical system that not only has the same color tone at the center and the periphery, but also has good imaging performance with little aberration.
  • the incident angle of light on the lens surface greatly affects the IR cut effect.
  • the IR wavelength region to be cut differs for each image height. The color will be different. Therefore, it is necessary to coat the IR-cut layer on the lens surface having a relatively small incident angle with respect to the light beam that is imaged at any image height that satisfies the conditional expression (1).
  • the imaging lens 10 of the embodiment satisfies the conditional expression (2) already described in addition to the conditional expression (1). 0.2 ⁇ Yd / TTL ⁇ 0.9 (2)
  • Yd is a half value of the diagonal length of the imaging surface of the imaging device
  • TTL is the total length of the imaging lens 10 which is an imaging optical system.
  • the imaging lens 10 When the imaging lens 10 satisfies the conditional expression (2), it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject while being compact. .
  • the conditional expression (2) By falling below the upper limit value of the conditional expression (2), it is possible to prevent the lenses L1 to L5 constituting the imaging lens 10 from being greatly curved, and a coating film is formed between the central portion and the peripheral portion of the lenses L1 to L5. It becomes easy to make the thickness of the film substantially uniform. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject. Moreover, it can be set as the compact imaging lens 10 by exceeding the lower limit of conditional expression (2).
  • imaging lens 10 of the embodiment may further include other optical elements having substantially no power.
  • f focal length of the entire imaging lens
  • Fno F number
  • Yd half value of diagonal length of imaging surface of imaging element
  • TTL total length of imaging lens
  • D Axis upper surface distance
  • Nd Refractive index ⁇ d of lens material with respect to d-line: Abbe number of lens material
  • the surface where “*” is written after each surface number is an aspheric surface .
  • the aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the X axis is taken in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX is h.
  • Ai i-order aspheric coefficient
  • R radius of curvature
  • K conic constant
  • Example 1 The lens surface data of Example 1 are shown in Tables 1 and 2 below.
  • infinity is represented as “infinity” and the aperture stop is represented as “STOP”.
  • L (mm) is the distance from the vertex of each surface to the stop
  • R is the distance on the optical axis AX from the vertex of the surface having the coating layer to the center of the aperture stop S
  • he is the effective radius of the target surface
  • Sag (he) is the amount of sag at the height he on the target surface.
  • the aspherical coefficients of the lens surfaces of Example 1 are shown in Table 3 below.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • Example 1 The single lens data of Example 1 is shown in Table 4 below.
  • Table 4 Lens Start surface Focal length (mm) 1 1 2.708 2 3 -3.916 3 5 14.194 4 7 2.444 5 9 -1.861
  • FIG. 6 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment.
  • the imaging lens 11 has, in order from the object side, a first lens L1 having a positive refractive power in the vicinity of the optical axis AX and having a convex surface with a convex surface facing the object side, and a negative refractive power in the vicinity of the optical axis AX.
  • a second lens L2 that is nearly plano-concave with the concave surface facing the image side
  • a third lens L3 that is near a flat plate that has almost no refractive power in the vicinity of the optical axis AX, and a positive refractive power in the vicinity of the optical axis AX.
  • a fourth lens L4 having a meniscus shape with a concave surface facing the object side, and a biconcave fifth lens L5 having negative refractive power in the vicinity of the optical axis AX are provided.
  • the image side surface S32 of the third lens L3 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more.
  • the object side surface S11 of the first lens L1, the object side surface S41 of the fourth lens L4, the object side surface S51 of the fifth lens L5, and the image side surface S52 of the fifth lens L5 also have transmittance in a wavelength region of 700 nm or more. You may provide the coating layer which suppresses. All the lenses L1 to L5 are assumed to be plastic lenses.
  • the third lens L3 is formed of a resin material including an infrared absorbing material that absorbs infrared rays.
  • An aperture stop S is disposed on the object side surface S11 side of the first lens L1.
  • a parallel plate F having an appropriate thickness is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
  • the parallel plate F is assumed to be an optical low-pass filter, a seal glass of a solid-state image sensor, or the like (the same applies to the following examples).
  • FIG. 7A to 7C show spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1.
  • FIG. 7A to 7C show spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1.
  • FIG. 7A to 7C show spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1.
  • FIG. 7A to 7C show spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1.
  • the solid line represents the sagittal image plane and the dotted line represents the meridional image plane.
  • Example 2 The single lens data of Example 2 is shown in Table 8 below. [Table 8] Lens Start surface Focal length (mm) 1 1 1.810 2 3 -14.880
  • FIG. 8 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment.
  • the imaging lens 12 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX.
  • a second lens L2 close to a concave plane with the concave surface facing the object side.
  • the object side surface S21 of the second lens L2 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more.
  • a coating layer that suppresses the transmittance in the wavelength region of 700 nm or more may also be provided on the object side surface S11 of the first lens L1. All the lenses L1 and L2 are assumed to be plastic lenses. Of the lenses L1 and L2, the second lens L2 is formed of a resin material including an infrared absorbing material that absorbs infrared rays. An aperture stop S is disposed on the object side surface S11 side of the first lens L1. Between the light exit surface of the second lens L2 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed.
  • FIGS. 9A to 9C show spherical aberration, astigmatism and distortion of the imaging lens 12 of the second embodiment.
  • Example 3 The lens surface data of Example 3 are shown in Table 9 and Table 10 below.
  • Table 9 Surface number R (mm) D (mm) Nd ⁇ d he (mm) Object infinity infinity 1 * 0.938 0.619 1.54480 56.0 0.45 2 * 8.484 0.215 0.49 3 * -1.270 0.512 1.54480 56.0 0.50 4 * -0.805 0.056 0.65 5 * infinity 0.500 1.54480 56.0 0.70 6 * 1.131 0.158 0.88 7 infinity 0.175 1.52310 54.5 0.97 8 infinity 0.100 1.01 9 infinity 0.400 1.52000 62.4 1.04 10 infinity 0.082 1.12 I [Table 10] Surface number L (mm) Sag (he) (mm) [he2 / (2 ⁇ R)] / Sag (he) Object 1 * 0.103 0.107 9.066 2 * -0.517 -0.008 28.093 3 * -0.731 -0.107 1.566 4 * -1.243 -0.143 1.186 5 * -1.299 -0.1
  • FIG. 10 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment.
  • the imaging lens 13 has, in order from the object side, a first lens L1 having a positive refractive power in the vicinity of the optical axis AX and having a convex surface with a convex surface facing the object side, and a positive refractive power in the vicinity of the optical axis AX.
  • a second lens L2 having a meniscus shape with a convex surface facing the image side, and a plano-concave third lens L3 having a negative refractive power near the optical axis AX and having a concave surface facing the image side.
  • the object side surface S21 of the second lens L2 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more.
  • a coating layer that suppresses transmittance in a wavelength region of 700 nm or more may also be provided on the object side surface S11 of the first lens L1, the image side surface S12 of the first lens L1, and the object side surface S31 of the third lens L3.
  • All the lenses L1 to L3 are assumed to be plastic lenses.
  • the second lens L2 is formed of a resin material containing an infrared absorbing material that absorbs infrared rays.
  • An aperture stop S is disposed on the object side surface S11 side of the first lens L1. Between the light exit surface of the third lens L3 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed.
  • FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3.
  • FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3.
  • the imaging lens 10 is a combination of single lenses, but may be a lens array for a compound eye imaging device in which a plurality of lenses are two-dimensionally arranged.
  • the temperature change of the plastic material can be reduced. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, making it difficult to use as an optical material. By making the wavelength smaller than this, scattering can be substantially prevented from occurring.
  • the refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other.
  • a plastic material with extremely low temperature dependency of the refractive index is obtained.
  • a plastic material with extremely low temperature dependency of the refractive index is obtained.
  • the refractive index change due to temperature change can be reduced.
  • the image point position fluctuation at the time of temperature change of the entire imaging lens system is further reduced. It becomes possible to suppress.
  • a reflow process (heating process) is performed on a substrate on which solder has been potted in advance with an IC chip or other electronic component and an optical element placed on the substrate.
  • a technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting solder.
  • it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, the lens using the thermoplastic resin is heated. There is a problem that the optical performance deteriorates due to deformation or discoloration.
  • the imaging lenses 11 to 13 are effective for the reflow process, are easier to manufacture than the glass mold lens, are inexpensive, and can achieve both low cost and mass productivity of the imaging device incorporating the imaging lens. Therefore, the lenses L1 to L5 of Examples 1 to 3 may be formed using the energy curable resin.
  • the energy curable resin generally refers to a thermosetting resin, an ultraviolet curable resin, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is an imaging optical system that suppresses bad effects on hue caused by near-infrared rays over all angles of view, is compact, and has an excellent image forming performance. At least one surface of lenses (L1 - L5) is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or greater, and the lens surface having the coating layer satisfies the following conditional equation (1). 1. 5 < [he2/(2 ∙ R)]/Sag(he) < 29 … (1) wherein, R is the distance from a vertex on the surface having the coating layer to the center of an aperture stop (S) on an optical axis (AX), he the effective radius of a subject surface, and Sag(he) the amount of sag at height he on the subject surface.

Description

撮像光学系、撮像装置及び携帯端末Imaging optical system, imaging apparatus, and portable terminal
 本発明は、CCD型イメージセンサー又はCMOS型イメージセンサー等の固体撮像素子に用いられる撮像光学系、当該撮像光学系を備えた撮像装置、及び当該撮像装置を備える携帯端末に関する。 The present invention relates to an imaging optical system used for a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor, an imaging device provided with the imaging optical system, and a portable terminal provided with the imaging device.
 近年、CCD(Charge Coupled Device)型イメージセンサーやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた小型の撮像装置が、携帯電話やPDA(Personal Digital Assistance)等の携帯端末、さらにはノートパソコン等にも搭載されるようになっている。これにより、遠隔地等に音声情報だけなく画像情報も相互に転送することが可能になってきている。 In recent years, small-sized imaging devices using solid-state imaging devices such as CCD (Charge-Coupled Device) type image sensors and CMOS (Complementary Metal-Oxide Semiconductor) type image sensors have become mobile terminals such as mobile phones and PDA (Personal Digital Assistance), Furthermore, it is also installed in notebook computers. As a result, not only audio information but also image information can be transferred to a remote place or the like.
 このような撮像装置に用いられる固体撮像素子においては、近年、画素サイズの小型化が進み、撮像素子の高画素化や小型化が図られている。それに伴い、このような撮像素子に最適な、小型で高性能を有する撮影レンズが求められるようになっている。 In recent years, in the solid-state imaging device used in such an imaging apparatus, the pixel size has been reduced, and the imaging device has been increased in size and size. Accordingly, there is a demand for a small and high-performance photographing lens that is optimal for such an image sensor.
 一方、撮像装置をさらに小型化するためにも撮像レンズの全長もさらに小さくすることが要求されている。撮像レンズのパワー(屈折力)配置や、レンズの厚み、空気間隔の工夫や、焦点距離を短くした広角レンズを用いることで、光学系の全長を小さくする試みがされるようになってきた。 On the other hand, in order to further reduce the size of the imaging device, it is required to further reduce the overall length of the imaging lens. Attempts have been made to reduce the overall length of the optical system by using the power (refractive power) arrangement of the imaging lens, the thickness of the lens, the idea of the air spacing, and the use of a wide-angle lens with a short focal length.
 撮像装置において、衣裳、商品、絵画等の撮影で、グリーン系の色がグレーや赤茶色に写ったり、青紫色の花の色が赤紫色に写ってしまったりする近赤外線の影響を防ぐため、赤外線(IR)カットフィルターを撮像素子の前に配置する必要がある。しかしながら、このような光学素子を配置するために、レンズの最像側面と撮像素子との間隔を十分に空けることは、撮像レンズの全長を大きくすることに繋がり、小型化を狙う上では、デメリットとなる。また、IRカットフィルターの特性上、撮像素子の各位置に結像する光線毎に、フィルター面への入射角(フィルター面法線と光線とがなす角度)が大きく異なる場合はIRカットの効果が光線毎に大きく変わるため、被写体の中心と周辺で色味が変化するという不具合が発生する。そのため、撮像素子の各位置に結像する各々の光線のIRカットフィルターへの入射角はできるだけ、差がない状態にすることが望まれている。 In order to prevent the effects of near-infrared rays, such as when shooting clothes, products, paintings, etc., the green color appears in gray or reddish brown, or the color of the bluish purple flower appears reddish in the imaging device. An infrared (IR) cut filter needs to be placed in front of the image sensor. However, in order to arrange such an optical element, a sufficient distance between the most image side surface of the lens and the imaging element leads to an increase in the overall length of the imaging lens. It becomes. In addition, due to the characteristics of the IR cut filter, if the incident angle to the filter surface (the angle formed by the filter surface normal and the light beam) differs greatly for each light beam that forms an image at each position of the image sensor, the IR cut effect is effective. Since it changes greatly for each ray, there is a problem that the color changes between the center and the periphery of the subject. For this reason, it is desired that the incident angle of each light beam that forms an image at each position of the image pickup device has as little difference as possible.
 ここで、従来使用されてきた、レンズの最像側面と撮像素子との間に配置するIRカットフィルターを取り除き、代わりにレンズ面へIRカットコートを施すことにより、光学系の部品点数を少なくした低背化可能な撮影光学系が提案されている(特許文献1参照)。具体的には、特許文献1に記載の撮影光学系は、撮像素子の中心に結像する光線から撮像素子の周辺に結像する光線まで、IRカットコート面への入射角差をできるだけ小さくするため、曲率中心がほぼ絞りの開口中心にあるようなレンズ面にIRカットコートを施している。 Here, the IR cut filter placed between the most image side surface of the lens and the image sensor, which has been conventionally used, is removed, and instead the IR cut coat is applied to the lens surface, thereby reducing the number of parts of the optical system. An imaging optical system capable of reducing the height has been proposed (see Patent Document 1). Specifically, the imaging optical system described in Patent Document 1 minimizes the incident angle difference on the IR cut coat surface from the light beam that forms an image at the center of the image sensor to the light beam that forms an image around the image sensor. Therefore, an IR cut coat is applied to the lens surface whose center of curvature is substantially at the aperture center of the stop.
 しかしながら、レンズ面にIRカットコートを施す際、対象となるレンズ面が大きく湾曲していると、レンズの中心と周辺とでコート膜の厚みが不均一となる結果、IRカットコートの効果が変化する。そのため、光線の入射角度差が小さくなっても被写体の色味が中心と周辺とで大きく異なる傾向となる。特に、全長を短くするような光学系においては、絞りと各レンズ面との距離が短くなるため、レンズ面の湾曲度合いが大きくなり、コート膜厚の不均一性は大きくなる。そのため、被写体の中心と周辺とで色味が大きく異なる傾向が強まる。 However, when IR cut coating is applied to the lens surface, if the target lens surface is greatly curved, the thickness of the coating film becomes uneven at the center and the periphery of the lens, resulting in a change in the effect of the IR cut coating. To do. For this reason, even if the difference in the incident angle of the light beam is reduced, the color of the subject tends to be greatly different between the center and the periphery. In particular, in an optical system that shortens the overall length, the distance between the diaphragm and each lens surface is shortened, so that the degree of curvature of the lens surface increases and the non-uniformity of the coating film thickness increases. For this reason, there is a strong tendency that the color tone differs greatly between the center and the periphery of the subject.
特開2002-202455号公報JP 2002-202455 A
 本発明は、画角全域において、近赤外線による色味への悪影響を抑えた、コンパクトで良好な結像性能を有する撮像光学系を提供することを目的とする。 An object of the present invention is to provide an imaging optical system having a compact and good imaging performance in which the adverse effect on the color due to near infrared rays is suppressed over the entire field angle.
 また、本発明は、上述の撮像光学系を備える撮像装置及び当該撮像装置を備える携帯端末を提供することを目的とする。 Moreover, an object of this invention is to provide an imaging device provided with the above-mentioned imaging optical system, and a portable terminal provided with the said imaging device.
 上記目的を達成するため、本発明に係る撮像光学系は、レンズの少なくとも一面に、700nm以上の波長域における透過率を抑制するコーティング層を備え、コーティング層を有するレンズ面は、以下の条件式を満足する。
 1.5<[he/(2・R)]/Sag(he)<29  …  (1)
ただし、
 R:コーティング層を有する面の頂点から開口絞り中心の光軸上の距離(像側を+とする)
 he:対象面の有効半径(対象面とは、コーティング層を有する面である)
 Sag(he):対象面における、高さheでのサグ量(像側を+とする)
In order to achieve the above object, an imaging optical system according to the present invention includes a coating layer for suppressing transmittance in a wavelength region of 700 nm or more on at least one surface of a lens, and the lens surface having the coating layer has the following conditional expression: Satisfied.
1.5 <[he 2 /(2.R)]/Sag(he)<29 (1)
However,
R: Distance on the optical axis from the apex of the surface having the coating layer to the center of the aperture stop (the image side is defined as +)
he: Effective radius of the target surface (the target surface is a surface having a coating layer)
Sag (he): Sag amount at the height he on the target surface (the image side is set to +)
 上記撮像光学系は、レンズの少なくとも一面に、700nm以上の波長域における透過率を抑制するコーティング層を備えることにより、レンズと撮像素子との間に赤外線カットフィルターを配置する必要がなくなるため、バックフォーカスを短くすることができ、撮像光学系を低背化することができる。
 条件式(1)は、撮像光学系をコンパクトに保ちつつ、良好な結像性能にするための条件式である。条件式(1)の下限値を上回ることで、コーティング面の湾曲具合が大きくなりすぎることを防ぎ、レンズの中心部と周辺部とでコート膜の厚みをほぼ均一にすることができる。そのため、被写体の中心と周辺とでIRカットの効果による色味の差がほとんどない、良好な性能の光学系とすることができる。また、レンズの湾曲具合が大きくなりすぎないため、前後の光学素子との間隔を大きくとる必要がなくなり、撮像光学系をコンパクトに構成することができる。また、条件式(1)の上限値を下回ることで、撮像素子の中心に結像する光線束から周辺に結像する光線束まで、コーティング面への入射角差をできるだけ小さくする構成とすることができる。これにより、被写体の色味が中心と周辺とでほぼ同等となるばかりでなく、収差発生の少ない、良好な結像性能の撮像光学系を構成することができる。
Since the imaging optical system includes a coating layer that suppresses transmittance in a wavelength region of 700 nm or more on at least one surface of the lens, it is not necessary to dispose an infrared cut filter between the lens and the imaging element. The focus can be shortened and the imaging optical system can be reduced in height.
Conditional expression (1) is a conditional expression for achieving good imaging performance while keeping the imaging optical system compact. By exceeding the lower limit of conditional expression (1), it is possible to prevent the coating surface from being excessively curved, and to make the thickness of the coating film substantially uniform at the center and the periphery of the lens. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject. In addition, since the degree of bending of the lens does not become too large, it is not necessary to increase the distance between the front and rear optical elements, and the imaging optical system can be made compact. Further, by making the value lower than the upper limit value of conditional expression (1), the incident angle difference on the coating surface is made as small as possible from the light beam focused on the center of the image sensor to the light beam focused on the periphery. Can do. As a result, it is possible to construct an imaging optical system that not only has the same color tone at the center and the periphery, but also has good imaging performance with little aberration.
 上記目的を達成するため、本発明に係る撮像装置は、上述の撮像光学系と、当該撮像光学系により撮像面に形成された画像を光電変換する撮像素子とを備える。本発明の撮像光学系を用いることで、画角全域において、近赤外線による色味の悪影響を抑えた、コンパクトで良好な結像性能を有する撮像装置を得ることができる。 In order to achieve the above object, an imaging apparatus according to the present invention includes the above-described imaging optical system and an imaging element that photoelectrically converts an image formed on the imaging surface by the imaging optical system. By using the imaging optical system of the present invention, it is possible to obtain an imaging apparatus having a compact and good imaging performance in which the adverse effect of the tint caused by near infrared rays is suppressed over the entire field angle.
 上記目的を達成するため、本発明に係る携帯端末は、上述のように画角全域において近赤外線による色味の悪影響を抑えた、コンパクトで良好な結像性能を有する撮像装置を備える。 In order to achieve the above object, the portable terminal according to the present invention includes an imaging apparatus having a compact and good imaging performance in which the adverse effect of the color due to the near infrared rays is suppressed in the entire angle of view as described above.
本発明の一実施形態の撮像レンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the imaging lens of one embodiment of the present invention. 図1の撮像装置を備える携帯端末を説明するブロック図である。It is a block diagram explaining a portable terminal provided with the imaging device of FIG. 図3A及び3Bは、それぞれ携帯端末の表面側及び裏面側の斜視図である。3A and 3B are perspective views of the front side and the back side of the mobile terminal, respectively. コーティング層の透過特性の一例を示すグラフである。It is a graph which shows an example of the permeation | transmission characteristic of a coating layer. 図1の撮像レンズの形状的条件を説明する図である。It is a figure explaining the shape conditions of the imaging lens of FIG. 実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. 図7A~7Cは、実施例1の撮像レンズの収差図である。7A to 7C are aberration diagrams of the imaging lens of Example 1. FIG. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. 図9A~9Cは、実施例2の撮像レンズの収差図である。9A to 9C are aberration diagrams of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. 図11A~11Cは、実施例3の撮像レンズの収差図である。11A to 11C are aberration diagrams of the imaging lens of Example 3. FIG.
 以下、図1等を参照して、本発明に係る一実施形態の撮像光学系である撮像レンズについて説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。 Hereinafter, an imaging lens which is an imaging optical system according to an embodiment of the present invention will be described with reference to FIG. 1 and the like. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
 図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。 FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
 カメラモジュール50は、被写体像を形成する撮像光学系である撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光線束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の像面又は撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置100に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。 The camera module 50 includes an imaging lens 10 that is an imaging optical system that forms a subject image, an imaging element 51 that detects a subject image formed by the imaging lens 10, and holds the imaging element 51 from behind and wiring and the like. A wiring board 52 having the imaging lens 10 and the like, and a lens barrel portion 54 having an opening OP through which a light beam from the object side is incident. The imaging lens 10 has a function of forming a subject image on the image plane or the imaging plane (projected plane) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device 100 described later, but it is also called an imaging device alone.
 撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備える。開口絞りSは、第1レンズL1の物体側面S11側に配置されている。 The imaging lens 10 forms a subject image on the imaging surface (projected surface) I of the image sensor 51, and in order from the object side, the first lens L1, the second lens L2, and the third lens L3. And a fourth lens L4 and a fifth lens L5. The aperture stop S is disposed on the object side surface S11 side of the first lens L1.
 撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの光電変換面は、像面又は撮像面(被投影面)Iとなっている。 The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof. The photoelectric conversion surface of the photoelectric conversion unit 51a as the light receiving unit is an image surface or an imaging surface (projected surface) I.
 配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。 The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
 撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、平行平板Fが撮像素子51等を覆うように配置・固定されている。 The parallel plate F is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
 鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1~L5のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、特定又は全レンズを光軸AXに沿って往復移動させる。駆動機構55aは、例えばボイスコイルモーターとガイドとを備える。なお、駆動機構55aをボイスコイルモーター等の代わりにステッピングモーター等で構成することができる。 The lens barrel portion 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L5 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX. The drive mechanism 55a includes, for example, a voice coil motor and a guide. The drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like.
 次に、図2、図3A及び3Bを参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯通信端末300の一例について説明する。 Next, an example of a cellular phone or other portable communication terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS.
 携帯通信端末300は、スマートフォン型の携帯通信端末又は携帯端末であり、カメラモジュール50を有する撮像装置100と、アンテナ331を介して外部システム等との間の各種情報通信を実現するための無線通信部330とを備えている。なお、図示を省略するが、携帯通信端末300は、電源スイッチ等を含む操作部、並びに、システムプログラム、各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM等)も備える。 The mobile communication terminal 300 is a smartphone-type mobile communication terminal or mobile terminal, and wireless communication for realizing various information communication between the imaging apparatus 100 having the camera module 50 and an external system or the like via the antenna 331. Part 330. Although not shown, the mobile communication terminal 300 includes an operation unit including a power switch and a storage unit (ROM or the like) storing necessary data such as a system program, various processing programs, and a terminal ID. Also equipped.
 撮像装置100は、既に説明したカメラモジュール50のほかに、光学系駆動部101、撮像インターフェース(I/F)102、画像処理回路(ISP)103、一時記憶部(RAM)104、データ保管部(EEPROM)105、CPU106、表示操作部インターフェース107、補助記憶部インターフェース108、表示操作部(LCD)310、補助記憶部(SD card等)320等を備える。これらのうち撮像インターフェース102、画像処理回路103、一時記憶部104、データ保管部105、CPU106、表示操作部インターフェース107、及び補助記憶部インターフェース108は、カメラモジュール50等を駆動するための制御部110としての役割を有する。この制御部110には、通信部インターフェース109も含まれる。また、これらの画像処理回路103、一時記憶部104、データ保管部105、及びCPU106は、カメラモジュール50から出力される画像信号を処理する画像処理部111としての役割を有する。 In addition to the camera module 50 described above, the imaging apparatus 100 includes an optical system driving unit 101, an imaging interface (I / F) 102, an image processing circuit (ISP) 103, a temporary storage unit (RAM) 104, a data storage unit ( EEPROM) 105, CPU 106, display operation unit interface 107, auxiliary storage unit interface 108, display operation unit (LCD) 310, auxiliary storage unit (SD card, etc.) 320, and the like. Among these, the imaging interface 102, the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, the CPU 106, the display operation unit interface 107, and the auxiliary storage unit interface 108 are the control unit 110 for driving the camera module 50 and the like. As a role. The control unit 110 also includes a communication unit interface 109. The image processing circuit 103, the temporary storage unit 104, the data storage unit 105, and the CPU 106 serve as an image processing unit 111 that processes an image signal output from the camera module 50.
 光学系駆動部101は、CPU106の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部101は、駆動機構55aを動作させて撮像レンズ10中の特定又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作を行わせることができる。 The optical system driving unit 101 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the CPU 106. The optical system driving unit 101 can cause the imaging lens 10 to perform a focusing operation by operating the driving mechanism 55a to appropriately move specific or all lenses in the imaging lens 10 along the optical axis AX.
 撮像インターフェース102は、撮像素子51から出力された画像信号を制御部110に受け取るための部分である。 The imaging interface 102 is a part for receiving the image signal output from the imaging element 51 to the control unit 110.
 画像処理回路103は、撮像素子51から出力された画像信号に対して画像処理を行う。画像処理回路103では、画像信号が例えば動画像に対応するものであるとしてこれを構成するコマ画像に対して加工を施す。画像処理回路103は、色補正、階調補正、ズーミング等の通常の画像処理の他に、データ保管部105から読み出されたレンズ補正データに基づいて画像信号に対して歪み補正処理を実行する。 The image processing circuit 103 performs image processing on the image signal output from the image sensor 51. The image processing circuit 103 performs processing on the frame image constituting the image signal, for example, corresponding to a moving image. The image processing circuit 103 executes distortion correction processing on the image signal based on the lens correction data read from the data storage unit 105 in addition to normal image processing such as color correction, gradation correction, and zooming. .
 一時記憶部104は、制御部110によって実行される各種処理プログラムやその実行に必要なデータ、処理データ、撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる。 The temporary storage unit 104 is used as a work area for temporarily storing various processing programs executed by the control unit 110, data necessary for the execution, processing data, imaging data by the imaging apparatus 100, and the like.
 データ保管部105は、画像処理に用いられるレンズの補正データを保管している。具体的には、色補正、階調補正等のためのデータの他に、歪み補正のためのパラメーターを保管している。 The data storage unit 105 stores lens correction data used for image processing. Specifically, in addition to data for color correction, gradation correction, etc., parameters for distortion correction are stored.
 CPU106は、各部を統括的に制御するとともに各処理に応じたプログラムを実行する。なお、CPU106は、データ保管部105から読み出されたレンズ補正データに基づいて画像処理回路103による処理前の信号に対して、例えば色補正、階調補正、歪み補正等の各種画像処理を行うことができ、或いは画像処理回路103による処理後の画像信号に対して、画像処理回路103と同様又は圧縮その他の別の画像処理を行うこともできる。 The CPU 106 comprehensively controls each unit and executes a program corresponding to each process. The CPU 106 performs various image processing such as color correction, gradation correction, and distortion correction on the signal before processing by the image processing circuit 103 based on the lens correction data read from the data storage unit 105. Alternatively, the image signal processed by the image processing circuit 103 can be subjected to the same processing as the image processing circuit 103, compression, or other image processing.
 表示操作部インターフェース107は、画像処理回路103又はCPU106から出力された画像信号を表示操作部310に転送するとともに、表示操作部310からの操作信号をCPU106に転送する。 The display operation unit interface 107 transfers the image signal output from the image processing circuit 103 or the CPU 106 to the display operation unit 310 and transfers the operation signal from the display operation unit 310 to the CPU 106.
 補助記憶部インターフェース108は、画像処理回路103等から出力された動画、静止画としての画像データを補助記憶部320に出力する。 The auxiliary storage unit interface 108 outputs the moving image and the image data as a still image output from the image processing circuit 103 or the like to the auxiliary storage unit 320.
 表示操作部310は、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである。 The display operation unit 310 is a touch panel that displays data related to communication, captured images, and the like and accepts user operations.
 補助記憶部320は、着脱可能であり、画像処理部111で画像処理された画像信号を記録及び格納する部分である。 The auxiliary storage unit 320 is detachable and is a part that records and stores the image signal processed by the image processing unit 111.
 ここで、上記撮像装置100を含む携帯通信端末300の撮影動作を説明する。携帯通信端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、不図示の撮像素子駆動部によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力をデジタル化したデジタル信号を1コマ分出力する。デジタル信号は、画像処理回路103等に入力され、画像処理された画像信号(ビデオ信号)が生成され、表示操作部310や補助記憶部320に出力される。この際、撮像素子51から又は画像処理回路103を経た画像信号が一時記憶部104に暫定的に保管される。 Here, the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile communication terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by an image sensor drive unit (not shown), and outputs one frame of a digital signal obtained by digitizing a photoelectric conversion output corresponding to an optical image formed at a fixed period. The digital signal is input to the image processing circuit 103 and the like, and an image signal (video signal) subjected to image processing is generated and output to the display operation unit 310 and the auxiliary storage unit 320. At this time, the image signal from the image sensor 51 or the image processing circuit 103 is temporarily stored in the temporary storage unit 104.
 表示操作部310は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部310を介して行う操作入力に基づいて、光学系駆動部101の駆動により撮像レンズ10の合焦、露出等が設定される。 The display operation unit 310 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 101 based on an operation input performed by the user via the display operation unit 310 at any time.
 このようなモニタリング状態において、ユーザーが表示操作部310を適宜操作することにより、例えば静止画像データが撮影される。表示操作部310の操作内容に応じて、1コマの画像データ(撮像データ)が読み出されて、圧縮される。その圧縮された画像データは、制御部110を介して、例えば一時記憶部104等に記録される。 In such a monitoring state, for example, still image data is captured when the user appropriately operates the display operation unit 310. One frame of image data (imaging data) is read and compressed according to the operation content of the display operation unit 310. The compressed image data is recorded in the temporary storage unit 104 or the like via the control unit 110, for example.
 以下、携帯通信端末300の画像処理について説明する。図2において、撮像レンズ10を含むカメラモジュール50から出力された画像信号は、撮像インターフェース102を介して制御部110に入力される。ここで、表示すべき画像信号が静止画像に対応するものである場合、例えば画像信号が一時記憶部104に格納され、CPU106がデータ保管部105からレンズ補正データを読み出して、CPU106又は画像処理回路103が補正データに基づき当該画像信号に対して各種画像処理を行って一時記憶部104に戻す。ここで、画像処理には、表示操作部310に表示させるための画像処理や補助記憶部320に記憶させるための画像処理が含まれる。一方、表示すべき画像信号が動画像に対応するものである場合、画像信号が画像処理回路103のみに入力され、画像処理回路103が補正データから読み出されたレンズ補正データに基づき当該画像信号に対して各種画像処理を行う。画像処理された画像信号は、表示操作部インターフェース107を介して、表示操作部310上に表示される。また、画像処理された画像信号は、補助記憶部インターフェース108を介して補助記憶部320に記録させることもできる。 Hereinafter, image processing of the mobile communication terminal 300 will be described. In FIG. 2, the image signal output from the camera module 50 including the imaging lens 10 is input to the control unit 110 via the imaging interface 102. Here, when the image signal to be displayed corresponds to a still image, for example, the image signal is stored in the temporary storage unit 104, and the CPU 106 reads out the lens correction data from the data storage unit 105, and the CPU 106 or the image processing circuit. 103 performs various image processing on the image signal based on the correction data, and returns the image signal to the temporary storage unit 104. Here, the image processing includes image processing for displaying on the display operation unit 310 and image processing for storing in the auxiliary storage unit 320. On the other hand, when the image signal to be displayed corresponds to a moving image, the image signal is input only to the image processing circuit 103, and the image processing circuit 103 reads the image signal based on the lens correction data read from the correction data. Various image processing is performed on the image. The image signal subjected to the image processing is displayed on the display operation unit 310 via the display operation unit interface 107. Further, the image signal subjected to image processing can be recorded in the auxiliary storage unit 320 via the auxiliary storage unit interface 108.
 なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。 The above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
 すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯通信端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるであってもよい。 That is, the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), tablet personal computer, mobile personal computer, digital still camera, video camera, or the like.
 以下、図1に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、既に説明したように、物体側より順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とからなる。撮像レンズ10は、2枚以上のレンズで構成されており、収差の発生を良く抑えた良好な結像性能を有する構成とすることが容易である。開口絞りSは、第1レンズL1の物体側に配置されている。 Hereinafter, returning to FIG. 1, the imaging lens 10 according to an embodiment of the present invention will be described in detail. As described above, the imaging lens 10 shown in FIG. 1 includes, in order from the object side, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5. Become. The imaging lens 10 is composed of two or more lenses, and it is easy to have a good imaging performance with well-suppressed aberrations. The aperture stop S is disposed on the object side of the first lens L1.
 撮像レンズ10を構成するレンズの少なくとも一面には、700nm以上の波長域における透過率を抑制するコーティング層が設けられている。本実施形態において、第3レンズL3の像側面S32には、上記コーティング層が設けられている。
 なお、第1レンズL1の物体側面S11、第4レンズL4の物体側面S41、第5レンズL5の物体側面S51、及び第5レンズL5の像側面S52にも上記コーティング層を設けてもよい。コーティング層は、蒸着装置等を用いて、レンズ面に対して例えばTiO、ZrO、Ta、Nb等の高屈折率物質と、SiO、MgF等の低屈折率物質とを交互に積層して数十層とした誘電体多層膜により形成される。
A coating layer that suppresses the transmittance in the wavelength region of 700 nm or more is provided on at least one surface of the lens constituting the imaging lens 10. In the present embodiment, the coating layer is provided on the image side surface S32 of the third lens L3.
The coating layer may also be provided on the object side surface S11 of the first lens L1, the object side surface S41 of the fourth lens L4, the object side surface S51 of the fifth lens L5, and the image side surface S52 of the fifth lens L5. The coating layer is made of a high refractive index material such as TiO 2 , ZrO 2 , Ta 2 O 2 , and Nb 2 O 5 and a low refractive index such as SiO 2 and MgF 2 with respect to the lens surface by using a vapor deposition device or the like. It is formed of a dielectric multilayer film in which a plurality of materials are alternately stacked to form several tens of layers.
 図4に、コーティング層の透過特性の一例を示す。図示のグラフにおいて、横軸は波長(nm)であり、縦軸は透過率(%)である。図示のコーティング層の場合、略410nm~700mの波長範囲に透過窓を有する。 FIG. 4 shows an example of the transmission characteristics of the coating layer. In the illustrated graph, the horizontal axis represents wavelength (nm) and the vertical axis represents transmittance (%). The illustrated coating layer has a transmission window in the wavelength range of about 410 nm to 700 m.
 全てのレンズL1~L5は、プラスチックレンズを想定している。第5レンズL5の光射出面と撮像面(像面)Iとの間には、適切な厚さの平行平板Fが配置されている。平行平板Fは、光学的ローパスフィルター、固体撮像素子のシールガラス等を想定したものである。なお、平行平板Fとして、光学的ローパスフィルター等を必ずしも設ける必要はない。上記撮像レンズ10において、少なくとも1枚のレンズが赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズであることが好ましい。これにより、被写体の中心と周辺とでIRカットの効果による色味の差がほとんどない良好な結像性能撮像のレンズ10を構成することができる。本実施形態において、具体的には、例えば第3レンズL3が赤外線を吸収する赤外線吸収材料を含んだ樹脂材料で形成されている。赤外線吸収材料としては、例えばITO(酸化インジウムスズ)、ATO(アンチモンドープ酸化スズ)の微粒子等が挙げられる。 All the lenses L1 to L5 are assumed to be plastic lenses. Between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed. The parallel plate F is assumed to be an optical low-pass filter, a seal glass of a solid-state image sensor, or the like. Note that an optical low-pass filter or the like is not necessarily provided as the parallel plate F. In the imaging lens 10, it is preferable that at least one lens is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays. Accordingly, it is possible to configure the lens 10 for imaging with good imaging performance in which there is almost no color difference due to the IR cut effect between the center and the periphery of the subject. In the present embodiment, specifically, for example, the third lens L3 is formed of a resin material including an infrared absorbing material that absorbs infrared rays. Examples of the infrared absorbing material include fine particles of ITO (indium tin oxide) and ATO (antimony-doped tin oxide).
 なお、撮像レンズ10中に赤外線吸収材料を含んだ樹脂材料製の非球面レンズが含まれる場合、赤外線をカットするコーティング層は、700nm以上の波長域の全てを透過させないものでなくてもよくなる。例えば、赤外線吸収材を添加したレンズの透過率が波長域700~800nmで1%以下に抑えられる場合、コーティング層によって波長800nm以上の透過率を抑制すればよい。具体的には、コーティング層によって、例えば波長800nm~1200nmの透過率が1%以下になるようにする。 When the imaging lens 10 includes an aspheric lens made of a resin material including an infrared absorbing material, the coating layer that cuts infrared rays may not be one that does not transmit the entire wavelength region of 700 nm or more. For example, when the transmittance of a lens to which an infrared absorbing material is added can be suppressed to 1% or less in the wavelength range of 700 to 800 nm, the transmittance at a wavelength of 800 nm or more may be suppressed by the coating layer. Specifically, for example, the transmittance at a wavelength of 800 nm to 1200 nm is set to 1% or less by the coating layer.
 撮像レンズ10を構成するいずれかのレンズL1,L2,L3,L4,L5、或いはこれらのうち2以上のレンズを、赤外線吸収材料を含んだ樹脂材料製とすることができる。
 赤外線カット用のコーティング層が形成されるレンズが本実施形態のように第3レンズL3である場合において、この第3レンズL3を赤外線吸収材料を含んだ樹脂材料製とするときは、赤外線赤外吸収型の樹脂材料製のレンズのレンズ面に赤外遮断用のコーティング層が設けられていることになる。赤外遮断用のコーティング層を設けるレンズは、曲率が大き過ぎず成形しやすい形状となるので、赤外吸収型の樹脂材料の成形の難易度が高くても、レンズの成形が比較的容易になるという利点がある。
 赤外線カット用のコーティング層が形成されるレンズが本実施形態のように第3レンズL3である場合において、この第3レンズL3以外のレンズを赤外線吸型の樹脂材料製とするときは、例えば第3レンズL3よりも体積が小さいレンズに赤外線吸型の樹脂材料を用いることで、レンズのコストを低減することができる。なお、赤外線吸型の樹脂材料は、一般に通常の光学用樹脂材料よりもコスト高になる傾向がある。
 赤外線カット用のコーティング層が形成されるレンズが本実施形態のように第3レンズL3である場合において、この第3レンズL3だけでなく第3レンズL3以外のレンズを赤外線吸型の樹脂材料製とするときは、撮像素子への入射する赤外線を遮断する効果を高めることができる。つまり、赤外線吸収材料の長さが増えれば増えるほど赤外線カットの効果は大きいので、複数のレンズによって赤外線を略完全に遮断することができる。
 なお、以上の説明では第3レンズL3に赤外線カット用のコーティング層が形成されるとしたが、第3レンズL3以外のレンズに赤外線カット用のコーティング層を形成してもよい。
Any of the lenses L1, L2, L3, L4, and L5 constituting the imaging lens 10 or two or more of these lenses can be made of a resin material containing an infrared absorbing material.
When the lens on which the coating layer for cutting infrared rays is formed is the third lens L3 as in this embodiment, when the third lens L3 is made of a resin material containing an infrared absorbing material, infrared infrared rays are used. An infrared shielding coating layer is provided on the lens surface of the lens made of an absorption resin material. The lens provided with the infrared blocking coating layer has a shape that is easy to mold without having a large curvature. Therefore, it is relatively easy to mold the lens even if the molding of the infrared absorbing resin material is difficult. There is an advantage of becoming.
In the case where the lens on which the coating layer for cutting infrared rays is formed is the third lens L3 as in this embodiment, when a lens other than the third lens L3 is made of an infrared absorbing resin material, for example, By using an infrared absorbing resin material for a lens having a smaller volume than the three lenses L3, the cost of the lens can be reduced. Infrared absorbing resin materials generally tend to be more expensive than ordinary optical resin materials.
When the lens on which the infrared cut coating layer is formed is the third lens L3 as in this embodiment, not only the third lens L3 but also the lenses other than the third lens L3 are made of an infrared absorbing resin material. In this case, the effect of blocking infrared rays incident on the image sensor can be enhanced. That is, the greater the length of the infrared absorbing material, the greater the effect of infrared cutting, so that the infrared rays can be blocked almost completely by a plurality of lenses.
In the above description, the infrared cut coating layer is formed on the third lens L3. However, an infrared cut coating layer may be formed on a lens other than the third lens L3.
 撮像レンズ10において、レンズL1~L5の少なくとも一面に、700nm以上の波長域における透過率を抑制するコーティング層を備えることにより、例えば最終レンズである第5レンズL5と撮像素子51との間に赤外線カットフィルターを配置する必要がなくなるため、バックフォーカスを短くすることができ、撮像レンズ10を低背化をすることができる。 In the imaging lens 10, by providing a coating layer that suppresses transmittance in a wavelength region of 700 nm or more on at least one surface of the lenses L1 to L5, for example, infrared rays are provided between the fifth lens L5 as the final lens and the imaging element 51. Since it is not necessary to arrange a cut filter, the back focus can be shortened, and the imaging lens 10 can be reduced in height.
 撮像レンズ10において、上記コーティング層を有するレンズ面は、以下の条件式を満足する。
 1.5<[he/(2・R)]/Sag(he)<29  …  (1)
ただし、Rはコーティング層を有する面の頂点から開口絞りS中心の光軸AX上の距離であり、heは対象面の有効半径であり、Sag(he)は対象面における、高さheでのサグ量である。ここで、対象面とは、コーティング層を有する面である。また、距離R及びサグ量Sag(he)において、像側を+とする。
In the imaging lens 10, the lens surface having the coating layer satisfies the following conditional expression.
1.5 <[he 2 /(2.R)]/Sag(he)<29 (1)
However, R is the distance on the optical axis AX of the aperture stop S center from the vertex of the surface having the coating layer, he is the effective radius of the target surface, and Sag (he) is the height he at the target surface. The amount of sag. Here, the target surface is a surface having a coating layer. Further, in the distance R and the sag amount Sag (he), the image side is set to +.
 上記撮像レンズ10において、条件式(1)は、撮像光学系である撮像レンズ10をコンパクトに保ちつつ、良好な結像性能にするための条件式である。図5に示すように、あるレンズ面(例えば、第4レンズL4の物体側面S41)から開口絞りSと光軸AXとの交点までの長さをこのレンズ面の理想的な曲率半径(例えば、R(S41))とする。理想的な曲率半径とは、その面形状の曲率半径がRでできていれば、中心から軸外光線束で光線入射角が小さくなり、IRカットコーティングを施す面に適した形状となる曲率半径を意味する。条件式(1)は、あるレンズ面の形状が、理想的な曲率半径を有する球面形状とどの程度同じかを比で表している。あるレンズ面の有効径でのサグ量Sag(he)は、そのレンズ面が理想的な曲率半径を有する球面形状であれば、[he/(2・R)]となるはずである。つまり、条件式(1)は、あるレンズ面の形状が理想的な曲率半径を有する球面形状である場合のサグ量と、実際のサグ量との比を表している。IRカットコーティングを施す面は、開口絞りSを基準とするコンセントリックの度合いが条件(1)を満たすような面である。条件式(1)の下限値を上回ることで、コーティング面の湾曲具合が大きくなりすぎることを防ぎ、レンズの中心部(光軸AX近傍)と周辺部とでコート膜の厚みをほぼ均一にすることができる。そのため、被写体の中心と周辺とでIRカットの効果による色味の差がほとんどない、良好な性能の光学系とすることができる。また、レンズの湾曲具合が大きくなりすぎないため、前後の光学素子との間隔を大きくとる必要がなくなり、撮像光学系をコンパクトに構成することができる。また、条件式(1)の上限値を下回ることで、撮像素子51の中心に結像する光線束から周辺に結像する光線束まで、コーティング面への入射角差をできるだけ小さくする構成とすることができる。これにより、被写体の色味が中心と周辺とでほぼ同等となるばかりでなく、収差発生の少ない、良好な結像性能の撮像光学系を構成することができる。
 レンズにIRカットの層をコーティングする場合、レンズ面への光線入射角がIRカット効果を大きく左右する。IRカットの層をコーティングされたレンズ面へ入射する、軸上から最大像高までの光線入射角が大きく異なると、カットされるIRの波長領域が各像高で異なるため、各像高毎に色味が異なることとなる。よって、条件式(1)を満足するような、どの像高に結像する光線でも入射角が比較的小さいレンズ面に対してIRカットの層をコーティングすることが必要である。
In the imaging lens 10, conditional expression (1) is a conditional expression for achieving good imaging performance while keeping the imaging lens 10 that is an imaging optical system compact. As shown in FIG. 5, the length from a certain lens surface (for example, the object side surface S41 of the fourth lens L4) to the intersection of the aperture stop S and the optical axis AX is the ideal radius of curvature of the lens surface (for example, R (S41)). The ideal radius of curvature means that if the radius of curvature of the surface shape is R, the angle of incidence of the light beam is reduced by the off-axis ray bundle from the center, and the radius of curvature becomes a shape suitable for the surface to which IR cut coating is applied. Means. Conditional expression (1) expresses by a ratio how much the shape of a lens surface is the same as a spherical shape having an ideal radius of curvature. The sag amount Sag (he) at an effective diameter of a lens surface should be [he 2 / (2 · R)] if the lens surface has a spherical shape having an ideal radius of curvature. That is, conditional expression (1) represents the ratio of the sag amount when the shape of a certain lens surface is a spherical shape having an ideal radius of curvature and the actual sag amount. The surface to which the IR cut coating is applied is a surface where the degree of concentric with respect to the aperture stop S satisfies the condition (1). By exceeding the lower limit value of conditional expression (1), it is possible to prevent the coating surface from being excessively curved, and to make the thickness of the coating film substantially uniform at the center portion (near the optical axis AX) and the peripheral portion of the lens. be able to. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject. In addition, since the degree of bending of the lens does not become too large, it is not necessary to increase the distance between the front and rear optical elements, and the imaging optical system can be made compact. Further, by making the value lower than the upper limit value of the conditional expression (1), the difference in the incident angle on the coating surface is made as small as possible from the light beam focused on the center of the image sensor 51 to the light beam focused on the periphery. be able to. As a result, it is possible to construct an imaging optical system that not only has the same color tone at the center and the periphery, but also has good imaging performance with little aberration.
When an IR cut layer is coated on a lens, the incident angle of light on the lens surface greatly affects the IR cut effect. When the light incident angle from the axis to the maximum image height is incident on the lens surface coated with the IR cut layer, the IR wavelength region to be cut differs for each image height. The color will be different. Therefore, it is necessary to coat the IR-cut layer on the lens surface having a relatively small incident angle with respect to the light beam that is imaged at any image height that satisfies the conditional expression (1).
 実施形態の撮像レンズ10は、上記条件式(1)に加えて、既に説明した条件式(2)を満足する。
 0.2<Yd/TTL<0.9  …  (2)
ただし、Ydは撮像素子の撮像面対角線長の半値であり、TTLは撮像光学系である撮像レンズ10の全長である。
The imaging lens 10 of the embodiment satisfies the conditional expression (2) already described in addition to the conditional expression (1).
0.2 <Yd / TTL <0.9 (2)
However, Yd is a half value of the diagonal length of the imaging surface of the imaging device, and TTL is the total length of the imaging lens 10 which is an imaging optical system.
 撮像レンズ10が条件式(2)を満たすことで、コンパクトでありながら、被写体の中心と周辺とでIRカットの効果による色味の差がほとんどない、良好な性能の光学系とすることができる。条件式(2)の上限値を下回ることで、撮像レンズ10を構成するレンズL1~L5の形状が大きく湾曲することを抑えることができ、レンズL1~L5の中心部と周辺部とでコート膜の厚みをほぼ均一にすることが容易になる。そのため、被写体の中心と周辺とでIRカットの効果による色味の差がほとんどない良好な性能の光学系とすることができる。また、条件式(2)の下限値を上回ることでコンパクトな撮像レンズ10とすることができる。 When the imaging lens 10 satisfies the conditional expression (2), it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject while being compact. . By falling below the upper limit value of the conditional expression (2), it is possible to prevent the lenses L1 to L5 constituting the imaging lens 10 from being greatly curved, and a coating film is formed between the central portion and the peripheral portion of the lenses L1 to L5. It becomes easy to make the thickness of the film substantially uniform. Therefore, it is possible to obtain an optical system with good performance in which there is almost no difference in color due to the IR cut effect between the center and the periphery of the subject. Moreover, it can be set as the compact imaging lens 10 by exceeding the lower limit of conditional expression (2).
 なお、実施形態の撮像レンズ10では、実質的にパワーを持たないその他の光学素子をさらに有してもよい。 Note that the imaging lens 10 of the embodiment may further include other optical elements having substantially no power.
〔実施例〕
 以下、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f   :撮像レンズ全系の焦点距離
Fno :Fナンバー
Yd  :撮像素子の撮像面対角線長の半値
TTL :撮像レンズの全長

D   :軸上面間隔
Nd  :レンズ材料のd線に対する屈折率
νd  :レンズ材料のアッベ数
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面である。非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
〔Example〕
Examples of the imaging lens of the present invention will be shown below. Symbols used in each example are as follows.
f: focal length of the entire imaging lens Fno: F number Yd: half value of diagonal length of imaging surface of imaging element TTL: total length of imaging lens

D: Axis upper surface distance Nd: Refractive index νd of lens material with respect to d-line: Abbe number of lens material In each example, the surface where “*” is written after each surface number is an aspheric surface . The aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the X axis is taken in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX is h.
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
 (実施例1)
 実施例1の撮像レンズ10の全体諸元を以下に示す。
f=4.092mm
Fno=2.444
Yd=2.921mm
TTL=4.518mm
Yd/TTL=0.647
Example 1
The overall specifications of the imaging lens 10 of Example 1 are shown below.
f = 4.092mm
Fno = 2.444
Yd = 2.921mm
TTL = 4.518mm
Yd / TTL = 0.647
 実施例1のレンズ面のデータを以下の表1及び表2に示す。なお、以下の表1等において、無限大を「infinity」と表し、開口絞りを「STOP」と表している。L(mm)は各面頂点から絞りまでの距離であり、Rはコーティング層を有する面の頂点から開口絞りSの中心の光軸AX上の距離であり、heは対象面の有効半径であり、Sag(he)は対象面における、高さheでのサグ量である。
〔表1〕
面番号     R(mm)       D(mm)      Nd       νd       he(mm)
物体      infinity    infinity
 1*        1.4476      0.519    1.5447     56.15     0.87
 2*       68.0310      0.155                         0.88
 3*      -86.7660      0.200    1.6347     23.87     0.87
 4*        2.5613      0.343                         0.89
 5*        9.0086      0.320    1.6347     23.87     1.01
 6*       infinity     0.675                         1.10
 7*       -4.0553      0.543    1.5447     56.15     1.50
 8*       -1.0494      0.371                         1.70
 9*       -2.1686      0.314    1.5447     56.15     2.23
10*        2.0005      0.500                         2.47
11        infinity     0.11     1.5163     64.14     3.00
12        infinity     0.468                         3.00
 I(像面、以下同様)
〔表2〕
面番号     L(mm)       Sag(he)(mm)      [he2/(2・R)]/Sag(he)
物体
 1*        0.199       0.297              6.423
 2*       -0.32        0.010           -115.566
 3*       -0.475       0.000          -1603.367
 4*       -0.675       0.208             -2.806
 5*       -1.018       0.016            -31.753
 6*       -1.338      -0.023             19.634
 7*       -2.013      -0.367              1.530
 8*       -2.556      -0.684              0.824
 9*       -2.927      -0.481              1.766
10*       -3.241      -0.367              2.570
 I(像面、以下同様)
像面
The lens surface data of Example 1 are shown in Tables 1 and 2 below. In Table 1 below, infinity is represented as “infinity” and the aperture stop is represented as “STOP”. L (mm) is the distance from the vertex of each surface to the stop, R is the distance on the optical axis AX from the vertex of the surface having the coating layer to the center of the aperture stop S, and he is the effective radius of the target surface , Sag (he) is the amount of sag at the height he on the target surface.
[Table 1]
Surface number R (mm) D (mm) Nd νd he (mm)
Object infinity infinity
1 * 1.4476 0.519 1.5447 56.15 0.87
2 * 68.0310 0.155 0.88
3 * -86.7660 0.200 1.6347 23.87 0.87
4 * 2.5613 0.343 0.89
5 * 9.0086 0.320 1.6347 23.87 1.01
6 * infinity 0.675 1.10
7 * -4.0553 0.543 1.5447 56.15 1.50
8 * -1.0494 0.371 1.70
9 * -2.1686 0.314 1.5447 56.15 2.23
10 * 2.0005 0.500 2.47
11 infinity 0.11 1.5163 64.14 3.00
12 infinity 0.468 3.00
I (image plane, the same applies below)
[Table 2]
Surface number L (mm) Sag (he) (mm) [he 2 / (2 ・ R)] / Sag (he)
Object 1 * 0.199 0.297 6.423
2 * -0.32 0.010 -115.566
3 * -0.475 0.000 -1603.367
4 * -0.675 0.208 -2.806
5 * -1.018 0.016 -31.753
6 * -1.338 -0.023 19.634
7 * -2.013 -0.367 1.530
8 * -2.556 -0.684 0.824
9 * -2.927 -0.481 1.766
10 * -3.241 -0.367 2.570
I (image plane, the same applies below)
Image plane
 実施例1のレンズ面の非球面係数を以下の表3に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。 The aspherical coefficients of the lens surfaces of Example 1 are shown in Table 3 below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02).
〔表3〕
第1面
K=5.5012E-02, A4=1.5877E-03, A6=9.9060E-03, A8=-1.7869E-02, 
A10=2.2442E-02, A12=2.9446E-02, A14=-5.0481E-02
第2面
K=-3.0001E+01, A4=2.4167E-02, A6=9.5438E-03, A8=1.4098E-02, 
A10=-4.2664E-02, A12=-4.4374E-02, A14=1.0370E-02
第3面
K=-1.7260E+01, A4=2.3414E-02, A6=8.5814E-02, A8=-8.8451E-02, 
A10=-8.2390E-02, A12=-1.3705E-02, A14=4.6098E-02
第4面
K=-1.4286E+01, A4=1.1552E-01, A6=6.4740E-02, A8=-2.4225E-02, 
A10=4.4351E-03, A12=-1.0750E-01, A14=1.0838E-01
第5面
K=3.0001E+01, A4=-1.2185E-01, A6=4.3044E-03, A8=8.4454E-02, 
A10=-1.1958E-01, A12=2.5260E-01, A14=-1.4719E-01
第6面
K=-3.0001E+01, A4=-6.3934E-02, A6=-1.2137E-01, A8=3.7423E-01, 
A10=-5.8114E-01, A12=5.1743E-01, A14=-1.6674E-01
第7面
K=4.4533E+00, A4=1.2128E-02, A6=-1.8051E-02, A8=2.5071E-02, 
A10=-3.2961E-02, A12=1.6468E-02, A14=-2.5045E-03
第8面
K=-4.4692E+00, A4=-1.0752E-01, A6=1.4472E-01, A8=-1.0711E-01, 
A10=5.2346E-02, A12=-1.4038E-02, A14=1.4703E-03
第9面
K=-8.9548E+00, A4=-2.6346E-02, A6=-2.6850E-02, A8=2.8838E-02, 
A10=-9.1422E-03, A12=1.2905E-03, A14=-7.0655E-05
第10面
K=-2.1747E+01, A4=-4.8536E-02, A6=3.4632E-03, A8=3.0531E-03, 
A10=-1.4491E-03, A12=2.5771E-04, A14=-1.6113E-05
[Table 3]
First side
K = 5.5012E-02, A4 = 1.5877E-03, A6 = 9.9060E-03, A8 = -1.7869E-02,
A10 = 2.2442E-02, A12 = 2.9446E-02, A14 = -5.0481E-02
Second side
K = -3.0001E + 01, A4 = 2.4167E-02, A6 = 9.5438E-03, A8 = 1.4098E-02,
A10 = -4.2664E-02, A12 = -4.4374E-02, A14 = 1.0370E-02
Third side
K = -1.7260E + 01, A4 = 2.3414E-02, A6 = 8.5814E-02, A8 = -8.8451E-02,
A10 = -8.2390E-02, A12 = -1.3705E-02, A14 = 4.6098E-02
4th page
K = -1.4286E + 01, A4 = 1.1552E-01, A6 = 6.4740E-02, A8 = -2.4225E-02,
A10 = 4.4351E-03, A12 = -1.0750E-01, A14 = 1.0838E-01
5th page
K = 3.0001E + 01, A4 = -1.2185E-01, A6 = 4.3044E-03, A8 = 8.4454E-02,
A10 = -1.1958E-01, A12 = 2.5260E-01, A14 = -1.4719E-01
6th page
K = -3.0001E + 01, A4 = -6.3934E-02, A6 = -1.2137E-01, A8 = 3.7423E-01,
A10 = -5.8114E-01, A12 = 5.1743E-01, A14 = -1.6674E-01
7th page
K = 4.4533E + 00, A4 = 1.2128E-02, A6 = -1.8051E-02, A8 = 2.5071E-02,
A10 = -3.2961E-02, A12 = 1.6468E-02, A14 = -2.5045E-03
8th page
K = -4.4692E + 00, A4 = -1.0752E-01, A6 = 1.4472E-01, A8 = -1.0711E-01,
A10 = 5.2346E-02, A12 = -1.4038E-02, A14 = 1.4703E-03
9th page
K = -8.9548E + 00, A4 = -2.6346E-02, A6 = -2.6850E-02, A8 = 2.8838E-02,
A10 = -9.1422E-03, A12 = 1.2905E-03, A14 = -7.0655E-05
10th page
K = -2.1747E + 01, A4 = -4.8536E-02, A6 = 3.4632E-03, A8 = 3.0531E-03,
A10 = -1.4491E-03, A12 = 2.5771E-04, A14 = -1.6113E-05
 実施例1の単レンズデータを以下の表4に示す。
〔表4〕
レンズ            始面              焦点距離(mm)
1                  1                   2.708
2                  3                  -3.916
3                  5                  14.194
4                  7                   2.444
5                  9                  -1.861
The single lens data of Example 1 is shown in Table 4 below.
[Table 4]
Lens Start surface Focal length (mm)
1 1 2.708
2 3 -3.916
3 5 14.194
4 7 2.444
5 9 -1.861
 図6は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平に近い第1レンズL1と、光軸AX近傍で負の屈折力を有し像側に凹面を向けた平凹に近い第2レンズL2と、光軸AX近傍でほとんど屈折力を有しない平板に近い第3レンズL3と、光軸AX近傍で正の屈折力を有し物体側に凹面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有し両凹の第5レンズL5とを備える。第3レンズL3の像側面S32には、700nm以上の波長域における透過率を抑制するコーティング層が設けられている。なお、第1レンズL1の物体側面S11、第4レンズL4の物体側面S41、第5レンズL5の物体側面S51、及び第5レンズL5の像側面S52にも、700nm以上の波長域における透過率を抑制するコーティング層を設けてもよい。全てのレンズL1~L5は、プラスチックレンズを想定している。レンズL1~L5のうち第3レンズL3は、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料で形成されている。第1レンズL1の物体側面S11側には、開口絞りSが配置されている。第5レンズL5の光射出面と撮像面(像面)Iとの間には、適切な厚さの平行平板Fが配置されている。平行平板Fは、光学的ローパスフィルター、固体撮像素子のシールガラス等を想定したものである(以下の実施例でも同様)。 FIG. 6 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 has, in order from the object side, a first lens L1 having a positive refractive power in the vicinity of the optical axis AX and having a convex surface with a convex surface facing the object side, and a negative refractive power in the vicinity of the optical axis AX. A second lens L2 that is nearly plano-concave with the concave surface facing the image side, a third lens L3 that is near a flat plate that has almost no refractive power in the vicinity of the optical axis AX, and a positive refractive power in the vicinity of the optical axis AX. A fourth lens L4 having a meniscus shape with a concave surface facing the object side, and a biconcave fifth lens L5 having negative refractive power in the vicinity of the optical axis AX are provided. The image side surface S32 of the third lens L3 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more. Note that the object side surface S11 of the first lens L1, the object side surface S41 of the fourth lens L4, the object side surface S51 of the fifth lens L5, and the image side surface S52 of the fifth lens L5 also have transmittance in a wavelength region of 700 nm or more. You may provide the coating layer which suppresses. All the lenses L1 to L5 are assumed to be plastic lenses. Of the lenses L1 to L5, the third lens L3 is formed of a resin material including an infrared absorbing material that absorbs infrared rays. An aperture stop S is disposed on the object side surface S11 side of the first lens L1. Between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed. The parallel plate F is assumed to be an optical low-pass filter, a seal glass of a solid-state image sensor, or the like (the same applies to the following examples).
 図7A~7Cは、実施例1の撮像レンズ11の球面収差、非点収差及び歪曲収差を示している。以降の収差図において、非点収差図では、実線がサジタル像面、点線がメリジオナル像面を表す。 7A to 7C show spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1. FIG. In the subsequent aberration diagrams, in the astigmatism diagrams, the solid line represents the sagittal image plane and the dotted line represents the meridional image plane.
 (実施例2)
 実施例2の撮像レンズ10の全体諸元を以下に示す。
f=2.015mm
Fno=2.583
Yd=1.095mm
TTL=2.309mm
Yd/TTL=0.474
(Example 2)
The overall specifications of the imaging lens 10 of Example 2 are shown below.
f = 2.015mm
Fno = 2.583
Yd = 1.095mm
TTL = 2.309mm
Yd / TTL = 0.474
 実施例2のレンズ面のデータを以下の表5及び表6に示す。
〔表5〕
面番号     R(mm)       D(mm)      Nd       νd       he(mm)
物体      infinity    infinity
 1*        0.627       0.542    1.58310    59.4      0.39
 2*        1.053       0.272                         0.35
 3*       -3.517       0.637    1.58310    59.4      0.40
 4*       -6.309       0.130                         0.74
 5        infinity     0.400    1.52310    62.2      0.88
 6        infinity     0.328                         0.98
 I
〔表6〕
面番号     L(mm)       Sag(he)(mm)      [he2/(2・R)]/Sag(he)
物体
 1*        0.130       0.140              4.225
 2*       -0.411       0.078             -1.930
 3*       -0.683      -0.075              1.515
 4*       -1.321      -0.180              1.160
 I
Data on the lens surface of Example 2 are shown in Tables 5 and 6 below.
[Table 5]
Surface number R (mm) D (mm) Nd νd he (mm)
Object infinity infinity
1 * 0.627 0.542 1.58310 59.4 0.39
2 * 1.053 0.272 0.35
3 * -3.517 0.637 1.58310 59.4 0.40
4 * -6.309 0.130 0.74
5 infinity 0.400 1.52310 62.2 0.88
6 infinity 0.328 0.98
I
[Table 6]
Surface number L (mm) Sag (he) (mm) [he2 / (2 ・ R)] / Sag (he)
Object 1 * 0.130 0.140 4.225
2 * -0.411 0.078 -1.930
3 * -0.683 -0.075 1.515
4 * -1.321 -0.180 1.160
I
 実施例2のレンズ面の非球面係数を以下の表7に示す。
〔表7〕
第1面
K=0.32450E+00, A3=-0.76173E-01, A4=0.38474E+01, A5=-0.45717E+02, 
A6=0.18238E+03, A8=-0.13827E+04, A10=0.92555E+04, A12=-0.35551E+05, 
A14=0.57250E+05, A16=0.00000E+00
第2面
K=0.26027E+01, A3=0.23871E+00, A4=-0.21090E+01, A5=0.00000E+00, 
A6=0.89458E+02, A8=-0.23599E+04, A10=0.36323E+05, A12=-0.31082E+06, 
A14=0.13815E+07, A16=-0.24400E+07
第3面
K=0.00000E+00, A3=-0.20059E+00, A4=-0.41246E+00, A5=0.00000E+00, 
A6=-0.17580E+01, A8=-0.12340E+03, A10=0.13738E+04, A12=-0.49305E+04, 
A14=-0.11855E+05, A16=0.56611E+05
第4面
K=0.00000E+00, A3=0.00000E+00, A4=-0.15237E+00, A5=0.00000E+00, 
A6=-0.11474E+01, A8=0.50695E+01, A10=-0.17830E+02, A12=0.36514E+02, 
A14=-0.42353E+02, A16=0.20325E+02
The aspherical coefficient of the lens surface of Example 2 is shown in Table 7 below.
[Table 7]
First side
K = 0.32450E + 00, A3 = -0.76173E-01, A4 = 0.38474E + 01, A5 = -0.45717E + 02,
A6 = 0.18238E + 03, A8 = -0.13827E + 04, A10 = 0.92555E + 04, A12 = -0.35551E + 05,
A14 = 0.57250E + 05, A16 = 0.00000E + 00
Second side
K = 0.26027E + 01, A3 = 0.23871E + 00, A4 = -0.21090E + 01, A5 = 0.00000E + 00,
A6 = 0.89458E + 02, A8 = -0.23599E + 04, A10 = 0.36323E + 05, A12 = -0.31082E + 06,
A14 = 0.13815E + 07, A16 = -0.24400E + 07
Third side
K = 0.00000E + 00, A3 = -0.20059E + 00, A4 = -0.41246E + 00, A5 = 0.00000E + 00,
A6 = -0.17580E + 01, A8 = -0.12340E + 03, A10 = 0.13738E + 04, A12 = -0.49305E + 04,
A14 = -0.11855E + 05, A16 = 0.56611E + 05
4th page
K = 0.00000E + 00, A3 = 0.00000E + 00, A4 = -0.15237E + 00, A5 = 0.00000E + 00,
A6 = -0.11474E + 01, A8 = 0.50695E + 01, A10 = -0.17830E + 02, A12 = 0.36514E + 02,
A14 = -0.42353E + 02, A16 = 0.20325E + 02
 実施例2の単レンズデータを以下の表8に示す。
〔表8〕
レンズ            始面              焦点距離(mm)
1                  1                   1.810
2                  3                 -14.880
The single lens data of Example 2 is shown in Table 8 below.
[Table 8]
Lens Start surface Focal length (mm)
1 1 1.810
2 3 -14.880
 図8は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX近傍で正の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第1レンズL1と、光軸AX近傍で負の屈折力を有し物体側に凹面を向けた凹平に近い第2レンズL2とを備える。第2レンズL2の物体側面S21には、700nm以上の波長域における透過率を抑制するコーティング層が設けられている。なお、第1レンズL1の物体側面S11にも、700nm以上の波長域における透過率を抑制するコーティング層を設けてもよい。全てのレンズL1,L2は、プラスチックレンズを想定している。レンズL1,L2のうち第2レンズL2は、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料で形成されている。第1レンズL1の物体側面S11側には、開口絞りSが配置されている。第2レンズL2の光射出面と撮像面(像面)Iとの間には、適切な厚さの平行平板Fが配置されている。 FIG. 8 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX. And a second lens L2 close to a concave plane with the concave surface facing the object side. The object side surface S21 of the second lens L2 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more. Note that a coating layer that suppresses the transmittance in the wavelength region of 700 nm or more may also be provided on the object side surface S11 of the first lens L1. All the lenses L1 and L2 are assumed to be plastic lenses. Of the lenses L1 and L2, the second lens L2 is formed of a resin material including an infrared absorbing material that absorbs infrared rays. An aperture stop S is disposed on the object side surface S11 side of the first lens L1. Between the light exit surface of the second lens L2 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed.
 図9A~9Cは、実施例2の撮像レンズ12の球面収差、非点収差及び歪曲収差を示している。 FIGS. 9A to 9C show spherical aberration, astigmatism and distortion of the imaging lens 12 of the second embodiment.
 (実施例3)
 実施例3の撮像レンズ10の全体諸元を以下に示す。
f=2.086mm
Fno=2.335
Yd=1.095mm
TTL=2.816mm
Yd/TTL=0.389
Example 3
The overall specifications of the imaging lens 10 of Example 3 are shown below.
f = 2.086mm
Fno = 2.335
Yd = 1.095mm
TTL = 2.816mm
Yd / TTL = 0.389
 実施例3のレンズ面のデータを以下の表9及び表10に示す。
〔表9〕
面番号     R(mm)       D(mm)      Nd       νd       he(mm)
物体      infinity    infinity
 1*        0.938       0.619    1.54480    56.0      0.45
 2*        8.484       0.215                         0.49
 3*       -1.270       0.512    1.54480    56.0      0.50
 4*       -0.805       0.056                         0.65
 5*       infinity     0.500    1.54480    56.0      0.70
 6*        1.131       0.158                         0.88
 7        infinity     0.175    1.52310    54.5      0.97
 8        infinity     0.100                         1.01
 9        infinity     0.400    1.52000    62.4      1.04
10        infinity     0.082                         1.12
 I
〔表10〕
面番号     L(mm)       Sag(he)(mm)      [he2/(2・R)]/Sag(he)
物体
 1*        0.103       0.107              9.066
 2*       -0.517      -0.008             28.093
 3*       -0.731      -0.107              1.566
 4*       -1.243      -0.143              1.186
 5*       -1.299      -0.123              1.529
 6*       -1.799       0.065             -3.323
 I
The lens surface data of Example 3 are shown in Table 9 and Table 10 below.
[Table 9]
Surface number R (mm) D (mm) Nd νd he (mm)
Object infinity infinity
1 * 0.938 0.619 1.54480 56.0 0.45
2 * 8.484 0.215 0.49
3 * -1.270 0.512 1.54480 56.0 0.50
4 * -0.805 0.056 0.65
5 * infinity 0.500 1.54480 56.0 0.70
6 * 1.131 0.158 0.88
7 infinity 0.175 1.52310 54.5 0.97
8 infinity 0.100 1.01
9 infinity 0.400 1.52000 62.4 1.04
10 infinity 0.082 1.12
I
[Table 10]
Surface number L (mm) Sag (he) (mm) [he2 / (2 ・ R)] / Sag (he)
Object 1 * 0.103 0.107 9.066
2 * -0.517 -0.008 28.093
3 * -0.731 -0.107 1.566
4 * -1.243 -0.143 1.186
5 * -1.299 -0.123 1.529
6 * -1.799 0.065 -3.323
I
 実施例3のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第1面
K=-0.13494E+02, A3=-0.49233E+00, A4=0.79762E+01, A5=-0.35070E+02, 
A6=0.77598E+02, A8=-0.29463E+03, A10=0.12670E+04, A12=-0.34010E+04, 
A14=0.39646E+04, A16=0.00000E+00
第2面
K=-0.14246E+03, A3=-0.68118E+00, A4=0.67398E+01, A5=-0.32182E+02, 
A6=0.66022E+02, A8=-0.18296E+03, A10=0.55026E+03, A12=-0.10923E+04, 
A14=0.96258E+03, A16=0.00000E+00
第3面
K=-0.14699E+01, A3=0.00000E+00, A4=-0.92026E-01, A5=0.00000E+00, 
A6=0.34736E+01, A8=-0.75315E+02, A10=0.69581E+03, A12=-0.33818E+04, 
A14=0.82841E+04, A16=-0.83184E+04
第4面
K=-0.84745E+01, A3=0.00000E+00, A4=-0.83676E+00, A5=0.00000E+00, 
A6=0.39814E+01, A8=-0.12464E+02, A10=0.30941E+02, A12=-0.63341E+01, 
A14=-0.97339E+02, A16=0.10805E+03
第5面
K=0.00000E+00, A3=0.00000E+00, A4=-0.18778E+00, A5=0.00000E+00, 
A6=-0.21643E+01, A8=0.73388E+01, A10=-0.86550E+01, A12=-0.61237E+01, 
A14=0.30541E+02, A16=-0.37485E+02
第6面
K=-0.13632E-05, A3=0.91007E+00, A4=-0.71305E+01, A5=0.19159E+02, 
A6=-0.24719E+02, A8=0.28449E+02, A10=-0.37594E+02, A12=0.34528E+02, 
A14=-0.18549E+02, A16=0.43143E+01
The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 11 below.
[Table 11]
First side
K = -0.13494E + 02, A3 = -0.49233E + 00, A4 = 0.79762E + 01, A5 = -0.35070E + 02,
A6 = 0.77598E + 02, A8 = -0.29463E + 03, A10 = 0.12670E + 04, A12 = -0.34010E + 04,
A14 = 0.39646E + 04, A16 = 0.00000E + 00
Second side
K = -0.14246E + 03, A3 = -0.68118E + 00, A4 = 0.67398E + 01, A5 = -0.32182E + 02,
A6 = 0.66022E + 02, A8 = -0.18296E + 03, A10 = 0.55026E + 03, A12 = -0.10923E + 04,
A14 = 0.96258E + 03, A16 = 0.00000E + 00
Third side
K = -0.14699E + 01, A3 = 0.00000E + 00, A4 = -0.92026E-01, A5 = 0.00000E + 00,
A6 = 0.34736E + 01, A8 = -0.75315E + 02, A10 = 0.69581E + 03, A12 = -0.33818E + 04,
A14 = 0.82841E + 04, A16 = -0.83184E + 04
4th page
K = -0.84745E + 01, A3 = 0.00000E + 00, A4 = -0.83676E + 00, A5 = 0.00000E + 00,
A6 = 0.39814E + 01, A8 = -0.12464E + 02, A10 = 0.30941E + 02, A12 = -0.63341E + 01,
A14 = -0.97339E + 02, A16 = 0.10805E + 03
5th page
K = 0.00000E + 00, A3 = 0.00000E + 00, A4 = -0.18778E + 00, A5 = 0.00000E + 00,
A6 = -0.21643E + 01, A8 = 0.73388E + 01, A10 = -0.86550E + 01, A12 = -0.61237E + 01,
A14 = 0.30541E + 02, A16 = -0.37485E + 02
6th page
K = -0.13632E-05, A3 = 0.91007E + 00, A4 = -0.71305E + 01, A5 = 0.19159E + 02,
A6 = -0.24719E + 02, A8 = 0.28449E + 02, A10 = -0.37594E + 02, A12 = 0.34528E + 02,
A14 = -0.18549E + 02, A16 = 0.43143E + 01
 実施例3の単レンズデータを以下の表12に示す。
〔表12〕
レンズ            始面              焦点距離(mm)
1                  1                   1.881
2                  3                   2.905
3                  5                  -2.075
The single lens data of Example 3 is shown in Table 12 below.
[Table 12]
Lens Start surface Focal length (mm)
1 1 1.881
2 3 2.905
3 5 -2.075
 図10は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平に近い第1レンズL1と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第2レンズL2と、光軸AX近傍で負の屈折力を有し像側に凹面を向けた平凹の第3レンズL3とを備える。第2レンズL2の物体側面S21には、700nm以上の波長域における透過率を抑制するコーティング層が設けられている。なお、第1レンズL1の物体側面S11、第1レンズL1の像側面S12、及び第3レンズL3の物体側面S31にも、700nm以上の波長域における透過率を抑制するコーティング層を設けてもよい。全てのレンズL1~L3は、プラスチックレンズを想定している。レンズL1~L3のうち第2レンズL2は、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料で形成されている。第1レンズL1の物体側面S11側には、開口絞りSが配置されている。第3レンズL3の光射出面と撮像面(像面)Iとの間には、適切な厚さの平行平板Fが配置されている。 FIG. 10 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 has, in order from the object side, a first lens L1 having a positive refractive power in the vicinity of the optical axis AX and having a convex surface with a convex surface facing the object side, and a positive refractive power in the vicinity of the optical axis AX. And a second lens L2 having a meniscus shape with a convex surface facing the image side, and a plano-concave third lens L3 having a negative refractive power near the optical axis AX and having a concave surface facing the image side. The object side surface S21 of the second lens L2 is provided with a coating layer that suppresses transmittance in a wavelength region of 700 nm or more. Note that a coating layer that suppresses transmittance in a wavelength region of 700 nm or more may also be provided on the object side surface S11 of the first lens L1, the image side surface S12 of the first lens L1, and the object side surface S31 of the third lens L3. . All the lenses L1 to L3 are assumed to be plastic lenses. Of the lenses L1 to L3, the second lens L2 is formed of a resin material containing an infrared absorbing material that absorbs infrared rays. An aperture stop S is disposed on the object side surface S11 side of the first lens L1. Between the light exit surface of the third lens L3 and the imaging surface (image surface) I, a parallel plate F having an appropriate thickness is disposed.
 図11A~11Cは、実施例3の撮像レンズ13の球面収差、非点収差及び歪曲収差を示している。 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3. FIG.
 以上、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。 As mentioned above, although this invention was demonstrated according to embodiment and an Example, this invention is not limited to the said embodiment etc.
 上記実施形態において、撮像レンズ10は、単レンズを組み合わせたものであったが、複数のレンズを2次元的に配列した複眼撮像装置用のレンズアレイであってもよい。 In the above embodiment, the imaging lens 10 is a combination of single lenses, but may be a lens array for a compound eye imaging device in which a plurality of lenses are two-dimensionally arranged.
 最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光線束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性の極めて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、実施例1~3に用いられるようなプラスチックレンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動をより小さく抑えることが可能となる。 Recently, it has been found that by mixing inorganic fine particles in a plastic material, the temperature change of the plastic material can be reduced. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, making it difficult to use as an optical material. By making the wavelength smaller than this, scattering can be substantially prevented from occurring. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, by using a plastic material in which such inorganic particles are dispersed in the plastic lens used in Examples 1 to 3, the image point position fluctuation at the time of temperature change of the entire imaging lens system is further reduced. It becomes possible to suppress.
 また、近年、撮像装置を低コストにかつ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。このようなリフロー処理を用いて実装を行うためには、電子部品とともに光学素子を約200~260℃に加熱する必要があるが、このような高温下では、熱可塑性樹脂を用いたレンズは熱変形し又は変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能とを両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりも一般にコストが高い。そのため、撮像装置の低コスト化の要求に応えられないという問題があった。そこで、実施例1~3の撮像レンズ11~13の材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下を小さくすることができる。そのため、撮像レンズ11~13は、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性とを両立できる。よって、実施例1~3のレンズL1~L5を上記エネルギー硬化性樹脂を用いて形成してもよい。なお、エネルギー硬化性樹脂とは、一般的に熱硬化性樹脂、紫外線硬化性樹脂等を指す。 Also, in recent years, as a method for mounting a large number of image pickup devices at low cost, a reflow process (heating process) is performed on a substrate on which solder has been potted in advance with an IC chip or other electronic component and an optical element placed on the substrate. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting solder. In order to perform mounting using such a reflow process, it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, the lens using the thermoplastic resin is heated. There is a problem that the optical performance deteriorates due to deformation or discoloration. As one of the methods for solving such problems, a technology that uses a glass mold lens having excellent heat resistance performance and achieves both miniaturization and optical performance in a high temperature environment has been proposed. Generally, the cost is higher than the lens using the lens. For this reason, there has been a problem that it is impossible to meet the demand for cost reduction of the imaging apparatus. Therefore, when an energy curable resin is used as the material of the imaging lenses 11 to 13 of Examples 1 to 3, when the lens is exposed to a higher temperature than a lens using a thermoplastic resin such as a polycarbonate or polyolefin resin. The decrease in optical performance can be reduced. Therefore, the imaging lenses 11 to 13 are effective for the reflow process, are easier to manufacture than the glass mold lens, are inexpensive, and can achieve both low cost and mass productivity of the imaging device incorporating the imaging lens. Therefore, the lenses L1 to L5 of Examples 1 to 3 may be formed using the energy curable resin. The energy curable resin generally refers to a thermosetting resin, an ultraviolet curable resin, or the like.

Claims (6)

  1.  レンズの少なくとも一面に、700nm以上の波長域における透過率を抑制するコーティング層を備え、
     前記コーティング層を有するレンズ面は、以下の条件式を満足する、撮像光学系。
     1.5<[he/(2・R)]/Sag(he)<29
    ただし、
     R:前記コーティング層を有する面の頂点から開口絞り中心の光軸上の距離
     he:対象面の有効半径
     Sag(he):対象面における、高さheでのサグ量
    A coating layer that suppresses transmittance in a wavelength region of 700 nm or more is provided on at least one surface of the lens,
    An imaging optical system in which the lens surface having the coating layer satisfies the following conditional expression.
    1.5 <[he 2 / (2 · R)] / Sag (he) <29
    However,
    R: Distance on the optical axis from the top of the surface having the coating layer to the center of the aperture stop he: Effective radius of the target surface Sag (he): Sag amount at height he on the target surface
  2.  少なくとも1枚のレンズは、赤外線を吸収する赤外線吸収材料を含んだ樹脂材料製の非球面レンズである、請求項1に記載の撮像光学系。 2. The imaging optical system according to claim 1, wherein the at least one lens is an aspherical lens made of a resin material including an infrared absorbing material that absorbs infrared rays.
  3.  2枚以上のレンズで構成される、請求項1及び2のいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 and 2, comprising two or more lenses.
  4.  以下の条件式を満足する、請求項1から3までのいずれか一項に記載の撮像光学系。
     0.2<Yd/TTL<0.9
    ただし、
     Yd:撮像素子の撮像面対角線長の半値
     TTL:撮像光学系の全長
    The imaging optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.2 <Yd / TTL <0.9
    However,
    Yd: half value of diagonal length of imaging surface of imaging device TTL: total length of imaging optical system
  5.  請求項1から4までのいずれか一項に記載の撮像光学系と、
     前記撮像光学系により撮像面に形成された画像を光電変換する撮像素子と、
    を有する、撮像装置。
    The imaging optical system according to any one of claims 1 to 4,
    An image sensor that photoelectrically converts an image formed on the imaging surface by the imaging optical system;
    An imaging device.
  6.  請求項5に記載の撮像装置を備える、携帯端末。 A portable terminal comprising the imaging device according to claim 5.
PCT/JP2015/051289 2014-01-20 2015-01-19 Imaging optical system, imaging device, and mobile terminal WO2015108194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014008177 2014-01-20
JP2014-008177 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015108194A1 true WO2015108194A1 (en) 2015-07-23

Family

ID=53543075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051289 WO2015108194A1 (en) 2014-01-20 2015-01-19 Imaging optical system, imaging device, and mobile terminal

Country Status (1)

Country Link
WO (1) WO2015108194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142242A1 (en) * 2016-02-17 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and apparatus having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206611A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Single focal imaging lens and imaging apparatus having the same
JP2007212878A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focal imaging lens and imaging apparatus having same
JP2007212877A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus having same
JP2008020513A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus equipped therewith
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206611A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Single focal imaging lens and imaging apparatus having the same
JP2007212878A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focal imaging lens and imaging apparatus having same
JP2007212877A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus having same
JP2008020513A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Single focus imaging lens and imaging apparatus equipped therewith
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142242A1 (en) * 2016-02-17 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and apparatus having the same
CN108700726A (en) * 2016-02-17 2018-10-23 三星电子株式会社 Optical lens assembly and equipment with the lens assembly
US10495849B2 (en) 2016-02-17 2019-12-03 Samsung Electronics Co., Ltd. Optical lens assembly and apparatus having the same
CN108700726B (en) * 2016-02-17 2021-10-01 三星电子株式会社 Optical lens assembly and device having the same

Similar Documents

Publication Publication Date Title
CN113238358B (en) Camera lens
TWI482992B (en) Image pickup lens, image pickup apparatus and portable terminal
JP5348563B2 (en) Imaging lens, imaging device, and portable terminal
JP5308777B2 (en) Wide angle optical system and imaging apparatus using the same
WO2011004467A1 (en) Image pickup lens, image pickup device and mobile terminal
JP6451639B2 (en) Imaging device and portable terminal
JP5413206B2 (en) Zoom lens and imaging device
US11982875B2 (en) Image capturing lens assembly, imaging apparatus and electronic device
JP2015114505A (en) Imaging lens and imaging device
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
CN111352216B (en) Imaging lens system, identification module and electronic device
JP2013156389A (en) Imaging lens, imaging device and portable terminal
US11372204B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
WO2014050476A1 (en) Image pickup lens, image pickup device, and mobile terminal
JP5308778B2 (en) Wide angle optical system and imaging apparatus using the same
JP2015040869A (en) Imaging apparatus, and digital apparatus
EP3136147B1 (en) Imaging lens system, imaging optical device, and digital appliance
WO2015159592A1 (en) Imaging lens, imaging device, and mobile terminal
US11899172B2 (en) Imaging optical lens assembly including five lenses +−++−, −++−, −−++−, +−+++, +++−+, +−+−+, +−+−−, or −++−+ of refractive powers, imaging apparatus and electronic device
WO2015108194A1 (en) Imaging optical system, imaging device, and mobile terminal
US12000991B2 (en) Optical image capturing lens assembly, imaging apparatus and electronic device
WO2015093444A1 (en) Imaging lens and imaging device
JPWO2018225842A1 (en) Zoom lens and imaging device
US20220276468A1 (en) Optical image capturing lens assembly, imaging apparatus and electronic device
US11940597B2 (en) Image capturing optical lens system, imaging apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP