WO2015107972A1 - Ammonia engine - Google Patents

Ammonia engine Download PDF

Info

Publication number
WO2015107972A1
WO2015107972A1 PCT/JP2015/050363 JP2015050363W WO2015107972A1 WO 2015107972 A1 WO2015107972 A1 WO 2015107972A1 JP 2015050363 W JP2015050363 W JP 2015050363W WO 2015107972 A1 WO2015107972 A1 WO 2015107972A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
ammonia
combustion chamber
pressure
engine
Prior art date
Application number
PCT/JP2015/050363
Other languages
French (fr)
Japanese (ja)
Inventor
信哉 荒木
好朗 岩井
Original Assignee
信哉 荒木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信哉 荒木 filed Critical 信哉 荒木
Publication of WO2015107972A1 publication Critical patent/WO2015107972A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an ammonia engine using ammonia as a fuel.
  • ammonia engine using ammonia as a fuel has attracted attention as an engine using a renewable fuel from the viewpoint of environmental conservation such as prevention of global warming.
  • ammonia as a fuel is flame retardant, a device for making it easy to burn ammonia is required.
  • a conventional ammonia engine a plurality of spark plugs are arranged in a combustion chamber, and sparks are generated at a plurality of locations by these spark plugs, so that ammonia is easily burned (for example, patents). Reference 1).
  • an ammonia engine of the present invention is an ammonia engine in which ammonia is supplied as a fuel into a combustion chamber of a cylinder, and hydrogen that generates high-pressure hydrogen gas by reacting ammonia with a metal hydride. And a hydrogen gas supply device that supplies the high-pressure hydrogen gas generated by the hydrogen gas generation device into the combustion chamber.
  • the ammonia engine of the present invention since the high-pressure hydrogen gas generated by the hydrogen gas generator can be supplied into the combustion chamber under high pressure, the ammonia in the combustion chamber burns together with the hydrogen gas that is a combustible gas. Thus, the combustion efficiency of ammonia can be improved.
  • the hydrogen gas supply device is disposed in the vicinity of an ignition unit that generates a spark in the combustion chamber, and has an injection unit that injects the high-pressure hydrogen gas toward the spark generated by the ignition unit. Is preferred.
  • ammonia can be combusted together with hydrogen gas in the vicinity of the ignition unit, so there is no need to fill the combustion chamber with hydrogen gas. As a result, the supply amount of hydrogen gas necessary for the combustion of ammonia can be reduced.
  • the pressure of the hydrogen gas generated by the hydrogen gas generator is preferably set to be equal to or higher than the pressure in the combustion chamber when the piston of the cylinder reaches compression top dead center. In this case, since hydrogen gas can be supplied into the combustion chamber when the piston of the cylinder reaches the compression top dead center, the pumping loss can be effectively reduced and the thermal efficiency of the ammonia engine can be improved. .
  • the hydrogen gas generator preferably generates high-pressure hydrogen gas using ammonia supplied into the combustion chamber. In this case, there is no need to separately prepare dedicated ammonia for generating high-pressure hydrogen gas, so that the configuration of the entire engine can be simplified.
  • the combustion efficiency can be improved.
  • FIG. 1 is a schematic diagram showing a configuration of an ammonia engine according to an embodiment of the present invention.
  • an ammonia engine of the present embodiment includes an engine body 1 that uses liquid ammonia as a fuel, a tank 2 that stores liquid ammonia, and a hydrogen gas generator 3 that generates high-pressure hydrogen gas using liquid ammonia. And a hydrogen gas supply device 4 for supplying the generated high-pressure hydrogen gas to the engine body 1.
  • the engine body 1 includes a cylinder 11 having a combustion chamber 11a therein, an ammonia supply device 12 that supplies liquid ammonia into the combustion chamber 11a, an intake device 13 that supplies air into the combustion chamber 11a, and an internal combustion chamber 11a.
  • an ignition device 14 for generating a spark
  • an exhaust device 15 for discharging the exhaust gas after combustion from the combustion chamber 11a.
  • the cylinder 11 includes a cylindrical cylinder liner 11b, a cylinder head 11c that covers an upper opening of the cylinder liner 11b, a piston 11d that is reciprocally movable in the cylinder liner 11b, and a crank 11e that is coupled to the piston 11d.
  • a space surrounded by the cylinder liner 11b, the cylinder head 11c, and the piston 11d is a combustion chamber 11a. Therefore, the combustion chamber 11a is compressed to a high pressure state by moving the piston 11d upward in the drawing. Further, the driving force for rotating the crank 11e is transmitted by burning the liquid ammonia in the combustion chamber 11a and reciprocating the piston 11d.
  • the ignition device 14 is made of, for example, an ignition plug, and is fixed in a state where a tip portion is disposed in the combustion chamber 11a at a substantially central portion of the cylinder head 11c. At the tip of the ignition device 14, there is provided an ignition part 14a that generates a spark in the upper center part in the combustion chamber 11a.
  • the ammonia supply device 12 is composed of, for example, an injector, and is fixed in a state in which the tip portion is disposed in the combustion chamber 11a in the cylinder head 11c.
  • An injection unit 12 a that injects liquid ammonia into the combustion chamber 11 a is provided at the tip of the ammonia supply device 12.
  • the ammonia supply device 12 is fixed to the cylinder head 11c in a state where the injection unit 12a is disposed in the combustion chamber 11a, but instead of or in addition to this, the injection unit 12a is connected to the intake pipe 13a. You may fix to the said intake pipe 13a in the state arrange
  • the intake device 13 includes an intake pipe 13a having one end fixed to the cylinder head 11c, and an intake valve 13b provided in the intake pipe 13a.
  • the intake valve 13b is opened and closed by a driving means (not shown). By opening the intake valve 13b, the intake pipe 13a communicates with the combustion chamber 11a, and air is introduced from the intake pipe 13a into the combustion chamber 11a. Is to be supplied.
  • the exhaust device 15 includes an exhaust pipe 15a having one end fixed to the cylinder head 11c and an exhaust valve 15b provided in the exhaust pipe 15a.
  • the exhaust valve 15b is opened and closed by a driving means (not shown). By opening the exhaust valve 15b, the exhaust valve 15b communicates with the combustion chamber 11a, and the exhaust gas after combustion in the combustion chamber 11a. Is discharged from the exhaust valve 15b.
  • the hydrogen gas generator 3 uses a conventional hydrogen gas production method (for example, Japanese Patent Application Laid-Open No. 2010-265138), and generates high-pressure hydrogen gas by reacting liquid ammonia with a metal hydride. It is.
  • the hydrogen gas generator 3 includes a reaction vessel 3a and a replenisher 3b that replenishes the reaction vessel 3a with powdered metal hydride.
  • the reaction vessel 3a is composed of a vessel with high pressure resistance, and a large amount of metal hydride is filled from the replenishing device 3b. Further, liquid ammonia in the tank 2 is introduced into the reaction vessel 3a. That is, the hydrogen gas generation device 3 uses liquid ammonia supplied into the combustion chamber 11a of the engine body 1 as liquid ammonia introduced into the reaction vessel 3a.
  • MH metal hydride
  • NH 3 liquid ammonia
  • M is a monovalent light metal element
  • the above reaction is performed in a temperature range where ammonia maintains a liquid state, that is, a temperature range above the melting point and below the boiling point of ammonia. Since the melting point of ammonia at normal pressure is ⁇ 77.7 ° C. and the boiling point is ⁇ 33.4 ° C., the temperature range under normal pressure is ⁇ 77.7 ° C. to ⁇ 33.4 ° C. However, since liquid ammonia used for the above reaction is also introduced into the combustion chamber 11a of the engine body 1, the temperature of ammonia is too low in the temperature range under normal pressure, and the combustion efficiency of the engine decreases.
  • the pressure in the reaction vessel 3a is increased so that the temperature range in which ammonia maintains a liquid state is close to room temperature. Specifically, since ammonia liquefies at 20 ° C., which is near room temperature under a pressure of 8 atm, the pressure in the reaction vessel 3a is set to 8 atm or more.
  • the metal hydride used in the above reaction for example, lithium hydride (LiH), sodium hydride (NaH), or potassium hydride (KH) that is a metal hydride of a monovalent light metal element is preferably used. Can do.
  • the pressure of the hydrogen gas to be generated can be set by adjusting the amount of metal hydride charged in the reaction vessel 3a.
  • the pressure of the generated hydrogen gas is set to be equal to or higher than the pressure in the combustion chamber 11a when the piston 11d of the cylinder 11 reaches the compression top dead center (TDC: Top Dead Center). .
  • the hydrogen gas supply device 4 is composed of, for example, an injector, and is fixed in a state where the tip end portion is disposed in the combustion chamber 11a at a substantially central portion of the cylinder head 11c.
  • An injection unit 4 a disposed in the vicinity of the ignition unit 14 a is provided at the tip of the hydrogen gas supply device 4.
  • the injection unit 4a is configured to inject the high-pressure hydrogen gas generated by the hydrogen gas generation device 3 toward the spark generated by the ignition unit 14a.
  • the high-pressure hydrogen gas generated by the hydrogen gas generator 3 can be supplied into the combustion chamber 11a under high pressure, so that the liquid ammonia in the combustion chamber 11a is combustible. Combustion efficiency of liquid ammonia can be improved by burning together with hydrogen gas, which is a natural gas.
  • the hydrogen gas supply device 4 injects liquid ammonia in the vicinity of the ignition unit 14a in order to inject high-pressure hydrogen gas from the injection unit 4a arranged in the vicinity of the ignition unit 14a toward the spark generated in the ignition unit 14a. Can be burned with gas. Thereby, since it is not necessary to fill the combustion chamber 11a with hydrogen gas, the supply amount of hydrogen gas required for combustion of liquid ammonia can be reduced.
  • the pressure of the hydrogen gas generated in the hydrogen gas generator 3 is set to be equal to or higher than the pressure in the combustion chamber 11a when the piston 11d of the cylinder 11 reaches the compression top dead center, the piston 11d of the cylinder 11 When the compression top dead center is reached, hydrogen gas can be supplied into the combustion chamber 11a. Thereby, a pumping loss can be reduced effectively and the thermal efficiency of an ammonia engine can be improved.
  • the hydrogen gas generator 3 since the hydrogen gas generator 3 generates high-pressure hydrogen gas using liquid ammonia supplied into the combustion chamber 11a of the cylinder 11, dedicated liquid ammonia for generating high-pressure hydrogen gas is used. There is no need to prepare it separately. Thereby, the structure of the whole engine can be simplified.
  • the hydrogen gas generation device 3 in the above-described embodiment uses liquid ammonia supplied into the combustion chamber 11a of the engine body 1, dedicated liquid ammonia may be used.
  • the ammonia supply device 12 of the engine body 1 is provided in the cylinder 11, it may be provided in the intake pipe 13a.
  • the ammonia engine of the said embodiment uses liquid ammonia as a fuel, it is good also as gaseous ammonia as a fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is an ammonia engine that can have increased combustion efficiency. The ammonia engine, in which liquid ammonia is supplied into a combustion chamber (11a) of a cylinder (11) as fuel, is provided with: a hydrogen gas generation device (3) that generates high-pressure hydrogen gas by reacting the liquid ammonia and a metal hydride; and a hydrogen gas supply device (4) that supplies the high-pressure hydrogen gas generated by the hydrogen gas generation device (3) into the combustion chamber (11a).

Description

アンモニアエンジンAmmonia engine
 本発明は、アンモニアを燃料とするアンモニアエンジンに関する。 The present invention relates to an ammonia engine using ammonia as a fuel.
 近年、地球温暖化防止などの環境保全の観点から、再生可能な燃料を用いたエンジンとして、アンモニアを燃料としたアンモニアエンジンが着目されている。しかし、このアンモニアエンジンでは、燃料であるアンモニアが難燃性であるため、アンモニアを燃え易くするための工夫が必要になる。このため、従来のアンモニアエンジンは、燃焼室に複数の点火プラグを配置し、これらの点火プラグによって複数の箇所で火花を発生させることによって、アンモニアを容易に燃焼させるようにしている(例えば、特許文献1参照)。 In recent years, an ammonia engine using ammonia as a fuel has attracted attention as an engine using a renewable fuel from the viewpoint of environmental conservation such as prevention of global warming. However, in this ammonia engine, since ammonia as a fuel is flame retardant, a device for making it easy to burn ammonia is required. For this reason, in a conventional ammonia engine, a plurality of spark plugs are arranged in a combustion chamber, and sparks are generated at a plurality of locations by these spark plugs, so that ammonia is easily burned (for example, patents). Reference 1).
特開2010-159705号公報JP 2010-159705 A
 しかしながら、この種のアンモニアエンジンにあっては、燃焼室内に供給されたアンモニアの燃焼効率が依然として低いため、未だ実用化されていないのが現状である。
 本発明は、かかる事情に鑑みてなされたものであり、燃焼効率を向上させることができるアンモニアエンジンを提供することを目的とする。
However, in this type of ammonia engine, since the combustion efficiency of ammonia supplied into the combustion chamber is still low, it has not yet been put into practical use.
This invention is made | formed in view of this situation, and it aims at providing the ammonia engine which can improve combustion efficiency.
 前記目的を達成するための本発明のアンモニアエンジンは、シリンダの燃焼室内にアンモニアが燃料として供給されるアンモニアエンジンであって、アンモニアと金属水素化物とを反応させて高圧の水素ガスを発生させる水素ガス生成装置と、前記水素ガス生成装置により発生した前記高圧の水素ガスを前記燃焼室内に供給する水素ガス供給装置と、を備えていることを特徴とする。
 本発明のアンモニアエンジンによれば、水素ガス生成装置により発生した高圧の水素ガスを、高圧下の燃焼室内に供給することができるため、燃焼室内のアンモニアは可燃性ガスである水素ガスとともに燃焼することで、アンモニアの燃焼効率を向上させることができる。
In order to achieve the above object, an ammonia engine of the present invention is an ammonia engine in which ammonia is supplied as a fuel into a combustion chamber of a cylinder, and hydrogen that generates high-pressure hydrogen gas by reacting ammonia with a metal hydride. And a hydrogen gas supply device that supplies the high-pressure hydrogen gas generated by the hydrogen gas generation device into the combustion chamber.
According to the ammonia engine of the present invention, since the high-pressure hydrogen gas generated by the hydrogen gas generator can be supplied into the combustion chamber under high pressure, the ammonia in the combustion chamber burns together with the hydrogen gas that is a combustible gas. Thus, the combustion efficiency of ammonia can be improved.
 前記水素ガス供給装置は、前記燃焼室内で火花を発生させる点火部の近傍に配置されるとともに、当該点火部により発生した火花に向けて前記高圧の水素ガスを噴射する噴射部を有しているのが好ましい。
 この場合、点火部の近傍においてアンモニアを水素ガスとともに燃焼させることができるため、水素ガスを燃焼室に充満させる必要がない。その結果、アンモニアの燃焼に必要な水素ガスの供給量を低減することができる。
The hydrogen gas supply device is disposed in the vicinity of an ignition unit that generates a spark in the combustion chamber, and has an injection unit that injects the high-pressure hydrogen gas toward the spark generated by the ignition unit. Is preferred.
In this case, ammonia can be combusted together with hydrogen gas in the vicinity of the ignition unit, so there is no need to fill the combustion chamber with hydrogen gas. As a result, the supply amount of hydrogen gas necessary for the combustion of ammonia can be reduced.
 前記水素ガス生成装置で発生させる水素ガスの圧力は、前記シリンダのピストンが圧縮上死点に達したときの前記燃焼室内の圧力以上に設定されているのが好ましい。
 この場合、シリンダのピストンが圧縮上死点に達するときに燃焼室内に水素ガスを供給することができるため、ポンピングロスを効果的に低減することができ、アンモニアエンジンの熱効率を向上させることができる。
The pressure of the hydrogen gas generated by the hydrogen gas generator is preferably set to be equal to or higher than the pressure in the combustion chamber when the piston of the cylinder reaches compression top dead center.
In this case, since hydrogen gas can be supplied into the combustion chamber when the piston of the cylinder reaches the compression top dead center, the pumping loss can be effectively reduced and the thermal efficiency of the ammonia engine can be improved. .
 前記水素ガス生成装置は、前記燃焼室内に供給するアンモニアを利用して高圧の水素ガスを発生させるのが好ましい。
 この場合、高圧の水素ガスを生成するための専用のアンモニアを別途用意する必要がないので、エンジン全体の構成を簡素化することができる。
The hydrogen gas generator preferably generates high-pressure hydrogen gas using ammonia supplied into the combustion chamber.
In this case, there is no need to separately prepare dedicated ammonia for generating high-pressure hydrogen gas, so that the configuration of the entire engine can be simplified.
 本発明のアンモニアエンジンによれば、燃焼効率を向上させることができる。 According to the ammonia engine of the present invention, the combustion efficiency can be improved.
本発明の一実施形態に係るアンモニアエンジンの構成を示す模式図である。It is a mimetic diagram showing the composition of the ammonia engine concerning one embodiment of the present invention.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の一実施形態に係るアンモニアエンジンの構成を示す模式図である。図1において、本実施形態のアンモニアエンジンは、液体アンモニアを燃料とするエンジン本体1と、液体アンモニアを貯留するタンク2と、液体アンモニアを用いて高圧の水素ガスを発生させる水素ガス生成装置3と、生成された高圧の水素ガスをエンジン本体1に供給する水素ガス供給装置4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of an ammonia engine according to an embodiment of the present invention. In FIG. 1, an ammonia engine of the present embodiment includes an engine body 1 that uses liquid ammonia as a fuel, a tank 2 that stores liquid ammonia, and a hydrogen gas generator 3 that generates high-pressure hydrogen gas using liquid ammonia. And a hydrogen gas supply device 4 for supplying the generated high-pressure hydrogen gas to the engine body 1.
 エンジン本体1は、内部に燃焼室11aを有するシリンダ11と、燃焼室11a内に液体アンモニアを供給するアンモニア供給装置12と、燃焼室11a内に空気を供給する吸気装置13と、燃焼室11a内で火花を発生させる点火装置14と、燃焼室11a内から燃焼後の排気ガスを排出する排気装置15とを備えている。 The engine body 1 includes a cylinder 11 having a combustion chamber 11a therein, an ammonia supply device 12 that supplies liquid ammonia into the combustion chamber 11a, an intake device 13 that supplies air into the combustion chamber 11a, and an internal combustion chamber 11a. Are provided with an ignition device 14 for generating a spark and an exhaust device 15 for discharging the exhaust gas after combustion from the combustion chamber 11a.
 シリンダ11は、筒状のシリンダライナ11bと、シリンダライナ11bの上部開口を覆うシリンダヘッド11cと、シリンダライナ11b内に往復動可能に設けられたピストン11dと、ピストン11dに連結されたクランク11eとを有している。シリンダライナ11bとシリンダヘッド11cとピストン11dとによって囲まれた空間が燃焼室11aとされている。したがって、燃焼室11aは、ピストン11dが図中上側に移動することで、高圧状態に圧縮されるようになっている。また、この燃焼室11aで液体アンモニアを燃焼させてピストン11dを往復動させることで、クランク11eを回転運動させる駆動力が伝達されるようになっている。 The cylinder 11 includes a cylindrical cylinder liner 11b, a cylinder head 11c that covers an upper opening of the cylinder liner 11b, a piston 11d that is reciprocally movable in the cylinder liner 11b, and a crank 11e that is coupled to the piston 11d. have. A space surrounded by the cylinder liner 11b, the cylinder head 11c, and the piston 11d is a combustion chamber 11a. Therefore, the combustion chamber 11a is compressed to a high pressure state by moving the piston 11d upward in the drawing. Further, the driving force for rotating the crank 11e is transmitted by burning the liquid ammonia in the combustion chamber 11a and reciprocating the piston 11d.
 点火装置14は、例えば点火プラグからなり、シリンダヘッド11cの略中央部において先端部を燃焼室11a内に配置させた状態で固定されている。点火装置14の先端部には、燃焼室11a内の上側中央部で火花を発生させる点火部14aが設けられている。 The ignition device 14 is made of, for example, an ignition plug, and is fixed in a state where a tip portion is disposed in the combustion chamber 11a at a substantially central portion of the cylinder head 11c. At the tip of the ignition device 14, there is provided an ignition part 14a that generates a spark in the upper center part in the combustion chamber 11a.
 アンモニア供給装置12は、例えばインジェクタからなり、シリンダヘッド11cにおいて先端部を燃焼室11a内に配置させた状態で固定されている。アンモニア供給装置12の先端部には、燃焼室11a内に液体アンモニアを噴射する噴射部12aが設けられている。なお、アンモニア供給装置12は、噴射部12aを燃焼室11a内に配置させた状態でシリンダヘッド11cに固定されているが、これに代えて、又はこれに加えて、噴射部12aを吸気管13a内に配置させた状態で当該吸気管13aに固定されていても良い。 The ammonia supply device 12 is composed of, for example, an injector, and is fixed in a state in which the tip portion is disposed in the combustion chamber 11a in the cylinder head 11c. An injection unit 12 a that injects liquid ammonia into the combustion chamber 11 a is provided at the tip of the ammonia supply device 12. The ammonia supply device 12 is fixed to the cylinder head 11c in a state where the injection unit 12a is disposed in the combustion chamber 11a, but instead of or in addition to this, the injection unit 12a is connected to the intake pipe 13a. You may fix to the said intake pipe 13a in the state arrange | positioned inside.
 吸気装置13は、一端部がシリンダヘッド11cに固定された吸気管13aと、吸気管13a内に設けられた吸気弁13bとを備えている。吸気弁13bは、図示しない駆動手段により開閉されるようになっており、吸気弁13bを開放することで吸気管13a内と燃焼室11aとが連通し、吸気管13aから燃焼室11a内に空気が供給されるようになっている。 The intake device 13 includes an intake pipe 13a having one end fixed to the cylinder head 11c, and an intake valve 13b provided in the intake pipe 13a. The intake valve 13b is opened and closed by a driving means (not shown). By opening the intake valve 13b, the intake pipe 13a communicates with the combustion chamber 11a, and air is introduced from the intake pipe 13a into the combustion chamber 11a. Is to be supplied.
 排気装置15は、一端部がシリンダヘッド11cに固定された排気管15aと、排気管15a内に設けられた排気弁15bとを備えている。排気弁15bは、図示しない駆動手段により開閉されるようになっており、排気弁15bを開放することで排気弁15b内と燃焼室11aとが連通し、燃焼室11a内の燃焼後の排気ガスが排気弁15bから排出されるようになっている。 The exhaust device 15 includes an exhaust pipe 15a having one end fixed to the cylinder head 11c and an exhaust valve 15b provided in the exhaust pipe 15a. The exhaust valve 15b is opened and closed by a driving means (not shown). By opening the exhaust valve 15b, the exhaust valve 15b communicates with the combustion chamber 11a, and the exhaust gas after combustion in the combustion chamber 11a. Is discharged from the exhaust valve 15b.
 水素ガス生成装置3は、従来の水素ガス製造方法(例えば、特開2010-265138号公報)を用いたものであり、液体アンモニアと金属水素化物とを反応させて高圧の水素ガスを発生させるものである。水素ガス生成装置3は、反応容器3aと、この反応容器3aに粉末状の金属水素化物を補給する補給装置3bとを有している。 The hydrogen gas generator 3 uses a conventional hydrogen gas production method (for example, Japanese Patent Application Laid-Open No. 2010-265138), and generates high-pressure hydrogen gas by reacting liquid ammonia with a metal hydride. It is. The hydrogen gas generator 3 includes a reaction vessel 3a and a replenisher 3b that replenishes the reaction vessel 3a with powdered metal hydride.
 反応容器3aは、耐圧性能の高い容器からなり、その内部には補給装置3bから多量の金属水素化物が充填される。また、反応容器3aの内部には、タンク2内の液体アンモニアが導入される。すなわち、水素ガス生成装置3は、エンジン本体1の燃焼室11a内に供給される液体アンモニアを、反応容器3aの導入する液体アンモニアとして利用している。 The reaction vessel 3a is composed of a vessel with high pressure resistance, and a large amount of metal hydride is filled from the replenishing device 3b. Further, liquid ammonia in the tank 2 is introduced into the reaction vessel 3a. That is, the hydrogen gas generation device 3 uses liquid ammonia supplied into the combustion chamber 11a of the engine body 1 as liquid ammonia introduced into the reaction vessel 3a.
 反応容器3a内では、多量の金属水素化物(MH)と液体アンモニア(NH3)とが反応することで、下記化学式に示すように、高圧の水素ガスが発生する。
 MH(固体)+NH3(液体)→MNH2(固体)+H2(気体)
 ここで、Mは、一価の軽金属元素である。
In the reaction vessel 3a, a large amount of metal hydride (MH) reacts with liquid ammonia (NH 3 ) to generate high-pressure hydrogen gas as shown in the following chemical formula.
MH (solid) + NH 3 (liquid) → MNH 2 (solid) + H 2 (gas)
Here, M is a monovalent light metal element.
 上記反応は、アンモニアが液体状態を維持する温度領域、つまりアンモニアの融点以上かつ沸点以下の温度領域で行われる。なお、常圧におけるアンモニアの融点は-77.7℃、沸点は-33.4℃であるので、常圧下における前記温度領域は、-77.7℃~-33.4℃となる。しかし、上記反応に用いる液体アンモニアは、エンジン本体1の燃焼室11aにも導入されるため、常圧下の温度領域ではアンモニアの温度が低過ぎて、エンジンの燃焼効率が低下することになる。そこで、本実施形態では、アンモニアが液体状態を維持する温度領域が常温付近となるように、反応容器3a内の圧力を高めている。具体的には、アンモニアは、8atmの圧力件下では常温付近である20℃で液化するので、反応容器3a内の圧力は、8atm以上に設定されている。 The above reaction is performed in a temperature range where ammonia maintains a liquid state, that is, a temperature range above the melting point and below the boiling point of ammonia. Since the melting point of ammonia at normal pressure is −77.7 ° C. and the boiling point is −33.4 ° C., the temperature range under normal pressure is −77.7 ° C. to −33.4 ° C. However, since liquid ammonia used for the above reaction is also introduced into the combustion chamber 11a of the engine body 1, the temperature of ammonia is too low in the temperature range under normal pressure, and the combustion efficiency of the engine decreases. Therefore, in the present embodiment, the pressure in the reaction vessel 3a is increased so that the temperature range in which ammonia maintains a liquid state is close to room temperature. Specifically, since ammonia liquefies at 20 ° C., which is near room temperature under a pressure of 8 atm, the pressure in the reaction vessel 3a is set to 8 atm or more.
 上記反応に用いられる金属水素化物としては、例えば、一価の軽金属元素の金属水素化物である水素化リチウム(LiH)、水素化ナトリウム(NaH)、又は水素化カリウム(KH)を好適に用いることができる。上記反応では、全ての金属水素化物が液体アンモニアと反応することで水素ガスが発生するようになっている。したがって、反応容器3a内に充填される金属水素化物の量を調節することにより、発生させる水素ガスの圧力を設定することができる。本実施形態では、発生させる水素ガスの圧力は、シリンダ11のピストン11dが圧縮上死点(TDC:Top Dead Center)に達したときの燃焼室11a内の圧力以上となるように設定されている。 As the metal hydride used in the above reaction, for example, lithium hydride (LiH), sodium hydride (NaH), or potassium hydride (KH) that is a metal hydride of a monovalent light metal element is preferably used. Can do. In the above reaction, all metal hydrides react with liquid ammonia to generate hydrogen gas. Therefore, the pressure of the hydrogen gas to be generated can be set by adjusting the amount of metal hydride charged in the reaction vessel 3a. In the present embodiment, the pressure of the generated hydrogen gas is set to be equal to or higher than the pressure in the combustion chamber 11a when the piston 11d of the cylinder 11 reaches the compression top dead center (TDC: Top Dead Center). .
 水素ガス供給装置4は、例えばインジェクタからなり、シリンダヘッド11cの略中央部において先端部を燃焼室11a内に配置させた状態で固定されている。水素ガス供給装置4の先端部には、点火部14aの近傍に配置された噴射部4aが設けられている。噴射部4aは、水素ガス生成装置3で発生した高圧の水素ガスを、点火部14aにより発生した火花に向けて噴射するようになっている。 The hydrogen gas supply device 4 is composed of, for example, an injector, and is fixed in a state where the tip end portion is disposed in the combustion chamber 11a at a substantially central portion of the cylinder head 11c. An injection unit 4 a disposed in the vicinity of the ignition unit 14 a is provided at the tip of the hydrogen gas supply device 4. The injection unit 4a is configured to inject the high-pressure hydrogen gas generated by the hydrogen gas generation device 3 toward the spark generated by the ignition unit 14a.
 以上、本実施形態のアンモニアエンジンによれば、水素ガス生成装置3により発生した高圧の水素ガスを、高圧下の燃焼室11a内に供給することができるため、燃焼室11a内の液体アンモニアは可燃性ガスである水素ガスとともに燃焼することで、液体アンモニアの燃焼効率を向上させることができる。 As described above, according to the ammonia engine of the present embodiment, the high-pressure hydrogen gas generated by the hydrogen gas generator 3 can be supplied into the combustion chamber 11a under high pressure, so that the liquid ammonia in the combustion chamber 11a is combustible. Combustion efficiency of liquid ammonia can be improved by burning together with hydrogen gas, which is a natural gas.
 水素ガス供給装置4は、点火部14aの近傍に配置された噴射部4aから当該点火部14aで発生した火花に向けて高圧の水素ガスを噴射するため、点火部14aの近傍において液体アンモニアを水素ガスとともに燃焼させることができる。これにより、水素ガスを燃焼室11aに充満させる必要がないので、液体アンモニアの燃焼に必要な水素ガスの供給量を低減することができる。 The hydrogen gas supply device 4 injects liquid ammonia in the vicinity of the ignition unit 14a in order to inject high-pressure hydrogen gas from the injection unit 4a arranged in the vicinity of the ignition unit 14a toward the spark generated in the ignition unit 14a. Can be burned with gas. Thereby, since it is not necessary to fill the combustion chamber 11a with hydrogen gas, the supply amount of hydrogen gas required for combustion of liquid ammonia can be reduced.
 また、水素ガス生成装置3において発生させる水素ガスの圧力は、シリンダ11のピストン11dが圧縮上死点に達したときの燃焼室11a内の圧力以上に設定されているため、シリンダ11のピストン11dが圧縮上死点に達するときに燃焼室11a内に水素ガスを供給することができる。これにより、ポンピングロスを効果的に低減することができ、アンモニアエンジンの熱効率を向上させることができる。 Further, since the pressure of the hydrogen gas generated in the hydrogen gas generator 3 is set to be equal to or higher than the pressure in the combustion chamber 11a when the piston 11d of the cylinder 11 reaches the compression top dead center, the piston 11d of the cylinder 11 When the compression top dead center is reached, hydrogen gas can be supplied into the combustion chamber 11a. Thereby, a pumping loss can be reduced effectively and the thermal efficiency of an ammonia engine can be improved.
 また、水素ガス生成装置3は、シリンダ11の燃焼室11a内に供給する液体アンモニアを利用して高圧の水素ガスを発生させているため、高圧の水素ガスを生成するための専用の液体アンモニアを別途用意する必要がない。これにより、エンジン全体の構成を簡素化することができる。 Further, since the hydrogen gas generator 3 generates high-pressure hydrogen gas using liquid ammonia supplied into the combustion chamber 11a of the cylinder 11, dedicated liquid ammonia for generating high-pressure hydrogen gas is used. There is no need to prepare it separately. Thereby, the structure of the whole engine can be simplified.
 上述の実施形態はすべて例示であって制限的なものではない。本発明の権利範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更は本発明の技術的範囲に含まれる。例えば、上述の実施形態における水素ガス生成装置3は、エンジン本体1の燃焼室11a内に供給される液体アンモニアを利用しているが、専用の液体アンモニアを用いるようにしても良い。また、エンジン本体1のアンモニア供給装置12は、シリンダ11に設けられているが、吸気管13aに設けられていても良い。また、上記実施形態のアンモニアエンジンは、液体アンモニアを燃料としているが、気体アンモニアを燃料としても良い。 The above-described embodiments are all illustrative and not restrictive. The scope of right of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are included in the technical scope of the present invention. For example, although the hydrogen gas generation device 3 in the above-described embodiment uses liquid ammonia supplied into the combustion chamber 11a of the engine body 1, dedicated liquid ammonia may be used. Moreover, although the ammonia supply device 12 of the engine body 1 is provided in the cylinder 11, it may be provided in the intake pipe 13a. Moreover, although the ammonia engine of the said embodiment uses liquid ammonia as a fuel, it is good also as gaseous ammonia as a fuel.
 3 水素ガス生成装置
 4 水素ガス供給装置
 4a 噴射部
 11 シリンダ
 11a 燃焼室
 11d ピストン
 14a 点火部
DESCRIPTION OF SYMBOLS 3 Hydrogen gas production | generation apparatus 4 Hydrogen gas supply apparatus 4a Injection part 11 Cylinder 11a Combustion chamber 11d Piston 14a Ignition part

Claims (4)

  1.  シリンダの燃焼室内にアンモニアが燃料として供給されるアンモニアエンジンであって、
     アンモニアと金属水素化物とを反応させて高圧の水素ガスを発生させる水素ガス生成装置と、
     前記水素ガス生成装置により発生した前記高圧の水素ガスを前記燃焼室内に供給する水素ガス供給装置と、
     を備えていることを特徴とするアンモニアエンジン。
    An ammonia engine in which ammonia is supplied as fuel into the combustion chamber of a cylinder,
    A hydrogen gas generator that reacts ammonia with a metal hydride to generate high-pressure hydrogen gas; and
    A hydrogen gas supply device for supplying the high-pressure hydrogen gas generated by the hydrogen gas generation device into the combustion chamber;
    An ammonia engine characterized by comprising:
  2.  前記水素ガス供給装置は、前記燃焼室内で火花を発生させる点火部の近傍に配置されるとともに、当該点火部により発生した火花に向けて前記高圧の水素ガスを噴射する噴射部を有している請求項1に記載のアンモニアエンジン。 The hydrogen gas supply device is disposed in the vicinity of an ignition unit that generates a spark in the combustion chamber, and has an injection unit that injects the high-pressure hydrogen gas toward the spark generated by the ignition unit. The ammonia engine according to claim 1.
  3.  前記水素ガス生成装置で発生させる水素ガスの圧力は、前記シリンダのピストンが圧縮上死点に達したときの前記燃焼室内の圧力以上に設定されている請求項1又は2に記載のアンモニアエンジン。 The ammonia engine according to claim 1 or 2, wherein the pressure of the hydrogen gas generated by the hydrogen gas generation device is set to be equal to or higher than the pressure in the combustion chamber when the piston of the cylinder reaches compression top dead center.
  4.  前記水素ガス生成装置は、前記燃焼室内に供給するアンモニアを利用して高圧の水素ガスを発生させる請求項1~3のいずれか一項に記載のアンモニアエンジン。 The ammonia engine according to any one of claims 1 to 3, wherein the hydrogen gas generation device generates high-pressure hydrogen gas using ammonia supplied into the combustion chamber.
PCT/JP2015/050363 2014-01-16 2015-01-08 Ammonia engine WO2015107972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014006107A JP6362334B2 (en) 2014-01-16 2014-01-16 Ammonia engine
JP2014-006107 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015107972A1 true WO2015107972A1 (en) 2015-07-23

Family

ID=53542862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050363 WO2015107972A1 (en) 2014-01-16 2015-01-08 Ammonia engine

Country Status (2)

Country Link
JP (1) JP6362334B2 (en)
WO (1) WO2015107972A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047199A1 (en) * 2021-02-22 2022-08-24 Liebherr Machines Bulle SA Fuel supply device for supplying a fuel and a combustion engine
NL2027456B1 (en) * 2021-01-29 2022-09-02 Univ Delft Tech NH3-H2 internal combustion engine
WO2022189484A1 (en) * 2021-03-10 2022-09-15 Topsoe A/S Method for the preparation of a gaseous fuel
IT202200009524A1 (en) * 2022-05-09 2023-11-09 Fca Italy Spa HYDROGEN POWERED INTERNAL COMBUSTION ENGINE
US20240018915A1 (en) * 2022-07-15 2024-01-18 DONGFENG HONDA ENGINE Co.,Ltd. Ammonia-hydrogen fusion fuel diffusion combustion control system based on reactivity regulation
WO2024057037A1 (en) * 2022-09-15 2024-03-21 Cosworth Group Holdings Limited Internal combustion engine with a plurality of gaseous fuel injectors
US12006862B2 (en) 2021-02-22 2024-06-11 Liebherr Machines Bulle Sa Fuel supply device for supplying a fuel and internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230979A1 (en) * 2019-05-14 2020-11-19 대우조선해양 주식회사 Fuel supply system for environment-friendly ship
JP7079890B1 (en) 2021-12-13 2022-06-02 株式会社Hit研究所 How to run the engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (en) * 1991-06-25 1993-12-14 Koji Korematsu Ammonia combustion engine
JP2008215092A (en) * 2007-02-28 2008-09-18 Hitachi Ltd Engine system
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
JP2009221086A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Hydrogen generator, ammonia burning internal combustion engine, and fuel cell
JP2010265138A (en) * 2009-05-14 2010-11-25 Hiroshima Univ Hydrogen producing method
JP2012117495A (en) * 2010-12-03 2012-06-21 Toyota Motor Corp Direct injection gas engine
JP2013194507A (en) * 2012-03-15 2013-09-30 Denso Corp Fuel supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239123A (en) * 2003-02-05 2004-08-26 Toyota Motor Corp Combustion chamber structure of bi-fuel engine
US8904994B2 (en) * 2010-04-26 2014-12-09 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (en) * 1991-06-25 1993-12-14 Koji Korematsu Ammonia combustion engine
JP2008215092A (en) * 2007-02-28 2008-09-18 Hitachi Ltd Engine system
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
JP2009221086A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Hydrogen generator, ammonia burning internal combustion engine, and fuel cell
JP2010265138A (en) * 2009-05-14 2010-11-25 Hiroshima Univ Hydrogen producing method
JP2012117495A (en) * 2010-12-03 2012-06-21 Toyota Motor Corp Direct injection gas engine
JP2013194507A (en) * 2012-03-15 2013-09-30 Denso Corp Fuel supply system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2027456B1 (en) * 2021-01-29 2022-09-02 Univ Delft Tech NH3-H2 internal combustion engine
EP4047199A1 (en) * 2021-02-22 2022-08-24 Liebherr Machines Bulle SA Fuel supply device for supplying a fuel and a combustion engine
US12006862B2 (en) 2021-02-22 2024-06-11 Liebherr Machines Bulle Sa Fuel supply device for supplying a fuel and internal combustion engine
WO2022189484A1 (en) * 2021-03-10 2022-09-15 Topsoe A/S Method for the preparation of a gaseous fuel
IT202200009524A1 (en) * 2022-05-09 2023-11-09 Fca Italy Spa HYDROGEN POWERED INTERNAL COMBUSTION ENGINE
WO2023218308A1 (en) * 2022-05-09 2023-11-16 Stellantis Europe S.P.A. A hydrogen spark ignition internal combustion engine
US20240018915A1 (en) * 2022-07-15 2024-01-18 DONGFENG HONDA ENGINE Co.,Ltd. Ammonia-hydrogen fusion fuel diffusion combustion control system based on reactivity regulation
WO2024057037A1 (en) * 2022-09-15 2024-03-21 Cosworth Group Holdings Limited Internal combustion engine with a plurality of gaseous fuel injectors

Also Published As

Publication number Publication date
JP6362334B2 (en) 2018-07-25
JP2015135067A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP6362334B2 (en) Ammonia engine
US11149662B2 (en) Zero emission propulsion systems and generator sets using ammonia as fuel
JP4739906B2 (en) Gas engine with improved fuel ignitability
JP5833326B2 (en) Injection device
KR102227241B1 (en) Internal combustion engine using a water-based mixture as fuel and method for operating the same
US9404412B2 (en) Two-stroke engine and four-stroke engine
EA200701538A1 (en) RETURN AND RECIRCULATION OF HEAT ENERGY AND ITS NEW APPLICATIONS
JP2013144984A (en) Cylinder device for internal combustion engine
FR3060222B1 (en) ELECTRODE-NAVETTE IGNITION CANDLE
WO2011125976A1 (en) Heat engine and power generation system using the heat engine
US9739193B2 (en) Ignition system for low grade synthesis gas at high compression
US7383792B1 (en) Hydrogen gas injector plug
JP2008240731A (en) Operating method for turbogroup
JP2017025840A (en) Combustion system
JP2010242739A (en) Ignition system for gas engine, gas engine having the ignition system and method for driving the gas engine
JP2018035682A (en) engine
US7587997B2 (en) Hydrogen gas injector plug for diesel engines
JP5995748B2 (en) Sub-chamber type gas engine and operation control method thereof
JP2013234596A (en) Two cycle divided chamber-type gas engine
JP2005090381A (en) Pilot oil ignition gas engine
RU2280179C1 (en) Two-stroke internal combustion engine
RU2285812C1 (en) Four-stroke internal combustion engine
JP2008057424A (en) Two stroke engine exclusively using hydrogen gas
JP6434863B2 (en) Internal combustion engine
CN117823271A (en) Methanol engine and cold start control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737050

Country of ref document: EP

Kind code of ref document: A1