WO2015107633A1 - Protective element and battery module - Google Patents

Protective element and battery module Download PDF

Info

Publication number
WO2015107633A1
WO2015107633A1 PCT/JP2014/050525 JP2014050525W WO2015107633A1 WO 2015107633 A1 WO2015107633 A1 WO 2015107633A1 JP 2014050525 W JP2014050525 W JP 2014050525W WO 2015107633 A1 WO2015107633 A1 WO 2015107633A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
heating
insulating substrate
extraction electrode
battery
Prior art date
Application number
PCT/JP2014/050525
Other languages
French (fr)
Japanese (ja)
Inventor
裕治 古内
貴史 藤畑
響子 新田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to PCT/JP2014/050525 priority Critical patent/WO2015107633A1/en
Publication of WO2015107633A1 publication Critical patent/WO2015107633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0283Structural association with a semiconductor device

Definitions

  • the present invention relates to a protection element and a battery module that stop charging / discharging of a battery connected on a current path by fusing the current path and suppress thermal runaway of the battery.
  • Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
  • a soluble conductor is connected across the first and second electrodes on the current path as described in Patent Document 1.
  • Some of the current paths form a part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element.
  • the molten liquid soluble conductor is collected on the first and second electrodes, thereby interrupting the current path.
  • the protective element using the soluble conductor described above it is preferable to increase the distance between the first and second electrodes in order to improve the insulation performance when the current path is interrupted.
  • further reduction in size and thickness is required as a protective element built in the battery pack, and it is difficult to increase the distance between the first and second electrodes.
  • an object of the present invention is to provide a protective element capable of improving the rated capacity of the soluble conductor and enabling the prompt melting of the soluble conductor, and a battery module incorporating the protective element.
  • a protection element according to the present invention is laminated on an insulating substrate, a heating resistor formed on the insulating substrate, and at least the heating resistor so as to cover the heating substrate.
  • the insulating member, the first and second electrodes stacked on the insulating substrate on which the insulating member is stacked, and the heating member are stacked on the insulating member so as to overlap the first and second electrodes.
  • a heating element extraction electrode electrically connected to the heating resistor on a current path between the two electrodes, and a laminate from the heating element extraction electrode to the first and second electrodes.
  • the central part is the heating element extraction electrode and the first And those which are formed thicker than the fusion portion between the second electrode.
  • the battery module according to the present invention includes a battery composed of one or more chargeable / dischargeable battery cells, a charge / discharge control circuit that is connected in series with the battery and controls charge / discharge of the battery, the battery, and the battery.
  • a protection element connected on a charge / discharge current path between the charge / discharge control circuit, a detection circuit for detecting a voltage value of each battery cell of the battery, and a current control element for controlling a current flowing through the protection element;
  • the protective element includes an insulating substrate, a heating resistor stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating resistor, and the insulating member stacked
  • the first and second electrodes stacked on the insulating substrate are stacked on the insulating member so as to overlap the heating resistor, and a current flow between the first and second electrodes is stacked.
  • the current control element is formed thicker than the fusing portion between the electrode and the first and second electrodes, and the voltage value of each battery cell detected by the detection circuit is out of a predetermined range. Control so that a current flows through the heating resistor.
  • the fusing characteristics can be maintained satisfactorily while improving the rating by lowering the resistance, improving the rating and fusing characteristics. Both maintenance can be achieved.
  • FIG. 1A is a cross-sectional view showing a protective element to which the present invention is applied
  • FIG. 1B is a plan view showing a cover member and a flux removed.
  • FIG. 2 is a cross-sectional view for explaining a fusing portion of the soluble conductor.
  • FIG. 3 is a cross-sectional view showing another protective element to which the present invention is applied.
  • FIG. 4 is a cross-sectional view showing another protective element to which the present invention is applied.
  • FIG. 5 is a cross-sectional view showing another protective element to which the present invention is applied.
  • FIG. 6 is a circuit diagram showing the battery module.
  • FIG. 7 is a diagram illustrating a circuit configuration of the protection element.
  • a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A 1) and 12 (A 2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the electrodes 12 (A 1) and 12 (A 2) And a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16.
  • the insulating substrate 11 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 11 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature when the fuse is blown.
  • the heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • the insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15.
  • an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
  • One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1).
  • the other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
  • the fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14.
  • solder containing Pb as a main component or Pb-free solder containing Sn as a main component can be suitably used.
  • the soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
  • a soluble conductor can be used even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts. 13 does not lead to fusing.
  • a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique. .
  • the fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
  • the protective element 10 may apply the flux 17 on the soluble conductor 13 in order to prevent oxidation of the low melting point metal layer 13b as the outer layer.
  • the protective element 10 has a cover member 19 placed on the insulating substrate 11 to protect the inside.
  • the soluble conductor 13 to which the present invention is applied has a substantially plate shape, and is provided between the first and second electrodes 12 (A1) and 12 (A2) via a heating element extraction electrode 16. Connected over.
  • the fusible conductor 13 has a central portion 13a that overlaps the heating element extraction electrode 16 and a fusing portion 13b between the heating element extraction electrode 16 and the first and second electrodes 12 (A1) and 12 (A2). It is formed thicker than.
  • the center part 13a of the soluble conductor 13 is overlapped with the heating element extraction electrode 16 and is connected across the first and second electrodes 12 (A1) and 12 (A2).
  • the middle part in the longitudinal direction.
  • the fusible conductor 13 is connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2), and is melted by self-heating (Joule heat) due to overcurrent or the heat of the heating resistor 14. Then, the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are fused. Thereby, the protection element 13 interrupts the current path.
  • the fusing part 13b of the fusible conductor 13 refers to a fusing point in the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Specifically, it means between the heating element extraction electrode 16 and the electrode 12 (A1) and between the heating element extraction electrode 16 and the electrode 12 (A2).
  • the fusible conductor 13 By forming the central portion 13a to be thicker than the fusing portion 13b, the fusible conductor 13 can be reduced in resistance and the rating of the protective element 10 can be increased. Further, the fusible conductor 13 is formed so that the fusing part 13b is thin as before, so that the fusing characteristics between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be maintained well. it can.
  • the fusible conductor 13 also has both end portions 13c overlapping the first and second electrodes 12 (A1) and 12 (A2) thicker than the fusing portion 13b. By forming both end portions 13c thick, the fusible conductor 13 is further reduced in resistance, and the rating of the protection element 10 can be increased. Also in this case, the fusible conductor 13 has the fusing part 13b formed as thin as before, so that the fusing characteristics between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are good. Can be maintained.
  • the soluble conductor 13 is formed thick by the center part 13a and the both ends 13c projecting upward covered with the cover member 19.
  • the soluble conductor 13 can hold
  • the fusible conductor 13 is provided with a flux 17 on the upper surface facing the cover member 19 to prevent oxidation of the fusible conductor 13 and to quickly wet and spread the molten conductor during heating.
  • the flux 17 is desirably held at the central portion 13a between the fusing portions 13b in order to cut the soluble conductor 13 at both fusing portions 13b.
  • the soluble conductor 13 can hold
  • the fusible conductor 13 can be formed in a cross-sectional triangular shape, a cross-sectional trapezoidal shape, a columnar shape, a hollow cylindrical shape, or the like, as long as the central portion 13a protrudes upward from the fusing portion. .
  • the fusible conductor 13 may have the central portion 13 a and both end portions 13 c projected to the lower surface side opposite to the upper surface facing the cover member 19. In this case, the effect of holding the flux 17 by the central portion 13a cannot be expected, but the resistance can be reduced by forming it thick. Moreover, the soluble conductor 13 may protrude the center part 13a and both ends 13c on both the upper surface facing the cover member 19 and the lower surface on the opposite side.
  • Such a soluble conductor 13 can be manufactured by, for example, pressing or cutting a plate-shaped low melting point metal into the above-described predetermined shape.
  • the soluble conductor 13 can be manufactured by casting a plate-like low melting point metal into a predetermined shape or using other known manufacturing methods.
  • the soluble conductor 13 may be formed thick by laminating a conductive material 40 on the central portion 13a and both end portions 13c.
  • the conductive material 40 is formed by, for example, plating or laminating metal foil.
  • the number of conductive materials 40 is not limited, but when a material that is difficult to oxidize, such as gold plating, is laminated, it is possible to prevent the soluble conductor 13 from deteriorating due to the aging of the protective element 10 and to improve the reliability. it can.
  • the conductive material 40 may use a metal having a melting point lower than that of the soluble conductor 13.
  • the fusible conductor 13 is blown using the erosion action of the low melting point metal at the time of fusing, and the current path can be cut off more quickly.
  • the fusible conductor 13 has a central portion 13 a or both end portions 13 c, as a conductive material 40, a metal paste such as a silver paste or a gold paste, a solder paste, or the like over one or more layers. By applying, it may be formed thick. According to this manufacturing method, it is possible to increase the thickness by simply applying a metal paste or the like on the soluble conductor 13, and the soluble conductor 13 can be manufactured by a simple process. At this time, a metal having a melting point lower than that of the soluble conductor 13 may be used as the conductive material 40.
  • the soluble conductor 13 may have a void 41 formed inside a thick central portion 13 a and both end portions 13 c.
  • the solder paste is applied on the first and second electrodes 12 (A1) and 12 (A2) of the insulating substrate 11, the organic components in the paste are vaporized at a high temperature such as a reflow process.
  • a void 41 is formed between the soluble conductor 13 and the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2).
  • the soluble conductor 13 is easily deformed at a high temperature, and when the void 41 is formed, the portion where the void 41 is formed bulges upward.
  • the central portion 13a protrudes toward the cover member 19 so that the flux 17 can be held on the central portion 13a.
  • the soluble conductor 13 does not require the special process which forms the center part 13a thickly, and can form the center part 13a thickly by the conventional process.
  • the protection element 10 described above is used in a circuit in a battery pack 20 of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell.
  • a detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the current control element 27.
  • One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2.
  • the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generated by the heating resistor 14.
  • the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
  • the protection element 10 using the soluble conductor 13 to which the present invention is applied and the protection element using the conventional soluble conductor are prepared, and the resistance value and flux retention of each soluble conductor.
  • the heating fusing time was measured and evaluated.
  • a 6 mm ⁇ 4 mm alumina ceramic substrate (thickness 0.5 mm) was used as an insulating substrate, and after printing an Ag—Pd paste on the surface, firing was performed at 850 ° C. for 30 minutes. First and second electrodes, a pair of heating element electrodes, and a heating element extraction electrode were formed. A ruthenium oxide resistance paste was printed between the first and second electrodes and baked at 850 ° C. for 30 minutes to form a heating resistor. The pattern resistance value of the heating resistor is 1 ⁇ .
  • the thickness of the central part on the heating element extraction electrode and the both end parts on the first and second electrodes is 0.15 mm by pressing, and the first electrode and the heating element extraction are performed.
  • the thickness of the fusing part between the electrodes and between the second electrode and the heating element extraction electrode was formed to 0.10 mm.
  • the fusible conductor according to Example 2 is the same as Example 1 except that the thickness of the central part and both end parts is 0.13 mm.
  • the fusible conductor according to Example 3 is the same as Example 1 except that the thickness of the center and both ends is 0.12 mm.
  • the fusible conductor according to Example 4 is the same as Example 1 except that the thickness of the central portion and both end portions is 0.11 mm.
  • the thickness was 0.15 mm, and the fusing part was 0.10 mm.
  • the fusible conductor according to Example 7 is placed between the first and second electrodes, and then heated in an oven at 220 ° C. for 2 minutes, so that the diameter is increased in the center and both ends.
  • a 0.05 mm void was generated to a thickness of 0.15 mm, and the melted portion was set to 0.10 mm.
  • the fusible conductor according to Comparative Example 1 was a flat structure having a central portion, both end portions and a fusing portion of 0.10 mm.
  • the fusible conductor according to Comparative Example 2 has a flat structure with a center portion, both end portions and a fusing portion of 0.15 mm.
  • the resistance value, flux retention, and heat fusing time of the soluble conductors according to the above examples and comparative examples were measured and evaluated.
  • the flux retention of the fusible conductor 100 protection elements according to the examples and comparative examples are manufactured, respectively, and the cover member is removed and the flux remains in the vicinity of the central portion, or one or the other of the fusible conductors , Or both.
  • the fusing time of the fusible conductor according to the example and the comparative example is a time from when the heating resistor having a rating of 3 W is energized to generate heat until the fusing part is blown.
  • the fusible conductor according to Comparative Example 1 is formed with the same thickness (0.10 mm) over the central portion, both end portions, and the melted portion, and therefore has a high resistance value of 20 m ⁇ , and is rated as a protective element It is difficult to improve. Moreover, since the thick central part is not provided, the flux applied on the soluble conductor was flowing in 10% of the protective elements according to Comparative Example 1.
  • the fusible conductor according to Comparative Example 2 is formed with the same thickness (0.15 mm) across the center, both ends, and the fusing portion, the resistance value is as low as 10 m ⁇ , but conversely the heating fusing time It became 40 seconds long.
  • Comparative Example 2 since the thick central portion was not provided, 5% of the protective elements had flux applied on the soluble conductor.
  • the fusible conductor can achieve both the improvement of the rating due to the low resistance and the fusing characteristics by forming at least the central part thick.
  • Example 4 As shown in Examples 1 to 4, when the thickness at the center and both ends is reduced, the resistance value of the fusible conductor increases, but the fusing time is shortened. Further, as shown in Example 4, it can be seen that flux flow can be suppressed as compared with Comparative Example 1 if the central part is formed with a thickness of 0.01 mm from the fusing part.
  • Example 5 From Example 5, it can be seen that the heat fusing time can be shortened as compared to Example 1 by laminating a metal foil made of a metal having a melting point lower than that of the soluble conductor. This is because the low melting point metal erodes the soluble conductor.
  • Example 6 the metal paste slightly flowed to the fusing part side, it was difficult to maintain the shape, and the resistance value slightly increased.
  • the heat fusing time can be shortened by using a metal paste having a melting point lower than that of the soluble conductor as the metal paste.
  • Example 7 since a void was inherent, a reduction in resistance could not be realized, but the flux flow could be suppressed and the heat fusing time was short.

Abstract

Provided is a protective element for improving the rated capacity of a soluble conductor, and making quick fusing of the soluble conductor possible. The protective element is equipped with an insulating substrate (11), a heating resistor (14) formed on the insulating substrate (11), an insulating member (15) for covering the heating resistor (14), first and second electrodes (12) layered on the insulating substrate (11), a heating-element extraction electrode (16) electrically connected to the heating resistor (14) on the current path between the first and second electrodes (12), and layered on the insulating member (15) so as to overlap the heating resistor (14), a soluble conductor (13) for fusing the current path between the first and second electrodes using heat, and layered from the heating-element extraction electrode (16) to the first and second electrodes (12), and a cover member for covering the insulating substrate (11). Furthermore, the soluble conductor (13) is formed in a manner such that a center section (13a) thereof overlapping the heating-element extraction electrode (16) is thicker than a fusing section (13b) between the heating-element extraction electrode (16) and the first and second electrodes.

Description

保護素子、バッテリモジュールProtection element, battery module
 本発明は、電流経路を溶断することにより、電流経路上に接続されたバッテリへの充放電を停止し、バッテリの熱暴走を抑制する保護素子及びバッテリモジュールに関する。 The present invention relates to a protection element and a battery module that stop charging / discharging of a battery connected on a current path by fusing the current path and suppress thermal runaway of the battery.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the rechargeable batteries that can be charged and used repeatedly are processed into battery packs and provided to users. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, several protection circuits such as overcharge protection and overdischarge protection are built in the battery pack, It has a function of shutting off the output of the battery pack in a predetermined case.
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。 Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
 このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1及び第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を第1及び第2の電極上に集めることにより電流経路を遮断する。 As a protection element of a protection circuit for such a lithium ion secondary battery, a soluble conductor is connected across the first and second electrodes on the current path as described in Patent Document 1. Some of the current paths form a part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element. In such a protective element, the molten liquid soluble conductor is collected on the first and second electrodes, thereby interrupting the current path.
特開2010-003665号公報JP 2010-003665 A 特開2004-265617号公報JP 2004-265617 A
 上述した可溶導体を用いた保護素子においては、電流経路の遮断時の絶縁性能を向上させるためには、第1及び第2の電極間の距離を離すことが好ましい。しかし、電子機器の小型化、薄型化に伴い、バッテリパックに内蔵される保護素子としても更なる小型化、薄型化が求められ、第1及び第2の電極間の距離を離すことが難しい。また、二次電池の高容量化、高出力化に伴い、保護素子の定格についてより大きなものが求められている。 In the protective element using the soluble conductor described above, it is preferable to increase the distance between the first and second electrodes in order to improve the insulation performance when the current path is interrupted. However, along with the downsizing and thinning of electronic devices, further reduction in size and thickness is required as a protective element built in the battery pack, and it is difficult to increase the distance between the first and second electrodes. In addition, with the increase in capacity and output of secondary batteries, there is a demand for higher protection element ratings.
 ここで、保護素子の定格を上げるためには、可溶導体の導体抵抗の低減と、電流経路の遮断時における絶縁性能とのバランスを取る必要がある。すなわち、電流をより多く流すためには、導体抵抗を下げる必要があり、よって可溶導体の断面積を大きくする必要がある。しかし、可溶導体の断面積が大きくなるほど、溶融させる可溶導体の量が増大し、その溶断に要する時間が長くなり、安全性を損なうおそれがある。 Here, in order to raise the rating of the protective element, it is necessary to balance the reduction of the conductor resistance of the fusible conductor and the insulation performance when the current path is interrupted. That is, in order to flow a larger amount of current, it is necessary to reduce the conductor resistance, and thus it is necessary to increase the cross-sectional area of the soluble conductor. However, as the cross-sectional area of the fusible conductor increases, the amount of the fusible conductor to be melted increases, and the time required for fusing increases, which may impair safety.
 そこで、本発明は、可溶導体の定格容量を向上させるとともに、可溶導体の速やかな溶断を可能とする保護素子、及びこの保護素子が組み込まれたバッテリモジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a protective element capable of improving the rated capacity of the soluble conductor and enabling the prompt melting of the soluble conductor, and a battery module incorporating the protective element.
 上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、上記絶縁基板に形成された発熱抵抗体と、少なくとも上記発熱抵抗体を覆うように、上記絶縁基板に積層された絶縁部材と、上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、上記発熱抵抗体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、上記絶縁基板上を覆うカバー部材とを備え、上記可溶導体は、少なくとも上記発熱体引出電極と重畳する中央部が、上記発熱体引出電極と上記第1及び第2の電極との間の溶断部よりも肉厚に形成されているものである。 In order to solve the above-described problems, a protection element according to the present invention is laminated on an insulating substrate, a heating resistor formed on the insulating substrate, and at least the heating resistor so as to cover the heating substrate. The insulating member, the first and second electrodes stacked on the insulating substrate on which the insulating member is stacked, and the heating member are stacked on the insulating member so as to overlap the first and second electrodes. A heating element extraction electrode electrically connected to the heating resistor on a current path between the two electrodes, and a laminate from the heating element extraction electrode to the first and second electrodes. A soluble conductor that melts a current path between the first electrode and the second electrode, and a cover member that covers the insulating substrate; and the soluble conductor overlaps at least the heating element extraction electrode. The central part is the heating element extraction electrode and the first And those which are formed thicker than the fusion portion between the second electrode.
 また、本発明に係るバッテリモジュールは、1以上の充放電可能なバッテリセルからなるバッテリと、上記バッテリと直列に接続され、該バッテリの充放電を制御する充放電制御回路と、上記バッテリと上記充放電制御回路との間の充放電電流経路上に接続された保護素子と、上記バッテリの各バッテリセルの電圧値を検出する検出回路と、上記保護素子に流れる電流を制御する電流制御素子とを備え、上記保護素子は、絶縁基板と、上記絶縁基板に積層された発熱抵抗体と、少なくとも上記発熱抵抗体を覆うように、上記絶縁基板に積層された絶縁部材と、上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、上記発熱抵抗体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、上記絶縁基板上を覆うカバー部材とを備え、上記可溶導体は、少なくとも上記発熱体引出電極と重畳する中央部が、上記発熱体引出電極と上記第1及び第2の電極との間の溶断部よりも肉厚に形成され、上記電流制御素子は、上記検出回路により検出される各バッテリセルの電圧値が所定の範囲外となったときに上記発熱抵抗体に電流が流れるように制御するものである。 The battery module according to the present invention includes a battery composed of one or more chargeable / dischargeable battery cells, a charge / discharge control circuit that is connected in series with the battery and controls charge / discharge of the battery, the battery, and the battery. A protection element connected on a charge / discharge current path between the charge / discharge control circuit, a detection circuit for detecting a voltage value of each battery cell of the battery, and a current control element for controlling a current flowing through the protection element; The protective element includes an insulating substrate, a heating resistor stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating resistor, and the insulating member stacked The first and second electrodes stacked on the insulating substrate are stacked on the insulating member so as to overlap the heating resistor, and a current flow between the first and second electrodes is stacked. A heating element extraction electrode electrically connected to the heating resistor, and the first and second electrodes are laminated from the heating element extraction electrode to the first and second electrodes; A fusible conductor that melts a current path between the electrodes and a cover member that covers the insulating substrate, wherein the fusible conductor has at least a central portion that overlaps the heating element extraction electrode, the heating element extraction; The current control element is formed thicker than the fusing portion between the electrode and the first and second electrodes, and the voltage value of each battery cell detected by the detection circuit is out of a predetermined range. Control so that a current flows through the heating resistor.
 本発明によれば、可溶導体の少なくとも中央部を肉厚に形成することにより、低抵抗化によって定格を向上させつつ、溶断特性を良好に維持することができ、定格の向上と溶断特性の維持を両立させることができる。 According to the present invention, by forming at least the central portion of the fusible conductor to be thick, the fusing characteristics can be maintained satisfactorily while improving the rating by lowering the resistance, improving the rating and fusing characteristics. Both maintenance can be achieved.
図1Aは、本発明が適用された保護素子を示す断面図、図1Bは、カバー部材及びフラックスを除いて示す平面図である。FIG. 1A is a cross-sectional view showing a protective element to which the present invention is applied, and FIG. 1B is a plan view showing a cover member and a flux removed. 図2は、可溶導体の溶断部を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a fusing portion of the soluble conductor. 図3は、本発明が適用された他の保護素子を示す断面図である。FIG. 3 is a cross-sectional view showing another protective element to which the present invention is applied. 図4は、本発明が適用された他の保護素子を示す断面図である。FIG. 4 is a cross-sectional view showing another protective element to which the present invention is applied. 図5は、本発明が適用された他の保護素子を示す断面図である。FIG. 5 is a cross-sectional view showing another protective element to which the present invention is applied. 図6は、バッテリモジュールを示す回路図である。FIG. 6 is a circuit diagram showing the battery module. 図7は、保護素子の回路構成を示す図である。FIG. 7 is a diagram illustrating a circuit configuration of the protection element.
 以下、本発明が適用された保護素子、及びこの保護素子が組み込まれたバッテリモジュールについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a protection element to which the present invention is applied and a battery module incorporating the protection element will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [保護素子の構成]
 図1に示すように、本発明が適用された保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱抵抗体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)にそれぞれ接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
[Configuration of protection element]
As shown in FIG. 1, a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A 1) and 12 (A 2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the electrodes 12 (A 1) and 12 (A 2) And a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16.
 絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板11は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 11 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, the insulating substrate 11 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature when the fuse is blown.
 発熱抵抗体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
 発熱抵抗体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱抵抗体14に対向するように発熱体引出電極16が配置される。発熱抵抗体14の熱を効率良く可溶導体に伝えるために、発熱抵抗体14と絶縁基板11の間に絶縁部材15を積層しても良い。 The insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15. In order to efficiently transfer the heat of the heating resistor 14 to the soluble conductor, an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
 発熱体引出電極16の一端は、発熱体電極18(P1)に接続される。また、発熱抵抗体14の他端は、他方の発熱体電極18(P2)に接続される。 One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1). The other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
 可溶導体13は、発熱抵抗体14の発熱により速やかに溶断される低融点金属からなり、例えばPbを主成分とするハンダや、Snを主成分とするPbフリーハンダを好適に用いることができる。また、可溶導体13は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。 The fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14. For example, solder containing Pb as a main component or Pb-free solder containing Sn as a main component can be suitably used. . The soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
 高融点金属と低融点金属とを積層することによって、保護素子10をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、可溶導体13として溶断するに至らない。かかる可溶導体13は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、可溶導体13は、外層を構成する低融点金属を用いて、発熱体引出電極16及び電極12(A1),12(A2)へ、ハンダ接続することができる。 When the protective element 10 is reflow mounted by laminating a high melting point metal and a low melting point metal, a soluble conductor can be used even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts. 13 does not lead to fusing. Such a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique. . The fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
 なお、保護素子10は、外層の低融点金属層13bの酸化防止等のために、可溶導体13上にフラックス17を塗布してもよい。また、保護素子10は、内部を保護するためにカバー部材19が絶縁基板11上に載置されている。 In addition, the protective element 10 may apply the flux 17 on the soluble conductor 13 in order to prevent oxidation of the low melting point metal layer 13b as the outer layer. The protective element 10 has a cover member 19 placed on the insulating substrate 11 to protect the inside.
 [溶断部、中央部、両端部]
 図1に示すように、本発明が適用された可溶導体13は、略板状をなし、発熱体引出電極16を介して第1及び第2の電極12(A1),12(A2)間にわたって接続される。そして、可溶導体13は、発熱体引出電極16と重畳する中央部13aが、発熱体引出電極16と第1及び第2の電極12(A1),12(A2)との間の溶断部13bよりも肉厚に形成されている。
[Fusing part, center part, both ends]
As shown in FIG. 1, the soluble conductor 13 to which the present invention is applied has a substantially plate shape, and is provided between the first and second electrodes 12 (A1) and 12 (A2) via a heating element extraction electrode 16. Connected over. The fusible conductor 13 has a central portion 13a that overlaps the heating element extraction electrode 16 and a fusing portion 13b between the heating element extraction electrode 16 and the first and second electrodes 12 (A1) and 12 (A2). It is formed thicker than.
 ここで、可溶導体13の中央部13aは、発熱体引出電極16と重畳する、第1及び第2の電極12(A1),12(A2)間に亘って接続されている可溶導体13の長手方向の中間部分をいう。 Here, the center part 13a of the soluble conductor 13 is overlapped with the heating element extraction electrode 16 and is connected across the first and second electrodes 12 (A1) and 12 (A2). The middle part in the longitudinal direction.
 また、可溶導体13は、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続され、過電流による自己発熱(ジュール熱)や、発熱抵抗体14の熱により溶融し、発熱体引出電極16と、電極12(A1),12(A2)間が溶断される。これにより、保護素子13は、電流経路を遮断する。 In addition, the fusible conductor 13 is connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2), and is melted by self-heating (Joule heat) due to overcurrent or the heat of the heating resistor 14. Then, the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are fused. Thereby, the protection element 13 interrupts the current path.
 可溶導体13の溶断部13bとは、図2に示すように、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続された可溶導体13における溶断箇所をいい、具体的には、発熱体引出電極16と電極12(A1)との間、及び発熱体引出電極16と電極12(A2)との間をいう。 As shown in FIG. 2, the fusing part 13b of the fusible conductor 13 refers to a fusing point in the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Specifically, it means between the heating element extraction electrode 16 and the electrode 12 (A1) and between the heating element extraction electrode 16 and the electrode 12 (A2).
 中央部13aが溶断部13bよりも肉厚に形成することにより、可溶導体13は、低抵抗化を図り、保護素子10の定格を上げることができる。また、可溶導体13は、溶断部13bは、従来通り薄肉に形成しているため、発熱体引出電極16及び電極12(A1),12(A2)間の溶断特性は良好に維持することができる。 By forming the central portion 13a to be thicker than the fusing portion 13b, the fusible conductor 13 can be reduced in resistance and the rating of the protective element 10 can be increased. Further, the fusible conductor 13 is formed so that the fusing part 13b is thin as before, so that the fusing characteristics between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be maintained well. it can.
 [変形例1]
 可溶導体13は、第1及び第2の電極12(A1),12(A2)と重畳する両端部13cも、溶断部13bより肉厚に形成されることが好ましい。両端部13cを肉厚に形成することにより、可溶導体13は、さらに低抵抗化が図られ、保護素子10の定格を上げることができる。また、この場合も、可溶導体13は、溶断部13bは、従来通り薄肉に形成しているため、発熱体引出電極16及び電極12(A1),12(A2)間の溶断特性は良好に維持することができる。
[Modification 1]
It is preferable that the fusible conductor 13 also has both end portions 13c overlapping the first and second electrodes 12 (A1) and 12 (A2) thicker than the fusing portion 13b. By forming both end portions 13c thick, the fusible conductor 13 is further reduced in resistance, and the rating of the protection element 10 can be increased. Also in this case, the fusible conductor 13 has the fusing part 13b formed as thin as before, so that the fusing characteristics between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are good. Can be maintained.
 [変形例2]
 また、可溶導体13は、中央部13aや両端部13cが、カバー部材19によって覆われる上方に突出することにより肉厚に形成されることが好ましい。可溶導体13は、中央部13aがカバー部材19側に突出することで、フラックス17を当該中央部13a上に保持することができる。
[Modification 2]
Moreover, it is preferable that the soluble conductor 13 is formed thick by the center part 13a and the both ends 13c projecting upward covered with the cover member 19. The soluble conductor 13 can hold | maintain the flux 17 on the said center part 13a because the center part 13a protrudes to the cover member 19 side.
 すなわち、可溶導体13は、カバー部材19と対向する上面に、可溶導体13の酸化を防止すると共に、加熱時には溶融導体を速やかに濡れ広がらせるフラックス17が設けられている。このフラックス17は、両溶断部13bにおける可溶導体13の溶断を図るため、溶断部13b間の中央部13aに保持されていることが望ましい。そして、可溶導体13は、中央部13aがカバー部材19側に突出することで、確実にフラックス17を中央部13aに保持することができる。なお、可溶導体13は、中央部13aが溶断部より上方に突出していれば、その形状を問わず、断面三角形状や、断面台形状、円柱状、中空円筒状等に形成することができる。 That is, the fusible conductor 13 is provided with a flux 17 on the upper surface facing the cover member 19 to prevent oxidation of the fusible conductor 13 and to quickly wet and spread the molten conductor during heating. The flux 17 is desirably held at the central portion 13a between the fusing portions 13b in order to cut the soluble conductor 13 at both fusing portions 13b. And the soluble conductor 13 can hold | maintain the flux 17 to the center part 13a reliably because the center part 13a protrudes in the cover member 19 side. Note that the fusible conductor 13 can be formed in a cross-sectional triangular shape, a cross-sectional trapezoidal shape, a columnar shape, a hollow cylindrical shape, or the like, as long as the central portion 13a protrudes upward from the fusing portion. .
 なお、可溶導体13は、中央部13aや両端部13cをカバー部材19と対向する上面と反対側の下面側に突出させてもよい。この場合、中央部13aによるフラックス17の保持効果は期待できないが、肉厚に形成されることによる低抵抗化を図ることはできる。また、可溶導体13は、中央部13aや両端部13cを、カバー部材19と対向する上面及び、これと反対側の下面の両方に突出させてもよい。 Note that the fusible conductor 13 may have the central portion 13 a and both end portions 13 c projected to the lower surface side opposite to the upper surface facing the cover member 19. In this case, the effect of holding the flux 17 by the central portion 13a cannot be expected, but the resistance can be reduced by forming it thick. Moreover, the soluble conductor 13 may protrude the center part 13a and both ends 13c on both the upper surface facing the cover member 19 and the lower surface on the opposite side.
 [製法1]
 このような可溶導体13は、例えば板状の低融点金属を、上述した所定形状にプレス加工や切削加工をすることにより製造することができる。また、可溶導体13は、板状の低融点金属を所定形状に鋳造すること、その他公知の製造方法を用いて製造することができる。
[Production method 1]
Such a soluble conductor 13 can be manufactured by, for example, pressing or cutting a plate-shaped low melting point metal into the above-described predetermined shape. The soluble conductor 13 can be manufactured by casting a plate-like low melting point metal into a predetermined shape or using other known manufacturing methods.
 [製法2]
 また、可溶導体13は、図3に示すように、中央部13aや両端部13cに、導電材40を積層することにより、肉厚に形成してもよい。導電材40としては、例えばメッキや、金属箔を積層すること等によって形成される。導電材40の積層数は問わないが、金メッキのような酸化しにくい材料を積層した場合、保護素子10の経年による可溶導体13の劣化を防止することができ、信頼性を向上させることができる。
[Production method 2]
Moreover, as shown in FIG. 3, the soluble conductor 13 may be formed thick by laminating a conductive material 40 on the central portion 13a and both end portions 13c. The conductive material 40 is formed by, for example, plating or laminating metal foil. The number of conductive materials 40 is not limited, but when a material that is difficult to oxidize, such as gold plating, is laminated, it is possible to prevent the soluble conductor 13 from deteriorating due to the aging of the protective element 10 and to improve the reliability. it can.
 [変形例3]
 また、導電材40は、可溶導体13よりも融点の低い金属を用いてもよい。可溶導体13は、低融点金属が塗布されることにより、溶断時にこの低融点金属による侵食作用を利用して溶断され、電流経路をより速やかに遮断することができる。
[Modification 3]
Further, the conductive material 40 may use a metal having a melting point lower than that of the soluble conductor 13. When the low melting point metal is applied to the fusible conductor 13, the fusible conductor 13 is blown using the erosion action of the low melting point metal at the time of fusing, and the current path can be cut off more quickly.
 [製法3]
 また、可溶導体13は、図4に示すように、中央部13aや両端部13cに、導電材40として、銀ペーストや金ペースト等の金属ペーストやハンダペースト等を1又は複数層に亘って塗布することにより、肉厚に形成してもよい。本製法によれば、金属ペースト等を可溶導体13上に塗布するのみで肉厚化することができ、簡易な工程で可溶導体13を製造することができる。なお、このときも、導電材40として、可溶導体13よりも融点の低い金属を用いてもよい。
[Production method 3]
Further, as shown in FIG. 4, the fusible conductor 13 has a central portion 13 a or both end portions 13 c, as a conductive material 40, a metal paste such as a silver paste or a gold paste, a solder paste, or the like over one or more layers. By applying, it may be formed thick. According to this manufacturing method, it is possible to increase the thickness by simply applying a metal paste or the like on the soluble conductor 13, and the soluble conductor 13 can be manufactured by a simple process. At this time, a metal having a melting point lower than that of the soluble conductor 13 may be used as the conductive material 40.
 [製法4]
 また、可溶導体13は、図5に示すように、肉厚に形成される中央部13aや両端部13cの内部にボイド41が形成されていてもよい。絶縁基板11の第1及び第2の電極12(A1),12(A2)上に、ソルダーペーストが塗布されている場合、リフロー工程等の高温下では、ペースト中の有機物の成分が気化して可溶導体13と発熱体引出電極16や電極12(A1)、12(A2)との間でボイド41を形成する。可溶導体13は、高温下で変形しやすくなっており、ボイド41が形成されると、その分、ボイド41の形成箇所が上方に膨出する。
[Production method 4]
Further, as shown in FIG. 5, the soluble conductor 13 may have a void 41 formed inside a thick central portion 13 a and both end portions 13 c. When the solder paste is applied on the first and second electrodes 12 (A1) and 12 (A2) of the insulating substrate 11, the organic components in the paste are vaporized at a high temperature such as a reflow process. A void 41 is formed between the soluble conductor 13 and the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). The soluble conductor 13 is easily deformed at a high temperature, and when the void 41 is formed, the portion where the void 41 is formed bulges upward.
 この可溶導体13によっても、中央部13aがカバー部材19側に突出することで、フラックス17を当該中央部13a上に保持することができる。また、可溶導体13は、中央部13aを肉厚に形成する特別な工程を必要とせず、従来の工程で中央部13aを肉厚に形成することができる。 Also with this soluble conductor 13, the central portion 13a protrudes toward the cover member 19 so that the flux 17 can be held on the central portion 13a. Moreover, the soluble conductor 13 does not require the special process which forms the center part 13a thickly, and can form the center part 13a thickly by the conventional process.
 [保護素子の使用方法]
 図6に示すように、上述した保護素子10は、リチウムイオン二次電池のバッテリパック20内の回路に用いられる。
[How to use protection elements]
As shown in FIG. 6, the protection element 10 described above is used in a circuit in a battery pack 20 of a lithium ion secondary battery.
 たとえば、保護素子10は、合計4個のリチウムイオン二次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。 For example, the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25の異常時に充電を遮断する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。 The battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell. A detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
 バッテリスタック25は、過充電及び過放電状態から保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20の正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto. The electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。 The charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided. The current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. . The control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。 Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。 The detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30. The detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子27は、たとえばFETにより構成され、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。 The current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
 以上のような構成からなるバッテリパック20において、本発明が適用された保護素子10は、図7に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱抵抗体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱抵抗体14が電流制御素子27と接続される。保護素子10の2個の電極12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。 In the battery pack 20 configured as described above, the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat. This is a circuit configuration including the resistor 14. In the protection element 10, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the current control element 27. One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
 このような回路構成からなる保護素子10は、発熱抵抗体14の発熱により、電流経路上の可溶導体13を確実に溶断することができる。 The protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generated by the heating resistor 14.
 なお、本発明の保護素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。 Note that the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
 次いで、本発明の実施例について説明する。本実施例では、本発明が適用された可溶導体13を用いた保護素子10と、従来の可溶導体を用いた保護素子とを作成し、各可溶導体の抵抗値、フラックスの保持性、加熱溶断時間を測定、評価した。 Next, examples of the present invention will be described. In this embodiment, the protection element 10 using the soluble conductor 13 to which the present invention is applied and the protection element using the conventional soluble conductor are prepared, and the resistance value and flux retention of each soluble conductor. The heating fusing time was measured and evaluated.
 実施例及び比較例は、いずれも、絶縁基板として、6mm×4mmのアルミナセラミック基板(厚さ0.5mm)を用い、表面にAg-Pdペーストを印刷した後、850℃30分焼成することにより第1、第2の電極、一対の発熱体電極、及び発熱体引出電極を形成した。また、第1及び第2の電極の間に、酸化ルテニウム系抵抗ペーストを印刷し、850℃30分焼成することにより発熱抵抗体を形成した。発熱抵抗体のパターン抵抗値は1Ωである。 In each of the examples and comparative examples, a 6 mm × 4 mm alumina ceramic substrate (thickness 0.5 mm) was used as an insulating substrate, and after printing an Ag—Pd paste on the surface, firing was performed at 850 ° C. for 30 minutes. First and second electrodes, a pair of heating element electrodes, and a heating element extraction electrode were formed. A ruthenium oxide resistance paste was printed between the first and second electrodes and baked at 850 ° C. for 30 minutes to form a heating resistor. The pattern resistance value of the heating resistor is 1Ω.
 実施例及び比較例に係る可溶導体は、いずれもSn:Sb=95:5、融点240℃を用いて、1mm×5mmに形成し、融点が219℃の接続ハンダペースト(Sn/Ag/Cu=96.5/3/0.5)によって、第1、第2の電極及び発熱体引出電極上に接続した。 The fusible conductors according to the examples and comparative examples are all formed of 1 mm × 5 mm using Sn: Sb = 95: 5, melting point 240 ° C., and a connection solder paste (Sn / Ag / Cu having a melting point of 219 ° C. = 96.5 / 3 / 0.5), and connected to the first and second electrodes and the heating element extraction electrode.
 実施例1に係る可溶導体は、プレス加工によって、発熱体引出電極上の中央部、及び第1、第2の電極上の両端部の厚みを0.15mm、第1の電極と発熱体引出電極との間、及び第2の電極と発熱体引出電極との間の溶断部の厚みを0.10mmに形成した。 In the fusible conductor according to Example 1, the thickness of the central part on the heating element extraction electrode and the both end parts on the first and second electrodes is 0.15 mm by pressing, and the first electrode and the heating element extraction are performed. The thickness of the fusing part between the electrodes and between the second electrode and the heating element extraction electrode was formed to 0.10 mm.
 実施例2に係る可溶導体は、中央部及び両端部の厚みを0.13mmとした他は、実施例1と同じである。 The fusible conductor according to Example 2 is the same as Example 1 except that the thickness of the central part and both end parts is 0.13 mm.
 実施例3に係る可溶導体は、中央部及び両端部の厚みを0.12mmとした他は、実施例1と同じである。 The fusible conductor according to Example 3 is the same as Example 1 except that the thickness of the center and both ends is 0.12 mm.
 実施例4に係る可溶導体は、中央部及び両端部の厚みを0.11mmとした他は、実施例1と同じである。 The fusible conductor according to Example 4 is the same as Example 1 except that the thickness of the central portion and both end portions is 0.11 mm.
 実施例5に係る可溶導体は、中央部及び両端部に、可溶導体よりも低融点の金属で形成された厚さ0.05mmの金属箔(Sn/Ag/Cu=96.5/3.0/0.5)を積層して厚さ0.15mmとし、溶断部を0.10mmとした。 The fusible conductor according to Example 5 is a 0.05 mm thick metal foil (Sn / Ag / Cu = 96.5 / 3) formed of a metal having a melting point lower than that of the fusible conductor at the center and both ends. 0.0 / 0.5) to a thickness of 0.15 mm, and a fusing part of 0.10 mm.
 実施例6に係る可溶導体は、中央部及び両端部に、0.05mm厚で金属ペースト(Sn/Ag/Cu=96.5/3.0/0.5)を塗布、焼成して厚さ0.15mmとし、溶断部を0.10mmとした。 The fusible conductor according to Example 6 was obtained by applying a metal paste (Sn / Ag / Cu = 96.5 / 3.0 / 0.5) with a thickness of 0.05 mm to the center and both ends, and baking it. The thickness was 0.15 mm, and the fusing part was 0.10 mm.
 実施例7に係る可溶導体は、第1、第2の電極間に亘って載置された後、オーブンで220℃、2分間加熱されることにより、中央部及び両端部の内部に、直径0.05mmのボイドを発生させて厚さ0.15mmとし、溶断部を0.10mmとした。 The fusible conductor according to Example 7 is placed between the first and second electrodes, and then heated in an oven at 220 ° C. for 2 minutes, so that the diameter is increased in the center and both ends. A 0.05 mm void was generated to a thickness of 0.15 mm, and the melted portion was set to 0.10 mm.
 比較例1に係る可溶導体は、中央部、両端部及び溶断部のいずれも0.10mmの平坦構造のものを用いた。 The fusible conductor according to Comparative Example 1 was a flat structure having a central portion, both end portions and a fusing portion of 0.10 mm.
 比較例2に係る可溶導体は、中央部、両端部及び溶断部のいずれも0.15mmの平坦構造のものを用いた。 The fusible conductor according to Comparative Example 2 has a flat structure with a center portion, both end portions and a fusing portion of 0.15 mm.
 以上の実施例及び比較例に係る可溶導体の抵抗値、フラックスの保持性、加熱溶断時間を測定、評価した。可溶導体のフラックス保持性については、実施例及び比較例に係る保護素子をそれぞれ100個製造し、カバー部材を取り外してフラックスが中央部付近に留まっているか、可溶導体の左右の一方又は他方、あるいはその両方に流れているかを判断した。実施例及び比較例に係る可溶導体の加熱溶断時間は、定格3Wの発熱抵抗体に通電して発熱させた時から溶断部が溶断されるまでの時間である。 The resistance value, flux retention, and heat fusing time of the soluble conductors according to the above examples and comparative examples were measured and evaluated. Regarding the flux retention of the fusible conductor, 100 protection elements according to the examples and comparative examples are manufactured, respectively, and the cover member is removed and the flux remains in the vicinity of the central portion, or one or the other of the fusible conductors , Or both. The fusing time of the fusible conductor according to the example and the comparative example is a time from when the heating resistor having a rating of 3 W is energized to generate heat until the fusing part is blown.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例では、いずれも可溶導体の中央部及び両端部を肉厚に形成しているため、可溶導体の抵抗値を下げることができた。また、各実施例では、いずれもフラックスが中央部付近に留まっており、左右へのフラックス流れは生じなかった。さらに、各実施例では、いずれも溶断時間を短くすることができた。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, in each Example, since the center part and both ends of the soluble conductor were formed thick, the resistance value of the soluble conductor could be lowered. In each example, the flux remained in the vicinity of the central portion, and the flux flow to the left and right did not occur. Furthermore, in each Example, the fusing time could be shortened.
 一方、比較例1に係る可溶導体は、中央部、両端部及び溶断部に亘って同じ厚さ(0.10mm)で形成しているため、抵抗値が20mΩと高く、保護素子としての定格を向上させることが困難である。また、肉厚な中央部を備えていないため、比較例1に係る保護素子の10%は、可溶導体の上に塗布したフラックスが流れていた。 On the other hand, the fusible conductor according to Comparative Example 1 is formed with the same thickness (0.10 mm) over the central portion, both end portions, and the melted portion, and therefore has a high resistance value of 20 mΩ, and is rated as a protective element It is difficult to improve. Moreover, since the thick central part is not provided, the flux applied on the soluble conductor was flowing in 10% of the protective elements according to Comparative Example 1.
 比較例2に係る可溶導体は、中央部、両端部及び溶断部に亘って同じ厚さ(0.15mm)で形成しているため、抵抗値は10mΩと低いものの、逆に加熱溶断時間が40秒と長くなった。また、比較例2においても、肉厚な中央部を備えていないため、保護素子の5%は、可溶導体の上に塗布したフラックスが流れていた。 Since the fusible conductor according to Comparative Example 2 is formed with the same thickness (0.15 mm) across the center, both ends, and the fusing portion, the resistance value is as low as 10 mΩ, but conversely the heating fusing time It became 40 seconds long. In Comparative Example 2 as well, since the thick central portion was not provided, 5% of the protective elements had flux applied on the soluble conductor.
 以上より、可溶導体は、少なくとも中央部を肉厚に形成することにより、低抵抗化による定格の向上と、溶断特性を両立させることができることが分かる。 From the above, it can be seen that the fusible conductor can achieve both the improvement of the rating due to the low resistance and the fusing characteristics by forming at least the central part thick.
 実施例1~4に示すように、中央部や両端部の肉厚を薄くしていくと、可溶導体の抵抗値は上がるが、溶断時間は短くなる。また、実施例4に示すように、中央部を溶断部より0.01mmでも肉厚に形成すれば、比較例1に比して、フラックス流れを抑制できることが分かる。 As shown in Examples 1 to 4, when the thickness at the center and both ends is reduced, the resistance value of the fusible conductor increases, but the fusing time is shortened. Further, as shown in Example 4, it can be seen that flux flow can be suppressed as compared with Comparative Example 1 if the central part is formed with a thickness of 0.01 mm from the fusing part.
 実施例5より、可溶導体よりも低融点の金属からなる金属箔を積層することで、実施例1に比して加熱溶断時間を短縮できることが分かる。これは、低融点金属が可溶導体を侵食するためである。 From Example 5, it can be seen that the heat fusing time can be shortened as compared to Example 1 by laminating a metal foil made of a metal having a melting point lower than that of the soluble conductor. This is because the low melting point metal erodes the soluble conductor.
 実施例6では、金属ペーストが多少溶断部側へ流れてしまい、形状を維持しにくく、抵抗値が若干上昇した。なお、金属ペーストとして、可溶導体より低融点の金属ペーストを用いることにより、加熱溶断時間を短縮することができる。 In Example 6, the metal paste slightly flowed to the fusing part side, it was difficult to maintain the shape, and the resistance value slightly increased. In addition, the heat fusing time can be shortened by using a metal paste having a melting point lower than that of the soluble conductor as the metal paste.
 実施例7では、ボイドが内在することから低抵抗化は実現できないが、フラックス流れを抑制でき、また加熱溶断時間も短かった。 In Example 7, since a void was inherent, a reduction in resistance could not be realized, but the flux flow could be suppressed and the heat fusing time was short.
10 保護素子、11 絶縁基板、12 電極、13 可溶導体、13a 中央部、13b 溶断部、13c 両端部、14 発熱体、15 絶縁部材、16 発熱体引出電極、18 発熱体電極、19 カバー部材、20 バッテリパック、21~24 バッテリセル、26 検出回路、27 電流制御素子、30 充放電制御回路、31,32 電流制御素子、33 制御部、35 充電装置、40 導電材 10 protective elements, 11 insulating substrates, 12 electrodes, 13 soluble conductors, 13a central part, 13b fused parts, 13c both ends, 14 heating elements, 15 insulating members, 16 heating element extraction electrodes, 18 heating element electrodes, 19 cover members , 20 battery pack, 21-24 battery cells, 26 detection circuit, 27 current control element, 30 charge / discharge control circuit, 31, 32 current control element, 33 control unit, 35 charging device, 40 conductive material

Claims (8)

  1.  絶縁基板と、
     上記絶縁基板に形成された発熱抵抗体と、
     少なくとも上記発熱抵抗体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記発熱抵抗体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、
     上記絶縁基板上を覆うカバー部材とを備え、
     上記可溶導体は、少なくとも上記発熱体引出電極と重畳する中央部が、上記発熱体引出電極と上記第1及び第2の電極との間の溶断部よりも肉厚に形成されている保護素子。
    An insulating substrate;
    A heating resistor formed on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating resistor;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode laminated on the insulating member so as to overlap the heating resistor and electrically connected to the heating resistor on a current path between the first and second electrodes;
    A soluble conductor laminated from the heating element extraction electrode to the first and second electrodes, and by heat, fusing a current path between the first electrode and the second electrode;
    A cover member covering the insulating substrate,
    The fusible conductor has a protection element in which at least a central portion overlapping the heating element extraction electrode is formed thicker than a fusing part between the heating element extraction electrode and the first and second electrodes. .
  2.  上記可溶導体は、上記第1及び第2の電極と重畳する両端部も、上記発熱体引出電極と上記第1及び第2の電極との間の溶断部よりも肉厚に形成されている請求項1記載の保護素子。 In the fusible conductor, both ends overlapping with the first and second electrodes are formed thicker than the melted portion between the heating element extraction electrode and the first and second electrodes. The protective element according to claim 1.
  3.  上記可溶導体は、上記中央部が上記カバー部材側に突出し、フラックスを保持する請求項1又は2記載の保護素子。 The protective element according to claim 1 or 2, wherein the soluble conductor has a central portion protruding toward the cover member to hold the flux.
  4.  上記可溶導体は、上記中央部及び/又は上記両端部に、導電材を積層することにより、肉厚に形成されている請求項1又は2記載の保護素子。 The protective element according to claim 1 or 2, wherein the soluble conductor is formed thick by laminating a conductive material on the central portion and / or the both end portions.
  5.  上記導電剤は、上記可溶導体よりも融点が低い請求項4記載の保護素子。 The protective element according to claim 4, wherein the conductive agent has a melting point lower than that of the soluble conductor.
  6.  上記可溶導体は、上記中央部及び/又は上記両端部に、導電ペーストを塗布することにより、肉厚に形成されている請求項1又は2記載の保護素子。 The protective element according to claim 1 or 2, wherein the soluble conductor is formed thick by applying a conductive paste to the central portion and / or the both end portions.
  7.  上記可溶導体は、上記中央部及び/又は上記両端部の内部に、ボイドを内包させている請求項1又は2記載の保護素子。 The protective element according to claim 1 or 2, wherein the soluble conductor includes a void inside the central portion and / or the both end portions.
  8.  1以上の充放電可能なバッテリセルからなるバッテリと、
     上記バッテリと直列に接続され、該バッテリの充放電を制御する充放電制御回路と、
     上記バッテリと上記充放電制御回路との間の充放電電流経路上に接続された保護素子と、
     上記バッテリの各バッテリセルの電圧値を検出する検出回路と、
     上記保護素子に流れる電流を制御する電流制御素子とを備え、
     上記保護素子は、
     絶縁基板と、
     上記絶縁基板に積層された発熱抵抗体と、
     少なくとも上記発熱抵抗体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記発熱抵抗体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、
     上記絶縁基板上を覆うカバー部材とを備え、
     上記可溶導体は、少なくとも上記発熱体引出電極と重畳する中央部が、上記発熱体引出電極と上記第1及び第2の電極との間の溶断部よりも肉厚に形成され、
     上記電流制御素子は、上記検出回路により検出される各バッテリセルの電圧値が所定の範囲外となったときに上記発熱抵抗体に電流が流れるように制御するバッテリモジュール。
    A battery comprising one or more chargeable / dischargeable battery cells;
    A charge / discharge control circuit connected in series with the battery for controlling charge / discharge of the battery;
    A protective element connected on a charge / discharge current path between the battery and the charge / discharge control circuit;
    A detection circuit for detecting a voltage value of each battery cell of the battery;
    A current control element for controlling the current flowing through the protection element,
    The protective element is
    An insulating substrate;
    A heating resistor laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating resistor;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode laminated on the insulating member so as to overlap the heating resistor and electrically connected to the heating resistor on a current path between the first and second electrodes;
    A soluble conductor laminated from the heating element extraction electrode to the first and second electrodes, and by heat, fusing a current path between the first electrode and the second electrode;
    A cover member covering the insulating substrate,
    The soluble conductor has at least a central portion overlapping with the heating element extraction electrode formed thicker than a fusing part between the heating element extraction electrode and the first and second electrodes,
    The current control element is a battery module that controls the current to flow through the heating resistor when the voltage value of each battery cell detected by the detection circuit is outside a predetermined range.
PCT/JP2014/050525 2014-01-15 2014-01-15 Protective element and battery module WO2015107633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050525 WO2015107633A1 (en) 2014-01-15 2014-01-15 Protective element and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050525 WO2015107633A1 (en) 2014-01-15 2014-01-15 Protective element and battery module

Publications (1)

Publication Number Publication Date
WO2015107633A1 true WO2015107633A1 (en) 2015-07-23

Family

ID=53542556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050525 WO2015107633A1 (en) 2014-01-15 2014-01-15 Protective element and battery module

Country Status (1)

Country Link
WO (1) WO2015107633A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229295A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229295A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element

Similar Documents

Publication Publication Date Title
CN107104021B (en) Protective element
WO2013146889A1 (en) Protection element
JP6151550B2 (en) Protective element
CN109937464B (en) Protective element
WO2014021157A1 (en) Protective element and battery pack
WO2014021156A1 (en) Protective element and battery pack
KR102202901B1 (en) Protective element
WO2016017567A1 (en) Protection element and protection circuit
KR102043051B1 (en) Protective element
JP6030431B2 (en) Protective element
WO2015159570A1 (en) Protective element
JP6078332B2 (en) Protection element, battery module
JP2016018683A (en) Protection element
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
CN109891546B (en) Protective element
WO2015025885A1 (en) Protection element
TWI680482B (en) Protection element
JP6202992B2 (en) Protective circuit, battery circuit, protective element, and driving method of protective element
WO2015107633A1 (en) Protective element and battery module
WO2022181652A1 (en) Protection element and battery pack
TWI744420B (en) Protection element
TWI603360B (en) Protection components, battery modules
WO2015107632A1 (en) Protective element
JP2014127270A (en) Protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP