WO2015106593A1 - 磁集成电感器 - Google Patents

磁集成电感器 Download PDF

Info

Publication number
WO2015106593A1
WO2015106593A1 PCT/CN2014/089965 CN2014089965W WO2015106593A1 WO 2015106593 A1 WO2015106593 A1 WO 2015106593A1 CN 2014089965 W CN2014089965 W CN 2014089965W WO 2015106593 A1 WO2015106593 A1 WO 2015106593A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic core
integrated inductor
air gaps
bottom plate
Prior art date
Application number
PCT/CN2014/089965
Other languages
English (en)
French (fr)
Inventor
邵革良
江明
Original Assignee
田村(中国)企业管理有限公司
株式会社田村制作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田村(中国)企业管理有限公司, 株式会社田村制作所 filed Critical 田村(中国)企业管理有限公司
Publication of WO2015106593A1 publication Critical patent/WO2015106593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the present invention relates to inductors, and more particularly to a magnetic integrated inductor.
  • the PFC circuit of the inverter circuit of the photovoltaic inverter, the inverter air conditioner, the UPS, and various other high-frequency switching power supplies generally adopts an interleaved circuit topology. Two identical independent inductors are required as the energy storage components for the circuit operation.
  • Figure 1 shows a circuit diagram of a prior art two-way interleaved PFC circuit.
  • 2 shows the current waveforms of two inductors in a magnetic integrated inductor in a two-way interleaved PFC circuit of the prior art.
  • the current waveforms i L1 and i L2 of the inductor are triangular waveforms, which are interlaced by 180°, and the fluctuation law of the ripple is: when S1 is turned on, L1 is forcibly short-circuited to the ground through S1.
  • the voltage applied to L1 is Vin.
  • the current rise of ⁇ i L1 (Vin/L1)*Ton.
  • D1 is an ideal diode
  • the current in the inductor L1 is discharged due to the reverse voltage Vo-Vin, S1.
  • the inductance determines the current AC component flowing through the inductor; and the DC component reflects the output power of the power supply.
  • the increase of the inductance can reduce the fluctuation of the current, reduce the effective value of the current, and improve the coil loss.
  • the number of turns is more, and the wire cross-section of the coil is constant. It becomes smaller, which leads to an increase in the internal resistance of the coil, and the loss becomes higher, so that the temperature rise of the inductor is increased.
  • FIG. 3 shows a schematic diagram of a magnetic integrated inductor 300 in a two-way interleaved PFC circuit of the prior art.
  • the magnetic integrated inductor 300 includes two magnetic cores 310 and two coils 320 that are assembled up and down.
  • Each magnetic core includes a bottom plate 312, two first magnetic core posts 314 on the left and right sides of the bottom plate 312, and two second magnetic core posts 316 on the upper and lower sides of the bottom plate.
  • the bottom plate 312, the two first magnetic core posts 314 and the two second magnetic core posts 316 are integrally formed to form each magnetic core 310.
  • Two coils 320 are wound around two magnets
  • the opposite first magnetic core pillars 314 of the left and right sides of the core 310 are formed to form two left and right inductor coils, and the magnetic field directions generated by the two inductor coils during the energization excitation operation are respectively along the first magnetic core pillars to be wound The same direction that points up and down.
  • an air gap is provided between the opposing first magnetic core pillars 310 of the two magnetic cores 310, and the opposite of the two magnetic cores 310.
  • the present invention provides a novel magnetic integrated inductor by modifying the configuration of the magnetic core in the integrated inductor and the polarity direction of the winding.
  • a magnetic integrated inductor comprising two magnetic cores assembled up and down and two coils.
  • Each of the magnetic cores includes: a bottom plate; two first magnetic core columns on the left and right sides of the bottom plate; and two second magnetic core posts on the upper and lower sides of the upper and lower sides of the bottom plate.
  • the bottom plate, the two first magnetic core columns and the two second magnetic core columns are integrally formed to form each magnetic core.
  • the two coils are respectively wound on the opposite first magnetic core columns on the left and right sides of the two magnetic cores to form two left and right inductor coils, and the magnetic field directions generated by the two inductor coils respectively during the energization excitation operation are along the winding.
  • the first magnetic core column points in the same direction up and down. After the two magnetic cores are assembled up and down, one or more first air gaps are disposed between the upper and lower sides of the first magnetic core column on the same side, and one or more of the second magnetic core columns on the same side are disposed above and below And a second air gap, wherein a sum of lengths of the respective first air gaps of each of the magnetic cores is smaller than a sum of lengths of the respective second air gaps.
  • each of the first air gaps and the respective second air gaps is formed by providing an air gap spacer which is a non-magnetic insulating material.
  • each of the first air gaps and the respective second air gaps are formed by fixing the magnetic core by an external fixing member.
  • the sum of the lengths of the respective first air gaps is approximately 1/5 or less of the total length of the first magnetic core legs.
  • the bottom plate is an approximately hexagonal shape in which the upper and lower sides are parallel and the upper and lower sides are symmetrical.
  • the two first magnetic core columns are respectively triangular magnetic core columns.
  • the two first magnetic core columns are vertically opposed and connected to form an hourglass-shaped magnetic core column.
  • the sides of the two first magnetic cores adjacent to the winding coils are winding windings Parallel arc-shaped concave or polygonal concave.
  • the two second magnetic core columns are each of the following shapes: a cylinder, an elliptical cylinder, or a polygonal prism.
  • the material of the magnetic core is a ferrite material.
  • Figure 1 shows a circuit diagram of a prior art two-way interleaved PFC circuit.
  • FIG. 2 shows the current waveforms of two inductors in a magnetic integrated inductor in a two-way interleaved PFC circuit of the prior art.
  • FIG. 3 shows a schematic diagram of a magnetic integrated inductor in a two-way interleaved PFC circuit of the prior art.
  • FIG. 4 shows a circuit diagram of a two-way interleaved PFC circuit in accordance with the present invention.
  • Figure 5 shows the current waveforms of two inductors in a magnetic integrated inductor in a two-way interleaved PFC circuit in accordance with the present invention.
  • Figure 6 (a) shows a perspective view of a magnetic core of a magnetic integrated inductor in accordance with an embodiment of the present invention.
  • Figure 6 (b) shows a top view of a magnetic core of a magnetic integrated inductor in accordance with an embodiment of the present invention.
  • Figure 6 (c) shows a side view of a magnetic integrated inductor in accordance with an embodiment of the present invention.
  • FIG. 7 shows a top view of a magnetic core of a magnetic integrated inductor in accordance with yet another embodiment of the present invention.
  • Figure 8 shows a side view of a magnetic integrated inductor in accordance with yet another embodiment of the present invention.
  • FIG. 4 shows a circuit diagram of a two-way interleaved PFC circuit in accordance with the present invention.
  • mutual coupling components can be introduced to each other in the above invention, and a certain transformer principle is formed by using the two windings.
  • Figure 5 shows the current waveforms of two inductors in a magnetic integrated inductor in a two-way interleaved PFC circuit in accordance with the present invention.
  • Figure 6 (a) shows a perspective view of a magnetic core 610 of a magnetic integrated inductor in accordance with an embodiment of the present invention.
  • the magnetic core 610 includes: a bottom plate 612; two first magnetic core posts 614 on the left and right sides on the bottom plate; and two second magnetic core posts 616 on the upper and lower sides of the bottom plate.
  • the bottom plate 612, the two first magnetic core posts 614 and the two second magnetic core posts 616 are integrally formed to form the magnetic core 610.
  • the material of the magnetic core 610 is a ferrite material.
  • Figure 6 (b) shows a top view of a magnetic core 610 of a magnetic integrated inductor in accordance with an embodiment of the present invention.
  • the bottom plate 612 is an approximately hexagonal shape in which the upper and lower sides are parallel and the upper and lower sides are symmetrical.
  • the two first magnetic core columns 614 are respectively triangular magnetic core columns.
  • the two second core legs 616 are each of the following shapes: a cylinder, an elliptical cylinder, or a polygonal prism.
  • the polygonal prism is a polygonal prism similar to a cylindrical or elliptical cylinder.
  • the two first core legs 614 are close to the winding coils (see The side 626 of Figure 8) is an arcuate concave or polygonal recess parallel to the winding coil.
  • Such a layout can reduce the amount of material used for the magnetic core 610 and miniaturize the magnetic integrated inductor.
  • FIG. 6 (c) shows a side view of a magnetic integrated inductor 600 in accordance with an embodiment of the present invention.
  • the magnetic integrated inductor 600 includes two magnetic cores 610 assembled up and down and two coils (not shown).
  • Each core 610 includes a bottom plate 612, two first magnetic core posts 614 on the left and right sides of the bottom plate 612, and two second magnetic core posts 616 on the upper and lower sides of the bottom plate 612.
  • the bottom plate 612, the two first magnetic core posts 614 and the two second magnetic core posts 626 are integrally formed to form each magnetic core 610.
  • the two coils 620 are respectively wound on the opposite first magnetic core pillars 614 on the left and right sides of the two magnetic cores 610 to form two left and right inductor coils, and the magnetic field directions generated by the two inductor coils respectively during the energization excitation operation are along the edges.
  • the first magnetic core post 614 that is wound is pointed in the same direction.
  • a first air gap 632 is disposed between the upper and lower sides of the first magnetic core post 614 on the same side, and the first side is on the same side.
  • An air gap 634 is disposed between the upper and lower sides of the two magnetic core columns 616.
  • the length d1 of the first air gap 632 is smaller than the length d2 of the second air gap 634. At this time, the single-sided inductor coil is not saturated.
  • the first air gap 632 and the second air gap 634 are formed by providing an air gap spacer, which is a non-magnetic insulating material.
  • the first air gap 632 and the second air gap 634 are formed by fixing the magnetic core 610 by an external fixing member.
  • the length of the first air gap 632 is approximately 1/5 of the total length of the first magnetic core post 314. The closer to zero, the better the coupling effect between the two windings.
  • FIG. 7 shows a top view of a magnetic core 710 of a magnetic integrated inductor in accordance with yet another embodiment of the present invention.
  • the two first magnetic core columns 716 are vertically connected and connected to form an hourglass-shaped magnetic core column.
  • the other components and structures of the magnetic core 710 shown in FIG. 7 are the same as those of the magnetic core 610 shown in FIG. 6(c), and will not be described again.
  • FIG. 8 shows a side view of a magnetic integrated inductor 800 in accordance with yet another embodiment of the present invention.
  • the magnetic integrated inductor 800 includes two magnetic cores 810 and two coils 820 that are assembled up and down.
  • Each of the magnetic cores 810 includes: a bottom plate 812; two first magnetic core posts 814 on the left and right sides of the bottom plate 812; and two second magnetic core posts 816 located on the upper and lower sides of the bottom plate 812.
  • the bottom plate 812, the two first magnetic core posts 814 and the two second magnetic core posts 828 are integrally formed to form each magnetic core 810.
  • Two coils 820 are wound around two magnets
  • the opposite first magnetic core pillars 814 of the left and right sides of the core 810 are formed to form two left and right inductor coils, and the magnetic field directions generated by the two inductor coils respectively during the energization excitation operation are the first magnetic core pillars 814 along the wound wire.
  • a plurality of first air gaps 832 are disposed between the upper and lower sides of the first magnetic core column 814 on the same side, and the second magnetic field is located on the same side.
  • a plurality of air gaps 834 are provided between the upper and lower ends of the stem 816.
  • the sum of the lengths of the plurality of first air gaps 832 is smaller than the sum of the lengths of the plurality of second air gaps 834. At this time, the single-sided inductor coil is not saturated.
  • first air gaps 832 shown in FIG. 8 is two and the number of second air gaps 834 is three, one of ordinary skill in the art will appreciate that other numbers of first air gaps 832 and The second air gap 834 can achieve the technical effect of the present invention as long as the sum of the lengths of the plurality of first air gaps 832 is smaller than the sum of the lengths of the plurality of second air gaps 834.
  • the use of multiple fine air gaps also reduces magnetic field leakage at the air gap.
  • the plurality of first air gaps 832 and the plurality of second air gaps 834 are formed by providing an air gap spacer, which is a non-magnetic insulating material.
  • the plurality of first air gaps 832 and the plurality of second air gaps 834 are formed by fixing the magnetic core 810 by an external fixture.
  • the sum of the lengths of the plurality of first air gaps 832 is approximately 1/5 of the total length of the first magnetic core legs 314, and the smaller the smaller the coupling effect between the two windings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本发明涉及一种磁集成电感器,包括:上下相对组装的两个磁芯和两个线圈。每个磁芯包括:底板;位于底板上的左右两侧的两个第一磁芯柱;和位于底板上的上下侧正中位置的两个第二磁芯柱,其中,底板、两个第一磁芯柱和两个第二磁芯柱一体成型构成每个磁芯。在两个磁芯上下相对组装后,位于同一侧的第一磁芯柱上下间设有一个或更多个第一气隙,位于同一侧的第二磁芯柱上下间设有一个或更多个第二气隙,其中,每个磁芯的各个第一气隙的长度之和小于各个第二气隙的长度之和。两个线圈分别绕在两个磁芯的左右两侧的相对的第一磁芯柱上以形成左右两个电感线圈,两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱的上下指向的相同方向。

Description

磁集成电感器 发明领域
本发明涉及电感器,尤其涉及一种磁集成电感器。
背景技术
光伏逆变器的升压电路、变频空调、UPS、以及其他各种高频开关电源中的PFC电路,为了提高电源的效率和降低成本,普遍采用了双路交错(Interleave)的电路拓扑,其中需要使用两只完全相同的独立电感器作为电路工作的储能元件。
图1示出现有技术中的双路交错PFC电路的电路图。图2示出现有技术中的双路交错PFC电路中的磁集成电感器中的两个电感器工作时的电流波形。
从图2中可以看出,电感器的电流波形iL1和iL2为三角波形,互相交错180°工作,其纹波的变动规律为:当S1开通时,L1通过S1被强制对地短路,加在L1上的电压为Vin,假定S1导通时间为Ton,则L1的电流上升幅度ΔiL1=(Vin/L1)*Ton。当S1被关闭时,L1由于储能的续流作用,使二极管D1被强制开通,假定D1为理想二极管,则此时电感器L1中的电流因反向电压Vo-Vin而造成放电下降,S1关闭的时间持续Toff,此时电流下降的幅度为:ΔiL1=[(Vo-Vin)/L1]*Toff。如果此时的电感器中的电流尚没有停止,则每个工作周期循环往复,呈现右图的三角式电流波形。
可见,对于一定的Ton和Toff时间和电路的输入输出电压,电感量决定了流经电感的电流交流成分;而其直流成分则反映出了电源的输出功率。电感量的提升,可以减少电流的波动,使得电流的有效值下降,改善线圈损耗,但对于同样的磁芯尺寸,此时匝数更多,由于线圈绕线面积不变,单匝的导线截面变小,从而导致线圈内阻增大,损耗变高,使得电感器的温升增高。
图3示出现有技术中的双路交错PFC电路中的磁集成电感器300的示意图。磁集成电感器300包括上下相对组装的两个磁芯310和两个线圈320。每个磁芯包括:底板312、位于底板312上的左右两侧的两个第一磁芯柱314、以及位于底板上的上下侧正中位置的两个第二磁芯柱316。其中,底板312、两个第一磁芯柱314和两个第二磁芯柱316一体成型构成每个磁芯310。两个线圈320分别绕在两个磁 芯310的左右两侧的相对的第一磁芯柱314上以形成左右两个电感线圈,两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱的上下指向的相同方向。在现有技术的磁集成电感器300中,两个磁芯310上下相对组装时,两个磁芯310的相对的第一磁芯柱310之间设有气隙,两个磁芯310的相对的第二磁芯柱320之间没有气隙,而且两个线圈绕组320被通电后,所产生的磁场方向在第二磁芯柱316中分别方向相反。
发明概述
为解决现有技术中的上述技术问题,本发明通过改磁集成电感器中磁芯的构造以及绕组的极性方向,提供了一种全新的磁集成电感器。
根据本发明一方面,提供了一种磁集成电感器,磁集成电感器包括上下相对组装的两个磁芯以及两个线圈。每个磁芯包括:底板;位于底板上的左右两侧的两个第一磁芯柱;和位于底板上的上下侧正中位置的两个第二磁芯柱。其中,底板、两个第一磁芯柱和两个第二磁芯柱一体成型构成每个磁芯。两个线圈分别绕在两个磁芯的左右两侧的相对的第一磁芯柱上以形成左右两个电感线圈,两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱的上下指向的相同方向。在两个磁芯上下相对组装后,位于同一侧的第一磁芯柱上下间设有一个或更多个第一气隙,位于同一侧的第二磁芯柱上下间设有一个或更多个第二气隙,其中,每个磁芯的各个第一气隙的长度之和小于各个第二气隙的长度之和。
根据本发明又一方面,各个第一气隙和各个第二气隙通过设置气隙垫片而形成,气隙垫片是不导磁绝缘材料。
根据本发明又一方面,各个第一气隙和各个第二气隙通过外部固定件固定磁芯而形成。
根据本发明又一方面,各个第一气隙的长度之和近似为第一磁芯柱的总长度的1/5以下。
根据本发明又一方面,底板为上下两边平行、且上下左右对称的近似六边形。
根据本发明又一方面,两个第一磁芯柱分别为三角形磁芯柱。
根据本发明又一方面,两个第一磁芯柱上下相对且相连而组成沙漏形磁芯柱。
根据本发明又一方面,两个第一磁芯柱的靠近绕组线圈的侧面是与绕组线圈 相平行的圆弧状凹面或多棱凹。
根据本发明又一方面,两个第二磁芯柱分别是以下形状中的任一种:圆柱、椭圆柱、或多棱柱。
根据本发明又一方面,磁芯的材料为铁氧体材料。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图的简要描述
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1示出现有技术中的双路交错PFC电路的电路图。
图2示出现有技术中的双路交错PFC电路中的磁集成电感器中的两个电感器工作时的电流波形。
图3示出现有技术中的双路交错PFC电路中的磁集成电感器的示意图。
图4示出根据本发明的双路交错PFC电路的电路图。
图5示出根据本发明的双路交错PFC电路中的磁集成电感器中的两个电感器工作时的电流波形。
图6(a)示出根据本发明一实施例的磁集成电感器的磁芯的立体图。
图6(b)示出根据本发明一实施例的磁集成电感器的磁芯的俯视图。
图6(c)示出根据本发明一实施例的磁集成电感器的侧视图。
图7示出根据本发明又一实施例的磁集成电感器的磁芯的俯视图。
图8示出根据本发明再一实施例的磁集成电感器的侧视图。
发明的详细说明
现在将详细参考附图描述本发明的实施例。
图4示出根据本发明的双路交错PFC电路的电路图。为不增加绕组匝数使流经电感器的纹波进一步变小,可以在上述发明中互相引入互相耦合成分,利用两绕组形成一定的变压器原理。图4中上部线圈绕组被励磁后,其磁芯柱内产生的磁通, 根据磁路中磁阻的大小,被分流,分别流入了另一侧的下部线圈的磁芯柱,以及中间没有绕组的磁芯柱,最终流回到上部线圈绕组的磁芯内;反之,当下部线圈通电后,也产生同样道理的磁通流,一部分通过中间没有绕组的磁芯相同方向磁通流回,另一部分反过来流进上部绕组的磁芯内,耦合出线圈从左向右流动的输出感应电流;而现有技术(参见图1)中的电感,相当于两个独立不相干的电感,由于中间不绕线磁芯柱没有气隙,磁阻极小,带绕组的线圈的磁芯柱上有比较可观的气隙,磁阻极大,两线圈不能够形成耦合效应,此外其分别产生的磁通在中间磁芯柱内方向相反。
图5示出根据本发明的双路交错PFC电路中的磁集成电感器中的两个电感器工作时的电流波形。在L2绕组处于放电出现电流下降的过程中,当L1被强制短路充电时,L1中的部分充磁能量通过变压器机理,在L2中产生一个同步与L1电流增长,持续向上升的电流分量;相反,开关S2驱动导通,当L2被强制充电时,L1的电流除了下降放电的分量外,也会产生一个相同的来自于L2耦合的增长电流分量,依次循环往复。就形成了如图5所示的L1和L2的新型电流波形iL1’和iL2’。这样,在电感线圈的电流放电下降时,通过从其他绕组引入变压器感应上升式电流叠加,可以大幅改善电感器中的电流下降的速度,从而减小了其电流的波动幅度,以达到实现相同的功率变换,线圈中的电流纹波更小,即有效值电流和峰值电流更小的目的。
图6(a)示出根据本发明一实施例的磁集成电感器的磁芯610的立体图。磁芯610包括:底板612;位于底板上的左右两侧的两个第一磁芯柱614;和位于底板上的上下侧正中位置的两个第二磁芯柱616。其中,底板612、两个第一磁芯柱614和两个第二磁芯柱616一体成型构成磁芯610。根据本发明又一方面,磁芯610的材料为铁氧体材料。
图6(b)示出根据本发明一实施例的磁集成电感器的磁芯610的俯视图。如图6(b)所示,底板612为上下两边平行、且上下左右对称的近似六边形。两个第一磁芯柱614分别为三角形磁芯柱。两个第二磁芯柱616分别是以下形状中的任一种:圆柱、椭圆柱、或多棱柱。根据本发明一实施例,多棱柱是近似于圆柱或椭圆柱的多棱柱。根据本发明一实施例,两个第一磁芯柱614的靠近绕组线圈(参见 图8)的侧面626是与绕组线圈相平行的圆弧状凹面或多棱凹。这样的布局能够减少磁芯610所用的材料量并使磁集成电感器小型化。
图6(c)示出根据本发明一实施例的磁集成电感器600的侧视图。磁集成电感器600包括上下相对组装的两个磁芯610以及两个线圈(图中未示出)。每个磁芯610包括:底板612;位于底板612上的左右两侧的两个第一磁芯柱614;和位于底板612上的上下侧正中位置的两个第二磁芯柱616。其中,底板612、两个第一磁芯柱614和两个第二磁芯柱626一体成型构成每个磁芯610。两个线圈620分别绕在两个磁芯610的左右两侧的相对的第一磁芯柱614上以形成左右两个电感线圈,两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱614的上下指向的相同方向。在图6(c)所示的实施例中,在两个磁芯610上下相对组装后,位于同一侧的第一磁芯柱614上下间设有一个第一气隙632,位于同一侧的第二磁芯柱616上下间设有一个气隙634,其中,第一气隙632的长度d1小于第二气隙634的长度d2,此时,单边电感线圈不会饱和。
根据本发明一实施例,第一气隙632和第二气隙634通过设置气隙垫片而形成,气隙垫片是不导磁绝缘材料。
根据本发明另一实施例,第一气隙632和第二气隙634通过外部固定件固定磁芯610而形成。
根据本发明一实施例,第一气隙632的长度近似为第一磁芯柱314总长度的1/5以下,越接近零时,越能提高两个绕组间的耦合效果。
图7示出根据本发明又一实施例的磁集成电感器的磁芯710的俯视图。如图7所示,两个第一磁芯柱716上下相对且相连而组成沙漏形磁芯柱。图7所示的磁芯710的其他组成及构造与图6(c)所示的磁芯610的其他组成及构造相同,在此不再赘述。
图8示出根据本发明再一实施例的磁集成电感器800的侧视图。磁集成电感器800包括上下相对组装的两个磁芯810以及两个线圈820。每个磁芯810包括:底板812;位于底板812上的左右两侧的两个第一磁芯柱814;和位于底板812上的上下侧正中位置的两个第二磁芯柱816。其中,底板812、两个第一磁芯柱814和两个第二磁芯柱828一体成型构成每个磁芯810。两个线圈820分别绕在两个磁 芯810的左右两侧的相对的第一磁芯柱814上以形成左右两个电感线圈,两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱814的上下指向的相同方向。在图8所示的实施例中,在两个磁芯810上下相对组装后,位于同一侧的第一磁芯柱814上下间设有多个第一气隙832,位于同一侧的第二磁芯柱816上下间设有多个气隙834。其中,多个第一气隙832的长度之和小于多个第二气隙834的长度之和,此时,单边电感线圈不会饱和。
尽管图8所示的第一气隙832的数量为两个,第二气隙834的数量为三个,然而本领域的普通技术人员能够理解,也可以有其他数量的第一气隙832和第二气隙834,只要满足多个第一气隙832的长度之和小于多个第二气隙834的长度之和皆可实现本发明的技术效果。使用多个微细气隙还能减少气隙处的磁场泄漏。
根据本发明一实施例,多个第一气隙832和多个第二气隙834通过设置气隙垫片而形成,气隙垫片是不导磁绝缘材料。
根据本发明另一实施例,多个第一气隙832和多个第二气隙834通过外部固定件固定磁芯810而形成。
根据本发明一实施例,多个第一气隙832的长度之和近似为第一磁芯柱314总长度的1/5以下,越小越能提高两个绕组间的耦合效果。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (10)

  1. 一种磁集成电感器,包括:
    上下相对组装的两个磁芯,每个所述磁芯包括:
    底板,
    位于所述底板上的左右两侧的两个第一磁芯柱,和
    位于所述底板上的上下侧正中位置的两个第二磁芯柱,
    其中,所述底板、所述两个第一磁芯柱和所述两个第二磁芯柱一体成型构成每个所述磁芯;以及
    两个线圈,两个线圈分别绕在两个磁芯的左右两侧的相对的第一磁芯柱上以形成左右两个电感线圈,所述两个电感线圈在通电励磁工作时分别产生的磁场方向为沿被绕线的第一磁芯柱的上下指向的相同方向,
    其中,在两个磁芯上下相对组装后,位于同一侧的第一磁芯柱上下间设有一个或更多个第一气隙,位于同一侧的第二磁芯柱上下间设有一个或更多个第二气隙,
    其中,每个所述磁芯的各个所述第一气隙的长度之和小于各个所述第二气隙的长度之和。
  2. 如权利要求1所述的磁集成电感器,其特征在于,各个所述第一气隙和各个所述第二气隙通过设置气隙垫片而形成,所述气隙垫片是不导磁绝缘材料。
  3. 如权利要求1所述的磁集成电感器,其特征在于,各个所述第一气隙和各个所述第二气隙通过外部固定件固定所述磁芯而形成。
  4. 如权利要求1-3的任一项所述的磁集成电感器,其特征在于,各个所述第一气隙的长度之和近似为所述第一磁芯柱的总长度的1/5以下。
  5. 如权利要求1所述的磁集成电感器,其特征在于,所述底板为上下两边平 行、且上下左右对称的近似六边形。
  6. 如权利要求1所述的磁集成电感器,其特征在于,两个所述第一磁芯柱分别为三角形磁芯柱。
  7. 如权利要求1所述的磁集成电感器,其特征在于,两个所述第一磁芯柱上下相对且相连而组成沙漏形磁芯柱。
  8. 如权利要求6或7所述的磁集成电感器,其特征在于,两个所述第一磁芯柱的靠近绕组线圈的侧面是与绕组线圈相平行的圆弧状凹面或多棱凹。
  9. 如权利要求1所述的磁集成电感器,其特征在于,两个所述第二磁芯柱分别是以下形状中的任一种:圆柱、椭圆柱、或多棱柱。
  10. 如权利要求1所述的磁集成电感器,其特征在于,所述磁芯的材料为铁氧体材料。
PCT/CN2014/089965 2014-01-20 2014-10-31 磁集成电感器 WO2015106593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410025054.3 2014-01-20
CN201410025054.3A CN103730230B (zh) 2014-01-20 2014-01-20 磁集成电感器

Publications (1)

Publication Number Publication Date
WO2015106593A1 true WO2015106593A1 (zh) 2015-07-23

Family

ID=50454264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089965 WO2015106593A1 (zh) 2014-01-20 2014-10-31 磁集成电感器

Country Status (2)

Country Link
CN (1) CN103730230B (zh)
WO (1) WO2015106593A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189415B2 (en) 2017-07-13 2021-11-30 Delta Electronics (Shanghai) Co., Ltd Magnetic element and switching power supply using the same
CN113782320A (zh) * 2021-09-22 2021-12-10 台达电子企业管理(上海)有限公司 功率变换电路
WO2022078769A1 (en) * 2020-10-15 2022-04-21 Tdk Electronics Ag Compact coupled inductor
WO2023279925A1 (zh) * 2021-07-07 2023-01-12 中兴通讯股份有限公司 一种电感器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021920B (zh) * 2014-05-27 2016-09-28 华为技术有限公司 耦合电感和功率变换器
JP6697682B2 (ja) * 2016-08-17 2020-05-27 住友電気工業株式会社 磁性コア、コイル部品、回路基板、及び電源装置
DE102017221267A1 (de) * 2017-11-28 2019-05-29 Siemens Aktiengesellschaft Wicklungsanordnung für zumindest zwei versetzt taktende leistungselektronische Wandler und Wandleranordnung
CN109741917B (zh) * 2019-03-06 2020-12-18 中国科学院重庆绿色智能技术研究院 一种不等宽气隙组成的电感器
CN109920626B (zh) * 2019-04-17 2021-04-16 中国科学院重庆绿色智能技术研究院 一种由多个不等长气隙立柱组成的电感器
CN112687458A (zh) * 2019-10-18 2021-04-20 联合汽车电子有限公司 多相交错并联集成电感及磁集成电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217761A (ja) * 1992-01-31 1993-08-27 Sony Corp ギャップ付き磁芯及びインダクタンス素子
CN101499364A (zh) * 2008-10-20 2009-08-05 天通浙江精电科技有限公司 磁芯及其集成电感
CN101552098A (zh) * 2008-12-26 2009-10-07 上海力申科学仪器有限公司 一种提高输出电压精确度的变压器
CN102709026A (zh) * 2012-02-01 2012-10-03 鸿康磁业电子(昆山)有限公司 一种改进的电感器
CN202601363U (zh) * 2012-05-26 2012-12-12 南安市南磁电子有限公司 Uui型集成电感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217761A (ja) * 1992-01-31 1993-08-27 Sony Corp ギャップ付き磁芯及びインダクタンス素子
CN101499364A (zh) * 2008-10-20 2009-08-05 天通浙江精电科技有限公司 磁芯及其集成电感
CN101552098A (zh) * 2008-12-26 2009-10-07 上海力申科学仪器有限公司 一种提高输出电压精确度的变压器
CN102709026A (zh) * 2012-02-01 2012-10-03 鸿康磁业电子(昆山)有限公司 一种改进的电感器
CN202601363U (zh) * 2012-05-26 2012-12-12 南安市南磁电子有限公司 Uui型集成电感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189415B2 (en) 2017-07-13 2021-11-30 Delta Electronics (Shanghai) Co., Ltd Magnetic element and switching power supply using the same
WO2022078769A1 (en) * 2020-10-15 2022-04-21 Tdk Electronics Ag Compact coupled inductor
WO2023279925A1 (zh) * 2021-07-07 2023-01-12 中兴通讯股份有限公司 一种电感器
CN113782320A (zh) * 2021-09-22 2021-12-10 台达电子企业管理(上海)有限公司 功率变换电路

Also Published As

Publication number Publication date
CN103730230B (zh) 2016-03-16
CN103730230A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2015106593A1 (zh) 磁集成电感器
KR101241564B1 (ko) 커플 인덕터, 커플 변압기 및 이를 이용한 커플 인덕터-변압기
EP2600512B1 (en) Resonant conversion circuit
CN209312558U (zh) 一种磁集成器件和dc-dc变换电路
JP4546439B2 (ja) 2トランス型dcdcコンバータの磁気回路
TW202004790A (zh) 磁性元件及開關電源裝置
US9219421B2 (en) Forward boost power converters and methods
CN201498341U (zh) 单相调压式磁控电抗器
JP2006333667A5 (zh)
CN105518810A (zh) 集成磁性组件及其组装方法
JP2020109843A (ja) 磁気集積デバイス及びdc−dc変換回路
CN107946045A (zh) 一种半匝绕组的可调漏感平面变压器
WO2023131322A1 (zh) 电感、功率因数校正电路及电源***
JP4124814B2 (ja) 入出力絶縁型dcーdcコンバータ
JP5934001B2 (ja) Dc−dcコンバータ
TWI593219B (zh) High light load efficiency flyback power converter
CN107546985B (zh) 开关电源变压器去磁方法
JP2019146359A (ja) スイッチング電源装置
JP3796647B2 (ja) Dc/dcコンバータ
CN208836010U (zh) 逆变电阻焊机电源
CN111415803A (zh) 一种磁集成器件和dc-dc变换电路
US10847297B1 (en) Low-core-loss transformer with magnetic pillar in center of four corner pillars
JP2013099086A (ja) スイッチング電源装置
Halder Improved coupled inductor loss optimization of the Flyback SMPS
JP6478434B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878603

Country of ref document: EP

Kind code of ref document: A1