WO2015105188A1 - Gas barrier film and electronic device comprising same - Google Patents

Gas barrier film and electronic device comprising same Download PDF

Info

Publication number
WO2015105188A1
WO2015105188A1 PCT/JP2015/050535 JP2015050535W WO2015105188A1 WO 2015105188 A1 WO2015105188 A1 WO 2015105188A1 JP 2015050535 W JP2015050535 W JP 2015050535W WO 2015105188 A1 WO2015105188 A1 WO 2015105188A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
film
base material
gas
Prior art date
Application number
PCT/JP2015/050535
Other languages
French (fr)
Japanese (ja)
Inventor
礼子 小渕
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015556851A priority Critical patent/JPWO2015105188A1/en
Priority to CN201580003895.7A priority patent/CN105899361A/en
Priority to KR1020167017968A priority patent/KR20160096230A/en
Publication of WO2015105188A1 publication Critical patent/WO2015105188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/04Treatment by energy or chemical effects using liquids, gas or steam
    • B32B2310/0445Treatment by energy or chemical effects using liquids, gas or steam using gas or flames
    • B32B2310/0463Treatment by energy or chemical effects using liquids, gas or steam using gas or flames other than air
    • B32B2310/0481Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/16Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a gas barrier film and an electronic device including the same.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for.
  • a gas barrier film By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
  • a gas barrier film having a high gas barrier property for example, a coating liquid containing polysilazane is applied on a substrate such as polyethylene terephthalate (PET), and the obtained polysilazane coating film is modified.
  • a gas barrier film having a gas barrier layer containing the resulting polysilazane modified product is known (see, for example, Patent Document 1).
  • the gas barrier film is formed by a so-called wet film forming method, and generally has a high gas barrier property since a uniform coating film is obtained.
  • a film is bonded to carrier glass or the like, and a device is formed by sequentially forming a functional layer or the like on the film by roll-to-roll or the like, and finally the device is formed from carrier glass or the like.
  • a so-called device forming process of separation is preferably employed because of its excellent productivity.
  • the process may be exposed to a high temperature environment of 300 ° C. or higher, and the film to be used needs to have heat resistance.
  • a polyimide base material is mentioned as a film provided with such heat resistance.
  • the conventional gas barrier film mainly uses a thermoplastic resin such as PET, it cannot be applied to a device forming process exposed to a high temperature environment.
  • an object of the present invention is to provide a gas barrier film that can be suitably applied to a device formation process.
  • the inventor used a polyimide base material as a base material, applied a gas barrier layer containing a polysilazane modified product obtained by modifying polysilazane as a gas barrier layer, and adhered the polyimide base material and the gas barrier layer. It has been found that the above-mentioned problems can be solved by setting the strength to a certain level or more, and the present invention has been completed.
  • the gas barrier film according to this embodiment has a polyimide base material and a gas barrier layer containing a polysilazane modified product.
  • the adhesive strength of a polyimide base material and a gas barrier layer is 1.3 N / cm or more, Preferably it is 2.7 N / cm or more, More preferably, it is 4 N / cm or more, More preferably, it is 5 N / cm or more.
  • the adhesive strength between the polyimide base material and the gas barrier layer is 1.3 N / cm or more, formation of an insulating film formed on the barrier surface is facilitated, and the value as a heat resistant base material having a barrier property is recognized.
  • the adhesive strength of a polyimide base material and a barrier layer is 50 N / cm or less, More preferably, it is 40 N / cm or less. When it is larger than 50 N / cm, it becomes difficult to smoothly transport various production lines, leading to problems in the manufacturing apparatus and a decrease in productivity.
  • the polyimide base material generally has excellent heat resistance, it can withstand high temperature exposure in the device forming process and can be used in the device forming process.
  • the polyimide substrate has very low adhesion to the gas barrier layer containing the polysilazane modified product in a high temperature environment. Therefore, when a gas barrier film including a polyimide base material and the gas barrier layer is applied to a device forming process, the polyimide base material and the gas barrier layer are peeled off when the device is separated from the carrier glass during the process or after the device formation. sell. As a result, a desired device cannot be formed.
  • the gas barrier film according to the present embodiment has a high adhesion strength even in a high temperature environment because the gas barrier layer containing the polyimide base material and the polysilazane modified product has a high adhesion strength. Can be prevented. As a result, it can be suitably applied to a device formation process.
  • adheresive strength between the polyimide base material and the gas barrier layer means the adhesive strength between the polyimide base material and the gas barrier layer. Therefore, even if another layer (for example, an adhesive layer) is interposed between the polyimide substrate and the gas barrier layer, the other layer (for example, other layer) is provided on the surface opposite to the surface on which the polyimide substrate is disposed. Even if the gas barrier layer is present, the adhesive force between the polyimide base material and the gas barrier layer is referred to as “adhesive strength between the polyimide base material and the gas barrier layer”. At this time, in this specification, the value measured by the method described in the examples is adopted as the value of “adhesive strength between the polyimide base material and the gas barrier layer”.
  • the water vapor permeability of the gas barrier film is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and more preferably 0.0001 g / (m 2 ⁇ 24 h) or less.
  • a value measured by a method based on JIS K 7129-1992 is adopted as the value of “water vapor permeability”. Measurement conditions are temperature: 60 ⁇ 0.5 ° C. and relative humidity (RH): 90 ⁇ 2%.
  • the polyimide substrate is generally a resin film obtained by polymerizing a monomer containing tetracarboxylic dianhydride and diamine.
  • the tetracarboxylic dianhydride is not particularly limited, and examples thereof include aliphatic tetracarboxylic dianhydrides and aromatic tetracarboxylic dianhydrides.
  • Examples of the aliphatic tetracarboxylic dianhydride include bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane.
  • aromatic tetracarboxylic dianhydride examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3 , 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, m-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4 ′-(2,2- Hexafluoroisopropylene) diphthalic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis
  • aromatic tetracarboxylic dianhydrides are preferable from the viewpoint of obtaining a polyimide base material having excellent chemical and physical properties, and biphenyltetracarboxylic dianhydrides. More preferably, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3, More preferably, it is 4′-biphenyltetracarboxylic dianhydride.
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • the diamine is not particularly limited, and examples thereof include aliphatic diamines and aromatic diamines.
  • aliphatic diamine examples include diaminobutane, diaminopentane, diaminohexane, diaminoheptane, diaminooctane, diaminononane, diaminodecane, diaminoundecane, diaminododecane, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,2 -Diaminocyclohexane, 3-methyl-1,4-diaminocyclohexane, 3-methyl-, 3-aminomethyl-, 5,5-dimethylcyclohexylamine, 1,3-bisaminomethylcyclohexane, bis (4,4'- Aminocyclohexyl) methane, bis (3,3′-methyl-4,4′-aminocyclohexyl) methane, bis (aminomethyl) norbornane, bis (aminomethyl
  • aromatic diamine examples include p-phenylenediamine, metaphenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4, 4'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'- Diaminobenzanilide, 1,4-bis (4-amin
  • aromatic diamines are preferable and p-phenylenediamine is more preferable from the viewpoint of obtaining a polyimide base material having excellent chemical and physical properties.
  • the above diamines may be used alone or in combination of two or more.
  • the polyimide base material is a polymer containing biphenyltetracarboxylic dianhydride and p-phenylenediamine as monomers because there is no volatile component that damages the barrier film when the film is exposed to high temperatures. It is preferable.
  • the polyimide base material can be obtained by polymerizing a monomer containing tetracarboxylic dianhydride and diamine. More specifically, (1) a polyamic acid is synthesized by reacting tetracarboxylic dianhydride and diamine in an organic solvent, and (2) a polyimide substrate is produced by imidizing the obtained polyamic acid. can do.
  • a polyamic acid can be synthesized by reacting a tetracarboxylic dianhydride and a diamine in an organic solvent.
  • the reaction is preferably performed by dissolving diamine in an organic solvent and gradually adding tetracarboxylic dianhydride while stirring the obtained diamine solution.
  • the organic solvent that can be used is not particularly limited, but amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide; ⁇ -butyrolactone, Cyclic ester solvents such as ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone; carbonate solvents such as ethylene carbonate and propylene carbonate; glycol solvents such as triethylene glycol; Phenolic solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol; acetophenone; 1,3-dimethyl-2-imidazolidinone; sulfolane; dimethyl sulfoxide and the like.
  • amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide
  • the molar ratio of tetracarboxylic dianhydride and diamine used in the reaction can be appropriately set according to the viscosity of the polyamic acid, but it should be 0.90 to 1.10. Is more preferable, and 0.95 to 1.05 is more preferable.
  • the reaction temperature is preferably 0 to 100 ° C.
  • the reaction time is preferably 1 to 72 hours.
  • a polyimide substrate can be produced by imidizing the polyamic acid obtained in (1) above.
  • the polyimide substrate can be produced by casting a solution containing polyamic acid on a support and heating.
  • the solution containing the polyamic acid contains a polyamic acid and an organic solvent. If necessary, it may further contain an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles and the like.
  • polyamic acid those obtained in the above (1) are used. Under the present circumstances, polyamic acid may be used independently or may be used in combination of 2 or more type.
  • the content of polyamic acid is preferably 10 to 30% by mass with respect to the total amount of the solution containing polyamic acid.
  • the imidization catalyst has a function of improving the physical properties (elongation, end tear resistance, etc.) of the polyimide film.
  • a substituted or unsubstituted nitrogen-containing heterocyclic compound and this N-oxide compound substituted or unsubstituted amino acid compound; Aromatic hydrocarbon compound which has a hydroxyl group; Aromatic heterocyclic Compounds.
  • Specific imidization catalysts include 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, Examples thereof include N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine and the like.
  • the amount of the imidization catalyst used is preferably 0.01 to 2 equivalents, more preferably 0.02 to 1 equivalents relative to the amic acid unit of the polyamic acid.
  • the organic phosphorus-containing compound is not particularly limited, but is monocaproyl phosphate ester, monooctyl phosphate ester, monolauryl phosphate ester, monomyristyl phosphate ester, monocetyl phosphate ester, monostearyl phosphate ester, triethylene Monophosphate ester of glycol monotridecyl ether, monophosphate ester of tetraethylene glycol monolauryl ether, monophosphate ester of diethylene glycol monostearyl ether, dicaproyl phosphate ester, dioctyl phosphate ester, dicapryl phosphate ester, dilauryl phosphate ester, dimyristyl Phosphate, dicetyl phosphate, distearyl phosphate, diethylene phosphate of tetraethylene glycol mononeopentyl ether Steal, phosphate esters such as diethylene ester of triethylene glycol monotridecyl ether
  • Amine salts include ammonia, monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, monoethanolamine, diethanolamine, triamine.
  • Examples include amine salts such as ethanolamine. These organic phosphorus-containing compounds may be used alone or in combination of two or more.
  • the inorganic fine particles are not particularly limited, but inorganic oxide powders such as fine particle titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder; fine particle nitriding Examples thereof include inorganic nitride powders such as silicon powder and titanium nitride powder; inorganic carbide powders such as silicon carbide powder; inorganic salt powders such as particulate calcium carbonate powder, calcium sulfate powder and barium sulfate powder. These inorganic fine particles may be used alone or in combination of two or more. In addition, in order to disperse
  • the support for casting a solution containing polyamic acid is not particularly limited, and a known support such as a stainless steel substrate or a stainless steel belt can be used. At this time, the support is preferably smooth.
  • the support is preferably an endless support such as an endless belt from the viewpoint of enabling continuous production.
  • the method for casting the solution containing polyamic acid is not particularly limited, but is preferably extrusion coating or melt coating.
  • a solution containing a surface treatment agent may be applied to one side or both sides of the obtained self-supporting coating film as necessary.
  • the process of the polyimide base material by the said surface treating agent is not contained in the "surface treatment of a polyimide base material" mentioned later.
  • the solution containing the surface treatment agent contains a surface treatment agent and an organic solvent.
  • the surface treatment agent is not particularly limited, but silane coupling agents, borane coupling agents, aluminum coupling agents, aluminum chelating agents, titanate coupling agents, iron coupling agents, copper coupling agents and the like. Can be mentioned. Of these, silane coupling agents and titanate coupling agents are preferably used.
  • the silane coupling agent is not particularly limited, but epoxy such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.
  • Silane coupling agents vinyl silane coupling agents such as vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; acrylic silane cups such as ⁇ -methacryloxypropyltrimethoxysilane Ring agent: N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -Aminopropyl Examples include aminosilane coupling agents such as trimethoxysilane; ⁇ -mercaptopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, and the like.
  • the titanate coupling agent is not particularly limited, but is isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctyl phosphite) titanate, tetra ( 2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyltricumyl Examples thereof include phenyl titanate.
  • an aminosilane coupling agent such as ⁇ -aminopropyl-triethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyl-triethoxysilane, N- (aminocarbonyl).
  • the above-mentioned surface treatment agents may be used alone or in combination of two or more.
  • the content of the surface treatment agent in the solution containing the surface treatment agent is not particularly limited, but is preferably 0.5% by mass or more with respect to the total amount of the solution containing the surface treatment agent, and is 1 to 100% by mass. More preferred is 3 to 60% by mass, still more preferred is 5 to 55% by mass.
  • the organic solvent may be the same as the organic solvent used for the synthesis of the polyamic acid described above.
  • Examples of the coating method having a self-supporting solution containing a surface treatment agent include a gravure coating method, a spin coating method, a silk screen method, a dip coating method, a spray coating method, a bar coating method, and a knife coating method. And a known coating method such as a roll coating method, a blade coating method, and a die coating method.
  • the amount of application of the solution containing the surface treatment agent to the coating film having self-supporting property is not particularly limited, but is preferably 1 to 50 g / m 2 , more preferably 2 to 30 g / m 2. Particularly preferred is 3 to 20 g / m 2 .
  • imidation of polyamic acid is performed by heating the obtained coating film having self-supporting property, or the coating film obtained by applying a solution containing the coating film having self-supporting property and the surface treatment agent. And a polyimide substrate can be produced.
  • the heating temperature for imidization is not particularly limited as long as imidization proceeds, but it is preferably 100 to 550 ° C, more preferably 100 to 400 ° C.
  • the heating is preferably performed stepwise.
  • the heating is performed at 100 to 170 ° C. as the primary heat treatment, the heating is performed at 170 to 220 ° C. as the second heat treatment, and 220 is performed as the third heat treatment.
  • Heating at ⁇ 400 ° C. and heating at 400 ⁇ 550 ° C. can be performed as the fourth heat treatment.
  • the film When heating, the film may be stretched as necessary. Thereby, physical properties, such as a thermal expansion coefficient of a polyimide base material, can be controlled suitably.
  • the stretching method may be biaxial stretching such as sequential biaxial stretching and simultaneous biaxial stretching, or uniaxial stretching.
  • the draw ratio is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the imidation of the polyamic acid can be performed by chemical imidation instead of or in addition to the above heating.
  • a solution obtained by further adding a dehydrating agent and a catalyst to the solution containing the polyamic acid described above is cast on a support and heated. It can be carried out.
  • the dehydrating agent is not particularly limited, and examples thereof include aliphatic acid anhydrides, aromatic acid anhydrides, alicyclic acid anhydrides, and heterocyclic acid anhydrides. Specific examples include acetic anhydride, propionic anhydride, butyric anhydride, formic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, picolinic anhydride, and the like. Of these, acetic anhydride is preferably used. In addition, the said dehydrating agent may be used independently or may be used in combination of 2 or more type.
  • the addition amount of the dehydrating agent is preferably 0.5 mol or more per 1 mol of the amic acid bond of the polyamic acid.
  • the catalyst is not particularly limited, and examples thereof include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. Specific examples include trimethylamine, triethylamine, dimethylaniline, pyridine, ⁇ -picoline, isoquinoline, quinoline and the like. Of these, isoquinoline is preferably used.
  • the amount of the catalyst added is preferably 0.1 mol or more with respect to 1 mol of the amic acid bond of the polyamic acid.
  • the polyimide base material can be produced by casting and heating to the support in the same manner as described above.
  • polyimide base material you may use the well-known polyimide base material manufactured by making tetracarboxylic dianhydride and diisocyanate react, for example besides what was mentioned above.
  • the film thickness of the polyimide base material is preferably 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m.
  • the linear expansion coefficient of the polyimide base material is preferably 20 ppm / K or less, and more preferably 10 ppm / K or less.
  • a gas barrier film is applied to an electronic device such as a liquid crystal display device (LCD panel) such that the linear expansion coefficient of the polyimide base material is 20 ppm / K or less, the occurrence of color misregistration with respect to environmental temperature changes, etc. It is preferable because deformation can be suppressed.
  • the value measured by the following method shall be employ
  • the polyimide base material preferably has a visible light (400 to 700 nm) light transmittance of 80% or more, and more preferably 90% or more.
  • a visible light (400 to 700 nm) light transmittance 80% or more
  • a gas barrier film is applied to an electronic device such as a liquid crystal display (LCD panel)
  • LCD panel liquid crystal display
  • light transmittance means a spectrophotometer (visible ultraviolet spectrophotometer UV-2500PC: manufactured by Shimadzu Corporation), which uses visible light in accordance with the ASTM D-1003 standard. It means the average transmittance in the visible light range, which is calculated by measuring the total transmitted light amount with respect to the incident light amount.
  • the polyimide base material has a 10-point average surface roughness Rz defined by JIS B 0601 (2001) of preferably 1 to 1500 nm, more preferably 5 to 400 nm, and further preferably 300 to 350 nm. preferable.
  • the polyimide base material preferably has a center line average roughness Ra defined by JIS B 0601 (2001) of 0.5 to 12 nm, and more preferably 1 to 8 nm. It is preferable that Rz and Ra are within the above ranges since the coating property of the coating liquid is improved. If necessary, the polyimide base material may be polished on one side or both sides to improve smoothness.
  • the elastic modulus of the polyimide base material is preferably 1 GPa or more, more preferably 2 to 10 GPa. It is preferable for the elastic modulus of the polyimide base material to be 1 GPa or more because it has high dimensional stability and can be suitably applied to a device formation step. In the present specification, a value measured in accordance with ASTM D882-97 is adopted as the value of “elastic modulus”.
  • the gas barrier layer contains a polysilazane modified product.
  • additives such as amine catalysts and metal catalysts may be included as necessary.
  • the film thickness of the gas barrier layer is preferably 10 to 500 nm, and more preferably 20 to 300 nm.
  • the thickness of the gas barrier layer is preferably 10 nm or more, since the thickness can be made uniform and high gas barrier properties can be obtained.
  • it is preferable that the thickness of the gas barrier layer is 500 nm or less because cracks can be suppressed.
  • the water vapor permeability of the gas barrier layer is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and more preferably 1 ⁇ 10 ⁇ 4 g / (m 2 ⁇ 24 h) or less.
  • the polysilazane modified product means a modified product obtained by modifying polysilazane.
  • the polysilazane modified product contains silicon oxide obtained by modifying polysilazane.
  • silicon nitride and / or silicon oxynitride obtained by modifying polysilazane may be included.
  • Polysilazane is a polymer having a bond such as Si—N, Si—H, or NH in its structure.
  • the polysilazane is not particularly limited, but it is preferably a compound that is converted to silica by being ceramicized at a relatively low temperature in consideration of performing the modification treatment, for example, as described in JP-A-8-112879.
  • a compound having a main skeleton composed of units represented by the following general formula is preferable.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group. .
  • the polysilazane is particularly preferably perhydropolysilazane (hereinafter, also referred to as “PHPS”) in which all of R 1 , R 2 , and R 3 are hydrogen atoms from the viewpoint of the denseness of the resulting gas barrier layer.
  • PHPS perhydropolysilazane
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight.
  • Mn number average molecular weight
  • a commercially available product may be used, and examples of the commercially available product include NN120, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (manufactured by AZ Electronic Materials Co., Ltd.). .
  • a silicon alkoxide-added polysilazane obtained by reacting a polysilazane represented by the above general formula with a silicon alkoxide (for example, JP-A-5-238827), glycidol is reacted.
  • glycidol-added polysilazane eg, JP-A-6-122852
  • alcohol-added polysilazane eg, JP-A-6-240208
  • metal carboxylate Metal silicic acid salt-added polysilazane for example, JP-A-6-299118
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex
  • metal Add fine particles The resulting metal particles added polysilazane (e.g., JP-A-7-196986 publication), and the like.
  • Polysilazane is converted by modification to produce silicon oxide.
  • the modification mechanism of polysilazane to silicon oxide includes modification of polysilazane by hydrolysis of water. Specifically, the Si—N bond of polysilazane is hydrolyzed with water, whereby the polymer main chain is cleaved to form Si—OH. When two Si—OH are dehydrated and condensed under the reforming conditions, Si—O—Si bonds are formed and cured to produce silicon oxide.
  • modification to silicon oxide by the direct oxidation of polysilazane can occur together with or instead of the modification mechanism to silicon oxide.
  • polysilazane is irradiated with vacuum ultraviolet light
  • H or N in the polysilazane is directly replaced with O by vacuum ultraviolet light
  • ozone activated by the vacuum ultraviolet light, active oxygen, or the like that is, Forming Si—O—Si bonds (without going through silanol) and curing results in silicon oxide (photon action called photon process).
  • modification to silicon nitride and / or silicon oxynitride may occur in addition to or instead of modification of the polysilazane to silicon oxide by direct oxidation.
  • the Si—H bond or N—H bond in the polysilazane is relatively easily broken by excitation or the like, and recombines as Si—N in an inert atmosphere. Thereby, silicon nitride and silicon oxynitride can be generated.
  • VUV light ultraviolet light having a high energy with a wavelength of 200 nm or less.
  • the gas barrier layer may contain an amine catalyst and / or a metal catalyst.
  • the amine catalyst is not particularly limited, but N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetra And methyl-1,3-diaminopropane and N, N, N ′, N′-tetramethyl-1,6-diaminohexane.
  • the metal catalyst is not particularly limited, and examples thereof include platinum compounds such as platinum acetylacetonate, palladium compounds such as palladium propionate, and rhodium compounds such as rhodium acetylacetonate.
  • the modification of polysilazane can be promoted by adding the amine catalyst and the metal catalyst.
  • a gas barrier layer containing the modified polysilazane is disposed on the polyimide substrate.
  • two or more gas barrier layers may be laminated (that is, a substrate-gas barrier layer-gas barrier layer, etc.).
  • another gas barrier layer may be formed on the surface of the gas barrier layer (that is, base material-gas barrier layer-other gas barrier layer).
  • two or more other gas barrier layers may be laminated (ie, base material-gas barrier layer-other gas barrier layer-other gas barrier layer, etc.).
  • the other gas barrier layer is not particularly limited, and may be a known gas barrier layer, for example, a gas barrier layer formed by a dry film forming method.
  • the gas barrier layer formed by the dry film forming method includes zinc disulfide, aluminum oxide, indium oxide, tin oxide, gallium oxide, indium tin oxide (ITO), aluminum-added zinc oxide (AZO), and zinc-tin composite oxide.
  • Inorganic materials such as (ZTO), aluminum nitride, and silicon carbide may be included.
  • the film thickness of the gas barrier layer formed by the dry film forming method is preferably 10 to 500 nm, and more preferably 20 to 300 nm.
  • the water vapor permeability of the gas barrier layer formed by the dry film formation method is preferably 0.1 g / (m 2 ⁇ 24 h) or less, preferably 0.0001 to 0.01 g / (m 2 ⁇ 24 h). More preferably.
  • the gas barrier layer containing the polysilazane modified product according to the present embodiment is preferably provided with an adhesive means in order to realize high adhesive strength with the polyimide base material.
  • the adhesive means is not particularly limited as long as the adhesive strength is improved, and examples thereof include arrangement of an adhesive layer and surface treatment of a polyimide base material. These bonding means may be used alone or in combination of two or more.
  • the adhesive layer is usually disposed between the polyimide substrate and the gas barrier layer.
  • the adhesive layer the adhesive strength of a polyimide base material and a gas barrier layer can improve.
  • the adhesive layer includes an adhesive.
  • examples of the adhesive include metal oxides and chemically reactive adhesives.
  • metal oxide examples include aluminum oxide such as aluminum oxide (Al 2 O 3 ); titanium oxide such as titanium oxide (TiO 2 ); tin oxide such as tin oxide (SnO 2 ); cerium oxide (CeO 2). ) And the like; zinc oxides such as zinc oxide (ZnO); and silicon oxides such as silicon oxide (SiO 2 ). These metal oxides may be used alone or in combination of two or more.
  • a contact bonding layer using a metal oxide when forming a contact bonding layer using a metal oxide, it can usually be performed by a physical vapor deposition method, a chemical vapor deposition method, or these combinations.
  • Examples of the physical vapor deposition method include vapor deposition methods such as resistance heating method, electron beam vapor deposition method, molecular beam epitaxy method; ion plating method; sputtering method and the like.
  • Examples of the chemical vapor deposition include thermal CVD, catalytic chemical vapor deposition, photo CVD, and plasma CVD.
  • the chemical reaction type adhesive includes a bone agent, a binder, and a curing agent, and is mainly classified into a silicate type adhesive, a phosphate type adhesive, and a colloidal silica type adhesive.
  • oxides, nitrides or carbides having high fire resistance such as alumina, silica, zirconia, spinel and the like can be used as the bone agent.
  • alkali metal silicate can be used as the binder.
  • metal oxides such as ZnO and MgO, hydroxides, phosphates, borates, silicofluorides, and the like can be used.
  • the same adhesive as the silicate adhesive can be used as a bone agent.
  • the binder metal phosphates such as aluminum phosphate and magnesium phosphate can be used.
  • metal oxide, magnesium silicate, strontium titanate, or the like can be used as the curing agent.
  • colloidal silica-based adhesive the same silicate-based adhesive as that described above can be used.
  • binder colloidal silica (particle size: 10 to 100 ⁇ m) can be used.
  • a metal oxide or the like can be used as the curing agent.
  • a metal oxide it is preferable to use a metal oxide, and it is more preferable to use aluminum oxide, titanium oxide, tin oxide, cerium oxide, or zinc oxide.
  • the film thickness of the adhesive layer is preferably 50 nm or less, and more preferably 5 to 30 nm. Note that the film thickness of the adhesive layer is preferably a thin film, and therefore does not show or hardly shows gas barrier properties.
  • the surface of the polyimide base material is preferably surface-treated.
  • Specific examples of the surface treatment include corona treatment, plasma treatment, UV ozone treatment, and excimer treatment, preferably plasma treatment, UV ozone treatment, and excimer treatment.
  • the surface of the polyimide base material can be modified and cleaned.
  • an active group such as a hydroxyl group, a carboxy group, or an amino group can be introduced on the surface of the polyimide substrate.
  • the wettability can be improved by the washing.
  • the bonding strength and adhesion with the gas barrier layer disposed on the polyimide base material can be improved, and the adhesive strength between the polyimide base material and the gas barrier layer can be improved.
  • the adhesive strength between the polyimide base material and the gas barrier can be improved by an anchor effect or the like.
  • Corona treatment is a method for surface modification using corona discharge that is excited by applying an alternating high voltage to a pair of electrodes in an atmospheric pressure state.
  • Plasma treatment is a method in which oxygen gas or a mixed gas of oxygen gas and inert gas is ionized by arc discharge, and surface modification is performed using the plasma gas generated thereby.
  • inert gas examples include nitrogen gas, argon gas, and helium gas.
  • a device such as direct current glow discharge, high frequency discharge, or microwave discharge can be used.
  • the supply amount of oxygen gas is preferably 1 to 50 sccm (0 ° C., 1 atm standard), more preferably 10 to 30 sccm.
  • the vacuum degree of the vacuum chamber is preferably 0.5 to 50 Pa, and more preferably 1 to 10 Pa.
  • the applied power from the plasma generation power source is preferably 50 to 500 W.
  • the frequency of the power source for generating plasma is preferably 5 to 50 kHz, and more preferably 10 to 20 kHz.
  • UV ozone treatment is a method in which ultraviolet rays (UV) are irradiated, oxygen in the air is converted into ozone, and surface modification is performed using ozone and ultraviolet rays.
  • UV ultraviolet rays
  • the light source used for UV ozone treatment includes a low-pressure mercury lamp (185 nm, 254 nm).
  • the irradiation time is preferably 0.5 to 30 minutes, and more preferably 0.5 to 10 minutes.
  • Excimer treatment is a method in which excimer light is irradiated, oxygen in the air is converted to ozone, and surface modification is performed using ozone and excimer light.
  • Examples of the light source used for the excimer treatment include a Xe excimer lamp (172 nm), a krypton lamp (146 nm), and an argon lamp (126 nm). Among these, it is preferable to use a Xe excimer lamp.
  • the illuminance is preferably 1 mW / cm 2 to 100 kW / cm 2 , and more preferably 100 mW / cm 2 to 10 W / cm 2 .
  • the exposure integrated amount is preferably 10 to 1000 mJ / cm 2 , and more preferably 50 to 500 mJ / cm 2 .
  • the irradiation time is preferably 0.1 to 500 seconds, and more preferably 0.1 to 60 seconds.
  • the manufacturing method of a gas barrier film includes the process of forming a gas barrier layer on a polyimide base material. In addition, as needed, the process of preparing a base material, the process of forming an contact bonding layer, the process of forming another gas barrier layer, etc. are included.
  • the method for producing a gas barrier film includes a step of preparing a substrate, a step of forming an adhesive layer, a step of forming a gas barrier layer, and a step of forming another gas barrier layer in this order.
  • This step includes preparing a polyimide substrate. If necessary, a surface treatment of the polyimide base material may be included.
  • Preparation of a polyimide base material can be performed by manufacturing a polyimide base material itself. Moreover, you may purchase commercially available polyimide.
  • the method for producing the polyimide base material is not particularly limited, and the above description can be appropriately referred to.
  • a surface treatment of the polyimide substrate can be performed.
  • the surface treatment include plasma treatment, UV ozone treatment, and excimer treatment as described above.
  • the specific surface treatment method is not particularly limited, and a known technique can be used. For example, the above description can be referred to appropriately.
  • Step of forming an adhesive layer This step includes forming an adhesive layer on the polyimide substrate.
  • the method for forming the adhesive layer a known method can be appropriately employed depending on the adhesive to be used.
  • an adhesive layer can be formed by physical vapor deposition or chemical vapor deposition.
  • the adhesive layer can be formed by applying the chemically reactive adhesive on the polyimide substrate, drying and heating.
  • Step of forming gas barrier layer This step includes applying a coating liquid containing polysilazane to a polyimide base material (on the adhesive layer when an adhesive layer is formed on the polyimide base material), and modifying the polysilazane. Thereby, the gas barrier layer containing the polysilazane modified product is formed.
  • coating liquid containing polysilazane contains polysilazane and a solvent.
  • additives such as an amine catalyst and a metal catalyst may be included as necessary.
  • Polysilazane Polysilazane can be used in the same manner as described above, and the description thereof is omitted here.
  • the content of polysilazane in the coating solution varies depending on the desired film thickness of the gas barrier layer, the pot life of the coating solution, etc., but is preferably 0.2 to 35% by mass with respect to the total amount of the coating solution.
  • the solvent is not particularly limited as long as it does not react with polysilazane, and a known solvent can be used.
  • a known solvent can be used.
  • Specific examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; ether solvents such as aliphatic ethers and alicyclic ethers.
  • the hydrocarbon solvent include pentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, methylene chloride, trichloroethane, and the like.
  • Examples of ether solvents include dibutyl ether, dioxane, and tetrahydrofuran. These solvents can be used alone or in admixture of two or more.
  • Amine catalyst and metal catalyst As the amine catalyst and the metal catalyst, the same ones as described above can be used, so that the description thereof is omitted here.
  • the coating solution contains an amine catalyst and / or a metal catalyst
  • the amine catalyst and / or metal catalyst is preferably contained in an amount of 0.1 to 10% by mass with respect to polysilazane.
  • the amine catalyst is more preferably contained in an amount of 0.5 to 5% by mass based on the polysilazane from the viewpoint of improving the coating property and shortening the reaction time.
  • the content of the amine catalyst is preferably less than 2% by mass with respect to polysilazane. It is preferable that the content of the amine catalyst is less than 2% by mass because components that do not contribute to the gas barrier property itself in the gas barrier layer are reduced and high gas barrier property is obtained. Further, when heating is included in the polysilazane modification method described later, the entire coating film is modified. Therefore, in such a case, when the content of the amine catalyst is less than 2% by mass, the modification rate of the polysilazane is reduced, and the modification proceeds while following the base material. Since the gas barrier layer tends to take a thermodynamically stable form, the adhesion between the polyimide base material and the gas barrier layer is improved, and the occurrence of cracks in the gas barrier layer can be prevented.
  • a coating liquid is apply
  • a coating liquid can be apply
  • a coating method of the coating solution a known method can be adopted as appropriate. Specific examples include spin coating methods, roll coating methods, flow coating methods, ink jet methods, spray coating methods, printing methods, dip coating methods, cast film forming methods, bar coating methods, and gravure printing methods.
  • the coating amount of the coating liquid is not particularly limited, but can be appropriately adjusted so as to have the desired thickness of the gas barrier layer.
  • Modification of polysilazane The modification method of polysilazane is not particularly limited, and a known method can be applied. Specific methods for modifying polysilazane include ultraviolet light irradiation, plasma irradiation, heating, and combinations thereof.
  • the irradiation of the ultraviolet light can be performed by irradiating the ultraviolet light by a known method.
  • Polysilazane can be modified by irradiation with ultraviolet light.
  • irradiation with ultraviolet light includes setting an environment in which ultraviolet light is irradiated onto a coating film obtained by applying a coating liquid. Therefore, “irradiation with ultraviolet light” includes standing the coating film in an environment such as a fluorescent lamp or a yellow lamp. Of these, irradiation with ultraviolet light is preferably performed in an oxidizing gas atmosphere and in a low humidity environment.
  • the wavelength of the ultraviolet light to be irradiated is not particularly limited, but is preferably 10 to 450 nm, more preferably 100 to 300 nm, further preferably 100 to 200 nm, and particularly preferably 100 to 180 nm. preferable.
  • the ultraviolet light to be irradiated is preferably vacuum ultraviolet light (ultraviolet light having a wavelength of 200 nm or less) from the viewpoint of proceeding the conversion reaction at a lower temperature and in a shorter time.
  • the polysilazane is directly oxidized without passing through silanol by irradiation with vacuum ultraviolet light (the action of photons called a photon process), there is little volume change in the oxidation process, and the defect density is high.
  • a film containing a small amount of silicon oxide, silicon nitride, silicon oxynitride, or the like can be obtained.
  • ozone or active oxygen having high oxidation ability is generated from oxygen or the like present in the reaction atmosphere, and polysilazane reforming treatment can be performed by the ozone or active oxygen.
  • denser films such as silicon oxide, silicon nitride, and silicon oxynitride can be obtained. Therefore, the gas barrier layer obtained by modifying polysilazane by irradiation with vacuum ultraviolet light can have high barrier properties.
  • the ultraviolet light source is not particularly limited, a low-pressure mercury lamp, a deuterium lamp, a xenon excimer lamp, a metal halide lamp, an excimer laser, or the like can be used. Further, as described above, a fluorescent lamp, a yellow lamp, or the like may be used. Among these, it is preferable to use a rare gas excimer lamp such as a xenon excimer lamp.
  • the oxygen concentration during vacuum ultraviolet light irradiation is preferably 0.5% by volume or less, and more preferably 0.1% by volume or less. It is preferable that the oxygen concentration be 0.5% by volume or less because the replacement time between the atmosphere and oxygen can be shortened.
  • the method for adjusting the oxygen concentration and the water vapor concentration is not particularly limited, and examples thereof include a method of reducing the pressure in the apparatus and a method of gas flow. Among these, it is preferable to adjust the oxygen concentration and the water vapor concentration by a method of reducing the pressure in the apparatus.
  • the pressure is reduced from atmospheric pressure to 100 Pa or less, more preferably 20 Pa or less using a vacuum pump.
  • an environment excited by plasma can be obtained by introducing a predetermined gas and setting a predetermined pressure.
  • polysilazane can be modified by the heating.
  • the heating method is not particularly limited, and the method of heating the coating film by contacting the substrate with a heating element such as a heat block, the method of heating the atmosphere by an external heater such as a resistance wire, and the like of an IR heater And a method using light in the infrared region. Moreover, it is good also as a high temperature environment in a device formation process. That is, a film in which at least a part of the polysilazane in the gas barrier layer is not modified may be manufactured and applied to the device forming process, and at least a part of the unmodified polysilazane may be modified in the process. These methods can be appropriately selected from the viewpoint of the smoothness of the coating film.
  • the temperature of the heat treatment is not particularly limited, but is preferably 50 to 200 ° C, more preferably 80 to 150 ° C.
  • the heating time is preferably 1 second to 10 hours, more preferably 10 seconds to 1 hour.
  • the modification of polysilazane is preferably a combination of ultraviolet light irradiation or plasma irradiation and heat treatment. Modification can be promoted by combining ultraviolet irradiation or plasma irradiation and heat treatment.
  • the film thickness, density, etc. of the gas barrier layer obtained by the above modification treatment are the coating conditions, the intensity of ultraviolet light, the irradiation time, the wavelength (light energy density), the irradiation method, the plasma irradiation method, the gas type, and the pressure. It is possible to control by appropriately selecting the frequency of the power source, the input power density, the heating temperature, and the like.
  • the film thickness, density, etc. of the gas barrier layer can be controlled by appropriately selecting the irradiation method of ultraviolet light from continuous irradiation, irradiation divided into a plurality of times, and so-called pulse irradiation, etc., in which the plurality of times of irradiation is short. sell.
  • the extent of the modification treatment can be confirmed by determining each atomic composition ratio of silicon (Si) atoms, nitrogen (N) atoms, oxygen (O) atoms, etc. by XPS surface analysis of the formed gas barrier layer. .
  • the modification of polysilazane does not occur only at the time of the above-mentioned heating, ultraviolet light irradiation, or plasma irradiation, but can occur after the coating liquid is applied on the polyimide substrate.
  • a polysilazane modified product containing silicon oxide can be obtained by modifying polysilazane by methods such as ultraviolet light irradiation, plasma irradiation, heating, and combinations thereof.
  • the modification includes irradiation with vacuum ultraviolet light
  • a polysilazane modified product containing silicon nitride and / or silicon oxynitride together with silicon oxide can be obtained.
  • the step of forming another gas barrier layer includes forming another gas barrier layer on the gas barrier layer containing the polysilazane modified product.
  • the other gas barrier layer is not particularly limited as described above, and examples thereof include a known gas barrier layer, for example, a gas barrier layer formed by a dry film forming method.
  • a method of forming another gas barrier layer by a dry film forming method will be described.
  • the dry film forming method examples include physical vapor deposition and chemical vapor deposition.
  • the physical vapor deposition method is a method in which a thin film of a target substance is deposited on the surface of the substance by a physical method in a gas phase, and a vapor deposition method (resistance heating method, electron beam vapor deposition method, molecular beam epitaxy method). , Ion plating method, sputtering method and the like.
  • the chemical vapor deposition method is a method in which a raw material gas containing a target thin film component is supplied onto a substrate or the like, and the film is formed by a chemical reaction on the substrate surface or in the gas phase. It refers to a method of deposition, and examples include thermal CVD, catalytic chemical vapor deposition, photo CVD, and plasma CVD. Of these, the sputtering method and the plasma CVD method are preferably used, and the plasma CVD method is more preferably used.
  • a plasma discharge in a space between a plurality of film forming rollers it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and a film is applied to each of the pair of film forming rollers. More preferably, the plasma is generated by discharging between the pair of film forming rollers.
  • the plasma is generated by discharging between the pair of film forming rollers.
  • the film formation rate can be doubled, and a film having a substantially identical structure can be formed.
  • the film forming gas used in such a plasma CVD method preferably contains an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the other gas barrier layer formed by the dry film forming method is preferably a layer formed by a continuous film forming process.
  • an apparatus that can be used when forming another gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source. It is preferable that the apparatus has a configuration capable of discharging between the film forming rollers. For example, when the manufacturing apparatus shown in FIG. 1 is used, a roll-to-roll operation is performed using the plasma CVD method. It is also possible to manufacture by a method.
  • FIG. 1 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for forming a gas barrier layer by this method.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • the gas barrier layer can be formed by appropriately adjusting the transport speed. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer is formed on the surface of the base material on the film forming roller 39 and the surface of the base material on the film forming roller 40 by plasma CVD. It is formed by.
  • the substrate and the like are conveyed by the delivery roller 32 and the film formation roller 39, respectively, so that they are formed on the surface of the substrate and the like by a roll-to-roll continuous film formation process.
  • a gas barrier layer is formed.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film-forming gas used for forming the other gas barrier layer can be appropriately selected and used according to the material of the other gas barrier layer to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of other gas barrier layers obtained.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the gas barrier layer.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used alone or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a reaction gas for forming a nitride can be used in combination.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary to completely react the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, it is excellent in that excellent barrier properties and bending resistance can be obtained by the other gas barrier layers to be formed. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such applied power is 100 W or more, generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the film surface during film formation can be suppressed. It is possible to suppress an increase in temperature. Therefore, it is excellent in that wrinkles can be prevented during film formation without losing heat to the film.
  • other gas barrier layers are formed by plasma CVD using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. To do.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially in roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the electronic device containing an electronic device main body and the above-mentioned gas barrier film is provided.
  • the electronic device body is not particularly limited, and examples thereof include known electronic device bodies to which a gas barrier film can be applied.
  • a solar cell (PV), a liquid crystal display element (LCD), an organic electroluminescence (EL) element, etc. are mentioned.
  • the organic EL element can have a substrate, a negative electrode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, a positive electrode, and the like.
  • the gas barrier film described above can be used as a substrate, a sealing material, and the like.
  • a base material when used for a solar cell, for example, it can be applied as a resin support in which a transparent conductive thin film such as ITO is provided as a transparent electrode on a gas barrier film.
  • the gas barrier film is incorporated in the electronic device body.
  • a sealing material for example, an electronic device in which a liquid crystal display element is sealed can be obtained.
  • the gas barrier film according to the present invention is preferably used for sealing an electronic device body as a sealing material.
  • Example 1 ⁇ Manufacture of gas barrier film> [Example 1]
  • Substrate UPILEX-50SGA polyimide film, manufactured by Ube Industries, Ltd.
  • substrates having the same size were used.
  • UV-1 manufactured by Samco Corporation
  • the substrate surface is subjected to ozone treatment for 3 minutes (substrate temperature: 80 ° C., supply gas: air) to treat the surface of the substrate. Went.
  • a coating liquid containing polysilazane was prepared as follows.
  • an uncatalyzed perhydropolysilazane 20 wt% dibutyl ether solution (NN120-20, manufactured by AZ Electronic Materials Co., Ltd.) was converted into an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diamino). Hexane) was mixed with a 20% by weight dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 5% by weight of perhydropolysilazane.
  • a coating liquid containing polysilazane was prepared as a dibutyl ether solution containing 1 wt% of the amine catalyst with respect to perhydropolysilazane.
  • the prepared coating liquid containing polysilazane was applied to a surface-treated polyimide base material to form a coating film. At this time, the application was performed immediately after the surface treatment of the substrate.
  • a coating liquid containing polysilazane was applied onto the surface-treated substrate by spin coating, and then dried at 80 ° C. for 1 minute to form a coating film.
  • the obtained coating film was irradiated with vacuum ultraviolet (VUV) light having a main peak emission wavelength of 172 nm under the following conditions to form a gas barrier layer containing a polysilazane modified product having a thickness of 250 nm.
  • VUV vacuum ultraviolet
  • Vacuum ultraviolet (VUV light) irradiation treatment conditions Vacuum ultraviolet irradiation device: Stage movable xenon excimer irradiation device (MD excimer, MECL-M-1-200) Illuminance: 140 mW / cm 2 (172 nm) Stage temperature: 100 ° C Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume Stage movable speed and number of times of conveyance: 15 times of conveyance at 10 mm / second Excimer light exposure integrated amount: 6500 mJ / cm 2 .
  • the sample was installed so that the gap (Gap) between the lamp and the sample was 3 mm. Further, the irradiation time was changed by adjusting the movable speed of the movable stage. Regarding the adjustment of oxygen concentration during irradiation with vacuum ultraviolet rays (VUV light), the flow rate of nitrogen gas and oxygen gas introduced into the irradiation chamber is measured with a flow meter, and the nitrogen gas / oxygen gas flow ratio of the gas introduced into the chamber is measured. It was adjusted by controlling.
  • VUV light vacuum ultraviolet rays
  • gas barrier layer (second layer) A gas barrier layer (second layer) having a thickness of 40 nm was formed on the gas barrier layer (first layer) by the same method as in (2) above. Further, heat treatment was performed at 250 ° C. for 60 minutes to produce a gas barrier film in which a polyimide substrate (ozone treatment) -gas barrier layer-gas barrier layer was laminated in this order.
  • the peeling strength of the polyimide base material and the gas barrier film (first layer) was measured according to the 180 degree peeling method of JIS Z0237: 2009.
  • a predetermined adhesive tape was attached to the outermost gas barrier layer (second gas barrier layer) of the produced gas barrier film.
  • the end of the tape was pulled at a speed of 30 mm / min using FGS-50E (manufactured by Nidec Shinpo Co., Ltd.), which is an electric vertical force gauge stand, and the polyimide base material, the gas barrier layer, It was confirmed whether or not.
  • the peel strength was measured according to the type of pressure-sensitive adhesive tape used.
  • the used adhesive tape is as follows; (A) Sealing masking tape No. 2541 (Adhesive strength: 1.3 N / cm, manufactured by Nichiban Co., Ltd.) (B) Cellotape (registered trademark) No. 5511 (Adhesive strength: 2.7 N / cm, manufactured by Nichiban Co., Ltd.) (C) Cellotape (registered trademark) No. 405AP-24 (Adhesive strength: 4 N / cm, manufactured by Nichiban Co., Ltd.) (D) Polysper tape (5.9 N / m, manufactured by Sekisui Chemical Co., Ltd.).
  • the obtained gas barrier film did not peel off the polyimide substrate and the gas barrier film with the adhesive tape (a), but peeled off with the adhesive tape (b). Therefore, the adhesive strength is more than 1.3 N / cm and less than 2.7 N / cm.
  • Base material 40 ⁇ m thick neoprim (polyimide film, polyimide consisting of cyclohexanetetracarboxylic acid or cyclohexanetetracarboxylic dianhydride and pyromellitic acid or pyromellitic dianhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd.) used.
  • neoprim polyimide film, polyimide consisting of cyclohexanetetracarboxylic acid or cyclohexanetetracarboxylic dianhydride and pyromellitic acid or pyromellitic dianhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Excimer treatment was performed by irradiating the substrate surface with excimer light in the presence of oxygen using a stage movable xenon excimer irradiation device (MDCL-M-1-200, manufactured by MD Excimer).
  • MDCL-M-1-200 stage movable xenon excimer irradiation device
  • Vacuum ultraviolet (VUV light) irradiation treatment conditions Vacuum ultraviolet irradiation device: Stage movable xenon excimer irradiation device (MD excimer, MECL-M-1-200) Illuminance: 140 mW / cm 2 (172 nm) Stage temperature: 100 ° C Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume Stage movable speed and number of times of conveyance: 2 times of conveyance at 20 mm / sec. Excimer light exposure integrated amount: 500 mJ / cm 2 .
  • Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
  • Kapton having a thickness of 50 ⁇ m (polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as a substrate.
  • the obtained gas barrier film has a structure in which a polyimide base material (excimer treatment), a gas barrier layer, and a gas barrier layer are laminated in this order.
  • Example 4 Base material UPILEX 25-50S (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 40 ⁇ m was used as the base material.
  • Oxygen plasma treatment was performed at 200 W for 2 minutes using a plasma dry cleaner PC-300 (manufactured by Samco Corporation) (amount of oxygen gas supplied: 5 sccm (0 ° C., 1 atm standard), vacuum degree of vacuum chamber: 1 Pa).
  • Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
  • Kapton having a thickness of 50 ⁇ m (polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as a substrate.
  • the obtained gas barrier film has a structure in which a polyimide base material (oxygen plasma treatment), a gas barrier layer, and a gas barrier layer are laminated in this order.
  • Base material UPILEX-505SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 40 ⁇ m was used as a base material.
  • the corona treatment of the substrate surface was performed.
  • AGI-080 manufactured by Kasuga Denki Co., Ltd. was used as the corona discharge device, the gap between the discharge-like electrode of the corona discharge treatment device and the film surface was set to 1 mm, and the surface for 10 seconds under the condition of a treatment output of 600 mW / cm 2. Corona treatment was performed.
  • Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
  • Example 7 Substrate UPILEX-50SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 50 ⁇ m was used as a substrate.
  • TiO 2 titanium oxide
  • Example 8 A gas barrier film was produced in the same manner as in Example 7 except that an Al 2 O 3 film (thickness 30 nm) was formed as an adhesive layer.
  • the obtained gas barrier film has a structure in which a polyimide base material (excimer treatment) -adhesion layer (TiO 2 ) -gas barrier layer-gas barrier layer are laminated in this order.
  • Example 9 Substrate UPILEX-50SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 50 ⁇ m was used as a substrate.
  • Source gas supply 50 sccm (Standard Cubic Centimeter per Minute, 0 ° C, 1 atm standard)
  • Oxygen gas supply amount 500 sccm (0 ° C., 1 atm standard)
  • Degree of vacuum in the vacuum chamber 3Pa
  • Applied power from the power source for plasma generation 0.8 kW
  • Frequency of power source for plasma generation 70 kHz
  • Film conveyance speed 1.0 m / min.
  • Base material Kapton having a thickness of 50 ⁇ m (a polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as the base material.
  • the gas barrier films according to the examples all have high adhesive strength, and even when applied to the device forming process, the gas barrier layer does not peel off from the polyimide substrate, and the device forming process. It was found that the present invention can be suitably applied to.
  • the gas barrier films of Examples 1 to 10 had a water vapor permeability (WVTR) calculated by the Ca corrosion method of 0.1 g / (m 2 ⁇ 24 h) or less.
  • WVTR water vapor permeability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a gas barrier film that can be suitably applied to a device formation step. The gas barrier film comprises a polyimide substrate and a gas barrier layer that contains a modified polysilazane product. The adhesive strength between the polyimide substrate and the gas barrier layer is 1.3 N/cm or higher.

Description

ガスバリア性フィルムおよびこれを含む電子デバイスGas barrier film and electronic device including the same
 本発明は、ガスバリア性フィルムおよびこれを含む電子デバイスに関する。 The present invention relates to a gas barrier film and an electronic device including the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリア性フィルムが、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリア性フィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for. By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムについて、有機エレクトロルミネッセンス(EL)素子、液晶表示(LCD)素子等の電子デバイスへの展開が要望され、多くの検討がなされている。ガスバリア性フィルムを電子デバイスに使用する場合、高いガスバリア性、例えば、ガラス基材に匹敵するガスバリア性が要求される。 In recent years, with regard to such a gas barrier film that prevents permeation of water vapor, oxygen, and the like, development for electronic devices such as an organic electroluminescence (EL) element and a liquid crystal display (LCD) element has been requested, and many studies have been made. . When using a gas barrier film for an electronic device, a high gas barrier property, for example, a gas barrier property comparable to a glass substrate is required.
 このような高いガスバリア性を有するガスバリア性フィルムとしては、例えば、ポリエチレンテレフタラート(PET)等の基材上に、ポリシラザンを含む塗布液を塗布し、得られたポリシラザンの塗膜を改質して得られるポリシラザン改質物を含むガスバリア層が形成されたガスバリア性フィルムが知られている(例えば、特許文献1を参照)。当該ガスバリア性フィルムは、いわゆる湿式成膜法により形成されたものであり、均一な塗膜が得られることから、一般に高いガスバリア性を有する。 As such a gas barrier film having a high gas barrier property, for example, a coating liquid containing polysilazane is applied on a substrate such as polyethylene terephthalate (PET), and the obtained polysilazane coating film is modified. A gas barrier film having a gas barrier layer containing the resulting polysilazane modified product is known (see, for example, Patent Document 1). The gas barrier film is formed by a so-called wet film forming method, and generally has a high gas barrier property since a uniform coating film is obtained.
 ところで、電子デバイスを製造する場合、フィルムをキャリアガラス等に貼り合わせ、ロール・トゥ・ロール等により順次フィルム上に機能層等を形成することでデバイスを形成し、最後にキャリアガラス等からデバイスを分離する、いわゆるデバイス形成工程が、生産性に優れることから好適に採用されている。この際、デバイス形成工程においては、その工程において300℃以上の高温の環境に曝されることがあり、使用するフィルムは耐熱性を備える必要がある。このような耐熱性を備えるフィルムとしては、ポリイミド基材が挙げられる。 By the way, when manufacturing an electronic device, a film is bonded to carrier glass or the like, and a device is formed by sequentially forming a functional layer or the like on the film by roll-to-roll or the like, and finally the device is formed from carrier glass or the like. A so-called device forming process of separation is preferably employed because of its excellent productivity. At this time, in the device formation process, the process may be exposed to a high temperature environment of 300 ° C. or higher, and the film to be used needs to have heat resistance. A polyimide base material is mentioned as a film provided with such heat resistance.
特開2012-86436号公報JP 2012-86436 A
 従来のガスバリア性フィルムは、主としてPET等の熱可塑性樹脂を使用するものであることから、高温環境に暴露されるデバイス形成工程には適用することができない。 Since the conventional gas barrier film mainly uses a thermoplastic resin such as PET, it cannot be applied to a device forming process exposed to a high temperature environment.
 また、ポリイミド基材上に、乾式または式成膜法等によってガスバリア層を形成すると、高温環境下において、ポリイミド基材とガスバリア層との密着性が不十分となることが判明した。その結果、デバイス形成工程において、その工程中や、デバイス形成工程後のキャリアガラス等からデバイスを分離する際に、ガスバリア層がポリイミド基材から剥離する場合があり、デバイス形成工程への適用が困難となる。 It has also been found that when a gas barrier layer is formed on a polyimide base material by a dry method or a film forming method, the adhesion between the polyimide base material and the gas barrier layer becomes insufficient in a high temperature environment. As a result, in the device formation process, when separating the device from the carrier glass or the like during the process or after the device formation process, the gas barrier layer may be peeled off from the polyimide base material, making it difficult to apply to the device formation process. It becomes.
 そこで、本発明は、デバイス形成工程に好適に適用できるガスバリア性フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a gas barrier film that can be suitably applied to a device formation process.
 本発明者は鋭意研究を行った結果、基材としてポリイミド基材を使用し、ガスバリア層としてポリシラザンを改質したポリシラザン改質物を含むガスバリア層を適用し、かつ、ポリイミド基材およびガスバリア層の接着強度を一定以上とすることにより、上記課題が解決されうることを見出し、本発明を完成させるに至った。 As a result of earnest research, the inventor used a polyimide base material as a base material, applied a gas barrier layer containing a polysilazane modified product obtained by modifying polysilazane as a gas barrier layer, and adhered the polyimide base material and the gas barrier layer. It has been found that the above-mentioned problems can be solved by setting the strength to a certain level or more, and the present invention has been completed.
 すなわち、本発明の上記課題は以下の手段により達成される。 That is, the above-described problem of the present invention is achieved by the following means.
 (1)ポリイミド基材と、ポリシラザン改質物を含むガスバリア層と、を有し、前記ポリイミド基材および前記ガスバリア層の接着強度が、1.3N/cm以上である、ガスバリア性フィルム;
 (2)前記ポリイミド基材および前記ガスバリア層の接着強度が、4N/cm以上である、(1)に記載のガスバリア性フィルム;
 (3)前記ポリイミドが、ビフェニルテトラカルボン酸二無水物およびp-フェニレンジアミンをモノマーとして含む重合体である、(1)または(2)に記載のガスバリア性フィルム;
 (4)前記ポリイミド基材および前記ガスバリア層の間に、接着層を有する、(1)~(3)のいずれか1つに記載のガスバリア性フィルム;
 (5)前記ポリイミド基材の表面が、プラズマ処理、UVオゾン処理、またはエキシマ処理されてなる、(1)~(4)のいずれか1つに記載のガスバリア性フィルム;
 (6)前記ポリシラザン改質物が、真空紫外光で改質処理されたものである、(1)~(5)のいずれか1つに記載のガスバリア性フィルム;
 (7)電子デバイス本体と、(1)~(6)のいずれか1つに記載のガスバリア性フィルムとを含む、電子デバイス。
(1) A gas barrier film having a polyimide base material and a gas barrier layer containing a polysilazane modified product, wherein the adhesive strength of the polyimide base material and the gas barrier layer is 1.3 N / cm or more;
(2) The gas barrier film according to (1), wherein the adhesive strength of the polyimide base material and the gas barrier layer is 4 N / cm or more;
(3) The gas barrier film according to (1) or (2), wherein the polyimide is a polymer containing biphenyltetracarboxylic dianhydride and p-phenylenediamine as monomers.
(4) The gas barrier film according to any one of (1) to (3), which has an adhesive layer between the polyimide substrate and the gas barrier layer;
(5) The gas barrier film according to any one of (1) to (4), wherein the surface of the polyimide base material is subjected to plasma treatment, UV ozone treatment, or excimer treatment;
(6) The gas barrier film according to any one of (1) to (5), wherein the polysilazane-modified product is modified with vacuum ultraviolet light;
(7) An electronic device comprising an electronic device main body and the gas barrier film according to any one of (1) to (6).
 本発明によれば、デバイス形成工程に好適に適用できるガスバリア性フィルムを提供できる。 According to the present invention, it is possible to provide a gas barrier film that can be suitably applied to a device forming process.
プラズマCVD法によるガスバリア層の形成に用いられる製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the gas barrier layer by plasma CVD method.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 <ガスバリア性フィルム>
 本形態に係るガスバリア性フィルムは、ポリイミド基材と、ポリシラザン改質物を含むガスバリア層と、を有する。この際、ポリイミド基材およびガスバリア層の接着強度は、1.3N/cm以上、好ましくは2.7N/cm以上、より好ましくは4N/cm以上、さらに好ましくは5N/cm以上である。ポリイミド基材およびガスバリア層の接着強度が1.3N/cm以上であることで、バリア表面に形成される絶縁膜の形成が容易となり、バリア性を有する耐熱基材としての価値が認められる。また、ポリイミド基材およびバリア層の接着強度は50N/cm以下、より好ましくは40N/cm以下である。50N/cmよりも大きいと種々の製造ライン搬送時にスムーズに搬送することが困難になり、製造装置の不具合や生産性の低下につながる。
<Gas barrier film>
The gas barrier film according to this embodiment has a polyimide base material and a gas barrier layer containing a polysilazane modified product. Under the present circumstances, the adhesive strength of a polyimide base material and a gas barrier layer is 1.3 N / cm or more, Preferably it is 2.7 N / cm or more, More preferably, it is 4 N / cm or more, More preferably, it is 5 N / cm or more. When the adhesive strength between the polyimide base material and the gas barrier layer is 1.3 N / cm or more, formation of an insulating film formed on the barrier surface is facilitated, and the value as a heat resistant base material having a barrier property is recognized. Moreover, the adhesive strength of a polyimide base material and a barrier layer is 50 N / cm or less, More preferably, it is 40 N / cm or less. When it is larger than 50 N / cm, it becomes difficult to smoothly transport various production lines, leading to problems in the manufacturing apparatus and a decrease in productivity.
 ポリイミド基材は、一般に優れた耐熱性を有することから、デバイス形成工程の高温暴露下においても耐えることができ、デバイス形成工程に使用することができる。しかしながら、ポリイミド基材は、高温環境下におけるポリシラザン改質物を含むガスバリア層との密着性が非常に低いことが判明した。そのため、ポリイミド基材および上記ガスバリア層を含むガスバリア性フィルムをデバイス形成工程に適用すると、その工程中やデバイス形成後のキャリアガラスからデバイスを分離する際に、ポリイミド基材とガスバリア層とが剥離しうる。その結果、所望のデバイスを形成することができない。 Since the polyimide base material generally has excellent heat resistance, it can withstand high temperature exposure in the device forming process and can be used in the device forming process. However, it has been found that the polyimide substrate has very low adhesion to the gas barrier layer containing the polysilazane modified product in a high temperature environment. Therefore, when a gas barrier film including a polyimide base material and the gas barrier layer is applied to a device forming process, the polyimide base material and the gas barrier layer are peeled off when the device is separated from the carrier glass during the process or after the device formation. sell. As a result, a desired device cannot be formed.
 これに対し、本形態に係るガスバリア性フィルムは、ポリイミド基材およびポリシラザン改質物を含むガスバリア層が、高温環境下においても高い接着強度を有するため、デバイス形成工程におけるポリイミド基材およびガスバリア層の剥離を防止することができる。その結果、デバイス形成工程に好適に適用することができる。 On the other hand, the gas barrier film according to the present embodiment has a high adhesion strength even in a high temperature environment because the gas barrier layer containing the polyimide base material and the polysilazane modified product has a high adhesion strength. Can be prevented. As a result, it can be suitably applied to a device formation process.
 ここで、本明細書において、「ポリイミド基材およびガスバリア層の接着強度」とは、ポリイミド基材およびガスバリア層間の接着強度を意味する。したがって、ポリイミド基材およびガスバリア層間に他の層(例えば、接着層)が介在していても、ガスバリア層のポリイミド基材が配置される面とは反対の面に他の層(例えば、他のガスバリア層)が存在していても、前記ポリイミド基材およびガスバリア層間の接着力を「ポリイミド基材およびガスバリア層の接着強度」と称する。この際、本明細書において、「ポリイミド基材およびガスバリア層の接着強度」の値は、実施例に記載された方法により測定された値を採用するものとする。 Here, in this specification, “adhesive strength between the polyimide base material and the gas barrier layer” means the adhesive strength between the polyimide base material and the gas barrier layer. Therefore, even if another layer (for example, an adhesive layer) is interposed between the polyimide substrate and the gas barrier layer, the other layer (for example, other layer) is provided on the surface opposite to the surface on which the polyimide substrate is disposed. Even if the gas barrier layer is present, the adhesive force between the polyimide base material and the gas barrier layer is referred to as “adhesive strength between the polyimide base material and the gas barrier layer”. At this time, in this specification, the value measured by the method described in the examples is adopted as the value of “adhesive strength between the polyimide base material and the gas barrier layer”.
 ガスバリア性フィルムの水蒸気透過度は、0.01g/(m・24h)以下であることが好ましく、0.0001g/(m・24h)以下であることがより好ましい。なお、本明細書において、「水蒸気透過度」の値は、JIS K 7129-1992に準拠した方法で測定された値を採用するものとする。また、測定条件は、温度:60±0.5℃、相対湿度(RH):90±2%である。 The water vapor permeability of the gas barrier film is preferably 0.01 g / (m 2 · 24 h) or less, and more preferably 0.0001 g / (m 2 · 24 h) or less. In the present specification, a value measured by a method based on JIS K 7129-1992 is adopted as the value of “water vapor permeability”. Measurement conditions are temperature: 60 ± 0.5 ° C. and relative humidity (RH): 90 ± 2%.
 [ポリイミド基材]
 ポリイミド基材は、一般に、テトラカルボン酸二無水物およびジアミンを含むモノマーを重合して得られる樹脂フィルムである。
[Polyimide substrate]
The polyimide substrate is generally a resin film obtained by polymerizing a monomer containing tetracarboxylic dianhydride and diamine.
 テトラカルボン酸二無水物としては、特に制限されないが、脂肪族テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物が挙げられる。 The tetracarboxylic dianhydride is not particularly limited, and examples thereof include aliphatic tetracarboxylic dianhydrides and aromatic tetracarboxylic dianhydrides.
 前記脂肪族テトラカルボン酸二無水物としては、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル)-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、3c-カルボキシメチルシクロペンタン-1r,2c,4c-トリカルボン酸1,4,2,3-二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等が挙げられる。 Examples of the aliphatic tetracarboxylic dianhydride include bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane. -2,3,5,6-tetracarboxylic dianhydride, 5- (dioxotetrahydrofuryl-3-methyl) -3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-di Oxotetrahydrofuran-3-yl) -tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ′, 4,4′-tetracarboxylic Acid dianhydride, 3c-carboxymethylcyclopentane-1r, 2c, 4c- tricarboxylic acid 1,4,2,3-dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1, , 3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, and the like.
 また、前記芳香族テトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エ-テル二無水物、ビス(2,3-ジカルボキシフェニル)エ-テル二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、(1,1’:3’,1”-ターフェニル)-3,3”,4,4”-テトラカルボン酸二無水物、4,4’-(ジメチルシラジイル)ジフタル酸二無水物、4,4’-(1,4-フェニレンビス(オキシ))ジフタル酸二無水物等が挙げられる。 Examples of the aromatic tetracarboxylic dianhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3 , 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, m-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4 ′-(2,2- Hexafluoroisopropylene) diphthalic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, Screw (3,4- Carboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7 -Naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3 3-hexafluoropropane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, (1,1 ′: 3 ', 1 "-terphenyl) -3,3", 4,4 "-tetracarboxylic dianhydride, 4,4'-(dimethylsiladiyl) diphthalic dianhydride, 4,4 '-(1, 4-phenylenebis (oxy)) diphthalic dianhydride The
 上述のテトラカルボン酸二無水物のうち、優れた化学的および物理的性質を有するポリイミド基材を得る観点から、芳香族テトラカルボン酸二無水物であることが好ましく、ビフェニルテトラカルボン酸二無水物であることがより好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物であることがさらに好ましい。 Among the above-mentioned tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides are preferable from the viewpoint of obtaining a polyimide base material having excellent chemical and physical properties, and biphenyltetracarboxylic dianhydrides. More preferably, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3, More preferably, it is 4′-biphenyltetracarboxylic dianhydride.
 また、上述のテトラカルボン酸二無水物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Further, the above-mentioned tetracarboxylic dianhydrides may be used alone or in combination of two or more.
 ジアミンとしては、特に制限されないが、脂肪族ジアミン、芳香族ジアミンが挙げられる。 The diamine is not particularly limited, and examples thereof include aliphatic diamines and aromatic diamines.
 前記脂肪族ジアミンとしては、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、ジアミノヘプタン、ジアミノオクタン、ジアミノノナン、ジアミノデカン、ジアミノウンデカン、ジアミノドデカン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、3-メチル-1,4-ジアミノシクロヘキサン、3-メチル-、3-アミノメチル-、5,5-ジメチルシクロヘキシルアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4,4’-アミノシクロヘキシル)メタン、ビス(3,3’-メチル-4,4’-アミノシクロヘキシル)メタン、ビス(アミノメチル)ノルボルナン、ビス(アミノメチル)-トリシクロ〔5,2,1,0〕デカン、イソホロンジアミン、1,3-ジアミノアダマンタン等が挙げられる。 Examples of the aliphatic diamine include diaminobutane, diaminopentane, diaminohexane, diaminoheptane, diaminooctane, diaminononane, diaminodecane, diaminoundecane, diaminododecane, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,2 -Diaminocyclohexane, 3-methyl-1,4-diaminocyclohexane, 3-methyl-, 3-aminomethyl-, 5,5-dimethylcyclohexylamine, 1,3-bisaminomethylcyclohexane, bis (4,4'- Aminocyclohexyl) methane, bis (3,3′-methyl-4,4′-aminocyclohexyl) methane, bis (aminomethyl) norbornane, bis (aminomethyl) -tricyclo [5,2,1,0] decane, isophorone Diamine, 1, - diamino adamantane.
 また、前記芳香族ジアミンとしては、p-フェニレンジアミン、メタフェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパンが挙げられる。 Examples of the aromatic diamine include p-phenylenediamine, metaphenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4, 4'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'- Diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4 Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2- Bis (4-aminophenoxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-amino) Phenoxy) phenyl] hexafluoropropane.
 上述のジアミンのうち、優れた化学的および物理的性質を有するポリイミド基材を得る観点から、芳香族ジアミンであることが好ましく、p-フェニレンジアミンであることがより好ましい。 Of the above-mentioned diamines, aromatic diamines are preferable and p-phenylenediamine is more preferable from the viewpoint of obtaining a polyimide base material having excellent chemical and physical properties.
 また、上述のジアミンは、単独で用いても、2種以上を組み合わせて用いてもよい。 The above diamines may be used alone or in combination of two or more.
 これらのうち、ポリイミド基材は、フィルムが高温にさらされた場合にバリアフィルムにダメージを与える揮発成分がないため、ビフェニルテトラカルボン酸二無水物およびp-フェニレンジアミンをモノマーとして含む重合体であることが好ましい。 Among these, the polyimide base material is a polymer containing biphenyltetracarboxylic dianhydride and p-phenylenediamine as monomers because there is no volatile component that damages the barrier film when the film is exposed to high temperatures. It is preferable.
 上述のようにポリイミド基材は、テトラカルボン酸二無水物およびジアミンを含むモノマーを重合して得ることができる。より詳細には、(1)テトラカルボン酸二無水物およびジアミンを有機溶媒中で反応させてポリアミック酸を合成し、(2)得られたポリアミック酸をイミド化することにより、ポリイミド基材を製造することができる。 As described above, the polyimide base material can be obtained by polymerizing a monomer containing tetracarboxylic dianhydride and diamine. More specifically, (1) a polyamic acid is synthesized by reacting tetracarboxylic dianhydride and diamine in an organic solvent, and (2) a polyimide substrate is produced by imidizing the obtained polyamic acid. can do.
 (1)ポリアミック酸の合成
 ポリアミック酸は、テトラカルボン酸二無水物およびジアミンを有機溶媒中で反応させることにより合成することができる。当該反応は、ジアミンを有機溶剤に溶解し、得られたジアミン溶液を撹拌しながらテトラカルボン酸二無水物を徐々に添加することにより行うことが好ましい。
(1) Synthesis of polyamic acid A polyamic acid can be synthesized by reacting a tetracarboxylic dianhydride and a diamine in an organic solvent. The reaction is preferably performed by dissolving diamine in an organic solvent and gradually adding tetracarboxylic dianhydride while stirring the obtained diamine solution.
 用いられうる有機溶媒としては、特に制限されないが、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド等のアミド溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒;トリエチレングリコール等のグリコール系溶媒;m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒;アセトフェノン;1,3-ジメチル-2-イミダゾリジノン;スルホラン;ジメチルスルホキシド等が挙げられる。また、フェノール、O-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒等の一般的な有機溶剤を使用してもよい。これらのうち、アミド系溶媒を用いることが好ましい。なお、上記の有機溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。 The organic solvent that can be used is not particularly limited, but amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide; γ-butyrolactone, Cyclic ester solvents such as γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone; carbonate solvents such as ethylene carbonate and propylene carbonate; glycol solvents such as triethylene glycol; Phenolic solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol; acetophenone; 1,3-dimethyl-2-imidazolidinone; sulfolane; dimethyl sulfoxide and the like. Also, phenol, O-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, tetrahydrofuran, dimethoxyethane, diethoxyethane, General solvents such as dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvents An organic solvent may be used. Of these, it is preferable to use an amide solvent. In addition, said organic solvent may be used independently or may be used in combination of 2 or more type.
 反応に使用するテトラカルボン酸二無水物およびジアミンのモル比(テトラカルボン酸二無水物/ジアミン)は、ポリアミック酸の粘度に応じて適宜設定されうるが、0.90~1.10であることが好ましく、0.95~1.05であることがより好ましい。 The molar ratio of tetracarboxylic dianhydride and diamine used in the reaction (tetracarboxylic dianhydride / diamine) can be appropriately set according to the viscosity of the polyamic acid, but it should be 0.90 to 1.10. Is more preferable, and 0.95 to 1.05 is more preferable.
 反応温度は0~100℃であることが好ましい。また、反応時間は1~72時間であることが好ましい。 The reaction temperature is preferably 0 to 100 ° C. The reaction time is preferably 1 to 72 hours.
 (2)ポリイミド基材の製造
 上記(1)で得られたポリアミック酸をイミド化することによりポリイミド基材を製造することができる。
(2) Production of polyimide substrate A polyimide substrate can be produced by imidizing the polyamic acid obtained in (1) above.
 一実施形態において、ポリイミド基材の製造は、ポリアミック酸を含む溶液を支持体上に流延し、加熱することにより行うことができる。 In one embodiment, the polyimide substrate can be produced by casting a solution containing polyamic acid on a support and heating.
 前記ポリアミック酸を含む溶液は、ポリアミック酸、有機溶媒を含む。必要に応じて、さらにイミド化触媒、有機リン含有化合物、無機微粒子等を含んでいてもよい。 The solution containing the polyamic acid contains a polyamic acid and an organic solvent. If necessary, it may further contain an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles and the like.
 前記ポリアミック酸は、上記(1)で得られたものが使用される。この際、ポリアミック酸は、単独で用いても、2種以上を組み合わせて用いてもよい。また、ポリアミック酸の含有量は、ポリアミック酸を含む溶液全量に対して、10~30質量%であることが好ましい。 As the polyamic acid, those obtained in the above (1) are used. Under the present circumstances, polyamic acid may be used independently or may be used in combination of 2 or more type. The content of polyamic acid is preferably 10 to 30% by mass with respect to the total amount of the solution containing polyamic acid.
 前記溶媒は、上述したものが用いられうる。 As the solvent, those described above can be used.
 前記イミド化触媒は、ポリイミドフィルムの物性(伸び、端裂抵抗等)を向上させる機能を有する。 The imidization catalyst has a function of improving the physical properties (elongation, end tear resistance, etc.) of the polyimide film.
 イミド化触媒としては、特に制限されないが、置換もしくは非置換の含窒素複素環化合物およびこのN-オキシド化合物;置換もしくは非置換のアミノ酸化合物;ヒドロキシル基を有する芳香族炭化水素化合物;芳香族複素環状化合物が挙げられる。 Although it does not restrict | limit especially as an imidation catalyst, A substituted or unsubstituted nitrogen-containing heterocyclic compound and this N-oxide compound; Substituted or unsubstituted amino acid compound; Aromatic hydrocarbon compound which has a hydroxyl group; Aromatic heterocyclic Compounds.
 具体的なイミド化触媒としては、1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾール、N-ベンジル-2-メチルイミダゾール、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジン等が挙げられる。 Specific imidization catalysts include 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, Examples thereof include N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine and the like.
 イミド化触媒の使用量は、ポリアミック酸のアミド酸単位に対して0.01~2当量であることが好ましく、0.02~1当量であることがより好ましい。 The amount of the imidization catalyst used is preferably 0.01 to 2 equivalents, more preferably 0.02 to 1 equivalents relative to the amic acid unit of the polyamic acid.
 前記有機リン含有化合物としては、特に制限されないが、モノカプロイルリン酸エステル、モノオクチルリン酸エステル、モノラウリルリン酸エステル、モノミリスチルリン酸エステル、モノセチルリン酸エステル、モノステアリルリン酸エステル、トリエチレングリコールモノトリデシルエーテルのモノリン酸エステル、テトラエチレングリコールモノラウリルエーテルのモノリン酸エステル、ジエチレングリコールモノステアリルエーテルのモノリン酸エステル、ジカプロイルリン酸エステル、ジオクチルリン酸エステル、ジカプリルリン酸エステル、ジラウリルリン酸エステル、ジミリスチルリン酸エステル、ジセチルリン酸エステル、ジステアリルリン酸エステル、テトラエチレングリコールモノネオペンチルエーテルのジリン酸エステル、トリエチレングリコールモノトリデシルエーテルのジリン酸エステル、テトラエチレングリコールモノラウリルエーテルのジリン酸エステル、ジエチレングリコールモノステアリルエーテルのジリン酸エステル等のリン酸エステル、これらリン酸エステルのアミン塩が用いられうる。アミン塩としては、アンモニア、モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン塩が挙げられる。これらの有機リン含有化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 The organic phosphorus-containing compound is not particularly limited, but is monocaproyl phosphate ester, monooctyl phosphate ester, monolauryl phosphate ester, monomyristyl phosphate ester, monocetyl phosphate ester, monostearyl phosphate ester, triethylene Monophosphate ester of glycol monotridecyl ether, monophosphate ester of tetraethylene glycol monolauryl ether, monophosphate ester of diethylene glycol monostearyl ether, dicaproyl phosphate ester, dioctyl phosphate ester, dicapryl phosphate ester, dilauryl phosphate ester, dimyristyl Phosphate, dicetyl phosphate, distearyl phosphate, diethylene phosphate of tetraethylene glycol mononeopentyl ether Steal, phosphate esters such as diethylene ester of triethylene glycol monotridecyl ether, diphosphate ester of tetraethylene glycol monolauryl ether, diphosphate ester of diethylene glycol monostearyl ether, and amine salts of these phosphate esters can be used . Amine salts include ammonia, monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, monoethanolamine, diethanolamine, triamine. Examples include amine salts such as ethanolamine. These organic phosphorus-containing compounds may be used alone or in combination of two or more.
 前記無機微粒子としては、特に制限されないが、微粒子状の二酸化チタン粉末、二酸化ケイ素(シリカ)粉末、酸化マグネシウム粉末、酸化アルミニウム(アルミナ)粉末、酸化亜鉛粉末等の無機酸化物粉末;微粒子状の窒化ケイ素粉末、窒化チタン粉末等の無機窒化物粉末;炭化ケイ素粉末等の無機炭化物粉末;微粒子状の炭酸カルシウム粉末、硫酸カルシウム粉末、硫酸バリウム粉末等の無機塩粉末を挙げることができる。これらの無機微粒子は単独で用いても、2種以上を組み合わせて用いてもよい。なお、ポリアミック酸を含む溶液に無機微粒子を均一に分散させるために、それ自体公知の手段を適用することができる。 The inorganic fine particles are not particularly limited, but inorganic oxide powders such as fine particle titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder; fine particle nitriding Examples thereof include inorganic nitride powders such as silicon powder and titanium nitride powder; inorganic carbide powders such as silicon carbide powder; inorganic salt powders such as particulate calcium carbonate powder, calcium sulfate powder and barium sulfate powder. These inorganic fine particles may be used alone or in combination of two or more. In addition, in order to disperse | distribute inorganic fine particles uniformly to the solution containing a polyamic acid, a means well-known per se can be applied.
 ポリアミック酸を含む溶液を流延するための支持体としては、特に制限されず、ステンレス基板、ステンレスベルト等の公知の支持体が使用されうる。この際、支持体は平滑であることが好ましい。また、支持体は、連続生産を可能とする観点から、エンドレスベルト等のエンドレスな支持体であることが好ましい。 The support for casting a solution containing polyamic acid is not particularly limited, and a known support such as a stainless steel substrate or a stainless steel belt can be used. At this time, the support is preferably smooth. The support is preferably an endless support such as an endless belt from the viewpoint of enabling continuous production.
 ポリアミック酸を含む溶液の流延方法としては、特に制限されないが、押出塗布、溶融塗布であることが好ましい。 The method for casting the solution containing polyamic acid is not particularly limited, but is preferably extrusion coating or melt coating.
 ポリアミック酸を含む溶液を支持体に流延すると、自己支持性を有する塗膜を得ることができる。 When a solution containing polyamic acid is cast on a support, a coating film having self-supporting properties can be obtained.
 この際、得られた自己支持性を有する塗膜の片面または両面に必要に応じて、表面処理剤を含む溶液を塗布してもよい。なお、本明細書において、上記表面処理剤によるポリイミド基材の処理は、後述する「ポリイミド基材の表面処理」には含まれない。 At this time, a solution containing a surface treatment agent may be applied to one side or both sides of the obtained self-supporting coating film as necessary. In addition, in this specification, the process of the polyimide base material by the said surface treating agent is not contained in the "surface treatment of a polyimide base material" mentioned later.
 表面処理剤を含む溶液は、表面処理剤および有機溶媒を含む。 The solution containing the surface treatment agent contains a surface treatment agent and an organic solvent.
 前記表面処理剤としては、特に制限されないが、シランカップリング剤、ボランカップリング剤、アルミニウム系カップリング剤、アルミニウム系キレート剤、チタネート系カップリング剤、鉄カップリング剤、銅カップリング剤等が挙げられる。これらのうち、シランカップリング剤、チタネート系カップリング剤を用いることが好ましい。 The surface treatment agent is not particularly limited, but silane coupling agents, borane coupling agents, aluminum coupling agents, aluminum chelating agents, titanate coupling agents, iron coupling agents, copper coupling agents and the like. Can be mentioned. Of these, silane coupling agents and titanate coupling agents are preferably used.
 前記シランカップリング剤としては、特に制限されないが、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤;ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン系カップリング剤;γ-メタクリロキシプロピルトリメトキシシラン等のアクリルシラン系カップリング剤;N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤;γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が挙げられる。 The silane coupling agent is not particularly limited, but epoxy such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. Silane coupling agents; vinyl silane coupling agents such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; acrylic silane cups such as γ-methacryloxypropyltrimethoxysilane Ring agent: N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ -Aminopropyl Examples include aminosilane coupling agents such as trimethoxysilane; γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, and the like.
 また、前記チタネート系カップリング剤としては、特に制限されないが、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート等が挙げられる。 The titanate coupling agent is not particularly limited, but is isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctyl phosphite) titanate, tetra ( 2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyltricumyl Examples thereof include phenyl titanate.
 上述の表面処理剤のうち、アミノシランカップリング剤を用いることが好ましく、γ-アミノプロピル-トリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピル-トリエトキシシラン、N-(アミノカルボニル)-γ-アミノプロピルトリエトキシシラン、N-[β-(フェニルアミノ)-エチル]-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシランを用いることがより好ましく、N-フェニル-γ-アミノプロピルトリメトキシシランを用いることがさらに好ましい。 Of the above surface treatment agents, it is preferable to use an aminosilane coupling agent, such as γ-aminopropyl-triethoxysilane, N-β- (aminoethyl) -γ-aminopropyl-triethoxysilane, N- (aminocarbonyl). ) -Γ-aminopropyltriethoxysilane, N- [β- (phenylamino) -ethyl] -γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N-phenyl-γ-amino More preferred is propyltrimethoxysilane, and even more preferred is N-phenyl-γ-aminopropyltrimethoxysilane.
 上述の表面処理剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned surface treatment agents may be used alone or in combination of two or more.
 表面処理剤を含む溶液における表面処理剤の含有量は、特に制限されないが、表面処理剤を含む溶液全量に対して、0.5質量%以上であることが好ましく、1~100質量%であることがより好ましく、3~60質量%であることがさらに好ましく、5~55質量%であることが特に好ましい。 The content of the surface treatment agent in the solution containing the surface treatment agent is not particularly limited, but is preferably 0.5% by mass or more with respect to the total amount of the solution containing the surface treatment agent, and is 1 to 100% by mass. More preferred is 3 to 60% by mass, still more preferred is 5 to 55% by mass.
 前記有機溶媒は、上述のポリアミック酸の合成に使用される有機溶媒と同様のものが用いられうる。 The organic solvent may be the same as the organic solvent used for the synthesis of the polyamic acid described above.
 表面処理剤を含む溶液の自己支持性を有する塗膜への塗布方法としては、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などの公知の塗布方法を挙げることができる。 Examples of the coating method having a self-supporting solution containing a surface treatment agent include a gravure coating method, a spin coating method, a silk screen method, a dip coating method, a spray coating method, a bar coating method, and a knife coating method. And a known coating method such as a roll coating method, a blade coating method, and a die coating method.
 表面処理剤を含む溶液の自己支持性を有する塗膜への塗布量としては、特に制限されないが、1~50g/mであることが好ましく、2~30g/mであることがより好ましく、3~20g/mであることが特に好ましい。 The amount of application of the solution containing the surface treatment agent to the coating film having self-supporting property is not particularly limited, but is preferably 1 to 50 g / m 2 , more preferably 2 to 30 g / m 2. Particularly preferred is 3 to 20 g / m 2 .
 本形態においては、得られた自己支持性を有する塗膜、または自己支持性を有する塗膜および表面処理剤を含む溶液を塗布して得られる塗膜を加熱することにより、ポリアミック酸のイミド化が生じ、ポリイミド基材を製造することができる。 In this embodiment, imidation of polyamic acid is performed by heating the obtained coating film having self-supporting property, or the coating film obtained by applying a solution containing the coating film having self-supporting property and the surface treatment agent. And a polyimide substrate can be produced.
 イミド化の加熱温度は、イミド化が進行する温度であれば特に制限されないが、100~550℃であることが好ましく、100~400℃であることがより好ましい。この際、加熱は段階的に行うことが好ましく、例えば、第一次加熱処理として100~170℃で加熱し、第二次加熱処理として170~220℃で加熱し、第三次加熱処理として220~400℃で加熱し、第四次加熱処理として400~550℃で加熱することができる。 The heating temperature for imidization is not particularly limited as long as imidization proceeds, but it is preferably 100 to 550 ° C, more preferably 100 to 400 ° C. At this time, the heating is preferably performed stepwise. For example, the heating is performed at 100 to 170 ° C. as the primary heat treatment, the heating is performed at 170 to 220 ° C. as the second heat treatment, and 220 is performed as the third heat treatment. Heating at ˜400 ° C. and heating at 400˜550 ° C. can be performed as the fourth heat treatment.
 加熱時には、必要に応じてフィルムを延伸してもよい。これにより、ポリイミド基材の熱膨張係数等の物性を適宜制御することができる。この際、延伸方法は、逐次二軸延伸、同時二軸延伸等の二軸延伸であっても、一軸延伸であってもよい。延伸倍率は、縦軸方向および横軸方向にそれぞれ2~10倍であることが好ましい。なお、ポリイミド基材の寸法安定性を向上させる観点から、延伸後に緩和処理を行ってもよい。 When heating, the film may be stretched as necessary. Thereby, physical properties, such as a thermal expansion coefficient of a polyimide base material, can be controlled suitably. At this time, the stretching method may be biaxial stretching such as sequential biaxial stretching and simultaneous biaxial stretching, or uniaxial stretching. The draw ratio is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction. In addition, you may perform a relaxation process after extending | stretching from a viewpoint of improving the dimensional stability of a polyimide base material.
 一実施形態において、ポリアミック酸のイミド化は、上記加熱に代えて、または加熱とともに、化学イミド化によって行うこともできる。 In one embodiment, the imidation of the polyamic acid can be performed by chemical imidation instead of or in addition to the above heating.
 化学イミド化の具体的な方法は、特に制限されないが、例えば、上述のポリアミック酸を含む溶液に脱水剤、触媒をさらに添加して得られる溶液を支持体上に流延し、加熱することにより行うことができる。 Although the specific method of chemical imidation is not particularly limited, for example, a solution obtained by further adding a dehydrating agent and a catalyst to the solution containing the polyamic acid described above is cast on a support and heated. It can be carried out.
 前記脱水剤としては、特に制限されないが、脂肪族酸無水物、芳香族酸無水物、脂環式酸無水物、複素環式酸無水物等が挙げられる。具体的には、無水酢酸、無水プロピオン酸、無水酪酸、ギ酸無水物、無水コハク酸、無水マレイン酸、無水フタル酸、安息香酸無水物、無水ピコリン酸等が挙げられる。これらのうち、無水酢酸を使用することが好ましい。なお、当該脱水剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The dehydrating agent is not particularly limited, and examples thereof include aliphatic acid anhydrides, aromatic acid anhydrides, alicyclic acid anhydrides, and heterocyclic acid anhydrides. Specific examples include acetic anhydride, propionic anhydride, butyric anhydride, formic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, picolinic anhydride, and the like. Of these, acetic anhydride is preferably used. In addition, the said dehydrating agent may be used independently or may be used in combination of 2 or more type.
 脱水剤の添加量は、ポリアミック酸のアミック酸結合1モルに対して0.5モル以上であることが好ましい。 The addition amount of the dehydrating agent is preferably 0.5 mol or more per 1 mol of the amic acid bond of the polyamic acid.
 前記触媒としては、特に制限されないが、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が挙げられる。具体的には、トリメチルアミン、トリエチルアミン、ジメチルアニリン、ピリジン、β-ピコリン、イソキノリン、キノリン等が挙げられる。これらのうち、イソキノリンを用いることが好ましい。 The catalyst is not particularly limited, and examples thereof include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. Specific examples include trimethylamine, triethylamine, dimethylaniline, pyridine, β-picoline, isoquinoline, quinoline and the like. Of these, isoquinoline is preferably used.
 触媒の添加量は、ポリアミック酸のアミック酸結合1モルに対して0.1モル以上であることが好ましい。 The amount of the catalyst added is preferably 0.1 mol or more with respect to 1 mol of the amic acid bond of the polyamic acid.
 支持体への流延および加熱については、上述と同様の方法で行うことにより、ポリイミド基材を製造することができる。 The polyimide base material can be produced by casting and heating to the support in the same manner as described above.
 なお、ポリイミド基材としては、上述したものの他、例えば、テトラカルボン酸二無水物とジイソシアナートとを反応させて製造した公知のポリイミド基材を用いてもよい。 In addition, as a polyimide base material, you may use the well-known polyimide base material manufactured by making tetracarboxylic dianhydride and diisocyanate react, for example besides what was mentioned above.
 ポリイミド基材の膜厚は、5~500μmであることが好ましく、25~250μmであることがより好ましい。 The film thickness of the polyimide base material is preferably 5 to 500 μm, more preferably 25 to 250 μm.
 また、ポリイミド基材の線膨張係数は、20ppm/K以下であることが好ましく、10ppm/K以下であることがより好ましい。ポリイミド基材の線膨張係数が20ppm/K以下であると、液晶表示装置(LCDパネル)等の電子デバイスにガスバリア性フィルムを適用した場合、環境温度変化等に対する色ズレの発生やポリイミド基材の変形を抑制しうることから好ましい。なお、本明細書において「線膨張係数」とは、下記の方法により測定した値を採用するものとする。具体的には、EXSTAR TMA/SS6000型熱応力歪測定装置(セイコーインスツル株式会社製)を用いて、測定するポリイミド基材を窒素雰囲気下で5℃/分で30~50℃まで加熱した後、一時温度を維持する。その後、再度5℃/分で30~150℃に加熱し、このとき、引張モード(荷重5g)でポリイミド基材の寸法変化を測定する。当該値から線膨張係数が求められる。 Further, the linear expansion coefficient of the polyimide base material is preferably 20 ppm / K or less, and more preferably 10 ppm / K or less. When a gas barrier film is applied to an electronic device such as a liquid crystal display device (LCD panel) such that the linear expansion coefficient of the polyimide base material is 20 ppm / K or less, the occurrence of color misregistration with respect to environmental temperature changes, etc. It is preferable because deformation can be suppressed. In addition, the value measured by the following method shall be employ | adopted as "linear expansion coefficient" in this specification. Specifically, after heating the polyimide substrate to be measured to 30 to 50 ° C. at 5 ° C./min in a nitrogen atmosphere using an EXSTAR TMA / SS6000 type thermal stress strain measuring device (manufactured by Seiko Instruments Inc.) Maintain a temporary temperature. Thereafter, the substrate is heated again to 30 to 150 ° C. at 5 ° C./min. At this time, the dimensional change of the polyimide base material is measured in a tensile mode (load 5 g). A linear expansion coefficient is calculated | required from the said value.
 ポリイミド基材は、可視光(400~700nm)の光透過率が80%以上であることが好ましく、90%以上であることがより好ましい。光透過率が80%以上であると、液晶表示装置(LCDパネル)等の電子デバイスにガスバリア性フィルムを適用した場合、高い輝度が得られうることから好ましい。なお、本明細書において、「光透過率」とは、分光光度計(可視紫外線分光光度計UV-2500PC:株式会社島津製作所製)を用いて、ASTM D-1003規格に準拠して可視光線の入射光量に対する全透過光量を測定して算出される、可視光域における平均透過率を意味する。 The polyimide base material preferably has a visible light (400 to 700 nm) light transmittance of 80% or more, and more preferably 90% or more. When the light transmittance is 80% or more, when a gas barrier film is applied to an electronic device such as a liquid crystal display (LCD panel), it is preferable because high luminance can be obtained. In the present specification, “light transmittance” means a spectrophotometer (visible ultraviolet spectrophotometer UV-2500PC: manufactured by Shimadzu Corporation), which uses visible light in accordance with the ASTM D-1003 standard. It means the average transmittance in the visible light range, which is calculated by measuring the total transmitted light amount with respect to the incident light amount.
 ポリイミド基材は、JIS B 0601(2001)で規定される10点平均表面粗さRzが1~1500nmであることが好ましく、5~400nmであることがより好ましく、300~350nmであることがさらに好ましい。また、ポリイミド基材は、JIS B 0601(2001)で規定される中心線平均粗さRaが0.5~12nmであることが好ましく、1~8nmであることがより好ましい。RzやRaが上記範囲内にあると、塗布液の塗布性が向上することから好ましい。ポリイミド基材は、必要に応じて、片面または両面を研摩して平滑性を向上させてもよい。 The polyimide base material has a 10-point average surface roughness Rz defined by JIS B 0601 (2001) of preferably 1 to 1500 nm, more preferably 5 to 400 nm, and further preferably 300 to 350 nm. preferable. In addition, the polyimide base material preferably has a center line average roughness Ra defined by JIS B 0601 (2001) of 0.5 to 12 nm, and more preferably 1 to 8 nm. It is preferable that Rz and Ra are within the above ranges since the coating property of the coating liquid is improved. If necessary, the polyimide base material may be polished on one side or both sides to improve smoothness.
 ポリイミド基材の弾性率は、1GPa以上であることが好ましく、2~10GPaであることがより好ましい。ポリイミド基材の弾性率が1GPa以上であると、高い寸法安定性を有し、デバイス形成工程に好適に適用できることから好ましい。なお、本明細書において、「弾性率」の値は、ASTM D882-97に準拠して測定した値を採用するものとする。 The elastic modulus of the polyimide base material is preferably 1 GPa or more, more preferably 2 to 10 GPa. It is preferable for the elastic modulus of the polyimide base material to be 1 GPa or more because it has high dimensional stability and can be suitably applied to a device formation step. In the present specification, a value measured in accordance with ASTM D882-97 is adopted as the value of “elastic modulus”.
 [ガスバリア層]
 ガスバリア層は、ポリシラザン改質物を含む。その他必要に応じてアミン触媒および金属触媒等の添加剤を含んでいてもよい。
[Gas barrier layer]
The gas barrier layer contains a polysilazane modified product. In addition, additives such as amine catalysts and metal catalysts may be included as necessary.
 ガスバリア層の膜厚は、10~500nmであることが好ましく、20~300nmであることがより好ましい。ガスバリア層の膜厚が10nm以上であると、膜厚を均一にでき、また、高いガスバリア性が得られることから好ましい。一方、ガスバリア層の膜厚が500nm以下であると、クラックを抑制できることから好ましい。 The film thickness of the gas barrier layer is preferably 10 to 500 nm, and more preferably 20 to 300 nm. The thickness of the gas barrier layer is preferably 10 nm or more, since the thickness can be made uniform and high gas barrier properties can be obtained. On the other hand, it is preferable that the thickness of the gas barrier layer is 500 nm or less because cracks can be suppressed.
 ガスバリア層の水蒸気透過度は、1×10-3g/(m・24h)以下であることが好ましく、1×10-4g/(m・24h)以下であることがより好ましい。 The water vapor permeability of the gas barrier layer is preferably 1 × 10 −3 g / (m 2 · 24 h) or less, and more preferably 1 × 10 −4 g / (m 2 · 24 h) or less.
 (ポリシラザン改質物)
 ポリシラザン改質物とは、ポリシラザンを改質することによって得られる改質物を意味する。
(Polysilazane modified product)
The polysilazane modified product means a modified product obtained by modifying polysilazane.
 ポリシラザン改質物は、ポリシラザンが改質されて得られる酸化ケイ素を含む。その他、ポリシラザンが改質されて得られる窒化ケイ素および/または酸化窒化ケイ素が含まれていてもよい。 The polysilazane modified product contains silicon oxide obtained by modifying polysilazane. In addition, silicon nitride and / or silicon oxynitride obtained by modifying polysilazane may be included.
 ポリシラザン
 ポリシラザンは、その構造内にSi-N、Si-H、N-H等の結合を有するポリマーである。
Polysilazane Polysilazane is a polymer having a bond such as Si—N, Si—H, or NH in its structure.
 前記ポリシラザンとしては、特に制限されないが、改質処理を行うことを考慮すると、比較的低温でセラミック化してシリカに変性する化合物であることが好ましく、例えば、特開平8-112879号公報に記載の下記の一般式で表される単位からなる主骨格を有する化合物であることが好ましい。 The polysilazane is not particularly limited, but it is preferably a compound that is converted to silica by being ceramicized at a relatively low temperature in consideration of performing the modification treatment, for example, as described in JP-A-8-112879. A compound having a main skeleton composed of units represented by the following general formula is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式において、R、R、およびRは、それぞれ独立して、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、またはアルコキシ基を表す。 In the above general formula, R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group. .
 ポリシラザンは、得られるガスバリア層の緻密性の観点から、R、R、およびRのすべてが水素原子であるパーヒドロポリシラザン(以下、「PHPS」とも称する)であることが特に好ましい。 The polysilazane is particularly preferably perhydropolysilazane (hereinafter, also referred to as “PHPS”) in which all of R 1 , R 2 , and R 3 are hydrogen atoms from the viewpoint of the denseness of the resulting gas barrier layer.
 パーヒドロポリシラザンは直鎖構造と6員環および8員環を中心とする環構造とが存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、分子量によって液体または固体の物質でありうる。当該パーヒドロポリシラザンは、市販品を使用してもよく、市販品としては、NN120、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)等が挙げられる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight. As the perhydropolysilazane, a commercially available product may be used, and examples of the commercially available product include NN120, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (manufactured by AZ Electronic Materials Co., Ltd.). .
 低温でセラミック化するポリシラザンの別の例としては、上記一般式で表されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報)等が挙げられる。 As another example of the polysilazane that is ceramicized at a low temperature, a silicon alkoxide-added polysilazane obtained by reacting a polysilazane represented by the above general formula with a silicon alkoxide (for example, JP-A-5-238827), glycidol is reacted. Obtained by reacting glycidol-added polysilazane (eg, JP-A-6-122852) obtained by reacting with alcohol, alcohol-added polysilazane (eg, JP-A-6-240208) obtained by reacting with alcohol, and metal carboxylate Metal silicic acid salt-added polysilazane (for example, JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (for example, JP-A-6-306329), metal Add fine particles The resulting metal particles added polysilazane (e.g., JP-A-7-196986 publication), and the like.
 改質
 ポリシラザンは改質により転化して酸化ケイ素を生じる。
Modification Polysilazane is converted by modification to produce silicon oxide.
 ポリシラザンの酸化ケイ素への改質機構としては、ポリシラザンの水の加水分解による改質が挙げられる。具体的には、ポリシラザンのSi-N結合が水により加水分解され、これによってポリマー主鎖が切断されることでSi-OHを形成する。そして、改質条件下において2つのSi-OHが脱水縮合すると、Si-O-Si結合を形成し、硬化することで酸化ケイ素を生じる。 The modification mechanism of polysilazane to silicon oxide includes modification of polysilazane by hydrolysis of water. Specifically, the Si—N bond of polysilazane is hydrolyzed with water, whereby the polymer main chain is cleaved to form Si—OH. When two Si—OH are dehydrated and condensed under the reforming conditions, Si—O—Si bonds are formed and cured to produce silicon oxide.
 また、ポリシラザンの改質を特に真空紫外光の照射により行った場合には、上記酸化ケイ素への改質機構とともに、または代えてポリシラザンの直接酸化による酸化ケイ素への改質が起こりうる。具体的には、ポリシラザンに真空紫外光を照射すると、真空紫外光や、真空紫外光によって活性化されたオゾンおよび活性酸素等によって、ポリシラザン中のHやNが、直接Oと置き換わって(すなわち、シラノールを経由することなく)Si-O-Si結合を形成し、硬化することで酸化ケイ素を生じる(光量子プロセスと呼ばれる光子の作用)。 Further, when the modification of polysilazane is carried out particularly by irradiation with vacuum ultraviolet light, modification to silicon oxide by the direct oxidation of polysilazane can occur together with or instead of the modification mechanism to silicon oxide. Specifically, when polysilazane is irradiated with vacuum ultraviolet light, H or N in the polysilazane is directly replaced with O by vacuum ultraviolet light, ozone activated by the vacuum ultraviolet light, active oxygen, or the like (that is, Forming Si—O—Si bonds (without going through silanol) and curing results in silicon oxide (photon action called photon process).
 この際、真空紫外光の照射によるポリシラザンの改質においては、上記ポリシラザンの直接酸化による酸化ケイ素への改質とともに、または代えて窒化ケイ素および/または酸化窒化ケイ素への改質が起こりうる。具体的には、ポリシラザンに真空紫外光を照射すると、励起等によりポリシラザン中のSi-H結合やN-H結合が比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合する。これにより、窒化ケイ素や酸化窒化ケイ素が生じうる。 At this time, in the modification of polysilazane by irradiation with vacuum ultraviolet light, modification to silicon nitride and / or silicon oxynitride may occur in addition to or instead of modification of the polysilazane to silicon oxide by direct oxidation. Specifically, when polysilazane is irradiated with vacuum ultraviolet light, the Si—H bond or N—H bond in the polysilazane is relatively easily broken by excitation or the like, and recombines as Si—N in an inert atmosphere. Thereby, silicon nitride and silicon oxynitride can be generated.
 なお、ポリシラザンの改質を真空紫外光の照射によって行う場合、ポリシラザンが直接酸化されることから、高密度で欠陥の少ない改質膜を形成することができ、高いガスバリア性を有するガスバリア層が形成されうる。なお、本明細書において、「真空紫外光(VUV光)」とは、波長200nm以下の高いエネルギーを有する紫外光を意味する。 When polysilazane is modified by irradiation with vacuum ultraviolet light, the polysilazane is directly oxidized, so a modified film with high density and few defects can be formed, and a gas barrier layer having high gas barrier properties is formed. Can be done. In this specification, “vacuum ultraviolet light (VUV light)” means ultraviolet light having a high energy with a wavelength of 200 nm or less.
 上記改質機構はあくまで推測のものであり、ポリシラザンが上記機構とは異なる機構によって酸化ケイ素、窒化ケイ素、酸化窒化ケイ素が生じる場合であっても、本発明の技術的範囲に含まれる。 The above-mentioned modification mechanism is only a speculation, and even when polysilazane is produced by a mechanism different from the above mechanism, silicon oxide, silicon nitride, or silicon oxynitride is included in the technical scope of the present invention.
 (アミン触媒および金属触媒)
 ガスバリア層は、アミン触媒および/または金属触媒を含んでいてもよい。
(Amine catalyst and metal catalyst)
The gas barrier layer may contain an amine catalyst and / or a metal catalyst.
 前記アミン触媒としては、特に制限されないが、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサンが挙げられる。 The amine catalyst is not particularly limited, but N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetra And methyl-1,3-diaminopropane and N, N, N ′, N′-tetramethyl-1,6-diaminohexane.
 前記金属触媒としては、特に制限されないが、白金アセチルアセトナート等の白金化合物、プロピオン酸パラジウム等のパラジウム化合物、ロジウムアセチルアセトナート等のロジウム化合物が挙げられる。 The metal catalyst is not particularly limited, and examples thereof include platinum compounds such as platinum acetylacetonate, palladium compounds such as palladium propionate, and rhodium compounds such as rhodium acetylacetonate.
 前記アミン触媒および前記金属触媒を添加することで、ポリシラザンの改質を促進することができる。 The modification of polysilazane can be promoted by adding the amine catalyst and the metal catalyst.
 (ガスバリア層の形態)
 ポリシラザン改質物を含むガスバリア層はポリイミド基材上に配置される。この際、ガスバリア層は2層以上が積層されていてもよい(すなわち、基材-ガスバリア層-ガスバリア層等)。また、ガスバリア層の表面にさらに他のガスバリア層が形成されていてもよい(すなわち、基材-ガスバリア層-他のガスバリア層)。この際、他のガスバリア層はさらに2層以上が積層されていてもよい(すなわち、基材-ガスバリア層-他のガスバリア層-他のガスバリア層等)。
(Form of gas barrier layer)
A gas barrier layer containing the modified polysilazane is disposed on the polyimide substrate. At this time, two or more gas barrier layers may be laminated (that is, a substrate-gas barrier layer-gas barrier layer, etc.). Further, another gas barrier layer may be formed on the surface of the gas barrier layer (that is, base material-gas barrier layer-other gas barrier layer). At this time, two or more other gas barrier layers may be laminated (ie, base material-gas barrier layer-other gas barrier layer-other gas barrier layer, etc.).
 上記他のガスバリア層としては、特に制限されないが、公知のガスバリア層、例えば、乾式成膜法により形成されるガスバリア層が挙げられる。 The other gas barrier layer is not particularly limited, and may be a known gas barrier layer, for example, a gas barrier layer formed by a dry film forming method.
 当該乾式成膜法により形成されるガスバリア層は、二硫化亜鉛、酸化アルミニウム、酸化インジウム、酸化スズ、酸化ガリウム、酸化インジウムスズ(ITO)、アルミニウム添加亜鉛酸化物(AZO)、亜鉛スズ複合酸化物(ZTO)、窒化アルミニウム、炭化ケイ素等の無機物を含みうる。 The gas barrier layer formed by the dry film forming method includes zinc disulfide, aluminum oxide, indium oxide, tin oxide, gallium oxide, indium tin oxide (ITO), aluminum-added zinc oxide (AZO), and zinc-tin composite oxide. Inorganic materials such as (ZTO), aluminum nitride, and silicon carbide may be included.
 乾式成膜法により形成されるガスバリア層の膜厚は、10~500nmであることが好ましく、20~300nmであることがより好ましい。 The film thickness of the gas barrier layer formed by the dry film forming method is preferably 10 to 500 nm, and more preferably 20 to 300 nm.
 また、乾式成膜法により形成されるガスバリア層の水蒸気透過度は、0.1g/(m・24h)以下であることが好ましく、0.0001~0.01g/(m・24h)であることがより好ましい。 The water vapor permeability of the gas barrier layer formed by the dry film formation method is preferably 0.1 g / (m 2 · 24 h) or less, preferably 0.0001 to 0.01 g / (m 2 · 24 h). More preferably.
 [接着手段]
 本形態に係るポリシラザン改質物を含むガスバリア層は、ポリイミド基材との間で高い接着強度を実現するために、接着手段を設けることが好ましい。
[Adhesion means]
The gas barrier layer containing the polysilazane modified product according to the present embodiment is preferably provided with an adhesive means in order to realize high adhesive strength with the polyimide base material.
 当該接着手段としては、接着強度が向上するものであれば特に制限されないが、接着層の配置、ポリイミド基材の表面処理等が挙げられる。これらの接着手段は単独で用いても、2種以上を組み合わせて用いてもよい。 The adhesive means is not particularly limited as long as the adhesive strength is improved, and examples thereof include arrangement of an adhesive layer and surface treatment of a polyimide base material. These bonding means may be used alone or in combination of two or more.
 (接着層の配置)
 接着層は、通常、ポリイミド基材およびガスバリア層の間に配置される。当該接着層により、ポリイミド基材およびガスバリア層の接着強度が向上しうる。
(Adhesive layer placement)
The adhesive layer is usually disposed between the polyimide substrate and the gas barrier layer. By the said adhesive layer, the adhesive strength of a polyimide base material and a gas barrier layer can improve.
 前記接着層は、接着剤を含む。この際、前記接着剤としては、金属酸化物、化学反応型接着剤等が挙げられる。 The adhesive layer includes an adhesive. At this time, examples of the adhesive include metal oxides and chemically reactive adhesives.
 前記金属酸化物としては、酸化アルミニウム(Al)等のアルミニウム酸化物;酸化チタン(TiO)等のチタン酸化物;酸化スズ(SnO)等のスズ酸化物;酸化セリウム(CeO)等のセリウム酸化物;酸化亜鉛(ZnO)等の亜鉛酸化物;酸化ケイ素(SiO)等のケイ素酸化物等が挙げられる。これらの金属酸化物は単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the metal oxide include aluminum oxide such as aluminum oxide (Al 2 O 3 ); titanium oxide such as titanium oxide (TiO 2 ); tin oxide such as tin oxide (SnO 2 ); cerium oxide (CeO 2). ) And the like; zinc oxides such as zinc oxide (ZnO); and silicon oxides such as silicon oxide (SiO 2 ). These metal oxides may be used alone or in combination of two or more.
 なお、金属酸化物を用いて接着層を形成する場合には、通常、物理気相成長法、化学気相成長法、またはこれらの組み合わせによって行われうる。 In addition, when forming a contact bonding layer using a metal oxide, it can usually be performed by a physical vapor deposition method, a chemical vapor deposition method, or these combinations.
 前記物理気相成長法としては、抵抗加熱法、電子ビーム蒸着法、分子線エピタキシー法等の蒸着法;イオンプレーティング法;スパッタ法等が挙げられる。 Examples of the physical vapor deposition method include vapor deposition methods such as resistance heating method, electron beam vapor deposition method, molecular beam epitaxy method; ion plating method; sputtering method and the like.
 前記化学気相成長法としては、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法等が挙げられる。 Examples of the chemical vapor deposition include thermal CVD, catalytic chemical vapor deposition, photo CVD, and plasma CVD.
 また、前記化学反応型接着剤は、骨剤、結合剤、硬化剤を含み、主としてシリケート系接着剤、ホスフェート系接着剤、コロイダルシリカ系接着剤に大別される。 Further, the chemical reaction type adhesive includes a bone agent, a binder, and a curing agent, and is mainly classified into a silicate type adhesive, a phosphate type adhesive, and a colloidal silica type adhesive.
 前記シリケート系接着剤においては、骨剤として、アルミナ、シリカ、ジルコニア、スピネル等の耐火度の高い酸化物、窒化物または炭化物が用いられうる。また、結合剤としては、アルカリ金属シリケートが用いられうる。そして、硬化剤としては、ZnO、MgOなどの金属酸化物、水酸化物、リン酸塩、ホウ酸塩、ケイフッ化物等が用いられうる。 In the silicate-based adhesive, oxides, nitrides or carbides having high fire resistance such as alumina, silica, zirconia, spinel and the like can be used as the bone agent. As the binder, alkali metal silicate can be used. As the curing agent, metal oxides such as ZnO and MgO, hydroxides, phosphates, borates, silicofluorides, and the like can be used.
 前記ホスフェート系接着剤においては、骨剤として、上記シリケート系接着剤と同様のものが用いられうる。また、結合剤としては、リン酸アルミニウム、リン酸マグネシウムなどのリン酸金属塩が用いられうる。さらに、硬化剤としては、金属酸化物、ケイ酸マグネシウム、チタン酸ストロンチウム等が用いられうる。 In the phosphate adhesive, the same adhesive as the silicate adhesive can be used as a bone agent. As the binder, metal phosphates such as aluminum phosphate and magnesium phosphate can be used. Furthermore, metal oxide, magnesium silicate, strontium titanate, or the like can be used as the curing agent.
 前記コロイダルシリカ系接着剤においては、骨剤として、上記シリケート系接着剤と同様のものが用いられうる。また、結合剤としては、コロイダルシリカ(粒径10~100μm)が用いられうる。さらに、硬化剤としては、金属酸化物等が用いられうる。 In the colloidal silica-based adhesive, the same silicate-based adhesive as that described above can be used. As the binder, colloidal silica (particle size: 10 to 100 μm) can be used. Furthermore, a metal oxide or the like can be used as the curing agent.
 なお、化学反応型接着剤を用いて接着層を形成する場合には、通常、化学反応型接着剤を塗布し、乾燥、加熱等をすることにより行われうる。 In addition, when forming a contact bonding layer using a chemical reaction type adhesive agent, it can carry out by apply | coating a chemical reaction type adhesive agent, drying, heating, etc. normally.
 上述の接着剤のうち、金属酸化物を用いることが好ましく、アルミニウム酸化物、チタン酸化物、スズ酸化物、セリウム酸化物、亜鉛酸化物を用いることがより好ましい。 Among the above-mentioned adhesives, it is preferable to use a metal oxide, and it is more preferable to use aluminum oxide, titanium oxide, tin oxide, cerium oxide, or zinc oxide.
 接着層の膜厚は、50nm以下であることが好ましく、5~30nmであることがより好ましい。なお、接着層の膜厚は、好ましくは薄膜であることからガスバリア性は示さないか、ほとんど示さない。 The film thickness of the adhesive layer is preferably 50 nm or less, and more preferably 5 to 30 nm. Note that the film thickness of the adhesive layer is preferably a thin film, and therefore does not show or hardly shows gas barrier properties.
 (ポリイミド基材の表面処理)
 ポリイミド基材の表面は、表面処理されることが好ましい。具体的な表面処理としては、コロナ処理、プラズマ処理、UVオゾン処理、エキシマ処理、好ましくはプラズマ処理、UVオゾン処理、エキシマ処理等が挙げられる。
(Surface treatment of polyimide substrate)
The surface of the polyimide base material is preferably surface-treated. Specific examples of the surface treatment include corona treatment, plasma treatment, UV ozone treatment, and excimer treatment, preferably plasma treatment, UV ozone treatment, and excimer treatment.
 ポリイミド基材を表面処理することにより、改質、洗浄等をすることができる。前記改質により、ポリイミド基材表面に水酸基、カルボキシ基、アミノ基等の活性基を導入することができる。また、前記洗浄により、塗れ性を向上させることができる。その結果、ポリイミド基材上に配置されるガスバリア層との結合力、密着性を向上させることができ、ポリイミド基材およびガスバリア層の接着強度が向上しうる。さらに、表面処理することにより、表面粗さを増大させることで、アンカー効果等によりポリイミド基材およびガスバリア間の接着強度が向上しうる。 The surface of the polyimide base material can be modified and cleaned. By the modification, an active group such as a hydroxyl group, a carboxy group, or an amino group can be introduced on the surface of the polyimide substrate. In addition, the wettability can be improved by the washing. As a result, the bonding strength and adhesion with the gas barrier layer disposed on the polyimide base material can be improved, and the adhesive strength between the polyimide base material and the gas barrier layer can be improved. Furthermore, by increasing the surface roughness by surface treatment, the adhesive strength between the polyimide base material and the gas barrier can be improved by an anchor effect or the like.
 コロナ処理
 コロナ処理は、大気圧状態において、一対の電極に交流の高電圧を印加して励起されるコロナ放電を利用して表面改質を行う方法である。
Corona treatment Corona treatment is a method for surface modification using corona discharge that is excited by applying an alternating high voltage to a pair of electrodes in an atmospheric pressure state.
 プラズマ処理
 プラズマ処理は、酸素ガスまたは酸素ガスおよび不活性ガスの混合ガスを、アーク放電により電離させ、これにより生じるプラズマガスを利用して表面改質を行う方法である。
Plasma treatment Plasma treatment is a method in which oxygen gas or a mixed gas of oxygen gas and inert gas is ionized by arc discharge, and surface modification is performed using the plasma gas generated thereby.
 用いられうる不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられる。 Examples of the inert gas that can be used include nitrogen gas, argon gas, and helium gas.
 プラズマを発生させる方法としては、例えば、直流グロー放電、高周波放電、マイクロ波放電等の装置を利用して行うことができる。 As a method for generating plasma, for example, a device such as direct current glow discharge, high frequency discharge, or microwave discharge can be used.
 また、酸素ガスの供給量としては、1~50sccm(0℃、1気圧基準)であることが好ましく、10~30sccmであることがより好ましい。 Further, the supply amount of oxygen gas is preferably 1 to 50 sccm (0 ° C., 1 atm standard), more preferably 10 to 30 sccm.
 真空チャンバの真空度としては、0.5~50Paであることが好ましく、1~10Paであることがより好ましい。 The vacuum degree of the vacuum chamber is preferably 0.5 to 50 Pa, and more preferably 1 to 10 Pa.
 プラズマ発生用電源からの印加電力としては、50~500Wであることが好ましい。 The applied power from the plasma generation power source is preferably 50 to 500 W.
 プラズマ発生用電源の周波数としては、5~50kHzであることが好ましく、10~20kHzであることがより好ましい。 The frequency of the power source for generating plasma is preferably 5 to 50 kHz, and more preferably 10 to 20 kHz.
 UVオゾン処理
 UVオゾン処理は、紫外線(UV)を照射し、空気中の酸素をオゾンに変換し、オゾンおよび紫外線を利用して表面改質を行う方法である。
UV ozone treatment UV ozone treatment is a method in which ultraviolet rays (UV) are irradiated, oxygen in the air is converted into ozone, and surface modification is performed using ozone and ultraviolet rays.
 UVオゾン処理に使用される光源は、低圧水銀ランプ(185nm、254nm)が挙げられる。 The light source used for UV ozone treatment includes a low-pressure mercury lamp (185 nm, 254 nm).
 照射時間は、0.5~30分であることが好ましく、0.5~10分であることがより好ましい。 The irradiation time is preferably 0.5 to 30 minutes, and more preferably 0.5 to 10 minutes.
 エキシマ処理
 エキシマ処理は、エキシマ光を照射し、空気中の酸素をオゾンに変換し、オゾンおよびエキシマ光を利用して表面改質を行う方法である。
Excimer treatment Excimer treatment is a method in which excimer light is irradiated, oxygen in the air is converted to ozone, and surface modification is performed using ozone and excimer light.
 エキシマ処理に使用される光源は、Xeエキシマランプ(172nm)、クリプトンランプ(146nm)、アルゴンランプ(126nm)等が挙げられる。これらのうち、Xeエキシマランプを用いることが好ましい。 Examples of the light source used for the excimer treatment include a Xe excimer lamp (172 nm), a krypton lamp (146 nm), and an argon lamp (126 nm). Among these, it is preferable to use a Xe excimer lamp.
 照度は、1mW/cm~100kW/cmであることが好ましく、100mW/cm~10W/cmであることがより好ましい。 The illuminance is preferably 1 mW / cm 2 to 100 kW / cm 2 , and more preferably 100 mW / cm 2 to 10 W / cm 2 .
 露光積算量は、10~1000mJ/cmであることが好ましく、50~500mJ/cmであることがより好ましい。 The exposure integrated amount is preferably 10 to 1000 mJ / cm 2 , and more preferably 50 to 500 mJ / cm 2 .
 照射時間は、0.1~500秒であることが好ましく、0.1~60秒であることがより好ましい。 The irradiation time is preferably 0.1 to 500 seconds, and more preferably 0.1 to 60 seconds.
 <ガスバリア性フィルムの製造方法>
 ガスバリア性フィルムの製造方法は、ポリイミド基材上にガスバリア層を形成する工程を含む。その他、必要に応じて、基材を準備する工程、接着層を形成する工程、他のガスバリア層を形成する工程等を含む。
<Method for producing gas barrier film>
The manufacturing method of a gas barrier film includes the process of forming a gas barrier layer on a polyimide base material. In addition, as needed, the process of preparing a base material, the process of forming an contact bonding layer, the process of forming another gas barrier layer, etc. are included.
 好ましい一実施形態において、ガスバリア性フィルムの製造方法は、基材を準備する工程、接着層を形成する工程、ガスバリア層を形成する工程、および他のガスバリア層を形成する工程をこの順に含む。 In a preferred embodiment, the method for producing a gas barrier film includes a step of preparing a substrate, a step of forming an adhesive layer, a step of forming a gas barrier layer, and a step of forming another gas barrier layer in this order.
 [ポリイミド基材を準備する工程]
 本工程は、ポリイミド基材を準備することを含む。必要に応じて、ポリイミド基材の表面処理を含んでいてもよい。
[Process for preparing polyimide base material]
This step includes preparing a polyimide substrate. If necessary, a surface treatment of the polyimide base material may be included.
 (ポリイミド基材の準備)
 ポリイミド基材の準備は、自らポリイミド基材を製造することにより行われうる。また、市販のポリイミドを購入してもよい。
(Preparation of polyimide substrate)
Preparation of a polyimide base material can be performed by manufacturing a polyimide base material itself. Moreover, you may purchase commercially available polyimide.
 当該ポリイミド基材の製造方法については、特に制限はなく、上述の記載が適宜参照されうる。 The method for producing the polyimide base material is not particularly limited, and the above description can be appropriately referred to.
 (ポリイミド基材の表面処理)
 ポリイミド基材およびガスバリア層間の接着強度を制御するために、ポリイミド基材の表面処理が行われうる。当該表面処理としては、上述のように、プラズマ処理、UVオゾン処理、またはエキシマ処理等を挙げることができる。具体的な表面処理方法としては、特に制限されず公知の技術を用いることができ、例えば、上述の記載が適宜参照されうる。
(Surface treatment of polyimide substrate)
In order to control the adhesive strength between the polyimide substrate and the gas barrier layer, a surface treatment of the polyimide substrate can be performed. Examples of the surface treatment include plasma treatment, UV ozone treatment, and excimer treatment as described above. The specific surface treatment method is not particularly limited, and a known technique can be used. For example, the above description can be referred to appropriately.
 [接着層を形成する工程]
 本工程は、ポリイミド基材上に接着層を形成することを含む。
[Step of forming an adhesive layer]
This step includes forming an adhesive layer on the polyimide substrate.
 接着層の形成方法については、使用する接着剤に応じて適宜公知の手法が採用されうる。 As the method for forming the adhesive layer, a known method can be appropriately employed depending on the adhesive to be used.
 例えば、上述のように接着剤として金属酸化物を使用する場合には、物理気相成長法、化学気相成長法により接着層が形成されうる。 For example, when a metal oxide is used as an adhesive as described above, an adhesive layer can be formed by physical vapor deposition or chemical vapor deposition.
 また、接着剤として化学反応型接着剤を使用する場合には、ポリイミド基材上に化学反応型接着剤を塗布し、乾燥、加熱することにより接着層が形成されうる。 Also, when a chemically reactive adhesive is used as the adhesive, the adhesive layer can be formed by applying the chemically reactive adhesive on the polyimide substrate, drying and heating.
 [ガスバリア層を形成する工程]
 本工程は、ポリシラザンを含む塗布液を、ポリイミド基材(ポリイミド基材上に接着層が形成されている場合には、接着層上)に塗布し、前記ポリシラザンを改質することを含む。これにより、ポリシラザン改質物を含むガスバリア層が形成される。
[Step of forming gas barrier layer]
This step includes applying a coating liquid containing polysilazane to a polyimide base material (on the adhesive layer when an adhesive layer is formed on the polyimide base material), and modifying the polysilazane. Thereby, the gas barrier layer containing the polysilazane modified product is formed.
 (ポリシラザンを含む塗布液)
 ポリシラザンを含む塗布液(以下、単に「塗布液」とも称する)は、ポリシラザンおよび溶媒を含む。その他必要に応じて、アミン触媒および金属触媒等の添加剤を含んでいてもよい。
(Coating liquid containing polysilazane)
The coating liquid containing polysilazane (hereinafter also simply referred to as “coating liquid”) contains polysilazane and a solvent. In addition, additives such as an amine catalyst and a metal catalyst may be included as necessary.
 ポリシラザン
 ポリシラザンは上述のものと同様のものが用いられうることからここでは説明を省略する。
Polysilazane Polysilazane can be used in the same manner as described above, and the description thereof is omitted here.
 塗布液中のポリシラザンの含有量は、所望のガスバリア層の膜厚や塗布液のポットライフ等によっても異なるが、塗布液の全量に対して、0.2~35質量%であることが好ましい。 The content of polysilazane in the coating solution varies depending on the desired film thickness of the gas barrier layer, the pot life of the coating solution, etc., but is preferably 0.2 to 35% by mass with respect to the total amount of the coating solution.
 溶媒
 溶媒としては、ポリシラザンと反応するものでなければ特に制限はなく、公知の溶媒が用いられうる。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素等の炭化水素系溶媒;脂肪族エーテル、脂環式エーテル等のエーテル系溶媒が挙げられる。より詳細には、炭化水素溶媒としては、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン、塩化メチレン、トリクロロエタン等が挙げられる。また、エーテル系溶媒としては、ジブチルエーテル、ジオキサン、テトラヒドロフラン等が挙げられる。これらの溶媒は単独で、または2種以上を混合して用いられうる。
Solvent The solvent is not particularly limited as long as it does not react with polysilazane, and a known solvent can be used. Specific examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; ether solvents such as aliphatic ethers and alicyclic ethers. More specifically, examples of the hydrocarbon solvent include pentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, methylene chloride, trichloroethane, and the like. Examples of ether solvents include dibutyl ether, dioxane, and tetrahydrofuran. These solvents can be used alone or in admixture of two or more.
 アミン触媒および金属触媒
 アミン触媒および金属触媒としては上述のものと同様のものが用いられうることからここでは説明を省略する。
Amine catalyst and metal catalyst As the amine catalyst and the metal catalyst, the same ones as described above can be used, so that the description thereof is omitted here.
 このうち、塗布液がアミン触媒および/または金属触媒を含む場合には、当該アミン触媒および/または金属触媒は、ポリシラザンに対して、0.1~10質量%含むことが好ましい。特にアミン触媒については、塗布性の向上および反応の時間の短縮の観点から、ポリシラザンに対して、0.5~5質量%含むことがより好ましい。 Among these, when the coating solution contains an amine catalyst and / or a metal catalyst, the amine catalyst and / or metal catalyst is preferably contained in an amount of 0.1 to 10% by mass with respect to polysilazane. In particular, the amine catalyst is more preferably contained in an amount of 0.5 to 5% by mass based on the polysilazane from the viewpoint of improving the coating property and shortening the reaction time.
 また、一実施形態において、アミン触媒の含有量は、ポリシラザンに対して、2質量%未満であることが好ましい。アミン触媒の含有量が2質量%未満であると、ガスバリア層においてガスバリア性自体に寄与しない成分が低減され、高いガスバリア性が得られることから好ましい。また、後述するポリシラザンの改質方法に加熱が含まれる場合、塗膜全体が改質される。そのため、このような場合には、アミン触媒の含有量を2質量%未満とすることにより、ポリシラザンの改質速度を低下させることで、基材に追従しながら改質が進行するとともに、得られるガスバリア層が熱力学的に安定な形態をとりやすいため、ポリイミド基材およびガスバリア層間の密着性が向上し、ガスバリア層のクラックの発生を防止することができる。 In one embodiment, the content of the amine catalyst is preferably less than 2% by mass with respect to polysilazane. It is preferable that the content of the amine catalyst is less than 2% by mass because components that do not contribute to the gas barrier property itself in the gas barrier layer are reduced and high gas barrier property is obtained. Further, when heating is included in the polysilazane modification method described later, the entire coating film is modified. Therefore, in such a case, when the content of the amine catalyst is less than 2% by mass, the modification rate of the polysilazane is reduced, and the modification proceeds while following the base material. Since the gas barrier layer tends to take a thermodynamically stable form, the adhesion between the polyimide base material and the gas barrier layer is improved, and the occurrence of cracks in the gas barrier layer can be prevented.
 (塗布)
 塗布においては、塗布液を基材上に塗布し、塗膜を形成する。なお、基材が接着層を有する場合には、塗布液は接着層上に塗布されうる。
(Application)
In application | coating, a coating liquid is apply | coated on a base material and a coating film is formed. In addition, when a base material has an adhesive layer, a coating liquid can be apply | coated on an adhesive layer.
 塗布液の塗布方法としては、適宜公知の方法が採用されうる。具体的には、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 As a coating method of the coating solution, a known method can be adopted as appropriate. Specific examples include spin coating methods, roll coating methods, flow coating methods, ink jet methods, spray coating methods, printing methods, dip coating methods, cast film forming methods, bar coating methods, and gravure printing methods.
 塗布液の塗布量は、特に制限されないが、上記所望のガスバリア層の厚さとなるように適宜調節されうる。 The coating amount of the coating liquid is not particularly limited, but can be appropriately adjusted so as to have the desired thickness of the gas barrier layer.
 (ポリシラザンの改質)
 ポリシラザンの改質方法は特に制限されず、公知の方法が適用されうる。具体的なポリシラザンの改質方法としては、紫外光の照射、プラズマ照射、加熱、およびこれらの組み合わせ等が挙げられる。
(Modification of polysilazane)
The modification method of polysilazane is not particularly limited, and a known method can be applied. Specific methods for modifying polysilazane include ultraviolet light irradiation, plasma irradiation, heating, and combinations thereof.
 前記紫外光の照射は、公知の方法で紫外光を照射することにより行われうる。紫外光を照射することにより、ポリシラザンが改質されうる。なお、「紫外光の照射」には、塗布液の塗布によって得られた塗膜に紫外光が照射される環境とすることを含む。したがって、「紫外光の照射」には、蛍光灯、黄色灯等の環境下に前記塗膜を静置することも含まれる。これらのうち、紫外光の照射は、酸化性ガス雰囲気下と低湿度環境で行うことが好ましい。 The irradiation of the ultraviolet light can be performed by irradiating the ultraviolet light by a known method. Polysilazane can be modified by irradiation with ultraviolet light. In addition, “irradiation with ultraviolet light” includes setting an environment in which ultraviolet light is irradiated onto a coating film obtained by applying a coating liquid. Therefore, “irradiation with ultraviolet light” includes standing the coating film in an environment such as a fluorescent lamp or a yellow lamp. Of these, irradiation with ultraviolet light is preferably performed in an oxidizing gas atmosphere and in a low humidity environment.
 照射する紫外光の波長は、特に限定されないが、10~450nmであることが好ましく、100~300nmであることがより好ましく、100~200nmであることがさらに好ましく、100~180nmであることが特に好ましい。これらのうち、照射する紫外光は、転化反応をより低温かつ短時間で進める観点から、真空紫外光(波長200nm以下の紫外光)であることが好ましい。 The wavelength of the ultraviolet light to be irradiated is not particularly limited, but is preferably 10 to 450 nm, more preferably 100 to 300 nm, further preferably 100 to 200 nm, and particularly preferably 100 to 180 nm. preferable. Among these, the ultraviolet light to be irradiated is preferably vacuum ultraviolet light (ultraviolet light having a wavelength of 200 nm or less) from the viewpoint of proceeding the conversion reaction at a lower temperature and in a shorter time.
 上述のように、真空紫外光の照射により、ポリシラザンがシラノールを経由することなく直接酸化されることから(光量子プロセスと呼ばれる光子の作用)、当該酸化過程において体積変化が少なく、高密度で欠陥の少ない酸化ケイ素、窒化ケイ素、および酸化窒化ケイ素等を含む膜が得られうる。また、真空紫外光では、反応雰囲気中に存在する酸素等から高い酸化能力を有するオゾンや活性酸素が生成され、当該オゾンや活性酸素によってもポリシラザンの改質処理を行うことができる。その結果、より緻密な酸化ケイ素、窒化ケイ素、および酸化窒化ケイ素等の膜が得られうる。したがって、真空紫外光の照射によりポリシラザンが改質されて得られるガスバリア層は、高いバリア性を有しうる。なお、真空紫外光照射は、塗膜形成後であればいずれの時点で実施してもよい。 As described above, since the polysilazane is directly oxidized without passing through silanol by irradiation with vacuum ultraviolet light (the action of photons called a photon process), there is little volume change in the oxidation process, and the defect density is high. A film containing a small amount of silicon oxide, silicon nitride, silicon oxynitride, or the like can be obtained. Further, in vacuum ultraviolet light, ozone or active oxygen having high oxidation ability is generated from oxygen or the like present in the reaction atmosphere, and polysilazane reforming treatment can be performed by the ozone or active oxygen. As a result, denser films such as silicon oxide, silicon nitride, and silicon oxynitride can be obtained. Therefore, the gas barrier layer obtained by modifying polysilazane by irradiation with vacuum ultraviolet light can have high barrier properties. In addition, you may implement vacuum ultraviolet light irradiation at any time, if it is after coating-film formation.
 紫外光の光源としては、特に制限されないが、低圧水銀灯、重水素ランプ、キセノンエキシマランプ、メタルハライドランプ、エキシマレーザー等が用いられうる。また、上述のように蛍光灯、黄色灯等であってもよい。これらのうち、キセノンエキシマランプ等の希ガスエキシマランプを用いることが好ましい。 Although the ultraviolet light source is not particularly limited, a low-pressure mercury lamp, a deuterium lamp, a xenon excimer lamp, a metal halide lamp, an excimer laser, or the like can be used. Further, as described above, a fluorescent lamp, a yellow lamp, or the like may be used. Among these, it is preferable to use a rare gas excimer lamp such as a xenon excimer lamp.
 真空紫外光照射時の酸素濃度は0.5体積%以下であることが好ましく、0.1体積%以下であることがより好ましい。酸素濃度が0.5体積%以下であると、大気と酸素との置換時間が短縮されうることから好ましい。 The oxygen concentration during vacuum ultraviolet light irradiation is preferably 0.5% by volume or less, and more preferably 0.1% by volume or less. It is preferable that the oxygen concentration be 0.5% by volume or less because the replacement time between the atmosphere and oxygen can be shortened.
 酸素濃度および水蒸気濃度の調整方法としては、特に制限されないが、装置内を減圧にする方法、ガスフローする方法等が挙げられる。これらのうち、装置内を減圧にする方法により酸素濃度および水蒸気濃度を調整することが好ましい。当該装置内を減圧にする方法は、真空ポンプを用いて大気圧から好ましくは100Pa以下、より好ましくは20Pa以下まで減圧する。 The method for adjusting the oxygen concentration and the water vapor concentration is not particularly limited, and examples thereof include a method of reducing the pressure in the apparatus and a method of gas flow. Among these, it is preferable to adjust the oxygen concentration and the water vapor concentration by a method of reducing the pressure in the apparatus. As a method for reducing the pressure in the apparatus, the pressure is reduced from atmospheric pressure to 100 Pa or less, more preferably 20 Pa or less using a vacuum pump.
 酸素濃度および水蒸気濃度の調整後、所定のガスを導入し、所定の圧力とすることで、プラズマで励起する環境とすることができる。 After adjusting the oxygen concentration and water vapor concentration, an environment excited by plasma can be obtained by introducing a predetermined gas and setting a predetermined pressure.
 さらに、前記加熱によってもポリシラザンが改質しうる。 Furthermore, polysilazane can be modified by the heating.
 加熱の方法としては、特に制限はなく、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が挙げられる。また、デバイス形成工程における高温環境としてもよい。すなわち、ガスバリア層の少なくとも一部のポリシラザンが未改質のフィルムを製造し、これをデバイス形成工程に適用してその過程で未改質のポリシラザンの少なくとも一部を改質してもよい。これらの方法は、塗膜の平滑性等の観点から適宜選択されうる。 The heating method is not particularly limited, and the method of heating the coating film by contacting the substrate with a heating element such as a heat block, the method of heating the atmosphere by an external heater such as a resistance wire, and the like of an IR heater And a method using light in the infrared region. Moreover, it is good also as a high temperature environment in a device formation process. That is, a film in which at least a part of the polysilazane in the gas barrier layer is not modified may be manufactured and applied to the device forming process, and at least a part of the unmodified polysilazane may be modified in the process. These methods can be appropriately selected from the viewpoint of the smoothness of the coating film.
 加熱処理の温度としては、特に制限はないが、50~200℃であることが好ましく、80~150℃であることがより好ましい。また、加熱時間としては1秒~10時間であることが好ましく、10秒~1時間であることがより好ましい。 The temperature of the heat treatment is not particularly limited, but is preferably 50 to 200 ° C, more preferably 80 to 150 ° C. The heating time is preferably 1 second to 10 hours, more preferably 10 seconds to 1 hour.
 ポリシラザンの改質は、紫外光照射またはプラズマ照射と、加熱処理とを組み合わせることが好ましい。紫外光照射またはプラズマ照射と、加熱処理とを組み合わせることにより、改質が促進されうる。 The modification of polysilazane is preferably a combination of ultraviolet light irradiation or plasma irradiation and heat treatment. Modification can be promoted by combining ultraviolet irradiation or plasma irradiation and heat treatment.
 上述の改質処理によって得られるガスバリア層の膜厚や密度等は、塗布条件、紫外光の強度、照射時間、波長(光のエネルギー密度)、および照射方法、プラズマ照射の方法、ガス種、圧力、電源の周波数、および投入電力密度、並びに加熱温度等を適宜選択することにより制御することができる。例えば、紫外光の照射方法を、連続照射、複数回に分割した照射、複数回の照射が短時間な、いわゆるパルス照射等から適宜選択することで、ガスバリア層の膜厚や密度等が制御されうる。 The film thickness, density, etc. of the gas barrier layer obtained by the above modification treatment are the coating conditions, the intensity of ultraviolet light, the irradiation time, the wavelength (light energy density), the irradiation method, the plasma irradiation method, the gas type, and the pressure. It is possible to control by appropriately selecting the frequency of the power source, the input power density, the heating temperature, and the like. For example, the film thickness, density, etc. of the gas barrier layer can be controlled by appropriately selecting the irradiation method of ultraviolet light from continuous irradiation, irradiation divided into a plurality of times, and so-called pulse irradiation, etc., in which the plurality of times of irradiation is short. sell.
 改質処理の程度については、形成されたガスバリア層をXPS表面分析することによって、ケイ素(Si)原子、窒素(N)原子、酸素(O)原子等の各原子組成比を求めることで確認できる。 The extent of the modification treatment can be confirmed by determining each atomic composition ratio of silicon (Si) atoms, nitrogen (N) atoms, oxygen (O) atoms, etc. by XPS surface analysis of the formed gas barrier layer. .
 なお、ポリシラザンの改質は、上記加熱、紫外光の照射時、プラズマ照射時のみに起こるものではなく、塗布液をポリイミド基材上に塗布した後から生じうる。 The modification of polysilazane does not occur only at the time of the above-mentioned heating, ultraviolet light irradiation, or plasma irradiation, but can occur after the coating liquid is applied on the polyimide substrate.
 上述したように、ポリシラザンを紫外光の照射、プラズマ照射、加熱、およびこれらの組み合わせ等の方法により改質することで、酸化ケイ素を含むポリシラザン改質物を得ることができる。また、特に前記改質が、真空紫外光の照射を含む場合には、酸化ケイ素とともに、窒化ケイ素および/または酸化窒化ケイ素を含むポリシラザン改質物が得られうる。 As described above, a polysilazane modified product containing silicon oxide can be obtained by modifying polysilazane by methods such as ultraviolet light irradiation, plasma irradiation, heating, and combinations thereof. In particular, when the modification includes irradiation with vacuum ultraviolet light, a polysilazane modified product containing silicon nitride and / or silicon oxynitride together with silicon oxide can be obtained.
 [他のガスバリア層を形成する工程]
 他のガスバリア層を形成する工程は、ポリシラザン改質物を含むガスバリア層等の上に、他のガスバリア層を形成することを含む。
[Step of forming another gas barrier layer]
The step of forming another gas barrier layer includes forming another gas barrier layer on the gas barrier layer containing the polysilazane modified product.
 (他のガスバリア層)
 他のガスバリア層としては、上述のように特に制限されないが、公知のガスバリア層、例えば、乾式成膜法により形成されるガスバリア層が挙げられる。以下においては、乾式成膜法により他のガスバリア層を形成する方法について説明する。
(Other gas barrier layers)
The other gas barrier layer is not particularly limited as described above, and examples thereof include a known gas barrier layer, for example, a gas barrier layer formed by a dry film forming method. Hereinafter, a method of forming another gas barrier layer by a dry film forming method will be described.
 (乾式成膜法)
 乾式製膜法としては、物理気相成長法および化学気相成長法が挙げられる。物理気相成長法とは、気相中で物質の表面に物理的手法により目的とする物質の薄膜を堆積する方法をいい、蒸着法(抵抗加熱法、電子ビーム蒸着法、分子線エピタキシー法)、イオンプレーティング法、スパッタ法等が挙げられる。一方、化学気相成長法(化学蒸着法、CVD法)とは、基材等の上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面または気相における化学反応により膜を堆積させる方法をいい、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法等が挙げられる。これらのうち、スパッタ法、プラズマCVD法を用いることが好ましく、プラズマCVD法を用いることがより好ましい。
(Dry film forming method)
Examples of the dry film forming method include physical vapor deposition and chemical vapor deposition. The physical vapor deposition method is a method in which a thin film of a target substance is deposited on the surface of the substance by a physical method in a gas phase, and a vapor deposition method (resistance heating method, electron beam vapor deposition method, molecular beam epitaxy method). , Ion plating method, sputtering method and the like. On the other hand, the chemical vapor deposition method (chemical vapor deposition method, CVD method) is a method in which a raw material gas containing a target thin film component is supplied onto a substrate or the like, and the film is formed by a chemical reaction on the substrate surface or in the gas phase. It refers to a method of deposition, and examples include thermal CVD, catalytic chemical vapor deposition, photo CVD, and plasma CVD. Of these, the sputtering method and the plasma CVD method are preferably used, and the plasma CVD method is more preferably used.
 以下、プラズマCVD法を例に挙げて説明する。 Hereinafter, the plasma CVD method will be described as an example.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれにフィルムを配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上にフィルムを配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在するフィルムを成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一である構造の膜を成膜できる。 When generating plasma in the plasma CVD method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and a film is applied to each of the pair of film forming rollers. More preferably, the plasma is generated by discharging between the pair of film forming rollers. Thus, by using a pair of film forming rollers, placing a film on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller is placed on the film forming roller. While forming an existing film, it is possible to form a film on the surface of the substrate on the other film forming roller at the same time, so that a thin film can be produced efficiently and a normal roller is not used. Compared with the plasma CVD method, the film formation rate can be doubled, and a film having a substantially identical structure can be formed.
 また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、乾式成膜法により形成された他のガスバリア層は連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably contains an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. The other gas barrier layer formed by the dry film forming method is preferably a layer formed by a continuous film forming process.
 また、生産性の観点から、ロール・トゥ・ロール方式でフィルム、例えば、前記ガスバリア層上に、他のガスバリア層を形成させることが好ましい。また、このようなプラズマCVD法により他のガスバリア層を形成する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図1に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロール・トゥ・ロール方式で製造することも可能となる。 Also, from the viewpoint of productivity, it is preferable to form another gas barrier layer on the film, for example, the gas barrier layer, by a roll-to-roll method. An apparatus that can be used when forming another gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source. It is preferable that the apparatus has a configuration capable of discharging between the film forming rollers. For example, when the manufacturing apparatus shown in FIG. 1 is used, a roll-to-roll operation is performed using the plasma CVD method. It is also possible to manufacture by a method.
 以下、図1を参照しながら、基材を使用した場合において、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法によるガスバリア層の形成方法について、より詳細に説明する。なお、図1は、本方法によりガスバリア層を形成するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, with reference to FIG. 1, when a substrate is used, a gas barrier by a plasma CVD method in which the substrate is disposed on a pair of film forming rollers and plasma is generated by discharging between the pair of film forming rollers. The method for forming the layer will be described in more detail. FIG. 1 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for forming a gas barrier layer by this method. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような図1に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材等)の搬送速度を適宜調整することにより、ガスバリア層を形成することができる。すなわち、図1に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材等の表面上および成膜ローラー40上の基材等の表面上に、ガスバリア層がプラズマCVD法により形成される。なお、このような成膜に際しては、基材等が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材等の表面上にガスバリア層が形成される。 Using such a manufacturing apparatus 31 shown in FIG. 1, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the film (base material, etc.) The gas barrier layer can be formed by appropriately adjusting the transport speed. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. As a result, the film forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer is formed on the surface of the base material on the film forming roller 39 and the surface of the base material on the film forming roller 40 by plasma CVD. It is formed by. In such film formation, the substrate and the like are conveyed by the delivery roller 32 and the film formation roller 39, respectively, so that they are formed on the surface of the substrate and the like by a roll-to-roll continuous film formation process. A gas barrier layer is formed.
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。その他のガスバリア層の形成に用いる前記成膜ガス中の原料ガスとしては、形成するその他のガスバリア層の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られるその他のガスバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、ガスバリア層の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 41 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film-forming gas used for forming the other gas barrier layer can be appropriately selected and used according to the material of the other gas barrier layer to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of other gas barrier layers obtained. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organosilicon compound gas and organic compound gas, an appropriate source gas is selected according to the type of the gas barrier layer.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができる。例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used alone or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a reaction gas for forming a nitride can be used in combination.
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるその他のガスバリア層によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary to completely react the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, it is excellent in that excellent barrier properties and bending resistance can be obtained by the other gas barrier layers to be formed. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時のフィルム表面の温度が上昇するのを抑制できる。そのためフィルムが熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 39 and the film forming roller 40, an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used. The power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such applied power is 100 W or more, generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the film surface during film formation can be suppressed. It is possible to suppress an increase in temperature. Therefore, it is excellent in that wrinkles can be prevented during film formation without losing heat to the film.
 上記したように、本実施形態のより好ましい態様としては、その他のガスバリア層を、図1に示す対向ロール電極を有するプラズマCVD装置(ロール・トゥ・ロール方式)を用いたプラズマCVD法によって成膜するものである。これは、対向ロール電極を有するプラズマCVD装置(ロール・トゥ・ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロール・トゥ・ロールでの搬送時の耐久性と、バリア性能とが両立するその他のガスバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, other gas barrier layers are formed by plasma CVD using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. To do. This is excellent in flexibility (flexibility) and mechanical strength, especially in roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce other gas barrier layers having both durability at the time and barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 <電子デバイス>
 本発明の一形態によれば、電子デバイス本体と、上述のガスバリア性フィルムとを含む電子デバイスが提供される。
<Electronic device>
According to one form of this invention, the electronic device containing an electronic device main body and the above-mentioned gas barrier film is provided.
 [電子デバイス本体]
 電子デバイス本体としては、特に制限されず、ガスバリア性フィルムが適用されうる公知の電子デバイス本体が挙げられる。例えば、太陽電池(PV)、液晶表示素子(LCD)、有機エレクトロルミネッセンス(EL)素子等が挙げられる。これらの電子デバイス本体の構成についても、特に制限はなく、公知の構成を有しうる。例えば、有機EL素子は、基板、陰電極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽電極等を有しうる。
[Electronic device body]
The electronic device body is not particularly limited, and examples thereof include known electronic device bodies to which a gas barrier film can be applied. For example, a solar cell (PV), a liquid crystal display element (LCD), an organic electroluminescence (EL) element, etc. are mentioned. There is no restriction | limiting in particular also about the structure of these electronic device main bodies, It can have a well-known structure. For example, the organic EL element can have a substrate, a negative electrode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, a positive electrode, and the like.
 [ガスバリア性フィルム]
 上述のガスバリア性フィルムは、基材、封止用材料等に使用されうる。基材として、例えば、太陽電池に使用される場合には、ガスバリア性フィルム上にITO等の透明導電性薄膜を透明電極として設けた樹脂支持体として適用することができる。この場合、ガスバリア性フィルムは、電子デバイス本体に組み込まれている。また、封止用材料として使用される場合には、例えば、液晶表示素子を封止した電子デバイスが得られうる。本発明に係るガスバリア性フィルムは、封止用材料として、電子デバイス本体の封止に用いられることが好ましい。
[Gas barrier film]
The gas barrier film described above can be used as a substrate, a sealing material, and the like. As a base material, when used for a solar cell, for example, it can be applied as a resin support in which a transparent conductive thin film such as ITO is provided as a transparent electrode on a gas barrier film. In this case, the gas barrier film is incorporated in the electronic device body. When used as a sealing material, for example, an electronic device in which a liquid crystal display element is sealed can be obtained. The gas barrier film according to the present invention is preferably used for sealing an electronic device body as a sealing material.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 <ガスバリア性フィルムの製造>
 [実施例1]
 (1)基材
 10cm×10cmのサイズで厚み50μmのUPILEX-50SGA(ポリイミドフィルム、宇部興産株式会社製)を基材として使用した。以下の実施例では、基材は同様のサイズのものを用いた。
<Manufacture of gas barrier film>
[Example 1]
(1) Substrate UPILEX-50SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a size of 10 cm × 10 cm and a thickness of 50 μm was used as a substrate. In the following examples, substrates having the same size were used.
 UVオゾン処理装置UV-1(サムコ株式会社製)を用いて、前記基材表面に対して3分間のオゾン処理(基材温度:80℃、供給ガス:空気)を行い、基材の表面処理を行った。 Using a UV ozone treatment device UV-1 (manufactured by Samco Corporation), the substrate surface is subjected to ozone treatment for 3 minutes (substrate temperature: 80 ° C., supply gas: air) to treat the surface of the substrate. Went.
 (2)ガスバリア層(1層目)の形成
 以下のようにしてポリシラザンを含む塗布液を調製した。
(2) Formation of gas barrier layer (first layer) A coating liquid containing polysilazane was prepared as follows.
 すなわち、無触媒のパーヒドロポリシラザン20重量%ジブチルエーテル溶液(NN120-20、AZエレクトロニックマテリアルズ株式会社製)を、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)をパーヒドロポリシラザンに対して5重量%含有するパーヒドロポリシラザン20重量%ジブチルエーテル溶液(NAX120-20、AZエレクトロニックマテリアルズ株式会社製)に混合した。次いで、ジブチルエーテルで適宜希釈することにより、アミン触媒をパーヒドロポリシラザンに対して1重量%含むジブチルエーテル溶液としてポリシラザンを含む塗布液を調製した。 That is, an uncatalyzed perhydropolysilazane 20 wt% dibutyl ether solution (NN120-20, manufactured by AZ Electronic Materials Co., Ltd.) was converted into an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diamino). Hexane) was mixed with a 20% by weight dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 5% by weight of perhydropolysilazane. Next, by appropriately diluting with dibutyl ether, a coating liquid containing polysilazane was prepared as a dibutyl ether solution containing 1 wt% of the amine catalyst with respect to perhydropolysilazane.
 次に、調製したポリシラザンを含む塗布液を、表面処理したポリイミド基材に塗布し、塗膜を形成した。この際、前記塗布は、基材の表面処理直後に行った。 Next, the prepared coating liquid containing polysilazane was applied to a surface-treated polyimide base material to form a coating film. At this time, the application was performed immediately after the surface treatment of the substrate.
 より詳細には、表面処理した基材上に、ポリシラザンを含む塗布液をスピンコートにより塗布した後、80℃にて1分間乾燥して、塗膜を形成した。得られた塗膜に、メインピーク発光波長が172nmの真空紫外(VUV)光を以下の条件で照射し、膜厚250nmのポリシラザン改質物を含むガスバリア層を形成した。なお、膜厚は、TEM(Transmission Electron Microscope:透過電子顕微鏡)の断面写真より、明確な界面が見られることで確認できた。 More specifically, a coating liquid containing polysilazane was applied onto the surface-treated substrate by spin coating, and then dried at 80 ° C. for 1 minute to form a coating film. The obtained coating film was irradiated with vacuum ultraviolet (VUV) light having a main peak emission wavelength of 172 nm under the following conditions to form a gas barrier layer containing a polysilazane modified product having a thickness of 250 nm. The film thickness was confirmed by the fact that a clear interface was seen from a cross-sectional photograph of a TEM (Transmission Electron Microscope).
 (真空紫外線(VUV光)照射処理条件)
 真空紫外線照射装置:ステージ可動型キセノンエキシマ照射装置
          (MDエキシマ社製、MECL-M-1-200)
 照度:140mW/cm(172nm)
 ステージ温度:100℃
 処理環境:ドライ窒素ガス雰囲気下
 処理環境の酸素濃度:0.1体積%
 ステージ可動速度と搬送回数:10mm/秒で15回搬送
 エキシマ光露光積算量:6500mJ/cm
(Vacuum ultraviolet (VUV light) irradiation treatment conditions)
Vacuum ultraviolet irradiation device: Stage movable xenon excimer irradiation device (MD excimer, MECL-M-1-200)
Illuminance: 140 mW / cm 2 (172 nm)
Stage temperature: 100 ° C
Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume
Stage movable speed and number of times of conveyance: 15 times of conveyance at 10 mm / second Excimer light exposure integrated amount: 6500 mJ / cm 2 .
 なお、試料は、ランプと試料との間隔(Gap)が3mmとなるように設置した。また、照射時間は可動ステージの可動速度を調整して変化させた。真空紫外線(VUV光)照射時の酸素濃度の調整については、照射庫内に導入する窒素ガス、酸素ガスの流量をフローメーターにより測定し、庫内に導入するガスの窒素ガス/酸素ガス流量比を制御することにより調整した。 The sample was installed so that the gap (Gap) between the lamp and the sample was 3 mm. Further, the irradiation time was changed by adjusting the movable speed of the movable stage. Regarding the adjustment of oxygen concentration during irradiation with vacuum ultraviolet rays (VUV light), the flow rate of nitrogen gas and oxygen gas introduced into the irradiation chamber is measured with a flow meter, and the nitrogen gas / oxygen gas flow ratio of the gas introduced into the chamber is measured. It was adjusted by controlling.
 (3)ガスバリア層(2層目)の形成
 上記(2)と同様の方法で、上記ガスバリア層(1層目)上に膜厚40nmのガスバリア層(2層目)を形成した。さらに、250℃で60分間熱処理し、ポリイミド基材(オゾン処理)-ガスバリア層-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。
(3) Formation of gas barrier layer (second layer) A gas barrier layer (second layer) having a thickness of 40 nm was formed on the gas barrier layer (first layer) by the same method as in (2) above. Further, heat treatment was performed at 250 ° C. for 60 minutes to produce a gas barrier film in which a polyimide substrate (ozone treatment) -gas barrier layer-gas barrier layer was laminated in this order.
 なお、得られたガスバリア性フィルムにおいて、ポリイミド基材およびガスバリア性フィルム(1層目)の剥離強度を、JIS Z0237:2009の180度剥離法に準拠して測定した。 In addition, in the obtained gas barrier film, the peeling strength of the polyimide base material and the gas barrier film (first layer) was measured according to the 180 degree peeling method of JIS Z0237: 2009.
 より詳細には、製造したガスバリア性フィルムの最表面のガスバリア層(2層目のガスバリア層)に所定の粘着テープを貼付した。次いで、テープの端部を電動式タテ型フォースゲージスタンドであるFGS-50E(日本電産シンポ株式会社製)を用いて、30mm/minの速度でテープを引っ張り、ポリイミド基材と、ガスバリア層とが剥離するかどうかを確認した。この際、使用する粘着テープの種類により、剥離強度を測定した。 More specifically, a predetermined adhesive tape was attached to the outermost gas barrier layer (second gas barrier layer) of the produced gas barrier film. Next, the end of the tape was pulled at a speed of 30 mm / min using FGS-50E (manufactured by Nidec Shinpo Co., Ltd.), which is an electric vertical force gauge stand, and the polyimide base material, the gas barrier layer, It was confirmed whether or not. At this time, the peel strength was measured according to the type of pressure-sensitive adhesive tape used.
 なお、使用した粘着テープは以下のとおりである;
 (a)シーリングマスキングテープNo.2541(粘着力:1.3N/cm、ニチバン株式会社製)
 (b)セロテープ(登録商標)No.5511(粘着力:2.7N/cm、ニチバン株式会社製)
 (c)セロテープ(登録商標)No.405AP-24(粘着力:4N/cm、ニチバン株式会社製)
 (d)ポリエスパーテープ(5.9N/m、積水化学工業株式会社製)。
In addition, the used adhesive tape is as follows;
(A) Sealing masking tape No. 2541 (Adhesive strength: 1.3 N / cm, manufactured by Nichiban Co., Ltd.)
(B) Cellotape (registered trademark) No. 5511 (Adhesive strength: 2.7 N / cm, manufactured by Nichiban Co., Ltd.)
(C) Cellotape (registered trademark) No. 405AP-24 (Adhesive strength: 4 N / cm, manufactured by Nichiban Co., Ltd.)
(D) Polysper tape (5.9 N / m, manufactured by Sekisui Chemical Co., Ltd.).
 得られたガスバリア性フィルムは、(a)の粘着テープではポリイミド基材およびガスバリア性フィルムの剥離が生じなかったが、(b)の粘着テープでは剥離した。よって、接着強度は、1.3N/cm超2.7N/cm未満である。 The obtained gas barrier film did not peel off the polyimide substrate and the gas barrier film with the adhesive tape (a), but peeled off with the adhesive tape (b). Therefore, the adhesive strength is more than 1.3 N / cm and less than 2.7 N / cm.
 [実施例2]
 基材
 厚み40μmのネオプリム(ポリイミドフィルム、シクロヘキサンテトラカルボン酸またはシクロヘキサンテトラカルボン酸二無水物と、ピロメリット酸またはピロメリット酸二無水物とからなるポリイミド、三菱ガス化学株式会社製)を基材として使用した。
[Example 2]
Base material: 40μm thick neoprim (polyimide film, polyimide consisting of cyclohexanetetracarboxylic acid or cyclohexanetetracarboxylic dianhydride and pyromellitic acid or pyromellitic dianhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd.) used.
 ステージ可動型キセノンエキシマ照射装置(MDエキシマ社製、MECL-M-1-200)を用いて、酸素存在下、前記基材表面をエキシマ光照射することで、エキシマ処理を行った。 Excimer treatment was performed by irradiating the substrate surface with excimer light in the presence of oxygen using a stage movable xenon excimer irradiation device (MDCL-M-1-200, manufactured by MD Excimer).
 (真空紫外線(VUV光)照射処理条件)
 真空紫外線照射装置:ステージ可動型キセノンエキシマ照射装置
          (MDエキシマ社製、MECL-M-1-200)
 照度:140mW/cm(172nm)
 ステージ温度:100℃
 処理環境:ドライ窒素ガス雰囲気下
 処理環境の酸素濃度:0.1体積%
 ステージ可動速度と搬送回数:20mm/秒で2回搬送
 エキシマ光露光積算量:500mJ/cm
(Vacuum ultraviolet (VUV light) irradiation treatment conditions)
Vacuum ultraviolet irradiation device: Stage movable xenon excimer irradiation device (MD excimer, MECL-M-1-200)
Illuminance: 140 mW / cm 2 (172 nm)
Stage temperature: 100 ° C
Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume
Stage movable speed and number of times of conveyance: 2 times of conveyance at 20 mm / sec. Excimer light exposure integrated amount: 500 mJ / cm 2 .
 ガスバリア層の形成
 基材の表面処理直後に、実施例1と同様の方法で、ポリイミド基材上にガスバリア層を2層形成した。
Formation of Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
 これにより、ポリイミド基材(エキシマ処理)-ガスバリア層-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 Thereby, a gas barrier film in which a polyimide base material (excimer treatment), a gas barrier layer, and a gas barrier layer were laminated in this order was manufactured.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、1.3N/cm超2.7N/cm未満であった。 When the adhesion strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was more than 1.3 N / cm and less than 2.7 N / cm.
 [実施例3]
 厚み50μmのカプトン(モノマー成分として、ピロメリット酸二無水物および4,4’-ジアミノジフェニルエーテルを有するポリイミドフィルム、東レ・デュポン株式会社製)を基材として使用した。得られたガスバリア性フィルムは、ポリイミド基材(エキシマ処理)-ガスバリア層-ガスバリア層がこの順に積層された構成を有する。
[Example 3]
Kapton having a thickness of 50 μm (polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as a substrate. The obtained gas barrier film has a structure in which a polyimide base material (excimer treatment), a gas barrier layer, and a gas barrier layer are laminated in this order.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、1.3N/cm超2.7N/cm未満であった。 When the adhesion strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was more than 1.3 N / cm and less than 2.7 N / cm.
 [実施例4]
 基材
 厚み40μmのUPILEX25-50S(ポリイミドフィルム、宇部興産株式会社製)を基材として使用した。
[Example 4]
Base material UPILEX 25-50S (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 40 μm was used as the base material.
 プラズマドライクリーナーPC-300(サムコ株式会社製)を用いて、200Wで2分間、酸素プラズマ処理を行った(酸素ガスの供給量:5sccm(0℃、1気圧基準)、真空チャンバの真空度:1Pa)。 Oxygen plasma treatment was performed at 200 W for 2 minutes using a plasma dry cleaner PC-300 (manufactured by Samco Corporation) (amount of oxygen gas supplied: 5 sccm (0 ° C., 1 atm standard), vacuum degree of vacuum chamber: 1 Pa).
 ガスバリア層の形成
 基材の表面処理直後に、実施例1と同様の方法で、ポリイミド基材上にガスバリア層を2層形成した。
Formation of Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
 これにより、ポリイミド基材(酸素プラズマ処理)-ガスバリア層-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 As a result, a gas barrier film in which a polyimide substrate (oxygen plasma treatment), a gas barrier layer, and a gas barrier layer were laminated in this order was manufactured.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、2.7N/cm超4N/cm未満であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured in the same manner as in Example 1, it was more than 2.7 N / cm and less than 4 N / cm.
 [実施例5]
 厚み50μmのカプトン(モノマー成分として、ピロメリット酸二無水物および4,4’-ジアミノジフェニルエーテルを有するポリイミドフィルム、東レ・デュポン株式会社製)を基材として使用した。
[Example 5]
Kapton having a thickness of 50 μm (polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as a substrate.
 得られたガスバリア性フィルムは、ポリイミド基材(酸素プラズマ処理)-ガスバリア層-ガスバリア層がこの順に積層された構成を有する。 The obtained gas barrier film has a structure in which a polyimide base material (oxygen plasma treatment), a gas barrier layer, and a gas barrier layer are laminated in this order.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、2.7N/cm超4N/cm未満であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured in the same manner as in Example 1, it was more than 2.7 N / cm and less than 4 N / cm.
 [実施例6]
 基材
 厚み40μmのUPILEX-505SGA(ポリイミドフィルム、宇部興産株式会社製)を基材して使用した。
[Example 6]
Base material: UPILEX-505SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 40 μm was used as a base material.
 基材表面のコロナ処理を行った。 The corona treatment of the substrate surface was performed.
 コロナ放電装置として春日電機株式会社製のAGI-080を用い、コロナ放電処理装置の放電様電極とフィルム表面との間隙を1mmに設定し、処理出力が600mW/cmの条件で10秒間の表面コロナ処理を行った。 AGI-080 manufactured by Kasuga Denki Co., Ltd. was used as the corona discharge device, the gap between the discharge-like electrode of the corona discharge treatment device and the film surface was set to 1 mm, and the surface for 10 seconds under the condition of a treatment output of 600 mW / cm 2. Corona treatment was performed.
 ガスバリア層の形成
 基材の表面処理直後に、実施例1と同様の方法で、ポリイミド基材上にガスバリア層を2層形成した。
Formation of Gas Barrier Layer Two gas barrier layers were formed on a polyimide base material by the same method as in Example 1 immediately after the surface treatment of the base material.
 これにより、ポリイミド基材(コロナ処理)-ガスバリア層-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 Thereby, a gas barrier film in which a polyimide base material (corona treatment) -gas barrier layer-gas barrier layer was laminated in this order was produced.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、4N/cm超5.9N/cm未満であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was more than 4 N / cm and less than 5.9 N / cm.
 [実施例7]
 (1)基材
 厚み50μmのUPILEX-50SGA(ポリイミドフィルム、宇部興産株式会社製)を基材として使用した。
[Example 7]
(1) Substrate UPILEX-50SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 50 μm was used as a substrate.
 実施例2と同様の方法で、基材表面をエキシマ処理した。 Excimer treatment was performed on the substrate surface in the same manner as in Example 2.
 (2)接着層の形成
 基材の表面処理直後に、プラズマCVD装置を用いて、酸化チタン(TiO)膜を30nm成膜した。
(2) Formation of adhesion layer Immediately after the surface treatment of the base material, a titanium oxide (TiO 2 ) film was formed to a thickness of 30 nm using a plasma CVD apparatus.
 (3)ガスバリア層の形成
 実施例1と同様の方法で、接着層上にガスバリア層を2層形成した。
(3) Formation of gas barrier layer In the same manner as in Example 1, two gas barrier layers were formed on the adhesive layer.
 これにより、ポリイミド基材(エキシマ処理)-接着層(TiO)-ガスバリア層-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 As a result, a gas barrier film in which a polyimide base material (excimer treatment), an adhesive layer (TiO 2 ), a gas barrier layer, and a gas barrier layer were laminated in this order was manufactured.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、5.9N/cm超であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was over 5.9 N / cm.
 [実施例8]
 接着層として、Al膜(厚さ30nm)を成膜したことを除いては、実施例7と同様の方法でガスバリア性フィルムを製造した。
[Example 8]
A gas barrier film was produced in the same manner as in Example 7 except that an Al 2 O 3 film (thickness 30 nm) was formed as an adhesive layer.
 得られたガスバリア性フィルムは、ポリイミド基材(エキシマ処理)-接着層(TiO)-ガスバリア層-ガスバリア層がこの順に積層された構成を有する。 The obtained gas barrier film has a structure in which a polyimide base material (excimer treatment) -adhesion layer (TiO 2 ) -gas barrier layer-gas barrier layer are laminated in this order.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、5.9N/cm超であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was over 5.9 N / cm.
 [実施例9]
 (1)基材
 厚み50μmのUPILEX-50SGA(ポリイミドフィルム、宇部興産株式会社製)を基材として使用した。
[Example 9]
(1) Substrate UPILEX-50SGA (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 50 μm was used as a substrate.
 実施例2と同様の方法で、基材表面をエキシマ処理した。 Excimer treatment was performed on the substrate surface in the same manner as in Example 2.
 (2)ガスバリア層の形成(1層目)
 実施例1と同様の方法で、ポリイミド基材上に膜厚150nmのガスバリア層を1層形成した。
(2) Formation of gas barrier layer (first layer)
One gas barrier layer having a thickness of 150 nm was formed on the polyimide base material in the same manner as in Example 1.
 (3)その他のガスバリア層の形成(2層目)
 上記(2)で得られたフィルムを、図1に示されるような製造装置31にセットして、搬送させた。次いで、成膜ローラー39と成膜ローラー40との間に磁場を印加すると共に、成膜ローラー39と成膜ローラー40にそれぞれ電力を供給して、成膜ローラー39と成膜ローラー40との間に放電してプラズマを発生させた。次いで、形成された放電領域に、成膜ガス(原料ガスとしてヘキサメチルジシロキサン(HMDSO)と反応ガスとして酸素ガス(放電ガスとしても機能する)との混合ガスを供給し、ガスバリア層(1層目)上に、プラズマCVD法にてその他のガスバリア層(2層目)を形成した。その他のガスバリア層の膜厚は40nmであった。成膜条件は、以下の通りとした。
(3) Formation of other gas barrier layers (second layer)
The film obtained in the above (2) was set in a production apparatus 31 as shown in FIG. Next, a magnetic field is applied between the film forming roller 39 and the film forming roller 40, and electric power is supplied to the film forming roller 39 and the film forming roller 40, respectively. Was discharged to generate plasma. Next, a gas deposition layer (a mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a source gas) is supplied to the formed discharge region, and a gas barrier layer (one layer) The other gas barrier layer (second layer) was formed by plasma CVD, and the film thickness of the other gas barrier layer was 40 nm.
 (成膜条件)
 原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
 酸素ガスの供給量:500sccm(0℃、1気圧基準)
 真空チャンバ内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:1.0m/min。
(Deposition conditions)
Source gas supply: 50 sccm (Standard Cubic Centimeter per Minute, 0 ° C, 1 atm standard)
Oxygen gas supply amount: 500 sccm (0 ° C., 1 atm standard)
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 1.0 m / min.
 これにより、ポリイミド基材(エキシマ処理)-ガスバリア層-その他のガスバリア層(CVD)がこの順に積層されたガスバリア性フィルムを製造した。 Thereby, a gas barrier film in which a polyimide base material (excimer treatment), a gas barrier layer, and other gas barrier layers (CVD) were laminated in this order was manufactured.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、5.9N/cm超であった。 When the adhesive strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was over 5.9 N / cm.
 [比較例1]
 (1)基材
 厚み50μmのカプトン(モノマー成分として、ピロメリット酸二無水物および4,4’-ジアミノジフェニルエーテルを有するポリイミドフィルム、東レ・デュポン株式会社製)を基材として使用した。
[Comparative Example 1]
(1) Base material Kapton having a thickness of 50 μm (a polyimide film having pyromellitic dianhydride and 4,4′-diaminodiphenyl ether as monomer components, manufactured by Toray DuPont Co., Ltd.) was used as the base material.
 (2)ガスバリア層の形成
 実施例1と同様の方法で、ポリイミド基材上にガスバリア層を1層形成した。
(2) Formation of Gas Barrier Layer One gas barrier layer was formed on the polyimide base material by the same method as in Example 1.
 これにより、ポリイミド基材-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 Thereby, a gas barrier film in which a polyimide base material-gas barrier layer was laminated in this order was produced.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、1.3N/cm未満であった。 When the adhesion strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was less than 1.3 N / cm.
 [比較例2]
 厚み50μmのUPILE-50S(ポリイミドフィルム、宇部興産株式会社製)を基材として使用した。
[Comparative Example 2]
UPILE-50S (polyimide film, manufactured by Ube Industries, Ltd.) having a thickness of 50 μm was used as a base material.
 (2)ガスバリア層の形成
 実施例1と同様の方法で、ポリイミド基材上にガスバリア層を1層形成した。
(2) Formation of Gas Barrier Layer One gas barrier layer was formed on the polyimide base material by the same method as in Example 1.
 これにより、ポリイミド基材-ガスバリア層がこの順に積層されたガスバリア性フィルムを製造した。 Thereby, a gas barrier film in which a polyimide base material-gas barrier layer was laminated in this order was produced.
 得られたガスバリア性フィルムにおけるポリイミド基材およびガスバリア層の接着強度を、実施例1と同様の方法で測定したところ、1.3N/cm未満であった。 When the adhesion strength of the polyimide base material and the gas barrier layer in the obtained gas barrier film was measured by the same method as in Example 1, it was less than 1.3 N / cm.
 <ガスバリア性フィルムの評価>
 実施例1~9並びに比較例1および2で製造したガスバリア性フィルムを用いて、ガスバリア性フィルムの性能を評価した。
<Evaluation of gas barrier film>
Using the gas barrier films produced in Examples 1 to 9 and Comparative Examples 1 and 2, the performance of the gas barrier films was evaluated.
 (密着性)
 各ガスバリア性フィルムを、250℃1時間の高温処理したサンプルに対して、JIS K5400の方法に基づいたクロスカット法による密着性評価を実施した。250℃1時間の高温処理は、得られたガスバリア層を、大気雰囲気下、250℃の恒温槽で1時間保管することで行い、得られたサンプルを室温(25℃)に冷却して評価に用いた。密着性の評価において、マスの1/3面積が接着していない状態を剥離と判断した(×および△における剥離)。
(Adhesion)
Each gas barrier film was subjected to a high temperature treatment at 250 ° C. for 1 hour, and an adhesion evaluation by a cross-cut method based on the method of JIS K5400 was performed. The high temperature treatment at 250 ° C. for 1 hour is carried out by storing the obtained gas barrier layer in a constant temperature bath at 250 ° C. for 1 hour in the atmosphere, and the obtained sample is cooled to room temperature (25 ° C.) for evaluation. Using. In the evaluation of adhesion, a state where 1/3 area of the mass was not adhered was judged as peeling (peeling at x and Δ).
 ×:100/100マスが、ガスバリア層とPI基材との間で剥離
 △:1~99/100マスが、ガスバリア層とPI基材との間で剥離
 ○:100/100マスが、剥離なし(各マスの50面積%~90面積%未満が接着)
 ◎:100/100マスが、剥離なし(各マスの90面積%以上が接着)。
×: 100/100 square peeled between gas barrier layer and PI substrate Δ: 1 to 99/100 square peeled between gas barrier layer and PI substrate ○: 100/100 square peeled off (50 area% to less than 90 area% of each mass is bonded)
(Double-circle): 100/100 mass does not peel (90 area% or more of each mass adhere | attaches).
 得られた結果を下記表1に示す。 The results obtained are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、実施例に係るガスバリア性フィルムは、いずれも高い接着強度を有しており、デバイス形成工程に適用してもガスバリア層がポリイミド基材から剥離することがなく、デバイス形成工程に好適に適用することができることが分かった。 From the results of Table 1, the gas barrier films according to the examples all have high adhesive strength, and even when applied to the device forming process, the gas barrier layer does not peel off from the polyimide substrate, and the device forming process. It was found that the present invention can be suitably applied to.
 また、実施例1~10のガスバリア性フィルムは、Ca腐食法で算出した水蒸気透過度(WVTR)が、0.1g/(m・24h)以下であることが確認できた。 In addition, it was confirmed that the gas barrier films of Examples 1 to 10 had a water vapor permeability (WVTR) calculated by the Ca corrosion method of 0.1 g / (m 2 · 24 h) or less.
 本出願は、2014年1月10日に出願された日本特許出願番号2014-003511号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2014-003511 filed on January 10, 2014, the disclosure content of which is incorporated by reference as a whole.

Claims (7)

  1.  ポリイミド基材と、ポリシラザン改質物を含むガスバリア層と、を有し、
     前記ポリイミド基材および前記ガスバリア層の接着強度が、1.3N/cm以上である、ガスバリア性フィルム。
    A polyimide base material, and a gas barrier layer containing a polysilazane modified product,
    A gas barrier film, wherein an adhesive strength between the polyimide base material and the gas barrier layer is 1.3 N / cm or more.
  2.  前記ポリイミド基材および前記ガスバリア層の接着強度が、4N/cm以上である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the adhesive strength between the polyimide base material and the gas barrier layer is 4 N / cm or more.
  3.  前記ポリイミドが、ビフェニルテトラカルボン酸二無水物およびp-フェニレンジアミンをモノマーとして含む重合体である、請求項1または2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, wherein the polyimide is a polymer containing biphenyltetracarboxylic dianhydride and p-phenylenediamine as monomers.
  4.  前記ポリイミド基材および前記ガスバリア層の間に、接着層を有する、請求項1~3のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 3, further comprising an adhesive layer between the polyimide base material and the gas barrier layer.
  5.  前記ポリイミド基材の表面が、プラズマ処理、UVオゾン処理、またはエキシマ処理されてなる、請求項1~4のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 4, wherein the surface of the polyimide substrate is subjected to plasma treatment, UV ozone treatment, or excimer treatment.
  6.  前記ポリシラザン改質物が、真空紫外光で改質処理されたものである、請求項1~5のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 5, wherein the polysilazane modified product is modified with vacuum ultraviolet light.
  7.  電子デバイス本体と、請求項1~6のいずれか1項に記載のガスバリア性フィルムとを含む、電子デバイス。 An electronic device comprising an electronic device main body and the gas barrier film according to any one of claims 1 to 6.
PCT/JP2015/050535 2014-01-10 2015-01-09 Gas barrier film and electronic device comprising same WO2015105188A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015556851A JPWO2015105188A1 (en) 2014-01-10 2015-01-09 Gas barrier film and electronic device including the same
CN201580003895.7A CN105899361A (en) 2014-01-10 2015-01-09 Gas barrier film and electronic device comprising same
KR1020167017968A KR20160096230A (en) 2014-01-10 2015-01-09 Gas barrier film and electronic device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003511 2014-01-10
JP2014-003511 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105188A1 true WO2015105188A1 (en) 2015-07-16

Family

ID=53524010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050535 WO2015105188A1 (en) 2014-01-10 2015-01-09 Gas barrier film and electronic device comprising same

Country Status (4)

Country Link
JP (1) JPWO2015105188A1 (en)
KR (1) KR20160096230A (en)
CN (1) CN105899361A (en)
WO (1) WO2015105188A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047208A1 (en) * 2016-09-06 2018-03-15 株式会社麗光 Transparent high-barrier film and high-barrier layered body using same
JP6983039B2 (en) * 2016-11-29 2021-12-17 住友化学株式会社 Gas barrier film and flexible electronic device
CN109622344A (en) * 2018-12-28 2019-04-16 东南大学苏州医疗器械研究院 The coating process of medical function coating and application
CN114685833B (en) * 2022-04-07 2023-09-19 杭州泽同新材料科技有限公司 Degradable packaging material with high barrier property

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133082A1 (en) * 2007-04-13 2008-11-06 Ube Industries, Ltd. Polyimide film having smoothness on one surface
JP2011044466A (en) * 2009-08-19 2011-03-03 Hitachi Chem Co Ltd Coating material for solar cell module, and method of manufacturing the same
JP2011161891A (en) * 2010-02-15 2011-08-25 Hitachi Chemical Techno Service Co Ltd Heat-resistant gas barrier sheet
WO2012090644A1 (en) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 Gas-barrier film and electronic device
JP2013208867A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Gas barrier film, and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074987A (en) * 2003-09-04 2005-03-24 Toppan Printing Co Ltd Transparent gas-barrier film and method for producing the same
JP2011222334A (en) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd Heat conductive sealing member and device
JP2012086436A (en) 2010-10-19 2012-05-10 Hitachi Chemical Techno Service Co Ltd Gas barrier molding
JP5895689B2 (en) * 2012-04-27 2016-03-30 コニカミノルタ株式会社 Electronic device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133082A1 (en) * 2007-04-13 2008-11-06 Ube Industries, Ltd. Polyimide film having smoothness on one surface
JP2011044466A (en) * 2009-08-19 2011-03-03 Hitachi Chem Co Ltd Coating material for solar cell module, and method of manufacturing the same
JP2011161891A (en) * 2010-02-15 2011-08-25 Hitachi Chemical Techno Service Co Ltd Heat-resistant gas barrier sheet
WO2012090644A1 (en) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 Gas-barrier film and electronic device
JP2013208867A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Gas barrier film, and electronic device

Also Published As

Publication number Publication date
KR20160096230A (en) 2016-08-12
JPWO2015105188A1 (en) 2017-03-23
CN105899361A (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5327640B2 (en) Smooth polyimide film on one side
KR101495482B1 (en) Gas barrier film and method for producing same
JP6638182B2 (en) Laminated films and flexible electronic devices
WO2014041816A1 (en) Transparent polyimide laminate and manufacturing method therefor
TW201809069A (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
US20170165879A1 (en) Resin precursor, resin composition containing same, polyimide resin membrane, resin film, and method for producing same
WO2015105188A1 (en) Gas barrier film and electronic device comprising same
JP6642003B2 (en) Laminated films and flexible electronic devices
WO2019131884A1 (en) Polyimide precursor resin composition for forming flexible device substrate
JP2018027660A (en) Functional laminate and method for production thereof
JP6965978B2 (en) Laminated body of polyimide film and inorganic substrate
WO2015098672A1 (en) Laminated film and flexible electronic device
WO2014178332A1 (en) Gas barrier film and method for producing same
JP2018103392A (en) Transparent polyimide film laminate
JP2003340971A (en) Gas barrier plastic film
WO2015108086A1 (en) Gas barrier film and electronic device comprising same
WO2006075490A1 (en) Transparent gas barrier film
WO2016039280A1 (en) Laminated film and flexible electronic device
JP2018144285A (en) Polyimide/inorganic substrate laminate with gas barrier layer and manufacturing method therefor
KR101489959B1 (en) Gas barrier film, method for preparing thereof and display display member comprising the same
JP2006321219A (en) Thin laminated polyimide film, thin laminated polyimide film roll and utilization of them
JP2017073345A (en) Laminate for organic el element and manufacturing method for the same
JP5872952B2 (en) Gas barrier laminated polyimide film, functional thin film layer laminated gas barrier laminated polyimide film, display and solar cell
WO2014175023A1 (en) Functional film manufacturing method
JP2012201860A (en) Method of manufacturing polyimide film, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167017968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15734976

Country of ref document: EP

Kind code of ref document: A1