WO2015103857A1 - 基于人工过零的模块式高压真空直流开断装置 - Google Patents

基于人工过零的模块式高压真空直流开断装置 Download PDF

Info

Publication number
WO2015103857A1
WO2015103857A1 PCT/CN2014/081628 CN2014081628W WO2015103857A1 WO 2015103857 A1 WO2015103857 A1 WO 2015103857A1 CN 2014081628 W CN2014081628 W CN 2014081628W WO 2015103857 A1 WO2015103857 A1 WO 2015103857A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
voltage
circuit
vacuum
crossing
Prior art date
Application number
PCT/CN2014/081628
Other languages
English (en)
French (fr)
Inventor
史宗谦
张营奎
贾申利
宋晓川
***
Original Assignee
西安交通大学
史宗谦
张营奎
贾申利
宋晓川
***
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学, 史宗谦, 张营奎, 贾申利, 宋晓川, *** filed Critical 西安交通大学
Publication of WO2015103857A1 publication Critical patent/WO2015103857A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the invention relates to a high voltage DC breaking technology in the power industry, and in particular to a modular high voltage vacuum DC breaking device based on manual zero crossing.
  • Artificial zero-crossing technology is a major method of DC breaking.
  • the basic principle of the vacuum DC breaking technology based on manual zero-crossing is: a commutating branch composed of a pre-charged commutating capacitor C, a commutating reactor L and a commutating switch S is connected in parallel across the main vacuum circuit breaker VCB.
  • the switch When the switch is turned off, the commutating switch S is closed, and the pre-charged commutating capacitor C generates the reverse oscillating current ⁇ superimposed on the main vacuum circuit breaker VCB current I through the commutating reactor L and the commutating switch S.
  • the VCB current of the main vacuum circuit breaker is extinguished by the "manual zero crossing point".
  • the main vacuum circuit breakers in the existing manual zero-crossing vacuum DC breaking technology adopt single-fracture structure, which has been researched and applied mainly in the fields of low-voltage and medium-voltage DC breaking.
  • the present invention adopts the following technical solutions.
  • a modular high-voltage vacuum DC breaking device based on manual zero-crossing comprising a commutating branch and a main breaker composed of a plurality of identical modules connected in series, the commutating branch being connected in parallel with the main breaker
  • the module consists of a single-break vacuum circuit breaker, a lightning arrester and a voltage equalizing circuit in parallel.
  • the voltage equalizing circuit is an RC absorbing circuit or an RCD absorbing circuit or a single grading capacitor.
  • the single-break vacuum circuit breaker adopts an adaptive operating mechanism in which an electromagnetic repulsion system and a permanent magnet system are coupled. When short-circuiting, the electromagnetic repulsion system in the single-break vacuum circuit breaker operates to open the main circuit breaker, and when the load is cut, the single circuit breaker The permanent magnet system in the break vacuum circuit breaker operates to open the main breaker.
  • a modular high-voltage vacuum DC breaking device based on artificial zero-crossing comprising a commutating branch, a lightning arrester and a main circuit breaker composed of a plurality of identical modules connected in series, the commutating branch and the lightning arrester and the main breaking circuit The devices are connected in parallel, and the module is composed of a single-break vacuum circuit breaker and a voltage equalizing circuit in parallel.
  • the voltage equalizing circuit is an RC absorbing circuit or an RCD absorbing circuit.
  • the single-break vacuum circuit breaker adopts an adaptive operating mechanism in which an electromagnetic repulsion system and a permanent magnet system are coupled.
  • the electromagnetic repulsion system in the single-break vacuum circuit breaker operates to open the main circuit breaker, and when the load is cut, the single circuit breaker
  • the permanent magnet system in the break vacuum circuit breaker operates to open the main breaker.
  • the present invention adopts a multi-module series to form a main circuit breaker, which solves the problem that the existing medium and low voltage single-break vacuum circuit breaker is difficult to open under high voltage vacuum DC based on manual zero crossing.
  • the voltage equalizing circuit adopts an RC absorbing circuit or an RCD absorbing circuit, and solves the problem of high frequency oscillation of the main circuit breaker recovery voltage in the manual zero-crossing vacuum DC breaking.
  • FIG. 1 is a schematic diagram of the basic principle of a vacuum DC breaking technology based on manual zero-crossing
  • FIG. 2a is a schematic structural view of a single module constituting a main breaker of the present invention (the equalizing circuit is an RC absorbing circuit);
  • FIG. 2b is a composition of the present invention
  • FIG. 3 is a schematic structural view of a modular high-voltage vacuum DC breaking device based on artificial zero-crossing according to Embodiment 1 of the present invention
  • FIG. 3b is a schematic diagram of a structure of a single module of a main circuit breaker; The structure diagram of the modular high-voltage vacuum DC breaking device based on manual zero-crossing according to Embodiment 2;
  • FIG. 3 is a schematic diagram of the basic principle of a vacuum DC breaking technology based on manual zero-crossing
  • FIG. 3a is a schematic structural view of a single module constituting a main breaker of the present invention (the equalizing circuit is an RC absorbing circuit);
  • FIG. 4 is the waveform of the recovered voltage and current of the main circuit breaker at the current zero-crossing stage of the main breaker after using the capacitor as the voltage equalizing branch (The main circuit breaker consists of four modules connected in series, the voltage level is 100kV.)
  • Figure 5 shows the waveforms of the recovered voltage and current at both ends of the main circuit breaker during the current zero-crossing phase of the main circuit breaker after the RC absorption circuit is used as the voltage equalizing branch;
  • the circuit breaker consists of four modules connected in series with a voltage rating of 100kV.
  • Figure 6 shows the main circuit breaker in the current zero-crossing phase of the main breaker after using the RCD snubber circuit as the voltage equalizing branch. Ends of the recovery voltage and current waveforms. (The main breaker consists of four modules connected in series, the voltage level is 100kV)
  • a modular high-voltage vacuum DC breaking device based on manual zero-crossing includes a commutating branch and a main breaker composed of a plurality of identical modules, each module comprising three branches in parallel, see FIG. 2a.
  • the RC snubber circuit included in a single module also acts as a grading circuit in series with multiple modules.
  • Three branches RC snubber circuit in the RCD snubber circuits Alternatively, referring to FIG.
  • RCD snubber circuit resistor R n may be selected, and the capacitance diode D n C n composition, the diode and the resistor R n D n may be used in parallel In series with the capacitor ( ⁇ ; or capacitors can be used to replace the RC snubber circuit.
  • the main circuit breaker consists of the modules shown in Figure 2a in series, the number of modules required in series N is determined by the applied voltage level, commutation
  • the branch circuit is connected in parallel with the main circuit breaker to form a modular high-voltage vacuum DC breaking device based on artificial zero-crossing according to the present invention, wherein the commutating branch routing converter switch S, the commutating reactor L and the commutating capacitor C are connected in series
  • the working principle of the modular high-voltage vacuum DC breaking device based on manual zero-crossing is divided into the following steps: When breaking, open the main circuit breaker (all the single-break vacuum circuit breakers in all modules are opened at the same time), When the total electrode opening distance of the main breaker reaches a set distance, the commutating switch S is closed, and the pre-charged commutating capacitor C is superimposed by the commutating reactor L and the commutating switch S.
  • the reverse oscillating current L causes the single-break vacuum circuit breaker current of each module in the main circuit breaker to form an "manual zero-crossing point" and is extinguished.
  • a certain operating overvoltage is generated, resulting in each The arrester in the module operates, and the arrester absorbs energy after the action, and completes the current interruption.
  • the invention comprises a single-break vacuum circuit breaker, a lightning arrester and an RC absorbing circuit or an RCD absorbing circuit or a single grading capacitor in parallel to form a module, which is more convenient to be applied in a high-voltage vacuum DC breaking technology based on artificial zero-crossing, and only in application It is necessary to connect the modules directly in series, without redesigning the voltage equalizing circuit and the lightning arrester.
  • each module of the present invention is used as a grading circuit in which a plurality of modules are connected in series, and a voltage equalization in parallel with a single-break vacuum circuit breaker as a plurality of single-break vacuum circuit breakers Compared with the circuit, the high-frequency oscillation of the recovery voltage at both ends of the main circuit breaker during the recovery period after the arc is effectively suppressed, which is beneficial to the post-arc media recovery of the main circuit breaker.
  • the simulation results are shown in Fig. 4 and Fig. 5 Figure 6 shows.
  • the grading circuit adopts the RC absorbing circuit or the RCD absorbing circuit to suppress the recovery voltage oscillation at both ends of the main circuit breaker significantly better than the case of using the capacitor.
  • Example 2 A modular high-voltage vacuum DC breaking device based on manual zero-crossing, see FIG. 3b, including a commutating branch, a lightning arrester, and a main breaker composed of a plurality of identical modules, the commutating branch and the arrester and the main The breakers are connected in parallel.
  • Each module consists of two branches in parallel.
  • the RC snubber circuit in both branches can also be replaced with an RCD snubber circuit.
  • the lightning arrester mounting method of the second embodiment can be used to achieve the same effect as that of the first embodiment, and the control method of the second embodiment is the same as that of the first embodiment.
  • the RC absorbing circuit or the RCD absorbing circuit can also exert an inhibitory effect on the recovery voltage oscillation across the main circuit breaker.
  • the single-break vacuum circuit breaker preferably has a single-break vacuum circuit breaker with an electromagnetic repulsion system and an adaptive operating mechanism coupled to the permanent magnet system (disclosed in Chinese Patent Application No. 200810150067.8), but may also be employed. Other existing single-break vacuum circuit breakers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

一种基于人工过零的模块式高压真空直流开断装置,包括换流支路以及由多个相同的模块组成的主断路器,所述换流支路与所述主断路器并联,所述模块由单断口真空断路器、避雷器和均压电路并联组成,通过采用多模块串联组成主断路器,解决了现有的中、低压单断口真空断路器难以在基于人工过零的高压真空直流开断技术中应用的问题,使单断口真空断路器可以向更高电压等级拓展。

Description

基于人工过零的模块式高压真空直流开断装置 技术领域
本发明涉及电力行业中的高压直流开断技术, 具体涉及一种基于人工过 零的模块式高压真空直流开断装置。
背景技术
人工过零技术是直流开断的一个主要方法。 基于人工过零的真空直流开 断技术的基本原理为:在主真空断路器 VCB两端并联一条由预充电的换流电 容器 C、 换流电抗器 L和换流开关 S构成的换流支路, 开断时, 闭合换流开 关 S , 则预充电的换流电容器 C通过换流电抗器 L和换流开关 S产生迭加在 主真空断路器 VCB电流 I上的反向震荡电流 ^, 使主真空断路器 VCB电流 形成 "人工过零点"而熄灭, 直流断路器开断过程中, 会产生一定操作过电 压, 导致与直流断路器并联的避雷器 MOV动作, 避雷器动作后吸收能量, 完成电路开断。 现有的基于人工过零的真空直流开断技术中的主真空断路器 均采用单断口结构, 主要在低压和中压直流开断领域得到了研究和应用。
文献 《The Basic Investigation of the High-speed VCB and Its application for the DC Power System》 介绍了高速真空断路器在直流开断技术中的应用, 但 文献中电压等级较低, 主断路器采用单断口真空断路器。
文献 《 Relationship Between the Voltage Distribution Ratio and the Post Arc Current in Double-Break Vacuum Circuit Breakers》中研究了两个真空灭弧室的 串联特性, 但针对的是其交流开断性能, 文中采用了并联均压电容的方式来 对两个真空灭弧室均压, 但真空灭弧室弧后介质恢复过程中恢复电压发生了 高频振荡。 文献 《基于永磁操动机构的光控模块式多断口真空断路器技术》 中介绍 了一种用于交流***的单断口真空断路器模块化设计, 可以根据电压等级的 需要串联相应的个数以组成高电压等级的交流真空断路器。 每个模块串联所 用的均压方式也为并联大电容的方式, 如果将这种模块应用于人工过零直流 开断技术中,在弧后介质恢复阶段主断口两端恢复电压会出现高频振荡问题。 发明内容
本发明的目的在于提供一种基于人工过零的模块式高压真空直流开断装 置。
为达到上述目的, 本发明采用了以下技术方案。
一种基于人工过零的模块式高压真空直流开断装置, 包括换流支路以及 由多个相同的模块串联组成的主断路器,所述换流支路与所述主断路器并联, 所述模块由单断口真空断路器、 避雷器和均压电路并联组成。
所述均压电路为 RC吸收电路或者 RCD吸收电路或者单个均压电容。 所述单断口真空断路器采用电磁斥力***和永磁***相耦合的自适应操 动机构, 短路时, 单断口真空断路器中的电磁斥力***动作, 使主断路器打 开, 切负荷时, 单断口真空断路器中的永磁***动作, 使主断路器打开。
一种基于人工过零的模块式高压真空直流开断装置, 包括换流支路、 避 雷器以及由多个相同的模块串联组成的主断路器, 所述换流支路以及避雷器 与所述主断路器并联, 所述模块由单断口真空断路器和均压电路并联组成。
所述均压电路为 RC吸收电路或者 RCD吸收电路。
所述单断口真空断路器采用电磁斥力***和永磁***相耦合的自适应操 动机构, 短路时, 单断口真空断路器中的电磁斥力***动作, 使主断路器打 开, 切负荷时, 单断口真空断路器中的永磁***动作, 使主断路器打开。 与现有技术相比, 本发明的有益效果体现在: 本发明采用多模块串联组成主断路器, 解决了现有的中、 低压单断口真 空断路器难以在基于人工过零的高压真空直流开断技术中应用的问题, 使单 断口真空断路器可以向更高电压等级拓展。 进一歩地, 本发明中均压电路采用 RC吸收电路或者 RCD吸收电路, 解 决了人工过零真空直流开断中主断路器恢复电压高频振荡的问题。
附图说明
图 1为基于人工过零的真空直流开断技术的基本原理的示意图; 图 2a为本发明组成主断路器的单个模块的结构示意图 (均压电路为 RC 吸收电路); 图 2b为本发明组成主断路器的单个模块的结构示意图(均压电路为 RCD 吸收电路); 图 3a为本发明实施例 1所述基于人工过零的模块式高压真空直流开断装 置结构示意图; 图 3b为本发明实施例 2所述基于人工过零的模块式高压真空直流开断装 置结构示意图; 图 4 为采用电容作为均压支路后主断路器电流过零阶段主断路器两端恢 复电压和电流的波形; (主断路器由四个模块串联组成, 电压等级 100kV) 图 5为采用 RC吸收电路作为均压支路后主断路器电流过零阶段主断路器 两端恢复电压和电流的波形; (主断路器由四个模块串联组成, 电压等级是 100kV) 图 6为采用 RCD吸收电路作为均压支路后主断路器电流过零阶段主断路 器两端恢复电压和电流的波形。 (主断路器由四个模块串联组成, 电压等级是 100kV)
具体实施方式
下面结合附图和实施例对发明作详细说明。 本发明将基于人工过零的高压真空直流开断技术中的主断路器设计为多 个模块串联的形式。 根据电压等级串联所需个数的模块组成主断路器。 实施例 1 基于人工过零的模块式高压真空直流开断装置, 包括换流支路以及由多 个相同的模块组成的主断路器, 每个模块包含三个支路的并联, 参见图 2a, 三个支路分别是避雷器 MOVn、 单断口真空断路器 SVCB>^n RC吸收电路, RC吸收电路由电阻1^和电容 Cn 联组成(n=l,2,...,N), 单个模块中包含的 RC吸收电路也作为多个模块串联的均压电路。三个支路中的 RC吸收电路也 可以采用 RCD吸收电路替换, 参见图 2b, RCD吸收电路可以选择电阻 Rn、 电容 Cn以及二极管 Dn组成, 二极管 Dn与电阻 Rn并联后的电路与电容 (^串 联; 或者也可以采用电容替换 RC吸收电路。 参见图 3a, 主断路器由图 2a中所示的模块串联组成, 串联所需的模块个 数 N由应用电压等级决定, 换流支路与所述主断路器并联形成本发明所述基 于人工过零的模块式高压真空直流开断装置, 其中, 换流支路由换流开关 S、 换流电抗器 L和换流电容器 C串联组成。 基于人工过零的模块式高压真空直流开断装置的工作原理, 分为以下几 个歩骤: 开断时,打开主断路器(同时全部打开所有模块内的单断口真空断路器), 当主断路器总的电极开距达到设定的距离时, 闭合换流开关 S , 则预充电的 换流电容器 C通过换流电抗器 L和换流开关 S产生迭加在主断路器电流 I上 的反向震荡电流 L,使主断路器中每个模块的单断口真空断路器电流形成 "人 工过零点"而熄灭, 直流开断装置开断过程中, 会产生一定操作过电压, 导 致每个模块中避雷器动作, 避雷器动作后吸收能量, 完成电流开断。
本发明的优点:
1 )本发明将单断口真空断路器、避雷器和 RC吸收电路或者 RCD吸收电 路或者单个均压电容并联组成模块, 在基于人工过零的高压真空直流开断技 术中应用更加方便, 在应用中只需将模块直接串联即可, 不需重新设计均压 电路和避雷器。
2)本发明每个模块中包含的 RC吸收电路或者 RCD吸收电路作为多个模 块串联的均压电路, 与在单断口真空断路器两端并联电容作为多个单断口真 空断路器串联的均压电路相比较, 有效地抑制了开断过程中在弧后介质恢复 阶段主断路器两端恢复电压的高频振荡, 有利于主断路器的弧后介质恢复, 仿真结果如图 4、 图 5以及图 6所示。
对于每个单断口真空断路器两端并联电容均压的结果参见图 4,从主断路 器电流过零阶段主断路器两端恢复电压和电流的波形中看出, 此时恢复电压 发生了振荡。 对于每个单断口真空断路器两端并联 RC吸收电路均压的结果 参见图 5, 从主断路器电流过零阶段主断路器两端恢复电压和电流的波形中 看出, 主断路器两端恢复电压振荡情况得到了明显的抑制。 对于每个单断口 真空断路器两端并联 RCD吸收电路均压的结果参见图 6, 从主断路器电流过 零阶段主断路器两端恢复电压和电流的波形中看出, 主断路器两端恢复电压 振荡情况得到了明显的抑制。均压电路采用 RC吸收电路或 RCD吸收电路对 主断路器两端恢复电压振荡的抑制效果明显优于采用电容的情况。
实施例 2 基于人工过零的模块式高压真空直流开断装置, 参见图 3b, 包括换流支 路、 避雷器以及由多个相同的模块组成的主断路器, 所述换流支路以及避雷 器与所述主断路器并联。 每个模块包含两个支路的并联, 两个支路分别是单 断口真空断路器 SVCB>^n RC吸收电路, RC吸收电路由电阻 Rn和电容 Cn 串联组成 (n=l,2,...,N), 单个模块中包含的 RC吸收电路也作为多个模块串 联的均压电路。 两个支路中的 RC吸收电路也可以采用 RCD吸收电路替换。
由于避雷器的作用是限制主断路器两端恢复电压的峰值, 所以可以采用 实施例 2的避雷器安装方式, 达到与实施例 1相同的效果, 同时, 实施例 2 的控制方式与实施例 1也相同, 并且, RC吸收电路或 RCD吸收电路也可以 发挥对主断路器两端恢复电压振荡的抑制作用。
实施例 1以及实施例 2中, 单断口真空断路器优选具有电磁斥力***和 永磁***相耦合的自适应操动机构的单断口真空断路器 (中国专利申请 200810150067.8中公开), 但也可以采用其他现有的单断口真空断路器。

Claims

权 利 要 求 书
1. 一种基于人工过零的模块式高压真空直流开断装置, 其特征在于: 包 括换流支路以及由多个相同的模块串联组成的主断路器, 所述换流支路与所 述主断路器并联, 所述模块由单断口真空断路器、 避雷器和均压电路并联组 成。
2. 根据权利要求 1所述一种基于人工过零的模块式高压真空直流开断装 置, 其特征在于: 所述均压电路为 RC吸收电路或者 RCD吸收电路或者单个 均压电容。
3. 根据权利要求 1所述一种基于人工过零的模块式高压真空直流开断装 置, 其特征在于: 所述单断口真空断路器采用电磁斥力***和永磁***相耦 合的自适应操动机构, 短路时, 单断口真空断路器中的电磁斥力***动作, 使主断路器打开, 切负荷时, 单断口真空断路器中的永磁***动作, 使主断 路器打开。
4. 一种基于人工过零的模块式高压真空直流开断装置, 其特征在于: 包 括换流支路、 避雷器以及由多个相同的模块串联组成的主断路器, 所述换流 支路以及避雷器与所述主断路器并联, 所述模块由单断口真空断路器和均压 电路并联组成。
5. 根据权利要求 4所述一种基于人工过零的模块式高压真空直流开断装 置, 其特征在于: 所述均压电路为 RC吸收电路或者 RCD吸收电路。
6. 根据权利要求 4所述一种基于人工过零的模块式高压真空直流开断装 置, 其特征在于: 所述单断口真空断路器采用电磁斥力***和永磁***相耦 合的自适应操动机构, 短路时, 单断口真空断路器中的电磁斥力***动作, 使主断路器打开, 切负荷时, 单断口真空断路器中的永磁***动作, 使主断 路器打开。
PCT/CN2014/081628 2014-01-08 2014-07-04 基于人工过零的模块式高压真空直流开断装置 WO2015103857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410008396.4A CN103762547A (zh) 2014-01-08 2014-01-08 基于人工过零的模块式高压真空直流开断装置
CN201410008396.4 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015103857A1 true WO2015103857A1 (zh) 2015-07-16

Family

ID=50529738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081628 WO2015103857A1 (zh) 2014-01-08 2014-07-04 基于人工过零的模块式高压真空直流开断装置

Country Status (2)

Country Link
CN (1) CN103762547A (zh)
WO (1) WO2015103857A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3288132A4 (en) * 2015-11-14 2018-09-19 Huazhong University of Science and Technology High voltage dc circuit breaker having coupled inductor
WO2020038587A1 (de) * 2018-08-24 2020-02-27 Siemens Aktiengesellschaft Anordnung mit hochspannungsschaltern
WO2020136340A1 (fr) 2018-12-27 2020-07-02 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit capacitif tampon et procédé de pilotage
WO2020136350A1 (fr) * 2018-12-27 2020-07-02 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit d'oscillation adaptatif et procédé de pilotage
WO2022029379A2 (fr) 2020-08-05 2022-02-10 Supergrid Institute Dispositif de coupure de courant pour courant électrique sous haute tension continue, installation avec un tel dispositif, procede de pilotage, et processus d'evaluation de l'integrite d'un conducteur electrique
EP3979285A4 (en) * 2019-05-28 2022-06-08 Mitsubishi Electric Corporation INTERRUPTION DEVICE
US11798763B2 (en) 2019-03-22 2023-10-24 Supergrid Institute Current cut-off device for high-voltage direct current with resonator and switching

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762547A (zh) * 2014-01-08 2014-04-30 西安交通大学 基于人工过零的模块式高压真空直流开断装置
DK3200213T3 (da) * 2014-09-26 2020-08-24 Mitsubishi Electric Corp Jævnstrømsafbryder
CN110941935B (zh) * 2019-11-01 2023-06-23 国网宁夏电力有限公司电力科学研究院 一种双断口断路器的电弧的仿真方法及***
CN113161985A (zh) * 2021-03-15 2021-07-23 西安交通大学 一种自适应性机械式直流断路器
CN113824093A (zh) * 2021-08-23 2021-12-21 中国船舶重工集团公司第七一一研究所 固态断路器及用于其的缓冲吸收电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315836A (zh) * 2008-06-17 2008-12-03 西安交通大学 电磁斥力***和永磁***相耦合的自适应操动机构
CN201229893Y (zh) * 2008-06-30 2009-04-29 中国西电电气股份有限公司 一种高压直流输电用转换开关电路结构
CN101515710A (zh) * 2009-04-07 2009-08-26 东南大学 基于反向电流注入法的直流限流断路装置
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
CN102901925A (zh) * 2012-10-16 2013-01-30 四川电力科学研究院 超、特高压直流短路器转换回路特性参数测试方法
CN103117528A (zh) * 2013-01-17 2013-05-22 国网智能电网研究院 一种串入电容式高压直流断路器及其控制方法
CN103178486A (zh) * 2013-02-27 2013-06-26 国网智能电网研究院 一种直流断路器及其开断方法
CN103280763A (zh) * 2013-02-27 2013-09-04 国网智能电网研究院 一种直流断路器及其实现方法
CN103296636A (zh) * 2013-05-24 2013-09-11 西安交通大学 一种基于自激振荡电路的高压直流气体断路器
CN103762547A (zh) * 2014-01-08 2014-04-30 西安交通大学 基于人工过零的模块式高压真空直流开断装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315836A (zh) * 2008-06-17 2008-12-03 西安交通大学 电磁斥力***和永磁***相耦合的自适应操动机构
CN201229893Y (zh) * 2008-06-30 2009-04-29 中国西电电气股份有限公司 一种高压直流输电用转换开关电路结构
CN101515710A (zh) * 2009-04-07 2009-08-26 东南大学 基于反向电流注入法的直流限流断路装置
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
CN102901925A (zh) * 2012-10-16 2013-01-30 四川电力科学研究院 超、特高压直流短路器转换回路特性参数测试方法
CN103117528A (zh) * 2013-01-17 2013-05-22 国网智能电网研究院 一种串入电容式高压直流断路器及其控制方法
CN103178486A (zh) * 2013-02-27 2013-06-26 国网智能电网研究院 一种直流断路器及其开断方法
CN103280763A (zh) * 2013-02-27 2013-09-04 国网智能电网研究院 一种直流断路器及其实现方法
CN103296636A (zh) * 2013-05-24 2013-09-11 西安交通大学 一种基于自激振荡电路的高压直流气体断路器
CN103762547A (zh) * 2014-01-08 2014-04-30 西安交通大学 基于人工过零的模块式高压真空直流开断装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3288132A4 (en) * 2015-11-14 2018-09-19 Huazhong University of Science and Technology High voltage dc circuit breaker having coupled inductor
WO2020038587A1 (de) * 2018-08-24 2020-02-27 Siemens Aktiengesellschaft Anordnung mit hochspannungsschaltern
WO2020136340A1 (fr) 2018-12-27 2020-07-02 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit capacitif tampon et procédé de pilotage
WO2020136350A1 (fr) * 2018-12-27 2020-07-02 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit d'oscillation adaptatif et procédé de pilotage
FR3091407A1 (fr) * 2018-12-27 2020-07-03 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit capacitif tampon et procédé de pilotage
FR3091408A1 (fr) * 2018-12-27 2020-07-03 Supergrid Institute Dispositif de coupure de courant pour courant continu haute tension avec circuit d’oscillation adaptatif et procédé de pilotage
US11791617B2 (en) 2018-12-27 2023-10-17 Supergrid Institute Current cut-off device for high-voltage direct current with capacitive buffer circuit, and control method
US11824346B2 (en) 2018-12-27 2023-11-21 Supergrid Institute Current cut-off device for high-voltage direct current with adaptive oscillatory circuit, and control method
US11798763B2 (en) 2019-03-22 2023-10-24 Supergrid Institute Current cut-off device for high-voltage direct current with resonator and switching
EP3979285A4 (en) * 2019-05-28 2022-06-08 Mitsubishi Electric Corporation INTERRUPTION DEVICE
WO2022029379A2 (fr) 2020-08-05 2022-02-10 Supergrid Institute Dispositif de coupure de courant pour courant électrique sous haute tension continue, installation avec un tel dispositif, procede de pilotage, et processus d'evaluation de l'integrite d'un conducteur electrique
FR3113334A1 (fr) 2020-08-05 2022-02-11 Supergrid Institute Dispositif de coupure de courant pour courant électrique sous haute tension continue, installation avec un tel dispositif, procédé de pilotage, et processus d’évaluation de l’intégrité d’un conducteur électrique

Also Published As

Publication number Publication date
CN103762547A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2015103857A1 (zh) 基于人工过零的模块式高压真空直流开断装置
KR102640183B1 (ko) 전류를 차단하기 위한 장치, 시스템, 및 방법
KR102508707B1 (ko) 전류 중단 배열체, 시스템, 및 방법
CN103762546B (zh) 断路器
US9478974B2 (en) DC voltage circuit breaker
EP2894653B1 (en) Dc breaker
CN102360991A (zh) 一种多断口串联式高压直流断路器
Smeets et al. Design of test-circuits for HVDC circuit breakers
Bini et al. Interruption technologies for HVDC transmission: State-of-art and outlook
WO2019234401A1 (en) High voltage direct current (hvdc) circuit breaker
Ajmal et al. A modified hybrid DC circuit breaker with reduced arc for low voltage DC grids
Chen et al. A new Hybrid power electronics on-load tap changer for power transformer
Angquist et al. Fast HVDC breaker using reduced-rating power electronics
Smeets et al. HVDC fault current interruption technology
Zhang et al. Voltage balancing optimization of series-connected IGBTs in solid-state breaker by using driving signal adjustment technique
Ray et al. A coupled inductor based hybrid circuit breaker topology for subsea hvdc transmission systems
CN110401174B (zh) 一种中压直流真空断路器主电路拓扑及其分断方法
Kim et al. Comparison of inverse current injecting HVDC curcuit breaker
Jinkun et al. Control strategy of the full-bridge based hybrid DC breaker
Liang et al. Investigations on a new syntihetic test of DC vacuum circuit breaker
CN209860585U (zh) 电流注入型直流断路器的电流开断特性优化电路
CN104701810B (zh) 一种电流源型机电混合式直流断路器
CN114243646A (zh) 一种基于辅助振荡换流装置的直流断路器及其控制方法
Yang et al. Fault isolation characteristics of the hybrid DC circuit breaker
Sen et al. Improving DC circuit breaker performance through an alternate commutating circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877896

Country of ref document: EP

Kind code of ref document: A1