WO2015102323A1 - Copper foil, and electrical component and battery including same - Google Patents

Copper foil, and electrical component and battery including same Download PDF

Info

Publication number
WO2015102323A1
WO2015102323A1 PCT/KR2014/012942 KR2014012942W WO2015102323A1 WO 2015102323 A1 WO2015102323 A1 WO 2015102323A1 KR 2014012942 W KR2014012942 W KR 2014012942W WO 2015102323 A1 WO2015102323 A1 WO 2015102323A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
fine particles
copper
particle layer
fine particle
Prior art date
Application number
PCT/KR2014/012942
Other languages
French (fr)
Korean (ko)
Inventor
최은실
범원진
송기덕
Original Assignee
일진머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진머티리얼즈 주식회사 filed Critical 일진머티리얼즈 주식회사
Priority to JP2016561983A priority Critical patent/JP2017508890A/en
Priority to CN201480071903.7A priority patent/CN105874891A/en
Publication of WO2015102323A1 publication Critical patent/WO2015102323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites

Definitions

  • the present invention relates to a copper foil, an electric component and a battery including the copper foil, and more particularly to a copper foil excellent in adhesive strength while having low roughness.
  • Laminates for printed circuit boards used in the electronics industry are impregnated with glass cloth, kraft paper, and glass fiber nonwoven fabrics with thermosetting resins such as phenolic resins and epoxy resins, and the resins are semi-precured. It is prepared by laminating a copper foil on one side or both sides of the prepreg.
  • a multilayer printed wiring board is produced by forming circuits on both sides of a copper-clad laminate to form an inner layer material, and laminating copper foil on both sides of the inner layer material through a prepreg.
  • the adhesion rate is not sufficient because the copper foil is separated from the prepreg in a subsequent process, thereby causing a defect in the product. Therefore, the surface treatment for improving adhesiveness with resin, such as a prepreg, is performed to copper foil.
  • the copper foil used for manufacture of a printed wiring board is performing the roughening process which forms unevenness
  • the roughness of the roughened copper foil is buried in the base resin to provide an anchoring effect, thereby improving the adhesion between the copper foil and the base resin.
  • the surface treatment of the copper foil When the surface treatment of the copper foil is performed, the surface roughness of the copper foil is increased, the adhesion between the copper foil and the base resin may be improved, but the etching resistance to the microcircuit may be lowered. Therefore, in consideration of the etching property, development of a technique capable of improving the adhesion while maintaining the surface roughness of the copper foil is required.
  • an object of the present invention is to provide a copper foil excellent in adhesive strength while low roughness.
  • Copper foil according to an aspect of the present invention for achieving the above object is a copper foil with irregularities formed on at least one surface, a fine particle layer formed on the surface, the upper fine particles located on the average line according to the average height of the surface Is more than the lower particulates located below the mean line.
  • the ratio of the number of upper microparticles to the number of lower microparticles may be 80:20 to 100: 0.
  • Upper fine particles may form a triangle connecting the center point.
  • the diameter of the fine particles may be 1 to 3 ⁇ m.
  • the fine particles may be metal particles or copper alloy particles including at least one metal of copper (Cu), iron (Fe), molybdenum (Mo), and cobalt (Co).
  • the peel strength of the copper foil may be 1.28 to 1.33 kgf / cm, the surface roughness Rz may be 5.2 to 6.5 ⁇ m, and the surface roughness Rmax may be 6.5 to 7.7 ⁇ m.
  • the insulating substrate According to another aspect of the invention, the insulating substrate; And an copper foil as described above attached to one surface of an insulating substrate.
  • a battery comprising such a copper foil.
  • preparing a copper foil with irregularities formed on at least one surface And forming a fine particle layer on the surface on which the unevenness is formed, and forming the fine particle layer such that the upper fine particles positioned above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line.
  • a surface treatment method is provided.
  • the content of iron may be 10 to 30g
  • the content of molybdenum may be 0.5 to 10g
  • the content of cobalt may be 1 to 15g.
  • the electroplating process for forming the microparticle layer may be performed at 20 to 60 A / dm 2 for 1 to 5 seconds.
  • Copper foil according to the present invention is excellent in adhesive strength while low roughness. Accordingly, the etching property for forming the microcircuit board is guaranteed and the adhesive strength is excellent, thereby improving adhesion to the resin and the like, thereby improving product reliability when manufacturing a product using copper foil.
  • 1 is a view showing the surface of the copper foil according to an embodiment of the present invention.
  • FIG. 2 is a view showing the surface of the copper foil excluding the fine particles in FIG.
  • FIG. 3 is a view showing a part of the surface of the copper foil in FIG.
  • Figure 4 is a scanning electron microscopy (SEM) image of the surface of the copper foil surface-treated in Example 1.
  • FIG. 5 is an SEM image of the surface of the copper foil of Example 2.
  • FIG. 6 is an SEM image of the surface of the copper foil of Example 3.
  • FIG. 7 is an SEM image of the surface of the copper foil of Example 4.
  • FIG. 8 is an SEM image of the surface of a copper foil of Comparative Example 1.
  • FIG. 9 is an SEM image of the surface of a copper foil of Comparative Example 2.
  • FIG. 10 is an SEM image of the surface of a copper foil of Comparative Example 3.
  • FIG. 10 is an SEM image of the surface of a copper foil of Comparative Example 3.
  • Copper foil according to an aspect of the present invention is a copper foil having irregularities formed on at least one surface and a fine particle layer formed on the surface, the lower fine particles located above the average line according to the average height of the surface is located below the average line More than particles.
  • FIG. 1 is a view showing the surface of the copper foil according to an embodiment of the present invention
  • Figure 2 is a view showing the surface of the copper foil excluding the fine particles in Figure 1
  • Figure 3 is a part of the surface of the copper foil in Figure 1 The figure is shown.
  • the copper foil according to the present embodiment is a copper foil having irregularities formed on a surface thereof and a fine particle layer formed on the surface thereof, and more upper fine particles positioned above the average line according to the average height of the surface than the lower fine particles positioned below the average line.
  • corrugation is formed in the surface.
  • the process of manufacturing copper foil is generally classified into a manufacturing process, ie, the process of manufacturing copper foil itself, and the process of processing the surface of the manufactured copper foil.
  • Copper foil manufactured according to the manufacturing process has a surface roughness which is different depending on the process. That is, high roughness includes large irregularities on the surface, and low roughness includes small irregularities on the surface.
  • Surfaces having such irregularities are subjected to various surface treatment processes as necessary to impart the necessary characteristics in subsequent processes.
  • the surface when used in an FPCB or as a negative electrode current collector of a secondary battery, the surface may be roughened to increase roughness in order to improve adhesion with a resin or an active material, and the diffusion of copper particles into another layer may be improved.
  • a barrier treatment may be performed to prevent the surface treatment, and a surface treatment to enhance adhesion may be performed by an antirust treatment to prevent surface oxidation, or a surface treatment using a silane coupling agent at the outermost surface.
  • a roughening treatment is performed to increase the surface roughness.
  • the roughening treatment may include a fine particle layer on the surface of the copper foil to be in contact with the resin or the active material.
  • the unevenness 120 is formed on the surface of the copper foil layer 110, and the fine particles 131 form the fine particle layer 130 in the unevenness 120.
  • the fine particles may be classified based on the average line m according to the average height of the unevenness 220 of the copper foil 210. That is, the fine particles positioned above the average line m may be referred to as upper fine particles, and the fine particles positioned below the average line m may be referred to as lower fine particles.
  • Copper foil 100 according to the present invention is the upper fine particles than the lower fine particles.
  • the upper fine particles are located in the mountain portion of the unevenness 120
  • the lower fine particles are fine particles located in the bone portion of the unevenness 120.
  • the upper fine particles are more than the lower fine particles or there are no lower fine particles, there are few or no fine particles in the bone portion of the unevenness 120. Therefore, empty space is created in the valley part of the unevenness 120, and the porosity becomes high.
  • the copper foil 100 is in contact with a resin or an active material, such a space is filled with the resin or the active material, thereby improving adhesion.
  • the reason for roughening the surface of the copper foil is that the surface of the copper foil, which has an increased unevenness due to the roughening treatment, is buried in a resin or the like to provide an anchor effect to improve adhesion.
  • a resin or the like to provide an anchor effect to improve adhesion.
  • less microparticles are generated in the valleys between the uneven acid and the acid to form empty spaces, and at the top thereof, fine particles are formed so that the resin filled in the empty spaces is anchored. The effect is to improve the adhesion.
  • the fine particle group is positioned above the average line (m) of the copper foil 210, and it is preferable to secure the porosity as much as possible because the smaller particles are located in the lower portion.
  • the ratio of the number of upper microparticles and the number of lower microparticles may be 80:20 to 100: 0.
  • the upper fine particles may form a triangle connecting the center point.
  • three upper fine particles 331, 332, and 333 are positioned on the uneven surface 320, and the center shape 340 connecting the center points P 1 , P 2 , and P 3 is a triangle. .
  • the diameter of the fine particles may be 1 to 3 ⁇ m. If the diameter of the microparticles is too small, it may penetrate into the valleys of the unevenness, and the ratio of the lower fine particles may be increased. If the diameter of the microparticles is too large, the overall unevenness increases, which increases the surface roughness of the copper foil. Done.
  • the fine particles may be metal particles or copper alloy particles including at least one metal of copper (Cu), iron (Fe), molybdenum (Mo), and cobalt (Co).
  • the peel strength of the copper foil may be 1.28 to 1.33 kgf / cm, the surface roughness Rz may be 5.2 to 6.5 ⁇ m, and the surface roughness Rmax may be 6.5 to 7.7 ⁇ m.
  • the fine particles formed in the uneven portion are located in an acidic region, and thus the surface of the copper foil has a low surface roughness and high peel strength, thereby improving adhesion.
  • the insulating substrate and an copper foil attached to one surface of the insulating substrate.
  • Copper foil contained in an electrical component includes the circuit formed by etching copper foil.
  • Such electrical components include, for example, TAB tapes, printed wiring boards (PCBs), flexible printed circuit boards (FPCs, flexible PCBs), and the like, but are not necessarily limited thereto, and are used by attaching copper foil on an insulating substrate. Anything that can be used in.
  • a battery comprising the copper foil described above.
  • Copper foil may be used as a negative electrode current collector of a battery, but is not necessarily limited thereto, and may also be used as other components used in a battery.
  • the battery is not particularly limited and includes all primary and secondary batteries, and any battery that can be used in the art as a battery using copper foil as a current collector, such as a lithium ion battery, a lithium polymer battery, or a lithium air battery Do.
  • preparing a copper foil with irregularities formed on at least one surface And forming a fine particle layer on the surface on which the unevenness is formed, and forming the fine particle layer such that the upper fine particles positioned above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line.
  • a surface treatment method is provided.
  • copper foil is copper sulfate; Sulfuric acid; And it is immersed in the surface treatment solution containing a metal containing iron (Fe), molybdenum (Mo) and cobalt (Co) and electrolytically to form a fine particle layer on at least one surface of the copper foil with irregularities on the surface.
  • Fe iron
  • Mo molybdenum
  • Co cobalt
  • Iron is included in the surface treatment solution, 10 to 30 g of molybdenum, 0.5 to 10 g, and 1 to 15 g of cobalt. If the metal content in the surface treatment solution is too small, the copper alloy is not sufficiently formed, so it is difficult to control the ratio of the upper fine particles and the lower fine particles. If the metal content is too high, too many fine particles are formed, resulting in high surface roughness. It may be disadvantageous in terms of etching.
  • the electroplating process for forming the microparticle layer may be performed at 20 to 60 A / dm 2 for 1 to 5 seconds.
  • the copper foil according to the present invention may be additionally surface treated.
  • any one or a combination of heat and chemical resistance treatment, chromate treatment, silane coupling treatment, and the like, and the like may be appropriately selected depending on subsequent processes.
  • the heat and chemical resistance treatment can be carried out by forming a thin film on metal foil by sputtering, electroplating or electroless plating of any one or alloys of metals such as nickel, tin, zinc, chromium, molybdenum and cobalt, for example. Can be. In terms of cost, electroplating is preferable.
  • a complexing agent such as citrate, tartarate, and sulfamic acid may be added in a required amount.
  • chromate treatment an aqueous solution containing hexavalent to trivalent chromium ions is used.
  • the chromate treatment may be a simple immersion treatment, but is preferably carried out by cathodic treatment. It is preferable to carry out on the conditions of 0.1-70 g / L sodium dichromate, pH 1-13, bath temperature 15-60 degreeC, current density 0.1-5 A / dm ⁇ 2> , electrolysis time 0.1-100 second .
  • sodium dichromate it may be carried out using chromic acid or potassium dichromate.
  • epoxy functional silanes such as 3-glycidoxy propyl trimethoxysilane and 2- (3, 4- epoxycyclohexyl) ethyl trimethoxysilane
  • Amino functional silanes such as -aminopropyl trimethoxysilane, N-2- (aminoethyl) -3-aminopropyl trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyl dimethoxysilane
  • Acrylic functional silanes such as olefin functional silanes, such as a vinyl trimethoxy silane, a vinylphenyl trimethoxysilane, and a vinyl tris (2-methoxyethoxy) silane
  • 3-acryloxypropyl trimethoxysilane 3-metha Methacryl-functional silanes, such as chlorooxypropyl trimethoxysi
  • Such a coupling agent is dissolved in a solvent such as water at a concentration of 0.1 to 15 g / L, and applied to a metal foil at a temperature of room temperature to 70 ° C, or electrodeposited to adsorb.
  • a solvent such as water
  • These silane coupling agents form a film by condensation-bonding with the hydroxyl group of the antirust process metal on the metal foil surface.
  • a stable bond is formed by heating, ultraviolet irradiation or the like. The heating is dried for 2 to 60 seconds at a temperature of 100 to 200 ° C. Ultraviolet irradiation is performed in the range of 200-400 nm and 200-2500 mJ / cm ⁇ 2> .
  • the positive electrode was a 5 mm thick, 10 x 10 cm 2 Dimentionally Stable Electrode (DSE) electrode plate, and the negative electrode was a titanium electrode plate having the same size and thickness as the positive electrode.
  • DSE Dimentionally Stable Electrode
  • plating was performed at 35 A / dm 2 , and a copper foil having a thickness of 18 ⁇ m was prepared.
  • Chlorine ions and additives were added to the copper electrolyte.
  • the copper foil thus prepared was electrolyzed for 1 to 5 seconds at a current density of 35 A / dm 2 using the following copper electrolyte to form a fine particle layer.
  • the scanning electron microscopy (SEM) image of the surface of the copper foil in which the microparticle layer was formed by Example 1 is shown in FIG.
  • the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1.
  • the SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1.
  • the SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • Example 1 The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1.
  • the SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1.
  • the SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1.
  • the SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
  • 4 to 7 are surface images of copper foils of Examples 1 to 4 according to the present invention. Referring to Figure 4, it can be seen that the fine particles are concentrated in the acid portion of the irregularities on the copper foil surface. 5 to 7 also similar to Figure 1 it can be seen that the fine particles are densely located in the uneven portion of the copper foil surface, less than the mountain portion in the bone portion.
  • FIGS. 8 to 10 which are surface images of the copper foils of Comparative Examples 1 to 3, it can be seen that the fine particles are evenly located in the valleys as well as the acid of the unevenness. In the copper foils of Comparative Examples 1 to 3, the fine particles cover the entire surface of the copper foil.
  • the upper fine particles located above the average line of the unevenness are present more than the lower fine particles, and the lower fine particles are present so that the resin or the active material penetrates into the bone part. It is expected that the adhesion is high because it is likely to
  • the surface roughness of the copper foil of Example 1 is lower than the surface roughness of Comparative Example 1, but the peel strength is higher, the adhesion to other materials such as resin or active material to be contacted in the subsequent process It can be seen that this is high.
  • the evaluation result that the peeling strength of the copper foil of Example 1 having a lower surface roughness but not the same surface roughness is higher than that of Comparative Example 1 may be inferred as a result of the position of the microparticles of Example 1 being biased.
  • the surface roughness values of copper foils of Examples 2 to 4 are smaller or similar, but the peeling strength is 1.30 kgf / cm or more, respectively. The value higher than the peeling strength of is shown.
  • the adhesiveness with other materials is high when manufacturing a product such as a resin or an active material, and thus the defect rate is low in the process, the yield is high, and the surface roughness is etched. Its excellent properties make it possible to form fine circuit patterns, thus increasing product reliability.

Abstract

Provided is copper foil having low roughness and excellent adhesive strength. The provided copper foil is a copper foil having an uneven portion formed on at least one surface thereof and a fine particle layer formed on the surface thereof, wherein the number of upper fine particles located above a mean line according to the mean height of the surface is greater than the number of lower fine particles located below the mean line.

Description

동박, 이를 포함하는 전기부품 및 전지Copper foil, electrical parts and batteries comprising same
본 발명은 동박, 동박을 포함하는 전기부품 및 전지에 관한 것으로, 보다 상세하게는 조도가 낮으면서도 접착강도가 우수한 동박에 관한 것이다.The present invention relates to a copper foil, an electric component and a battery including the copper foil, and more particularly to a copper foil excellent in adhesive strength while having low roughness.
전자 산업에서 사용되는 프린트 배선판(printed circuit board)용 적층판은 유리 직포(cloth), 크래프트지, 유리섬유 부직포 등에 페놀성 수지, 에폭시 수지 등의 열경화성 수지를 함침시키고, 상기 수지를 반경화시켜 프리프레그를 준비하고, 프리프레그의 일면 또는 양면에 동박을 적층시켜 제조된다. 또한, 다층 프린트 배선판은 동부착적층판(copper-clad laminate)의 양면에 회로를 형성시켜 내층 재료를 형성하고, 프리프레그를 매개로 동박을 내층재 양면에 적층하여 제조된다.Laminates for printed circuit boards used in the electronics industry are impregnated with glass cloth, kraft paper, and glass fiber nonwoven fabrics with thermosetting resins such as phenolic resins and epoxy resins, and the resins are semi-precured. It is prepared by laminating a copper foil on one side or both sides of the prepreg. In addition, a multilayer printed wiring board is produced by forming circuits on both sides of a copper-clad laminate to form an inner layer material, and laminating copper foil on both sides of the inner layer material through a prepreg.
프리프레그의 일면 또는 양면에 동박을 적층시킬 때 재료간의 상이함에 따라 접착률이 충분하지 않아 후속공정에서 동박이 프리프레그로부터 분리되어 제품에 불량이 발생할 수 있다. 따라서, 동박에 프리프레그와 같은 수지와의 접착성을 높이기 위한 표면처리가 수행된다. When the copper foil is laminated on one side or both sides of the prepreg, the adhesion rate is not sufficient because the copper foil is separated from the prepreg in a subsequent process, thereby causing a defect in the product. Therefore, the surface treatment for improving adhesiveness with resin, such as a prepreg, is performed to copper foil.
프린트 배선판의 제조에 사용되는 동박은 일면에 미세한 구리 입자를 부착시키는 등에 의해 요철을 형성시키는 조화처리가 행해지고 있다. 프리프레그 등의 수지와의 접합을 수행하는 경우에, 조화처리된 동박의 요철형상이 기재수지 내에 매몰되어 앵커효과(anchoring effect)를 제공함에 의하여, 동박과 기재수지의 밀착성이 향상된다.The copper foil used for manufacture of a printed wiring board is performing the roughening process which forms unevenness | corrugation by making fine copper particle adhere to one surface, etc. In the case of bonding with resin such as prepreg, the roughness of the roughened copper foil is buried in the base resin to provide an anchoring effect, thereby improving the adhesion between the copper foil and the base resin.
최근에는 프린트 배선판을 내장하는 전자 장치의 경박단소화, 고기능화의 영향으로 인하여, 프린트 배선판의 배선밀도에 대한 요구도 해마다 높아지고 있다. 제품 품질의 향상이 요구되고, 에칭에 의해 형성되는 회로의 형상도 고도화되어, 임피던스 컨트롤을 완전히 행할 수 있는 수준의 회로 에칭 팩터가 요구되게 되었다. In recent years, the demand for wiring density of printed wiring boards is increasing year by year due to the influence of thin and short and high functionality of electronic devices incorporating printed wiring boards. The improvement of product quality is demanded, and the shape of the circuit formed by etching is also advanced, and the circuit etching factor of the level which can fully perform impedance control was calculated | required.
상기와 같은 동박의 표면처리가 수행되면, 동박의 표면조도는 높아지고, 동박과 기재수지와의 밀착성은 향상되나 미세회로에 대한 에칭성이 낮아질 수 있다. 따라서, 에칭성을 고려하여 동박의 표면조도를 유지하면서도 밀착성을 향상시킬 수 있는 기술에 대한 개발이 요청된다.When the surface treatment of the copper foil is performed, the surface roughness of the copper foil is increased, the adhesion between the copper foil and the base resin may be improved, but the etching resistance to the microcircuit may be lowered. Therefore, in consideration of the etching property, development of a technique capable of improving the adhesion while maintaining the surface roughness of the copper foil is required.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 조도가 낮으면서도 접착강도가 우수한 동박을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide a copper foil excellent in adhesive strength while low roughness.
이상과 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 동박은, 적어도 하나의 표면에 요철이 형성되고, 표면에 미세입자층이 형성된 동박으로서, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 평균선 아래에 위치하는 하부미세입자보다 많다. Copper foil according to an aspect of the present invention for achieving the above object is a copper foil with irregularities formed on at least one surface, a fine particle layer formed on the surface, the upper fine particles located on the average line according to the average height of the surface Is more than the lower particulates located below the mean line.
상부미세입자의 수 및 하부미세입자의 수의 비율은 80:20 내지 100:0일 수 있다. The ratio of the number of upper microparticles to the number of lower microparticles may be 80:20 to 100: 0.
상부미세입자는 중심점을 연결한 형상이 삼각형을 형성할 수 있다.Upper fine particles may form a triangle connecting the center point.
미세입자의 직경은 1 내지 3 ㎛일 수 있다. The diameter of the fine particles may be 1 to 3 ㎛.
미세입자는 구리(Cu), 철(Fe), 몰리브덴(Mo) 및 코발트(Co) 중 적어도 하나의 금속을 포함하는 금속입자 또는 구리합금입자일 수 있다. The fine particles may be metal particles or copper alloy particles including at least one metal of copper (Cu), iron (Fe), molybdenum (Mo), and cobalt (Co).
동박의 박리강도는 1.28 내지 1.33 kgf/cm일 수 있고, 표면조도 Rz는 5.2 내지 6.5 ㎛일 수 있으며, 표면조도 Rmax는 6.5 내지 7.7 ㎛일 수 있다. The peel strength of the copper foil may be 1.28 to 1.33 kgf / cm, the surface roughness Rz may be 5.2 to 6.5 μm, and the surface roughness Rmax may be 6.5 to 7.7 μm.
본 발명의 다른 측면에 따르면, 절연성 기재; 및 절연성 기재의 일 표면에 부착된 상기와 같은 동박;을 포함하는 전기부품이 제안된다. According to another aspect of the invention, the insulating substrate; And an copper foil as described above attached to one surface of an insulating substrate.
본 발명의 또다른 측면에 따르면, 상기와 같은 동박을 포함하는 전지가 제공된다. According to another aspect of the present invention, there is provided a battery comprising such a copper foil.
본 발명의 또다른 측면에 따르면, 적어도 하나의 표면에 요철이 형성된 동박을 준비하는 단계; 및 요철이 형성된 표면에 미세입자층을 형성하되, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 상기 평균선 아래에 위치하는 하부미세입자보다 많도록 미세입자층을 형성하는 단계;를 포함하는 동박의 표면처리방법이 제공된다. According to another aspect of the invention, preparing a copper foil with irregularities formed on at least one surface; And forming a fine particle layer on the surface on which the unevenness is formed, and forming the fine particle layer such that the upper fine particles positioned above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line. A surface treatment method is provided.
미세입자층을 형성하는 단계는, 동박을 황산구리; 황산; 및 철(Fe), 몰리브덴(Mo) 및 코발트(Co)를 포함하는 금속;을 포함하는 표면처리액에 침지하고 전해하여 요철이 형성된 표면에 미세입자층을 형성하여 수행된다. Forming the fine particle layer, copper foil copper sulfate; Sulfuric acid; And a metal containing iron (Fe), molybdenum (Mo), and cobalt (Co); and immersed in an electrolytic solution including a fine particle layer on the surface where the unevenness is formed.
철의 함량은 10 내지 30g일 수 있고, 몰리브덴의 함량은 0.5 내지 10g일 수 있으며, 코발트의 함량은 1 내지 15g일 수 있다. 미세입자층을 형성하기 위한 전해도금공정은 20 내지 60 A/dm2에서 1 내지 5 초동안 수행될 수 있다.The content of iron may be 10 to 30g, the content of molybdenum may be 0.5 to 10g, and the content of cobalt may be 1 to 15g. The electroplating process for forming the microparticle layer may be performed at 20 to 60 A / dm 2 for 1 to 5 seconds.
본 발명에 따른 동박은 조도가 낮으면서도 접착강도가 우수하다. 따라서, 미세회로기판형성을 위한 에칭성이 보장되면서도 접착강도가 우수해 수지 등과의 밀착성이 향상되어 동박을 이용한 제품 제조시 제품신뢰성이 향상되는 효과가 있다.Copper foil according to the present invention is excellent in adhesive strength while low roughness. Accordingly, the etching property for forming the microcircuit board is guaranteed and the adhesive strength is excellent, thereby improving adhesion to the resin and the like, thereby improving product reliability when manufacturing a product using copper foil.
도 1은 본 발명의 일실시예에 따른 동박의 표면을 도시한 도면이다. 1 is a view showing the surface of the copper foil according to an embodiment of the present invention.
도 2는 도 1에서 미세입자를 제외한 동박의 표면을 도시한 도면이다.2 is a view showing the surface of the copper foil excluding the fine particles in FIG.
도 3은 도 1에서 동박표면의 일부를 도시한 도면이다. 3 is a view showing a part of the surface of the copper foil in FIG.
도 4는 실시예 1에서 표면처리된 동박의 표면에 대한 주사전자현미경(scanning electron microscopy, SEM) 이미지이다.Figure 4 is a scanning electron microscopy (SEM) image of the surface of the copper foil surface-treated in Example 1.
도 5는 실시예 2의 동박의 표면에 대한 SEM 이미지이다.5 is an SEM image of the surface of the copper foil of Example 2. FIG.
도 6은 실시예 3의 동박의 표면에 대한 SEM 이미지이다.6 is an SEM image of the surface of the copper foil of Example 3. FIG.
도 7은 실시예 4의 동박의 표면에 대한 SEM 이미지이다.7 is an SEM image of the surface of the copper foil of Example 4. FIG.
도 8은 비교예 1의 동박의 표면에 대한 SEM 이미지이다.8 is an SEM image of the surface of a copper foil of Comparative Example 1. FIG.
도 9는 비교예 2의 동박의 표면에 대한 SEM 이미지이다.9 is an SEM image of the surface of a copper foil of Comparative Example 2. FIG.
도 10은 비교예 3의 동박의 표면에 대한 SEM 이미지이다.10 is an SEM image of the surface of a copper foil of Comparative Example 3. FIG.
본 발명의 일 측면에 따른 동박은, 적어도 하나의 표면에 요철이 형성되고, 표면에 미세입자층이 형성된 동박으로서, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 평균선 아래에 위치하는 하부미세입자보다 많다. Copper foil according to an aspect of the present invention is a copper foil having irregularities formed on at least one surface and a fine particle layer formed on the surface, the lower fine particles located above the average line according to the average height of the surface is located below the average line More than particles.
이하에서는 바람직한 구현예들에 따른 동박, 동박을 포함하는 전기부품 및 전지, 및 동박의 표면처리방법에 관하여 더욱 상세히 설명한다. Hereinafter, a copper foil, an electric component and a battery including the copper foil, and a surface treatment method of the copper foil according to preferred embodiments will be described in more detail.
도 1은 본 발명의 일실시예에 따른 동박의 표면을 도시한 도면이고, 도 2는 도 1에서 미세입자를 제외한 동박의 표면을 도시한 도면이며, 도 3은 도 1에서 동박표면의 일부를 도시한 도면이다. 본 실시예에 따른 동박은 표면에 요철이 형성되고, 표면에 미세입자층이 형성된 동박으로서, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 평균선 아래에 위치하는 하부미세입자보다 많다. 1 is a view showing the surface of the copper foil according to an embodiment of the present invention, Figure 2 is a view showing the surface of the copper foil excluding the fine particles in Figure 1, Figure 3 is a part of the surface of the copper foil in Figure 1 The figure is shown. The copper foil according to the present embodiment is a copper foil having irregularities formed on a surface thereof and a fine particle layer formed on the surface thereof, and more upper fine particles positioned above the average line according to the average height of the surface than the lower fine particles positioned below the average line.
본 발명에 따른 동박은 표면에 요철이 형성되어 있다. 동박을 제조하는 공정은 일반적으로 제박공정, 즉 동박 자체를 제조하는 공정과 제조된 동박의 표면을 처리하는 공정으로 분류된다. 제박공정에 따라 제조된 동박은 공정에 따라 상이한 값이지만 표면조도를 갖는다. 즉, 높은 조도의 경우 표면에 큰 요철을 포함하고, 낮은 조도의 경우 표면에 작은 요철을 포함한다. As for the copper foil which concerns on this invention, the unevenness | corrugation is formed in the surface. The process of manufacturing copper foil is generally classified into a manufacturing process, ie, the process of manufacturing copper foil itself, and the process of processing the surface of the manufactured copper foil. Copper foil manufactured according to the manufacturing process has a surface roughness which is different depending on the process. That is, high roughness includes large irregularities on the surface, and low roughness includes small irregularities on the surface.
이러한 요철을 포함하는 표면을 필요에 따라 여러 표면처리공정을 수행하여 이후 공정에서 필요한 특성을 부여한다. 예를 들어, FPCB에 사용되는 경우 또는 이차전지의 음극집전체로 사용되는 경우, 수지나 활물질 등과의 밀착성을 높이기 위하여 표면을 조화처리하여 조도를 높일 수 있고, 다른 층으로의 구리입자의 확산을 방지하기 위하여 배리어 처리할 수 있으며, 표면산화를 방지하기 위한 방청처리, 또는 가장 최외곽에 실란커플링제를 이용한 표면처리로 접착력을 강화시키는 표면처리가 수행될 수 있다. Surfaces having such irregularities are subjected to various surface treatment processes as necessary to impart the necessary characteristics in subsequent processes. For example, when used in an FPCB or as a negative electrode current collector of a secondary battery, the surface may be roughened to increase roughness in order to improve adhesion with a resin or an active material, and the diffusion of copper particles into another layer may be improved. A barrier treatment may be performed to prevent the surface treatment, and a surface treatment to enhance adhesion may be performed by an antirust treatment to prevent surface oxidation, or a surface treatment using a silane coupling agent at the outermost surface.
이 중, 동박과 수지 또는 활물질 등과의 밀착성을 높이기 위해서는 표면조도를 높이기 위한 조화처리가 수행되는데, 조화처리로는 수지 또는 활물질과 접촉될 동박의 표면에 미세입자층이 형성될 수 있다. Among these, in order to increase adhesion between the copper foil and the resin or the active material, a roughening treatment is performed to increase the surface roughness. The roughening treatment may include a fine particle layer on the surface of the copper foil to be in contact with the resin or the active material.
도 1을 참조하면, 동박(100)은 동박층(110)의 표면에 요철(120)이 형성되어 있고, 요철(120)에는 미세입자(131)가 미세입자층(130)을 형성한다. 도 2를 함께 참조하면, 동박(210)의 요철(220)의 평균높이에 따른 평균선(m)을 기준으로 하여 미세입자를 분류할 수 있다. 즉, 평균선(m) 위에 위치하는 미세입자를 상부미세입자라 하고, 평균선(m) 아래에 위치하는 미세입자를 하부미세입자라 할 수 있다. Referring to FIG. 1, in the copper foil 100, the unevenness 120 is formed on the surface of the copper foil layer 110, and the fine particles 131 form the fine particle layer 130 in the unevenness 120. Referring to FIG. 2, the fine particles may be classified based on the average line m according to the average height of the unevenness 220 of the copper foil 210. That is, the fine particles positioned above the average line m may be referred to as upper fine particles, and the fine particles positioned below the average line m may be referred to as lower fine particles.
본 발명에 따른 동박(100)은 상부미세입자가 하부미세입자보다 많다. 상부미세입자는 요철(120)의 산부분에 위치하고, 하부미세입자는 요철(120)의 골부분에 위치하는 미세입자이다. 본 발명의 동박(100)과 같이 상부미세입자가 하부미세입자보다 많거나 하부미세입자가 없는 경우, 요철(120)의 골부분에 미세입자가 적거나 없게 된다. 따라서, 요철(120)의 골부분은 빈공간이 생성되고, 공극률이 높아진다. 이러한 빈공간에는 예를 들어 동박(100)이 수지나 활물질과 접촉하는 경우, 수지나 활물질이 빈공간에 채워지게 되어 밀착성이 향상된다. Copper foil 100 according to the present invention is the upper fine particles than the lower fine particles. The upper fine particles are located in the mountain portion of the unevenness 120, the lower fine particles are fine particles located in the bone portion of the unevenness 120. As in the copper foil 100 of the present invention, when the upper fine particles are more than the lower fine particles or there are no lower fine particles, there are few or no fine particles in the bone portion of the unevenness 120. Therefore, empty space is created in the valley part of the unevenness 120, and the porosity becomes high. For example, when the copper foil 100 is in contact with a resin or an active material, such a space is filled with the resin or the active material, thereby improving adhesion.
동박의 표면을 조화처리하는 이유로는 조화처리로 인하여 요철현상이 더욱 심해진 동박의 표면이 수지 등에 매몰되어 앵커효과를 제공하여 밀착성을 향상시키는 것이다. 그러나, 본 발명에 다른 동박의 경우에는 여기에 추가하여 요철의 산과 산 사이의 골에 미세입자를 덜 발생시켜 빈공간을 형성하고, 그 상부로는 미세입자를 형성하여 빈공간에 채워진 수지가 앵커 효과를 제공하게 되어 밀착성을 향상시키는 것이다. The reason for roughening the surface of the copper foil is that the surface of the copper foil, which has an increased unevenness due to the roughening treatment, is buried in a resin or the like to provide an anchor effect to improve adhesion. However, in the case of copper foil according to the present invention, in addition to this, less microparticles are generated in the valleys between the uneven acid and the acid to form empty spaces, and at the top thereof, fine particles are formed so that the resin filled in the empty spaces is anchored. The effect is to improve the adhesion.
이를 위해서는 동박(210)의 평균선(m) 윗부분에 미세입자기 위치하고, 아랫부분에는 미세입자가 적게 위치하여 최대한 공극률을 확보하는 것이 바람직하다. 예를 들어, 상부미세입자의 수 및 하부미세입자의 수의 비율은 80:20 내지 100:0일 수 있다. To this end, the fine particle group is positioned above the average line (m) of the copper foil 210, and it is preferable to secure the porosity as much as possible because the smaller particles are located in the lower portion. For example, the ratio of the number of upper microparticles and the number of lower microparticles may be 80:20 to 100: 0.
또한, 앵커효과를 극대화시키기 위하여, 상부미세입자는 중심점을 연결한 형상이 삼각형을 형성할 수 있다. 도 3을 참조하면, 요철(320)에 3개의 상부미세입자(331, 332, 333)가 위치하고 있는데 이들의 중심점(P1, P2, P3)를 연결한 중심형상(340)은 삼각형이다. In addition, to maximize the anchor effect, the upper fine particles may form a triangle connecting the center point. Referring to FIG. 3, three upper fine particles 331, 332, and 333 are positioned on the uneven surface 320, and the center shape 340 connecting the center points P 1 , P 2 , and P 3 is a triangle. .
미세입자의 직경은 1 내지 3 ㎛일 수 있다. 미세입자의 직경이 너무 작으면, 요철의 골부분으로 침투하여 하부미세입자의 비율이 높이질 수 있고, 미세입자의 직경이 너무 크면, 전체적인 요철이 크게 되어 동박의 표면조도를 높이게 되므로 에칭성에 불리하게 된다. The diameter of the fine particles may be 1 to 3 ㎛. If the diameter of the microparticles is too small, it may penetrate into the valleys of the unevenness, and the ratio of the lower fine particles may be increased. If the diameter of the microparticles is too large, the overall unevenness increases, which increases the surface roughness of the copper foil. Done.
미세입자는 구리(Cu), 철(Fe), 몰리브덴(Mo) 및 코발트(Co) 중 적어도 하나의 금속을 포함하는 금속입자 또는 구리합금입자일 수 있다.The fine particles may be metal particles or copper alloy particles including at least one metal of copper (Cu), iron (Fe), molybdenum (Mo), and cobalt (Co).
동박의 박리강도는 1.28 내지 1.33 kgf/cm일 수 있고, 표면조도 Rz는 5.2 내지 6.5 ㎛일 수 있으며, 표면조도 Rmax는 6.5 내지 7.7 ㎛일 수 있다. 본 발명에 따른 동박은 요철부분에 형성된 미세입자가 산부분에 편중되어 위치하여 표면조도는 낮으면서도 박리강도가 높아 밀착성에 향상된다. The peel strength of the copper foil may be 1.28 to 1.33 kgf / cm, the surface roughness Rz may be 5.2 to 6.5 μm, and the surface roughness Rmax may be 6.5 to 7.7 μm. In the copper foil according to the present invention, the fine particles formed in the uneven portion are located in an acidic region, and thus the surface of the copper foil has a low surface roughness and high peel strength, thereby improving adhesion.
본 발명의 다른 측면에 따르면, 절연성 기재; 및 절연성 기재의 일 표면에 부착된 동박;을 포함하는 전기부품이 제안된다. 전기부품에 포함되는 동박은 동박을 에칭하여 형성된 회로를 포함한다.According to another aspect of the invention, the insulating substrate; And an copper foil attached to one surface of the insulating substrate. Copper foil contained in an electrical component includes the circuit formed by etching copper foil.
이러한 전기부품으로는 예를 들어, TAB 테이프, 프린트배선판(PCB), 연성프린트배선판(FPC, Flexible PCB) 등이나 반드시 이들로 한정되지 않으며, 동박을 절연성 기재상에 부착시켜 사용하는 것으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.Such electrical components include, for example, TAB tapes, printed wiring boards (PCBs), flexible printed circuit boards (FPCs, flexible PCBs), and the like, but are not necessarily limited thereto, and are used by attaching copper foil on an insulating substrate. Anything that can be used in.
본 발명의 또다른 측면에 따르면, 전술한 동박을 포함하는 전지가 제공된다. 동박은 전지의 음극집전체로 사용될 수 있으나 반드시 이들로 한정되지 않으며 전지에 사용되는 다른 구성요소로도 사용될 수 있다. 전지는 특별히 한정되지 않으며 1차 전지, 2차 전지를 모두 포함하며, 리튬이온전지, 리튬폴리머 전지, 리튬공기전지 등 동박을 집전체로 사용하는 전지로서 당해기술분야에서 사용할 수 있는 전지라면 모두 가능하다.According to another aspect of the present invention, there is provided a battery comprising the copper foil described above. Copper foil may be used as a negative electrode current collector of a battery, but is not necessarily limited thereto, and may also be used as other components used in a battery. The battery is not particularly limited and includes all primary and secondary batteries, and any battery that can be used in the art as a battery using copper foil as a current collector, such as a lithium ion battery, a lithium polymer battery, or a lithium air battery Do.
본 발명의 또다른 측면에 따르면, 적어도 하나의 표면에 요철이 형성된 동박을 준비하는 단계; 및 요철이 형성된 표면에 미세입자층을 형성하되, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 상기 평균선 아래에 위치하는 하부미세입자보다 많도록 미세입자층을 형성하는 단계;를 포함하는 동박의 표면처리방법이 제공된다. According to another aspect of the invention, preparing a copper foil with irregularities formed on at least one surface; And forming a fine particle layer on the surface on which the unevenness is formed, and forming the fine particle layer such that the upper fine particles positioned above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line. A surface treatment method is provided.
본 발명에 따른 동박의 표면처리방법에서는, 동박을 황산구리; 황산; 및 철(Fe), 몰리브덴(Mo) 및 코발트(Co)를 포함하는 금속을 포함하는 표면처리액에 침지하고 전해하여 표면에 요철이 형성된 동박의 적어도 일면에 미세입자층을 형성한다. In the surface treatment method of copper foil which concerns on this invention, copper foil is copper sulfate; Sulfuric acid; And it is immersed in the surface treatment solution containing a metal containing iron (Fe), molybdenum (Mo) and cobalt (Co) and electrolytically to form a fine particle layer on at least one surface of the copper foil with irregularities on the surface.
표면처리액에 철은 10 내지 30g으로 몰리브덴은 0.5 내지 10g으로, 코발트는 1 내지 15g으로 포함된다. 표면처리액에 포함되는 금속의 함량이 너무 작으면 구리합금이 충분히 형성되지 않아 상부미세입자 및 하부미세입자의 비율 조절이 어렵고, 금속의 함량이 너무 높으면 미세입자가 너무 많이 형성되어 표면조도가 높아져 에칭성면에서 불리할 수 있다. Iron is included in the surface treatment solution, 10 to 30 g of molybdenum, 0.5 to 10 g, and 1 to 15 g of cobalt. If the metal content in the surface treatment solution is too small, the copper alloy is not sufficiently formed, so it is difficult to control the ratio of the upper fine particles and the lower fine particles. If the metal content is too high, too many fine particles are formed, resulting in high surface roughness. It may be disadvantageous in terms of etching.
미세입자층을 형성하기 위한 전해도금공정은 20 내지 60 A/dm2에서 1 내지 5 초동안 수행될 수 있다. The electroplating process for forming the microparticle layer may be performed at 20 to 60 A / dm 2 for 1 to 5 seconds.
본 발명에 따른 동박은 추가적으로 표면처리될 수 있다. 예를 들면 내열 및 내화학성 처리, 크로메이트 처리, 실란 커플링 처리 중 어느 하나 또는 이들의 조합 등을 들 수 있고, 어떤 표면 처리를 실시하는가는 이후 공정에 따라 적절히 선택될 수 있다. The copper foil according to the present invention may be additionally surface treated. For example, any one or a combination of heat and chemical resistance treatment, chromate treatment, silane coupling treatment, and the like, and the like may be appropriately selected depending on subsequent processes.
내열 및 내화학성 처리는, 예를 들면 니켈, 주석, 아연, 크롬, 몰리브덴 및 코발트 등의 금속 중 어느 하나 또는 이들의 합금을 스퍼터링 또는 전기 도금, 무전해 도금에 의해 금속박 상에 박막 형성함으로써 실시할 수 있다. 비용면에서는 전기 도금이 바람직하다. 금속 이온의 석출을 쉽게 하기 위해서 시트르산염, 타르타르산염, 술파민산 등의 착화제를 필요량 첨가할 수 있다.The heat and chemical resistance treatment can be carried out by forming a thin film on metal foil by sputtering, electroplating or electroless plating of any one or alloys of metals such as nickel, tin, zinc, chromium, molybdenum and cobalt, for example. Can be. In terms of cost, electroplating is preferable. In order to facilitate precipitation of metal ions, a complexing agent such as citrate, tartarate, and sulfamic acid may be added in a required amount.
크로메이트 처리로는, 6가 내지 3가 크롬 이온을 포함하는 수용액을 이용한다. 크로메이트 처리는 단순한 침지처리이어도 가능하지만, 바람직하게는 음극 처리로 행한다. 중크롬산 나트륨 0.1 내지 70 g/L, pH 1 내지 13, 욕온도 15 내지 60 ℃, 전류 밀도 0.1 내지 5 A/dm2, 전해 시간 0.1 내지 100 초의 조건에서 행하는 것이 바람직하다. 중크롬산 나트륨 대신에 크롬산 또는 중크롬산 칼륨을 이용하여 행할 수도 있다. 또한, 크로메이트 처리는 방청 처리 상에 실시하는 것이 바람직하고, 이에 의해 내습 및 내열성을 보다 향상시킬 수 있다.As the chromate treatment, an aqueous solution containing hexavalent to trivalent chromium ions is used. The chromate treatment may be a simple immersion treatment, but is preferably carried out by cathodic treatment. It is preferable to carry out on the conditions of 0.1-70 g / L sodium dichromate, pH 1-13, bath temperature 15-60 degreeC, current density 0.1-5 A / dm <2> , electrolysis time 0.1-100 second . Instead of sodium dichromate, it may be carried out using chromic acid or potassium dichromate. Moreover, it is preferable to perform chromate treatment on a rust prevention process, by which a moisture resistance and heat resistance can be improved more.
실란 커플링 처리에 사용되는 실란 커플링제로서는, 예를 들면 3-글리시독시프로필 트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란 등의 에폭시 관능성 실란, 3-아미노프로필 트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필 트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸 디메톡시실란 등의 아미노 관능성 실란, 비닐트리메톡시 실란, 비닐페닐트리메톡시실란, 비닐트리스(2-메톡시에톡시)실란 등의 올레핀 관능성 실란, 3-아크릴록시프로필 트리메톡시실란 등의 아크릴 관능성 실란, 3-메타크릴록시프로필 트리메톡시실란 등의 메타크릴 관능성 실란, 3-머캅토프로필트리메톡시실란 등의 머캅토 관능성 실란 등이 이용된다. 이들은 단독으로 이용할 수도 있고, 복수개를 혼합하여 이용할 수도 있다. As a silane coupling agent used for a silane coupling process, epoxy functional silanes, such as 3-glycidoxy propyl trimethoxysilane and 2- (3, 4- epoxycyclohexyl) ethyl trimethoxysilane, 3 Amino functional silanes such as -aminopropyl trimethoxysilane, N-2- (aminoethyl) -3-aminopropyl trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyl dimethoxysilane, Acrylic functional silanes, such as olefin functional silanes, such as a vinyl trimethoxy silane, a vinylphenyl trimethoxysilane, and a vinyl tris (2-methoxyethoxy) silane, and 3-acryloxypropyl trimethoxysilane, 3-metha Methacryl-functional silanes, such as chlorooxypropyl trimethoxysilane, mercapto-functional silanes, such as 3-mercaptopropyltrimethoxysilane, etc. are used. These may be used alone, or may be used by mixing a plurality of them.
이러한 커플링제는 물 등의 용매에 0.1 내지 15 g/L의 농도로 용해시켜 실온 내지 70 ℃의 온도에서 금속박에 도포하거나, 전착시켜 흡착시킨다. 이들 실란 커플링제는 금속박 표면의 방청 처리 금속의 수산기와 축합 결합함으로써 피막을 형성한다. 실란 커플링 처리 후에는 가열, 자외선 조사 등에 의해서 안정적 결합을 형성한다. 가열은 100 내지 200 ℃의 온도에서 2 내지 60 초 건조시킨다. 자외선 조사는 200 내지 400 nm, 200 내지 2500 mJ/cm2의 범위에서 행한다. 또한, 실란커플링 처리는 동박의 최외층에 행하는 것이 바람직하고, 이에 의해 내습 및 절연수지 조성물층과 금속박과의 밀착성을 보다 향상시킬 수 있다.Such a coupling agent is dissolved in a solvent such as water at a concentration of 0.1 to 15 g / L, and applied to a metal foil at a temperature of room temperature to 70 ° C, or electrodeposited to adsorb. These silane coupling agents form a film by condensation-bonding with the hydroxyl group of the antirust process metal on the metal foil surface. After the silane coupling treatment, a stable bond is formed by heating, ultraviolet irradiation or the like. The heating is dried for 2 to 60 seconds at a temperature of 100 to 200 ° C. Ultraviolet irradiation is performed in the range of 200-400 nm and 200-2500 mJ / cm <2> . Moreover, it is preferable to perform a silane coupling process to outermost layer of copper foil, and can improve the adhesiveness of a moisture-resistant and insulating resin composition layer and metal foil further by this.
이하 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred examples, but the present invention is not limited thereto.
(동박의 제조)(Manufacture of Copper Foil)
전해에 의한 동박을 제조하기 위해 20L/min으로 순환 가능한 3L용량의 전해조 시스템을 이용하였고 구리전해액의 온도는 45℃로 일정하게 유지하였다. 양극은 두께가 5mm이고, 크기가 10 X 10cm2의 DSE(Dimentionally Stable Electrode) 극판을 사용하였으며, 음극은 양극과 동일한 크기 및 두께를 가진 티타늄 극판을 사용하였다.In order to produce electrolytic copper foil, a 3L electrolytic cell system circulating at 20 L / min was used, and the temperature of the copper electrolyte was kept constant at 45 ° C. The positive electrode was a 5 mm thick, 10 x 10 cm 2 Dimentionally Stable Electrode (DSE) electrode plate, and the negative electrode was a titanium electrode plate having the same size and thickness as the positive electrode.
Cu2+이온의 이동을 원활하게 하기 위하여 전류밀도는 35A/dm2로 도금을 실시하였으며, 18㎛ 두께의 동박을 제조하였다.In order to facilitate the movement of the Cu 2 + ions, plating was performed at 35 A / dm 2 , and a copper foil having a thickness of 18 μm was prepared.
*구리전해액의 기본조성은 다음과 같다:* Basic composition of copper electrolyte is as follows:
CuSO4·5H2O: 250~400g/LCuSO 4 · 5H 2 O: 250 ~ 400g / L
H2SO4: 80~150g/LH 2 SO 4 : 80 ~ 150g / L
구리전해액에 염소이온 및 첨가제가 추가되었다. Chlorine ions and additives were added to the copper electrolyte.
(실시예 1)(Example 1)
제조된 동박에 다음과 같은 구리전해액을 이용하여 전류밀도 35 A/dm2에서 1 내지 5 초동안 전해하여 미세입자층을 형성하였다. 실시예 1에 의해 미세입자층이 형성된 동박의 표면에 대한 주사전자현미경(scanning electron microscopy, SEM) 이미지가 도 4에 나타나있다.The copper foil thus prepared was electrolyzed for 1 to 5 seconds at a current density of 35 A / dm 2 using the following copper electrolyte to form a fine particle layer. The scanning electron microscopy (SEM) image of the surface of the copper foil in which the microparticle layer was formed by Example 1 is shown in FIG.
CuSO4·5H2O: 85 g/LCuSO 4 5H 2 O: 85 g / L
H2SO4: 125 g/LH 2 SO 4 : 125 g / L
Fe : 19 g/LFe: 19 g / L
Mo : 1.1 g/LMo: 1.1 g / L
Co : 8 g/LCo: 8 g / L
(실시예 2)(Example 2)
이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 5에 나타나있다. Except the following description, the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 85 g/LCuSO 4 5H 2 O: 85 g / L
H2SO4: 125 g/LH 2 SO 4 : 125 g / L
Fe : 25 g/LFe: 25 g / L
Mo : 1.1 g/LMo: 1.1 g / L
Co : 8 g/LCo: 8 g / L
(실시예 3)(Example 3)
이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 6에 나타나있다. Except the following description, the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 85 g/LCuSO 4 5H 2 O: 85 g / L
H2SO4: 125 g/LH 2 SO 4 : 125 g / L
Fe : 19 g/LFe: 19 g / L
Mo : 0.7 g/LMo: 0.7 g / L
Co : 8 g/LCo: 8 g / L
(실시예 4)(Example 4)
*이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 7에 나타나있다. * Except as described below, the electroplating was performed on the surface of the copper foil as in Example 1 to form a fine particle layer. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 85 g/LCuSO 4 5H 2 O: 85 g / L
H2SO4: 125 g/LH 2 SO 4 : 125 g / L
Fe : 19 g/LFe: 19 g / L
Mo : 1.1 g/LMo: 1.1 g / L
Co : 10 g/LCo: 10 g / L
(비교예 1)(Comparative Example 1)
이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 8에 나타나있다. Except the following description, the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 70 g/LCuSO 4 5H 2 O: 70 g / L
H2SO4: 165 g/LH 2 SO 4 : 165 g / L
Mo : 0.57 g/LMo: 0.57 g / L
W : 10 g/LW: 10 g / L
(비교예 2)(Comparative Example 2)
이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 9에 나타나있다. Except the following description, the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 70 g/LCuSO 4 5H 2 O: 70 g / L
H2SO4: 165 g/LH 2 SO 4 : 165 g / L
Mn : 1 g/LMn: 1 g / L
(비교예 3)(Comparative Example 3)
이하의 내용을 제외하고는 실시예 1과 동일하게 동박의 표면에 전해도금을 수행하여 미세입자층을 형성하였다. 미세입자층이 형성된 동박의 표면에 대한 SEM 이미지가 도 10에 나타나있다. Except the following description, the fine particle layer was formed by performing electroplating on the surface of the copper foil in the same manner as in Example 1. The SEM image of the surface of the copper foil in which the microparticle layer was formed is shown in FIG.
CuSO4·5H2O: 70 g/LCuSO 4 5H 2 O: 70 g / L
H2SO4: 165 g/LH 2 SO 4 : 165 g / L
Ga : 1 g/LGa: 1 g / L
실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 3의 동박에서 표면처리된 면의 표면조도(Rz, Rmax) 및 박리강도를 측정하여 표 1에 나타내었다. 표면조도 Rz 및 Rmax는 JISB 0601-1994 규격에 따라 측정하였고, 박리강도는 할로겐프리 프리프레그에 준비된 시편을 10X100mm 사이즈로 부착하고 210℃에서 30분간 열간 압착가공을 실시하여 박리강도 측정 시편을 준비하여, 준비된 시편을 U.T.M장비에 분당 50mm의 속도로 하여 측정하였다. 표면조도는 값이 낮을수록 요철이 작음을 의미한다.Surface roughness (Rz, Rmax) and peeling strength of the surface treated in the copper foils of Examples 1 to 4 and Comparative Examples 1 to 3 were measured and shown in Table 1. Surface roughness Rz and Rmax were measured according to JISB 0601-1994. Peel strength was measured by attaching the specimen prepared in halogen-free prepreg to 10X100mm size and performing hot pressing at 210 ℃ for 30 minutes to prepare the peel strength test specimen. The prepared specimens were measured at a speed of 50 mm per minute on a UTM machine. Surface roughness means that the lower the value, the smaller the unevenness.
표 1
Rz(㎛) Rmax(㎛) 박리강도(kgf/cm)
실시예 1 5.06 6.24 1.31
실시예 2 5.43 7.37 1.30
실시예 3 5.92 7.27 1.35
실시예 4 5.60 7.36 1.32
비교예 1 5.20 7.95 1.16
비교예 2 5.66 9.25 1.15
비교예 3 4.62 7.58 1.10
Table 1
Rz (μm) Rmax (μm) Peel Strength (kgf / cm)
Example 1 5.06 6.24 1.31
Example 2 5.43 7.37 1.30
Example 3 5.92 7.27 1.35
Example 4 5.60 7.36 1.32
Comparative Example 1 5.20 7.95 1.16
Comparative Example 2 5.66 9.25 1.15
Comparative Example 3 4.62 7.58 1.10
도 4 내지 도 7은 본 발명에 따른 실시예 1 내지 실시예4의 동박의 표면이미지이다. 도 4를 참조하면, 미세입자가 동박표면의 요철의 산부분에 몰려있는 것을 확인할 수 있다. 도 5 내지 도 7도 도 1과 유사하게 미세입자가 동박표면의 요철 산부분에 조밀하게 위치하고, 골부분에는 산부분보다 더 적게 위치하는 것을 알 수 있다. 4 to 7 are surface images of copper foils of Examples 1 to 4 according to the present invention. Referring to Figure 4, it can be seen that the fine particles are concentrated in the acid portion of the irregularities on the copper foil surface. 5 to 7 also similar to Figure 1 it can be seen that the fine particles are densely located in the uneven portion of the copper foil surface, less than the mountain portion in the bone portion.
이와 비교하여 비교예 1 내지 비교예 3의 동박의 표면이미지인 도 8 내지 도 10에서는 미세입자가 요철의 산뿐만아니라 골부분에도 골고루 위치하고 있음을 알 수 있다. 비교예1 내지 비교예3의 동박에서는 미세입자가 동박의 표면 전체를 덮고 있는 것이다. In comparison, in FIGS. 8 to 10, which are surface images of the copper foils of Comparative Examples 1 to 3, it can be seen that the fine particles are evenly located in the valleys as well as the acid of the unevenness. In the copper foils of Comparative Examples 1 to 3, the fine particles cover the entire surface of the copper foil.
본 발명에 따른 실시예 1 내지 실시예 4의 동박 표면에서는 요철의 평균선 위에 위치하는 상부미세입자가 하부미세입자보다 더 많이 존재하고, 하부미세입자가 적게 존재하여 수지나 활물질등이 골부분에 침투할 가능성이 높아 밀착성이 높을 것을 예측된다. On the surface of the copper foil of Examples 1 to 4 according to the present invention, the upper fine particles located above the average line of the unevenness are present more than the lower fine particles, and the lower fine particles are present so that the resin or the active material penetrates into the bone part. It is expected that the adhesion is high because it is likely to
이에 따라, 표 1에서 알 수 있듯, 실시예 1의 동박의 표면조도는 비교예 1의 표면조도보다 낮지만, 박리강도는 더 높아 이후 공정에서 접촉할 수지나 활물질등과 같은 다른 물질과의 밀착성이 높음을 알 수 있다. 특히, 동일한 표면조도도 아닌 더 낮은 표면조도를 갖는 실시예 1의 동박이 박리강도가 비교예 1보다 더 높다는 평가결과는 실시예 1의 미세입자의 위치가 편중되어 나타난 결과로 추론할 수 있다. 실시예 2내지 실시예 4의 동박도 표면조도값의 편차는 있으나 비교예 1내지 비교예 3의 표면조도값보다 작거나 유사하나 박리강도는 각각 1.30 kgf/cm 이상으로 비교예 1내지 비교예3의 박리강도보다 높은 값을 나타내고 있다. Accordingly, as can be seen from Table 1, the surface roughness of the copper foil of Example 1 is lower than the surface roughness of Comparative Example 1, but the peel strength is higher, the adhesion to other materials such as resin or active material to be contacted in the subsequent process It can be seen that this is high. In particular, the evaluation result that the peeling strength of the copper foil of Example 1 having a lower surface roughness but not the same surface roughness is higher than that of Comparative Example 1 may be inferred as a result of the position of the microparticles of Example 1 being biased. Although there are variations in the surface roughness values of copper foils of Examples 2 to 4, the surface roughness values of the comparative examples 1 to Comparative Example 3 are smaller or similar, but the peeling strength is 1.30 kgf / cm or more, respectively. The value higher than the peeling strength of is shown.
따라서, 본 발명에 따른 실시예 1 내지 실시예 4의 의 동박을 사용하면, 수지나 활물질등과 같이 제품제조시 타물질과의 밀착성이 높아 공정에서 불량률이 낮고 수율이 높아지며, 표면조도가 낮아 에칭성이 우수하여 미세회로패턴형성도 가능하여 제품신뢰성이 높아지게 된다. Therefore, when the copper foils of Examples 1 to 4 according to the present invention are used, the adhesiveness with other materials is high when manufacturing a product such as a resin or an active material, and thus the defect rate is low in the process, the yield is high, and the surface roughness is etched. Its excellent properties make it possible to form fine circuit patterns, thus increasing product reliability.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니라, 첨부된 청구범위에 의해 해석되어야 한다. 또한, 본 발명에 대하여 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.The invention is not to be limited by the foregoing embodiments and the accompanying drawings, but should be construed by the appended claims. In addition, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible within the scope of the present invention without departing from the technical spirit of the present invention.

Claims (16)

  1. 적어도 하나의 표면에 요철이 형성되고, 상기 표면에 미세입자층이 형성된 동박으로서, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 상기 평균선 아래에 위치하는 하부미세입자보다 많은 동박.A copper foil having irregularities formed on at least one surface and having a fine particle layer formed on the surface, wherein the upper fine particles positioned above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 상부미세입자의 수 및 상기 하부미세입자의 수의 비율은 80:20 내지 100:0인 동박.The ratio of the number of the upper microparticles and the number of the lower microparticles is 80:20 to 100: 0.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 상부미세입자는 중심점을 연결한 형상이 삼각형인 동박.The upper microparticles are copper foil having a triangular shape connecting the center point.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 미세입자의 직경은 1 내지 3 ㎛인 동박. Copper foil having a diameter of the fine particles 1 to 3 ㎛.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 구리(Cu), 철(Fe), 몰리브덴(Mo) 및 코발트(Co) 중 적어도 하나의 금속을 포함하는 금속입자인 동박.The fine particles are copper foil which is a metal particle containing at least one metal of copper (Cu), iron (Fe), molybdenum (Mo) and cobalt (Co).
  6. 청구항 1에 있어서, The method according to claim 1,
    박리강도가 1.28 내지 1.33 kgf/cm인 동박.Copper foil having a peel strength of 1.28 to 1.33 kgf / cm.
  7. 청구항 1에 있어서, The method according to claim 1,
    표면조도 Rz는 5.2 내지 6.5 ㎛인 동박. Copper foil whose surface roughness Rz is 5.2-6.5 micrometers.
  8. 청구항 1에 있어서, The method according to claim 1,
    표면조도 Rmax는 6.5 내지 7.7 ㎛인 동박. Copper roughness whose surface roughness Rmax is 6.5-7.7 micrometers.
  9. 절연성 기재; 및Insulating substrates; And
    상기 절연성 기재의 일 표면에 부착된 상기 청구항 1 내지 청구항 8 중 어느 한 항에 따른 동박;을 포함하는 전기부품.The copper component according to any one of claims 1 to 8 attached to one surface of the insulating substrate.
  10. 상기 청구항 1 내지 청구항 8 중 어느 한 항에 따른 동박을 포함하는 전지.A battery comprising the copper foil according to any one of claims 1 to 8.
  11. 적어도 하나의 표면에 요철이 형성된 동박을 준비하는 단계; 및 Preparing a copper foil having irregularities formed on at least one surface; And
    상기 요철이 형성된 표면에 미세입자층을 형성하되, 표면의 평균높이에 따른 평균선 위에 위치하는 상부미세입자가 상기 평균선 아래에 위치하는 하부미세입자보다 많도록 미세입자층을 형성하는 단계;를 포함하는 동박의 표면처리방법.Forming a fine particle layer on the surface on which the unevenness is formed, and forming the fine particle layer such that the upper fine particles located above the average line according to the average height of the surface are larger than the lower fine particles positioned below the average line. Surface treatment method.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 미세입자층을 형성하는 단계는, Forming the fine particle layer,
    상기 동박을 황산구리; 황산; 및 철(Fe), 몰리브덴(Mo) 및 코발트(Co)를 포함하는 금속;을 포함하는 표면처리액에 침지하고 전해하여 상기 요철이 형성된 표면에 미세입자층을 형성하는 단계인 동박의 표면처리방법.Copper sulfate; Sulfuric acid; And a metal comprising iron (Fe), molybdenum (Mo), and cobalt (Co); and immersing and electrolyzing in a surface treatment solution including a step of forming a fine particle layer on the surface on which the unevenness is formed.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 철의 함량은 10 내지 30g인 동박의 표면처리방법.The iron content is 10 to 30g copper foil surface treatment method.
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 몰리브덴의 함량은 0.5 내지 10g인 동박의 표면처리방법.The molybdenum content is 0.5 to 10g of copper foil surface treatment method.
  15. 청구항 12에 있어서,The method according to claim 12,
    상기 코발트의 함량은 1 내지 15g인 동박의 표면처리방법.The cobalt content is 1 to 15g copper foil surface treatment method.
  16. 청구항 12에 있어서,The method according to claim 12,
    상기 전해는 20 내지 60 A/dm2에서 1 내지 5 초동안 수행되는 것인 동박의 표면처리방법.The electrolysis is a copper foil surface treatment method is performed for 1 to 5 seconds at 20 to 60 A / dm 2 .
PCT/KR2014/012942 2013-12-30 2014-12-26 Copper foil, and electrical component and battery including same WO2015102323A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016561983A JP2017508890A (en) 2013-12-30 2014-12-26 Copper foil, electrical parts including the same, and battery
CN201480071903.7A CN105874891A (en) 2013-12-30 2014-12-26 Copper foil, and electrical component and battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0166916 2013-12-30
KR1020130166916A KR101695236B1 (en) 2013-12-30 2013-12-30 Copper foil, electric component and battery comprising the foil

Publications (1)

Publication Number Publication Date
WO2015102323A1 true WO2015102323A1 (en) 2015-07-09

Family

ID=53493613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012942 WO2015102323A1 (en) 2013-12-30 2014-12-26 Copper foil, and electrical component and battery including same

Country Status (4)

Country Link
JP (1) JP2017508890A (en)
KR (1) KR101695236B1 (en)
CN (1) CN105874891A (en)
WO (1) WO2015102323A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200392640A1 (en) * 2019-06-12 2020-12-17 Co-Tech Development Corp. Advanced reverse treated electrodeposited copper foil and copper clad laminate using the same
US11332839B2 (en) * 2019-06-19 2022-05-17 Co-Tech Development Corp. Advanced electrodeposited copper foil and copper clad laminate using the same
TWI776168B (en) * 2019-06-19 2022-09-01 金居開發股份有限公司 Advanced reverse-treated electrodeposited copper foil and copper clad laminate using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399930B1 (en) * 2017-08-29 2022-05-18 에스케이넥실리스 주식회사 Method for manufacturing copper foil having nodule layer, copper foil manufactured by the method, electrode for secondary battery the same and secondary battery
CN111031663B (en) * 2018-10-09 2023-05-05 金居开发股份有限公司 Copper foil substrate
KR102413300B1 (en) * 2020-12-10 2022-06-27 와이엠티 주식회사 Metal foil, carrier with metal foil comprising the same and printed circuit board comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
KR100842930B1 (en) * 2006-10-31 2008-07-02 강원대학교산학협력단 Negative electrode for using lithium secondary battery, and lithium secondary battery comprising the same
KR101012580B1 (en) * 2003-03-28 2011-02-07 산요덴키가부시키가이샤 Electrode for lithium secondary battery and its manufacturing process and lithium secondary battery
US20110143195A1 (en) * 2009-06-29 2011-06-16 Shuji Ito Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717910B2 (en) * 1992-11-19 1998-02-25 日鉱グールド・フォイル株式会社 Copper foil for printed circuit and manufacturing method thereof
JPH07202367A (en) * 1993-12-28 1995-08-04 Japan Energy Corp Surface treatment method of copper foil for printed circuit
JP3739929B2 (en) * 1998-03-09 2006-01-25 古河サーキットフォイル株式会社 Copper foil for printed wiring board and method for producing the same
US6342308B1 (en) * 1999-09-29 2002-01-29 Yates Foil Usa, Inc. Copper foil bonding treatment with improved bond strength and resistance to undercutting
JP3670179B2 (en) * 1999-11-11 2005-07-13 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
AU2003302288A1 (en) * 2002-11-27 2004-06-18 Mitsui Mining And Smelting Co., Ltd. Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2004244656A (en) * 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012580B1 (en) * 2003-03-28 2011-02-07 산요덴키가부시키가이샤 Electrode for lithium secondary battery and its manufacturing process and lithium secondary battery
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
KR100842930B1 (en) * 2006-10-31 2008-07-02 강원대학교산학협력단 Negative electrode for using lithium secondary battery, and lithium secondary battery comprising the same
US20110143195A1 (en) * 2009-06-29 2011-06-16 Shuji Ito Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200392640A1 (en) * 2019-06-12 2020-12-17 Co-Tech Development Corp. Advanced reverse treated electrodeposited copper foil and copper clad laminate using the same
US11655555B2 (en) * 2019-06-12 2023-05-23 Co-Tech Development Corp. Advanced reverse treated electrodeposited copper foil and copper clad laminate using the same
US11332839B2 (en) * 2019-06-19 2022-05-17 Co-Tech Development Corp. Advanced electrodeposited copper foil and copper clad laminate using the same
TWI776168B (en) * 2019-06-19 2022-09-01 金居開發股份有限公司 Advanced reverse-treated electrodeposited copper foil and copper clad laminate using the same

Also Published As

Publication number Publication date
KR101695236B1 (en) 2017-01-11
JP2017508890A (en) 2017-03-30
KR20150077944A (en) 2015-07-08
CN105874891A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015102323A1 (en) Copper foil, and electrical component and battery including same
TWI699459B (en) Surface-treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic equipment, and manufacturing method of printed wiring board
US20180279482A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
JP5481577B1 (en) Copper foil with carrier
TWI603655B (en) Surface-treated copper foil, copper foil with carrier, laminated board, printed wiring board, electronic equipment, and manufacturing method of printed wiring board
US20050123782A1 (en) Copper foil with low profile bond enhancement
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI577256B (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper-clad laminate, and printed wiring board manufacturing method
WO2014136785A1 (en) Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
WO2011028004A2 (en) Copper foil for an embedded pattern for forming a microcircuit
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
US6610418B1 (en) Electolytic copper foil with carrier foil and method for manufacturing the same
WO1996025838A1 (en) Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit
KR20110071434A (en) Electrolytic copper foil improved in structure of surface treatment layer and method for producing the same, and copper clad laminate and printed circuit board having the same
EP0520640A1 (en) Metal foil with improved peel strength and method for making said foil
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2015001016A (en) Copper foil, copper-clad laminated sheet, and printed wiring board
JP5575320B2 (en) Copper foil with carrier
WO2023120855A1 (en) Surface-treated copper foil having heat resistance, copper clad laminate comprising same, and printed wiring board
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
JP5816230B2 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
WO2023054850A1 (en) Carrier-foil-attached ultra-thin copper foil and method for manufacturing embedded substrate using same
JPH0194695A (en) Manufacture of conductive circuit board
TWI805902B (en) Surface treated copper foil, copper clad laminate and printed circuit board
WO2015102322A1 (en) Copper foil, and electrical part and battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876754

Country of ref document: EP

Kind code of ref document: A1