WO2015101295A1 - 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法 - Google Patents

高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法 Download PDF

Info

Publication number
WO2015101295A1
WO2015101295A1 PCT/CN2014/095659 CN2014095659W WO2015101295A1 WO 2015101295 A1 WO2015101295 A1 WO 2015101295A1 CN 2014095659 W CN2014095659 W CN 2014095659W WO 2015101295 A1 WO2015101295 A1 WO 2015101295A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
water
slope
mixture
tree
Prior art date
Application number
PCT/CN2014/095659
Other languages
English (en)
French (fr)
Inventor
赵鑫钰
罗文峰
Original Assignee
成都昭日环保科技有限公司
赵鑫钰
罗文峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都昭日环保科技有限公司, 赵鑫钰, 罗文峰 filed Critical 成都昭日环保科技有限公司
Priority to US15/104,930 priority Critical patent/US10405502B2/en
Publication of WO2015101295A1 publication Critical patent/WO2015101295A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • B09B1/004Covering of dumping sites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0262Mulches, i.e. covering material not-pre-formed in mats or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/52Mulches
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/005Soil-conditioning by mixing with fibrous materials, filaments, open mesh or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Definitions

  • the invention relates to a method for soil and water conservation, in particular to a method for soil and water conservation and ecological restoration of a high and steep slope waste slag body in a dry and hot valley with high altitude and large temperature difference.
  • Soil erosion refers to the use of land by human beings, especially the unreasonable development and management of water and soil resources, which causes the soil cover to be damaged.
  • the exposed soil is washed away by water, and the amount of loss is greater than the amount of soil grown by the mother layer.
  • the loss is caused by the loss of topsoil, the loss of heart and the loss of the mother material, and eventually the rock is exposed.
  • Soil erosion can be divided into three types: hydraulic erosion, gravity erosion and wind erosion. Soil and water loss is very harmful, mainly in the following aspects: 1: reducing or even losing land productivity; 2: silting rivers, lakes, reservoirs; 3: polluting water quality affects ecological balance; 4: forming mudslides and other disasters, serious threats People's lives are safe.
  • the ecological control of soil erosion is mainly to plant vegetation on the surface of bare rock and soil, stabilize the rock through the roots of the plant, prevent rain erosion and strong wind from engulfing a large amount of soil, and maintain soil moisture.
  • the object of the present invention is to provide an environment and water and soil conservation method which is difficult to apply to the high and high temperature and large temperature difference dry and hot valley high and steep slope waste slag body water and soil conservation, and to provide a high altitude and large temperature difference dry dry heat valley high steep slope abandonment Soil and water conservation method of slag body.
  • D excavation tree nest: a plurality of vertical deep pits are excavated at the same spacing on the slope as a tree nest, the tree nest having a diameter of 60 cm to 80 cm and a depth of 60 cm or more, in the tree nest Bottom coverage a layer of cement mortar having a thickness of 4 to 6 mm and a ratio of 1:0.7, and finally a layer of clay mud having a thickness of 3 to 5 mm and a ratio of 1:0.5 is covered on the side wall of the tree nest.
  • the clay mud layer is provided with a gap at a height of 1/3 of the bottom of the tree nest;
  • planting trees planting trees in the tree nest obtained in step D, and then backfilling the soil;
  • the thickness of the mixture is 8 cm to 15 cm, and the mixed mixture obtained in the step C is uniformly spread on the slope surface after the tree planting in the step E, and then manually flattened;
  • G Sprinkling water: Sprinkle water on the slope covered with the mixture.
  • the cementing material is added to the covering soil, and the mixing material is stirred to increase the composition and content of the fine particles in the covering soil, and the fine particles in the covering soil are uniformly wrapped on the coarse particles to form a coagulation effect by stirring.
  • the problem of loose soil and changing loose soil and poor structural properties also makes it possible to form a monolithic shell-like mixture shell covering the slope when the mixture is covered on the slope surface, so as to avoid the mixture falling into the slope.
  • the surface gap and the fine particles are blown away by the strong wind, and at the same time, the need for the thickness of the covering soil is reduced, thereby ensuring that the mixing of the thickness of 8 cm to 15 cm is laid in the step F, so as to meet the needs of planting plants,
  • the reduction in the number of soils required to be reclaimed and the reduction in the scale of access to local overburden will reduce the extent of damage to the local ecology due to the use of local overburden.
  • step B and step C a plant ingredient having a length of 5 to 10 cm is added to the admixture, and on the other hand, the plant ingredient acts as a connecting rib and a reinforcing rib in the admixture, when the admixture is spread on the slope.
  • the strength of the mixed shell formed by the mixture is increased, and the effect of the soil of the mixed mixture is enhanced; on the other hand, because the fresh and undried plant ingredients are rich in moisture, when the mixture is covered with the mixture
  • the mixture can be kept moist for a period of time, although the effect of the plant ingredients to keep the mixture moist is gradually disappeared over time, but during this time, the grass seeds have passed the germination.
  • the rooting stage further increases the survival rate of the grass seeds in the mixed mixture.
  • the incorporated plant ingredients gradually rot to form organic humus, and provide the grass seeds with the nutrients needed for growth.
  • step D and step E planting trees on the slope surface, because the slope of the slope is large, after planting several trees at intervals of 3 m ⁇ 3 m on the slope surface, firstly, the trees are directly covered as slopes. Blended The skeleton of the mixture avoids the downward sliding of the mixed mixture on the slope due to the excessive slope; in addition, after the tree survives, it can play a good water retention and soil conservation effect due to its developed root system.
  • step D Due to the high temperature and large temperature difference in the dry and hot valley of the high and steep slopes, the soil is loose, the rainfall is scarce, and the rainwater leaks quickly. In the early stage of planting, sufficient water is needed, so the excavation in step D is carried out.
  • the bottom of the tree nest is covered with a layer of cement mortar with a thickness of 4 to 6 mm and a ratio of 1:0.7.
  • the side wall of the tree nest is covered with a layer of clay mud with a thickness of 3 to 5 mm and a ratio of 1:0.5.
  • the cement mortar layer and the clay mud layer in the tree nest serve as a temporary water storage device that intercepts rainwater for the growth of trees in the early stage of tree production, and does not hinder the growth of the roots of the trees after the trees survive.
  • step F the slope is covered with a mixture of 8 cm to 15 cm thick, and since the rubber compound is added to the mixture, the mixture does not fall into the gap of the slope after covering the slope, nor It will be blown away by the wind, so it is covered with 8cm ⁇ 15cm thick blending material on the slope surface, which greatly saves the amount of soil to be covered and reduces the scale of local soil covering. It also reduces the damage to the local original ecology due to the use of local soil.
  • step E when the mixed material is spread on the slope surface, the surface is flattened, the surface of the mixed mixture is smoothed, the wind resistance is reduced, and the covering soil mixed with the surface of the mixed material is taken away when the wind is blown through the mixed mixture.
  • step F water is sprinkled on the slope after the spread of the blend is completed to provide moisture for the initial stages of grass seed and tree production.
  • the preparation of the step A is to first stir the cementing material and water, and after the gelling material and the water are evenly stirred, the soil is added to the soil to continue stirring until the soil is mixed with the cementing material. Evenly obtain a uniform mix. Since the gelling material itself is also granular, the gelling material is firstly stirred with water, and then mixed with the covering soil to ensure the uniformity of the mixing material and improve the quality of the mixed material.
  • the preparation of the step A is to directly mix the cementitious material with the soil to obtain a uniform mixture. Since in step G, it is necessary to sprinkle the mixed material laid on the slope surface, the coagulation effect is still generated between the cementing material and the covering soil after watering, which facilitates the construction and simplifies the construction process.
  • the plant in the step B is grass clippings. Because grass clippings are rich in water, it ensures sufficient water for rooting and germination of grass seeds, and grass clippings are prone to spoilage to form organic fertilizers, which also provide the required nutrients for rooting and germination of grass seeds.
  • the plant in the step B is straw. Since the straw itself is rod-shaped, it is used as fertilizer after rot and forms small cavities in the admixture. Due to the existence of these small cavities, it is firstly beneficial to the growth of roots after rooting of grass seeds, and when rain falls to On the slope surface, rainwater penetrates into these small cavities, which can maintain the humidity of the slope as much as possible for plant growth and further increase the survival rate of the plants.
  • the plant comprises grass clippings and straw, wherein the weight ratio of grass clippings to straw is 1:1, the grass clippings and the straw are cut together, and uniformly mixed to obtain a vegetable ingredient.
  • the plant ingredients are mixed with grass and straw with a weight ratio of 1:1, so that the corruption of plant ingredients has a certain stage, that is, grass clippings become corrupted first. Fertilizer, then the straw is re-corrupted to form fertilizer, which in turn allows the plant ingredients to provide fertilizer for the plants on the slope for a longer period of time.
  • the straw can form small cavities after decay, due to the existence of these small cavities, firstly It is beneficial to the growth of roots after rooting of grass seeds. Moreover, when rainwater falls on the slope surface, rainwater penetrates into these small cavities and can maintain the humidity of the slope as much as possible for plant growth. Further increase the survival rate of plants.
  • the cementing material of the step A is cement
  • the weight ratio of the cement to the covering soil is 1:100-5:100.
  • the plant ingredient and the covering soil The weight ratio is: 2:100 to 4:100
  • the weight ratio of the grass seed to the covering soil is 2:100 to 4:100.
  • the weight ratio of cement to covering soil is 1:100 ⁇ 5:100, so that the cement can produce the gelling effect without greatly changing the pH of the local soil, ensuring the pH of the blending material is suitable.
  • the weight ratio of the mixture to the cover soil is: 2:100 ⁇ 4:100 in the blending material, so that the plant ingredients are The effect of the ribs and the fertilizer is generated, and the surface of the slag is not roughened, and the wind resistance is increased, which causes the wind to blow away the covering soil mixed with the surface of the mixture.
  • the cementing material of the step A is clay, and the weight ratio of the clay to the covering soil is: 3:100 to 7:100.
  • the plant ingredient and the covering soil are The weight ratio is: 2:100 to 4:100, and the weight ratio of the grass seed to the covering soil is 2:100 to 4:100. Due to the small size of the clay itself and the neutrality of the pH, the clay is used as the cementing material, which does not significantly change the pH of the covering soil while making the gelation effect, so that the pH of the mixture is suitable for plant growth, clay and The weight ratio of the covering soil is: 3:100 ⁇ 7:100, avoiding the squashing of the mixed mixture due to excessive clay, which is unfavorable for plant growth.
  • the fine particle content in the mixed mixture can be provided to improve the soil structure. The admixture is beneficial to plant growth.
  • the cementing material of the step A is fly ash
  • the weight ratio of the fly ash to the covering soil is 1:100-5:100.
  • the plant ingredients The weight ratio to the covering soil is: 2:100 to 4:100
  • the weight ratio of the grass seed to the covering soil is 2:100 to 4:100.
  • Fly ash is fine ash collected from the flue gas after coal combustion, and is also the main solid waste slag discharged from coal-fired power plants. The use of fly ash as a cementitious material first realizes the reuse of waste slag and also passes Fly ash increases the content of fine particles in the admixture, so that the admixture is beneficial to plant growth. .
  • the spreading of the step D of the step D includes:
  • each row of fences is composed of a plurality of juxtaposed branches, the branches are inserted into the slope along a direction perpendicular to the slope, the branches are 60-80 cm in length, and the branches are The insertion depth is 40 to 60 cm;
  • step D2 After the setting of the fence in step D1 is completed, the mixed material is spread on the slope surface.
  • a plurality of rows of fences are arranged on the slope surface, and each row of fences blocks the soil falling above the slopes, thereby preventing soil loss during the initial stage of plant growth on the slope surface.
  • the branches are rotted to form organic fertilizer, which improves the nourishment of the vegetation on the slope.
  • a degradable plastic film is disposed at the bottom of the deep pit, and an outer edge of the plastic film extends upward along a sidewall of the deep pit to a distance from the bottom of the deep pit 1 At the height of /3.
  • the cement mortar layer and the clay mud layer are replaced by a degradable plastic film, which facilitates the construction, and the degradable plastic film can degrade itself and avoid polluting the environment.
  • the cementing material is added to the covering soil, the composition and content of the fine particles in the covering soil are increased, and the fine particles in the covering soil are uniformly wrapped on the coarse particles to form a coagulation effect by stirring, thereby achieving solid soiling and changing the covering soil particles.
  • the problem of looseness and poor structure also makes it possible to form a monolithic shell-like mixture covering the slope surface when the mixture is covered on the slope surface, so as to prevent the mixture from falling into the gap of the slope and the fineness. The particles are blown away by the strong wind;
  • the plant ingredients act as connecting ribs and reinforcing ribs in the mixed mixture, when the mixed materials are spread on the slope surface of the slope, Increasing the strength of the mixed shell formed by the mixture to enhance the effect of the soil of the mixed mixture;
  • the cement mortar layer and the clay mud layer are arranged in the tree nest to play the role of intercepting the rainwater, providing the required water for the growth of the trees, thereby ensuring the survival rate of the planted trees, and passing through the gaps on the side walls of the tree nests. Control the amount of water in the tree nest to prevent the roots from rot due to excessive water.
  • Figure 1 is a block flow diagram of the method of the present invention.
  • the experimental area is located in the arid valley of the upper reaches of the Minjiang River. It is a slag yard for accumulating waste slag when excavating the tunnel.
  • the area belongs to the climatic zone of the western Sichuan Plateau and has the characteristics of mountain monsoon climate. It is cold and dry in winter, strong in sunshine, sunny and drier, with large temperature difference; summer Hot and humid, the rainy season is obvious, and there are major winds, droughts and other disasters.
  • the average annual rainfall is 507.4mm
  • the average annual temperature is 13.5 °C
  • the extreme maximum temperature is 35.6 °C
  • the extreme minimum temperature is -7.4 °C
  • the maximum one day precipitation is 66.7 mm.
  • the average annual evaporation is about 1600mm.
  • the slag body in the experimental area is mainly tunnel excavation block stone.
  • the rock geology is mostly sericite phyllite, sandstone, crystal limestone, etc.
  • the slope of the slag field in the experimental area is 35° ⁇ 57°.
  • Example 1 On the first experimental cell, the following steps were carried out in order:
  • the vertical deep pit is excavated at a spacing of 3m ⁇ 3m as a tree nest.
  • the diameter of the tree nest is 60cm ⁇ 80cm and the depth is 60cm.
  • the bottom of the tree nest is covered with a thickness of 4 ⁇ 6mm.
  • the cement mortar layer with a ratio of 1:0.7 is finally covered with a layer of clay mud with a thickness of 3 to 5 mm and a ratio of 1:0.5 on the side wall of the tree nest.
  • the clay mud layer is 1/3 of the bottom of the tree nest.
  • An annular gap is provided at a height;
  • the mixture obtained in the step C is uniformly spread on the slope surface after the step E planting with a thickness of 10 cm, and then flattened by hand;
  • Example 3 The following steps were carried out on the experimental plot No. 3:
  • A collecting fresh and undried plants, and then cutting the plant ingredients by 5 to 10 cm in length;
  • step B Take the soil at the construction site as the cover soil, grass seeds and the plant ingredients of step A, add water and mix well to obtain the mixed mixture.
  • the weight ratio of grass seeds to soil cover is: 3:100, the weight ratio of plant ingredients to soil cover is 4:100;
  • the mixed mixture is spread on the slope surface, and by artificial flattening, the thickness of the mixed mixture is 10 cm;
  • the weight ratio of grass seed to cover soil is 3:100;
  • Example 1 Example 2, Example 3, Comparative Example 1 and Comparative Example 2 were all started on the same day in April 2010, and construction was completed on the same day.
  • Comparative Example 3 The No. 6 plot was uniformly sprinkled with grass seeds of the same weight as in Example 1 on a slope of a natural state. And the water content of the soil at 10 cm below the soil surface was measured simultaneously with other experimental plots and recorded in Table 1. The contents of organic matter and nitrogen in the soil at the soil surface were measured simultaneously with other experimental plots and recorded in Table 2.
  • Plants consume nitrogen from the soil when they grow, so they can measure the growth of nitrogen in the soil and measure the growth of the plant.
  • the vegetation growth on it is better than the vegetation growth of the grass seed directly sprinkled on the slope of the natural state, indicating that after the soil is mixed, it is conducive to the growth of vegetation, and at the same time, after the vegetation grows,
  • the root system plays a role in retaining water and solidifying soil, so that the slope soil is preserved and moist, and with the increase of the year, the dead leaves of the plant are spoiled in a humid environment, so that the proportion of organic matter in the soil increases year by year, and the organic matter itself can
  • the growth of plants provides nutrients, thus forming a benign ecological cycle, which makes the vegetation on the slopes being better and better, and thus maintains the water and soil of the slopes. Purpose.
  • the key technology in the above method is to use a variety of materials to mix and solve the high-steep slope body of the construction waste slag yard and the large-scale slag surface soil preservation, water retention and vegetation restoration methods and processes.
  • the specific method is to mix and match the micro-gelling materials of dozens of groups (cement, fly ash, clay, etc.) with water, local (sand, miscellaneous) soil, grass clippings, grass species, etc. Artificially spread on the slope and steep slope of the slag yard to achieve the effect of solid soil, stable slope, soil conservation and water retention.
  • This kind of “fine work” aims to reduce the thickness of the slope cover soil and the amount of soil or soil purchased (no matter which soil is borrowed or purchased, it will inevitably destroy the soil and water conservation and vegetation ecology of the excavation site).
  • precision is to point the slope to cover the soil like the limestone and cement mortar of the vertical wall of the house, so that the mixed soil formed by the mixing forms a “block” or “shell”, so that all the covering soils are not vibrated into the uneven gap of the large slag body. In or eroded by rain.
  • the loose sand granules are mixed with a small amount of cementitious material in order to increase the fine particle composition or content, and the fine particles are relatively uniformly wrapped on the coarse particles to form a coagulation effect by stirring, to achieve solid soil and change the soil particles.
  • Loose, poorly structured, fine particles are easily blown away by strong winds, and the slopes cannot withstand the problem of water and soil loss such as rain erosion.
  • the so-called "micro-mixing" means that in addition to the appropriate proportion of clay mixing up to 10%, other cementitious materials are controlled within the range of 1% to 5%, that is, the soil must not be changed greatly and the soil and acidity and alkalinity can be changed.
  • grass clippings Mixed with grass clippings, the weeds collected or purchased are cut into 5 ⁇ 10cm long grass clippings, mixed with artificially dry or added with appropriate amount of water or mixed with cementing material to lay on the slope.
  • grass clippings strengthen the "strength" (connection, solid soil) in the soil; on the other hand, while the grass seeds grow, the incorporated grass clippings rot to form organic (humus) It is used as a fertilizer after the decay of the soil and forms a small "cavity", which is beneficial to the growth of other plants.
  • Fresh grass clippings are not the only organic blending materials. Local farmers can use organic waste such as mixed peel and discarded vegetable leaves to control the grass in front of and behind the house.
  • the purpose of artificial mixing is to increase the coagulation of loose sand particles, so that the soil is evenly laid on the steep slope, and the coarse particles are not easy to be separated, rolled off and separated.
  • the blending component has experimental groups such as water alone, blending with cementing materials, mixing with grass clippings and cementing materials, and there are also items without water and dry grass.
  • the nutrients (organic matter, fertility) of the surface soil is much higher than that of the uncovered hillside soil after the mixed soil after mixing or stirring.
  • the proportion of organic matter increased significantly; the proportion of nitrogen fertilizer decreased with time and the amount of the mixture, but the fluctuation was small; the proportion of phosphorus was not obvious.
  • the content and proportion of soil fertility changed, indicating that in the absence of artificial fertilization and fertilization, plant growth consumes some of the nutrients contained in the soil itself. If the surface of the slag field is used for re-cultivation, fertilization and fertilization measures are needed to increase soil fertility. It can realize the ecological restoration from manual intervention to ecological restoration of “adaptive, self-regulating and natural growth”.
  • the above method enables any subject who is willing to participate in ecological governance to actively implement soil and water conservation and ecological restoration in a convenient, simple and economical way. Every farmer and every land contractor can use this simple and easy method to improve the sloping farmland, steep slope forest land, grassland or “before and after the house” vegetation planting environment, so that any land and sloping land becomes good land and orchard. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cultivation Of Plants (AREA)
  • Botany (AREA)

Abstract

一种高海拔大温差干旱干热河谷高陡坡弃渣体水土保持方法,包括:制备拌合料、收集并切割植物得到植物配料、掺拌适量胶凝材料和植物配料以及草籽得到掺拌料,开挖树窝、植树、铺撒掺拌料、洒水,该水土保持方法由于在覆土中加入胶凝材料,以搅拌的方式使覆土中细颗粒比较均匀包裹在粗颗粒上产生凝结作用,有效避免坡面和渣体表面的松散覆土易受水力侵蚀和风力侵蚀,减少覆土陷落到坡面大块度渣体缝隙中,控制了渣场水土保持覆土与取土规模,确保了种树、植树的存活率和保存率。

Description

高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法 技术领域
本发明涉及一种水土保持方法,具体涉及一种适用于高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法。
背景技术
近年来,由于林地毁坏、河流污染和大气污染等,使我国的自然生态发生着前所未有的巨大变化,湖泊湿地急剧减少,频繁的气候灾害和地震地质灾害,已经容不得人们无视生态恶化和缓慢的不作为。当务之急必须逐渐减少至停止人类对自然的破坏,同时还要加快对生态环境的修复。
水土流失是指人类对土地的利用,特别是对水土资源不合理的开发和经营,使土壤的覆盖物遭受破坏,裸露的土壤受水力冲蚀,流失量大于母质层育化成土壤的量,土壤流失由表土流失、心土流失而至母质流失,终使岩石裸露。水土流失可分为水力侵蚀、重力侵蚀和风力侵蚀三种类型。水土流失的危害性很大,主要有以下几个方面:1:使土地生产力下降甚至丧失;2:淤积河道、湖泊、水库;3:污染水质影响生态平衡;4:形成泥石流等灾害,严重威胁人们的生命安全。
据水利部近年统计,我国国土水土流失面积达357万平方千米,每年流失的土壤总量约50亿吨,损失耕地100万亩,我国每年因水土流失造成的经济损失相当于GDP的2.6%左右。所以,如果国家不采取强力有效措施遏制水土流失的话,那么,占国土面积70%的山区荒漠化、石漠化加剧,不仅制约经济社会可持续发展,而且将严重威胁我国的生态安全、粮食安全、防洪安全,甚至到国家安全。
所以,在对生态环境的修复中,如何有效的治理水土流失,成为了目前我 国最迫切需要解决的难题。对水土流失的生态治理主要是采用在裸露的岩土表面种植植被,通过植物的根系稳固岩土,防止雨水冲刷和强风裹挟大量的泥土,并且保持土壤水分。
在治理水土流失过程中,在裸露的岩土以及大块度渣体上种植植被时,由于坡面的岩土渣体之间存在大量的缝隙,所以首先是需要在裸露岩土上覆盖厚度至少为50cm腐殖土作为覆土,然后在覆土进行植物的种植,然后定期浇水以保证植物的成活率,在植物成活后,其根系稳固住岩土,进而达到防止水土流失的目的。
但是,由于地理因素和气候因素等的限制,这种传统的治理水土流失的方法对于高海拔、大温差、干旱河谷、干热河谷地区高陡坡弃渣体并不适用,原因是这些地区坡体的坡度大、自然环境恶劣,并且地处偏远,在被治理坡体周围难以取得大量的腐殖土作为覆土来源。如果选择坡体周围原本就贫瘠具有植被覆盖的泥土作为覆土,由于需要覆土量大,势必又大规模开挖山体,造成新的水土流失,这样采用破坏其它地方的水土生态来治理目前水土流失,结果则是得不偿失的。
另一方面,由于坡体的坡度大(25°~60°),即便是找到了足量的覆土,由于重力的作用,覆盖厚度至少为50cm以上覆土也难以依附在坡面上,并且,由于覆土表面松散,在高海拔、大温差、干热干旱河谷中,常年都有较大的干风,并且降雨稀少,致使覆土在植被形成之前就容易被剥离吹走,所以这种常规的水土保持对于这些高海拔大温差干旱干热河谷高陡坡弃渣体并不适用。
另外,在20世纪末,世界发达经济体发展速度放缓,经济持续低迷,使严重依赖出口、投资、消费的我国不得不加大投资比重、刺激消费,以拉动经济。在投资拉动经济中,西部大开发战略前提下的水电建设和高速公路、铁路等基础工程建设投资贡献最大。而在数万公里的高速公路、高速铁路和数以千计的大中型水电站建设和大规模开挖工程中,难有足够场地也难以找到理想位置堆 放弃渣。那么沿河堆放、顺坡堆放成为无奈选择。大规模的弃渣堆放,首先是对这些地区的植被再一次进行破坏,进一步的恶化了当地的生态环境,而且,在弃渣的表面,由于弃渣土质疏松,在经雨水冲刷时,弃渣中的岩土极易流失,进一步的加剧了水土流失和生态恶化。
由于这些弃渣坡体的坡度大,并且大多位于海拔高、温差大、干旱干热的西部山区之中,所以传统的水土保持方法也不适用于治理这些弃渣堆体的水土流失。
所以,目前亟需一种能够适应于高海拔大温差干旱干热河谷高陡坡弃渣体的水土保持方法。
发明内容
本发明的目的在于:针对现有水土保持方法难以适用于高海拔大温差干旱干热河谷高陡坡弃渣体水土保持的不足,提供一种能够适应于高海拔大温差干旱干热河谷高陡坡弃渣体的水土保持方法。
为了实现上述目的,本发明采用的技术方案为:
高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,包括以下步骤:
A:制备拌合料:将施工现场的土壤作为覆土,将胶凝材料与覆土进行拌和,得到拌和均匀的拌和料;
B:收集并切割植物得到植物配料:收集新鲜未干枯的植物,然后以5~10cm为长度切割得到植物配料;
C:制备掺拌料:将步骤B得到的植物配料、步骤A得到的拌和料以及草籽进行混合,并且搅拌均匀得到掺拌料;
D:开挖树窝:在坡面上以相同的间距,间隔开挖出若干竖直的深坑作为树窝,所述树窝直径为60cm~80cm,深度大于等于60cm,在所述树窝的底部覆盖 一层厚度为4~6mm,掺比为1:0.7的水泥砂浆层,最后在所述树窝的侧壁覆盖一层厚度为3~5mm,掺比为1:0.5的黏土泥浆层,所述黏土泥浆层距离所述树窝底部1/3的高度处设置有缝隙;
E:植树:在步骤D得到的树窝内种植树木,然后回填泥土;
F:铺撒掺拌料:以厚度为8cm~15cm为厚度,将步骤C得到的掺拌料均匀的铺撒在经步骤E植树后的坡面上,然后通过人工摊平;
G:洒水:对覆盖了掺拌料的坡面上洒水。
在步骤A中,在覆土中加入胶凝材料,搅拌得到拌和料,增加了覆土中细颗粒组成分和含量,以搅拌的方式使覆土中细颗粒比较均匀包裹在粗颗粒上产生凝结作用,达到固土和改变覆土颗粒松散、结构性差的问题,也使得当掺拌料覆盖在坡面上时,形成一个整体壳状的掺拌料壳覆盖在坡面上,避免掺拌料落入到坡面缝隙中和粉细颗粒被大风吹走,同时,也就降低了覆土厚度的需要,进而保证了步骤F中,铺洒8cm~15cm厚度的掺拌料,即可以满足种植植物的需要,大大的降低了需要覆土的数量,降低取用本地覆土的规模,也就降低了由于取用本地覆土而对本地原有生态的破坏程度。
在步骤B和步骤C中,在掺拌料中加入长度为5~10cm的植物配料,一方面是植物配料在掺拌料内起连接筋和加强筋的作用,当掺拌料铺洒在坡体坡面上时,增加掺拌料形成的掺拌料壳的强度,增强掺拌料的固土的效果;另一方面,由于新鲜未干枯的植物配料内富含水分,当掺拌料覆盖在坡面之后,能够在一段时间内保持掺拌料的湿润,虽然随着时间的增长,植物配料保持掺拌料湿润的效果会逐步消失,但是在这段时间内,草籽已度过发芽生根的阶段,进而提高了掺拌料内草籽的成活率,在草籽生长的同时,掺入的植物配料逐渐腐烂形成有机腐殖质,又给草籽提供生长所需的养分。
在步骤D和步骤E中,在坡面上植树,由于坡面的坡度大,在坡面上以3m×3m的间距,间隔种植若干树木后,首先是,树木直接作为覆盖在坡面上的掺 拌料的骨架,避免由于坡度过大而导致掺拌料覆盖在坡面后向下滑移;另外,树木成活后,由于其发达的根系,本身能够起到良好的保水和保土效果。
由于在高海拔大温差干旱干热河谷高陡坡弃渣体的环境下,土质疏松、降雨稀少、雨水渗漏快,而在树木种植的初期,需要足够的水分,所以在步骤D中开挖的树窝底部覆盖一层厚度为4~6mm,掺比为1:0.7的水泥砂浆层,在树窝的侧壁覆盖一层厚度为3~5mm,掺比为1:0.5的黏土泥浆层,当有雨水渗入树窝内部后不再流走,给树木的生长提供所需水分,进而保证了种植的树木的成活率,而当树窝内水分过多时树根浸泡在水中,会出现烂根的情况,不利于树木的生长,所以在黏土泥浆层距离树窝底部1/3的高度处设置有缝隙,当雨水过多时,雨水能够从缝隙处流出,进而避免树窝内雨水过多的情况发生;
当树木成活后,由于其根系的生长,能够通过自身的根系吸收足够的水分,而此时,树木的根系会受到水泥砂浆层和黏土泥浆层的限制,所以将水泥砂浆层设置为厚度为4~6mm,掺比为1:0.7,黏土泥浆层设置为厚度为3~5mm,掺比为1:0.5,当树木成活后,树木的根系能够轻易的突破水泥砂浆层和黏土泥浆层,所以,树窝内的水泥砂浆层和黏土泥浆层起到在一个树木生产初期截留雨水供树木生长,而在树木成活后,又不阻碍树木根系生长的临时储水装置。
在步骤F中,在坡面覆盖8cm~15cm厚的掺拌料,由于掺拌料内加入有胶凝材料,所以掺拌料覆盖在坡面之后不会落入坡面的间隙内,也不会被风吹走,所以在坡面上覆盖8cm~15cm厚的掺拌料,较传统覆土所需的至少50cm的厚度而言,大大的节约了需要覆土的数量,降低取用本地覆土的规模,也就降低了由于取用本地覆土而对本地原有生态的破坏程度。
在步骤E中,当掺拌料铺洒在坡面上之后,人工摊平,掺拌料的表面平整,降低风阻,避免风吹过掺拌料时,带走掺拌料表面的覆土。
在步骤F中,在掺拌料铺撒完成后,在坡面上洒水,为草籽和树木生产的初期提供水分。
作为本发明的优选方案,所述步骤A的制备拌合料,是先将胶凝材料与水进行搅拌,待胶凝材料与水搅拌均匀后再加入覆土继续搅拌,直至土壤与胶凝材料混合均匀得到均匀的拌和料。由于胶凝材料本身也为颗粒状,所以先将胶凝材料与水搅拌均匀,再与覆土混合搅拌,保证了拌和料的均匀度,提高掺拌料质量。
作为本发明的优选方案,所述步骤A的制备拌合料,是直接将胶凝材料与覆土进行拌和得到均匀的拌和料。由于在步骤G中,需要对铺洒在坡面上的掺拌料洒水,所以胶凝材料与覆土之间在洒水之后依然会产生凝结效果,方便了施工,简化了施工工序。
作为本发明的优选方案,所述步骤B中的植物为草屑。由于草屑含水丰富,进而保证了为草籽的生根和发芽提供足够的水分,并且,草屑易腐败形成有机肥料,也为草籽的生根和发芽提供了所需的养分。
作为本发明的优选方案,所述步骤B中的植物为秸秆。由于秸秆本身为杆状,在腐烂后作肥料并在掺拌料内形成细小空腔,由于这些细小空腔的存在,首先是有利于草籽生根后根系的生长,另外,当有雨水落到坡面上时,雨水渗入到这些细小空腔内,能够尽量的保持坡面的湿度,供植物生长,进一步的提高植物的成活率。
作为本发明的优选方案,所述植物包括草屑和秸秆,所述植物中草屑与秸秆的重量比为1:1,将草屑和秸秆一同进行切割,并混合均匀得到植物配料。由于草屑腐败较秸秆腐败所需的时间要短,将植物配料采用重量比为1:1的草屑与秸秆混合料,使得,植物配料的腐败具有一定的阶段性,即草屑先腐败成为肥料,然后秸秆再腐败形成肥料,进而使植物配料能够更长时间的为坡面上的植物提供肥料,另外,由于秸秆在腐烂后能够形成细小空腔,由于这些细小空腔的存在,首先是有利于草籽生根后根系的生长,而且,当有雨水落到坡面上时,雨水渗入到这些细小空腔内,能够尽量的保持坡面的湿度,供植物生长, 进一步的提高植物的成活率。
作为本发明的优选方案,所述步骤A的胶凝材料为水泥,所述水泥与覆土的重量比为:1:100~5:100,所述步骤C中,所述植物配料与所述覆土的重量比为:2:100~4:100,所述草籽与所述覆土重量比为:2:100~4:100。使用水泥作为胶凝材料,将水泥与覆土的重量比为:1:100~5:100,使水泥在产生胶凝效果的同时,又不大幅改变当地土壤的酸碱度,保证掺拌料的酸碱度适合植物的生长,同时又使掺拌料在胶凝后的硬度不阻碍植物的生长;在掺拌料内加入与覆土的重量比为:2:100~4:100的植物配料,使植物配料在产生加强筋和肥料的作用的同时,又不至于使掺拌料铺洒在坡面后表面过于粗糙,增大风阻,而导致风吹走掺拌料表面的覆土。
作为本发明的优选方案,所述步骤A的胶凝材料为黏土,所述黏土与覆土的重量比为:3:100~7:100,所述步骤C中,所述植物配料与所述覆土的重量比为:2:100~4:100,所述草籽与所述覆土重量比为:2:100~4:100。由于黏土本身颗粒细小,而且酸碱度趋于中性,所以采用黏土作为胶凝材料,在起到胶凝作用的同时又不大幅改变覆土的酸碱度,使掺拌料的酸碱度适合植物的生长,黏土与覆土的重量比为:3:100~7:100,避免由于黏土过多而导致掺拌料发生板结,不利植物生长,另外,也可以提供掺拌料中的细颗粒含量,改善土体结构,使掺拌料利于植物生长。
作为本发明的优选方案,所述步骤A的胶凝材料为粉煤灰,所述粉煤灰与覆土的重量比为:1:100~5:100,所述步骤C中,所述植物配料与所述覆土的重量比为:2:100~4:100,所述草籽与所述覆土重量比为:2:100~4:100。粉煤灰是从煤炭燃烧后的烟气中收集的细灰,也是燃煤电厂排出的主要固体废渣,将粉煤灰作为胶凝材料,首先是实现了对废渣在的再次利用,同时也是通过粉煤灰增加了掺拌料中细颗粒的含量,使掺拌料利于植物生长。。
作为本发明的优选方案,所述步骤D的铺撒掺拌料,依次包括:
D1:在坡面上设置若干排栏栅,每一排栏栅由若干并列的树枝组成,所述树枝沿垂直于坡面的方向***坡面,所述树枝长度为60~80cm,所述树枝的***深度为40~60cm;
D2:在步骤D1的栏栅设置完毕后,再在坡面上铺撒掺拌料。在坡面上间隔设置若干排栏栅,各排栏栅阻挡其上方滚落的泥土,进而防止了在坡面植物生长初期时候的土质流失,当坡面植物长出,坡面植被恢复时,树枝腐烂形成有机肥料,为坡面植被提高养料。
作为本发明的优选方案,所述步骤D中,在所述深坑内底部设置可降解的塑料薄膜,所述塑料薄膜外缘沿所述深坑的侧壁向上延伸至距离所述深坑底部1/3的高度处。通过可降解的塑料薄膜来代替所述水泥砂浆层和黏土泥浆层,方便了施工的同时,可降解的塑料薄膜,自身可以降解,避免污染环境。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、在高海拔大温差干旱干热河谷高陡坡弃渣体水土保持中,由于在覆土中加入了胶凝材料,避免掺拌料落入到坡面缝隙中,大大的降低了需要覆土的数量,降低取用本地覆土的规模,也就降低了由于取用本地覆土而对本地原有生态的破坏程度;
2、由于在覆土中加入了胶凝材料,增加了覆土中细颗粒组成分和含量,以搅拌的方式使覆土中细颗粒比较均匀包裹在粗颗粒上产生凝结作用,达到固土和改变覆土颗粒松散、结构性差的问题,也使得当掺拌料覆盖在坡面上时,形成一个整体壳状的掺拌料壳覆盖在坡面上,避免掺拌料落入到坡面缝隙中和粉细颗粒被大风吹走;
3、在掺拌料中加入长度为5~10cm的植物配料,一方面是植物配料在掺拌料内起连接筋和加强筋的作用,当掺拌料铺洒在坡体坡面上时,增加掺拌料形成的掺拌料壳的强度,增强掺拌料的固土的效果;
4、由于新鲜未干枯的植物配料内富含水分,当掺拌料覆盖在坡面之后,能 够在一段时间内保持掺拌料的湿润,虽然随着时间的增长,植物配料保持掺拌料湿润的效果会逐步消失,但是在这段时间内,草籽已度过发芽生根的阶段,进而提高了掺拌料内草籽的成活率,在草籽生长的同时,掺入的植物配料逐渐腐烂形成有机腐殖质,又给草籽提供生长所需的养分;
5、在坡面上植树,首先是,树木直接作为覆盖在坡面上的掺拌料的骨架,避免由于坡度过大而导致掺拌料覆盖在坡面后向下滑移;另外,树木成活后,由于其发达的根系,本身又能够起到良好的保水和保土效果;
6、树窝内设置水泥砂浆层和黏土泥浆层,起到对雨水截留的作用,给树木的生长提供所需水分,进而保证了种植的树木的成活率,并且通过树窝侧壁上的间隙,控制树窝内的水量,避免树根由于水量过多而腐烂。
7、在坡面覆盖8cm~15cm厚的掺拌料,较传统覆土所需的至少50cm的厚度而言,大大的节约了需要覆土的数量,降低取用本地覆土的规模,也就降低了由于取用本地覆土而对本地原有生态的破坏程度。
附图说明
图1为本发明方法的流程框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实验区位于岷江上游干旱河谷,为开挖隧道时堆积弃渣的渣场,该地区属于川西高原气候区,具有山地季风气候的特点;冬季寒冷干燥、日照强烈,晴朗少雨,气温日差大;夏季炎热湿润,雨季明显,并有大风、伏旱等灾害,多年平均年降雨量分别为507.4mm,多年平均气温13.5℃,极端最高气温35.6℃,极端最低气温-7.4℃,最大1日降水量66.7mm,多年平均年蒸发量约1600mm。 实验区渣场渣体主要是隧洞开挖块石,岩石地质多为绢云母千枚岩、砂岩、结晶灰岩等,实验区渣场的坡度为35°~57°。
首先,在实验区渣场坡面上沿水平方向并排分割出6块面积相同的实验小区,并逐个编上序号,每一块实验小区的水平长度为15米,沿坡面的长度为60米,相邻两块实验小区之间间距为1米。
实施例1:在一号实验小区上依次按照下列步骤进行实施:
A、将水泥与水混合均匀,然后按照水泥与覆土3:100的重量比加入施工现场收集的覆土,并搅拌均匀得到拌和料;
B、收集新鲜未干枯的植物,然后以5~10cm为长度切割得到植物配料;
C、将步骤B得到的植物配料、步骤A得到的拌和料以及草籽进行混合,并且搅拌均匀得到掺拌料,草籽与覆土的重量比为3:100,植物配料与覆土的重量比为:4:100;
D、在坡面上以3m×3m的间距,间隔开挖竖直的深坑作为树窝,树窝直径为60cm~80cm,深度为60cm,在树窝的底部覆盖一层厚度为4~6mm,掺比为1:0.7的水泥砂浆层,最后在树窝的侧壁覆盖一层厚度为3~5mm,掺比为1:0.5的黏土泥浆层,黏土泥浆层距离树窝底部1/3的高度处设置环状缝隙;
E、在步骤D得到的树窝内种植树木,然后回填泥土;
F:以10cm为厚度,将步骤C得到的掺拌料均匀的铺撒在经步骤E植树后的坡面上,然后通过人工摊平;
G:对覆盖了掺拌料的坡面上洒水。
在G步骤完成后30天时,开始第一次测量一号实验小区土表下10cm处土壤的含水率,并记录,然后,每隔30天再重复测量一次,并记录,记录数据见表1;在G步骤完成后12个月时测量一号实验小区土表处土壤的中有机质、氮的含量,并记录,然后,每隔12个月重复测量一次,并记录,记录数据见表2。
实施例2:在二号实验小区上依次按照下列步骤进行实施:
A、将黏土与水混合均匀,然后按照黏土与覆土5:100的重量比加入施工现场收集的覆土,并搅拌均匀得到拌和料;
后续步骤与实施例1的步骤B、C、D、E、F、G相同。
在G步骤完成后30天时,开始第一次测量一号实验小区土表下10cm处土壤的含水率,并记录,然后,每隔30天再重复测量一次,并记录,记录数据见表1;在G步骤完成后12个月时测量二号实验小区土表处土壤的中有机质、氮的含量,并记录,然后,每隔12个月重复测量一次,并记录,记录数据见表2。
实施例3:在三号实验小区上依次按照下列步骤进行实施:
A、将粉煤灰与水混合均匀,然后按照粉煤灰与覆土3:100的重量比加入施工现场收集的覆土,并搅拌均匀得到拌和料;
后续步骤与实施例1的步骤B、C、D、E、F、G相同。
在G步骤完成后30天时,开始第一次测量三号实验小区土表下10cm处土壤的含水率,并记录,然后,每隔30天再重复测量一次,并记录,记录数据见表1;在G步骤完成后12个月时测量三号实验小区土表处土壤的中有机质、氮的含量,并记录,然后,每隔12个月重复测量一次,并记录,记录数据见表2。
对比例1:在四号实验小区上依次安装下列步骤进行实施:
A、收集新鲜未干枯的植物,然后以5~10cm为长度切割得到植物配料;
B、取施工现场的土壤作为覆土、草籽和步骤A的植物配料加水混合,并搅拌均匀得到掺拌料,草籽与覆土的重量比为:3:100,植物配料与覆土的重量比为4:100;
C、将掺拌料铺洒坡面上,并且通过人工摊平,掺拌料的厚度为10cm;
D、对覆盖了掺拌料的坡面上洒水。
在D步骤完成后30天时,开始第一次测量四号实验小区土表下10cm处土壤的含水率,并记录,然后,每隔30天再重复测量一次,并记录,记录数据见表1;在D步骤完成后12个月时测量四号实验小区土表处土壤的中有机质、氮的含量,并记录,然后,每隔12个月重复测量一次,并记录,记录数据见表2。
对比例2:在五号实验小区上依次安装下列步骤进行实施:
A、取施工现场的土壤作为覆土,在覆土中加入草籽,并且加入水搅拌均匀得到掺拌料,草籽与覆土重量比为3:100;
后续步骤与对比例1的步骤C和D相同。
在D步骤完成后30天时,开始第一次测量五号实验小区土表下10cm处土壤的含水率,并记录,然后,每隔30天再重复测量一次,并记录,记录数据见表1;在D步骤完成后12个月时测量五号实验小区土表处土壤的中有机质、氮的含量,并记录,然后,每隔12个月重复测量一次,并记录,记录数据见表2。
上述实施例1、实施例2、实施例3、对比例1和对比例2都在2010年4月份的同日开始施工,并且在同日施工完成。
对比例3:六号小区为在自然状态的坡面上均匀抛洒与实施例一相同重量的草籽。并且与其他实验小区同时测量土表下10cm处土壤的含水率,并记录在表1中;与其他实验小区同时测量土表处土壤的中有机质、氮的含量,并记录在表2中。
表1:弃渣坡面土表下10cm处土壤含水率(%),
月份 一号 二号 三号 四号 五号 六号
5月 10.2 10.8 10.5 9.9 9.6 7.8
6月 10.9 11.7 11.2 10.6 10.0 8.3
7月 12.2 12.9 11.5 11.9 11.5 9.7
8月 11.9 12.6 12.0 11.6 11.4 9.4
9月 11.2 11.8 11.6 10.8 10.7 8.9
10月 10.5 11.1 10.7 10.3 10.1 8.0
在坡面的植被生长后,同一个弃渣场的坡面上,植被生长越良好的区域,其土壤的含水率也就越高,保水能力越强,所以通过对各块实验小区土壤的含水率进行测量对比,来衡量各块实验小区坡面上的植被生长的优劣情况。
由表1得知,一号、二号、三号、四号和五号实验小区表土的含水率远远高于原地貌六号实验小区表土的含水率,说明只要是覆土经过了加水掺拌,表层土壤含水量都远远高于原地貌表土的含水率,说明覆土经加水掺拌后,具有良好的保水能力,其上生长的植被都要优于原地貌在自然状态下生长的植被;一号、二号和三号实验小区表土的含水率高于四号和五号实验小区表土的含水率,说明在覆土内添加胶凝材料后,其上生长的植被要优于不加胶凝材料的掺拌料上生长的植被。实验说明,加入了胶凝材料的覆土,经掺拌后,植被生长较好,植被根系起到良好保水作用。
表2:弃渣坡面土表处土壤养分情况,
Figure PCTCN2014095659-appb-000001
植物生长后,随着季节的交替,枯叶在有水的情况之下腐败成有机质,而有机质本身又能够作为养分供植物生长,形成一个局部的生态***,所以通过 各个实验小区的土表处土壤的有机质含量,来衡量该实验小区的植被是否生长良好。
植物在生长时会消耗土壤中的氮元素,所以可以通过检测土壤中氮元素的变化,还衡量植物的生长情况。
所以,同一个弃渣场的坡面上,植被生长越良好的区域,其土表处的有机质含量就越高,其土壤中的氮元素变化就越大。
所以,由表2得知,草籽混合在经加水掺拌后的覆土内,然后再覆盖在坡面上,其植被生长情况要优于直接在原地貌的坡面上撒草籽生长的植被;而且,加热入胶凝材料的掺拌料上的植被要优于未加胶凝材料的掺拌料上生长的植被。
本发明的高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,由于在覆土中加入了胶凝材料,避免掺拌料落入到坡面缝隙中,大大的降低了需要覆土的数量,降低取用本地覆土的规模,也就降低了由于取用本地覆土而对本地原有生态的破坏程度;并且,通过试验表明,只要将覆土与水进行掺拌,将草籽拌和在掺拌料内,其上的植被生长就要优于将草籽直接撒在自然状态的坡体上的植被生长情况,说明覆土掺拌之后,有利于植被的生长,同时,植被生长后,其根系又起到保水固土的作用,使坡面土壤保存湿润,并且随着年份的增加,植物的枯叶在潮湿环境下腐败,使得土壤内的有机质比例逐年提高,而有机质本身又能够为植物的生长提供养分,如此形成一个良性的生态循环,使被治理坡面的植被长势越来越好,进而达到保持坡体水土的目的。
通过试验的对比知道,在覆土进行掺拌时,加入胶凝材料后,其上生长的植被要优于未加胶凝材料上生长的植被,所以在覆土中加入胶凝材料,再加水进行掺拌,然后将得到的掺拌料铺撒在坡面上,并且,在优选方案中,通过在坡面上间隔多排栏栅,能够有效的放置坡面土壤的滑落,也进一步的有利于坡面植被的生长,所以,这种水土保持方法,适用于高海拔大温差干旱干热河谷 高陡坡弃渣体的水土保持。
上述方法中的关键技术在于采用多种材料掺拌,解决建设工程弃渣场高陡坡体和大块度渣面保土、保水以及植被恢复的方法、工艺。具体方法,既以数十组次(水泥、粉煤灰、黏土等)微量胶凝材料与水、当地(沙、杂)土、草屑、草种等进行不同配比的掺拌,再由人工铺撒在渣场边坡、陡坡上,实现固土、稳坡、保土保水效果。这种“精工细活”,旨在减少坡面覆土厚度和取土或购土(无论哪种取土、购土都势必再破坏开挖地的水土保持与植被生态)数量。所谓精工是指向坡面覆土就像房屋直立墙铺砌石灰、水泥砂浆一样,让经过掺拌的混合土形成“块”或“壳”,避免所有覆土全部振入不均衡大块度渣体各缝隙中或被雨水侵蚀。
松散的沙颗粒土体中掺拌微量胶凝材料,目的是增加其细颗粒组成分或含量,以搅拌的方式使细颗粒比较均匀包裹在粗颗粒上产生凝结作用,达到固土和改变土质颗粒松散、结构性差、粉细颗粒容易被大风吹走、坡体不能抵御雨水冲刷等水土流失问题。所谓“微量掺拌”,就是除黏土掺比适当高至10%外,其它胶凝材料控制1%~5%范围内,即要保土又不能较大改变土质及酸碱性。
掺拌草屑,就是将收集或购买的杂草切割成5~10cm长的草屑,用锹人工干掺或加适量水或与胶凝材料一起掺拌铺设于坡体。掺拌草屑,一方面使草屑在土体内起加强“筋”的(连接、固土)作用;另一方面,草籽生长的同时,掺入的草屑腐烂形成有机(腐殖)质,既在土体内腐烂后作肥料并形成细小“空腔”,有利于其它植物生长。新鲜的草屑并不是唯一有机掺拌料,当地农民在治理房前屋后坡地时,可以采用掺拌果皮、丢弃的蔬菜叶等有机垃圾,起与草屑同样作用。
掺水人工拌和,目的是增加松散的沙颗粒土体的凝结作用,使土体较为均匀铺设在陡坡坡面上,粗颗粒不易离析、滚落、分离。掺拌分有单独掺水、与胶凝材料合掺、与草屑及胶凝材料混掺等实验组项,也有不加水干掺草屑组项。
通过上述方法,经过掺拌或搅拌后的覆土,表层土壤与没有掺拌的山坡表土相比,其养分(有机质、肥力)要高得多。而且,随时间的增加,有机质的比例呈现明显增加;氮肥比例随时间和掺拌物的多少呈递减规律,但波动较小;含磷比例变化不太明显。土壤肥力的含量及比例改变,说明在没有人为增肥、施肥情况下,植物生长消耗了部分土壤中本身所含的元素养分。如果渣场表面用于复耕,就需要采用施肥和增肥措施,增加土壤肥力。可以实现从人工干预的生态修复转换到“自适应、自调节、自然生长”的生态恢复。
上述方法使有意愿参与生态治理的任何主体都能够方便、简单、经济的方法,积极实施水土保持与生态修复。每个农户、每个土地承包经营者都能采用这种简单易行的方法,改善坡耕地、陡坡林地、草地或“房前屋后”植被种植环境,让任何土地、坡地变成良田、果园。
凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,包括以下步骤:
    A:制备拌合料:将施工现场的土壤作为覆土,将水泥与水混合均匀,然后按照水泥与覆土3:100的重量比加入覆土进行拌和,得到拌和均匀的拌和料;
    B:收集并切割植物得到植物配料:收集新鲜未干枯的植物,然后以5~10cm为长度切割得到植物配料;
    C:制备掺拌料:将步骤B得到的植物配料、步骤A得到的拌和料以及草籽进行混合,草籽与覆土的重量比为3:100,植物配料与覆土的重量比为4:100,并且搅拌均匀得到掺拌料;
    D:开挖树窝:在坡面上以3m×3m的间距,间隔开挖出若干竖直的深坑作为树窝,所述树窝直径为60cm~80cm,深度为60cm,在所述树窝的底部覆盖一层厚度为4~6mm,掺比为1:0.7的水泥砂浆层,最后在所述树窝的侧壁覆盖一层厚度为3~5mm,掺比为1:0.5的黏土泥浆层,所述黏土泥浆层距离所述树窝底部1/3的高度处设置有缝隙;
    E:植树:在步骤D得到的树窝内种植树木,然后回填泥土;
    F:铺撒掺拌料:以厚度为10cm为厚度,将步骤C得到的掺拌料均匀的铺撒在经步骤E植树后的坡面上,然后通过人工摊平;
    G:洒水:对覆盖了掺拌料的坡面上洒水。
  2. 根据权利要求1所述的高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,其特征在于,所述步骤B中的植物为草屑。
  3. 根据权利要求1所述的高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,其特征在于,所述步骤B中的植物为秸秆。
  4. 根据权利要求1所述的高海拔大温差干旱干热河谷高陡坡弃渣体水土保 持和生态修复方法,其特征在于,所述植物包括草屑和秸秆,所述植物中草屑与秸秆的重量比为1:1,将草屑和秸秆一同进行切割,并混合均匀得到植物配料。
  5. 根据权利要求1所述的高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法,其特征在于,所述步骤F的铺撒掺拌料,依次包括:
    F1:在坡面上设置若干排栏栅,每一排栏栅由若干并列的树枝组成,所述树枝沿垂直于坡面的方向***坡面,所述树枝长度为60~80cm,所述树枝的***深度为40~60cm;
    F2:在步骤F1的栏栅设置完毕后,再在坡面上铺撒掺拌料。
PCT/CN2014/095659 2013-12-30 2014-12-30 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法 WO2015101295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/104,930 US10405502B2 (en) 2013-12-30 2014-12-30 Water and soil conservation and ecological restoration method of high and steep, abandoned slag piles at high elevation with large temperature difference in dry, hot valley

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310746146.6A CN103636404B (zh) 2013-12-30 2013-12-30 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持方法
CN201310746146.6 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015101295A1 true WO2015101295A1 (zh) 2015-07-09

Family

ID=50241823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095659 WO2015101295A1 (zh) 2013-12-30 2014-12-30 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法

Country Status (3)

Country Link
US (1) US10405502B2 (zh)
CN (1) CN103636404B (zh)
WO (1) WO2015101295A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663439A (zh) * 2019-11-08 2020-01-10 攀枝花学院 用鸡蛋花对金沙江干热河谷地区进行生态修复的方法
CN111908613A (zh) * 2020-08-13 2020-11-10 中国科学院重庆绿色智能技术研究院 一种旁置弯曲湿地水塘植被的生态缓冲带及其构建方法
CN114632814A (zh) * 2022-03-04 2022-06-17 大唐同舟科技有限公司 一种采用粉煤灰的流域生态修复结构及方法
CN115949080A (zh) * 2022-12-29 2023-04-11 中国科学院武汉岩土力学研究所 基于改性黄河泥沙的矿山堆填场的生态修复***及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636404B (zh) * 2013-12-30 2015-01-21 四川华电杂谷脑水电开发有限责任公司 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持方法
CN110258476A (zh) * 2019-06-26 2019-09-20 中国电建集团成都勘测设计研究院有限公司 高山峡谷地区水电站沟水处理用排水洞结构
CN110346363B (zh) * 2019-07-17 2020-05-05 中国水利水电科学研究院 露石径流收集装置及径流系数测量方法
CN110972593A (zh) * 2019-10-23 2020-04-10 中国科学院、水利部成都山地灾害与环境研究所 一种川西干暖河谷荒坡地植被生态恢复方法
CN110754161A (zh) * 2019-11-22 2020-02-07 辽宁工程技术大学 一种露天煤矿矿区废弃裸地生态修复方法
CN113096083B (zh) * 2021-03-30 2022-11-01 湖南镭目科技有限公司 一种对炉口钢渣的识别方法、装置、设备及存储介质
CN113316989A (zh) * 2021-06-01 2021-08-31 三峡大学 一种植被混凝土结合自生固氮菌实现边坡绿化的方法
CN113516083B (zh) * 2021-07-19 2023-04-07 中国农业科学院草原研究所 一种草原区弃耕地植被的生态修复建模方法
CN114365662B (zh) * 2021-12-20 2023-01-10 北京林业大学 一种可改良土壤和恢复植被的坡地水土保持桩及保持方法
CN114651652B (zh) * 2022-02-15 2023-01-24 江西省水利科学院 一种流域水源涵养林补植空间配置方法
CN114766322B (zh) * 2022-04-29 2022-12-20 国家地质实验测试中心 一种用于稀土矿区松散砂土的生态草砖及制备和使用方法
CN114982581B (zh) * 2022-07-08 2023-09-26 海南省林业科学研究院(海南省红树林研究院) 一种湿地红树林生态修复造林方法
CN115804270B (zh) * 2022-12-06 2023-07-14 中环联新(北京)环境保护有限公司 一种矿山生态修复方法
CN115839079B (zh) * 2023-02-23 2023-05-16 中国煤炭地质总局勘查研究总院 用于高寒区地下土壤层的人工重构修复方法
CN116068148B (zh) * 2023-03-21 2023-06-16 中国地质调查局成都地质调查中心(西南地质科技创新中心) 降雨条件下滑坡堆积体形成泥石流运动过程模拟装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519966A (zh) * 2009-04-03 2009-09-02 赵平 煤矸石山生态环境综合治理方法
US20100281774A1 (en) * 2007-08-06 2010-11-11 Transcorea Development Co. Ltd. Artificial soil and method for growing vegetation on sloped surface using the same
CN102021897A (zh) * 2010-11-17 2011-04-20 中国科学院南京地理与湖泊研究所 一种生态护岸的构建方法
CN103636404A (zh) * 2013-12-30 2014-03-19 四川华电杂谷脑水电开发有限责任公司 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1428808A (en) * 1921-11-10 1922-09-12 Schiefele Oliver Stauffer Method for preventing the undermining of water-washed banks
US1923677A (en) * 1931-11-18 1933-08-22 Jr John Thompson Lovett Plant package and method of making and transplanting the same
US2802303A (en) * 1953-06-04 1957-08-13 Monsanto Chemicals Erosion control
US3938279A (en) * 1974-02-08 1976-02-17 Norsk Hydro A. S. Growth medium to cover the surface of the ground
US4107112A (en) * 1975-07-28 1978-08-15 Latta Jr Laurence Epoxy resin soil stabilizing compositions
US4304069A (en) * 1978-03-23 1981-12-08 Nittoku Kensetsu Kabushiki Kaisha Slope protection method for planting
JP2751074B2 (ja) * 1989-10-04 1998-05-18 日東化学工業株式会社 地盤改良法およびそれに用いる装置
US5670567A (en) * 1995-04-03 1997-09-23 King Fahd University Of Petroleum And Minerals, Research Institute Method and composition for stabilizing soil and process for making the same
IT1276669B1 (it) * 1995-04-05 1997-11-03 Limestone Di Perani Piero Albe Impasto semifluido e relativo procedimento per il recupero ambientale
US5829191A (en) * 1996-12-23 1998-11-03 Gatliff; Edward G. Method of growing and harvesting vegetation for use in remediating contaminated soil and/or groundwater
US6360480B1 (en) * 1998-03-30 2002-03-26 Alan J. Christensen Method and system to facilitate deep phytoremediation
US20080005961A1 (en) * 2000-05-18 2008-01-10 Anderson James F Process and related apparatus for facilitating aquatic plant growth
WO2003095589A1 (fr) * 2002-05-14 2003-11-20 Toshio Hosooka Materiau pour travaux de genie civil et leur procede d'execution
CN1416665A (zh) * 2002-12-05 2003-05-14 北京草业与环境研究发展中心 一种植物生态助长草板及其制备方法
US20070000171A1 (en) * 2005-06-29 2007-01-04 Ifa Nurseries, Inc. Plant seedling pot and method for its manufacture
US20120291348A1 (en) * 2009-10-28 2012-11-22 Hood Denis A Soil moisture retention method
US8387307B2 (en) * 2010-03-22 2013-03-05 Young Koo Kim Vegetation base soil and a method for growing vegetation on a sloped surface
CN102204500B (zh) * 2011-05-26 2012-06-20 南京农业大学 一种在荒漠和半荒漠环境中提高梭梭属植物直播苗和移栽苗成活率的方法
KR101267231B1 (ko) * 2012-06-29 2013-05-27 (주)대한지오이엔씨 핫크레이를 이용한 비탈면 녹화공법 및 녹화구조체
US9414547B2 (en) * 2013-01-30 2016-08-16 Thomas L. Guggenheim Methods to grow, deliver, and plant young trees in a removable tubular container
US20150135587A1 (en) * 2013-11-19 2015-05-21 Basf Corporation Landscaping material with water management properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100281774A1 (en) * 2007-08-06 2010-11-11 Transcorea Development Co. Ltd. Artificial soil and method for growing vegetation on sloped surface using the same
CN101519966A (zh) * 2009-04-03 2009-09-02 赵平 煤矸石山生态环境综合治理方法
CN102021897A (zh) * 2010-11-17 2011-04-20 中国科学院南京地理与湖泊研究所 一种生态护岸的构建方法
CN103636404A (zh) * 2013-12-30 2014-03-19 四川华电杂谷脑水电开发有限责任公司 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, WENLONG ET AL.: "Study on Ecological Rehabilitation of Soil and Water Conservation of Hydropower Project Construction in Hot-dry Valley", SICHUAN WATER POWER, vol. 32, no. 2, 30 April 2013 (2013-04-30), pages 74 - 75 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663439A (zh) * 2019-11-08 2020-01-10 攀枝花学院 用鸡蛋花对金沙江干热河谷地区进行生态修复的方法
CN111908613A (zh) * 2020-08-13 2020-11-10 中国科学院重庆绿色智能技术研究院 一种旁置弯曲湿地水塘植被的生态缓冲带及其构建方法
CN114632814A (zh) * 2022-03-04 2022-06-17 大唐同舟科技有限公司 一种采用粉煤灰的流域生态修复结构及方法
CN115949080A (zh) * 2022-12-29 2023-04-11 中国科学院武汉岩土力学研究所 基于改性黄河泥沙的矿山堆填场的生态修复***及方法
CN115949080B (zh) * 2022-12-29 2024-04-23 中国科学院武汉岩土力学研究所 基于改性黄河泥沙的矿山堆填场的生态修复***及方法

Also Published As

Publication number Publication date
US20160309658A1 (en) 2016-10-27
US10405502B2 (en) 2019-09-10
CN103636404B (zh) 2015-01-21
CN103636404A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2015101295A1 (zh) 高海拔大温差干旱干热河谷高陡坡弃渣体水土保持和生态修复方法
CN106900342B (zh) 一体化半岩质高边坡植被重建保护方法
CN104782383B (zh) 一种高、陡边坡生态复绿喷播基材及其制备方法和应用
CN102204434B (zh) 一种利用生物结皮防治水蚀荒漠化的方法
CN105347933B (zh) 一种喷播基质及采用该喷播基质进行盐碱地绿化的方法
CN105724208B (zh) 一种景天植物屋顶绿化基质及其制备方法
CN110089353A (zh) 一种硬质边坡绿化修复方法
CN105917787A (zh) 一种滨海盐碱地快速高效改良绿化方法
CN103535129B (zh) 一种石灰岩边坡的绿化方法
CN106576790A (zh) 一种高、陡边坡生态复绿喷播基材及其制备方法和应用
CN111316853A (zh) 一种石质山体破损面植被及其种植方法
CN104429213A (zh) 一种利用河道淤泥治理石漠化的方法
CN111955309A (zh) 一种用于边坡生态修复的人工海绵基质及施工方法
CN111802183A (zh) 生态护坡及垂直绿化工艺
CN106817945B (zh) 南疆绿洲水源地周边荒漠快速变良田的方法
CN109618874B (zh) 一种磷石膏植被及其制备方法
CN116267079B (zh) 一种淀粉基生物降解植生袋用于煤矸石山植被恢复的方法
CN105027726B (zh) 一种区域种植治理沙漠化荒山的方法
CN103109616A (zh) 一种二叠系采煤沉陷灰、泥岩层风化区水田漏水的修复方法
CN107586219B (zh) 一种山地苹果园肥水坑制备方法
CN105660312B (zh) 一种滨海盐碱地蒙古栎的栽植方法
CN115989774A (zh) 一种干旱区煤矸石渣山生态修复方法
CN115720819A (zh) 一种高海拔水电开发区域植被恢复方法
CN213548257U (zh) 一种用于荒山绿化及破损山体保护修复治理的生态***
CN113133380B (zh) 一种寒旱区边坡及废弃矿山的生态修复方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104930

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876849

Country of ref document: EP

Kind code of ref document: A1