WO2015100987A1 - 像素阵列及其驱动方法、显示面板和显示装置 - Google Patents

像素阵列及其驱动方法、显示面板和显示装置 Download PDF

Info

Publication number
WO2015100987A1
WO2015100987A1 PCT/CN2014/081205 CN2014081205W WO2015100987A1 WO 2015100987 A1 WO2015100987 A1 WO 2015100987A1 CN 2014081205 W CN2014081205 W CN 2014081205W WO 2015100987 A1 WO2015100987 A1 WO 2015100987A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
column
row
luminance value
Prior art date
Application number
PCT/CN2014/081205
Other languages
English (en)
French (fr)
Inventor
郭仁炜
董学
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/415,947 priority Critical patent/US9773445B2/en
Publication of WO2015100987A1 publication Critical patent/WO2015100987A1/zh
Priority to US15/679,290 priority patent/US10388206B2/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering

Definitions

  • Pixel array and driving method thereof display panel and display device
  • the present invention relates to the field of display technologies, and in particular, to a pixel array, a driving method of the pixel array, a display panel including the pixel array, and a display device including the display panel.
  • Background technique
  • common pixels are designed with three sub-pixels (including red, green, and blue sub-pixels) or four sub-pixels (red, green, blue, and white).
  • Subpixels are composed of one pixel for display.
  • the pixel per inch (PPI) of the display panel is low, the user will notice the graininess when viewing the display screen (that is, the displayed image edges are not smooth and jagged). As the user's desire to view the display screen increases, it is necessary to increase the display panel. Increasing the PPI of the display panel can increase the process difficulty of manufacturing the display panel.
  • An object of the present invention is to provide a pixel array, a driving method of the pixel array, a display panel including the pixel array, and a display device including the display panel, wherein the driving method can drive the pixel array
  • the graininess of the display panel is lowered to achieve a display effect of a display panel having a higher resolution at the same size.
  • a pixel array including a plurality of pixel units, each of the pixel units including three sub-pixels of different colors, wherein each of the pixels In the unit, any two adjacent sub-pixels are combined into one pixel block.
  • a driving method of a pixel array is provided, wherein the pixel array is the above-mentioned pixel array provided by the present invention, and the driving method includes:
  • the actual brightness value of each sub-pixel includes at least a part of the theoretical brightness value of the sub-pixel and a theoretical brightness value of one or more sub-pixels in the same row that are the same as the color of the sub-pixel. Part of the sum;
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual brightness A(m, n) of the mth row and the nth column of the sub-pixels is calculated according to the following formula:
  • a (m, n) aT (m, n-3) + bT (m, n) + aT (m, n+3),
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual brightness A(m, n) of the mth row and the nth column of the sub-pixels is calculated according to the following formula:
  • T(m,n) gT (m, n-6) + hT (m, n-3) + iT (m, n) + hT (m, n + 3) + gT (m, n + 6)
  • T(m,n) is the theoretical luminance value of the nth column sub-pixel of the mth row
  • T(m,n_3) is the theoretical luminance value of the n-th column sub-pixel of the mth row
  • T(m,n+3) is The theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the theoretical luminance value of the m-th row of the n-th column sub-pixel
  • T(m, n+6) is the mth row
  • the theoretical luminance value of n+6 columns of sub-pixels, g, h, i>0, and 2g+2h+i l, 6 ⁇ n Y - 6.
  • the actual brightness value of each sub-pixel includes a part of the theoretical brightness value of the sub-pixel and a part of the theoretical brightness value of one or more sub-pixels in the same row that is the same as the color of the sub-pixel. And subtracting a portion of the theoretical luminance value of one or more sub-pixels of the same row that are the same color as the sub-pixel.
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual brightness A(m, n) of the mth row and nth column sub-pixels is calculated according to the following formula:
  • A(m, n) aT(m, n-3) + (b+ ⁇ e,. ) T (m, n) +aT (m, n+3) - [ej (m-1, n-3)
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n-3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+ 3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row
  • T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m-1th row
  • T(m+l, n-3) is the theoretical luminance value of the m+1th column of the m+1th column
  • T(m+l, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row
  • a (m, n) aT (m, n-3) + (b+ ⁇ /;. )T (m, n) +aT (m, n+3) - [fj (m-1, n-3) +f 2 T (m-1, n+3) +f 3 T (m+1, n-3) +f 4 T (m+1, n+3) +f 5 [T (m-1, n ) +f 6 T (m+1, n
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row
  • T(ml, n+3) is the first The theoretical luminance value of the m+th row of the n+3th column sub-pixel
  • T(m+l, n-3) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T(m+l, n+3) is the m+1th row of the n+1th column sub-pixel.
  • the theoretical luminance value, T(m+1, n) is the theoretical luminance value of the nth row of the m+1th sub-pixel
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, Calculate the actual brightness A(m, n) of the nth column of the mth row according to the following formula:
  • a (m, n) aT (m, n-3) + (b + ⁇ gi ) T (m, n) + aT (m, n+3) - [gj (m - 1, n-3)
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n-3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+ 3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row
  • T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m-1th row
  • T(m+l, n-3) is the theoretical luminance value of the m+1th column of the m+1th column
  • T(m+l, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row
  • T(m+2, n) is the theoretical luminance value of the m+th row and nth column
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the first M-1
  • the theoretical luminance value of the n+3th column sub-pixel, T(m+l, n-3) is the theoretical luminance value of the m+1th column of the m+1th column
  • T(m+l, n+ 3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row
  • T(m+1, n) is the theoretical luminance value of the m+1th column nth sub-pixel
  • T(ml, n) is the theoretical luminance value of the m+1th column nth sub-pixel
  • T(ml, n) is the theoretical luminance value of the m+1th column nth sub-pixel
  • T(ml, n) is
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual luminance value A(m, n) of the mth column and the nth column of the sub-pixels is calculated according to the following formula:
  • A(m, n) aT(m, n-3) + (b+ ⁇ L,. ) T (m, n) +aT (m, n+3) - [LJ (m-1, n-6) +L 2 T (m+1, n-6) +L 3 T (m-1, n+6) +LJ (m+1, n+6) +L 5 T (m - 2, n) +L 6 T (m+2, n)
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-6) is the theoretical luminance value of the n-6th column sub-pixel of the m-1th row
  • T(ml, n+6) is the first M-1
  • T(m+l, n-6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T(m+l, n+6) is the m+1th row of the n+1th column sub-pixel.
  • the theoretical luminance value, T(m+l,n) is the theoretical luminance value of the nth row of the m+1th sub-pixel
  • T(ml,n) is the theoretical luminance value of the m-th row nth column sub-pixel
  • T( m, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the mth row
  • T (m, n_6) is the theoretical luminance value of the n-th column sub-pixel in the mth row
  • T(m-2, n) The theoretical luminance value of the nth column sub-pixel in the m-2th row, T(m+2, n) is the theoretical luminance value of the m+th row nth column sub-
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the theoretical brightness of the m-th column and the n-th column sub-pixel.
  • the degree value, T(m, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the mth row, g, h, i>0, 6 ⁇ n Y— 6, l ⁇ m ⁇ X.
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual luminance value A(m, n) of the mth column and the nth column of the sub-pixels is calculated according to the following formula:
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i + ⁇ N, - ) T (m, n) + hT (m, n + 3) + gT
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the theoretical luminance value of the n-th column sub-pixel of the mth row
  • T(m, n+6) is the mth row.
  • T(ml, n-6) is the theoretical luminance value of the n-6th column sub-pixel of the m-1th row
  • T (m-1, n-3) is the m-th
  • T(ml, n) is the theoretical luminance value of the sub-pixel of the nth column of the m-1th row
  • T(ml, n+3) is the m-1th row and the nth +3 column of sub-pixel theoretical brightness values
  • T(ml, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the m-1th row
  • T(m+l, n-6) is the theoretical luminance of the n+1th column of the m+1th column.
  • the value, T (m+1, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+1th row
  • T(m+l,n) is the theoretical luminance of the m-th row of the nth column sub-pixel.
  • T(m+l, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row
  • T(m+1, n+6) is the m+1th row and the n+6th column.
  • the theoretical luminance value of the pixel g, h, i>0, m 0, and 2g+2h+i2, 0 ⁇ 6 ⁇ n Y- 6, l ⁇ m ⁇ X.
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the actual luminance value A(m, n) of the mth column and the nth column of the sub-pixels is calculated according to the following formula:
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i+ ) T (m, n) + hT (m, n+3) + gT (m, n+ 6) -[oj (m-1, n-6) +o 2 T (m-1, n-3) +o 3 T (m-1, n) +o 4 T (m-1, n+3 )+o 5 T (m-1, n+6) +o 6 T (m+1, n-6) +o 7 T (m+1, n-3) +o 8 T (m+1, n) +o 9 T (m+1, n+3) +o 10 T (m+1, n+6) +o n T (m, n-9) +o 12 T (m, n+9) ];
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the theoretical luminance value of the n-th column sub-pixel of the mth row
  • T(m, n+6) is the mth row.
  • T (m, n+9) is the theoretical luminance value of the n+9th column sub-pixel of the mth row
  • T(m, n-9) is the mth row of the nth-th column of the m-th column.
  • Theoretical brightness value is the theoretical luminance value of the n+6th column sub-pixel, T (m, n+9) is the theoretical luminance value of the n+9th column sub-pixel of the mth row, and T(m, n-9) is the mth row of the nth-th column of the m-th column.
  • T(ml, n-6) is the theoretical luminance value of the n-6th column sub-pixel of the m-1th row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row
  • T(ml, n) is the theoretical luminance value of the nth column sub-pixel of the m-1th row
  • T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the m-1th row
  • T(ml, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the m-1th row
  • T(m+l, n-6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T( m+l,n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+1th row
  • T(m+l,n) is the theoretical luminance value
  • T (m, n-6) is the theoretical luminance value of the n-th column sub-pixel of the m-th row
  • T (m, n-3) is the theoretical luminance value of the n-th column of the m-th column
  • T (m, n) is the theoretical luminance value of the nth column sub-pixel of the mth row
  • T(m, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the mth row
  • T(m,n+6) is the theoretical luminance value of the n+6th column sub-pixel in the mth row
  • T(m,n-9) is the theoretical luminance value of the m-th column and the n-9th column sub-pixel
  • T (m+ 1, n-6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T(m+2, n-3) is the theoretical luminance value of the n-3th column of the m+2th column
  • T(m+3,n) is the theoretical luminance value of the nth column sub-pixel of the m+3th row
  • T(m+2, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the m+2th row
  • T (m+1, n+6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T(m, n+9) is the theoretical luminance value of the m+th column of the m+th column.
  • T(ml, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the m-1th row
  • T(m-2, n+3) is the theoretical luminance of the n+3th column sub-pixel in the m-2th row
  • the value, T (m-3, n) is the theoretical luminance value of the n-th row sub-pixel of the m-3th line
  • T(m-2, n-3) is the theory of the m-th row n-3th column sub-pixel.
  • a display panel comprising a pixel array, wherein the pixel array is the above-described pixel array provided by the present invention.
  • a display device comprising a display panel, wherein the display panel is the display panel provided by the present invention.
  • the pixel array of the present invention two adjacent sub-pixels of the same row can be formed into one pixel block. It can be seen that the sub-pixel width of the present invention is increased compared with the prior art, which reduces the process difficulty in manufacturing the pixel array and improves the yield of the product. Further, when the pixel array is driven by the driving method, the graininess of the display panel including the pixel array can be lowered, and the display effect of the display panel having a higher resolution at the same size can be achieved.
  • 1 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the S10th sub-pixel of the G3 row by using the driving method of the first embodiment of the pixel array provided by the present invention
  • FIG. 2 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel of the G3 row by using the driving method of the second embodiment of the pixel array provided by the present invention
  • 3 is an algorithm matrix when calculating the actual luminance of the S 10th column sub-pixel of the G3 row by using the driving method of the second embodiment of the pixel array provided by the present invention
  • FIG. 4 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel in the G3 row by using the driving method of the third embodiment of the pixel array provided by the present invention
  • 5 is an algorithm matrix when calculating the actual luminance of the S 10th column sub-pixel of the G3 row by using the driving method of the third embodiment of the pixel array provided by the present invention
  • FIG. 6 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel of the G3 row by using the driving method of the fourth embodiment of the pixel array provided by the present invention
  • FIG. 8 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel of the G3 row by using the driving method of the fifth embodiment of the pixel array provided by the present invention.
  • FIG. 10 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the S 10th column sub-pixel in the G3 row by using the driving method of the sixth embodiment of the pixel array provided by the present invention.
  • 11 is an algorithm matrix when calculating the actual luminance of the S 10th column sub-pixel of the G3 row by using the driving method of the sixth embodiment of the pixel array provided by the present invention
  • Figure 12 is a diagram of a seventh embodiment of a pixel array provided by the present invention. Method for calculating the distribution of sub-pixels of other colors having the same color when the actual brightness of the sub-pixels of the S10th column of the G4th row is calculated;
  • FIG. 13 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel of the G4 row by using the driving method of the eighth embodiment of the pixel array provided by the present invention
  • FIG. 15 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the S10th sub-pixel of the G4th row by using the driving method of the ninth embodiment of the pixel array provided by the present invention.
  • 16 is an algorithm matrix when calculating the actual luminance of the S 10th column sub-pixel of the G4th row by using the driving method of the ninth embodiment of the pixel array provided by the present invention
  • 17 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual brightness of the S 10th column sub-pixel of the G4 row by using the driving method of the tenth embodiment of the pixel array provided by the present invention
  • FIG. 19 is a schematic diagram showing the distribution of other sub-pixels of the same color required to calculate the actual luminance of the sub-pixels of the S10th column in the G4th row by using the driving method of the eleventh embodiment of the pixel array provided by the present invention.
  • Fig. 20 is an algorithm matrix for calculating the actual luminance of the sub-pixels of the S10th column of the G4th row by the driving method of the eleventh embodiment of the pixel array provided by the present invention.
  • a pixel array including a plurality of pixel units, each of the pixel units including three sub-pixels of different colors (ie, a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B), wherein In each of the pixel units, any two adjacent sub-pixels are combined into one pixel block.
  • three sub-pixels sequentially arranged in the same row are collectively formed into one pixel block as one physical pixel unit, and the pixel block may be square or approximately square, gp, if each sub-pixel is the same size, each sub-pixel The width is approximately 1/3 of the length of the sub-pixel.
  • two adjacent sub-pixels of the same row can be assembled into a pixel block of the same size, gp.
  • two sub-pixels can occupy the same size area as the three sub-pixels in the prior art, if The two sub-pixels are the same size, and each sub-pixel has a width of about 1/3 of the length of the sub-pixel. It can be seen that the sub-pixel width of the present invention is increased compared with the prior art, which reduces the process difficulty in manufacturing the pixel array and improves the yield of the product.
  • two adjacent sub-pixels form a square or approximately square pixel block.
  • the "square" as used herein means that the length and width of the pixel block are approximately equal, or The ratio between the width of the pixel and the length of the sub-pixel is between 0.8 and 1.2.
  • the pixel block can also have other shapes or aspect ratios.
  • the width of the sub-pixel may be the length of the sub-pixel
  • each sub-pixel is not strictly limited to the width of the sub-pixel being 1 /2 of the length of the sub-pixel.
  • the width of the sub-pixel may be 2/5 of the length of the sub-pixel. Up to 3/5, it can be ensured that two adjacent sub-pixels can be assembled into the above-mentioned square pixel block.
  • the gate lines and the data lines are interdigitated to divide the array substrate into a plurality of the pixel units.
  • the distance of each sub-pixel along the gate line direction is 1 /2 of the distance of the sub-pixel along the data line direction.
  • the pixel array may include X rows of sub-pixels.
  • the pixel array includes 1204 rows and 768 columns of sub-pixels.
  • a driving method for driving the above-described pixel array provided by the present invention includes:
  • the actual luminance output to one sub-pixel includes at least a part of the theoretical luminance value of the sub-pixel and the theory of the sub-pixel of the same color adjacent to the sub-pixel in the same row.
  • the sum of a portion of the luminance value Equivalent to one sub-pixel sharing the luminance signal of other sub-pixels of the same color as the sub-pixel, so that the transition between adjacent sub-pixels is smoother.
  • the theoretical luminance value of the red sub-pixel R of the G3 row S10 column and the red sub-pixel of the G3 row S7 column can be utilized.
  • the theoretical luminance value of R and the theoretical luminance value of the red sub-pixel R of the G3 row S7 column are calculated.
  • the actual brightness A (m, of the mth row and the nth column of sub-pixels is calculated according to the following formula (1). n) :
  • a (m, n) aT (m, n-3) + bT (m, n) + aT (m, n + 3) (1)
  • T(m, n) is the mth row nth column subpixel
  • T(m, n_3) is the theoretical luminance value of the n-3th column sub-pixel in the mth row
  • the sub-pixel of the third row and the tenth column is required.
  • the pixel array can include intermediate sub-pixels and boundary sub-pixels.
  • the intermediate sub-pixel may refer to each sub-pixel from the fourth column (including the fourth column) to the fourth column (including the fourth column), and the boundary sub-pixel may refer to The first 3 columns of subpixels and the last 3 columns of subpixels.
  • the actual luminance value of the intermediate sub-pixel can be calculated directly using the above formula (1).
  • Y is much larger than 3. Therefore, in the entire pixel array, the output of the first three columns of sub-pixels and the last three columns of sub-pixels (boundary sub-pixels) has little effect on the display of the entire pixel array, and can be theoretically brightnessed when displayed.
  • the value is input to the first three columns of subpixels and the last three columns of subpixels.
  • the following formula (2) calculates the actual luminance values of the first three columns of sub-pixels, and calculates the actual luminance values of the last three columns of sub-pixels according to the following formula (3):
  • the dotted line frame indicated by reference numeral 1 represents a sub-pixel which is required to calculate a red sub-pixel of the S10 column of the G3 row, and is a red sub-pixel of the G3 row S7 column and a red sub-pixel of the G3 row S13 column.
  • the solid line frame indicated by reference numeral 2 represents the sub-pixels required to calculate the green sub-pixels of the G3 row S11 column, and the green sub-pixels of the G3 row S8 column and the green sub-pixels of the G3 row S14 column
  • the short-line dotted frame indicated by 3 means that when the blue sub-pixels of the S12 column of the G3 row are calculated, the sub-pixels to be used are the G3 row S9 column blue sub-pixel and the G3 row S15 column blue sub-pixel.
  • the actual luminance value of each sub-pixel includes the theory of the sub-pixel.
  • the theoretical luminance value of one or more sub-pixels having the same color as the sub-pixel in different rows subtracted here is equivalent to attenuating the luminance of one or more sub-pixels of different rows, so that the display panel including the pixel array can be made The graininess is reduced.
  • the theoretical luminance value of the sub-pixel of the S10th column in the G3th row is used, and the G3 row is used.
  • the theoretical luminance value of the sub-pixel of the S7 column and the theoretical luminance value of the sub-pixel of the S13th column of the G3th row the theoretical luminance value of the sub-pixel of the S7th column of the G2th row, the theoretical luminance value of the sub-pixel of the S13th column of the G2th row, and the theoretical luminance value of the sub-pixel of the S13th column are also utilized.
  • the theoretical luminance value of the sub-pixel of the S7th column of the G3 row and the theoretical luminance value of the sub-pixel of the S13th column of the G3th row are also utilized.
  • the following formula is calculated: (4) calculating the actual brightness of the mth row and the nth column of subpixels:
  • A(m, n) aT(m, n-3) + (b+ ⁇ e,. ) T (m, ⁇ ) +aT (m, n+3) - [ej (m-1, n-3)
  • T(m,n) is The theoretical luminance value of the mth row and the nth column of subpixels
  • T(m, n_3) is the theoretical luminance value of the mth row and the n-3th column subpixel
  • T(m, n+3) is the mth row and the n+3th column.
  • the theoretical luminance value of the pixel, T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row, and T(ml, n+3) is the n+3th column of the m-1th row.
  • the theoretical luminance value of the pixel, T(m+l, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+1th row, and T(m+l, n+3) is the m+1th row.
  • the theoretical luminance value of n+3 columns of sub-pixels, l ⁇ m ⁇ X, 3 ⁇ n ⁇ Y-3, a, b, ei >0, and 2a+b l, e,. 0.4.
  • Figure 3 shows the value matrix of ei . It should be understood that the negative value in the matrix shown in Figure 3 indicates that a negative sign is added before ei , which is the subtraction of ei multiplied by the theoretical luminance value of the corresponding sub-pixel.
  • the ei value corresponding to the sub- pixel of the S7 column in the G2 row is 0.02
  • the e 2 value corresponding to the sub-pixel of the S7 column in the G3 row is 0.02
  • the e 3 value corresponding to the sub-pixel of the S10 column in the G2 row is 0.02
  • the G3 row is S10.
  • the column 4 pixel corresponds to an e 4 value of 0.02.
  • the range of values of a and b is the same as the range of values of a and b in the first embodiment.
  • b may be 0.7
  • a may be 015.
  • a (3, 10) 0.15 T (3, 7) + 0.78 ⁇ (3, 10) + 0.15 ⁇ (3, 10) - 0.02 [ ⁇ (2, 7) + ⁇ (4, 7) + ⁇ (2, 13) + ⁇ (4, 13) ].
  • the values of ei , e 2 , e 3 , and e 4 are the same, both are 0.02. It should be understood that the values of ei , e 2 , e 3 , and e 4 may be different from each other as long as they satisfy ⁇
  • the intermediate sub-pixel is from the second row (including the second row) to the second row (including the second row from the last).
  • the boundary sub-pixels are the first row of sub-pixels, the last row of sub-pixels, the first three columns of sub-pixels, and the last three columns of sub-pixels.
  • the second embodiment provided by the second embodiment of the present invention can be used to calculate the pixel array except the first three columns of sub-pixels and the last three columns of sub-pixels, the first row of sub-pixels, and The actual luminance value of the intermediate sub-pixels other than the last row of sub-pixels.
  • the total number of rows of the pixel array is much larger than 1, and the total number of columns of the pixel array is much larger than 3. Therefore, the theory of input of the first three columns of sub-pixels and the last three columns of sub-pixels, the first row of sub-pixels, and the last row of sub-pixels The overall value of the brightness value to the display panel including the pixel array is not large.
  • the actual boundary sub-pixels using the following formulas (5) to (12)
  • the luminance of each subpixel is calculated, except that the theoretical luminance value T of the subpixel itself is used.
  • the theoretical luminance value T (m, n+3) of the mth row, the n+3th column sub-pixel, and the theoretical luminance value T of the m+th row of the n+3th column sub-pixel are also used.
  • the actual brightness values of the first 3 columns of sub-pixels can be calculated using the following formula (5):
  • the theoretical luminance value of the same adjacent sub-pixel (hereinafter simply referred to as a sub-pixel), and the theoretical luminance value of a sub-pixel (hereinafter simply referred to as a different-element sub-pixel) having the same color as the one sub-pixel.
  • the theoretical luminance values of the above respective sub-pixels participating in the calculation should be multiplied by the correction coefficient.
  • the correction coefficient of the one sub-pixel includes two parts: a peer correction coefficient and a different line correction coefficient.
  • the peer correction coefficient should satisfy the sum of the peer correction coefficient and the correction coefficient of the peer sub-pixel equal to 1, and the different-line correction coefficient should satisfy the sum of the correction coefficient equal to the correction coefficient of the different-line sub-pixel And the heteroline correction coefficient is not greater than 0.4.
  • the peer subpixel to be used is the mth row and the n+3th column subpixel
  • the different row subpixel to be used is the first
  • the m-1th row is the n+3th column sub-pixel and the m+1th row and the n+3th column sub-pixel.
  • the peer correction coefficient of the theoretical luminance value T (m, n) of the mth row and the nth column of subpixels is c, the mth row
  • the variation coefficient of the theoretical luminance value T(m, n) of the n-column sub-pixel is +f ⁇
  • the correction coefficient of the sub-pixel is d
  • the correction coefficient of the hetero-subpixel is fnf 2 .
  • the hetero-line correction coefficient of the m-th row and the n-th column sub-pixel satisfies: f!+f 2 ⁇ 0.4 0
  • the parameters represented by the same letter may take the same value or may take different values as long as the conditions of each formula are satisfied.
  • the actual luminance of the mth row nth column subpixel is calculated according to the following formula (13):
  • a (m, n) aT (m, n-3) + (b+ ⁇ /;. )T (m, n) +aT (m, n+3) - [fj (m - 1, n-3)
  • T(m,n) is the theoretical luminance value of the nth column of the mth row
  • T(m,n_3) is the mth row and the nth
  • the theoretical luminance value of 3 columns of sub-pixels, T(m, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the mth row
  • T(ml, n-3) is the n-3th column of the m-1th row.
  • the theoretical luminance value of the pixel, T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the m-1th row, and T(m+l, n-3) is the m+1th row and the nth-th.
  • the theoretical luminance value of 3 columns of sub-pixels, T(m+l, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row, and T(m+1, n) is the m+1th row.
  • Figure 5 shows the value matrix. It should be understood that a negative value in the matrix shown in Figure 5 indicates that a minus sign is added before f, indicating subtraction. Taking Fig.
  • the value of the sub-pixel corresponding to the S7 column in the G2 row is 0.02, the f 2 value corresponding to the sub-pixel of the S13 column in the G2 row is 0.02, and the f 3 value corresponding to the sub-pixel of the S7 column in the G4 row is 0.02, and the G13 row is the S13 column.
  • the f 4 value corresponding to the pixel is 0.02, and the f 5 value corresponding to the sub-pixel of the S10 column in the G2 row is 0.02, G4
  • the f 6 value corresponding to the row S10 column sub-pixel is 0.02.
  • the range of values of a and b is the same as the range of values of a and b in the first embodiment.
  • b may be 0.7
  • a may be 0.15.
  • the second embodiment of the present invention is the same as the first two embodiments of the present invention.
  • the formula (4) provided by the second embodiment of the present invention can be used to calculate the first three columns of sub-pixels and the last three columns of sub-pixels, and the first row of sub-pixels in the pixel array.
  • the total number of rows of the pixel array is much larger than 1, and the total number of columns of the pixel array is much larger than 3.
  • the first three columns of sub-pixels and the last three columns of sub-pixels, the first row of sub-pixels, and the last row may be calculated by the following formulas (14) to (21) The actual brightness of the subpixel.
  • T (m, n) the theoretical luminance value T (m, n+3) of the mth row, the n+3th column sub-pixel, and the theoretical luminance value of the m+th row of the n+3th column sub-pixel are also used.
  • the actual brightness value of each sub-pixel in the first 3 columns from the 2nd row to the 2nd row in the last 3 rows can be calculated by the following formula (14):
  • A(m, n) (c+ ⁇ g,.) T (m, n) +dT (m, n+3) - [gj (m-1, n+3)+g 2 T (m+1, n
  • the actual brightness values of the first 3 columns of sub-pixels in the first row can be calculated by the following formula (17):
  • a (m, n) aT (m, n-3) + (b+0!+o 2 ) T (m, n) +aT (m, n-3) - [oj (m - 1, n- 3)
  • the correction coefficient of the one sub-pixel includes two parts: a peer correction coefficient and an alien correction coefficient.
  • the peer correction coefficient should satisfy the sum of the peer correction coefficient and the correction coefficient of the peer sub-pixel equal to 1, and the different-line correction coefficient should satisfy the sum of the correction coefficient equal to the correction coefficient of the different-line sub-pixel And the heterogeneous correction coefficient is not greater than
  • the peer subpixel to be used is the mth row and the n+3th column subpixel
  • the different row subpixel to be used is the first The m-1th row n+3 column sub-pixel, the m-1th row nth column sub-pixel, the m+1th row n+3 column sub-pixel, and the m+1th row n-th column sub-pixel.
  • the collimation correction coefficient of the theoretical luminance value T(m, n) of the mth row and the nth column subpixel is c
  • the heterogeneous correction coefficient of the theoretical luminance value T(m,n) of the mth row and the nth column of the subpixel is ⁇
  • the correction coefficient of the pixel is d
  • the correction coefficient of the different sub-pixel is .
  • the heteroline correction coefficient of the mth column and the nth column subpixel satisfies ⁇ 0.4.
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the mth row and nth column sub-pixels are calculated according to the following formula (22) Actual brightness:
  • a (m, n) aT (m, n-3) + (b+ ⁇ g,. ) T (m, n) + aT (m, n+3) - [gj (m-1, n-3 ) +g 2 T (m+1, n-3) +g 3 T (m-1, n+3) +g 4 T (m+1, n+3) +g 5 T (m - 2, n) +g 6 T (m+2, n
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the -3th column sub-pixel
  • T(m) , n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel in the m-1th row
  • T(ml, n +3) is the theoretical luminance value of the n+3th column sub-pixel in the m-1th row
  • T(m+l, n-3) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T(m+l, n+3) is the m+1th row of the n+1th column sub-pixel.
  • the theoretical luminance value, a, b, and e are all greater than 0, and T(m+2, n) is the theoretical luminance value of the nth column of the m+2th row, and T(m-2, n) is the m-2th row.
  • the theoretical luminance value of the nth column of sub-pixels, 2 ⁇ m X - 2, 3 ⁇ n Y - 3, a, b, gl > 0, and 2a + b 1, gi 0.4.
  • Figure 7 shows the value matrix of gl . It will be appreciated that the matrix shown in FIG. 7 indicates a negative value in the preceding gl plus minus sign denotes subtracting gl.
  • the gl value corresponding to the sub- pixel of the S7 column of the G2 row is 0.02
  • the g 2 value corresponding to the sub-pixel of the S7 column of the G4 row is 0.02
  • the g 3 value corresponding to the sub-pixel of the S13 column of the G2 row is 0.02
  • the G4 row is S13.
  • the g 4 value corresponding to the column sub-pixel is 0.02
  • the g 5 value corresponding to the sub-pixel of the S10 column in the G1 row is 0.02.
  • the g 6 value corresponding to the S10 column sub-pixel of the G5 row is 0.02.
  • the range of values of a and b is the same as the range of values of a and b in the first embodiment.
  • b may be 0.7
  • a may be 0.15.
  • the formula (22) provided by the fourth embodiment of the present invention can be used to calculate the first three columns of sub-pixels and the last three columns of sub-pixels, the first two rows of sub-pixels, and the pixel array.
  • Theoretical brightening of other subpixels other than the last two rows of subpixels Degree value.
  • the total number of rows of the pixel array is much larger than 2
  • the total number of columns of the pixel array is much larger than 3. Therefore, the first three columns of sub-pixels and the last three columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels are input.
  • the theoretical brightness value has little overall impact on the display panel including the pixel array.
  • the first three columns of sub-pixels and the last three columns of sub-pixels, the first two rows of sub-pixels, and the latter two may be calculated by the following formulas (23) through (30) The actual brightness of the row of subpixels.
  • A(m, n) aT(m, n-3) + (b+ ⁇ L,. ) T (m, n) +aT (m, n+3) - [LJ (m+1, n-3)
  • A(m, n) cT(m, n-3) + (d+ ⁇ ,. ) ⁇ (m, n)-[oJ(ml, ⁇ -3)+ ⁇ 2 ⁇ (m+1, ⁇
  • a (m, n) cT (m, n-3) + (d+0!+o 2 ) T (m, n) - [oj (m+1, n-3) +o 2 T (m+ 2, n
  • the correction coefficient of the one sub-pixel includes two parts: a peer correction coefficient and a different line correction coefficient.
  • the peer correction coefficient should satisfy the sum of the peer correction coefficient and the correction coefficient of the peer sub-pixel equal to 1, and the different-line correction coefficient should satisfy the sum of the correction coefficient equal to the correction coefficient of the different-line sub-pixel And the heterogeneous correction coefficient is not greater than
  • the peer sub-pixel to be used is the m-th row and the n+3th column sub-pixel
  • the different-element sub-pixel to be used is the first The m-1th row n+3 column sub-pixel, the m+1th row n+3) column sub-pixel, the m_2th row n-th column sub-pixel, the m+2th row n-th column sub-pixel.
  • the collimation correction coefficient of the theoretical luminance value T(m, n) of the mth row and the nth column subpixel is c
  • the heterogeneous correction coefficient of the theoretical luminance value T(m,n) of the mth row and the nth column of the subpixel is ⁇
  • the correction factor of the pixel is d, different
  • the correction factor of the row sub-pixel is ⁇ .
  • the heteroline correction coefficient of the mth column and the nth column subpixel satisfies ⁇ 0.4.
  • the pixel array includes X rows and Y columns of sub-pixels, and in the step S2, the mth row and nth column sub-pixels are calculated according to the following formula (36) Actual brightness:
  • a (m, n) aT (m, n-3) + (b+ ⁇ H,. ) T (m, n) +aT (m, n+3) - [HJ (m-1, n-3)
  • T(m,n) is the mth row
  • T(m, n_3) is the theoretical luminance value of the m-th row of the n-3th column sub-pixel
  • T(m, n+3) is the theory of the m-th row of the n+3th column sub-pixel.
  • the luminance value, T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row, and T(ml, n+3) is the theory of the m+th row of the n+3th column sub-pixel.
  • the luminance value, T(m+l, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+1th row, and T(m+l, n+3) is the m+1th row and the n+3th.
  • the theoretical luminance values of the column sub-pixels, a, b, and e are all greater than 0, and T(m+l,n) is the theoretical luminance value of the n-th column sub-pixel of the m+1th row, and T(ml,n) is the m-1th.
  • the theoretical luminance value of the nth column of sub-pixels, T(m, n+6) is the theoretical luminance value of the n+6th column sub-pixel of the mth row, and T(m, n-6) is the mth row of the nth column.
  • the H 5 value corresponding to the row S10 column sub-pixel is 0.02, the Gb row S10 column sub-pixel corresponding to the 3 ⁇ 4 value is 0.02, the G3 row S4 column sub-pixel corresponding to H 7 is 0.02, and the G3 row S16 column sub-pixel corresponding to 3 7 is 0.02.
  • the formula (36) provided by the fifth embodiment of the present invention can be used to calculate the theory of other sub-pixels other than the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels in the pixel array.
  • Brightness value Similarly, the total number of rows of the pixel array is much larger than 2, and the total number of columns of the pixel array is much larger than 6, so the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixel inputs.
  • the theoretical brightness value has little overall impact on the display panel including the pixel array.
  • the actual brightness of the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels may be preferably calculated by the following method.
  • A(m, n) (c+ ⁇ j',. )T(m, n) +dT (m, n+3) - [ jj (m- 1, n+3)+j 2 T (m+1 , n
  • A(m, n) aT(m, n-3) + (b+ ) T (m, n) +aT (m, n+3) - [kj (m-1, n-3)
  • A(m, n) aT(m, n-3) + (b+ ⁇ N,. ) T (m, n) +aT (m, n+3) - [NJ (m+1, n-3) +N 2 T
  • a (m, n) aT (m, n-3) + (b+ ⁇ o,. ) T (m, n) +aT (m, n+3) - [oj (m+1, n-3)
  • a (m, n) aT (m, n-3) + (b+ . ) T (m, n) + aT (m, n+3) - [qj (m+1, n-3)
  • A(m, n) cT(m, n - 3) + (d+ ⁇ ) T (m, n)-[rj(m+l, n-3)+r 2 T (m+1, n+
  • A(m, n) aT(m, n - 3) + (b+ ⁇ ) T (m, ⁇ ) +aT (m, n+3) - [sj (m-1, n-3)
  • A(m, n) (c+ ) T (m, ⁇ ) +dT (m, n+3) - [uj (m-1, n+3)+u 2 T (m+1, n
  • A(m, n) aT(m, n-3) + (b+ ⁇ ,. ) T (m, ⁇ ) +aT (m, n+3) - [vj (m-1, n-3) +v 2 T( m+1, n-3) +v 3 T (m-1, n+3) +v 4 T (m+1, n+3) +v 5 T (m+2, n) +v 6 T (m, n-6) ]
  • the formula is similar to equation (47) to equation (51), except that the theoretical luminance values of the sub-pixels of the Xth, X-1, X-2, and X-3 rows are used instead of The theoretical luminance values of the sub-pixels of the 1st, 2nd, 3rd, and 4th lines.
  • the correction coefficient of the one sub-pixel includes two parts: a peer correction coefficient and a different line correction coefficient.
  • the peer correction coefficient should satisfy the sum of the peer correction coefficient and the correction coefficient of the peer sub-pixel equal to 1, and the different-line correction coefficient should satisfy the sum of the correction coefficient equal to the correction coefficient of the different-line sub-pixel And the heterogeneous correction coefficient is not greater than
  • T(m,n) is the theoretical luminance value of the mth row and nth column sub-pixel
  • T(m,n_3) is the theoretical luminance value of the mth row and the n-3th column sub-pixel
  • T(m,n) +3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(ml, n-6) is the theoretical luminance value of the m-th row of the n-th column sub-pixel
  • T(ml, n+6) ) is the theoretical luminance value of the n+6th column sub-pixel in the m-1th row
  • T(m+l, n-6) is the theoretical luminance value of the m+1th column of the m+1th column
  • T(m+l , n+6) is the theoretical luminance value of the m+1th column of the m+1th column
  • T(m+l , n+6) is the theoretical luminance value of the m+1th column of the
  • the L 4 value corresponding to the pixel is 0.02
  • the L 5 value corresponding to the sub-pixel of the S10 column in the G1 row is 0.02
  • the L 6 value corresponding to the sub-pixel of the S10 column in the G5 row is 0.02.
  • the range of values of a and b is the same as the range of values of a and b in the first embodiment.
  • b may be 0.7
  • a may be 0.15.
  • the formula (52) provided by the sixth embodiment of the present invention can be used to calculate the theory of other sub-pixels other than the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels in the pixel array.
  • Brightness value Similarly, the total number of rows of the pixel array is much larger than 2, and the total number of columns of the pixel array is much larger than 6, so the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixel inputs.
  • the theoretical brightness value has little overall impact on the display panel including the pixel array.
  • the actual brightness values of the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels are preferable to calculate the actual brightness values of the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels.
  • the theoretical brightness to the peer sub-pixel and the theoretical brightness value of the different row sub-pixels For example, when calculating the actual luminance value of the sub-pixels from the 7th column to the 7th column in the first row, in addition to the theoretical luminance values of the two adjacent sub-pixels of the same color in the left and right of the row, Also need to use the middle row, the next row, and the top row The theoretical brightness value of the sub-pixels of the same color in the row.
  • the actual luminance values of the boundary sub-pixels i.e., the first six columns of sub-pixels and the last six columns of sub-pixels, the first two rows of sub-pixels, and the last two rows of sub-pixels
  • equation (52) can also be calculated using equation (52) above. It should be understood that when any one of the calculated number of rows or columns is less than or equal to 0, the theoretical luminance value of the sub-pixel taken in the column is zero, and accordingly, the theoretical luminance value corresponding to the correction coefficient is also zero. .
  • each boundary sub-pixel can be calculated according to the above method. Since there are many cases of arrangement and combination, and in the foregoing embodiments, various arrangements and combinations have been made one by one, the field The value of the boundary sub-pixels in this embodiment can be easily derived by the technician according to the specific conditions in the foregoing embodiments. Therefore, the calculation method of the actual luminance values of the boundary sub-pixels will not be enumerated here. It should be understood that The calculation method of the actual brightness of each boundary sub-pixel should also belong to the disclosure of the present invention.
  • Fig. 12 is a view showing the distribution of other sub-pixels of the same color which are required to be used in the calculation of the actual luminance of the sub-pixels of the S10th column in the G4th row by the driving method of the seventh embodiment of the pixel array provided by the present invention.
  • the actual brightness of the mth row nth column subpixel is calculated according to the following formula (53):
  • T(m,n) gT (m, n-6) + hT (m, n-3) + iT (m, n) + hT (m, n + 3) + gT (m, n + 6) ( 53)
  • T(m,n) is the theoretical luminance value of the nth sub-pixel of the mth row
  • T(m,n_3) is the theoretical luminance value of the n-3th sub-pixel of the mth row
  • T(m,n+ 3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the theoretical brightening of the m-th column of the n-th column sub-pixel
  • the above formula can be directly used for the actual luminance value of each sub-pixel (i.e., intermediate sub-pixel) from the 7th row to the 7th row in the pixel array.
  • the actual luminance value of the boundary sub-pixel ie., the first six columns of sub-pixels and the last six columns of sub-pixels
  • the theoretical luminance value of the column of the sub-pixels is taken as 0.
  • the correction coefficient corresponding to the column sub-pixel also takes 0.
  • T(m, n-6) and g are both 0, and the actual values of the 4th to 6th column sub-pixels can be calculated by the following formula (54).
  • the calculation method of calculating the actual luminance value from the last column to the third column to the sub-pixel and the calculation method of the actual luminance value of the three columns of sub-pixels are similar to the above method, by the formula (53) to the formula (55), the field
  • the skilled person can easily obtain the calculation method of the actual luminance value from the last column to the third column to the sub-pixel and the calculation formula of the actual luminance value of the three columns of sub-pixels, which will not be described again.
  • FIG. 13 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the sub-pixels of the S10th column in the G4th row by the driving method of the eighth embodiment of the pixel array provided by the present invention.
  • the pixel array package Including the X rows and Y columns of sub-pixels, in the step S2, the actual luminance values of the m-th row and the n-th column sub-pixels are calculated according to the following formula (56):
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i+ ⁇ ,. ) T (m, n) +hT (m, n+3) +g
  • T (m, n+6) [MJ (m-1, n-3) + M 2 T (m-1, n+3) + M 3 T (m+1, n-3) + M 4 T (m+1, n+3)+M 5 T(ml, n) +M 6 T (m+1, n) (56)
  • T(m,n) is the mth row of the nth column subpixel
  • T(m, n_3) is the theoretical luminance value of the n-3th column sub-pixel in the mth row
  • T(m, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T( m, n-6) is the theoretical luminance value of the n-th column sub-pixel of the m-th row
  • T(m, n+6) is the theoretical luminance value of the m+th column of the m+th column, g, h, i> 0, 6 ⁇ n Y— 6, l ⁇ m
  • the M 4 value corresponding to the column sub-pixel is 0.02
  • the M 5 value corresponding to the sub-pixel of the S10 column in the G3 row is 0.02
  • the M 6 value corresponding to the sub-pixel of the S10 column in the G5 row is 0.02.
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i + ⁇ N, - ) T (m, n) + hT (m, n + 3) + gT ( m, n+6)-[NJ(m+l, n-3) + N 2 T (m+1, n+3) + N 3 T (m+1, n) ] (57) where M 3 and N 2 correspond to M 4 and N 3 corresponds to M 6 , 0 ⁇ 0.4. Similarly, those skilled in the art can calculate the formula for calculating other boundary sub-pixels according to the same method, and details are not described herein again.
  • FIG. 15 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the sub-pixels of the S10th column in the G4 row by using the driving method of the ninth embodiment of the pixel array provided by the present invention.
  • the pixel array includes X rows and columns of sub-pixels.
  • the actual brightness value A(m, n) of the mth row and nth column sub-pixels is calculated according to the following formula (58) :
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i + ⁇ N, - ) T (m, n) + hT (m, n + 3) + gT ( m, n+6)-[NJ(ml, n-6) +N 2 T (m-1, n-3) +N 3 T (m-1, n) +N 4 T (m-1, n +3)+N 5
  • T(m,n) is the theoretical luminance value of the mth column nth sub-pixel
  • T(m, N_3) is the theoretical luminance value of the n-3th column sub-pixel in the mth row
  • T(m, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T(m, n-6) is the first
  • T(m, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the mth row
  • T(ml, n-6) is the m-1th row.
  • the theoretical luminance value of the n-6th column sub-pixel, T (m-1, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row, and T(ml, n) is the m-1th row.
  • the theoretical luminance value of the nth column of sub-pixels, T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the m-1th row, and T(m-1, n+6) is the m-1th row.
  • the theoretical luminance value of the n+6th column sub-pixel, T(m+l, n-6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row, and T (m+1, n-3) is the first m+1 line
  • the theoretical luminance value of the n-3 column sub-pixel, T(m+l,n) is the theoretical luminance value of the n-th column sub-pixel of the m-1th row, and T(m+l,n+3) is the m+1th row.
  • the theoretical luminance value of n+3 column sub-pixels, T(m+1, n+6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row, g, h, i>0, m
  • the value corresponding to the sub-pixel of the S4 column in the G3 row is 0.02
  • the N 2 value corresponding to the sub-pixel of the S7 column in the G3 row is 0.02
  • the N 3 value corresponding to the sub-pixel of the S10 column in the G3 row is 0.02
  • the G3 row is the S13 column.
  • the N 4 value corresponding to the pixel is 0.02
  • the N 5 value corresponding to the S16 column of the G3 row is
  • G5 row S4 column sub-pixel corresponding N 6 value is 0.02
  • G5 row S7 column sub-pixel corresponding N 7 value is 0.02
  • G5 row S10 column sub-pixel corresponding N 8 value is 0.02
  • G5 row S13 column sub-pixel corresponding to N 9 The value is 0.02, and the G5 row corresponds to the sub-pixel of the S16 column. The value is 0.02.
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i + ⁇ L t . ) T (m, n) + hT (m, n + 3) + gT ( m, n+6) -[LJ (m+1, n-6) + L 2 T (m+1, n-3) + L 3 T (m+1, n) + L 4 T (m+1 , n+3)+L 5
  • L corresponds to N 6
  • L 2 corresponds to N 7
  • L 3 corresponds to N 8
  • L 4 corresponds to N 9
  • L 5 corresponds to N lfl , 0 ⁇ 0.4.
  • FIG. 17 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the sub-pixels of the S10th column in the G4 row by using the driving method of the tenth embodiment of the pixel array provided by the present invention.
  • the pixel array includes X rows and Y columns of sub-pixels.
  • the actual brightness A(m, n) of the mth row and nth column sub-pixels is calculated according to the following formula (60) :
  • a (m, n) ) gT (m, n-6) +hT (m, n-3) + (i+ ⁇ o,. ) T (m, n) +hT (m, n+3) +gT
  • T(ml, n-6) is the theoretical luminance value of the n-6th column sub-pixel of the m-1th row
  • T(ml, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m-1th row
  • T(ml, n) is the theoretical luminance value of the nth column sub-pixel of the m-1th row
  • T(ml, n+3) is the theoretical luminance value of the n+3th column sub-pixel of the m-1th row
  • T(ml, n+6) is the theoretical luminance value of the n+6th column sub-pixel in the m-1th row
  • T(m+l, n-6) is the theoretical luminance value of the n+1th column sub-pixel of the m+1th row
  • T( m+l,n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+1th row
  • T(m+l,n) is the theoretical luminance value of the n-th column sub-pixel of the m-1th row
  • T( m+l,n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+1th row
  • T(m+l, n+6) is the
  • G5 row S4 column sub-pixel corresponding o 6 value is 0.02
  • G5 row S7 column sub-pixel corresponding o 7 value is 0.02
  • G5 row S10 column sub-pixel corresponding o 8 value is 0.02
  • G5 row S13 column sub-pixel corresponding o 9 The value is 0.02, and G5 corresponds to 01 corresponding to the S16 column sub-pixel.
  • the value is 0.02, the o u value corresponding to the S1 column sub-pixel of the G4 row is 0.02, and the o 12 value corresponding to the sub-pixel of the S19 column of the G4 row is 0.02.
  • A(m, n) gT(m, n - 6)+hT(m, n - 3) + (i+ jPi ) T (m, n) +hT (m, n+3)+gT (m, n +6) - [pj (m+1, n-6) + p 2 T (m+1, n-3) + p 3 T (m+1, n) + p 4 T (m+1, n+ 3) +p 5
  • FIG. 19 is a schematic diagram showing the distribution of other sub-pixels of the same color used in the calculation of the actual luminance of the S 10th column sub-pixel in the G4 row by the driving method of the eleventh embodiment of the pixel array provided by the present invention.
  • the pixel array includes X rows and Y columns of sub-pixels.
  • T (m, n-6) is the first The theoretical luminance value of the n-6th column sub-pixel in m rows
  • T (m, n-3) is the theoretical luminance value of the m-th row n-3th column sub-pixel
  • T (m, n) is the m-th row n-th column sub-pixel
  • the theoretical luminance value, T (m, n + 3) is the theoretical luminance value of the n+3th column sub-pixel in the mth row
  • T (m, n+6) is the theoretical luminance value of the m+th row and the n+6th column sub-pixel.
  • T (m, n-9) is the theoretical luminance value of the n-9th column sub-pixel of the mth row
  • T (m+1 , n-6) is the theoretical luminance value of the n+1th column of the m+1th column
  • T (m+2, n-3) is the theoretical luminance value of the n-3th column sub-pixel of the m+2th row
  • T (m+3, n) is the theoretical luminance value of the m+3th row nth column sub-pixel.
  • T (m+2, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m+2th row
  • T (m+1 , n+3) is the m+1th row and the n+3th column sub-pixel.
  • the theoretical luminance value, T (m, n+9) is the theoretical luminance value of the n+9th column sub-pixel of the mth row
  • T (ml, n+6) is the theory of the m+th row of the n+6th column sub-pixel.
  • the luminance value, T (m-2, n+3) is the theoretical luminance value of the n+3th column sub-pixel in the m-2th row, and T(m-3, n) is the m-th row and the nth row of the sub-pixel.
  • T (m-2, n-3) is the theoretical luminance value of the n-3th column sub-pixel in the m-2th row, and T (ml, n-6) is the n-1th column of the m-1th row.
  • Pixel theory Luminance values, g, h, i>0, Pi ⁇ 0, and 2g+2h+i l, 0 ⁇ ⁇ Pi ⁇ O.4, 9 ⁇ n Y- 9, 3 ⁇ m X - 3.
  • Fig. 20 (1) Several implementations of the ⁇ value matrix are given in Fig. 20 (1) to Fig. 20 (4).
  • the negative value in the matrix shown in Fig. 20 indicates that a negative sign is added in front of it, which corresponds to the subtraction P1 in equation (61) multiplied by the theoretical luminance value of the corresponding sub-pixel.
  • the P1 value corresponding to the sub-pixel of the S1 column in the G4 row is 0.02
  • the p 2 value corresponding to the sub-pixel of the S4 column in the G5 row is 0.02
  • the p 3 value corresponding to the sub-pixel of the S7 column in the G6 row is 0.02
  • the G7 row is S10.
  • the p 4 value corresponding to the column sub-pixel is 0.02, the p 5 value corresponding to the S13 column of the G6 row is 0.02, the p 6 value corresponding to the sub-pixel of the S16 column of the G5 row is 0.02, and the p 7 value corresponding to the sub-pixel of the S19 column of the G4 row is 0.02, and the G3 row is
  • the p 8 value corresponding to the S16 column sub-pixel is 0.02, and the p 9 value corresponding to the sub-pixel of the S13 column in the G2 row is 0.02, and the G1 row corresponds to 1 corresponding to the sub-pixel of the S10 column.
  • the value is 0.02, the p u value corresponding to the S4 column sub-pixel of the G2 row is 0.02, and the p 12 value corresponding to the sub-pixel of the S1 column of the G4 row is 0.02.
  • the 10th column to the 10th column can be directly calculated using the above formula (61).
  • the theoretical luminance of the boundary sub-pixel if the number of rows m 0 of any one of the sub-pixels in the above formula (61), or the number of rows of any one of the sub-pixels m>x, or the number of columns of any one of the sub-pixels n>Y Then, the theoretical luminance value of the sub-pixel is 0, and correspondingly, the correction coefficient corresponding to the theoretical luminance value is also 0.
  • the first line can be calculated by the following formula (62), Actual brightness values for each sub-pixel from column 10 to column 9:
  • a (m, n) gT (m, n-6) + hT (m, n-3) + (i+ j q i ) T (m, n) + hT (m, n+3) + gT (m , n+6) - [qj (m, n - 9) +q 2 T (m+1, n-6) +q 3 T (m+2, n-3) +q 4 T (m+3, n) +q 5 T ( m+2, n+3) +q 6 T (m+1, n+3) +q 7 T (m, n+9) ]
  • Qi corresponds to Pi
  • Q2 corresponds to p 2
  • q 3 corresponds to p 3
  • q 4 corresponds to p 4
  • q 5 corresponds to p 5
  • q 6 corresponds to p 6
  • q 7 corresponds to p 7 , 0 ⁇ 0. 4.
  • those skilled in the art can calculate the formula for
  • the display panel provided by the present invention has a high aperture ratio, is easy to manufacture, and has a low graininess, and achieves a display effect of a display panel having a higher resolution at the same size.
  • a display device including the above display panel provided by the present invention is provided.
  • the display device can be a mobile phone, a computer, or the like.
  • the display device not only has a simple manufacturing process, but also has a low graininess, and achieves a display effect including a display panel having a higher resolution at the same size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素阵列,该像素阵列包括多个像素单元,每个所述像素单元包括三个颜色不同的子像素,其中,在每个所述像素单元中,任意两个相邻的子像素拼成一个像素块。其增加了子像素宽度,降低了制造所述像素阵列时的工艺难度,提高了产品的良率。以及一种所述像素阵列的驱动方法、包括所述像素阵列的显示面板和包括该显示面板的显示装置。利用所述驱动方法驱动上述像素阵列时,可以使包括所述像素阵列的显示面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示面板的显示效果。

Description

像素阵列及其驱动方法、 显示面板和显示装置 技术领域
本发明涉及显示技术领域, 具体地, 涉及一种像素阵列、 该像 素阵列的驱动方法、一种包括所述像素阵列的显示面板和一种包括该 显示面板的显示装置。 背景技术
在目前的显示面板中, 常见的像素设计为由三个子像素 (包括 红色子像素、绿色子像素和蓝色子像素)或四个子像素(红色子像素、 绿色子像素、 蓝色子像素和白色子像素) 组成一个像素进行显示。
如果显示面板的每英寸像素数 (pixel per inch, PPI ) 较低, 则用户在观看显示屏幕时会明显感觉到的颗粒感(即, 所显示的图像 边缘不平滑, 呈锯齿状) 。 随着用户对显示屏幕的观看感受要求的增 力 Π, 需要增加显示面板的 ΡΡΙ。 增加显示面板的 PPI会导致制造显示 面板的工艺难度增加。
在不增加制造工艺难度 (即, 不增加 PPI ) 的情况下, 如何使得 显示面板的颗粒感降低,以达到同等尺寸下具有更高分辨率的显示面 板的显示效果, 成为本领域亟待解决的技术问题。 发明内容
本发明的目的在于提供一种像素阵列、 该像素阵列的驱动方法、 一种包括所述像素阵列的显示面板和一种包括该显示面板的显示装 置,利用所述驱动方法驱动所述像素阵列可以使得显示面板的颗粒感 降低, 达到同等尺寸下具有更高分辨率的显示面板的显示效果。
为了实现上述目的, 作为本发明的一个方面, 提供一种像素阵 列, 该像素阵列包括多个像素单元, 每个所述像素单元包括三个颜色 不同的子像素, 其中, 在每个所述像素单元中, 任意两个相邻的子像 素拼成一个像素块。 作为本发明的另一个方面, 提供一种像素阵列的驱动方法, 其 中, 所述像素阵列为本发明所提供的上述像素阵列, 所述驱动方法包 括:
Sl、 计算待显示图片在各个子像素处的理论亮度值;
S2、 计算各个子像素的实际亮度值, 每个子像素的实际亮度值 至少包括该子像素的理论亮度值的一部分与同一行中与该子像素颜 色相同的一个或多个子像素的理论亮度值的一部分之和;
S3、 向各个子像素输入信号, 以使各个子像素达到步骤 S2中所 计算得到的实际亮度值。
优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n):
A (m, n) =aT (m, n-3) +bT (m, n) +aT (m, n+3),
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, 3<n Y-3, a、 b>0, 且 2a+b=l。
优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n):
A (m, n) =gT (m, n-6) +hT (m, n-3) +iT (m, n) +hT (m, n+3) +gT (m, n+6) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0, 且 2g+2h+i = l, 6<n Y - 6。
优选地, 在所述步骤 S2中, 每个子像素的实际亮度值包括该子 像素的理论亮度值的一部分与同一行中与该子像素颜色相同的一个 或多个子像素的理论亮度值的一部分之和减去不同行中与该子像素 颜色相同的一个或多个子像素的理论亮度值的一部分。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n):
A(m, n)=aT(m, n-3) + (b+^e,. ) T (m, n) +aT (m, n+3) - [ej (m-1, n-3)
+e2T (m+1, n-3) +e3T (m-1, n+3) +e4T (m+1, n+3) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n-3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, l<m<X, 3<n Y-3, a、 b、 ei>0, 且 2a+b=l, ^ 0.4。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n):
A (m, n) =aT (m, n-3) + (b+^/;. )T (m, n) +aT (m, n+3) - [fj (m-1, n-3) +f2T (m-1, n+3) +f3T (m+1, n-3) +f4T (m+1, n+3) +f5 [T (m-1, n) +f6T (m+1, n
)];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值,
T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+1, n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, l<m<X, 3<n Y- 3, a、 b、 fi>0, 2a+b=l, 4。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n):
A (m, n) =aT (m, n-3) + (b+ ^gi ) T (m, n) +aT (m, n+3) - [gj (m - 1, n-3
) +g2T (m+1, n-3) +g3T (m - 1, n+3) +g4T (m+1, n+3) +g5T (m - 2, n) +g6T (m+2, n )];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n-3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+2, n)为第 m+2行第 n 列子像素的理论亮度值, T(m-2,n)为第 m-2行第 n列子像素的理论亮 度值, 2<m X- 2, 3<n Y- 3, a、 b、 gi>0, 且 2a+b=l, gi 0.4。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度 A(m, n): A (m, n) =aT (m, n-3) + (b+ ^H,. ) T (m, n) +aT (m, n+3) - [HJ (m-1, n-3
) +H2T (m+1, n-3) +H3T (m-1, n+3) +H4T (m+1, n+3) +H5T (m-2, n) +H6T (m+2, n )+H7T(m, n-6) +H8T (m, n+6) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+1, n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n_6) 为第 m行第 n-6列子像素的理论亮度值, 2<m X-2, 6<n Y-6, a、 b、 Hi>0, 且 2a+b=l, ^ ^ 0.4。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m, n):
A(m, n)=aT(m, n-3) + (b+ ^L,. ) T (m, n) +aT (m, n+3) - [LJ (m-1, n-6) +L2T (m+1, n-6) +L3T (m-1, n+6) +LJ (m+1, n+6) +L5T (m - 2, n) +L6T (m+2, n)
];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值,
T(m+l,n-6)为第 m+1 行第 n-6列子像素的理论亮度值, T(m+l,n+6) 为第 m+1行第 n+6列子像素的理论亮度值, T(m+l,n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n_6) 为第 m行第 n-6列子像素的理论亮度值, T(m-2,n)为第 m-2行第 n 列子像素的理论亮度值, T(m+2,n)为第 m+2行第 n列子像素的理论亮 度值, 2<m X- 2, 6<n Y- 6, a、 b、 Li>0, 且 2a+b=l, 4。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m, n): A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ^ ,. ) T (m, n) +hT (m, n+3) +g
T (m, n+6) - [MJ (m-1, n-3) +M2T (m-1, n+3) +M3T (m+1, n-3) +M4T (m+1, n+3 )+M5T(m-l, n) +M6T (m+1, n) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0,
Figure imgf000007_0001
6<n Y— 6, l<m<X。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m, n):
10
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+∑N,- ) T (m, n) +hT (m, n+3) +gT
(m, n+6) -[NJ (m-1, n-6) +N2T (m-1, n-3) +N3T (m-1, n) +N4T (m-1, n+3)+N5 T (m-1, n+6) +N6T (m+1, n-6) +N7T (m+1, n-3) +N8T (m+1, n) +N9T (m+1, n+3) +N10T(m+l, n+6) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T(m-l,n-6) 为第 m-1行第 n-6列子像素的理论亮度值, T (m-1, n-3)为第 m-1行第 n-3列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值,
T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m+l,n-6) 为第 m+1行第 n-6列子像素的理论亮度值, T (m+1, n-3)为第 m+1行第 n-3列子像素的理论亮度值, T(m+l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m+l,n+3)为第 m+1 行第 n+3 列子像素的理论亮度值, T(m+1, n+6)为第 m+1行第 n+6列子像素的理论亮度值, g、 h、 i>0, m 0, 且 2g+2h+i二 1, 0<
Figure imgf000007_0002
6<n Y- 6, l<m<X。 优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m, n):
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ) T (m, n) +hT (m, n+3) +gT (m, n+6) -[oj (m-1, n-6) +o2T (m-1, n-3) +o3T (m-1, n) +o4T (m-1, n+3)+o5 T (m-1, n+6) +o6T (m+1, n-6) +o7T (m+1, n-3) +o8T (m+1, n) +o9T (m+1, n+3) +o10T (m+1, n+6) +onT (m, n-9) +o12T (m, n+9) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n+9) 为第 m行第 n+9列子像素的理论亮度值, T(m,n-9)为第 m行第 n_9 列子像素的理论亮度值。 T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n-3)为第 m-1 行第 n-3 列子像素的理论亮度值, T(m-l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m-l,n+3)为第 m-1行第 n+3列子像素的理论亮度值, T(m-l,n+6)为第 m-1行第 n+6 列子像素的理论亮度值, T(m+l,n-6)为第 m+1行第 n-6列子像素的理 论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m+l,n+3)为第 m+1行第 n+3列子像素的理论亮度值, T (m+l, n+6)为第 m+1行第 n+6 列子像素的理论亮度值, g、 h、 i>0, Ol 0, 且 2g+2h+i = l, 0<¾0,. 0.4, 9<n^Y-9, l<m<X。
优选地,所述像素阵列包括 X行 Y列子像素,在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m, n): A(m, n)=gT(m, n - 6)+hT(m, n - 3) + (i+ ) T (m, n) +hT (m, n+3)+gT
(m, n+6) - [pj (m, n-9) +p2T (m+1, n-6) +p3T (m+2, n-3) +p4T (m+3, n) +p5T ( m+2, n+3) +p6T (m+1, n+6) +p7T (m, n+9) +p8T (m-1, n+6) +p9T (m - 2, n+3) +Pi 。T (m - 3, n) +P11T (m - 2, n-3) +pi2T (m-1, n-6) ];
其中, T (m, n-6)为第 m行第 n-6列子像素的理论亮度值, T (m, n-3) 为第 m行第 n-3列子像素的理论亮度值, T (m, n)为第 m行第 n列子像 素的理论亮度值, T(m,n+3)为第 m行第 n+3列子像素的理论亮度值, T(m,n+6)为第 m行第 n+6 列子像素的理论亮度值, T(m,n-9)为第 m 行第 n-9列子像素的理论亮度值, T (m+1, n-6)为第 m+1行第 n-6列子 像素的理论亮度值, T(m+2,n-3)为第 m+2行第 n-3列子像素的理论亮 度值, T(m+3,n)为第 m+3行第 n列子像素的理论亮度值, T(m+2,n+3) 为第 m+2行第 n+3列子像素的理论亮度值, T (m+1, n+6)为第 m+1行第 n+6列子像素的理论亮度值, T(m,n+9)为第 m行第 n+9列子像素的理 论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m-2,n+3)为第 m-2行第 n+3列子像素的理论亮度值, T (m-3, n)为第 m-3行第 n行子像素的理论亮度值, T(m-2, n-3)为第 m-2行第 n-3列 子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理论 亮度值, g、 h、 i>0, Pi^0,且 2g+2h+i = l, 0<∑Pi ^O.4, 9<n Y- 9, 3<m X - 3。
作为本发明的再一个方面, 提供一种显示面板, 所述显示面板 包括像素阵列,其中,所述像素阵列为本发明所提供的上述像素阵列。
作为本发明的还一个方面, 提供一种显示装置, 该显示装置包 括显示面板, 其特征在于, 所述显示面板为本发明所提供的上述显示 面板。
在本发明的像素阵列中, 同一行的两个相邻的子像素即可拼成 一个像素块。由此可知,与现有技术相比,本发明的子像素宽度增加, 降低了制造所述像素阵列时的工艺难度, 提高产品的良率。并且利用 所述驱动方法驱动上述像素阵列时,可以使包括所述像素阵列的显示 面板的颗粒感降低,达到同等尺寸下具有更高分辨率的显示面板的显 示效果。
附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一 部分, 与下面的具体实施方式一起用于解释本发明, 但并不构成对本 发明的限制。 在附图中:
图 1 是利用本发明所提供的像素阵列的第一种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 2 是利用本发明所提供的像素阵列的第二种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 3 是利用本发明所提供的像素阵列的第二种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时的算法矩阵;
图 4 是利用本发明所提供的像素阵列的第三种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 5 是利用本发明所提供的像素阵列的第三种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时的算法矩阵;
图 6 是利用本发明所提供的像素阵列的第四种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 7 是利用本发明所提供的像素阵列的第四种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时的算法矩阵;
图 8 是利用本发明所提供的像素阵列的第五种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 9 是利用本发明所提供的像素阵列的第五种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时的算法矩阵;
图 10是利用本发明所提供的像素阵列的第六种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 1 1是利用本发明所提供的像素阵列的第六种实施方式的驱动 方法计算第 G3行第 S 10列子像素的实际亮度时的算法矩阵;
图 12是利用本发明所提供的像素阵列的第七种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 13是利用本发明所提供的像素阵列的第八种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 14是利用本发明所提供的像素阵列的第八种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时的算法矩阵;
图 15是利用本发明所提供的像素阵列的第九种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 16是利用本发明所提供的像素阵列的第九种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时的算法矩阵;
图 17是利用本发明所提供的像素阵列的第十种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图;
图 18是利用本发明所提供的像素阵列的第十种实施方式的驱动 方法计算第 G4行第 S 10列子像素的实际亮度时的算法矩阵;
图 19是利用本发明所提供的像素阵列的第十一种实施方式的驱 动方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他 颜色相同的子像素的分布示意图;
图 20是利用本发明所提供的像素阵列的第十一种实施方式的驱 动方法计算第 G4行第 S 10列子像素的实际亮度时的算法矩阵。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理 解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不 用于限制本发明。
如图 1 所示, 作为本发明的一个方面, 提供一种像素阵列, 该 像素阵列包括多个像素单元,每个所述像素单元包括三个颜色不同的 子像素 (即, 红色子像素 R、 绿色子像素 G和蓝色子像素 B ) , 其中, 在每个所述像素单元中, 任意两个相邻的子像素拼成一个像素块。 在现有技术中, 通常是同一行中顺序排列的三个子像素拼成一 个像素块作为一个物理像素单元, 该像素块可以为方形或者近似方 形, gp, 如果每个子像素大小相同, 每个子像素的宽度大约为该子像 素长度的 1 /3。 在本发明中, 同一行的两个相邻的子像素即可拼成一 个相同大小的像素块, gp, 本发明中两个子像素可以占据与现有技术 中三个子像素相同大小的面积, 如果该两个子像素大小相同, 每个子 像素的宽度大约为该子像素长度的 1 /3。由此可知,与现有技术相比, 本发明的子像素宽度增加, 降低了制造所述像素阵列时的工艺难度, 提高产品的良率。
可以认为同一行中, 相邻两个子像素组成一个方形或近似方形 的像素块, 应当理解的是, 此处所述的 "方形"是指, 所述像素块的 长度与宽度近似相等,或者所述像素块的宽度与该子像素的长度之比 为 0. 8至 1. 2之间。当然所述像素块还可以具有其他形状或者宽长比。
对于每个子像素而言, 该子像素的宽度可以为该子像素长度的
1 /2。 当然, 每个子像素的结构并不严格限制为子像素的宽度为子像 素长度的 1 /2, 例如, 对于每个子像素而言, 该子像素的宽度可以为 该子像素的长度的 2/5至 3/5, 从而可以确保相邻两个子像素可以拼 成上述方形的像素块。
SP , 当所述像素阵列用于阵列基板中时, 栅线和数据线互相交 错将所述阵列基板划分为多个所述像素单元。每个子像素沿栅线方向 的距离为该子像素沿数据线方向的距离的 1 /2。
分辨率为 X*Y的显示面板中, 像素阵列可以包括 X行 Υ列子像 素, 例如, 在分辨率为 1024*768的显示面板中, 像素阵列包括 1204 行、 768列子像素。
作为本发明的另一个方面, 提供一种驱动本发明所提供的上述 像素阵列的驱动方法, 其中, 所述驱动方法包括:
51、 计算待显示图片在各个子像素处的理论亮度值;
52、 计算各个子像素的实际亮度值, 每个子像素的实际亮度值 至少包括该子像素的理论亮度值的一部分和同一行中与该子像素颜 色相同的一个或多个子像素的理论亮度值的一部分;
S3、 向各个子像素输入信号, 以使各个子像素达到步骤 S2中所 计算得到的实际亮度值。
在本发明所提供的驱动方法的步骤 S2中, 向一个子像素输出的 实际亮度至少包括该子像素的理论亮度值的一部分与同一行中与该 子像素相邻的相同颜色的子像素的理论亮度值的一部分之和。相当于 在进行显示时,一个子像素共用了与该子像素颜色相同的其他子像素 的亮度信号, 从而使得相邻子像素之间的过渡更加平滑。利用上述驱 动像素阵列时,可以使包括本发明所提供的像素阵列的显示面板的颗 粒感降低, 达到同等尺寸下具有更高分辨率的显示面板的显示效果。
例如, 如图 1中所示, 在计算 G3行 S10列的红色子像素 R的实 际亮度值时, 可以利用 G3行 S10列的红色子像素 R的理论亮度值、 G3行 S7列的红色子像素 R的理论亮度值和 G3行 S7列红色子像素 R 的理论亮度值进行计算。
作为本发明的一种优选实施方式, 当所述像素阵列包括 X 行 Y 列子像素, 在所述步骤 S2 中, 按照下列公式 (1) 计算第 m行第 n 列子像素的实际亮度 A(m, n):
A (m, n) =aT (m, n-3) +bT (m, n) +aT (m, n+3) (1) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, 3<n Y-3, a、 b>0, 且 2a+b=l。
例如, 在图 1中 G3行 S10列的红色子像素 R (即, 第 3行第 10 列子像素) 的实际亮度值时 A(3, 10), 需要用到第 3行第 10列的子 像素的理论亮度值 T(3,10)、 第 3 行第 7 列的子像素的理论亮度值
Τ(3, 7)以及第 3行第 13列的子像素的理论亮度值 Τ(3, 13)。
a、 b只要满足&、 b>0, 且 2a+b=l即可。 例如, b可以取 0.7, 而 a则取 0· 15, 此时, A (3, 10) =0.15T(3, 7)+0.7Τ(3, 10) +0.15Τ(3, 容易理解的是, 图 1 中仅示出了像素阵列的一部分。 像素阵列 可以包括中间子像素和边界子像素。 在图 1 所示的第一种实施方式 中,中间子像素可以指从第 4列(包括第 4列)开始至倒数第 4列(包 括倒数第 4 列) 各子像素, 边界子像素可以指前 3 列子像素和后 3 列子像素。 可以直接利用上述公式 (1) 计算中间子像素的实际亮度 值。 通常, Y远大于 3, 因此, 在整个像素阵列中, 前三列子像素和 后三列子像素(边界子像素)的输出对整个像素阵列的显示影响甚微, 在进行显示时,可以按照理论亮度值向前三列子像素和后三列子像素 输入信号。
为了使得包括所述像素阵列的显示面板的颗粒感降低, 达到同 等尺寸下具有更高分辨率的显示面板的显示效果, 在按照上述公式 (1)计算中部子像素的实际亮度值时, 可以按照下列公式 (2)计算 前三列子像素的实际亮度值, 按照下列公式 (3) 计算后三列子像素 的实际亮度值:
A (m, n) =cT (m, n) +dT (m, n+3) (2) 其中, n 3,c、 d>0, 且 c+d=l;
A (m, n) =eT (m, n-3) +f T (m, n) (3) 其中, n>Y- 3, e、 f>0, 且 e+f=l。
在图 1 中所示的本发明的一种实施方式中, 计算一个子像素的 实际亮度时,公用了同一行中相邻两个颜色相同的子像素的理论亮度 值。在图 1中,附图标记 1所指的点虚线框所代表的是计算 G3行 S10 列红色子像素时需要用到的子像素为 G3行 S7列红色子像素以及 G3 行 S13列红色子像素, 附图标记 2所指的实线框所代表的是计算 G3 行 S11列绿色子像素时需要用到的子像素为 G3行 S8列绿色子像素以 及 G3行 S14列绿色子像素, 附图标记 3所指的短线虚线框所带代表 的是, 计算 G3行 S12列蓝色子像素时, 需要用到的子像素为 G3行 S9列蓝色子像素以及 G3行 S15列蓝色子像素。 为了使包括本发明所提供的像素阵列的显示面板的颗粒感降 低,达到同等尺寸下具有更高分辨率的显示面板的显示效果,优选地, 每个子像素的实际亮度值包括该子像素的理论亮度值的一部分与同 一行中与该子像素颜色相同的一个或多个子像素的理论亮度值的一 部分之和减去不同行中与该子像素颜色相同的一个或多个子像素的 理论亮度值的一部分。此处减去的"不同行中与该子像素颜色相同的 一个或多个子像素的理论亮度值"相当于对不同行的一个或多个子像 素的亮度进行衰减, 可以使得包括像素阵列的显示面板的颗粒感降 低。
如图 2所示,在本发明的第二种实施方式中,计算第 G3行第 S10 列子像素的实际亮度值时, 除了利用了第 G3行第 S10列子像素的理 论亮度值、 第 G3行第 S7列子像素的理论亮度值以及第 G3行第 S13 列子像素的理论亮度值之外,还利用了第 G2行第 S7列子像素的理论 亮度值、 第 G2行第 S13列子像素的理论亮度值、 第 G3行第 S7列子 像素的理论亮度值和第 G3行第 S13列的子像素的理论亮度值。
优选地, 在本发明所提供的第二种实施方式中, 在所述步骤 S2 中, 按照下列公式计算 (4) 计算第 m行第 n列子像素的实际亮度:
A(m, n)=aT(m, n-3) + (b+^e,. ) T (m, η) +aT (m, n+3) - [ej (m-1, n-3)
+e2T (m+1, n-3)+e3T(m-l, n+3)+e4T (m+1, n+3) ] (4) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, l<m<X, 3<n^Y-3, a、 b、 ei>0, 且 2a+b=l, e,. 0.4。 图 3给出了 ei的取值矩阵。 应当理解的是, 图 3 中所示的矩阵 中的负值表示在 ei的前面加了负号, 表示减去 ei乘以相应的子像素 的理论亮度值。 以图 3 (1) 为例, G2行 S7列子像素对应的 ei值为 0.02, G3行 S7列子像素对应的 e2值为 0.02, G2行 S10列子像素对 应的 e3值为 0.02, G3行 S10列子像素对应的 e4值为 0.02。 a、 b的 取值范围与第一种实施方式中 a、 b的取值范围相同, 例如, 在本实 施方式中, b也可以为 0.7, a也可以为 015。
因 此 , A (3, 10)=0.15T(3, 7)+0.78Τ(3, 10)+0.15Τ(3, 10)- 0.02 [Τ (2, 7) +Τ (4, 7) +Τ (2, 13) +Τ (4, 13) ]。
在上述具体实施方式中, ei、 e2、 e3、 e4的值相同, 均为 0.02, 应当理解的是, ei、 e2、 e3、 e4的值可以互不相同, 只要满足^
0.4即可。 虽然图 3 (1) 至图 3 (9) 给出了 ei、 e2、 e3、 e4的多种取 值方式, 但是本领域技术人员应当理解的是, ei、 e2、 e3、 e4的取值 范围并不限于此。
利用本实施方式所提供的算法计算像素阵列的各子像素的理论 亮度值时, 中间子像素为从第 2行 (包括第 2行) 至倒数第 2行 (包 括倒数第 2行) 中, 第 4列 (包括第四列) 至倒数第 4列 (包括倒数 第 4列) 中各子像素。 边界子像素则为第 1行子像素、 最后 1行子像 素、前 3列子像素以及后 3列子像素。与本发明的第一种实施方式相 同的是, 本发明第二种实施方式所提供公式 (4) 可以用于计算像素 阵列中除了前三列子像素和后三列子像素、第一行子像素和最后一行 子像素之外的中间子像素的实际亮度值。 同理, 像素阵列的总行数远 远大于 1, 且像素阵列的总列数远远大于 3, 因此, 向前三列子像素 和后三列子像素、第一行子像素和最后一行子像素输入理论亮度值对 包括所述像素阵列的显示面板的总体影响并不大。
为了使得包括所述像素阵列的显示面板的颗粒感整体降低, 优 选地, 可以利用以下公式 (5) 至公式 (12) 计算边界子像素的实际 当 l<m<X,n 3 (即, 前 3列中, 第 2行至倒数第 2行子像素) 时, 计算各子像素的亮度时, 除了用到该子像素本身的理论亮度值 T (m, n)之外,还用到第 m行,第 n+3列子像素的理论亮度值 T (m, n+3)、 第 m-1行第 n+3列子像素的理论亮度值 T (m-l, n+3)以及第 m+1行第 n+3列子像素的理论亮度值 T(m+l,n+3)。例如,可以利用下列公式( 5 ) 计算前 3列各行子像素的实际亮度值:
A (m, n) = (c+f!+f2) T (m, n) +dT (m, n+3) - [fj (m-1, n+3) +f2T (m+1, n +3)] (5) 其中, c、 d、 fi, f2>0, 且 ^+!^^!! c+d=l。
相应地, 当 l<m<X,n>Y-3 (即, 后 3列中, 从第 2行至倒数 第 2行的各子像素) 时, 利用下列公式 (6) 计算后 3列各行子像素 的实际亮度值:
A (m, n) = (c+gi+g2) T (m, n) +dT (m, n-3) - [giT (m-1, n-3) +g2T (m+1, n -3)] (6) 其中, c、 d、 gl、 g2>0, 且 81+82 0.4, c+d=l。
当 m=l, 3<n^Y-3 时, 利用下列公式 (7) 计算第 1行中, 从 第 4列至第 Y-3列的各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+ + ) T (m, n) +aT (m, n+3) - [hj (m+1, n-3) +h2T (m+1, n+3)] (7) 其中, a、 b、 hi, h2>0, 且 2a+b=l, +112 0.4。
当 m=l,n 3时, 利用下列公式 (8) 计算第 1行中前 3列各子 像素的实际亮度值:
A(m, n)=aT(m, n-3) + (b+j) T (m, n) +aT (m, n+3) -jT (m+1, n+3) (8) 其中, a、 b、 j>0, 且 2a+b=l, j 0.4。
当 m=l,n>Y-3时, 利用下列公式 ( 9 ) 计算第 1行中, 后 3列 各子像素的实际亮度值:
A(m, n) = (c+k)T(m, n) +dT (m, n-3) -kT (m+1, n-3) (9) 其中, c、 d、 k>0, 且 k 0.4, c+d=l。
当 m=X, 3<n Y-3时, 利用下列公式 (10) 计算第 X行 (即, 最后一行) 中, 从第 4列至第 Y-4列中各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+ +L2) T (m, n) +aT (m, n+3) - [LJ (m - 1, n-3) +L2T (m-1, n+3)] (10) 其中, a、 b、 L2>0, 且 2a+b=l, +12 0.4。
当 m=X,n 3时, 利用下列公式 (11) 计算第 X行 (即, 最后一 行) 中, 前 3列中各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+m T (m, n) +aT (m, n+3) - mj (m-1, n+3) (11) 其中, a、 b、 m!>0, 且 2a+b=l, !^ 0.4。
当 m=X,n>Y-3时, 利用下列公式 (12) 计算第 X (即, 最后一 行) 中, 后 3列中各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+η T (m, n) +aT (m, n-3) - nj (m-1, n-3) ( 12) 其中, a、 b、 g>0, Ά 2a+b=l, n^O.40
在利用上述公式 (5) 至公式 (12) 计算边界子像素的实际亮度 时, 除了需要用到一个子像素本身的理论亮度值之外, 还需要用到同 一行中与所述一个子像素颜色相同的相邻子像素(以下简称为同行子 像素)的理论亮度值、与所述一个子像素不同行的且颜色相同的子像 素(以下简称为异行子像素) 的理论亮度值。 参与计算的上述各个子 像素的理论亮度值应当乘以修正系数。其中, 所述一个子像素的修正 系数包括两部分: 同行修正系数和异行修正系数。所述同行修正系数 应当满足该同行修正系数与所述同行子像素的修正系数之和等于 1, 所述异行修正系数应当满足该异行修正系数等于所述异行子像素的 修正系数之和, 且所述异行修正系数不大于 0.4。
以公式 (5) 为例, 计算第 m行第 n列子像素的实际亮度值时, 需要用到的同行子像素为第 m行第 n+3列子像素,需要用到的异行子 像素为第 m-1行第 n+3列子像素和第 m+1行第 n+3列子像素。 第 m 行第 n列子像素的理论亮度值 T (m, n)的同行修正系数为 c,第 m行第 n列子像素的理论亮度值 T(m,n)的异行修正系数为 +f^ 同行子像 素的修正系数为 d, 异行子像素的修正系数为 f n f2。 第 m行第 n 列子像素的同行修正系数满足: c+d=l, 第 m行第 n列子像素的异行 修正系数满足: f!+f2^0.40
应当理解的是, 在不同的公式中, 相同字母表示的参数可以取 相同值,也可以取不同值,只要满足各公式条件即可。例如,公式(11) 中的参数 a、 b的值可以与公式 (12) 中的参数 a、 b的值相同, 也可 以不同, 只要满足 2a+b=l即可。
在图 4 中所示的本发明的第三种优选实施方式中, 在所述步骤 S2中, 按照下列公式 (13) 计算第 m行第 n列子像素的实际亮度:
A (m, n) =aT (m, n-3) + (b+^/;. )T (m, n) +aT (m, n+3) - [fj (m - 1, n-3)
+f2T (m-1, n+3) +f3T (m+1, n-3) +f4T (m+1, n+3) +f5 [T (m - 1, n) +f6T (m+1, n )] (13) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+1, n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, l<m<X, 3<n Y- 3, a、 b、 fi>0, 2a+b=l, 4。 图 5给出了 的取值矩阵。 应当理解的是, 图 5 中所示的矩阵 中的负值表示在 f 的前面加了负号, 表示减去 。 以图 5 (1) 为例, G2行 S7列子像素对应的 值为 0.02, G2行 S13列子像素对应的 f2 值为 0.02, G4行 S7列子像素对应的 f3值为 0.02, G4行 S13列子像 素对应的 f4值为 0.02, G2行 S10列子像素对应的 f5值为 0.02, G4 行 S10列子像素对应的 f6值为 0.02。 a、 b的取值范围与第一种实施 方式中 a、 b 的取值范围相同, 例如, 在本实施方式中, b也可以为 0.7, a也可以为 0.15。
与本发明的前两种实施方式相同的是, 本发明第二种实施方式 所提供公式 (4) 可以用于计算像素阵列中除了前三列子像素和后三 列子像素、第一行子像素和最后一行子像素之外的其他子像素的理论 亮度值。 同理, 像素阵列的总行数远远大于 1, 且像素阵列的总列数 远远大于 3, 因此, 向前三列子像素和后三列子像素、 第一行子像素 和最后一行子像素输入理论亮度值对包括所述像素阵列的显示面板 的总体影响并不大。
为了使得包括所述像素阵列的显示面板的颗粒感整体降低, 优 选地, 可以利用以下公式 (14) 至公式 (21) 计算前三列子像素和后 三列子像素、 第一行子像素和最后一行子像素的实际亮度。
当 l<m<X,n 3 (即, 前 3列中, 第 2行至倒数第 2行子像素) 时, 计算各子像素的亮度时, 除了用到该子像素本身的理论亮度值
T (m, n)之外,还用到第 m行,第 n+3列子像素的理论亮度值 T (m, n+3)、 第 m-1行第 n+3列子像素的理论亮度值 T(m-l,n+3)以及第 m+1行第 n+3 列子像素的理论亮度值 T(m+l,n+3)。 例如, 可以利用下列公式 (14) 计算前 3列第 2行至倒数第 2行中各子像素的实际亮度值: A(m, n) = (c+^g,. ) T (m, n) +dT (m, n+3) - [gj (m-1, n+3)+g2T (m+1, n
+3)+g3T(m-l, n)+g4T (m+1, n) ] (14) 其中, c、 d、 gi>0, 且 ^^ 0.4, c+d=l。 当 l<m<X,n>Y-3时, 可以利用下列公式 (15) 计算后 3列子 像素中从第 2行至倒数第 2行中各子像素的实际亮度值: A(m, η) = (ο+^^. )T(m, n) +dT (m, n - 3) - [HJ (m - 1, n-3) +H2T (m+1, n
-3) +H3T (m-1, n) +H4T (m+1, n) ] ( 15) 其中, c、 d、 hi>0, 且 ^^ 0.4, c+d=l。 当 m=l, 3<n^Y-3时, 可以利用下列公式(16)计算第 1行中, 从第 4列至倒数第 4列子像素的实际亮度:
A(m, n)=aT(m, n-3) + (b+ ^ j3 ) T (m, n) +aT (m, n+3) - [ jj (m+1, n-3) +j2T (m+1, n+3)+j3T(m+l, n) ] (16) 其中, a、 b、 ji>0, 且 2a+b=l, ^^·3 0· 4。 当 m=l,n 3时, 可以利用下列公式 (17) 计算第 1行中前 3列 子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+k ) T (m, n) +aT (m, n+3) - [kj (m+1, n+3) -k2T(m+l, n)] (17) 其中, a、 b、 k2>0, 且 2a+b=l,
Figure imgf000021_0001
当 m=l,n>Y-3时, 可以利用下列公式 (18) 计算第 1行中后 3 列子像素的实际亮度值:
A (m, n) = (c+Li+U) T (m, n) +dT (m, n-3) - [LJ (m+1, n-3) +L2T (m+1, n )] (18) 其中, c、 d、 >0, 且1^+12 0.4, c+d=l。
当 m=X, 3<n Y-3时, 可以利用下列公式 (19) 计算最后 1行 中, 从第 4列至倒数第 4列各子像素的实际亮度:
A (m, n) =aT (m, n-3) + (b+ ^ ,. ) T (m, n) +aT (m, n+3) - [MJ (m- 1, n-3 ) +M2T (m-1, n+3) +M3T (m-1, n) ] (19) 其中, a、 b、 mi>0, 且 2a+b=l, ^ 0.4。 当 m=X,n 3时, 可以利用下列公式 (20) 计算最后一行中, 前 3列子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+N!+N2) T (m, n) +aT (m, n+3) - [NJ (m-1, n+3) +N2T(m-l, n)] (20) 其中, a、 b、 N2>0, 且 2a+b=l, +N^O.4。
当 m=X,n>Y-3时, 可以利用下列公式 (21) 计算最后 1行中后
3列子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+0!+o2) T (m, n) +aT (m, n-3) - [oj (m - 1, n-3)
+o2T(m-l, n)] (21) 其中, a、 b、 o1, o2>0, 且 2a+b=l, c^+o^O.
与第二种实施方式相似的是,在利用上述公式(14)至公式(21) 计算边界像素的实际亮度时,除了需要用到一个子像素本身的理论亮 度值之外,还需要用到同一行中与所述一个子像素颜色相同的相邻子 像素(以下简称为同行子像素) 的理论亮度值、 与所述一个子像素不 同行的且颜色相同的子像素(以下简称为异行子像素)的理论亮度值。 参与计算的上述各个子像素的理论亮度值应当乘以修正系数。 其中, 所述一个子像素的修正系数包括两部分:同行修正系数和异行修正系 数。所述同行修正系数应当满足该同行修正系数与所述同行子像素的 修正系数之和等于 1, 所述异行修正系数应当满足该异行修正系数等 于所述异行子像素的修正系数之和, 且所述异行修正系数不大于
0.4。
以公式 (14) 为例, 计算第 m行第 n列子像素的实际亮度值时, 需要用到的同行子像素为第 m行第 n+3列子像素,需要用到的异行子 像素为第 m-1行第 n+3列子像素、 第 m-1行第 n列子像素、 第 m+1 行第 n+3列子像素和第 m+1行第 n列子像素。第 m行第 n列子像素的 理论亮度值 T(m, n)的同行修正系数为 c,第 m行第 n列子像素的理论 亮度值 T(m,n)的异行修正系数为^ 同行子像素的修正系数为 d, 异行子像素的修正系数为 。 第 m行第 n列子像素的同行修正系 数满足: c+d=l,第 m行第 n列子像素的异行修正系数满足^ 0.4。 在图 6 中所示的本发明的第四种优选实施方式中, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式 (22) 计 算第 m行第 n列子像素的实际亮度:
A (m, n) =aT (m, n-3) + (b+ ^g,. ) T (m, n) +aT (m, n+3) - [gj (m-1, n-3 ) +g2T (m+1, n-3) +g3T (m-1, n+3) +g4T (m+1, n+3) +g5T (m - 2, n) +g6T (m+2, n
)] (22) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值,
T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, a、b、e均大于 0,T(m+2,n) 为第 m+2行第 n列子像素的理论亮度值, T(m-2,n)为第 m-2行第 n 列子像素的理论亮度值, 2<m X- 2, 3<n Y- 3, a、 b、 gl>0, 且 2a+b=l, gi 0.4。 图 7给出了 gl的取值矩阵。 应当理解的是, 图 7 中所示的矩阵 中的负值表示在 gl的前面加了负号, 表示减去 gl。 以图 7 (1) 为例, G2行 S7列子像素对应的 gl值为 0.02, G4行 S7列子像素对应的 g2 值为 0.02, G2行 S13列子像素对应的 g3值为 0.02, G4行 S13列子 像素对应的 g4值为 0.02, G1行 S10列子像素对应的 g5值为 0.02,
G5行 S10列子像素对应的 g6值为 0.02。 a、 b的取值范围与第一种实 施方式中 a、 b 的取值范围相同, 例如, 在本实施方式中, b也可以 为 0.7, a也可以为 0.15。
与本发明的前三种实施方式相同的是, 本发明第四种实施方式 所提供公式(22)可以用于计算像素阵列中除了前三列子像素和后三 列子像素、前两行子像素和后两行子像素之外的其他子像素的理论亮 度值。 同理, 像素阵列的总行数远远大于 2, 且像素阵列的总列数远 远大于 3, 因此, 向前三列子像素和后三列子像素、 前两行子像素和 后两行子像素输入理论亮度值对包括所述像素阵列的显示面板的总 体影响并不大。
为了使得包括所述像素阵列的显示面板的颗粒感整体降低, 优 选地, 可以利用以下公式 (23) 至公式 (30) 计算前三列子像素和后 三列子像素、 前两行子像素和后两行子像素的实际亮度。
当 2<m X-2,n 3时, 可以利用下列公式(23)计算前 3列中, 第 3行至倒数第 3行中各子像素的实际亮度: A(m, η) = (ο+^^. )T(m, n) +dT (m, n+3) - [HJ (m-1, n+3) +H2T (m+1, n
+3) +H3T (m-2, n) +H4T (m+2, n) ] (23) 其中, c、 d、 g、 Hi>0, c+d=l, 且 ^ 0· 4。 当 2<m X-2,n>Y-3时, 可以利用下列公式 (24) 计算后 3列 中从第 3行至倒数第 3行各子像素的实际亮度值: A(m, n) = (c+ ^j',. ) T (m, η) +dT (m, n- 3) - [ jj (m- 1, n-3)+j2T (m+1, n
-3) +j3T (m-2, n) +j4T (m+2, n) ] (24) 其中, c、 d、 ji>0, 且 ^ 0.4, c+d=l。 当 m=2, 3<n Y-3时, 可以利用下列公式 (25) 计算第 2行中 第 4列至倒数第 4列子像素的实际亮度值: A(m, n)=aT(m, n - 3) + (b+ ) T (m, n) +aT (m, n+3) - [kj (m-1, n-3)
+k2T (m+1, n-3) +k3T (m-1, n+3) +k4T (m+1, n+3) +k5T (m+2, n) ] (25) 其中, a、 b、 ki>0, 且 2a+b=l, ^ 0.4。 当 m=l, 3<n Y-3时, 可以利用下列公式 (26) 计算第 1行中 第 4列至倒数第 4列子像素的实际亮度值:
A(m, n)=aT(m, n-3) + (b+ ^L,. ) T (m, n) +aT (m, n+3) - [LJ (m+1, n-3)
+L2T (m+1, n+3) +L3T (m+2, n) ] (26) 其中, a、 b、 Li>0, 且 2a+b=l, 0· 4。 当 m=2,n 3时, 可以利用下列公式 (27) 计算第 2行中前三列 各子像素的实际亮度值:
A(m, n) = (b+ ^ ,. ) T (m, η) +aT (m, n+3) - [MJ (m- 1, n+3) +M2T (m+1, n+3)+M3T(m+2, n) ] (27) 其中, a、 b、 mi>0, 且 2a+b=l, 2 0.4。 当 m=l,n 3时, 可以利用下列公式 (28) 计算前两行中前三列 各子像素的实际亮度值:
A (m, n) = (b+N!+N2) T (m, n) +aT (m, n+3) - [NJ (m+1, n+3) +N2T (m+2, n )] (28) 其中, a、 b、 N2>0, 且 2a+b=l, +N^O.4。
当 m=2,n>Y-3时, 可以利用下列公式 (29) 计算第二行中后三 列各子像素的实际亮度值:
A(m, n)=cT(m, n-3) + (d+ ^ο,. ) Τ (m, n)-[oJ(m-l, η-3)+ο2Τ (m+1, η
-3)+o3T(m+2, n)] (29) 其中, c、 d、 Oi>0, 且^ 4, c+d=l。 当 m=l,n>Y-3时, 可以利用下列公式 (30) 计算第二行中后三 列各子像素的实际亮度值:
A (m, n) =cT (m, n-3) + (d+0!+o2) T (m, n) - [oj (m+1, n-3) +o2T (m+2, n
)] 其中, c、 d、 Oi, o2>0, K
Figure imgf000026_0001
c+d=l。
当 m=X-l, 3<n Y-3时, 可以利用下列公式 (31) 计算倒数第 2行中从第 4列至倒数第 4列各子像素的实际亮度值:
A(m, n)=aT(m, n- 3) + (b+ ^Ρι ) T (m, η) +aT (m, n+3) - [pj (m- 1, n- 3 ) +p2T (m+1, n-3) +p3T (m-1, n+3) +p4T (m+1, n+3) +p5T (m-2, n) ] (31) 其中, a、 b、 pi>0, 且 2a+b=l, ^/? 0.4。 当 m=X, 3<n Y-3时, 可以利用下列公式 (32) 计算最后一行 中从第 4列至倒数第 4列各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+ . ) T (m, n) +aT (m, n+3) - [qj (m-1, n-3) +q2T (m-1, n+3) +q3T (m-2, n) ] (32) 其中, a、 b、 Pi>0, 且 2a+b=l, ^ 0· 4。 当 m=X-l,n 3时, 可以利用下列公式 (33) 计算后两行中前三 列各子像素的实际亮度值:
A(m, n) = (b+ /. )T(m, n) +aT (m, n+3) - [rj (m-1, n+3)+r2T (m+1, n+ 3)+r3T(m-2, n) ] (33) 其中, a、 b、 η>0, 且 2a+b=l, ^^. 0· 4。 当 m=X,n 3时, 可以利用下列公式 (34) 计算最后一行中前三 列各子像素的实际亮度值:
A (m, n) = (c+S!+s2) T (m, n) +dT (m, n+3) - [sj (m-1, n+3) +s3T (m-2, n ) ] (34) 其中, c、 d、 s2>0, 且 c+d=l, Si+Sz O.
当 m=X-l,n>Y-3时, 可以利用下列公式 (35) 计算倒数第二行 中后三列各子像素的实际亮度值: A(m, n)=cT(m, n-3) + ) T (m, n)-[tj(m-l, n-3)+t2T (m+1, n-
3)+t3T(m-2, n)] (35) 其中, c、 d、 ti>0, c+d=l, ^^ 0.4。 当 m=X 时, 可以利用下列公式 (35' ) 计算最后一行中, 后三 列各子像素的实际亮度值:
A (m, n) =cT (m, n-3) + (d+Ui+u2) T (m, n) - [uiT (m-1, n-3) +u2T (m-2, n )] (35' ) 其中, c、 d、 u2>0, c+d=l, L +u^O.4。
与第二种实施方式和第三种实施方式相似的是, 在计算边界的 子像素的实际亮度时,除了需要用到一个子像素本身的理论亮度值之 夕卜, 还需要用到同一行中与所述一个子像素颜色相同的相邻子像素 (以下简称为同行子像素)的理论亮度值、与所述一个子像素不同行 的且颜色相同的子像素(以下简称为异行子像素) 的理论亮度值。 参 与计算的上述各个子像素的理论亮度值应当乘以修正系数。其中, 所 述一个子像素的修正系数包括两部分: 同行修正系数和异行修正系 数。所述同行修正系数应当满足该同行修正系数与所述同行子像素的 修正系数之和等于 1, 所述异行修正系数应当满足该异行修正系数等 于所述异行子像素的修正系数之和, 且所述异行修正系数不大于
0.4。
以公式 (23) 为例, 计算第 m行第 n列子像素的实际亮度值时, 需要用到的同行子像素为第 m行第 n+3列子像素,需要用到的异行子 像素为第 m-1行第 n+3列子像素、第 m+1行第 n+3)列子像素、第 m_2 行第 n列子像素、第 m+2行第 n列子像素。第 m行第 n列子像素的理 论亮度值 T(m, n)的同行修正系数为 c,第 m行第 n列子像素的理论亮 度值 T(m,n)的异行修正系数为^ 同行子像素的修正系数为 d, 异 行子像素的修正系数为 ^。第 m行第 n列子像素的同行修正系数满 足: c+d=l, 第 m行第 n列子像素的异行修正系数满足^ 0.4。 在图 8 中所示的本发明的第五种优选实施方式中, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式 (36) 计 算第 m行第 n列子像素的实际亮度:
A (m, n) =aT (m, n-3) + (b+ ^H,. ) T (m, n) +aT (m, n+3) - [HJ (m-1, n-3
) +H2T (m+1, n-3) +H3T (m-1, n+3) +H4T (m+1, n+3) +H5T (m - 2, n) +H6T (m+2, n ) +H7T (m, n-6) +H8T (m, n+6) ] (36) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, a、b、e均大于 0,T(m+l,n) 为第 m+1 行第 n列子像素的理论亮度值, T(m-l,n)为第 m-1 行第 n 列子像素的理论亮度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮 度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮度值, 2<m X_2,
6<n Y— 6, a、 b、 Hi>0, 且 2a+b=l, ^H,. ^O.40 图 9给出了 的取值矩阵。 应当理解的是, 图 9中所示的矩阵 中的负值表示在^的前面加了负号, 表示减去 H1D 以图 9 (1) 为例,
G2行 S7列子像素对应的 ^值为 0.02, G4行 S7列子像素对应的 ¾ 值为 0.02, G2行 S13列子像素对应的 ¾值为 0.02, G4行 S13列子 像素对应的 H4值为 0.02, G1行 S10列子像素对应的 H5值为 0.02, G5行 S10列子像素对应的 ¾值为 0.02, G3行 S4列子像素对应的 H7 为 0.02, G3行 S16列子像素对应的 ¾为 0.02。 a、 b的取值范围与 第一种实施方式中 a、 b的取值范围相同, 例如, 在本实施方式中, b 也可以为 0.7, a也可以为 0.15。
本发明第五种实施方式所提供公式 (36) 可以用于计算像素阵 列中除了前六列子像素和后六列子像素、前两行子像素和后两行子像 素之外的其他子像素的理论亮度值。 同理, 像素阵列的总行数远远大 于 2, 且像素阵列的总列数远远大于 6, 因此, 向前六列子像素和后 六列子像素、前两行子像素和后两行子像素输入理论亮度值对包括所 述像素阵列的显示面板的总体影响并不大。
为了使得包括所述像素阵列的显示面板的颗粒感整体降低, 优 选地, 可以利用以下方法计算前六列子像素和后六列子像素、前两行 子像素和后两行子像素的实际亮度。
当 2<m X-2,n 3时, 可以利用下列公式(37)计算前 3列中, 从第 3行至倒数第 3行各子像素的实际亮度:
A(m, n) = (c+ ^j',. )T(m, n) +dT (m, n+3) - [ jj (m- 1, n+3)+j2T (m+1, n
+3) +j3T (m-2, n) +j4T (m+2, n) +j5T (m, n+6) ] (37) 其中, c、 d、 ji>0, 且 c+d=l, 0.4。 当 2<m X-2, 3<n 6时, 可以利用下列公式 (38) 计算第 3 列至第 6列中, 从第 3行至倒数第 3行各子像素的实际亮度:
A(m, n)=aT(m, n-3) + (b+ ) T (m, n) +aT (m, n+3) - [kj (m-1, n-3)
+k2T (m+1, n-3) +k3T (m-1, n+3) +k4T (m+1, n+3) +k5T (m-2, n) +k6T (m+2, n) +k7T(m, n+6)] (38) 其中, a、 b、 ki>0, 且 2a+b=l, ^ ,. 0.4。 当 2<m X- 2, Y- 6<n Y- 3时, 可以利用下列公式 (39) 计算 倒数第 6列至倒数第 3列中,从第 3行至倒数第 3行各子像素的实际 亮度: A(m, n)=aT(m, n-3) + (b+ ^L,. ) T (m, n) +aT (m, n+3) - [LJ (m-1, n-3)
+L2T (m+1, n-3) +L3T (m-1, n+3) +LJ (m+1, n+3) +L5T (m - 2, n) +L6T (m+2, n) +L7T(m, n-6)] (39) 其中, c、 d、 Li>0, 且 c+d=l, ^^ 0.4。 当 2<m X-2,n>Y-3时, 可以利用下列公式 (40) 计算倒数第
6列至倒数第 3列中, 从第 3行至倒数第 3行各子像素的实际亮度:
A(m, n)=cT(m, n- 3) + (d+ ^ ,. ) T (m, η)- [MJ(m- 1, n-3) +Μ2Τ (m+1, n-3)+M3T(m-2, n) +M4T (m+2, n) +M5T (m, n-6)] (40) 其中, c、 d、 mi>0, 且 c+d=l, 2 0.4。 当 m=l, 6<n^Y-6时, 可以利用下列公式(41)计算第一行中, 从第 7列至倒数第 7列之间各子像素的实际亮度:
A(m, n)=aT(m, n-3) + (b+ ^N,. ) T (m, n) +aT (m, n+3) - [NJ (m+1, n-3) +N2T
(m+1, n+3) +N3T (m - 2, n) +N4T (m+2, n) +N5T (m, n-6) +N6T (m, n+6) ] (41) a、 b、 Ni>0, 且 2a+b=l, ^Λ^ 0.4。 当 m=l, 3<n 6时, 可以利用下列公式 (42) 计算第一行中, 从第 4列至第 6列之间各子像素的实际亮度:
A (m, n) =aT (m, n-3) + (b+ ^o,. ) T (m, n) +aT (m, n+3) - [oj (m+1, n-3)
+o2T (m+1, n+3) +o3T (m+2, n) +o4T (m, n+6) ] (42) 其中, a、 b、 Oi>0, 且 2a+b=l, ^0 0.4。 当 m=l,n 3时, 可以利用下列公式 (43) 计算第一行中, 前 3 列各子像素的亮度值: A(m, n) = (c+^A. )T(m, n) +dT (m, n+3) - [pj (m+1, n+3)+p2T (m+2, n
)+p3T(m, n+6)] (43) 其中, c、 d、 Pi>0, 且 c+d=l, ^ /^ 0.4。 当 m=l, Y-6<n Y-3时, 可以利用下列公式 (44) 计算第一行 中, 倒数第 6列至倒数第 4列中各子像素的实际亮度值:
A (m, n) =aT (m, n-3) + (b+ . ) T (m, n) +aT (m, n+3) - [qj (m+1, n-3)
+q2T (m-1, n+3)+q3T(m+l, n+3)+q4T (m+2, n) +q5T (m, n-6) ] (44) 其中, a、 b、 qi>0, 且 2a+b=l, ^^ 0.4。 当 m=l,n>Y-3时, 可以利用下列公式 (46) 计算第一行中, 后 3列中各子像素的实际亮度值:
A(m, n)=cT(m, n - 3) + (d+^ ) T (m, n)-[rj(m+l, n-3)+r2T (m+1, n+
3) +r3T (m+2, n) +r4T (m, n-6) ] (46) 其中, c、 d、 η>0, 且 c+d=l, ^^. 0.4。 当 m=2, 6<n^Y-6时, 可以利用下列公式(47)计算第二行中, 从第 7列至倒数第 7列之间各子像素的实际亮度:
A(m, n)=aT(m, n - 3) + (b+^ ) T (m, η) +aT (m, n+3) - [sj (m-1, n-3)
+s2T (m+1, n-3) +s3T (m-1, n+3) +s4T (m+1, n+3) +s5T (m+2, n) +s6T (m, n-6) +s7T(m, n+6)] (47) 其中, a、 b、 Si>0, 且 2a+b=l, ^^. 0.4。 当 m=2, 3<n 6时, 可以利用下列公式 (48) 计算第二行中, 从第 4列至第 6列之间各子像素的实际亮度: A (m, n) =aT (m, n-3) + (b+ ^ί,. ) T (m, n) +aT (m, n+3) - [tj (m-1, n-3) +t2T ( m+1, n-3) +t3T (m-1, n+3) +t4T (m+1, n+3) +t5T (m+2, n) +t6T (m, n+6) ]
(48) 其中, a、 b、 ti>0, 且 2a+b=l, ^^. 0.4。 当 m=2,n 3时, 可以利用下列公式 (49) 计算第 2行中, 前 3 列各子像素的实际亮度值:
A(m, n) = (c+
Figure imgf000032_0001
) T (m, η) +dT (m, n+3) - [uj (m-1, n+3)+u2T (m+1, n
+3) +u3T (m+2, n) +u4T (m, n+6) ] (49) 其中, c、 d、 Ui>0, 且 c+d=l, ^ 0.4。 当 m=2, Y-6<n<Y-3时, 可以利用下列公式 (50) 计算第 2行 中, 倒数第 6列至倒数第 4列中各子像素的实际亮度值:
A(m, n)=aT(m, n-3) + (b+ ^ν,. ) T (m, η) +aT (m, n+3) - [vj (m-1, n-3)+v2T( m+1, n-3) +v3T (m-1, n+3) +v4T (m+1, n+3) +v5T (m+2, n) +v6T (m, n-6) ]
(50) 其中, a、 b、 Vi>0, 且 2a+b=l, ^^ 0.4。 当 m=2,n Y-3时, 可以利用下列公式 ( 51 ) 计算第 2行中, 后 3列中各子像素的实际亮度值:
4
A (m, n)二 cT (m, n-3) + (d+ ) T (m, n) - [wiT (m-1, n-3) +w2T (m+1, n
-3) +w3T (m+2, n) +w4T (m, n-6) ] (51) 其中, c、 d、 Wi〉0, 且 c+d二 1,
Figure imgf000032_0002
计算倒数第 1 行各列子像素的实际亮度值时用到的公式与公式 (41) 至公式 (46) 类似, 不同的是, 需要用到第 X行、 第 X-1行、 第 X-2行的子像素的理论亮度值, 而非第 1行、第 2行和第 3行的子 像素的理论亮度值;计算倒数第二行各列子像素的实际亮度值时用到 的公式与公式 (47) 至公式 (51) 类似, 不同的是, 需要用到第 X 行、 X-1行、 第 X-2行和第 X-3行的子像素的理论亮度值, 而非第 1 行、 第 2行、 第 3行和第 4行的子像素的理论亮度值。
与第二种实施方式至第四种实施方式相似的是, 在计算边界的 子像素的实际亮度时,除了需要用到一个子像素本身的理论亮度值之 夕卜, 还需要用到同一行中与所述一个子像素颜色相同的相邻子像素 (以下简称为同行子像素)的理论亮度值、与所述一个子像素不同行 的且颜色相同的子像素(以下简称为异行子像素) 的理论亮度值。 参 与计算的上述各个子像素的理论亮度值应当乘以修正系数。其中, 所 述一个子像素的修正系数包括两部分: 同行修正系数和异行修正系 数。所述同行修正系数应当满足该同行修正系数与所述同行子像素的 修正系数之和等于 1, 所述异行修正系数应当满足该异行修正系数等 于所述异行子像素的修正系数之和, 且所述异行修正系数不大于
0.4。
在图 10中给出的本发明的第六种实施方式中, 所述像素阵列包 括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式 (52) 计算第 m行第 n列子像素的实际亮度值: A(m, n)=aT(m, n-3) + (b+^L,. ) T (m, n) +aT (m, n+3) - [LJ (m-1, n-6) +L2T ( m+1, n-6) +L3T (m-1, n+6) +L4T (m+1, n+6) +L5T (m - 2, n) +L6T (m+2, n) ]
(52) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m+l,n-6)为第 m+1 行第 n-6列子像素的理论亮度值, T(m+l,n+6) 为第 m+1行第 n+6列子像素的理论亮度值, a、b、e均大于 0,T(m+l,n) 为第 m+1 行第 n列子像素的理论亮度值, T(m-l,n)为第 m-1 行第 n 列子像素的理论亮度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮 度值, T(m,n-6)为第 m行第 n-6列子像素的理论亮度值, T(m-2,n) 为第 m-2行第 n列子像素的理论亮度值, T(m+2,n)为第 m+2行第 n 列子像素的理论亮度值, 2<m X- 2, 6<n Y- 6, a、 b、 >0, 且
2a+b=l, ^ ^0· 4。 图 11 (1)至图 11 (6) 中给出了 的取值矩阵。 应当理解的是, 图 11中所示的矩阵中的负值表示在1^的前面加了负号,表示减去 L^。 以图 11 (1) 为例, G2行 S4列子像素对应的 值为 0.02, G4行 S4 列子像素对应的 L2值为 0.02,G2行 S16列子像素对应的 L3值为 0.02, G4行 S16列子像素对应的 L4值为 0.02, G1行 S10列子像素对应的 L5值为 0.02, G5行 S10列子像素对应的 L6值为 0.02。 a、 b 的取值 范围与第一种实施方式中 a、 b的取值范围相同, 例如, 在本实施方 式中, b也可以为 0.7, a也可以为 0.15。
本发明第六种实施方式所提供公式 (52) 可以用于计算像素阵 列中除了前六列子像素和后六列子像素、前两行子像素和后两行子像 素之外的其他子像素的理论亮度值。 同理, 像素阵列的总行数远远大 于 2, 且像素阵列的总列数远远大于 6, 因此, 向前六列子像素和后 六列子像素、前两行子像素和后两行子像素输入理论亮度值对包括所 述像素阵列的显示面板的总体影响并不大。
为了包括所述像素阵列的显示面板的颗粒感整体降低, 优选地, 在计算前六列子像素和后六列子像素、前两行子像素和后两行子像素 的实际亮度值时,也需要用到同行子像素的理论亮度以及不同行子像 素的理论亮度值。 例如, 在计算第一行中, 第 7列至倒数第 7列的子 像素的实际亮度值时,除了需要用到本行的左右相邻两个相同颜色的 子像素的理论亮度值之外, 还需要用到上一行中、下一行中以及上上 行中颜色相同的子像素的理论亮度值。
也可以利用上述公式 (52) 计算边界子像素 (即, 前六列子像 素和后六列子像素、 前两行子像素和后两行子像素) 的实际亮度值。 应当理解的是, 当计算获得的行数或列数中任意一个小于或等于 0 时, 则取在该列的子像素的理论亮度值为零, 相应地, 理论亮度值对 应修正系数也为零。例如, 在计算第 1行中从第 7列到倒数第 7列各 子像素 (即, m=l, 6<n^Y-6) 的亮度时, m- 1=0,η+6 Υ, 所以, T(m-1, n-6) , T(m-l,n+6)、 T(m-l,n-6)、 T(m-2, n)=0, 、 、 、 L5均为 0,在这种情况中,计算子像素的公式等同于以下公式(52' ): A(m, n)=aT(m, n- 3) + (b+ ) T (m, n) +aT (m, n+3) - [ jj (m+1, n-6)
+j2T (m+1, n+6) +j3T (m+2, n) ] (52, ) 相当于 1" j2相当于 14, j3相当于 16, ∑j,.^0.4o 按照上述方法可以计算各个边界子像素的实际亮度值。 由于排 列组合的情况较多,且在前述实施例中已经对各种排列组合的情况做 出了一一的列举,本领域技术人员根据前述实施例中的具体情况可以 容易地推出本实施例中边界子像素的取值情况,所以此处不再一一列 举各边界子像素的实际亮度值的计算方法。应当理解的是, 各边界子 像素的实际亮度的计算方法也应当属于本发明所公开的内容。
图 12为利用本发明所提供的像素阵列的第七种实施方式的驱动 方法计算第 G4行第 S10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图。在所述步骤 S2中,按照下列公式(53) 计算第 m行第 n列子像素的实际亮度:
A (m, n) =gT (m, n-6) +hT (m, n-3) +iT (m, n) +hT (m, n+3) +gT (m, n+6) (53) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0, 且 2g+2h+i = l, 6<n Y - 6。
由此可知, 在计算第 m行第 η列子像素的实际亮度值时, 除了 需要用到第 m行第 η列需要共用到同一行中,距离该第 m行第 η列子 像素最近的其他四个同颜色子像素的理论亮度值。
容易理解的是, 上述公式可以直接用于像素阵列中从第 7 行至 倒数第 7行各子像素 (即, 中间子像素) 的实际亮度值。 当利用上述 公式计算边界子像素(即, 前六列子像素和后六列子像素) 的实际亮 度值时, η-6 0, 或者 η+6>Υ时, 则该列子像素的理论亮度值取 0, 而且, 该列子像素对应的修正系数也取 0。 例如, 在计算第 4列至第 6列子像素的实际亮度值时, T(m,n-6)、 g均为 0, 可以利用下列公 式 (54) 计算第 4列至第 6列子像素的实际亮度值:
A(m, n)=hT (m, n - 3)+iT(m, n) +hT (m, n+3)+gT(m, n+6) (54) 其中, 2h+i+g=l。
相似地, 可以利用下列公式 (55) 计算前 3 列子像素的实际亮 度值:
A(m, n)=iT (m, n) +hT (m, n+3) +gT (m, n+6) (55) 其中, i+h+g=l。
计算从倒数第 6列至倒数第 3列子像素的实际亮度值的计算方 法以及计算后 3列子像素的实际亮度值的计算方法与上述方法类似, 通过公式 (53) 至公式 (55) , 本领域技术人员可以容易地得到从倒 数第 6列至倒数第 3列子像素的实际亮度值的计算方法以及计算后 3 列子像素的实际亮度值的计算公式, 这里不再赘述。
在本实施方式中, 对各修正系数的具体取值并不做特殊限定, 只要可以满足 g、 h、 i>0且 2g+2h+i = l即可。
图 13是利用本发明所提供的像素阵列的第八种实施方式的驱动 方法计算第 G4行第 S10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图。在这种实施方式中, 所述像素阵列包 括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式 (56) 计算第 m行第 η列子像素的实际亮度值:
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ^ ,. ) T (m, n) +hT (m, n+3) +g
T (m, n+6) - [MJ (m- 1, n-3) +M2T (m- 1, n+3) +M3T (m+1, n-3) +M4T (m+1, n+3 )+M5T(m-l, n) +M6T (m+1, n) ] (56) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0,
Figure imgf000037_0001
6<n Y— 6, l<m<X。 当 6<n Y-6, l<m<X时 (即, 从第 7列至倒数第 7列、 第 2 行至倒数第 2行的各子像素), 可以直接利用上述公式计算各子像素 的实际亮度值。
图 14中给出了 的取值矩阵。 应当理解的是, 图 14中所示的 矩阵中的负值表示在 的前面加了负号, 相当于公式 (56) 中的减 去 ^乘以相应的子像素的理论亮度值。 以图 14 (1) 为例, G3行 S7 列子像素对应的^值为 0.02,G3行 S13列子像素对应的 M2值为 0.02, G5行 S7列子像素对应的 M3值为 0.02, G5行 S13列子像素对应的 M4 值为 0.02, G3行 S10列子像素对应的 M5值为 0.02, G5行 S10列子 像素对应的 M6值为 0.02。
在计算边界子像素 (即, 第一行(m=l)、 最后一行(m=X)、 前 3 列(n 3)、第 4列至第 6列 (3<n<7)、倒数第 6列至倒数第 4列 (Y- 6 <n Y-3)、 后 4列(η Υ-3) ) 的亮度时, 如果上述公式 (56) 中任 意一个子像素的行数 m 0, 或者任意一个子像素的行数 m>x, 或者 任意一个子像素的列数 n>Y, 则取该子像素的理论亮度值为 0, 相应 地, 该理论亮度值对应的修正系数也为 0。 例如, 当 m=l, 6<n^Y-6 时, Mi、 T(m- l,n- 3)、 M2、 T (m- 1, n+3) M5、 T(m- l,n)均为 0, 则可以 利用下列公式(57)计算第一行中, 从第 7列到倒数第 7列各子像素 的实际亮度值:
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+∑N,- ) T (m, n) +hT (m, n+3) +gT (m, n+6)-[NJ(m+l, n-3) +N2T (m+1, n+3) +N3T (m+1, n) ] (57) 其中, 相当于 M3、 N2相当于 M4、 N3相当于 M6, 0<^Λ^ 0.4。 同理, 本领域技术人员可以按照同样的方法推算出计算其他边 界子像素的公式, 这里不再赘述。
图 15中利用本发明所提供的像素阵列的第九种实施方式的驱动 方法计算第 G4行第 S10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图, 在本实施方式中, 所述像素阵列包括 X行 Υ列子像素, 在所述步骤 S2 中, 按照下列公式 (58) 计算第 m 行第 n列子像素的实际亮度值 A(m, n) :
10
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+∑N,- ) T (m, n) +hT (m, n+3) +gT (m, n+6)-[NJ(m-l, n-6) +N2T (m-1, n-3) +N3T (m-1, n) +N4T (m-1, n+3)+N5
T (m-1, n+6) +N6T (m+1, n-6) +N7T (m+1, n-3) +NJ (m+1, n) +N9T (m+1, n+3) +N10T(m+l, n+6) ] (58) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T(m-l,n-6) 为第 m-1行第 n-6列子像素的理论亮度值, T (m-1, n-3)为第 m-1行第 n-3列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m-1, n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m+l,n-6) 为第 m+1行第 n-6列子像素的理论亮度值, T (m+1, n-3)为第 m+1行第 n-3列子像素的理论亮度值, T(m+l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m+l,n+3)为第 m+1 行第 n+3 列子像素的理论亮度值, T(m+1, n+6)为第 m+1行第 n+6列子像素的理论亮度值, g、 h、 i>0, m
10
0, 且 2g+2h+i二 1, 0< ^O.4, 6<n Y- 6, l<m<X。 图 16 ( 1)至图 16 (4)中给出了 ^的取值矩阵的几种实施方式。 应当理解的是, 图 16中所示的矩阵中的负值表示在 的前面加了负 号, 相当于公式 (58) 中的减去 ^乘以相应的子像素的理论亮度值。 以图 16 ( 1) 为例, G3行 S4列子像素对应的 值为 0.02, G3行 S7 列子像素对应的 N2值为 0.02,G3行 S10列子像素对应的 N3值为 0.02, G3行 S13列子像素对应的 N4值为 0.02, G3行 S16列对应的 N5值为
0.02, G5行 S4列子像素对应的 N6值为 0.02, G5行 S7列子像素对应 的 N7值为 0.02, G5行 S10列子像素对应的 N8值为 0.02, G5行 S13 列子像素对应的 N9值为 0.02,G5行 S16列子像素对应的^。值为 0.02。
可以利用上述公式 (58) 直接计算中间子像素的实际亮度值。 在计算边界子像素 (即, 第一行(m=l)、 最后一行(m=X)、 前 3 列(n 3)、第 4列至第 6列(3<n<7)、倒数第 6列至倒数第 4列(Y-6<n <Υ-3)、 后 4列(η Υ-3) ) 的亮度时, 如果上述公式 (58) 中任意一 个子像素的行数 m 0, 或者任意一个子像素的行数 m>x, 或者任意 一个子像素的列数 n>Y, 则取该子像素的理论亮度值为 0, 相应地, 该理论亮度值对应的修正系数也为 0。例如,当 m=l,6<n Y-6时, 、
T(m-1, n-6) , Ν2、 T(m-l,n-3)、 Ν3、 T(m-l,n)、 Ν4、 T(m-l,n+3)、 Ν5、 T(m-l,n+6)均为 0, 则可以利用下列公式 (59) 计算第一行中, 从第 7列到倒数第 7列各子像素的实际亮度值:
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+∑Lt. ) T (m, n) +hT (m, n+3) +gT (m, n+6) -[LJ (m+1, n-6) +L2T (m+1, n-3) +L3T (m+1, n) +L4T (m+1, n+3)+L5
T(m+1, n+6) ] (59) 其中, L相当于 N6、 L2相当于 N7、 L3相当于 N8、 L4相当于 N9、 L5 相当于 Nlfl, 0< 0.4。
/二 1
本领域技术人员可以根据公式 (58) 和公式 (59) 推算出其他 边界子像素的实际亮度值的计算公式, 这里不再赘述。
图 17是利用本发明所提供的像素阵列的第十种实施方式的驱动 方法计算第 G4行第 S10列子像素的实际亮度时, 需要用到的其他颜 色相同的子像素的分布示意图, 在本实施方式中, 所述像素阵列包括 X行 Y列子像素, 在所述步骤 S2 中, 按照下列公式 (60) 计算第 m 行第 n列子像素的实际亮度 A(m, n) : A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ^o,. ) T (m, n) +hT (m, n+3) +gT
(m, n+6) - [oiT (m-1, n-6) +o2T (m-1, n-3) +o3T (m-1, n) +o4T (m-1, n+3) +o5 T (m-1, n+6) +o6T (m+1, n-6) +o7T (m+1, n-3) +o8T (m+1, n) +o9T (m+1, n+3) +o10T (m+1, n+6) +onT (m, n-9) +o12T (m, n+9) ] (60) 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n+9) 为第 m行第 n+9列子像素的理论亮度值, T(m,n-9)为第 m行第 n_9 列子像素的理论亮度值。 T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n-3)为第 m-1 行第 n-3 列子像素的理论亮度值,
T(m-l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m-l,n+3)为第 m-1行第 n+3列子像素的理论亮度值, T(m-l,n+6)为第 m-1行第 n+6 列子像素的理论亮度值, T(m+l,n-6)为第 m+1行第 n-6列子像素的理 论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m+l,n+3)为第 m+1行第 n+3列子像素的理论亮度值, T(m+l,n+6)为第 m+1行第 n+6 列子像素的理论亮度值, g、 h、 i>0, Ol 0, 且 2g+2h+i = l, 0<∑o,. 0.4, 9<n^Y-9, l<m<X。
图 18 (1)至图 18 (4)中给出了 01的取值矩阵的几种实施方式。 应当理解的是, 图 18中所示的矩阵中的负值表示在 0l的前面加了负 号, 相当于公式 (60) 中的减去 0l乘以相应的子像素的理论亮度值。 以图 18 (1) 为例, G3行 S4列子像素对应的 0l值为 0.02, G3行 S7 列子像素对应的 o2值为 0.02,G3行 S10列子像素对应的 o3值为 0.02, G3行 S13列子像素对应的 o4值为 0.02, G3行 S16列对应的 o5值为
0.02, G5行 S4列子像素对应的 o6值为 0.02, G5行 S7列子像素对应 的 o7值为 0.02, G5行 S10列子像素对应的 o8值为 0.02, G5行 S13 列子像素对应的 o9值为 0.02,G5行 S16列子像素对应的01。值为 0.02, G4行 S1列子像素对应的 ou值为 0.02,G4行 S19列子像素对应的 o12 值为 0.02。
可以利用上述公式 (60) 直接计算中间子像素的实际亮度值。 在计算边界子像素 (即, 第一行(m=l)、 最后一行(m=X)、 前 3 列(n 3)、第 4列至第 6列(3<n<7)、倒数第 6列至倒数第 4列(Y-6<n <Υ-3)、 后 4列(η Υ-3) ) 的亮度时, 如果上述公式 (60) 中任意一 个子像素的行数 m 0, 或者任意一个子像素的行数 m>x, 或者任意 一个子像素的列数 n>Y, 则取该子像素的理论亮度值为 0, 相应地, 该理论亮度值对应的修正系数也为 0。 例如, 当 m=l, 9<n Y-9时,
01、 T(m- 1,η- 6)、 ο2、 T(m- 1,η- 3)、 ο3、 T(m- 1,η)、 ο4、 T(m- 1,η+3)、 ο5、 T(m-l,n+6)均为 0, 则可以利用下列公式 (61) 计算第一行中, 从第 10列到倒数第 9列各子像素的实际亮度值:
A(m, n)=gT(m, n - 6)+hT(m, n - 3) + (i+ jPi ) T (m, n) +hT (m, n+3)+gT (m, n+6) - [pj (m+1, n-6) +p2T (m+1, n-3) +p3T (m+1, n) +p4T (m+1, n+3) +p5
T (m+1, n+6) +p6T (m, n-9) +p7T (m, n+9) ] (61) 其中, Pi相当于 o6、 p2相当于 o7、 p3相当于 o8、 p4相当于 o9、 p5 相当于 olfl、 p6相当于 ou、 p7相当于 o12, 且 0 < ^ 0. 4。 同理, 本领域技术人员可以按照同样的方法推算出计算其他边 界子像素实际亮度值的公式, 这里不再赘述。
图 19是利用本发明所提供的像素阵列的第十一种实施方式的驱 动方法计算第 G4行第 S 10列子像素的实际亮度时, 需要用到的其他 颜色相同的子像素的分布示意图。在本实施方式中, 所述像素阵列包 括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式 (61 ) 计算第 m行第 n列子像素的实际亮度值 A (m, n): A (m, n) =gT (m, n-6) +hT (m, n- 3) + (i+ ^Ρι ) T (m, n) +hT (m, n+3) +gT
(m, n+6) - [pj (m, n-9) +p2T (m+1 , n-6) +p3T (m+2, n-3) +p4T (m+3, n) +p5T ( m+2, n+3) +p6T (m+1 , n+3) +p7T (m, n+9) +p8T (m - 1, n+6) +p9T (m - 2, n+3) +Pi 。T (m-3, n) +pnT (m - 2, n-3) +p12T (m - 1, n-6) ] ( 61 ) 其中, T (m, n-6)为第 m行第 n-6列子像素的理论亮度值, T (m, n-3) 为第 m行第 n-3列子像素的理论亮度值, T (m, n)为第 m行第 n列子像 素的理论亮度值, T (m,n+3)为第 m行第 n+3列子像素的理论亮度值, T (m,n+6)为第 m行第 n+6 列子像素的理论亮度值, T (m,n-9)为第 m 行第 n-9列子像素的理论亮度值, T (m+1 , n-6)为第 m+1行第 n-6列子 像素的理论亮度值, T (m+2,n-3)为第 m+2行第 n-3列子像素的理论亮 度值, T (m+3,n)为第 m+3行第 n列子像素的理论亮度值, T (m+2,n+3) 为第 m+2行第 n+3列子像素的理论亮度值, T (m+1 , n+3)为第 m+1行第 n+3列子像素的理论亮度值, T (m, n+9)为第 m行第 n+9列子像素的理 论亮度值, T (m-l,n+6)为第 m- 1 行第 n+6列子像素的理论亮度值, T (m-2,n+3)为第 m-2行第 n+3列子像素的理论亮度值, T (m-3, n)为第 m-3行第 n行子像素的理论亮度值, T (m-2, n-3)为第 m-2行第 n-3列 子像素的理论亮度值, T (m-l,n-6)为第 m-1行第 n-6列子像素的理论 亮度值, g、 h、 i>0, Pi^0,且 2g+2h+i = l, 0< ^Pi ^O.4, 9<n Y- 9, 3<m X - 3。
图 20 (1)至图 20 (4)中给出了 ρ^ 取值矩阵的几种实施方式。 应当理解的是, 图 20中所示的矩阵中的负值表示在 的前面加了负 号, 相当于公式 (61) 中的减去 Pl乘以相应的子像素的理论亮度值。 以图 20 (1) 为例, G4行 S1列子像素对应的 Pl值为 0.02, G5行 S4 列子像素对应的 p2值为 0.02, G6行 S7列子像素对应的 p3值为 0.02, G7行 S10列子像素对应的 p4值为 0.02, G6行 S13列对应的 p5值为 0.02, G5行 S16列子像素对应的 p6值为 0.02, G4行 S19列子像素对 应的 p7值为 0.02, G3行 S16列子像素对应的 p8值为 0.02, G2行 S13 列子像素对应的 p9值为 0.02,G1行 S10列子像素对应的 1。值为 0.02, G2行 S4列子像素对应的 pu值为 0.02, G4行 S1列子像素对应的 p12 值为 0.02。
在计算中间子像素的实际亮度值时(§ 9<11 ¥-9, 3<m X-3, 从第 4行至倒数第 4行中,从第 10列开始到第 10列之间的各子像素), 可以直接利用上述公式(61)直接计算。 在计算边界子像素的理论亮 度时, 如果上述公式 (61) 中任意一个子像素的行数 m 0, 或者任 意一个子像素的行数 m>x, 或者任意一个子像素的列数 n>Y, 则取 该子像素的理论亮度值为 0, 相应地, 该理论亮度值对应的修正系数 也为 0。例如,当 m=l, 9<n Y- 9时, p8、 T(m- 1, n+6)、 p9、 T(m- 2, n+3)、 p10、 T(m- 3,n)、 pu、 T(m- 2,n- 3)、 p12、 T (m- 1, n- 6)均为 0, 则可以利 用下列公式 (62) 计算第一行中, 从第 10列到倒数第 9列各子像素 的实际亮度值:
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ jqi ) T (m, n) +hT (m, n+3) +gT (m, n+6) - [qj (m, n - 9) +q2T (m+1, n-6) +q3T (m+2, n-3) +q4T (m+3, n) +q5T ( m+2, n+3) +q6T (m+1, n+3) +q7T (m, n+9) ] (62) 其中, Qi相当于 Pi、 Q2相当于 p2、 q3相当于 p3, q4相当于 p4, q5 相当于 p5, q6相当于 p6, q7相当于 p7, 0 < 0. 4。 同理, 本领域技术人员可以按照同样的方法推算出计算其他边 界子像素实际亮度值的公式, 这里不再赘述。
应当理解的是, 出现在不同实施方式中的相同字母代表不同的 修正系数。 而且, 不同实施方式中的各修正系数是独立的。 例如, 公 式 (52 ) 中的 j 与公式 (37 ) 中的 j 则为互相独立的。 在公式 (52 ) 中的 的取值不受公式 (37 ) 中的 的影响。
作为本发明的另一个方面, 提供一种显示面板, 该显示面板包 括本发明所提供的像素阵列。 由上文中的描述可知, 本发明所提供的 显示面板开口率高, 容易制造, 且颗粒感较低, 达到同等尺寸下具有 更高分辨率的显示面板的显示效果。
作为本发明的还一个方面, 提供一种显示装置, 该显示装置包 括本发明所提供的上述显示面板。所述显示装置可以为手机、电脑等。 所述显示装置不仅制造工艺简单, 而且颗粒感较低, 达到包括同等尺 寸下具有更高分辨率的显示面板的显示效果。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而采用 的示例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术 人员而言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和 改进, 这些变型和改进也视为本发明的保护范围。

Claims

权利要求
1. 一种像素阵列, 该像素阵列包括多个像素单元, 每个所述像 素单元包括三个颜色不同的子像素, 其特征在于, 在每个所述像素单 元中, 任意两个相邻的子像素拼成一个像素块。
2. 一种像素阵列的驱动方法, 其特征在于, 所述像素阵列为权 利要求 1中所述的像素阵列, 所述驱动方法包括:
S l、 计算待显示图片在各个子像素处的理论亮度值;
S2、 计算各个子像素的实际亮度值, 每个子像素的实际亮度值 至少包括该子像素的理论亮度值的一部分与同一行中与该子像素颜 色相同的一个或多个子像素的理论亮度值的一部分之和;
S3、 向各个子像素输入信号, 以使各个子像素达到步骤 S2中所 计算得到的实际亮度值。
3. 根据权利要求 2所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A (m, n) :
A (m, n) =aT (m, n-3) +bT (m, n) +aT (m, n+3),
其中, T (m,n)为第 m行第 n列子像素的理论亮度值, T (m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T (m,n+3)为第 m行第 n+3 列子像素的理论亮度值, 3 < n Y-3, a、 b > 0, 且 2a+b=l。
4. 根据权利要求 2所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A (m, n) :
A (m, n) =gT (m, n-6) +hT (m, n-3) +iT (m, n) +hT (m, n+3) +gT (m, n+6); 其中, T (m,n)为第 m行第 n列子像素的理论亮度值, T (m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0, 且 2g+2h+i = l, 6<n Y - 6。
5. 根据权利要求 2所述的驱动方法, 其特征在于, 在所述步骤 S2 中, 每个子像素的实际亮度值包括该子像素的理论亮度值的一部 分与同一行中与该子像素颜色相同的一个或多个子像素的理论亮度 值的一部分之和减去不同行中与该子像素颜色相同的一个或多个子 像素的理论亮度值的一部分。
6. 根据权利要求 5所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Υ列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A(m, n) : A(m, n)=aT(m, n-3) + (b+^ei ) T (m, n) +aT (m, n+3) - [ej (m-1, n-3)
+e2T (m+1, n-3) +e3T (m-1, n+3) +e4T (m+1, n+3) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值,
T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, l<m<X, 3<n Y-3, a、 b、 ei>0, 且 2a+b=l, ^ 0.4。
7. 根据权利要求 5所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A(m, n) :
A (m, n) =aT (m, n-3) + (b+^/;. )T (m, n) +aT (m, n+3) - [fj (m - 1, n-3)
+f2T (m-1, n+3) +f3T (m+1, n-3) +f4T (m+1, n+3) +f5 [T (m - 1, n) +f6T (m+1, n )];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n-3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+1, n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, l<m<X, 3<n Y- 3, a、 b、 fi>0, 2a+b=l, 4。
Figure imgf000047_0001
8. 根据权利要求 5所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A(m, n) :
A (m, n) =aT (m, n-3) + (b+ ^g,. ) T (m, n) +aT (m, n+3) - [gj (m-1, n-3
) +g2T (m+1, n-3) +g3T (m-1, n+3) +g4T (m+1, n+3) +g5T (m - 2, n) +g6T (m+2, n )];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T (m+2, n)为第 m+2行第 n 列子像素的理论亮度值, T(m-2,n)为第 m-2行第 n列子像素的理论亮 度值, 2<m X- 2, 3<n Y- 3, a、 b、 gi>0, 且 2a+b=l, 4。
9. 根据权利要求 5所述的驱动方法, 其特征在于, 所述像素阵 列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m 行第 n列子像素的实际亮度 A(m,n) :
A (m, n) =aT (m, n-3) + (b+ ^H,. ) T (m, n) +aT (m, n+3) - [HJ (m-1, n-3
) +H2T (m+1, n-3) +H3T (m-1, n+3) +H4T (m+1, n+3) +H5T (m - 2, n) +H6T (m+2, n )+H7T(m, n-6) +HJ (m, n+6) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-3)为第 m-1行第 n-3列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n+3) 为第 m+1行第 n+3列子像素的理论亮度值, T(m+1, n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n_6) 为第 m行第 n-6列子像素的理论亮度值, 2<m X-2, 6<n Y-6, a、 b、 Hi>0, 且 2a+b=l, ^^ 0· 4。
10. 根据权利要求 5 所述的驱动方法, 其特征在于, 所述像素 阵列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A (m, n):
A(m, n)=aT(m, n-3) + (b+ ^L,. ) T (m, n) +aT (m, n+3) - [LJ (m-1, n-6)
+L2T (m+1, n-6) +L3T (m-1, n+6) +LJ (m+1, n+6) +L5T (m - 2, n) +L6T (m+2, n) ]; 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m+1, n-6)为第 m+1 行第 n-6列子像素的理论亮度值, T(m+l,n+6) 为第 m+1行第 n+6列子像素的理论亮度值, T(m+l,n)为第 m+1行第 n 列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n_6) 为第 m行第 n-6列子像素的理论亮度值, T(m-2,n)为第 m-2行第 n 列子像素的理论亮度值, T(m+2,n)为第 m+2行第 n列子像素的理论亮 度值, 2<m X- 2, 6<n Y- 6, a、 b、 Li>0, 且 2a+b=l, 4。
Figure imgf000049_0001
11. 根据权利要求 5 所述的驱动方法, 其特征在于, 所述像素 阵列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A(m,n):
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ^ ,. ) T (m, n) +hT (m, n+3) +g
T (m, n+6) - [MJ (m-1, n-3) +M2T (m-1, n+3) +M3T (m+1, n-3) +M4T (m+1, n+3 )+M5T(m-l, n) +M6T (m+1, n) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m, n+6)为第 m行第 n+6列子像素的理论亮度值, g、 h、 i>0,
Figure imgf000049_0002
6<n Y— 6, l<m<X。
12. 根据权利要求 5 所述的驱动方法, 其特征在于, 所述像素 阵列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A (m, n):
10
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+∑N,- ) T (m, n) +hT (m, n+3) +gT
(m, n+6) -[NJ (m-1, n-6) +N2T (m-1, n-3) +N3T (m-1, n) +N4T (m-1, n+3)+N5 T (m-1, n+6) +N6T (m+1, n-6) +N7T (m+1, n-3) +N8T (m+1, n) +N9T (m+1, n+3) +N10T(m+l, n+6) ];
其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T(m-l,n-6) 为第 m-1行第 n-6列子像素的理论亮度值, T (m-1, n-3)为第 m-1行第 n-3列子像素的理论亮度值, T(m-l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m-l,n+3)为第 m-1 行第 n+3 列子像素的理论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m+l,n-6) 为第 m+1行第 n-6列子像素的理论亮度值, T (m+1, n-3)为第 m+1行第 n-3列子像素的理论亮度值, T(m+l,n)为第 m-1行第 n列子像素的理 论亮度值, T(m+l,n+3)为第 m+1 行第 n+3 列子像素的理论亮度值, T(m+1, n+6)为第 m+1行第 n+6列子像素的理论亮度值, g、 h、 i>0, m
10
0, 且 2g+2h+i二 1, 0< ^O.4, 6<n Y- 6, l<m<X。
13. 根据权利要求 5 所述的驱动方法, 其特征在于, 所述像素 阵列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A (m, n):
A (m, n) =gT (m, n-6) +hT (m, n-3) + (i+ ^o,. ) T (m, n) +hT (m, n+3) +gT
(m, n+6) - [oiT (m-1, n-6) +o2T (m-1, n-3) +o3T (m-1, n) +o4T (m-1, n+3) +o5 T (m-1, n+6) +o6T (m+1, n-6) +o7T (m+1, n-3) +o8T (m+1, n) +o9T (m+1, n+3)
+o10T (m+1, n+6) +onT (m, n-9) +o12T (m, n+9) ]; 其中, T(m,n)为第 m行第 n列子像素的理论亮度值, T(m,n_3) 为第 m行第 n-3 列子像素的理论亮度值, T(m,n+3)为第 m行第 n+3 列子像素的理论亮度值, T(m, n-6)为第 m行第 n-6列子像素的理论亮 度值, T(m,n+6)为第 m行第 n+6列子像素的理论亮度值, T (m, n+9) 为第 m行第 n+9列子像素的理论亮度值, T(m,n-9)为第 m行第 n_9 列子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理 论亮度值, T(m-l,n-3)为第 m-1 行第 n-3 列子像素的理论亮度值, T(m-l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m-l,n+3)为第 m-1行第 n+3列子像素的理论亮度值, T(m-l,n+6)为第 m-1行第 n+6 列子像素的理论亮度值, T(m+l,n-6)为第 m+1行第 n-6列子像素的理 论亮度值, T(m+l,n-3)为第 m+1 行第 n-3 列子像素的理论亮度值, T(m+l,n)为第 m-1 行第 n列子像素的理论亮度值, T(m+l,n+3)为第 m+1行第 n+3列子像素的理论亮度值, T(m+l,n+6)为第 m+1行第 n+6 列子像素的理论亮度值, g、 h、 i>0, Oi 0, 且 2g+2h+i = l, 0<| 0.4, 9<n Y- 9, l<m<X。
14. 根据权利要求 5 所述的驱动方法, 其特征在于, 所述像素 阵列包括 X行 Y列子像素, 在所述步骤 S2中, 按照下列公式计算第 m行第 n列子像素的实际亮度值 A (m, n): A(m, n)=gT(m, n - 6)+hT(m, n - 3) + (i+ ) T (m, n) +hT (m, n+3)+gT
(m, n+6) - [pj (m, n-9) +p2T (m+1, n-6) +p3T (m+2, n-3) +p4T (m+3, n) +p5T ( m+2, n+3) +p6T (m+1, n+6) +p7T (m, n+9) +p8T (m-1, n+6) +p9T (m - 2, n+3) +Pi 。T (m - 3, n) +P11T (m - 2, n-3) +pi2T (m-1, n-6) ];
其中, T (m, n-6)为第 m行第 n-6列子像素的理论亮度值, T (m, n-3) 为第 m行第 n-3列子像素的理论亮度值, T (m, n)为第 m行第 n列子像 素的理论亮度值, T(m,n+3)为第 m行第 n+3列子像素的理论亮度值, T(m,n+6)为第 m行第 n+6 列子像素的理论亮度值, T(m,n-9)为第 m 行第 n-9列子像素的理论亮度值, T (m+1, n-6)为第 m+1行第 n-6列子 像素的理论亮度值, T(m+2,n-3)为第 m+2行第 n-3列子像素的理论亮 度值, T(m+3,n)为第 m+3行第 n列子像素的理论亮度值, T(m+2,n+3) 为第 m+2行第 n+3列子像素的理论亮度值, T (m+1, n+6)为第 m+1行第 n+6列子像素的理论亮度值, T(m,n+9)为第 m行第 n+9列子像素的理 论亮度值, T(m-l,n+6)为第 m-1 行第 n+6列子像素的理论亮度值, T(m-2,n+3)为第 m-2行第 n+3列子像素的理论亮度值, T (m-3, n)为第 m-3行第 n行子像素的理论亮度值, T(m-2, n-3)为第 m-2行第 n-3列 子像素的理论亮度值, T(m-l,n-6)为第 m-1行第 n-6列子像素的理论 亮度值, g、 h、 i>0, Pi^0,且 2g+2h+i = l, 0<∑Pi ^O.4, 9<n Y- 9, 3<m X - 3。
15. —种显示面板, 所述显示面板包括像素阵列, 其特征在于, 所述像素阵列为权利要求 1所述的像素阵列。
16. 一种显示装置, 该显示装置包括显示面板, 其特征在于, 所述显示面板为权利要求 15所述的显示面板。
PCT/CN2014/081205 2013-12-30 2014-06-30 像素阵列及其驱动方法、显示面板和显示装置 WO2015100987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/415,947 US9773445B2 (en) 2013-12-30 2014-06-30 Pixel array, driving method thereof, display panel and display device
US15/679,290 US10388206B2 (en) 2013-12-30 2017-08-17 Pixel array, driving method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310743230.2A CN103714775B (zh) 2013-12-30 2013-12-30 像素阵列及其驱动方法、显示面板和显示装置
CN201310743230.2 2013-12-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/415,947 A-371-Of-International US9773445B2 (en) 2013-12-30 2014-06-30 Pixel array, driving method thereof, display panel and display device
US15/679,290 Continuation US10388206B2 (en) 2013-12-30 2017-08-17 Pixel array, driving method thereof, display panel and display device

Publications (1)

Publication Number Publication Date
WO2015100987A1 true WO2015100987A1 (zh) 2015-07-09

Family

ID=50407696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081205 WO2015100987A1 (zh) 2013-12-30 2014-06-30 像素阵列及其驱动方法、显示面板和显示装置

Country Status (3)

Country Link
US (2) US9773445B2 (zh)
CN (1) CN103714775B (zh)
WO (1) WO2015100987A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714775B (zh) 2013-12-30 2016-06-01 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置
CN104036710B (zh) * 2014-02-21 2016-05-04 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置
CN104375302B (zh) * 2014-10-27 2020-09-08 上海中航光电子有限公司 一种像素结构、显示面板及其像素补偿方法
CN106486055B (zh) * 2015-09-02 2021-05-18 天马微电子股份有限公司 显示装置
US11747531B2 (en) 2016-02-18 2023-09-05 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
CN111326121B (zh) * 2018-12-13 2021-11-16 京东方科技集团股份有限公司 驱动方法、驱动芯片、显示装置和存储介质
CN110137213A (zh) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构及其显示方法、显示基板
US11233096B2 (en) 2016-02-18 2022-01-25 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
JP7152917B2 (ja) * 2018-01-31 2022-10-13 Tianma Japan株式会社 表示装置及び映像フレームの相対輝度データを表示パネルの相対輝度データに変換する方法
US11574960B2 (en) 2018-02-09 2023-02-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate, display device and mask plate group
US10789875B2 (en) * 2018-03-02 2020-09-29 Xianyang Caihong Optoelectronics Technology Co., Ltd Pixel matrix display device
JP7105098B2 (ja) * 2018-05-01 2022-07-22 Tianma Japan株式会社 表示装置
CN109637420B (zh) * 2019-01-09 2022-09-02 昆山国显光电有限公司 像素排列结构、显示面板和显示装置
AU2019279968C1 (en) 2019-07-31 2021-10-28 Boe Technology Group Co., Ltd. Display substrate and preparation method thereof, display panel, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549240A (zh) * 2003-05-12 2004-11-24 胜华科技股份有限公司 显示器的像素驱动模块
CN1779510A (zh) * 2004-11-17 2006-05-31 矽创电子股份有限公司 共享式像素显示方法
US20060158466A1 (en) * 2005-01-18 2006-07-20 Sitronix Technology Corp. Shared pixels rendering display
CN103714775A (zh) * 2013-12-30 2014-04-09 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091986B2 (en) * 1997-09-13 2006-08-15 Gia Chuong Phan Dynamic pixel resolution, brightness and contrast for displays using spatial elements
US20050151752A1 (en) * 1997-09-13 2005-07-14 Vp Assets Limited Display and weighted dot rendering method
US7003176B1 (en) * 1999-05-06 2006-02-21 Ricoh Company, Ltd. Method, computer readable medium and apparatus for converting color image resolution
US7222306B2 (en) * 2001-05-02 2007-05-22 Bitstream Inc. Methods, systems, and programming for computer display of images, text, and/or digital content
JP3719590B2 (ja) * 2001-05-24 2005-11-24 松下電器産業株式会社 表示方法及び表示装置ならびに画像処理方法
KR100580624B1 (ko) * 2003-09-19 2006-05-16 삼성전자주식회사 영상 표시 방법과 장치 및 컴퓨터 프로그램을 저장하는컴퓨터로 읽을 수 있는 기록 매체
US8059082B2 (en) * 2004-03-26 2011-11-15 Koninklijke Philips Electronics N.V. Display device comprising an ajustable light source
TWI253054B (en) * 2004-10-29 2006-04-11 Chi Mei Optoelectronics Corp Color display
TWI311304B (en) * 2005-03-30 2009-06-21 Chi Mei Optoelectronics Corporatio Displaying method for an image display device and the image display device
US8508548B2 (en) * 2007-04-20 2013-08-13 Samsung Display Co., Ltd. Subpixel rendering area resample functions for display device
US20080269707A1 (en) * 2007-04-30 2008-10-30 Kimberly-Clark Worldwide, Inc. Lateral Flow Device for Attachment to an Absorbent Article
US8571261B2 (en) * 2009-04-22 2013-10-29 Checkvideo Llc System and method for motion detection in a surveillance video
KR101146992B1 (ko) * 2010-05-07 2012-05-23 삼성모바일디스플레이주식회사 평판 표시 장치 및 그의 구동 방법
EP2555189B1 (en) * 2010-11-25 2016-10-12 Goertek Inc. Method and device for speech enhancement, and communication headphones with noise reduction
US8760465B2 (en) * 2011-04-12 2014-06-24 Apple Inc. Method and apparatus to increase bit-depth on gray-scale and multi-channel images (inverse dithering)
KR101830791B1 (ko) * 2011-09-08 2018-02-22 삼성디스플레이 주식회사 유기 발광 표시 장치
CN103163697B (zh) * 2011-12-08 2015-12-09 上海天马微电子有限公司 像素阵列结构
KR102025876B1 (ko) * 2012-03-16 2019-09-27 삼성디스플레이 주식회사 데이터 렌더링 방법, 데이터 렌더링 장치, 및 이를 포함하는 표시 장치
KR101906422B1 (ko) * 2012-05-10 2018-10-10 엘지디스플레이 주식회사 화질처리방법과 이를 이용한 표시장치
JP2014060545A (ja) * 2012-09-14 2014-04-03 Sharp Corp マルチディスプレイのキャリブレーションシステム及び記録媒体
CN103529588B (zh) * 2012-11-26 2016-04-27 Tcl集团股份有限公司 一种显示面板及像素结构
US9251572B2 (en) * 2013-07-26 2016-02-02 Qualcomm Incorporated System and method of correcting image artifacts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549240A (zh) * 2003-05-12 2004-11-24 胜华科技股份有限公司 显示器的像素驱动模块
CN1779510A (zh) * 2004-11-17 2006-05-31 矽创电子股份有限公司 共享式像素显示方法
US20060158466A1 (en) * 2005-01-18 2006-07-20 Sitronix Technology Corp. Shared pixels rendering display
CN103714775A (zh) * 2013-12-30 2014-04-09 北京京东方光电科技有限公司 像素阵列及其驱动方法、显示面板和显示装置

Also Published As

Publication number Publication date
CN103714775B (zh) 2016-06-01
US20180018912A1 (en) 2018-01-18
US9773445B2 (en) 2017-09-26
US20160019825A1 (en) 2016-01-21
CN103714775A (zh) 2014-04-09
US10388206B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2015100987A1 (zh) 像素阵列及其驱动方法、显示面板和显示装置
CN108364568B (zh) 一种显示面板、显示装置及彩膜基板
JP6802066B2 (ja) 表示駆動方法と装置、サンプリング領域の生成方法と装置
US9824620B2 (en) Driving method for pixel array and display device
US10290250B2 (en) Pixel array and driving method thereof, display panel and display device
US10249259B2 (en) Method for driving a pixel array
US9672763B2 (en) Pixel array and driving method thereof, display panel and display device
US9601082B2 (en) Display substrate and driving method thereof and display device
WO2015123909A1 (zh) 显示方法和显示装置
WO2016192367A1 (zh) 阵列基板及显示装置
WO2019119580A1 (zh) 一种显示面板、显示装置及驱动方法
WO2019119581A1 (zh) 一种显示面板、显示装置及驱动方法
US9508296B2 (en) Driving method of pixel array, driving module of pixel array and display device
WO2019119579A1 (zh) 一种显示面板、显示装置及驱动方法
WO2019119578A1 (zh) 一种显示面板、显示装置及驱动方法
US9916817B2 (en) Display method of display panel, display panel and display device
CN104820326A (zh) 阵列基板、显示面板、显示装置及驱动方法
WO2019119577A1 (zh) 一种显示面板、显示装置及驱动方法
WO2013143305A1 (zh) 液晶显示器及液晶显示面板
JP2013061446A5 (ja) 画像表示装置、画像処理装置
CN110599968A (zh) 一种低色偏像素矩阵显示方法及装置
CN112447147B (zh) 液晶显示面板、显示装置及其亮度转换方法
CN204926686U (zh) 一种显示装置
WO2022193291A1 (zh) 显示基板、显示面板及图像显示方法
CN105957488A (zh) 像素阵列及其驱动方法、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14415947

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/10/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14877451

Country of ref document: EP

Kind code of ref document: A1