WO2015100735A1 - 传输控制方法、节点设备及用户设备 - Google Patents

传输控制方法、节点设备及用户设备 Download PDF

Info

Publication number
WO2015100735A1
WO2015100735A1 PCT/CN2014/070103 CN2014070103W WO2015100735A1 WO 2015100735 A1 WO2015100735 A1 WO 2015100735A1 CN 2014070103 W CN2014070103 W CN 2014070103W WO 2015100735 A1 WO2015100735 A1 WO 2015100735A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
user equipment
message
transmission
repeated
Prior art date
Application number
PCT/CN2014/070103
Other languages
English (en)
French (fr)
Inventor
蔺波
张亮亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/070103 priority Critical patent/WO2015100735A1/zh
Priority to CN201480000458.5A priority patent/CN104995945B/zh
Publication of WO2015100735A1 publication Critical patent/WO2015100735A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a transmission control method, a node device, and a user equipment.
  • LPN Low Power Node
  • HetNet Heterogenous Network
  • UE User Equipment
  • the services of the UE can be switched to these small cells to implement service shunting or make up coverage holes, thereby improving system capacity and improving users. Throughput, improve the purpose of coverage.
  • These small sites may be small base stations, micro base stations, home base stations, relay stations, and the like.
  • a UE in the challenge area can receive the downlink signal sent by the macro base station well, but cannot receive the downlink from the small cell base station (Pico).
  • Down Link, abbreviation: DL) signal In the range of the challenge area, the macro base station receives the uplink signal sent by the UE to be worse than the uplink signal sent by the Pico to the UE. Therefore, the UE can send uplink (English: Up Link, abbreviation: UL) data or uplink signaling to the Pico, which can achieve power saving and uplink throughput improvement.
  • uplink data or uplink signaling requires scheduling of downlink control signaling.
  • the downlink control signaling includes uplink scheduling information for the UE, for example, indicating on which time-frequency resource the UE sends uplink data or uplink signaling, and which data or signaling is sent. If the UE does not receive Pico's DL control to the UE well The signaling, that is, the uplink data or the uplink signaling cannot be sent well. For example, the UE cannot determine which uplink signaling or uplink data is sent on which time-frequency resource.
  • the macro base station may send downlink control signaling to the UE, where the downlink control signaling includes the uplink scheduling information of the low power base station to the UE.
  • the UE sends uplink signaling or uplink data to the low power base station according to the uplink scheduling information.
  • the Acer station needs to obtain the uplink scheduling information of the low-power base station to the UE by using the information exchanged with the low-power base station, and adds two The load between interfaces such as the X2 interface.
  • the backhaul has a delay of several tens of milliseconds (for example, 20 ms), the more times the two sites interact, the longer the delay between the two base stations is scheduled.
  • the technical problem to be solved by the present invention is how to improve the data decoding success rate of the user equipment.
  • the present invention provides a transmission control method, including: a first node sending a first message to a user equipment, where the first message is used to instruct the user equipment to receive a second node User-specific information carried by the physical channel that is repeatedly transmitted.
  • the method before the first node sends the first message to the user equipment, the method includes: The first node sends a second message to the user equipment, where the second message is used to instruct the user equipment to perform measurement on the second node;
  • the first node determines, according to the measurement report, whether the user equipment is instructed to receive the user-specific information repeatedly sent by the second node.
  • the first node is configured to:
  • the first node sends the first message to the user equipment.
  • the determining, according to the measurement report, determining whether the user equipment is configured to receive the second node repeatedly sending After the user-specific information the method further includes:
  • the sending, by the first node, the first message to the user equipment further includes:
  • the first node Determining, according to the measurement report, that the uplink transmission of the user equipment is switched to the second node, determining that the user equipment performs uplink and downlink separation transmission, or determining whether the user equipment performs D2D communication with the second node. And the first node sends the first message to the user equipment.
  • the first message is further Instructing the user equipment to accept the service of the second node, or instructing to switch the uplink transmission of the user equipment to the second node, or instructing the user equipment to perform uplink and downlink separation Transmitting, or instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate the The user equipment performs the measurement on the second node
  • the method includes: the second message is used to instruct the user equipment to perform a measurement of a repeated reception type on the second node.
  • the first node is to the user Before the device sends the first message or the second message, the method includes:
  • the repeated transmission parameter includes any one or more of the following parameters: a repeated transmission number, a start subframe, a transmission period, and a second node measurement configuration.
  • a seventh possible implementation manner of the first aspect Any one or more of a second node identifier, a repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: the number of repeated transmissions, the start subframe, the sending period, and the second node measurement configuration.
  • a node sends a third message to the second node, where the third message includes a user identifier, and the third message is used to indicate that the second node repeatedly sends the user equipment to the user equipment corresponding to the user identifier.
  • the third message includes a user identifier
  • the third message is used to indicate that the second node repeatedly sends the user equipment to the user equipment corresponding to the user identifier.
  • the information includes: any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: the number of repeated transmissions, the start subframe, the sending period, and the second node measurement configuration.
  • the measuring of the repeated receiving type includes:
  • the user equipment receives the reference signal repeatedly sent by the second speaking node, performs measurement on the reference signal, accumulates the multiple results, and feeds back the result to the first node.
  • the present invention provides a method for controlling a transmission book, comprising: receiving, by a user equipment, a first message sent by a first node, where the first message is used to instruct the user equipment to receive a physical User-specific information carried by the channel.
  • the method before the user equipment receives the first message sent by the first node, the method includes:
  • the user equipment performs measurement on the second node according to the second message; the user equipment sends a measurement report to the first node and/or the second node.
  • the first message is further used to indicate that the user equipment accepts the second node The service, or instructing to switch the uplink transmission to the second node, or instructing the user equipment to perform uplink and downlink separate transmission, or instructing the user equipment to perform D2D communication with the second node.
  • a third possible implementation manner of the second aspect Instructing the user equipment to perform measurement on the second node, specifically: the second The information is used to instruct the user equipment to perform a measurement of the repeated reception type of the second node.
  • the second message includes: And the one or more of the following parameters: the repeated transmission parameter includes any one or more of the following parameters: the number of repeated transmissions, the start subframe, and the sending The cycle and the said second node measurement configuration.
  • the present invention provides a node device, including:
  • a sending module configured to send a first book message to the user equipment, where the first message is used to instruct the user equipment to receive user-specific information carried by the physical channel repeatedly sent by the second node.
  • the sending module is further configured to: send, to the user equipment, a second message, where the second message is used to indicate the user equipment Measuring the second node;
  • the node device further includes:
  • a receiving module connected to the sending module, configured to receive a measurement report returned by the user equipment
  • a determining module configured to be connected to the receiving module, configured to determine whether the user equipment is instructed to receive the user-specific information repeatedly sent by the second node.
  • the sending module is further configured to: if the user equipment is received according to the measurement report The user-specific information repeatedly sent by the second node is sent to the user equipment.
  • the determining module is further configured to determine, according to the measurement report, whether to indicate the user equipment Uplink transmission is switched to the second node, determining whether the user equipment performs Determining the uplink/downlink transmission or determining whether the user equipment performs D2D communication with the second node; the sending module is further configured to: if it is determined according to the measurement report, that the uplink transmission of the user equipment is switched to the And determining, by the two nodes, that the user equipment performs uplink and downlink separate transmission or determines that the user equipment performs D2D communication with the second node, and sends the first message to the user equipment.
  • the first message The method is further configured to: indicate that the user equipment accepts the service of the second node, or instruct to switch the uplink transmission of the user equipment to the second node, or the book instructs the user equipment to perform uplink and downlink separate transmission, or Instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate the The user equipment performs measurement on the second node, including:
  • the second message is used to instruct the user equipment to perform a repeated reception type measurement on the second node.
  • the receiving module is further configured to receive a configuration message sent by the second node, where the configuration message includes a second node identifier and/or a repeated sending parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repeated transmission number, a start subframe, a transmission period, and a second node measurement configuration.
  • a seventh possible implementation manner of the third aspect Any one or more of a second node identifier, a repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: the number of repeated transmissions, the start subframe, the sending period, and the second node measurement configuration.
  • the sending module is further The third message is sent to the second node, where the third message includes a user identifier, and the third message is used to indicate that the second node repeatedly sends the user equipment corresponding to the user identifier.
  • the user-specific information is further provided.
  • the first message The method includes: any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: the number of repeated transmissions, the start subframe, the sending period, and the second node measurement configuration.
  • the measuring of the repeated receiving type includes:
  • the user equipment receives the reference signal repeatedly sent by the second node, performs measurement on the reference signal, accumulates the multiple results, and feeds back the result to the first node.
  • the present invention provides a user equipment, including:
  • the receiving module is configured to receive a first message sent by the first node, where the first message is used to instruct the user equipment to receive user-specific information carried by the physical channel repeatedly sent by the second node.
  • the receiving module is further configured to receive a second message that is sent by the first node, where the second message is used to indicate the The user equipment performs measurement on the second node;
  • the user equipment further includes:
  • a measuring module connected to the receiving module, configured to perform, according to the second message, the Two nodes perform measurements
  • a sending module connected to the measuring module, for sending a measurement report to the first node and/or the second node.
  • the first message is further used to indicate that the user equipment accepts the second node The service, or instructing to switch the uplink transmission to the second node, or instructing the user equipment to perform uplink and downlink split transmission, or instructing the user equipment to perform D2D communication with the second node.
  • the second message The method is used to indicate that the user equipment performs measurement on the second node, including:
  • the second message is used to instruct the user equipment to perform a repeated reception type measurement on the second node.
  • the method includes: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node measurement configuration.
  • the quality of the downlink signal it is determined that the uplink and downlink of the UE are separated, and the cooperation between the base stations is served for the UE, and the downlink control signaling is well received, which shortens the delay of the interaction information between the base stations.
  • FIG. 1 shows a flow chart of a transmission control method according to an embodiment of the present invention
  • FIG. 2 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • FIG. 3 is a flowchart showing a transmission control method according to another embodiment of the present invention.
  • FIG. 4 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • FIG. 5 is a flowchart showing a transmission control method according to another embodiment of the present invention.
  • FIG. 6 shows a flow chart of a book transfer control method according to another embodiment of the present invention.
  • FIG. 7 is a flowchart showing a transmission control method according to another embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a node device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a node device according to another embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a node device according to another embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the structure of a transmission control apparatus according to an embodiment of the present invention. detailed description
  • a UE that is in the range of a challenge area can receive the downlink signal sent by the macro base station well, but cannot receive the downlink from the small cell base station (PCO).
  • Down link, abbreviation: DL) signal Within the scope of the challenge area, the macro base station receives the uplink signal sent by the UE to be worse than the uplink signal sent by the Pico to the UE. Therefore, the UE can send uplink (English: Up Link, abbreviation: UL) data or uplink signaling to the Pico, which can save power and improve the throughput of the uplink.
  • uplink data or uplink signaling requires scheduling of downlink control signaling.
  • the downlink control signaling includes uplink scheduling information for the UE, for example, indicating which time-frequency resource book the UE sends uplink data or uplink signaling, and which data or signaling is sent. If the UE does not receive the DL control signaling of the Pico to the UE, the uplink data or the uplink signaling cannot be sent well. For example, the UE cannot determine which uplink signaling or uplink data is sent on the time-frequency resource. .
  • FIG. 1 shows a flow chart of a transmission control method according to an embodiment of the present invention.
  • the transmission control method may mainly include:
  • Step 100 The first node sends a first message to the user equipment, where the first message is used to instruct the user equipment to receive UE-specific information carried by the physical channel repeatedly sent by the second node.
  • the base station may repeatedly transmit the same content to the UE in consecutive multiple subframes in a manner of repeated transmission, thereby improving the coverage capability of the base station, so that the UE in the challenge area can receive the signaling and/or data sent by the base station.
  • the first node can be a macro base station (such as Macro), the second section
  • the point may be a low power base station (such as Pico), the Pico may be set at the edge of the Macro covered cell, and the cell under the Pico coverage may be referred to as a small cell.
  • the first node may send a first message to the UE in the challenge zone, indicating that the UE receives user-specific information carried by the physical channel repeatedly transmitted by the second node.
  • the second node is another UE. If the local UE needs to communicate with the second node, the first node may send a first message to the local UE, indicating The local UE receives user-specific information carried by the physical channel that the second node repeatedly transmits.
  • D2D Device to Device
  • the second node book may repeatedly send user-specific information carried by the physical channel, such as control signaling for scheduling the UE, an acknowledgement (ACK) message for feedback to the UE, or unacknowledged. (Nacknowledge, NACK) message, information for data sent to the UE, and the like.
  • the physical channel carrying the information repeatedly transmitted by the second node may include at least one of the following physical channels: a physical downlink control channel (PDCCH), and a physical hybrid indicator channel (Physical Hybrid-ARQ Indicator). Channel, PHICH), Physical Downlink Shared Channel (PDSCH)
  • the user-specific information carried by the physical channel that is repeatedly sent by the second node may be the same, and the user-specific information carried by the physical channel may be control signaling or data.
  • the control signaling may be a PDCCH or a PHICH, and the data may be a PDSCH.
  • the PDCCH may include uplink scheduling information of the second node to the UE, where the uplink scheduling information may be used to instruct the UE to send uplink signaling and/or uplink data to the second node.
  • the information repeatedly transmitted by the second node may be UE specific information carried by the repeatedly transmitted physical channel.
  • the user equipment specific information carried by the physical channel may be user equipment specific information carried by the second node on the PDCCH and/or the PHICH and/or the PDSCH, that is, the second node is sent to the PDCCH and/or the PHICH and/or the PDSCH.
  • the PHICH can be used to send a Hybrid Automatic Repeat Request (HARQ) ACK or NACK.
  • HARQ Hybrid Automatic Repeat Request
  • node 1 e.g., UE
  • node 2 e.g., eNB
  • node 2 e.g., eNB
  • node 1 can retransmit data to node 2 (e.g., eNB) after receiving the NACK.
  • the first message may include: any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter, where the repeated sending parameter includes the following parameters. Any one or more of the following: the number of repeated transmissions, the start subframe, the transmission period, and the second node measurement configuration.
  • the second node identifier may be a site identifier (eg, an eNB ID) of the second node, or may be an identifier of a cell of the second node, such as a cell ID, a physical cell identity (PCI), and an E - UTRAN cell global identifier (ECGI), etc.
  • the second node may be another UE in the D2D scenario, and the second node identifier may also be an identifier of the user equipment.
  • the first message may include one or more of the following parameters: a repeated receiving indication, where the repeated receiving indication may be used to instruct the UE to repeatedly receive the foregoing user-specific information repeatedly sent by the second node;
  • the repeated transmission parameter may provide a corresponding parameter to the second node, so that the second node determines the number of subframes, the start subframe, the transmission period, and the like, in which the information is repeatedly transmitted.
  • the repeated transmission parameters may include the number of repeated transmissions, the start subframe, and the transmission period.
  • the number of repeated transmissions is the number of times the same content is repeatedly transmitted, that is, the number of subframes in which the control signaling is repeatedly transmitted or the number of subframes in which the same content is repeatedly transmitted or the same content is transmitted in the repeated N subframes;
  • the start subframe indicates the Kth The subframe starts to transmit the same content, or the same content is transmitted from the K subframe of the S frame;
  • the transmission period indicates a period in which the same content is repeatedly transmitted, such as 8 ms.
  • the first message may be used to indicate that the UE receives the user-specific information carried by the physical channel repeatedly sent by the second node, and may also be: The first message is used to indicate that the user equipment receives the user-specific information carried by the physical channel that is repeatedly sent by the second node, and indicates that the uplink transmission of the user equipment is switched to the second node; or, the first The message is used to indicate that the user equipment receives user-specific information carried by the physical channel that is repeatedly sent by the second node, and indicates that the user equipment UE performs uplink and downlink separate transmission (for example, UE uplink and second node communication, downlink and first The first message is used to indicate that the user equipment receives the user-specific information carried by the physical channel repeatedly transmitted by the second node, and indicates that both the uplink and the downlink of the service of the user equipment are And being served by the second node; or, the first message
  • the first message may further include an explicit indication information, which is used to indicate that the uplink transmission of the user equipment is switched to the second node, or that the user equipment UE is uplinked and downlinked. Separate transmission (for example, the UE uplinks with the second node, and the downlink communicates with the first node), or indicates that the uplink and downlink of part or all of the user equipment are served by the second node, or indicates that the user equipment is The two nodes perform D2D communication.
  • the indication information is not included in the first message, and is also implemented in an implicit manner.
  • FIG. 2 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the same steps in Fig. 2 as those in Fig. 1 have the same functions, and a detailed description of these steps will be omitted for the sake of brevity.
  • the transmission control method may further include:
  • Step 200 The first node sends a second message to the user equipment, where the second message is used to instruct the user equipment to perform measurement on the second node.
  • the first node may first determine whether the UE needs to be instructed to receive the information repeatedly sent by the second node. In the judging process, the first node first sends a second message to the UE, instructing the UE to perform measurement on the second node. Where the measurement can be heavy The measurement of the complex reception type.
  • the second message includes: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter, where the repeated transmission parameter includes Any one or more of the following parameters: the number of repeated transmissions, the start subframe, the transmission period, and the second node measurement configuration.
  • the measuring of the repeated receiving type includes: receiving, by the user equipment, a reference signal repeatedly sent by the second node, performing measurement on the reference signal, and accumulating the measurement result multiple times (for example, ⁇ , ⁇ is a natural number greater than 0) And feeding back the accumulated measurement result to the first node.
  • the reference signal may be, for example, a Cell Reference Signal (CRS), and may be a CSI-RS (Channel-State Inf book ormation - Reference Signal).
  • K (K is a natural number greater than 0) may be the number of times corresponding to the number of repeated transmissions, or may be a network configuration (for example, a parameter configured by OAM), and K may be the same as or different from the number of repeated transmissions.
  • the parameter K may also be included in the first message or the second message sent to the UE.
  • the parameter ⁇ may be included in the configuration message that the first node receives the second node.
  • the UE may perform a repeated reception type measurement on the cell corresponding to the identity of the second node.
  • the process of the UE performing the measurement of the repeated reception type may include: the UE receiving the reference signal repeatedly sent by the second node. If the number of subframes that repeatedly send the same content included in the second message is N, the UE may weight the measurement result of the reference signals of the subframes sent by the second node, and use the obtained weighted result as one subframe. Measurement results. Then, the measurement results of the time are accumulated, and the accumulated measurement result is fed back to the first node. This makes both the measurement method and the channel demodulation method use a method of repeated reception.
  • Step 201 The first node receives a measurement report returned by the user equipment.
  • Step 202 Determine, according to the measurement report, whether the user equipment is instructed to receive the user-specific information repeatedly sent by the second node.
  • the corresponding measurement result may be obtained, and according to the measurement
  • the resulting formation measurement report is sent to the first node.
  • the first node may determine, according to the measurement report, a signal quality of the information that the UE receives the link with the second node, thereby determining whether the user equipment is instructed to receive the information repeatedly sent by the second node.
  • step 100 may specifically include the following situations:
  • Case 1 If the user equipment is received by the second node according to the measurement report, the first node sends the first message to the user equipment, specifically, the UE The two nodes send signals for measurement. If the user equipment receives the signal quality of the second node, for example, the signal book quality reaches the threshold, the first node may determine that the user equipment receives the information repeatedly sent by the second node, and sends the information to the UE. Send the first message above. For example, the UE performs RRM measurement on the second node.
  • the UE measures a reference signal (for example, a CRS reference signal) sent by the second node, and feeds back to the first node one or more of the following parameters: RSRP ( Reference Signal Receive Power), RSRQ (Reference Signal Recieved Quality), RSSI (Received Signal Strength Indicator), PMI (Precoding Matrix indicatiors), CQI (Channel Quality Indication), RI (Rank Indicator), and the like.
  • RSRP Reference Signal Receive Power
  • RSRQ Reference Signal Recieved Quality
  • RSSI Receiveived Signal Strength Indicator
  • PMI Precoding Matrix indicatiors
  • CQI Choannel Quality Indication
  • RI Rank Indicator
  • Case 2 On the basis of the case 1, if it is determined that the user equipment receives the user-specific information repeatedly sent by the second node according to the measurement report, it may further determine, according to the measurement report, whether to indicate the uplink of the user equipment. The transmission is switched to the second node, determining whether the user equipment performs uplink and downlink separate transmission, or determining whether the user equipment performs D2D communication with the second node.
  • the step 100 may further include: determining, according to the measurement report, that the uplink transmission of the user equipment is switched to the second node, determining that the user equipment performs uplink and downlink separation transmission, or determining the user equipment and the location
  • the second node performs D2D communication, and the first node sends a first message to the user equipment.
  • the uplink transmission of the UE is switched to the second node according to the measurement report determination indication (ie, the UE sends an uplink signal to the second node, and the second node receives the control signaling and/or data of the UE, and provides the uplink service for the UE. Or determining whether the UE performs the uplink and downlink split transmission according to the measurement report, that is, the uplink and downlink of the UE are served by the first node, the uplink of the handover to the UE is served by the second node, and the downlink is served by the first node.
  • the first node determines that the UE receives the signal sent by the second node according to the measurement report, the quality of the signal is good, and the uplink transmission of the UE may be determined to be switched to the second node, or the UE is determined to perform uplink and downlink separation transmission.
  • the first node may determine that all uplink and downlink of the UE are switched to the second node, that is, the uplink and downlink of the UE are served by the second node; when the UE has multiple types of services, the first node may also determine The uplink of part or all of the services of the UE (for example, part or all of the bearers) is switched to the second node, that is, the uplink of part or all of the services of the UE is served by the second node, and the downlink is served by the first node; A node may also determine to switch all uplink and downlink of some or all services of the UE to the second node, that is, the uplink and downlink of part or all of the services of the UE are served by the second node.
  • the uplink of part or all of the services of the UE for example, part or all of the bearers
  • the first node may be a certain UE, and the second node may be another UE, and the first node may determine whether to perform D2D communication with the second node according to the measurement report.
  • the first message sent by the first node to the UE may be further used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the second node, or The user equipment performs uplink and downlink separate transmission, or instructs the user equipment to perform D2D communication with the second node.
  • FIG. 3 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the same steps in Fig. 3 as those in Figs. 1 and 2 have the same functions, and a detailed description of these steps will be omitted for the sake of brevity.
  • the transmission control method may further include:
  • Step 300 The first node receives a configuration message of the second node, where the configuration message is The second node identifier and/or the repeated transmission parameter are included; wherein the repeated transmission parameter includes any one or more of the following parameters: a number of repeated transmissions, a start subframe, a transmission period, and the second node measurement Configuration.
  • the identifier of the second node may be used by the UE to determine which cell to perform the repeated reception type measurement, and the repeated transmission parameter may be used by the UE to perform repeated reception type measurement on the cell corresponding to the second node identifier.
  • the measurement of the repeated reception type and the repeated transmission parameters refer to the related description of the transmission control method in the above embodiment of the present invention, and details are not described herein again.
  • the transmission control method may further include:
  • Step 301 The first node sends a third message to the second book node, where the third message is used to instruct the second node to repeatedly send the user-specific information to the user equipment.
  • the third message may include a user identifier, so that the second node is instructed to repeatedly send the user-specific information to the user equipment corresponding to the user identifier.
  • the information that the second node repeatedly sends may repeatedly send the user-specific information carried by the physical channel, for example, control signaling for scheduling the UE, ACK/NACK for feeding back to the UE, and data for sending to the UE. Wait.
  • the physical channel carrying the information that is repeatedly sent by the second node may include at least one or more of the following: a physical downlink control channel (PDCCH), a physical hybrid indicator channel (Physical Hybrid-ARQ Indicator Channel, PHICH) ), physical downlink shared channel (Physical Downlink Shared Channel, PDSCH)
  • the user-specific information carried by the physical channel that is repeatedly sent by the second node is the same, and the user-specific information carried by the physical channel may be control signaling or data.
  • the control signaling may be a PDCCH or a PHICH (Physical Hybrid-ARQ Indicator Channel), and the data may be a PDSCH.
  • the PDCCH may include uplink scheduling information of the second node to the UE, where the uplink scheduling information may be used to instruct the UE to send uplink signaling and/or data to the second node.
  • the information repeatedly sent by the second node may be dedicated to the user equipment that repeatedly transmits the physical channel bearer. Information (UE specific information).
  • the UE-specific information carried by the physical channel may be user equipment-specific information carried by the second node on the PDCCH and/or the PHICH and/or the PDSCH, that is, the second node is in the PDCCH and/or
  • the PHICH and/or PDSCH are sent to the user to set up special information.
  • the PHICH is used to transmit HARQ ACK/NACK.
  • node 1 for example, UE is
  • the PUSCH transmits data to the node 2 (e.g., eNB), and the node 2 (e.g., eNB) transmits an ACK if the data is correctly received, and returns a NACK if the received number is incorrect.
  • node 1 e.g., UE
  • the step 301 and the step 100 may be performed at the same time, or a step may be followed by another step, and the timing relationship between the two is not limited in the embodiment of the present invention. It is also possible that, for example, after the step 301 is performed, the first node receives the reply confirmation message sent by the second node, and the first node performs step 100 to send the first message to the UE.
  • the third message may include a user identifier, such as an identifier of the UE, where the user identifier may indicate to which UE the second node repeatedly transmits information.
  • the first node sends the first message to the user equipment, and the user equipment may be instructed to receive the user-specific information carried by the physical channel repeatedly sent by the second node, which can improve the probability of successful decoding of the user equipment data.
  • Improve the downlink coverage of the second node Specifically, the second node sends information to the UE, for example, the second node sends a data packet to the UE, and the data packet is repeatedly transmitted on multiple consecutive ⁇ resources, and the UE combines data on multiple ⁇ resources to improve transmission quality. the goal of. This can improve the probability of successful decoding of the UE data and improve the downlink coverage of the second node.
  • each TTI lms, which is 1 subframe.
  • the UE may be instructed to receive user-specific information carried by the physical channel repeatedly transmitted by the second node, and may determine Instructing to switch the uplink transmission of the UE to the second node, whether to perform uplink and downlink separate transmission, and the UE sends uplink data to the second node by using information, such as uplink scheduling signaling, to improve the probability of successful decoding of the UE data, and improve the downlink of the second node. Coverage, Improve the effect of upstream throughput and so on.
  • FIG. 4 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the transmission control method may mainly include:
  • Step 110 The user equipment receives the first message sent by the first node, where the first message is used to instruct the user equipment to receive user-specific information carried by the physical channel repeatedly sent by the second node.
  • the first node may be a macro base station (such as Macro)
  • the second node may be a low power base station (such as Pico)
  • Pi said co can be set at the edge of the Macro covered cell, and covered in Pico.
  • the next cell can be called a small cell.
  • the UE in the challenge area may receive the first message sent by the first node, indicating that the UE receives the user-specific information carried by the physical channel repeatedly sent by the second node book.
  • the second node is another UE. If the local UE needs to communicate with the second node, the first node may send a first message to the local UE, indicating The local UE receives user-specific information carried by the physical channel repeatedly transmitted by the second node.
  • D2D Device to Device
  • the specific content of the user-specific information carried by the physical channel that is repeatedly sent by the second node may be referred to the related description in the foregoing embodiment of the transmission control method, and details are not described herein again.
  • the method may further include:
  • Step 210 The user equipment receives the second message sent by the first node, where the second message is used to instruct the user equipment to perform measurement on the second node.
  • Step 220 The user equipment performs measurement on the second node according to the second message.
  • Step 230 The user equipment sends a measurement report to the first node and/or the second node.
  • the first message is further used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the second node, Or instructing the user equipment to perform uplink and downlink split transmission, or instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate that the user equipment performs measurement on the second node, and the method may include: the second message is used to indicate the user The device performs a measurement of the repeated reception type on the second node.
  • the second message may include: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the said second node measurement configuration.
  • the specific description and examples of the second node, the second message, the measurement report, the repeated transmission parameter, the measurement of the repeated reception type, and the like can be referred to the related description in the foregoing embodiment of the transmission control method, and details are not described herein again.
  • the first message received by the user equipment from the first node may be used to indicate that the user equipment receives user-specific information carried by the physical channel repeatedly sent by the second node, which can improve the probability of successful decoding of the user equipment data, and improve The second node downlink coverage.
  • FIG. 5 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the first node is a macro base station (such as a Macro or an eNB), and the second node is a low-power base station (such as Pico).
  • the eNB determines that the uplink transmission of the UE can be instructed to switch to the Pico.
  • the method may include: Step 401: The Pico sends a configuration message to the eNB.
  • the configuration message may include the identifier of the Pico and/or the user equipment identifier and/or the repeated transmission parameter, where the base station identifier or the cell identifier of the Pico belongs to the identifier of the Pico.
  • repeating the parameters can include:
  • a transmission period such as a period T1 in which the same content is repeatedly transmitted
  • Step 402 The eNB sends a second message to the UE.
  • some measurement configurations may be included in the second message:
  • the identifier of the Pico is used to indicate to the UE which cell performs the measurement of the repeated reception type
  • Repeating the reception type measurement indication which is used to instruct the UE to perform the measurement of the repeated reception type.
  • Repeating the measurement of the receiving type includes: receiving, by the UE, a reference signal repeatedly sent by the second node, performing measurement on the reference signal, accumulating the measurement results multiple times (for example, K, K is a natural number greater than 0), and feeding back the accumulated measurement result To the first speaking node.
  • the reference signal may be, for example, a Cell Reference Signal (CRS), which may be a CSI-RS (Channel-State Information - Reference Signal). Book
  • Step 403 After receiving the second message of the eNB, the UE performs measurement on the Pico according to the measurement configuration in the second message. The UE can then report the measurement report to the eNB.
  • the measurement report carries a repeated reception type measurement indication, and is used to indicate that the measurement is based on a measurement of a repeated reception type.
  • the UE starts from the K subframe of the Kth subframe start/S frame, and measures the K+N subframe.
  • it may be a periodic measurement or a non-periodic.
  • the UE performs RRM measurement on a cell of the Pico by using a measurement method of repeated reception (the UE side is repeated reception, and the network side is repeated transmission), specifically, the reference signal (for example, CRS, or CSI-RS) sent by the Pico is measured. Thereby reporting the measurement report to the eNB.
  • the reference signal for example, CRS, or CSI-RS
  • the message sent by the UE to the eNB may further include an indication, which is used to indicate that the measurement result of the repeated reception type is reported.
  • Step 404 After receiving the measurement report of the UE, the eNB determines, according to the measurement report, whether to switch the uplink transmission of the UE to the Pico.
  • the eNB determines, according to the measurement report of the UE, the downlink signal quality that the UE receives the Pico.
  • the measurement report may specifically feed back signal quality such as RSRP, RSRQ, RSSI, CQI, and PMI of the reference signal, and may determine whether to switch the uplink transmission of the UE to the Pico.
  • the step 404 may be: after receiving the measurement report of the UE, the eNB may decide to switch the uplink transmission of the UE to the Pico according to the measurement report, or may decide to separate the uplink and downlink of the UE; or may further determine to indicate part or all of the UE. Radio Bearer Switch to Pico and more.
  • Step 405 If the eNB decides to switch the uplink transmission of the UE to the Pico, the eNB may send the first message to the UE, and the first message indicates that the UE receives the information repeatedly sent by the Pico, and instructs to switch the uplink transmission of the UE to the Pico.
  • FIG. 6 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the first node is a macro base station (such as a Macro or an eNB), and the second node of the book is a low-power base station (such as Pico).
  • the eNB determines whether the UE can perform uplink and downlink separation. Includes:
  • Step 500 The eNB determines, according to the measurement report of the UE, whether to separate the uplink and downlink of the UE.
  • the step 500 may be: after receiving the measurement report of the UE, the eNB may decide whether to switch the uplink transmission of the UE to the Pico according to the measurement report, or may decide to separate the uplink and downlink of the UE; or may decide to partially or completely the UE. Radio Bearer Switch to Pico and more.
  • the eNB may determine, according to the measurement report of the UE, that the UE receives the downlink signal quality of the Pico, and may determine whether to switch the uplink transmission of the UE to the Pico, or may decide to separate the uplink and downlink of the UE.
  • the step 500 can also be replaced with the step 401 to the step 404 in FIG. 4, and details are not described herein again.
  • Step 501 The eNB sends a third message to the Pico, where the third message may include any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter.
  • the third message may include a downlink repeated transmission indication (informing the Pico to use the repeated transmission mode for the downlink signal sent by the UE), and optionally including an uplink and downlink separation indication (for notifying the Pico to switch the uplink transmission of the UE to In the Pico, the third message may also include the identifier of the UE and the like.
  • the step 501 may further include the step 501A. After receiving the reply message of the pico, the eNB performs step 502. Of course, step 501A can also be performed simultaneously with step 502, or step 501A can also be performed after step 502. The invention is not limited.
  • Step 502 The eNB sends a first message to the UE, where the first message may include a downlink repeated reception indication (used to notify the UE to use the repeated reception mode for the downlink signal sent by the Pico), and optionally further includes an uplink and downlink separation indication.
  • the uplink and downlink separation indication is used to notify the UE to switch the uplink transmission of the UE to the Pico, and the first message may also be said to repeatedly send the parameter.
  • the repeated transmission parameters refer to the related description in the previous embodiment.
  • Step 503 The Pico sends the same content in consecutive N subframes, that is, repeatedly sends the user-specific information carried by the physical channel.
  • the sent content may be user-specific information carried by the physical channel, such as scheduling control signaling of the UE, such as ACK/NACK.
  • Step 504 The UE receives the control signaling of the Pico, and sends uplink signaling or uplink data to the Pico according to the control signaling.
  • Step 505 The UE receives control signaling of the eNB.
  • the control signaling can include downlink scheduling for the UE.
  • Step 506 The UE receives downlink data of the eNB according to control signaling of the eNB.
  • step 503 and step 504 Pico needs feedback after receiving the data sent by the UE.
  • the ACK/NACK is sent to the UE, and the ACK/NACK can also be repeatedly transmitted in N subframes. Pico at
  • the HARCH ACK/NACK is transmitted to the UE by repeating N subframes on the PHICH.
  • the specific Pico is sent on the time-frequency resource block.
  • the control signal is sent to the UE by means of repeated transmission. For the specific implementation, refer to step 503.
  • step 505 and step 506 may occur in any of steps 501 to 504.
  • FIG. 7 shows a flow chart of a transmission control method according to another embodiment of the present invention.
  • the first node is the base station (eNB)
  • the second node is the UE1
  • the user equipment is the UE2.
  • the method may include:
  • Step 601 The UE1 receives a configuration message from the eNB, where the configuration message may include configuration information sent by a reference signal (such as SRS).
  • a reference signal such as SRS
  • Step 602 The eNB sends a second message to the UE2, where the second message may include some measurement configurations:
  • the identifier of the UE1 (ie, the identifier of the second node, the parameter is optional) is used to indicate that the UE2 performs the measurement of the repeated reception type of the UE1. If there is no specific second node identifier in the second message, it may indicate that UE2 autonomously searches for and detects a certain UE (for example, UE1).
  • the measurement of the repeated reception type may be that the UE 1 accumulates the CRS measurement results of the "subframes of the same content repeatedly" sub-frames as a measurement result of one subframe. This keeps both the measurement method and the channel demodulation method using repeated reception.
  • Step 603 After receiving the second message, the UE2 performs measurement on the UE1 according to the measurement configuration in the second message. The UE can then report the measurement report to the eNB.
  • the measurement report carries a repeated reception type measurement indication, and is used to indicate that the measurement is based on a measurement of a repeated reception type.
  • UE2 measures K+N subframes starting from the K subframe of the Kth subframe start/Sth frame.
  • it may be a periodic measurement or a non-periodic.
  • the UE2 measures the UE1 by using a measurement method of repeated reception (the UE side is repeated reception, and the network side is repeated transmission), performs RRM measurement, and measures the reference signal (such as SRS) of the UE1.
  • the measurement report is reported to the eNB.
  • the message sent by the UE2 to the eNB may further include an indication for indicating that the measurement result of the repeated reception type is reported.
  • Step 604 The eNB determines, according to the measurement report of the UE2, that the UE2 (generally, the UE outside the coverage of the UE1 served by the macro base station Macro) and the UE1 perform D2D communication.
  • the UE2 generally, the UE outside the coverage of the UE1 served by the macro base station Macro
  • the UE1 perform D2D communication.
  • the eNB determines, according to the measurement report of the terminal UE2, that the UE2 receives the downlink signal quality of the UE1, and determines whether the UE 2 and the UE1 are to perform D2D communication.
  • Step 605 The eNB sends a third message to the UE1, where the third message may include any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter.
  • the third message may include a downlink repeated transmission indication (for notifying the UE1 to use the repeated transmission mode for the downlink signal sent by the UE2).
  • the third message further includes a D2D communication indication (indicating that the UE1 and the UE2 perform D2D communication), and the third message may further include an identifier of the UE2.
  • Step 606 The eNB sends a first message to the UE2, where the first message may include a downlink repeated reception indication (for notifying the UE2 to use the repeated reception mode for the downlink signal sent by the UE1).
  • the first message may further include a D2D communication indication (instructing UE1 and UE2 to perform D2D communication), and the first message may further include a repeated transmission parameter, where the measurement configuration of the UE1 may be included.
  • Step 607 The UE1 sends the same content in consecutive N subframes, that is, repeatedly sends the user-specific information carried by the physical channel.
  • the content to be sent may be user-specific information carried by the physical channel, for example, scheduling control signaling of UE2, for example, ACK/NACK fed back to UE2, and the like.
  • Step 608 The UE2 receives the control signaling of the UE1, and sends uplink signaling or uplink data to the UE1 according to the control signaling.
  • Step 609 The UE2 receives the control signaling of the eNB.
  • the control signaling may include scheduling for UE2.
  • Step 610 The UE2 receives the downlink data of the eNB according to the control signaling of the eNB.
  • step 609, step 610 can occur in any of steps 601 through 608.
  • the second node may be replaced by a UE, that is, a UE outside the normal coverage of the D2D served by the first node, and receiving configuration information about the D2D from the first node, Thereby, the data transmission with the UE can effectively extend the distance of the D2D communication.
  • FIG. 8 is a block diagram showing the structure of a node device according to an embodiment of the present invention.
  • the node device 700 can mainly include:
  • the sending module 710 is configured to send a first message to the user equipment, where the first message is used to instruct the user equipment to receive user-specific information (UE-specific) information carried by the second node that is repeatedly transmitted by the physical channel.
  • UE-specific user-specific information
  • the base station may repeatedly transmit the same content to the UE in consecutive multiple subframes in a manner of repeated transmission, thereby improving the coverage capability of the base station, so that the UE in the challenge area can receive the signaling and/or data sent by the base station.
  • the node device may be a macro base station (such as Macro)
  • the second node may be a low power base station (such as Pico)
  • the Pico may be set at the edge of a cell covered by the Macro.
  • the cell under the Pico coverage may be called For small cells.
  • the node device 700 may send a first message to the UE in the challenge area through the sending module 710, indicating that the UE receives user-specific information carried by the physical channel repeatedly transmitted by the second node.
  • the second node is another UE. If the local UE needs to communicate with the second node, the node device 700 may send the first to the local UE by using the sending module 710. A message instructing the local UE to receive user-specific information carried by the physical channel repeatedly transmitted by the second node.
  • D2D device to device
  • the second node may repeat the user-specific information carried by the physical channel that is sent by the second node.
  • the transmission control method in the foregoing embodiment of the present invention, and details are not described herein again.
  • the first message may include: the second node identifier, And repeating the receiving indication, the repeated sending parameter, where the one or more of the repeated sending parameters include any one or more of the following parameters: the number of repeated transmissions, the starting subframe, the sending period, and the second node Measurement configuration.
  • the first message may include: the second node identifier, And repeating the receiving indication, the repeated sending parameter, where the one or more of the repeated sending parameters include any one or more of the following parameters: the number of repeated transmissions, the starting subframe, the sending period, and the second node Measurement configuration.
  • the first message may be used to indicate that the UE receives the user-specific information carried by the physical channel that is repeatedly sent by the second node, and may also be:
  • the first message is used to indicate that the user equipment receives the user-specific information carried by the physical channel repeatedly sent by the second node, and indicates that the uplink transmission of the user equipment is switched to the second node; or
  • the first message is used to indicate that the user equipment receives user-specific information carried by the physical channel that is repeatedly sent by the second node, and indicates that the user equipment UE performs uplink and downlink separate transmission (eg, UE uplink and second node communication, downlink and Node device communication); or,
  • the first message is used to indicate that the user equipment receives the user-specific information carried by the physical channel that is repeatedly sent by the second node, and indicates that the uplink and downlink of part or all of the service of the user equipment are served by the second node; or
  • the first message is used to indicate that the user equipment receives user-specific information carried by a physical channel that is repeatedly sent by the second node, and indicates that the user equipment performs D2D communication with the second node, and thus, optionally, the first The message may further include an explicit indication information, which is used to indicate that the uplink transmission of the user equipment is switched to the second node, or to indicate that the user equipment UE performs uplink and downlink separation transmission (for example, the UE uplink and the second The node communicates, and the downlink communicates with the node device, or indicates that the uplink and downlink of part or all of the service of the user equipment are served by the second node, or indicates that the user equipment performs D2D communication with the second node.
  • the indication information is not included in the first message, and is also implemented in an implicit manner.
  • FIG. 9 shows a flow chart of a node device in accordance with another embodiment of the present invention.
  • the same components in Fig. 9 as those in Fig. 8 have the same functions, and a detailed description of these components will be omitted for the sake of brevity.
  • the sending module 810 can be configured in addition to the functions in the foregoing embodiments.
  • the second message is sent to the user equipment, and the second message is used to instruct the user equipment to perform measurement on the second node.
  • the node device 800 may first determine whether it is required to instruct the UE to receive the information repeatedly sent by the second node. During the judging process, the node device 800 first sends a second message to the UE through the sending and sending module 810, instructing the UE to perform measurement on the second node.
  • the measurement can be a measurement of a repeated reception type.
  • the second book message includes: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter, where the repeated transmission parameter Any one or more of the following parameters are included: the number of repeated transmissions, the start subframe, the transmission period, and the second node measurement configuration.
  • the measuring of the repeated receiving type includes: receiving, by the user equipment, a reference signal repeatedly sent by the second node, performing measurement on the reference signal, and accumulating the measurement results multiple times (for example, K, K is a natural number greater than 0), The accumulated measurement results are fed back to the node device.
  • the reference signal may be, for example, a Cell Reference Signal (CRS), and may be a CSI-RS (Channel-State Information - Reference Signal).
  • K ( ⁇ is a natural number greater than 0) may be the number of times corresponding to the number of repetitions, or may be a network configuration (for example, a parameter configured by ⁇ ), and may be the same as or different from the number of repeated transmissions.
  • the parameter ⁇ may also be included in the first message or the second message sent to the UE.
  • the parameter ⁇ may be included in the configuration message that the node device receives the second node.
  • the UE may perform repeated reception type measurement on the cell corresponding to the identifier of the second node.
  • the process of the UE performing the measurement of the repeated reception type may include: receiving, by the UE, the reference signal repeatedly sent by the second node. If the number of subframes that repeatedly send the same content included in the second message is N, the UE may weight the measurement result of the reference signals of the subframes sent by the second node, and use the obtained weighted result as one subframe. Measurement results. Then, the measurement of the time As a result, the accumulated measurement results are fed back to the node device 800. This makes both the measurement method and the channel demodulation method use a method of repeated reception.
  • the receiving module 820 is connected to the sending module 810, and configured to receive a measurement report returned by the user equipment;
  • the determining module 830 is connected to the receiving module 820, and configured to determine whether the user equipment is instructed to receive the user-specific information repeatedly sent by the second node.
  • the determining module 830 may determine, according to the measurement report, the signal quality of the information that the UE receives the link with the second node, thereby determining whether the user equipment is instructed to receive the second node repetition. The message sent.
  • the sending module 810 can also be configured to:
  • Case 1 If the determining module 830 determines, according to the measurement report, that the user equipment receives the user-specific information repeatedly sent by the second node, sending the first message to the user equipment.
  • the UE sends a signal to the second node, and if the user equipment receives the signal quality of the second node, for example, the signal quality reaches the threshold, the node device 800 may determine, by the determining module 830, that the user equipment receives the second.
  • the node repeats the transmitted information and sends the first message to the UE. For example, the UE performs RRM measurement on the second node.
  • the UE measures a reference signal (for example, a CRS reference signal) sent by the second node, and feeds back to the node device 800 one or more of the following parameters: RSRP (Reference) Signal Receive Power), RSRQ (Reference Signal Recieved Quality), RSSI (Received Signal Strength Indicator), PMI (Precoding Matrix indicatiors), CQI (Channel Quality Indication), RI (Rank Indicator), and the like.
  • RSRP Reference Signal Receive Power
  • RSRQ Reference Signal Recieved Quality
  • RSSI Receiveived Signal Strength Indicator
  • PMI Precoding Matrix indicatiors
  • CQI Choannel Quality Indication
  • RI Rank Indicator
  • Case 2 on the basis of case 1, if the determining module 830 determines according to the measurement report Instructing the user equipment to receive the user-specific information repeatedly sent by the second node, the determining module 830 may also be configured to:
  • the sending module 810 may be further configured to: if the determining module 830 determines, according to the measurement report, that the uplink transmission of the user equipment is switched to the second node, determining that the user equipment performs uplink and downlink separation transmission or Determining that the user equipment performs D2D communication with the second node, and sends a first message to the user equipment.
  • the determining module 830 may further determine to switch the uplink transmission of the UE to the second node according to the measurement report (ie, The UE sends an uplink signal to the second node, and the second node receives the control signaling and/or data of the UE to provide an uplink service for the UE, or determines whether the UE performs the uplink and downlink separation transmission according to the measurement report by the determining module 830.
  • the uplink and downlink of the UE are served by the node device 800, and the uplink that is handed over to the UE is served by the second node, and the downlink is served by the node device 800.
  • the determining module 830 determines that the UE receives the signal sent by the second node according to the measurement report, the quality of the signal is good, and it may be determined that the uplink transmission of the UE is switched to the second node, or the UE is determined to perform uplink and downlink separation transmission.
  • the determining module 830 may determine that all uplink and downlink of the UE are switched to the second node, that is, the uplink and downlink of the UE are served by the second node; when the UE has multiple types of services, the determining module 830 may also determine that The uplink of part or all of the services of the UE (for example, part or all of the bearers) is switched to the second node, that is, the uplink of part or all of the services of the UE is served by the second node, and the downlink is served by the node device 800; further, the determining module 830 It is also possible to determine that all the uplink and downlink of some or all services of the UE are switched to the second node, that is, the uplink and downlink of part or all of the services of the UE are served by the second node.
  • the node device 800 may be a certain UE, and the second node It may be another UE, and the determining module 830 may determine whether to perform D2D communication with the second node according to the measurement report.
  • the first message sent by the sending module 810 to the UE may be used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the In the second node, the user equipment is instructed to perform uplink and downlink separate transmission, or the user equipment is instructed to perform D2D communication with the second node.
  • FIG. 10 is a block diagram showing the structure of a node device according to another embodiment of the present invention.
  • the components in Fig. 10 having the same reference numerals as those in Figs. 8 and 9 have the same functions, and a detailed description of these components will be omitted for the sake of brevity. Book
  • the receiving module 920 of the node device 900 has the functions in the above embodiment of the present invention. It can also be configured to:
  • the configuration message includes the second node identifier and/or the repeated sending parameter, where the repeated sending parameter includes any one or more of the following parameters: The number of transmissions, the start subframe, the transmission period, and the second node measurement configuration.
  • the identifier of the second node may be used by the UE to determine which cell to perform the repeated reception type measurement, and the repeated transmission parameter may be used by the UE to perform repeated reception type measurement on the cell corresponding to the second node identifier.
  • the measurement of the repeated reception type and the repeated transmission parameters refer to the related description of the transmission control method in the above embodiment of the present invention, and details are not described herein again.
  • the transmitting module 910 of the node device 900 may be configured to: in addition to the functions in the foregoing embodiments of the present invention,
  • the third message is used to send the second node to the second node to repeatedly send the user-specific information to the user equipment.
  • the third message may include a user identifier, so that the second node is instructed to repeatedly send the user-specific information to the user equipment corresponding to the user identifier.
  • the physical channel carrying the information that is repeatedly sent by the second node may include at least one or more of the following: a physical downlink control channel (PDCCH), a physical hybrid indicator channel (Physical Hybrid-ARQ Indicator Channel, PHICH) ), physical downlink shared channel (Physical Downlink Shared Channel, PDSCH said
  • the user-specific information carried by the physical channel that is repeatedly sent by the second node is the same, and the user-specific information carried by the physical channel may be the control system signaling or the data.
  • the control signaling may be a PDCCH or a PHICH (Physical Hybrid-ARQ Indicator Channel), and the data may be a PDSCH.
  • the PDCCH may include uplink scheduling information of the second node to the UE, where the uplink scheduling information may be used to indicate that the UE sends uplink signaling and/or data to the second node.
  • the information repeatedly transmitted by the second node may be UE specific information carried by the physical channel.
  • the UE-specific information carried by the physical channel may be user equipment-specific information carried by the second node on the PDCCH and/or the PHICH and/or the PDSCH, that is, the second node is in the PDCCH and/or
  • the PHICH and/or PDSCH are sent to the user to set up special information.
  • the PHICH can be used to transmit HARQ ACK/NACK.
  • the node device 900 sends the first message to the UE through the sending module 910 and the third message to the second node, which may be performed at the same time, or may be preceded by another one, and the timing of the two is not limited in the embodiment of the present invention. relationship.
  • the node device 900 receives the reply confirmation message sent by the second node by using the receiving module 920, so that the node device 900 sends the sending module 910 to The UE sends the first message.
  • the third message may include a user identifier, such as an identifier of the UE, where the user identifier may indicate to which UE the second node repeatedly sends information.
  • the sending module sends the first message to the user equipment, and the user equipment may be instructed to receive the user-specific information carried by the physical channel repeatedly sent by the second node, which can improve the probability of successful decoding of the user equipment data, and improve the Two-node downlink coverage.
  • the second node sends information to the UE, for example, the second node sends a data packet to the UE, and the data packet is repeatedly transmitted on multiple consecutive ⁇ resources, and the UE combines data on multiple ⁇ resources to improve transmission quality. the goal of. This can improve the probability of successful decoding of the UE data and improve the downlink coverage of the second node.
  • each TTI lms, that is, 1 subframe.
  • the UE may be instructed to receive the user-specific information carried by the physical channel repeatedly transmitted by the second node, and Determining whether to indicate that the uplink transmission of the UE is switched to the second node, whether to perform uplink and downlink separate transmission, and the UE sends uplink data to the second node by using information, such as uplink scheduling signaling, to improve the probability of successful decoding of the UE data, and improve the second The downlink coverage of the node and the improvement of the uplink throughput.
  • information such as uplink scheduling signaling
  • FIG. 11 is a block diagram showing the structure of a user equipment according to another embodiment of the present invention.
  • the user equipment 1000 may mainly include:
  • the receiving module 1010 is configured to receive a first message sent by the first node, where the first message is used to instruct the user equipment to receive user-specific information carried by the physical channel repeatedly sent by the second node.
  • the first node may be a macro base station (such as Macro)
  • the second node may be a low power base station (such as Pico)
  • the Pico may be set at the edge of the Macro covered cell, under the Pico coverage.
  • a cell can be called a small cell.
  • the user equipment 1000 in the challenge area may receive the first message sent by the first node, and instruct the user equipment 1000 to receive user-specific information carried by the physical channel repeatedly sent by the second node.
  • the second node is another UE. If the local user equipment 1000 needs to communicate with the second node, the first node may send the first node to the local user equipment 1000. a message indicating that the local user equipment 1000 receives the second node User-specific information carried by the physical channel that is repeatedly transmitted.
  • D2D Device to Device
  • the specific content of the user-specific information carried by the physical channel that is repeatedly sent by the second node may be referred to the related description in the foregoing embodiment of the transmission control method, and details are not described herein again.
  • the receiving module 1010 is further configured to receive a second message sent by the first node, where the second message is used to instruct the user equipment to measure the second node. ;
  • the user equipment 1000 can also include saying:
  • the measuring module 1020 is connected to the receiving module 1010, and configured to measure the second node according to the second message;
  • the sending module 1030 is connected to the measuring module 1020, and configured to send a measurement report to the first node and/or the second node.
  • the first message is further used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the second node, Or instructing the user equipment to perform uplink and downlink split transmission, or instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate that the user equipment performs measurement on the second node
  • the method may include: the second message is used to indicate that the user equipment is configured to The two nodes perform repeated reception type measurements.
  • the second message may include: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node measurement configuration.
  • the first message received by the receiving module from the first node may be used to indicate that the user equipment receives user-specific information carried by the physical channel repeatedly sent by the second node, which can improve the probability of successful decoding of the user equipment data, and improve the probability Two-node downlink coverage.
  • FIG 12 is a block diagram showing the structure of a transmission control apparatus according to an embodiment of the present invention.
  • the transmission control device 1100 may be a host server having a computing capability, a personal computer PC, or a portable computer or terminal that can be carried.
  • the specific embodiment of the present invention does not limit the specific implementation of the computing node.
  • the transmission control device 1100 includes a processor 1110, a communication interface 1120, a memory array 1130, and a bus 1140.
  • the processor 1110, the communication interface 1120, and the memory 1130 complete communication with each other through the bus 1140.
  • the communication interface 1120 is configured to communicate with a network element, where the network element includes, for example, a virtual machine management center, shared storage, and the like.
  • the processor 1110 is for executing a program.
  • the processor 1110 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • ASIC Application Specific Integrated Circuit
  • the memory 1130 is used to store files.
  • the memory 1130 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • Memory 1130 can also be a memory array.
  • the memory 1130 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • the above program may be a program code including computer operating instructions. This program can be used to:
  • the first node sends a first message to the user equipment, where the first message is used to indicate that the user equipment receives user-specific information carried by the physical channel repeatedly sent by the second node.
  • the first node sends the first message to the user equipment. Before, including:
  • the first node sends a second message to the user equipment, where the second message is used to instruct the user equipment to perform measurement on the second node;
  • the first node sends the first message to the user equipment, including:
  • the first node sends the first message to the user equipment.
  • the method further includes:
  • Device D2D communication
  • the sending, by the first node, the first message to the user equipment further includes:
  • the first node Determining, according to the measurement report, that the uplink transmission of the user equipment is switched to the second node, determining that the user equipment performs uplink and downlink separation transmission, or determining that the user equipment performs D2D communication with the second node, The first node sends a first message to the user equipment.
  • the first message is further used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the second node, Or instructing the user equipment to perform uplink and downlink split transmission, or instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate that the user equipment is configured to The second node performs measurements, including:
  • the second message is used to instruct the user equipment to perform a repeated reception type measurement on the second node.
  • the method before the first node sends the first message or the second message to the user equipment, the method includes:
  • the first node receives the configuration message of the second node, where the configuration message includes the second node identifier and/or a repeated transmission parameter saying;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node book measurement configuration.
  • the second message includes: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node measurement configuration.
  • the method further includes:
  • the first node sends a third message to the second node, where the third message includes a user identifier, and the third message is used to indicate that the second node identifies the user equipment corresponding to the user
  • the control signaling is repeatedly transmitted.
  • the first message includes: any one or more of the second node identifier, the repeated receiving indication, and the repeated sending parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node measurement configuration.
  • the measuring of the repeated receiving type includes:
  • the user equipment receives the reference signal repeatedly sent by the second node, performs measurement on the reference signal, accumulates the multiple results, and feeds back the result to the first node.
  • the program can also be used specifically for: The user equipment receives the first message sent by the first node, where the first message is used to indicate that the user equipment receives user-specific information carried by the physical channel repeatedly sent by the second node.
  • the method before the user equipment receives the first message sent by the first node, the method includes:
  • the user equipment performs measurement on the second node according to the second saying message
  • the user equipment sends a measurement report to the first node and/or the second node.
  • the first book message is further used to indicate that the user equipment accepts the service of the second node, or that the uplink transmission of the user equipment is switched to the second node. Or instructing the user equipment to perform uplink and downlink split transmission, or instructing the user equipment to perform D2D communication with the second node.
  • the second message is used to indicate that the user equipment performs measurement on the second node, including:
  • the second message is used to instruct the user equipment to perform a repeated reception type measurement on the second node.
  • the second message includes: any one or more of the second node identifier, the repeated reception type measurement indication, and the repeated transmission parameter;
  • the repeated transmission parameter includes any one or more of the following parameters: a repetition transmission number, a start subframe, a transmission period, and the second node measurement configuration.
  • the computer software product is typically stored in a computer readable storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes a U disk, a removable hard disk, a Read-Only Memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输控制方法、节点设备及用户设备,其中,该传输控制方法包括:第一节点向用户设备发送第一消息,所述第一消息用于指示所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息。通过对下行信号质量进行判断,确定将UE的上下行进行分离,实现了基站之间协作为UE服务,很好的接收下行控制信令,缩短了基站之间交互信息产生的时延。

Description

传输控制方法、 节点设备及用户设备
技术领域
本发明涉及通信技术领域, 尤其涉及一种传输控制方法、 节点设备及用 户设备。 背景技术 说
随着移动互联网的发展, 终端用户对带宽的需求越来越高, 为了提升网 络的吞吐量和覆盖, 可以在宏基站覆盖的书小区或者小区边缘, 引入多个小型 站点即低功率站点 (英文: Low Power Node, 缩写: LPN) 构成小小区即低 功率小区。低功率站点可以布放在业务的热点区域或宏基站覆盖的空洞区域, 形成异构网络 (英文: Heterogenous Network, 缩写: HetNet)。 这样, 当用 户设备 (英文: User Equipment, 缩写: UE) 移动到这些区域时, 可以把 UE 的业务切换到这些小小区中, 实现业务的分流或者弥补覆盖的空洞, 达 到提升***容量、 提升用户吞吐量、 改善覆盖的目的。 这些小型站点可以是 小基站、 微基站、 家庭基站、 中继站等。
在异构网络中, 处在挑战区 (challenge area) 范围内的 UE可以很好地 接收到宏基站发送的下行信号,但是无法很好地接收来自小小区基站 (Pico ) 发送的下行(英文: Down Link,缩写: DL)信号。在 challenge area范围内, 宏基站接收到 UE发送的上行信号要比 Pico接收到 UE发送的上行信号质量 要差。 因此 UE可以向 Pico发送上行 (英文: Up Link, 缩写: UL) 数据或 上行信令, 能够达到节电、 提升上行吞吐量等效果。 然而, 上行数据或上行 信令的发送需要下行控制信令的调度。 具体地, 下行控制信令包括对 UE的 上行调度信息, 例如指示 UE在哪个时频资源上发送上行数据或上行信令, 发送哪些数据或者信令。 如果 UE不能很好地接收到 Pico对 UE的 DL控制 信令, 也就无法很好地发送上行数据或上行信令, 例如 UE无法确定在哪个 时频资源上发送哪些上行信令或上行数据等。因此,在 challenge area范围内 的 UE怎么很好地接收到 Pico对该 UE的调度信令、如何让处于 challenge area 范围内的 UE接受 Pico的服务(例如 UE从上下行均被宏基站 Macro服务变 为 UE的上行被 Pico服务) 是需要解决的问题。
现有技术中, 可以由宏基站发送下行控制信令给 UE, 在该下行控制信 令中包括低功率基站对 UE的上说行调度信息。 UE根据该上行调度信息向低 功率基站发送上行信令或上行数据。 但是, 这种方法, 在 UE每次向低功率 基站发送上行信令或上行数据之前, 宏基书站都需要先通过与低功率基站交互 信息获得低功率基站对 UE 的上行调度信息, 增加了两个站点之间接口如 X2接口的负荷。此外, 由于交互回路线程(backhaul)有几十毫秒的延时(如 20ms ) , 两个站点交互的次数越多, 跨基站调度的时延越长。
综上所述, 由于 UE的位置处于信号覆盖范围的边缘, 可能导致 UE的 数据解码成功率低。 发明内容
技术问题
有鉴于此, 本发明要解决的技术问题是, 如何提高用户设备的数据解码 成功率。
解决方案
为了解决上述技术问题,在第一方面,本发明提供了一种传输控制方法, 包括: 第一节点向用户设备发送第一消息, 所述第一消息用于指示所述用户 设备接收第二节点重复发送的物理信道承载的用户专用信息。
结合第一方面, 在第一方面的第一种可能的实现方式中, 在所述第一节 点向用户设备发送第一消息之前, 包括: 所述第一节点向所述用户设备发送第二消息,所述第二消息用于指示所 述用户设备对所述第二节点进行测量;
所述第一节点接收所述用户设备返回的测量报告;
所述第一节点根据所述测量报告, 确定是否指示所述用户设备接收所述 第二节点重复发送的所述用户专用信息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实 现方式中, 所述第一节点向用户说设备发送第一消息, 包括:
如果根据所述测量报告确定指示所述用户设备接收所述第二节点重复 发送的所述用户专用信息, 则所述第一节书点向所述用户设备发送所述第一消 息。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实 现方式中, 所述根据所述测量报告, 确定是否指示所述用户设备接收所述第 二节点重复发送的所述用户专用信息之后, 还包括:
所述第一节点根据所述测量报告, 确定是否指示所述用户设备的上行传 输切换到所述第二节点中、确定所述用户设备是否进行上下行分离传输或者 确定所述用户设备是否与所述第二节点进行设备到设备 D2D通信;
所述第一节点向用户设备发送第一消息, 还包括:
如果根据所述测量报告确定指示所述用户设备的上行传输切换到所述 第二节点中、确定所述用户设备进行上下行分离传输或者确定所述用户设备 是否与所述第二节点进行 D2D通信, 则所述第一节点向所述用户设备发送所 述第一消息。
结合第一方面以及第一方面的第一种至第三种可能的实现方式中的任 一种可能的实现方式, 在第一方面的第四种可能的实现方式中, 所述第一消 息还用于指示所述用户设备接受所述第二节点的服务, 或指示将所述用户设 备的上行传输切换到所述第二节点中,或指示所述用户设备进行上下行分离 传输, 或指示所述用户设备与所述第二节点进行 D2D通信。
结合第一方面的第一种至第四种可能的实现方式中的任一种可能的实 现方式, 在第一方面的第五种可能的实现方式中, 所述第二消息用于指示所 述用户设备对所述第二节点进行测量, 具体包括: 所述第二消息用于指示所 述用户设备对所述第二节点进行重复接收类型的测量。
结合第一方面的第一种至第五种可能的实现方式中的任一种可能的实 现方式, 在第一方面的第六种可能说的实现方式中, 所述第一节点向所述用户 设备发送所述第一消息或所述第二消息之前, 包括:
所述第一节点接收所述第二节点的配书置消息,所述配置消息中包括第二 节点标识和 /或重复发送参数;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和第二节点测量配置。
结合第一方面的第一种至第六种可能的实现方式中的任一种可能的实 现方式, 在第一方面的第七种可能的实现方式中, 所述第二消息中包括: 所 述第二节点标识、 重复接收类型测量指示、 所述重复发送参数中的任意一种 或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
结合第一方面以及第一方面的第一种至第七种可能的实现方式中的任 一种可能的实现方式, 在第一方面的第八种可能的实现方式中, 还包括: 所述第一节点向所述第二节点发送第三消息,所述第三消息中包括用户 标识,所述第三消息用于指示所述第二节点向所述用户标识对应的所述用户 设备重复发送所述用户专有信息。
结合第一方面以及第一方面的第一种至第八种可能的实现方式中的任 一种可能的实现方式, 在第一方面的第九种可能的实现方式中, 所述第一消 息中包括: 所述第二节点标识、 重复接收指示、 所述重复发送参数中的任意 一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
结合第一方面的第五种可能的实现方式,在第一方面的第十种可能的实 现方式中, 所述重复接收类型的测量, 包括:
所述用户设备接收所述第二说节点重复发送的参考信号,对所述参考信号 进行测量, 将多次结果累加, 反馈所述结果至所述第一节点。
在第二方面, 本发明提供了一种传输书控制方法, 包括: 用户设备接收第 一节点发送的第一消息,所述第一消息用于指示所述用户设备接收第二节点 重复发送的物理信道承载的用户专用信息。
结合第二方面, 在第二方面的第一种可能的实现方式中, 在所述用户设 备接收第一节点发送的第一消息之前, 包括:
所述用户设备接收所述第一节点发送的第二消息,所述第二消息用于指 示所述用户设备对所述第二节点进行测量;
所述用户设备根据所述第二消息, 对所述第二节点进行测量; 所述用户设备向所述第一节点和 /或所述第二节点发送测量报告。
结合第二方面以及第二方面的第一种可能的实现方式,在第二方面的第 二种可能的实现方式中,所述第一消息还用于指示所述用户设备接受所述第 二节点的服务, 或指示将上行传输切换到所述第二节点中, 或指示所述用户 设备进行上下行分离传输, 或指示所述用户设备与所述第二节点进行 D2D通 信。
结合第二方面以及第二方面的第一种和第二种可能的实现方式中的任 一种可能的实现方式, 在第二方面的第三种可能的实现方式中, 所述第二消 息用于指示所述用户设备对所述第二节点进行测量, 具体包括: 所述第二消 息用于指示所述用户设备对所述第二节点进行重复接收类型的测量。
结合第二方面的第一种至第三种可能的实现方式中的任一种可能的实 现方式, 在第二方面的第四种可能的实现方式中, 所述第二消息中包括: 所 述第二节点标识、 重复接收类型测量指示、 重复发送参数中的任意一种或多 种; 其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述说第二节点测量配置。
在第三方面, 本发明提供了一种节点设备, 包括:
发送模块, 用于向用户设备发送第一书消息, 所述第一消息用于指示所述 用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述发送模块 还被配置为, 向所述用户设备发送第二消息, 所述第二消息用于指示所述用 户设备对第二节点进行测量;
所述节点设备还包括:
接收模块, 与所述发送模块相连接, 用于接收所述用户设备返回的测量 报告;
确定模块, 与所述接收模块相连接, 用于确定是否指示所述用户设备接 收所述第二节点重复发送的所述用户专用信息。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实 现方式中, 所述发送模块还被配置为, 如果根据所述测量报告确定指示所述 用户设备接收所述第二节点重复发送的所述用户专用信息, 则向所述用户设 备发送所述第一消息。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实 现方式中, 所述确定模块还被配置为, 根据所述测量报告, 确定是否指示所 述用户设备的上行传输切换到所述第二节点中、确定所述用户设备是否进行 上下行分离传输或者确定所述用户设备是否与所述第二节点进行 D2D通信; 所述发送模块还被配置为, 如果根据所述测量报告确定指示所述用户设 备的上行传输切换到所述第二节点中、确定所述用户设备进行上下行分离传 输或者确定所述用户设备与所述第二节点进行 D2D通信, 则向所述用户设备 发送所述第一消息。
结合第三方面以及第三方面的第一种至第三种可能的实现方式中的任 一种可能的实现方式, 在第三方面说的第四种可能的实现方式中, 所述第一消 息还用于指示所述用户设备接受所述第二节点的服务, 或指示将所述用户设 备的上行传输切换到所述第二节点中,或书指示所述用户设备进行上下行分离 传输, 或指示所述用户设备与所述第二节点进行 D2D通信。
结合第三方面的第一种至第四种可能的实现方式中的任一种可能的实 现方式, 在第三方面的第五种可能的实现方式中, 所述第二消息用于指示所 述用户设备对所述第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
结合第三方面的第一种至第五种可能的实现方式中的任一种可能的实 现方式,在第三方面的第六种可能的实现方式中,所述接收模块还被配置为, 接收所述第二节点发送的配置消息, 所述配置消息中包括第二节点标识和 / 或重复发送参数;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和第二节点测量配置。
结合第三方面的第一种至第六种可能的实现方式中的任一种可能的实 现方式, 在第三方面的第七种可能的实现方式中, 所述第二消息中包括: 所 述第二节点标识、 重复接收类型测量指示、 所述重复发送参数中的任意一种 或多种; 其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
结合第三方面以及第三方面的第一种至第七种可能的实现方式中的任 一种可能的实现方式, 在第三方面的第八种可能的实现方式中, 所述发送模 块还被配置为, 向所述第二节点发送第三消息, 所述第三消息中包括用户标 识,所述第三消息用于指示所述第二节点向所述用户标识对应的所述用户设 备重复发送所述用户专有信息。 说
结合第三方面以及第三方面的第一种至第八种可能的实现方式中的任 一种可能的实现方式, 在第三方面的第九书种可能的实现方式中, 所述第一消 息中包括: 所述第二节点标识、 重复接收指示、 所述重复发送参数中的任意 一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
结合第三方面的第五种可能的实现方式,在第三方面的第十种可能的实 现方式中, 所述重复接收类型的测量, 包括:
所述用户设备接收所述第二节点重复发送的参考信号,对所述参考信号 进行测量, 将多次结果累加, 反馈所述结果至所述第一节点。
在第四方面, 本发明提供了一种用户设备, 包括:
接收模块, 用于接收第一节点发送的第一消息, 所述第一消息用于指示 所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述接收模块 还被配置为, 接收所述第一节点发送的第二消息, 所述第二消息用于指示所 述用户设备对所述第二节点进行测量;
所述用户设备还包括:
测量模块, 与所述接收模块相连接, 用于根据所述第二消息, 对所述第 二节点进行测量;
发送模块,与所述测量模块相连接,用于向所述第一节点和 /或所述第二 节点发送测量报告。
结合第四方面以及第四方面的第一种可能的实现方式,在第四方面的第 二种可能的实现方式中,所述第一消息还用于指示所述用户设备接受所述第 二节点的服务, 或指示将上行传输切换到所述第二节点中, 或指示所述用户 设备进行上下行分离传输, 或指示说所述用户设备与所述第二节点进行 D2D通 信。
结合第四方面以及第四方面的第一书种和第二种可能的实现方式中的任 一种可能的实现方式, 在第四方面的第三种可能的实现方式中, 所述第二消 息用于指示所述用户设备对所述第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
结合第四方面以及第四方面的第一种至第三种可能的实现方式中的任 一种可能的实现方式, 在第四方面的第四种可能的实现方式中, 所述第二消 息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参数中的 任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
有益效果
通过对下行信号质量进行判断, 确定将 UE的上下行进行分离, 实现了 基站之间协作为 UE服务, 很好的接收下行控制信令, 缩短了基站之间交互 信息产生的时延。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方 面将变得清楚。 附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了 本发明的示例性实施例、 特征和方面, 并且用于解释本发明的原理。
图 1示出根据本发明一实施例的传输控制方法的流程图;
图 2示出根据本发明另一实施例的传输控制方法的流程图;
图 3示出根据本发明另一实施例的传输控制方法的流程图;
图 4示出根据本发明另一实施说例的传输控制方法的流程图;
图 5示出根据本发明另一实施例的传输控制方法的流程图;
图 6示出根据本发明另一实施例的传书输控制方法的流程图;
图 7示出根据本发明另一实施例的传输控制方法的流程图;
图 8示出根据本发明一实施例的节点设备的结构框图;
图 9示出根据本发明另一实施例的节点设备的结构框图;
图 10示出根据本发明另一实施例的节点设备的结构框图;
图 11示出根据本发明一实施例的用户设备的结构框图;
图 12示出根据本发明一实施例的传输控制装置的结构框图。 具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、 特征和方面。 附 图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施 例的各种方面, 但是除非特别指出, 不必按比例绘制附图。
在这里专用的词"示例性 "意为 "用作例子、 实施例或说明性"。 这里作为 "示例性"所说明的任何实施例不必解释为优于或好于其它实施例。
另外, 为了更好的说明本发明, 在下文的具体实施方式中给出了众多的 具体细节。 本领域技术人员应当理解, 没有某些具体细节, 本发明同样可以 实施。 在另外一些实例中, 对于本领域技术人员熟知的方法、 手段、 元件和 电路未作详细描述, 以便于凸显本发明的主旨。
在异构网络中, 处在挑战区 (challenge area)范围内的 UE可以很好地接 收到宏基站发送的下行信号, 但是无法很好地接收来自小小区基站 (Pco ) 发送的下行(英文: Down link, 缩写: DL)信号。在 challenge area范围内, 宏基站接收到 UE发送的上行信号要比 Pico接收到 UE发送的上行信号质量要 差。 因此 UE可以向 Pico发送上行 (英文: Up Link, 缩写: UL) 数据或上行 信令, 能够达到节电、 提升上行吞说吐量等效果。 然而, 上行数据或上行信令 的发送需要下行控制信令的调度。 具体地, 下行控制信令包括对 UE的上行 调度信息, 例如指示 UE在哪个时频资源书上发送上行数据或上行信令, 发送 哪些数据或者信令。 如果 UE不能很好地接收到 Pico对 UE的 DL控制信令, 也 就无法很好地发送上行数据或上行信令, 例如 UE无法确定在哪个时频资源 上发送哪些上行信令或上行数据等。 因此, 在 challenge area范围内的 UE怎么 很好地接收到 Pico对该 UE的调度信令、如何让处于 challenge area范围内的 UE 接受 Pico的服务 (例如 UE从上下行均被宏基站 Macro服务变为 UE的上行被 Pico服务) 是需要解决的问题。
图 1示出根据本发明一实施例的传输控制方法的流程图。 如图 1所示, 该 传输控制方法主要可以包括:
步骤 100、 第一节点向用户设备发送第一消息, 所述第一消息用于指示 所述用户设备接收第二节点重复发送的物理信道承载的用户专用 (UE- specific) 信息。
例如, 在异构网络中, 在 UE处在挑战区即基站覆盖范围的边缘时, 与 基站的距离比较远,无法很好地接收基站发送的信令和 /或数据。在这种情况 下, 基站可以采用重复发送的方式在连续多个子帧内向 UE重复发送相同的 内容, 提高基站的覆盖能力, 使得在挑战区的 UE可以接收到基站发送的信 令和 /或数据。 在异构网络中, 第一节点可以是宏基站 (如 Macro ) , 第二节 点可以是低功率基站 (如 Pico), Pico可以设置在 Macro覆盖的小区的边缘, 在 Pico覆盖下的小区可以称之为小小区。 第一节点可以向处在挑战区的 UE 发送第一消息, 指示该 UE接收第二节点重复发送的物理信道承载的用户专 用 (UE- specific) 信息。
再如, 在设备到设备 (Device to Device, D2D) 通信的场景中, 第二节 点是另一个 UE, 如果本地 UE需要与第二节点通信, 第一节点可以向本地 UE 发送第一消息, 指示本地 UE接收说第二节点重复发送的物理信道承载的用户 专用信息。
在一种可能的实现方式中,第二节点书可以重复发送物理信道承载的用户 专用信息,例如用于调度 UE的控制信令、用于给 UE反馈的确认(acknowledge, ACK)消息或未确认(Nacknowledge, NACK)消息、 用于给 UE发送的数据 的信息等。 具体地, 承载第二节点重复发送的信息的物理信道至少可以包括 以下物理信道的一种或者多种: 物理下行控制信道 (Physical Downlink Control Channel, PDCCH)、物理混合指示信道(Physical Hybrid- ARQ Indicator Channel, PHICH), 物理下行共享信道 (Physical Downlink Shared Channel, PDSCH
具体地,第二节点重复发送的物理信道承载的用户专用信息可以是相同 的,该物理信道承载的用户专用信息可以是控制信令,也可以是数据。其中, 控制信令可以是 PDCCH或 PHICH, 数据可以是 PDSCH。 PDCCH中可以包括 第二节点对 UE的上行调度信息, 该上行调度信息可以用于指示 UE向第二节 点发送上行信令和 /或上行数据。例如第二节点重复发送的信息可以是重复发 送的物理信道承载的用户设备专用信息(UE specific information )。该物理信 道承载的用户设备专用信息可以是第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH上承载的用户设备专用信息, 也就是说第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH发送给用户设备的专用信息。 PHICH可以用于发送混合自动重传请求 (Hybrid Automatic Repeat Request , HARQ ) ACK或 NACK。 例如, 节点 1 (例如 UE)在 PDSCH上发 送数据给节点 2 (例如 eNB ), 节点 2 (例如 eNB )如果正确接收到该数据就发 送 ACK, 如果接收数据不正确, 则反馈 NACK。 由此节点 1 (例如 UE) 在收 到 NACK后, 可以重传数据给节点 2 (例如 eNB )。
在一种可能的实现方式中, 第一消息中可以包括: 所述第二节点标识、 重复接收指示、 重复发送参数中说的任意一种或多种; 其中, 所述重复发送参 数包括下列参数的任意一种或多种: 重复发送次数、 开始子帧、 发送周期和 所述第二节点测量配置。 具体地, 第二节书点标识可以是第二节点的站点标识 (例如 eNB ID), 也可以是第二节点的小区的标识, 例如 cell ID、 物理小区 标识 (Physical cell Identity, PCI ) , E-UTRAN小区全局标识符 (cell global identifier, ECGI)等。 此外, 在 D2D场景下第二节点可以是另一个 UE, 此时 该第二节点标识还可以是用户设备的标识。
进一步地, 在第一消息中可以包括以下参数中的一种或者多种: 重复接 收指示, 该重复接收指示可以用于指示 UE重复地接收第二节点重复发送的 上述用户专用信息; 重复发送参数, 该重复发送参数可以为第二节点提供相 应的参数, 以使得第二节点确定重复发送信息的子帧个数、 开始子帧、 发送 周期等。 具体地, 重复发送参数中可以包括重复发送次数、 开始子帧、 发送 周期。 重复发送次数为重复发送相同内容的次数, 即重复发送控制信令的子 帧个数或者重复发送相同的内容的子帧个数或者重复 N子帧发送相同的内容; 开始子帧表示从第 K子帧开始发送相同的内容, 或者从第 S帧的 K子帧开始发 送相同的内容; 发送周期表示重复发送相同内容的周期, 如 8ms重复一次。
上述参数配置可以适用于本发明所有实施例,后续实施例不再重复描述。 在一种可能的实现方式中, 所述第一消息可以用于指示 UE接收第二节 点重复发送的物理信道承载的用户专用信息, 还可以是: 所述第一消息用于指示所述用户设备接收第二节点重复发送的物理信 道承载的用户专用信息, 并且指示将所述用户设备的上行传输切换到第二节 点中; 或者, 所述第一消息用于指示所述用户设备接收第二节点重复发送的 物理信道承载的用户专用信息, 并且指示将所述用户设备 UE进行上下行分 离传输 (例如 UE上行与第二节点通信, 下行与第一节点通信); 或者, 所述 第一消息用于指示所述用户设备接收第二节点重复发送的物理信道承载的 用户专用信息, 并且指示将所述用说户设备部分或者全部业务的上下行均被第 二节点服务; 或者, 所述第一消息用于指示所述用户设备接收第二节点重复 发送的物理信道承载的用户专用信息, 并书且指示将所述用户设备与第二节点 进行 D2D通信。
由此, 可选地, 第一消息中还可以包含一个显式的指示信息, 用于指示 将所述用户设备的上行传输切换到第二节点中, 或者指示将所述用户设备 UE进行上下行分离传输 (例如 UE上行与第二节点通信, 下行与第一节点通 信), 或者指示将所述用户设备部分或者全部业务的上下行均被第二节点服 务, 或者指示将所述用户设备与第二节点进行 D2D通信。 当然, 第一消息中 不包含该指示信息, 通过隐式的方式也是可以实现的。
图 2示出根据本发明另一实施例的传输控制方法的流程图。 图 2中标号与 图 1相同的步骤具有相同的功能,为简明起见,省略对这些步骤的详细说明。
如图 2所示, 图 2所示的传输控制方法与图 1所示传输控制方法的主要区 别在于, 在步骤 100之前, 该传输控制方法还可以包括:
步骤 200、 第一节点向所述用户设备发送第二消息, 所述第二消息用于 指示所述用户设备对第二节点进行测量。
具体地, 在第一节点向 UE发送第一消息之前, 第一节点可以先判断是 否需要指示 UE接收第二节点重复发送的信息。 在判断过程中, 第一节点先 向 UE发送第二消息, 指示 UE对第二节点进行测量。 其中, 该测量可以为重 复接收类型的测量。
在一种可能的实现方式中, 所述第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种; 其中, 所述重 复发送参数包括下列参数的任意一种或多种: 重复发送次数、 开始子帧、 发 送周期和所述第二节点测量配置。 所述重复接收类型的测量, 包括: 所述用 户设备接收第二节点重复发送的参考信号, 对所述参考信号进行测量, 将多 次(例如 Κ,Κ为大于 0的自然数)说测量结果累加, 反馈累加的测量结果至所述 第一节点。其中,参考信号,例如可以是小区参考信号( Cell Reference Signal, CRS ), 可以是 CSI-RS ( Channel-State Inf书ormation - Reference Signal )。
具体地, K (K为大于 0的自然数) 可以是重复发送次数对应的次数, 还 可以是网络配置 (例如通过 OAM配置的参数), K可以和重复发送次数相同 或者不同。 给 UE发送的第一消息或者第二消息中, 还可以包含该参数 K。
所述第一节点接收所述第二节点的配置消息中可以包含该参数 Κ。
例如, UE可以对该第二节点的标识对应的小区进行重复接收类型的测 量。 其中, UE某一次进行重复接收类型的测量的过程可以包括: UE接收第 二节点重复发送的参考信号。若第二消息中包括的重复发送相同内容的子帧 个数为 N, UE可以将对第二节点发送的 Ν个子帧的参考信号的测量结果进行 加权, 并将得到的加权结果作为一个子帧的测量结果。 然后, 将 Κ次的测量 结果累加, 反馈累加的测量结果给第一节点。 这样可以使得测量方法和信道 解调方法都是使用重复接收的方法。
步骤 201、 所述第一节点接收所述用户设备返回的测量报告;
步骤 202、 根据所述测量报告, 确定是否指示用户设备接收第二节点重 复发送的所述用户专用信息。
具体地, UE根据第二消息的指示以及第二消息中包括的参数对第二节 点进行重复接收类型的测量之后, 可以得到相应的测量结果, 并根据该测量 结果形成测量报告发送至第一节点。 第一节点接收到测量报告后, 可以根据 测量报告确定 UE接收到与第二节点之间链路的信息的信号质量, 从而确定 是否指示用户设备接收第二节点重复发送的信息。
在一种可能的实现方式中, 在步骤 202之后, 步骤 100具体可以包括以下 情况:
情况一、如果根据所述测量报告确定指示用户设备接收第二节点重复发 送的所述用户专用信息, 则所述第说一节点向所述用户设备发送所述第一消息 具体地, UE对第二节点发送信号进行测量, 如果用户设备接收到第二 节点的信号质量达到一定要求, 例如信号书质量达到门限, 那么第一节点可以 确定指示用户设备接收第二节点重复发送的信息, 并向 UE发送上述第一消 息。 例如, UE对第二节点进行 RRM测量, 具体地, UE对第二节点发送的参 考信号 (例如是 CRS参考信号)进行测量, 向第一节点反馈以下参数的一种 或者多禾中: RSRP ( Reference Signal Receive Power) , RSRQ ( Reference Signal Recieved Quality ) , RSSI (received signal strength indicator) , PMI ( Precoding matrix indicatiors ), CQI ( Channel Quality Indication ), RI(Rank indicator)等。
情况二、 在情况一的基础上, 如果根据所述测量报告确定指示用户设备 接收第二节点重复发送的所述用户专用信息, 还可以根据所述测量报告, 确 定是否指示所述用户设备的上行传输切换到第二节点中、确定所述用户设备 是否进行上下行分离传输或者确定所述用户设备是否与所述第二节点进行 D2D通信。
然后, 步骤 100还可以包括: 如果根据所述测量报告确定指示所述用户 设备的上行传输切换到所述第二节点中、确定所述用户设备进行上下行分离 传输或者确定所述用户设备与所述第二节点进行 D2D通信, 则所述第一节点 向所述用户设备发送第一消息。
具体地, 在异构网络的场景中, 在第一节点接收到测量报告之后, 还可 以根据测量报告确定指示将 UE的上行传输切换到第二节点中 (即变为 UE发 送上行信号给第二节点, 由第二节点接收 UE的控制信令和 /或数据, 为 UE提 供上行服务); 或者根据测量报告确定 UE是否进行上下行分离传输, 即将 UE 的上下行从被第一节点服务, 切换到 UE的上行被第二节点服务、 下行被第 一节点服务。 如果第一节点根据测量报告, 确定 UE接收到第二节点发送的 信号, 该信号质量较好, 可以确定将 UE的上行传输切换到第二节点中, 或 者确定 UE进行上下行分离传输。说其中, 第一节点可以确定将 UE的上下行全 部却换到第二节点中, 即 UE的上下行均被第二节点服务; 在 UE存在多种类 型的业务时, 第一节点也可以确定将 UE书的部分或者全部业务 (例如部分或 者全部承载 bearer) 的上行切换到第二节点中, 即 UE的部分或者全部业务的 上行被第二节点服务, 下行被第一节点服务; 此外, 第一节点还可以确定将 UE的部分或者全部业务的上下行全部切换到第二节点中, 即 UE的部分或者 全部业务的上下行均被第二节点服务。
此外, 在 D2D通信的场景中, 第一节点可以是某一个 UE, 第二节点可以 是另一个 UE,第一节点可以根据测量报告确定是否与第二节点进行 D2D通信 因此, 对于上述的情况二, 第一节点向 UE发送的第一消息还可以用于 指示所述用户设备接受所述第二节点的服务,或指示将所述用户设备的上行 传输切换到所述第二节点中, 或指示所述用户设备进行上下行分离传输, 或 指示所述用户设备与所述第二节点进行 D2D通信。
图 3示出根据本发明另一实施例的传输控制方法的流程图。 图 3中标号与 图 1和图 2相同的步骤具有相同的功能, 为简明起见, 省略对这些步骤的详细 说明。
如图 3所示, 图 3所示的传输控制方法与图 1、 图 2所示传输控制方法的主 要区别在于, 在步骤 100或步骤 200之前, 该传输控制方法还可以包括:
步骤 300、 所述第一节点接收所述第二节点的配置消息, 所述配置消息 中包括所述第二节点标识和 /或重复发送参数;其中,所述重复发送参数包括 下列参数的任意一种或多种: 重复发送次数、 开始子帧、 发送周期和所述第 二节点测量配置。
其中, 第二节点的标识可以用于后续 UE确定对哪个小区进行重复接收 类型的测量, 重复发送参数可以用于 UE对第二节点标识对应的小区进行重 复接收类型的测量。重复接收类型的测量以及重复发送参数的具体示例可以 参见本发明上述实施例中传输控说制方法的相关描述, 在此不再赘述。
进一步地, 该传输控制方法还可以包括:
步骤 301、 所述第一节点向所述第二书节点发送第三消息, 所述第三消息 用于指示所述第二节点向所述用户设备重复发送所述用户专用信息。具体地, 所述第三消息中可以包括用户标识, 以便于指示所述第二节点向所述用户标 识对应的所述用户设备重复发送所述用户专用信息。
其中第二节点重复发送的信息:第二节点可以重复发送物理信道承载的 用户专用信息,例如用于调度 UE的控制信令,用于给 UE反馈的 ACK/NACK, 用于给 UE发送的数据等。 承载第二节点重复发送的所述信息的物理信道至 少可以包括以下的一种或者多种: 物理下行控制信道 (Physical Downlink Control Channel, PDCCH)、物理混合指示信道(Physical Hybrid- ARQ Indicator Channel, PHICH)、 物理下行共享信道 (Physical Downlink Shared Channel, PDSCH
具体地, 第二节点重复发送的物理信道承载的用户专用信息是相同的, 该物理信道承载的用户专用信息可以是控制信令, 也可以是数据。 其中, 例 如控制信令可以是 PDCCH或 PHICH( Physical Hybrid- ARQ Indicator Channel), 数据可以是 PDSCH。 PDCCH中可以包括第二节点对 UE的上行调度信息, 该 上行调度信息可以用于指示 UE向第二节点发送上行信令和 /或数据。 例如第 二节点重复发送的所述信息可以是重复发送物理信道承载的用户设备专用 信息(UE specific information )。所述物理信道承载的用户设备专用信息(UE specific information), 可以是第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH上 承载的用户设备专用信息, 也就是说第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH发送给用户设别的专用信息。
PHICH用于发送 HARQ ACK/NACK。 具体地, 节点 1 (例如 UE) 在
PUSCH上发送数据给节点 2 (例如 eNB ) , 节点 2 (例如 eNB ) 如果正确接收 到数据就发送 ACK, 如果接收数说据不正确, 则反馈 NACK。 由此节点 1 (例 如 UE) 在收到 NACK后, 可以重传数据给节点 2 (例如 eNB )。
具体地, 步骤 301与步骤 100可以同时书执行, 也可以某一个步骤在先另外 一个步骤在后, 本发明实施例中不限定二者的时序关系。 还可以是, 例如步 骤 301执行后, 第一节点接收到第二节点发送的回复确认消息, 由此第一节 点执行步骤 100发送第一消息给 UE。 其中, 第三消息可以包括用户标识, 例 如 UE的标识, 该用户标识可以指示第二节点向哪一个 UE重复发送信息。
本实施例的传输控制方法, 第一节点向用户设备发送第一消息, 可以指 示所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息, 能 够提高用户设备数据解码成功的概率,提高第二节点下行覆盖范围。具体地, 第二节点向 UE发送信息, 例如第二节点向 UE发送一个数据包, 该数据包在 连续多个 ΤΉ资源上重复进行传输, UE将多个 ΤΉ资源上的数据合并达到提 高传输质量的目的。 这样可以提高 UE数据解码成功的概率, 提高第二节点 下行覆盖范围。 这里每个 TTI=lms, 也就是 1个子帧。
例如, 在异构网络的场景中, 通过测量处在挑战区的 UE接收到第二节 点发送信号的信号质量, 可以指示 UE接收第二节点重复发送的物理信道承 载的用户专用信息, 并且可以确定指示将 UE的上行传输切换至第二节点中、 是否进行上下行分离传输, UE通过信息如上行调度信令向第二节点发送上 行数据, 达到提高 UE数据解码成功的概率, 提高第二节点下行覆盖范围、 提升上行吞吐量等效果。
图 4示出根据本发明另一实施例的传输控制方法的流程图。 如图 4所示, 该传输控制方法主要可以包括:
步骤 110、 用户设备接收第一节点发送的第一消息, 所述第一消息用于 指示所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
具体地, 在异构网络中, 第一节点可以是宏基站(如 Macro), 第二节点 可以是低功率基站 (如 Pico), Pi说co可以设置在 Macro覆盖的小区的边缘, 在 Pico覆盖下的小区可以称之为小小区。处在挑战区的 UE可以接收第一节点发 送的第一消息, 指示该 UE接收第二节点书重复发送的物理信道承载的用户专 用信息。
再如, 在设备到设备 (Device to Device, D2D) 通信的场景中, 第二节 点是另一个 UE, 如果本地 UE需要与第二节点通信, 第一节点可以向本地 UE 发送第一消息, 指示本地 UE接收第二节点重复发送的物理信道承载的用户 专用信息。
其中,第二节点重复发送的物理信道承载的用户专用信息的具体内容可 以参见上述传输控制方法实施例中的相关描述, 在此不再赘述。
在一种可能的实现方式中, 在步骤 110之前, 还可以包括:
步骤 210、 用户设备接收所述第一节点发送的第二消息, 所述第二消息 用于指示所述用户设备对第二节点进行测量;
步骤 220、 用户设备根据所述第二消息, 对所述第二节点进行测量; 步骤 230、 用户设备向所述第一节点和 /或第二节点发送测量报告。
在一种可能的实现方式中,所述第一消息还用于指示所述用户设备接受 所述第二节点的服务,或指示将所述用户设备的上行传输切换到所述第二节 点中, 或指示所述用户设备进行上下行分离传输, 或指示所述用户设备与所 述第二节点进行 D2D通信。 在一种可能的实现方式中, 在步骤 210中, 所述第二消息用于指示所述 用户设备对所述第二节点进行测量, 具体可以包括: 所述第二消息用于指示 所述用户设备对所述第二节点进行重复接收类型的测量。
在一种可能的实现方式中, 所述第二消息中可以包括: 所述第二节点标 识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述说第二节点测量配置。
具体地, 第二节点、 第二消息、 测量报告、 重复发送参数、 重复接收类 型的测量等的具体解释与示例可以参见书上述传输控制方法实施例中的相关 描述, 在此不再赘述。
本实施例的传输控制方法, 用户设备从第一节点接收的第一消息, 可以 指示用户设备接收第二节点重复发送的物理信道承载的用户专用信息, 能够 提高用户设备数据解码成功的概率, 提高第二节点下行覆盖范围。
图 5示出根据本发明另一实施例的传输控制方法的流程图。 如图 5所示, 以第一节点为宏基站 (如 Macro或 eNB ), 第二节点为低功率基站 (如 Pico) 为例, eNB确定可以指示将 UE的上行传输切换到 Pico的过程,具体可以包括: 步骤 401、 Pico向 eNB发送配置消息。
具体地, 配置消息中可以包括 Pico的标识和 /或用户设备标识和 /或重复 发送参数, 其中, Pico的基站标识或小区标识都属于 Pico的标识。 此外, 重 复发送参数可以包括:
( 1 ) 重复发送相同的内容的子帧个数, 如重复 N子帧发送相同的内容;
(2) 开始子帧, 如从第 K子帧开始发送相同的内容, 或者从第 S帧的 K 子帧开始发送相同的内容;
(3 ) 发送周期, 如重复发送相同内容的周期 T1 ;
(4) 对 Pico的小区的测量配置。 步骤 402、 eNB向 UE发送第二消息。
具体地, 在第二消息中可以包括一些测量配置:
( 1 ) Pico的标识用于指示 UE对哪个小区进行重复接收类型的测量;
(2) 重复接收类型测量指示, 用于指示 UE进行重复接收类型的测量。 重复接收类型的测量, 包括: UE接收第二节点重复发送的参考信号, 对所 述参考信号进行测量,将多次(例如 K, K为大于 0的自然数)测量结果累加, 反馈累加的测量结果至所述第一说节点。 其中, 参考信号, 例如可以是小区参 考信号 (Cell Reference Signal , CRS ), 可以是 CSI-RS ( Channel-State Information - Reference Signal )。 书
(3 ) 重复发送参数, 是可选的。
步骤 403、 UE接收到 eNB的第二消息后, 根据第二消息中的测量配置, 对该 Pico进行测量。 然后 UE可以上报测量报告给 eNB。 可选的, 在测量报告 中携带重复接收类型测量指示,用于指示该测量是基于重复接收类型的测量。
例如, UE从第 K子帧开始 /第 S帧的 K子帧开始,测量 K+N子帧。可选地, 可以是周期性的测量, 也可以是非周期性的。
然后, UE利用重复接收 (UE侧是重复接收, 网络侧是重复发送)的测量 方法来对 Pico的某个小区进行 RRM测量,具体地测量 Pico发送的参考信号(例 如 CRS, 或者 CSI-RS ) 从而上报测量报告给 eNB。
可选地, UE发送给 eNB的消息中还可以包含一个指示, 用于指示上报重 复接收类型的测量结果。
步骤 404、 eNB接收 UE的测量报告后, 根据测量报告决定是否将 UE的上 行传输切换到 Pico中。
具体地, eNB根据 UE的测量报告, 判断 UE接收到 Pico的下行信号质量。 其中,测量报告中具体可以反馈对该参考信号的 RSRP、 RSRQ、 RSSI、 CQI、 PMI等信号质量, 可以决定是否将 UE的上行传输切换到 Pico中; 或者, 步骤 404还可以是, eNB接收 UE的测量报告后, 根据测量报告决 定指示将 UE的上行传输切换到 Pico中还可以是决定将 UE上下行分离; 或者 还可以决定指示将 UE部分或者全部无线承载 (Radio Bearer) 切换到 Pico中 等等。
步骤 405、 如果 eNB决定将 UE的上行传输切换到 Pico中, eNB可以向 UE 发送第一消息, 通过第一消息指示 UE接收 Pico重复发送的信息, 并指示将 UE的上行传输切换到 Pico中。 说
图 6示出根据本发明另一实施例的传输控制方法的流程图。 如图 6所示, 以第一节点为宏基站 (如 Macro或 eNB ) ,书第二节点为低功率基站 (如 Pico) 为例, eNB确定是否可以将 UE进行上下行分离的过程, 具体可以包括:
步骤 500、 eNB根据 UE的测量报告, 决定是否将 UE上下行分离。
或者, 步骤 500还可以是, eNB接收 UE的测量报告后, 根据测量报告决 定是否将 UE的上行传输切换到 Pico中还可以是决定将 UE上下行分离; 或者 还可以决定是将 UE部分或者全部无线承载 (Radio Bearer) 切换到 Pico中等 等。
具体地, 参见上一实施例, eNB根据 UE的测量报告, 可以判断 UE接收 到 Pico的下行信号质量, 从而可以决定是否将 UE的上行传输切换到 Pico中, 还可以是决定将 UE上下行分离。 其中, 步骤 500还可以替换为图 4中的步骤 401到步骤 404, 在此不再赘述。
如果决定将 UE上下行分离, 则还可以包括以下步骤:
步骤 501、eNB发送第三消息给 Pico,第三消息中可以包括第二节点标识、 重复接收指示、 重复发送参数中的任意一种或多种。
例如第三消息中可以包括下行重复发送指示(用于通知 Pico对该 UE发送 的下行信号使用重复发送方式), 可选的还包括上下行分离指示 (用于通知 Pico将 UE的上行传输切换到该 Pico中),第三消息中还可以包括 UE的标识等。 其中, 可选地, 步骤 501之后也可以包括步骤 501A、 eNB在收到 pico的回 复消息后, 再执行步骤 502。 当然步骤 501A还可以和步骤 502同时执行, 或骤 501A还可以在步骤 502之后执行。 本发明不做限制。
步骤 502、 eNB发送第一消息给 UE, 第一消息中可以包括下行重复接收 指示 (用于通知 UE对 Pico发送的下行信号使用重复接收方式)、 可选的还包 括上下行分离指示 (所述上下行分离指示用于通知 UE, 将 UE的上行传输切 换到 Pico中)、第一消息中还可以说重复发送参数。其中重复发送参数的具体内 容可以参见上一实施例中的相关描述。
步骤 503、 Pico在连续的 N个子帧内发书送相同的内容, 即重复发送物理信 道承载的用户专用信息。 发送的内容可以为物理信道承载的用户专用信息, 例如调度 UE的控制信令, 例如 ACK/NACK等。
步骤 504、 UE接收到 Pico的控制信令, 根据该控制信令发送上行信令或 者上行数据给 Pico。
步骤 505、 UE接收到 eNB的控制信令。 该控制信令可以包括对 UE的下行 调度。
步骤 506、 UE根据 eNB的控制信令, 接收到 eNB的下行数据。
在步骤 503和步骤 504后, 即 Pico在收到 UE发送的数据后, 需要反馈
ACK/NACK给 UE , 该 ACK/NACK也可以在 N个子帧上重复发送。 Pico在
PHICH上重复 N个子帧发送 HARQ ACK/NACK给 UE。
具体 Pico在哪些时频资源块上发送, 这些控制信令, Pico是可以通过重 复发送的方式发送给 UE的, 具体实施方式可以参照步骤 503。
Pico在 PHICH上重复 N个子帧发送 HARQ ACK/NACK给 UE。
其中, 步骤 505、 步骤 506的次序可以发生在步骤 501到步骤 504的任何步 骤中。
图 7示出根据本发明另一实施例的传输控制方法的流程图。 在 D2D通信 场景中, 以第一节点为基站(eNB ),第二节点为 UEl ,用户设备为 UE2为例, 如图 7所示, 该方法具体可以包括:
步骤 601、 UE1接收来自 eNB的配置消息, 配置消息中可以包括参考信号 (如 SRS)发送的配置信息。
步骤 602、eNB发送第二消息给 UE2,第二消息中可以包括一些测量配置:
( 1 ) UE1的标识 (即第二节点的标识, 该参数可选), 用于指示 UE2对 UE1进行重复接收类型的测量。 如说果第二消息中没有具体的第二节点的标识, 可以表示 UE2自主搜索和检测到某个 UE (例如 UE1 )。
(2)重复接收类型测量指示,用于指书示 UE2进行重复接收类型的测量。 重复接收类型的测量具体可以是 UE1把"重复发送相同的内容的子帧个数"个 子帧的 CRS测量结果累积在一起, 作为一个子帧的测量结果。 这样可以保持 测量方法和信道解调方法都是使用重复接收的方法。
(3 ) 重复发送参数, 具体内容可以参见上述实施例中的相关描述, 将 其中对 Pico的某个小区的测量配置更改为对 UE1的测量配置即可。 测量的时 候, 重复发送参数不是必选的。 因为测量只和同步信道 (用于发现)、 公共 参考信号 (用于测量)有关系。 而前者同步信道一种是需要配置、 另一种是 指示 UE根据服务小区的定时关系来确定待测量小区的同步关系, 所以是可 选的。
步骤 603、 UE2接收到第二消息后, 根据第二消息中的测量配置, 对 UE1 进行测量。然后 UE可以上报测量报告给 eNB。 可选的, 在测量报告中携带重 复接收类型测量指示, 用于指示该测量是基于重复接收类型的测量。
例如, UE2从第 K子帧开始 /第 S帧的 K子帧开始,测量 K+N子帧。可选地, 可以是周期性的测量, 也可以是非周期性的。
然后, UE2利用重复接收 (UE侧是重复接收, 网络侧是重复发送)的测量 方法来测量 UE1 , 执行 RRM测量, 测量 UE1的参考信号 (比如 SRS ) 从而上 报测量报告给 eNB。
可选地, UE2发送给 eNB的消息中还可以包含一个指示, 用于指示上报 重复接收类型的测量结果。
步骤 604、 eNB根据终端 UE2的测量报告, 决定 UE2 (—般是被宏基站 Macro服务的 UE1覆盖范围以外的 UE) 和 UE1进行 D2D通信。
具体地, eNB根据终端 UE2的测量报告, 判断 UE2接收到 UE1的下行信 号质量, 从而决定是否将决定 UE说2和 UE1进行 D2D通信。
步骤 605、eNB发送第三消息给 UE1,第三消息中可以包括第二节点标识、 重复接收指示、 重复发送参数中的任意一书种或多种;
例如第三消息中可以包括下行重复发送指示 (用于通知 UE1对该 UE2发 送的下行信号使用重复发送方式)。 可选的, 第三消息中还包括 D2D通信指 示(用于指示 UE1和 UE2进行 D2D通信)、第三消息中还可以包括 UE2的标识。
步骤 606、 eNB发送第一消息给 UE2, 第一消息中可以包括下行重复接收 指示(用于通知 UE2对 UE1发送的下行信号使用重复接收方式)。可选的, 第 一消息中还可以包括 D2D通信指示(用于指示 UE1和 UE2进行 D2D通信)、第 一消息中还可以包括重复发送参数, 其中可以包括 UE1的测量配置。
步骤 607、 UE1在连续的 N个子帧内发送相同的内容, 即重复发送物理信 道承载的用户专用信息。 发送的内容可以为物理信道承载的用户专用信息, 例如调度 UE2的控制信令, 例如给 UE2反馈的 ACK/NACK等。
步骤 608、 UE2接收到 UE1的控制信令, 根据该控制信令发送上行信令或 者上行数据给 UE1。
步骤 609、 UE2接收到 eNB的控制信令。 该控制信令可以包括对 UE2的下 行调度。
步骤 610、 UE2根据 eNB的控制信令, 接收到 eNB的下行数据。
步骤 609、 步骤 610的次序可以发生在步骤 601到步骤 608的任何步骤中。 本实施例, 在 D2D通信的场景中, 可以把第二节点换成是一个 UE, 即一 个被第一节点服务的 D2D正常覆盖范围以外的 UE,接收来自第一节点的关于 D2D的配置信息, 从而和 UE实现数据传输, 可以有效扩展 D2D通信的距离。
图 8示出根据本发明一实施例的节点设备的结构框图。 如图 8所示, 该节 点设备 700主要可以包括:
发送模块 710, 用于向用户设备发送第一消息, 所述第一消息用于指示 所述用户设备接收第二节点说重复发送的物理信道承载的用户专用 (UE- specific) 信息。
例如, 在异构网络中, 在 UE处在挑书战区即基站覆盖范围的边缘时, 与 基站的距离比较远,无法很好地接收基站发送的信令和 /或数据。在这种情况 下, 基站可以采用重复发送的方式在连续多个子帧内向 UE重复发送相同的 内容, 提高基站的覆盖能力, 使得在挑战区的 UE可以接收到基站发送的信 令和 /或数据。 在异构网络中, 节点设备可以是宏基站 (如 Macro) , 第二节 点可以是低功率基站 (如 Pico), Pico可以设置在 Macro覆盖的小区的边缘, 在 Pico覆盖下的小区可以称之为小小区。 节点设备 700可以通过发送模块 710 向处在挑战区的 UE发送第一消息, 指示该 UE接收第二节点重复发送的物理 信道承载的用户专用 (UE-specific) 信息。
再如, 在设备到设备 (Device to Device, D2D) 通信的场景中, 第二节 点是另一个 UE, 如果本地 UE需要与第二节点通信, 节点设备 700可以通过发 送模块 710向本地 UE发送第一消息,指示本地 UE接收第二节点重复发送的物 理信道承载的用户专用信息。
在一种可能的实现方式中,第二节点可以重复发送的物理信道承载的用 户专用信息, 具体示例可以参见本发明上述实施例的传输控制方法的相关描 述, 在此不再赘述。
在一种可能的实现方式中, 第一消息中可以包括: 所述第二节点标识、 重复接收指示、 重复发送参数中的任意一种或多种; 其中, 所述重复发送参 数包括下列参数的任意一种或多种: 重复发送次数、 开始子帧、 发送周期和 所述第二节点测量配置。具体示例可以参见本发明上述实施例的传输控制方 法的相关描述, 在此不再赘述。
在一种可能的实现方式中, 所述第一消息可以用于指示 UE接收第二节 点重复发送的物理信道承载的用户专用信息, 还可以是:
所述第一消息用于指示所述说用户设备接收第二节点重复发送的物理信 道承载的用户专用信息, 并且指示将所述用户设备的上行传输切换到第二节 点中; 或者, 书 所述第一消息用于指示所述用户设备接收第二节点重复发送的物理信 道承载的用户专用信息, 并且指示将所述用户设备 UE进行上下行分离传输 (例如 UE上行与第二节点通信, 下行与节点设备通信); 或者,
所述第一消息用于指示所述用户设备接收第二节点重复发送的物理信 道承载的用户专用信息, 并且指示将所述用户设备部分或者全部业务的上下 行均被第二节点服务; 或者,
所述第一消息用于指示所述用户设备接收第二节点重复发送的物理信 道承载的用户专用信息, 并且指示将所述用户设备与第二节点进行 D2D通信 由此, 可选地, 第一消息中还可以包含一个显式的指示信息, 用于指示 将所述用户设备的上行传输切换到第二节点中, 或者指示将所述用户设备 UE进行上下行分离传输 (例如 UE上行与第二节点通信, 下行与节点设备通 信), 或者指示将所述用户设备部分或者全部业务的上下行均被第二节点服 务, 或者指示将所述用户设备与第二节点进行 D2D通信。 当然, 第一消息中 不包含该指示信息, 通过隐式的方式也是可以实现的。
图 9示出根据本发明另一实施例的节点设备的流程图。 图 9中标号与图 8 相同的组件具有相同的功能, 为简明起见, 省略对这些组件的详细说明。 如图 9所示, 图 9所示的节点设备 800与图 8所示节点设备 700的主要区别 在于, 该节点设备 800中, 发送模块 810除了具有上述实施例中的功能之外, 还可以被配置为, 向所述用户设备发送第二消息, 所述第二消息用于指示所 述用户设备对第二节点进行测量。
具体地, 在节点设备 800通过发送模块 810向 UE发送第一消息之前, 节 点设备 800可以先判断是否需要指示 UE接收第二节点重复发送的信息。 在判 断过程中, 节点设备 800先通过发说送模块 810向 UE发送第二消息, 指示 UE对 第二节点进行测量。 其中, 该测量可以为重复接收类型的测量。
在一种可能的实现方式中, 所述第二书消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种; 其中, 所述重 复发送参数包括下列参数的任意一种或多种: 重复发送次数、 开始子帧、 发 送周期和所述第二节点测量配置。 所述重复接收类型的测量, 包括: 所述用 户设备接收第二节点重复发送的参考信号, 对所述参考信号进行测量, 将多 次 (例如 K, K为大于 0的自然数) 测量结果累加, 反馈累加的测量结果至所 述节点设备。其中,参考信号,例如可以是小区参考信号(Cell Reference Signal, CRS ), 可以是 CSI-RS ( Channel-State Information - Reference Signal )。
具体地, K (Κ为大于 0的自然数) 可以是重复次数对应的次数, 还可以 是网络配置 (例如通过 ΟΑΜ配置的参数), Κ可以和重复发送次数相同或者 不同。 给 UE发送的第一消息或者第二消息中, 还可以包含该参数 Κ。
所述节点设备接收所述第二节点的配置消息中可以包含该参数 Κ。
例如, UE可以对该第二节点的标识对应的小区进行重复接收类型的测 量。 其中, UE某一次进行重复接收类型的测量的过程可以包括: UE接收第 二节点重复发送的参考信号。若第二消息中包括的重复发送相同内容的子帧 个数为 N, UE可以将对第二节点发送的 Ν个子帧的参考信号的测量结果进行 加权, 并将得到的加权结果作为一个子帧的测量结果。 然后, 将 Κ次的测量 结果累加, 反馈累加的测量结果给节点设备 800。 这样可以使得测量方法和 信道解调方法都是使用重复接收的方法。
接收模块 820, 与所述发送模块 810相连接, 用于接收所述用户设备返回 的测量报告;
确定模块 830, 与所述接收模块 820相连接, 用于确定是否指示用户设备 接收第二节点重复发送的所述用户专用信息。
具体地, UE根据第二消息的说指示以及第二消息中包括的参数对第二节 点进行重复接收类型的测量之后, 可以得到相应的测量结果, 并根据该测量 结果形成测量报告发送至节点设备 800。书节点设备 800通过接收模块 820接收 到测量报告之后, 确定模块 830可以根据测量报告确定 UE接收到与第二节点 之间链路的信息的信号质量,从而确定是否指示用户设备接收第二节点重复 发送的信息。
在一种可能的实现方式中, 发送模块 810还可以被配置为:
情况一、 如果确定模块 830根据所述测量报告确定指示用户设备接收第 二节点重复发送的所述用户专用信息, 则向所述用户设备发送所述第一消息。
具体地, UE对第二节点发送信号进行测量, 如果用户设备接收到第二 节点的信号质量达到一定要求, 例如信号质量达到门限, 那么节点设备 800 可以通过确定模块 830确定指示用户设备接收第二节点重复发送的信息, 并 向 UE发送上述第一消息。 例如, UE对第二节点进行 RRM测量, 具体地, UE对第二节点发送的参考信号(例如是 CRS参考信号)进行测量, 向节点设 备 800反馈以下参数的一种或者多种: RSRP ( Reference Signal Receive Power) , RSRQ (Reference Signal Recieved Quality ) , RSSI (received signal strength indicator ), PMI ( Precoding matrix indicatiors ), CQI ( Channel Quality Indication ) , RI(Rank indicator) 等等。
情况二、 在情况一的基础上, 如果确定模块 830根据所述测量报告确定 指示用户设备接收第二节点重复发送的所述用户专用信息, 确定模块 830还 可以被配置为:
根据所述测量报告,确定是否指示所述用户设备的上行传输切换到第二 节点中、确定所述用户设备是否进行上下行分离传输或者确定所述用户设备 是否与所述第二节点进行 D2D通信。
然后, 发送模块 810还可以被配置为: 如果确定模块 830根据所述测量报 告确定指示所述用户设备的上行说传输切换到所述第二节点中、确定所述用户 设备进行上下行分离传输或者确定所述用户设备与所述第二节点进行 D2D 通信, 则向所述用户设备发送第一消息。书 具体地, 在异构网络的场景中, 在节点设备 800通过接收模块 820接收到 测量报告之后, 还可以通过确定模块 830根据测量报告确定指示将 UE的上行 传输切换到第二节点中 (即变为 UE发送上行信号给第二节点, 由第二节点接 收 UE的控制信令和 /或数据, 为 UE提供上行服务); 或者通过确定模块 830根 据测量报告确定 UE是否进行上下行分离传输, 即将 UE的上下行从被节点设 备 800服务, 切换到 UE的上行被第二节点服务、 下行被节点设备 800服务。 如果确定模块 830根据测量报告, 确定 UE接收到第二节点发送的信号, 该信 号质量较好, 可以确定将 UE的上行传输切换到第二节点中, 或者确定 UE进 行上下行分离传输。 其中, 确定模块 830可以确定将 UE的上下行全部却换到 第二节点中, 即 UE的上下行均被第二节点服务; 在 UE存在多种类型的业务 时, 确定模块 830也可以确定将 UE的部分或者全部业务 (例如部分或者全部 承载 bearer) 的上行切换到第二节点中, 即 UE的部分或者全部业务的上行被 第二节点服务, 下行被节点设备 800服务; 此外, 确定模块 830还可以确定将 UE的部分或者全部业务的上下行全部切换到第二节点中, 即 UE的部分或者 全部业务的上下行均被第二节点服务。
此外, 在 D2D通信的场景中, 节点设备 800可以是某一个 UE, 第二节点 可以是另一个 UE, 确定模块 830可以根据测量报告确定是否与第二节点进行 D2D通信。
因此, 对于上述的情况二, 发送模块 810向 UE发送的第一消息还可以用 于指示所述用户设备接受所述第二节点的服务,或指示将所述用户设备的上 行传输切换到所述第二节点中, 或指示所述用户设备进行上下行分离传输, 或指示所述用户设备与所述第二节点进行 D2D通信。
图 10示出根据本发明另一实说施例的节点设备的结构框图。图 10中标号与 图 8和图 9相同的组件具有相同的功能, 为简明起见, 省略对这些组件的详细 说明。 书
如图 10所示, 图 10所示的节点设备 900与图 8、 图 9所示节点设备的主要 区别在于, 该节点设备 900的接收模块 920除了具有本发明上述实施例中的功 能之外, 还可以被配置为:
用于接收所述第二节点的配置消息,所述配置消息中包括所述第二节点 标识和 /或重复发送参数;其中,所述重复发送参数包括下列参数的任意一种 或多种: 重复发送次数、 开始子帧、 发送周期和所述第二节点测量配置。
其中, 第二节点的标识可以用于后续 UE确定对哪个小区进行重复接收 类型的测量, 重复发送参数可以用于 UE对第二节点标识对应的小区进行重 复接收类型的测量。重复接收类型的测量以及重复发送参数的具体示例可以 参见本发明上述实施例中传输控制方法的相关描述, 在此不再赘述。
进一步地, 该节点设备 900的发送模块 910除了具有本发明上述实施例中 的功能之外, 还可以被配置为:
用于向所述第二节点发送第三消息,所述第三消息用于指示所述第二节 点向所述用户设备重复发送所述用户专用信息。 具体地, 所述第三消息中可 以包括用户标识, 以便于指示所述第二节点向所述用户标识对应的所述用户 设备重复发送所述用户专用信息。 其中第二节点重复发送的信息:第二节点可以重复发送物理信道承载的 用户专用信息,例如用于调度 UE的控制信令,用于给 UE反馈的 ACK/NACK, 用于给 UE发送的数据等。 承载第二节点重复发送的所述信息的物理信道至 少可以包括以下的一种或者多种: 物理下行控制信道 (Physical Downlink Control Channel, PDCCH)、物理混合指示信道(Physical Hybrid- ARQ Indicator Channel, PHICH)、 物理下行共享信道 (Physical Downlink Shared Channel, PDSCH 说
具体地, 第二节点重复发送的物理信道承载的用户专用信息是相同的, 该物理信道承载的用户专用信息可以是控书制信令, 也可以是数据。 其中, 例 如控制信令可以是 PDCCH或 PHICH( Physical Hybrid- ARQ Indicator Channel), 数据可以是 PDSCH。 PDCCH中可以包括第二节点对 UE的上行调度信息, 该 上行调度信息可以用于指示 UE向第二节点发送上行信令和 /或数据。 例如第 二节点重复发送的所述信息可以是重复发送物理信道承载的用户设备专用 信息(UE specific information )。所述物理信道承载的用户设备专用信息(UE specific information), 可以是第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH上 承载的用户设备专用信息, 也就是说第二节点在 PDCCH和 /或 PHICH和 /或 PDSCH发送给用户设别的专用信息。 PHICH可以用于发送 HARQ ACK/NACK。
具体地, 节点设备 900通过发送模块 910向 UE发送第一消息和向第二节 点第三消息, 可以同时执行, 也可以一个在先另外一个在后, 本发明实施例 中不限定二者的时序关系。 还可以是, 例如节点设备 900通过发送模块 910向 第二节点发送第三消息之后,节点设备 900通过接收模块 920接收到第二节点 发送的回复确认消息, 由此节点设备 900通过发送模块 910向 UE发送第一消 息。 其中, 第三消息可以包括用户标识, 例如 UE的标识, 该用户标识可以 指示第二节点向哪一个 UE重复发送信息。 本实施例的节点设备, 发送模块向用户设备发送第一消息, 可以指示所 述用户设备接收第二节点重复发送的物理信道承载的用户专用信息, 能够提 高用户设备数据解码成功的概率, 提高第二节点下行覆盖范围。 具体地, 第 二节点向 UE发送信息, 例如第二节点向 UE发送一个数据包, 该数据包在连 续多个 ΤΉ资源上重复进行传输, UE将多个 ΤΉ资源上的数据合并达到提高 传输质量的目的。 这样可以提高 UE数据解码成功的概率, 提高第二节点下 行覆盖范围。 这里每个 TTI=lms,说也就是 1个子帧。
例如, 在异构网络的场景中, 通过测量处在挑战区的 UE接收到第二节 点发送信号的信号质量, 可以指示 UE接书收第二节点重复发送的物理信道承 载的用户专用信息, 并且可以确定指示将 UE的上行传输切换至第二节点中、 是否进行上下行分离传输, UE通过信息如上行调度信令向第二节点发送上 行数据, 达到提高 UE数据解码成功的概率, 提高第二节点下行覆盖范围、 提升上行吞吐量等效果。
图 11示出根据本发明另一实施例的用户设备的结构框图。 如图 11所示, 该用户设备 1000主要可以包括:
接收模块 1010, 用于接收第一节点发送的第一消息, 所述第一消息用于 指示所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
具体地, 在异构网络中, 第一节点可以是宏基站(如 Macro), 第二节点 可以是低功率基站 (如 Pico), Pico可以设置在 Macro覆盖的小区的边缘, 在 Pico覆盖下的小区可以称之为小小区。 处在挑战区的用户设备 1000可以接收 第一节点发送的第一消息, 指示该用户设备 1000接收第二节点重复发送的物 理信道承载的用户专用信息。
再如, 在设备到设备 (Device to Device, D2D) 通信的场景中, 第二节 点是另一个 UE, 如果本地用户设备 1000需要与第二节点通信, 第一节点可 以向本地用户设备 1000发送第一消息, 指示本地用户设备 1000接收第二节点 重复发送的物理信道承载的用户专用信息。
其中,第二节点重复发送的物理信道承载的用户专用信息的具体内容可 以参见上述传输控制方法实施例中的相关描述, 在此不再赘述。
在一种可能的实现方式中, 接收模块 1010还可以被配置为, 用于接收所 述第一节点发送的第二消息,所述第二消息用于指示所述用户设备对第二节 点进行测量;
该用户设备 1000还可以包括说:
测量模块 1020, 与所述接收模块 1010相连接, 用于根据所述第二消息, 对所述第二节点进行测量; 书
发送模块 1030, 与所述测量模块 1020相连接, 用于向所述第一节点和 / 或第二节点发送测量报告。
在一种可能的实现方式中,所述第一消息还用于指示所述用户设备接受 所述第二节点的服务,或指示将所述用户设备的上行传输切换到所述第二节 点中, 或指示所述用户设备进行上下行分离传输, 或指示所述用户设备与所 述第二节点进行 D2D通信。
在一种可能的实现方式中,所述第二消息用于指示所述用户设备对所述 第二节点进行测量, 具体可以包括: 所述第二消息用于指示所述用户设备对 所述第二节点进行重复接收类型的测量。
在一种可能的实现方式中, 所述第二消息中可以包括: 所述第二节点标 识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
具体地, 第二节点、 第二消息、 测量报告、 重复发送参数、 重复接收类 型的测量等的具体解释与示例可以参见上述传输控制方法实施例中的相关 描述, 在此不再赘述。 本实施例的用户设备, 接收模块从第一节点接收的第一消息, 可以指示 用户设备接收第二节点重复发送的物理信道承载的用户专用信息, 能够提高 用户设备数据解码成功的概率, 提高第二节点下行覆盖范围。
图 12示出根据本发明的一个实施例的传输控制装置的结构框图。所述传 输控制装置 1100可以是具备计算能力的主机服务器、个人计算机 PC、或者可 携带的便携式计算机或终端等。本发明具体实施例并不对计算节点的具体实 现做限定。 说
所述传输控制装置 1100包括处理器 (processor ) 1110、 通信接口 ( Communications Interface ) 1120、存储器书 (memory array ) 1130禾口总线 1140。 其中, 处理器 1110、 通信接口 1120、 以及存储器 1130通过总线 1140完成相互 间的通信。
通信接口 1120用于与网元通信, 其中网元包括例如虚拟机管理中心、 共 享存储等。
处理器 1110用于执行程序。 处理器 1110可能是一个中央处理器 CPU, 或 者是专用集成电路 ASIC (Application Specific Integrated Circuit) , 或者是被 配置成实施本发明实施例的一个或多个集成电路。
存储器 1130用于存放文件。存储器 1130可能包含高速 RAM存储器, 也可 能还包括非易失性存储器(non-volatile memory) ,例如至少一个磁盘存储器。 存储器 1130也可以是存储器阵列。 存储器 1130还可能被分块, 并且所述块可 按一定的规则组合成虚拟卷。
在一种可能的实施方式中, 上述程序可为包括计算机操作指令的程序代 码。 该程序具体可用于:
第一节点向用户设备发送第一消息,所述第一消息用于指示所述用户设 备接收第二节点重复发送的物理信道承载的用户专用信息。
在一种可能的实现方式中,在所述第一节点向用户设备发送第一消息之 前, 包括:
第一节点向所述用户设备发送第二消息,所述第二消息用于指示所述用 户设备对第二节点进行测量;
所述第一节点接收所述用户设备返回的测量报告;
根据所述测量报告, 确定是否指示用户设备接收第二节点重复发送的所 述用户专用信息。
在一种可能的实现方式中, 所说述第一节点向用户设备发送第一消息, 包 括:
如果根据所述测量报告确定指示用书户设备接收第二节点重复发送的所 述用户专用信息, 则所述第一节点向所述用户设备发送所述第一消息。
在一种可能的实现方式中, 所述根据所述测量报告, 确定是否指示用户 设备接收第二节点重复发送的所述用户专用信息之后, 还包括:
根据所述测量报告, 确定是否指示所述用户设备的上行传输切换到第二 节点中、确定所述用户设备是否进行上下行分离传输或者确定所述用户设备 是否与所述第二节点进行设备到设备 D2D通信;
所述第一节点向用户设备发送第一消息, 还包括:
如果根据所述测量报告确定指示所述用户设备的上行传输切换到所述 第二节点中、确定所述用户设备进行上下行分离传输或者确定所述用户设备 与所述第二节点进行 D2D通信, 则所述第一节点向所述用户设备发送第一消 息。
在一种可能的实现方式中,所述第一消息还用于指示所述用户设备接受 所述第二节点的服务,或指示将所述用户设备的上行传输切换到所述第二节 点中, 或指示所述用户设备进行上下行分离传输, 或指示所述用户设备与所 述第二节点进行 D2D通信。
在一种可能的实现方式中,所述第二消息用于指示所述用户设备对所述 第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
在一种可能的实现方式中,所述第一节点向所述用户设备发送第一消息 或第二消息之前, 包括:
所述第一节点接收所述第二节点的配置消息,所述配置消息中包括所述 第二节点标识和 /或重复发送参数说;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点书测量配置。
在一种可能的实现方式中, 所述第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
在一种可能的实现方式中, 还包括:
所述第一节点向所述第二节点发送第三消息,所述第三消息中包括用户 标识,所述第三消息用于指示所述第二节点向所述用户标识对应的所述用户 设备重复发送控制信令。
在一种可能的实现方式中, 所述第一消息中包括: 所述第二节点标识、 重复接收指示、 重复发送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
在一种可能的实现方式中, 所述重复接收类型的测量, 包括:
所述用户设备接收第二节点重复发送的参考信号,对所述参考信号进行 测量, 将多次结果累加, 反馈所述结果至所述第一节点。
该程序还可以具体用于: 用户设备接收第一节点发送的第一消息,所述第一消息用于指示所述用 户设备接收第二节点重复发送的物理信道承载的用户专用信息。
在一种可能的实现方式中,在所述用户设备接收第一节点发送的第一消 息之前, 包括:
所述用户设备接收所述第一节点发送的第二消息,所述第二消息用于指 示所述用户设备对第二节点进行测量;
所述用户设备根据所述第二说消息, 对所述第二节点进行测量;
所述用户设备向所述第一节点和 /或第二节点发送测量报告。
在一种可能的实现方式中,所述第一书消息还用于指示所述用户设备接受 所述第二节点的服务,或指示将所述用户设备的上行传输切换到所述第二节 点中, 或指示所述用户设备进行上下行分离传输, 或指示所述用户设备与所 述第二节点进行 D2D通信。
在一种可能的实现方式中,所述第二消息用于指示所述用户设备对所述 第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
在一种可能的实现方式中, 所述第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
本领域普通技术人员可以意识到, 本文所描述的实施例中的各示例性单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。 这些功能究竟以硬件还是软件形式来实现, 取决于技术方案的特定应用和设 计约束条件。专业技术人员可以针对特定的应用选择不同的方法来实现所描 述的功能, 但是这种实现不应认为超出本发明的范围。 如果以计算机软件的形式来实现所述功能并作为独立的产品销售或使 用时, 则在一定程度上可认为本发明的技术方案的全部或部分(例如对现有 技术做出贡献的部分)是以计算机软件产品的形式体现的。 该计算机软件产 品通常存储在计算机可读取的存储介质中,包括若干指令用以使得计算机设 备(可以是个人计算机、 服务器、 或者网络设备等) 执行本发明各实施例方 法的全部或部分步骤。 而前述的存储介质包括 U盘、 移动硬盘、 只读存储器 (ROM , Read-Only Memory )、说随机存取存储器 ( RAM , Random Access Memory) , 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方书式, 但本发明的保护范围并不局限 于此, 也可以考虑将发明应用于 LTE-A的异构网络中, 任何熟悉本技术领域 的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖 在本发明的保护范围之内。 因此, 本发明的保护范围应所述以权利要求的保 护范围为准。

Claims

权 利 要 求 书
1、 一种传输控制方法, 其特征在于, 包括:
第一节点向用户设备发送第一消息,所述第一消息用于指示所述用户设 备接收第二节点重复发送的物理信道承载的用户专用信息。
2、 根据权利要求 1所述的传输控制方法, 其特征在于, 在所述第一节点 向用户设备发送第一消息之前, 包括:
所述第一节点向所述用户设备发送第二消息,所述第二消息用于指示所 述用户设备对所述第二节点进行测量;
所述第一节点接收所述用户设备返回的测量报告;
所述第一节点根据所述测量报告, 确定是否指示所述用户设备接收所述 第二节点重复发送的所述用户专用信息。
3、 根据权利要求 2所述的传输控制方法, 其特征在于, 所述第一节点向 用户设备发送第一消息, 包括:
如果根据所述测量报告确定指示所述用户设备接收所述第二节点重复 发送的所述用户专用信息, 则所述第一节点向所述用户设备发送所述第一消 息。
4、 根据权利要求 2所述的传输控制方法, 其特征在于, 所述根据所述测 量报告,确定是否指示所述用户设备接收所述第二节点重复发送的所述用户 专用信息之后, 还包括:
所述第一节点根据所述测量报告, 确定是否指示所述用户设备的上行传 输切换到所述第二节点中、确定所述用户设备是否进行上下行分离传输或者 确定所述用户设备是否与所述第二节点进行设备到设备 D2D通信;
所述第一节点向用户设备发送第一消息, 还包括:
如果根据所述测量报告确定指示所述用户设备的上行传输切换到所述 第二节点中、确定所述用户设备进行上下行分离传输或者确定所述用户设备 与所述第二节点进行 D2D通信, 则所述第一节点向所述用户设备发送所述第 权 利 要 求 书
一消息。
5、 根据权利要求 1-4中任一项所述的传输控制方法, 其特征在于, 所述 第一消息还用于指示所述用户设备接受所述第二节点的服务,或指示将所述 用户设备的上行传输切换到所述第二节点中,或指示所述用户设备进行上下 行分离传输, 或指示所述用户设备与所述第二节点进行 D2D通信。
6、 根据权利要求 2-5中任一项所述的传输控制方法, 其特征在于, 所述 第二消息用于指示所述用户设备对所述第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
7、 根据权利要求 2-6中任一项所述的传输控制方法, 其特征在于, 所述 第一节点向所述用户设备发送所述第一消息或所述第二消息之前, 包括: 所述第一节点接收所述第二节点发送的配置消息,所述配置消息中包括 第二节点标识和 /或重复发送参数;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和第二节点测量配置。
8、 根据权利要求 2-7中任一项所述的传输控制方法, 其特征在于, 所述 第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 所述重复发 送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
9、 根据权利要求 1-8中任一项所述的传输控制方法, 其特征在于, 还包 括:
所述第一节点向所述第二节点发送第三消息,所述第三消息中包括用户 标识,所述第三消息用于指示所述第二节点向所述用户标识对应的所述用户 设备重复发送所述用户专用信息。 权 利 要 求 书
10、 根据权利要求 1-9中所述的传输控制方法, 其特征在于, 所述第一 消息中包括: 所述第二节点标识、 重复接收指示、 所述重复发送参数中的任 意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
11、 根据权利要求 6所述的传输控制方法, 其特征在于, 所述重复接收 类型的测量, 包括:
所述用户设备接收所述第二节点重复发送的参考信号,对所述参考信号 进行测量, 将多次结果累加, 反馈所述结果至所述第一节点。
12、 一种传输控制方法, 其特征在于, 包括:
用户设备接收第一节点发送的第一消息,所述第一消息用于指示所述用 户设备接收第二节点重复发送的物理信道承载的用户专用信息。
13、 根据权利要求 12所述的传输控制方法, 其特征在于, 在所述用户设 备接收第一节点发送的第一消息之前, 包括:
所述用户设备接收所述第一节点发送的第二消息,所述第二消息用于指 示所述用户设备对所述第二节点进行测量;
所述用户设备根据所述第二消息, 对所述第二节点进行测量;
所述用户设备向所述第一节点和 /或所述第二节点发送测量报告。
14、 根据权利要求 12或 13所述的传输控制方法, 其特征在于, 所述第一 消息还用于指示所述用户设备接受所述第二节点的服务, 或指示将上行传输 切换到所述第二节点中, 或指示所述用户设备进行上下行分离传输, 或指示 所述用户设备与所述第二节点进行 D2D通信。
15、 根据权利要求 12-14中任一项所述的传输控制方法, 其特征在于, 所述第二消息用于指示所述用户设备对所述第二节点进行测量, 具体包括: 所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类型的 权 利 要 求 书
16、 根据权利要求 13-15中任一项所述的传输控制方法, 其特征在于, 所述第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发 送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复次数、 开始子帧、 发送周期和所述第二节点测量配置。
17、 一种节点设备, 其特征在于, 包括:
发送模块, 用于向用户设备发送第一消息, 所述第一消息用于指示所述 用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
18、 根据权利要求 17所述的节点设备, 其特征在于, 所述发送模块还被 配置为, 向所述用户设备发送第二消息, 所述第二消息用于指示所述用户设 备对所述第二节点进行测量;
所述节点设备还包括:
接收模块, 与所述发送模块相连接, 用于接收所述用户设备返回的测量 报告;
确定模块, 与所述接收模块相连接, 用于确定是否指示所述用户设备接 收所述第二节点重复发送的所述用户专用信息。
19、 根据权利要求 18所述的节点设备, 其特征在于, 所述发送模块还被 配置为,如果根据所述测量报告确定指示所述用户设备接收所述第二节点重 复发送的所述用户专用信息, 则向所述用户设备发送所述第一消息。
20、 根据权利要求 18所述的节点设备, 其特征在于, 所述确定模块还被 配置为, 根据所述测量报告, 确定是否指示所述用户设备的上行传输切换到 所述第二节点中、确定所述用户设备是否进行上下行分离传输或者确定所述 用户设备是否与所述第二节点进行 D2D通信;
所述发送模块还被配置为, 如果根据所述测量报告确定指示所述用户设 权 利 要 求 书
备的上行传输切换到所述第二节点中、确定所述用户设备进行上下行分离传 输或者确定所述用户设备与所述第二节点进行 D2D通信, 则向所述用户设备 发送所述第一消息。
21、 根据权利要求 17-20中任一项所述的节点设备, 其特征在于, 所述 第一消息还用于指示所述用户设备接受所述第二节点的服务,或指示将所述 用户设备的上行传输切换到所述第二节点中, 或指示所述用户设备进行上下 行分离传输, 或指示所述用户设备与所述第二节点进行 D2D通信。
22、 根据权利要求 18-21中任一项所述的节点设备, 其特征在于, 所述 第二消息用于指示所述用户设备对所述第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
23、 根据权利要求 18-22中任一项所述的节点设备, 其特征在于, 所述 接收模块还被配置为, 接收所述第二节点发送的配置消息, 所述配置消息中 包括第二节点标识和 /或重复发送参数;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和第二节点测量配置。
24、 根据权利要求 18-23中任一项所述的节点设备, 其特征在于, 所述 第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 所述重复发 送参数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
25、 根据权利要求 17-24中任一项所述的节点设备, 其特征在于, 所述 发送模块还被配置为, 向所述第二节点发送第三消息, 所述第三消息中包括 用户标识,所述第三消息用于指示所述第二节点向所述用户标识对应的所述 用户设备重复发送所述用户专有信息。 权 利 要 求 书
26、 根据权利要求 17-25中任一项所述的节点设备, 其特征在于, 所述 第一消息中包括: 所述第二节点标识、 重复接收指示、 所述重复发送参数中 的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 所述重复发 送次数、 所述开始子帧、 所述发送周期和所述第二节点测量配置。
27、 根据权利要求 22所述的节点设备, 其特征在于, 所述重复接收类型 的测量, 包括:
所述用户设备接收所述第二节点重复发送的参考信号,对所述参考信号 进行测量, 将多次结果累加, 反馈所述结果至所述第一节点。
28、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收第一节点发送的第一消息, 所述第一消息用于指示 所述用户设备接收第二节点重复发送的物理信道承载的用户专用信息。
29、 根据权利要求 28所述的用户设备, 其特征在于, 所述接收模块还被 配置为, 接收所述第一节点发送的第二消息, 所述第二消息用于指示所述用 户设备对所述第二节点进行测量;
所述用户设备还包括:
测量模块, 与所述接收模块相连接, 用于根据所述第二消息, 对所述第 二节点进行测量;
发送模块,与所述测量模块相连接,用于向所述第一节点和 /或所述第二 节点发送测量报告。
30、 根据权利要求 28或 29所述的用户设备, 其特征在于, 所述第一消息 还用于指示所述用户设备接受所述第二节点的服务,或指示将上行传输切换 到所述第二节点中, 或指示所述用户设备进行上下行分离传输, 或指示所述 用户设备与所述第二节点进行 D2D通信。
31、 根据权利要求 28-30中任一项所述的用户设备, 其特征在于, 所述 权 利 要 求 书
第二消息用于指示所述用户设备对所述第二节点进行测量, 包括:
所述第二消息用于指示所述用户设备对所述第二节点进行重复接收类 型的测量。
32、 根据权利要求 29-31中任一项所述的用户设备, 其特征在于, 所述 第二消息中包括: 所述第二节点标识、 重复接收类型测量指示、 重复发送参 数中的任意一种或多种;
其中, 所述重复发送参数包括下列参数的任意一种或多种: 重复发送次 数、 开始子帧、 发送周期和所述第二节点测量配置。
PCT/CN2014/070103 2014-01-03 2014-01-03 传输控制方法、节点设备及用户设备 WO2015100735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/070103 WO2015100735A1 (zh) 2014-01-03 2014-01-03 传输控制方法、节点设备及用户设备
CN201480000458.5A CN104995945B (zh) 2014-01-03 2014-01-03 传输控制方法、节点设备及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070103 WO2015100735A1 (zh) 2014-01-03 2014-01-03 传输控制方法、节点设备及用户设备

Publications (1)

Publication Number Publication Date
WO2015100735A1 true WO2015100735A1 (zh) 2015-07-09

Family

ID=53493041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070103 WO2015100735A1 (zh) 2014-01-03 2014-01-03 传输控制方法、节点设备及用户设备

Country Status (2)

Country Link
CN (1) CN104995945B (zh)
WO (1) WO2015100735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110800339A (zh) * 2017-06-19 2020-02-14 高通股份有限公司 灵活无线接入网节点标识符

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390611B (zh) * 2020-10-22 2024-02-02 大唐移动通信设备有限公司 小区切换方法、终端、基站、装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685826A (zh) * 2011-03-17 2012-09-19 华为技术有限公司 切换处理方法、装置和***
CN102882612A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 一种小区测量方法、小区资源共享方法和相关设备
CN102932835A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种基站切换方法、基站、用户设备和通信***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238680B (zh) * 2010-05-07 2013-12-04 华为技术有限公司 异构网络切换控制方法和信号发送方法及设备和通信***
US9451515B2 (en) * 2011-05-06 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for neighbor cell range extension
CN103096374B (zh) * 2011-11-07 2016-03-23 上海贝尔股份有限公司 在异构网络中对用户设备进行干扰抑制的方法和设备
CN103139889B (zh) * 2011-11-28 2015-09-09 华为技术有限公司 D2d的功率控制方法、用户设备、基站和通讯***
CN103188742B (zh) * 2011-12-29 2015-11-25 华为技术有限公司 通信切换方法、用户设备与基站
CN103297206B (zh) * 2012-02-28 2018-07-06 夏普株式会社 混合自适应重传方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685826A (zh) * 2011-03-17 2012-09-19 华为技术有限公司 切换处理方法、装置和***
CN102882612A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 一种小区测量方法、小区资源共享方法和相关设备
CN102932835A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种基站切换方法、基站、用户设备和通信***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110800339A (zh) * 2017-06-19 2020-02-14 高通股份有限公司 灵活无线接入网节点标识符
US11234278B2 (en) 2017-06-19 2022-01-25 Qualcomm Incorporated Flexible radio access network node identifier

Also Published As

Publication number Publication date
CN104995945B (zh) 2019-09-03
CN104995945A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
KR101719938B1 (ko) 모바일 장치 지원 협력 멀티포인트 전송 및 수신
WO2020196483A1 (ja) 通信システム、基地局および上位装置
US9094849B2 (en) Communication of data using independent downlink and uplink connections
CN112534897A (zh) 通信***、通信终端及基站
JP6019005B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US10148323B2 (en) Uplink inter-cell coordination method and base station
US9554365B2 (en) Communication of data using independent downlink and uplink connections
EP2779748B1 (en) Method and apparatus for processing sending-receiving conversion time of user equipment
US20130089051A1 (en) Method and apparatus for data transmission in radio network
CN104604281A (zh) 通信***、基站装置、移动站装置、测量方法以及集成电路
US10833735B2 (en) Method and device for receiving signal in wireless communication system to which multiplex transmission technique is applied
WO2013163900A1 (zh) 上行通信方法及终端
WO2021106761A1 (ja) 通信システム、通信端末および基地局
US10425975B1 (en) Method for selecting a device to act as a relay device between a first and a second node based on received signal quality measurements
WO2021044936A1 (ja) 通信システム、通信端末および基地局
WO2015100735A1 (zh) 传输控制方法、节点设备及用户设备
WO2023086722A1 (en) Techniques for inter-base station messaging for inter-base station cross-link interference mitigation
JP7305780B2 (ja) 通信制御方法及びユーザ装置
WO2015061924A1 (zh) 小区间干扰抑制的方法及装置
WO2016121608A1 (ja) 基地局及びユーザ端末
KR20190008114A (ko) 차세대 무선네트워크를 위한 캐리어 병합 제어 방법 및 장치
EP3001770B1 (en) Method, terminal, and wireless communications node for uplink data transmission
US20240204910A1 (en) Inter-node exchange of link adaptation assistance information
CN116868623A (zh) 通信***及基站
CN117796037A (zh) 用于高移动性通信的切换优化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876560

Country of ref document: EP

Kind code of ref document: A1