WO2015100689A1 - 一种实现协调波束赋形的方法及基站 - Google Patents

一种实现协调波束赋形的方法及基站 Download PDF

Info

Publication number
WO2015100689A1
WO2015100689A1 PCT/CN2014/000582 CN2014000582W WO2015100689A1 WO 2015100689 A1 WO2015100689 A1 WO 2015100689A1 CN 2014000582 W CN2014000582 W CN 2014000582W WO 2015100689 A1 WO2015100689 A1 WO 2015100689A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
time slot
beamforming vector
vector
Prior art date
Application number
PCT/CN2014/000582
Other languages
English (en)
French (fr)
Inventor
李斌
吕刚明
黄莹
张国梅
秦洪峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14876300.6A priority Critical patent/EP3079268A4/en
Priority to US15/109,842 priority patent/US20160329946A1/en
Publication of WO2015100689A1 publication Critical patent/WO2015100689A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to cooperative multipoint transmission techniques, and more particularly to a method and base station for implementing coordinated beamforming. Background technique
  • the joint processing technology in coordinated multi-point transmission needs to share data and channel state information among the participating nodes, so that although the system performance can be maximized, the throughput and delay of the backhaul (Backhaul) are There are high requirements, and there are strict requirements for symbol synchronization. At present, joint processing technology is difficult to implement under the relevant network architecture and standards.
  • Coordinated beamforming is an important branch of coordinated multipoint transmission technology, providing a compromise between Backhaul overhead and system performance. Compared with joint processing, coordinated beamforming only needs to share channel state information at the base station, and can coordinate and suppress inter-cell interference through methods such as transmit and receive beam optimization, power control, and terminal scheduling. Therefore, coordinated beamforming is easier.
  • the relevant network architecture is implemented. When the number of terminals in the system is sufficient, this interference coordination method can significantly improve system performance.
  • the related coordinated beamforming schemes for MIMO (Multiple Input Multiple Output) systems are mainly divided into self-interested schemes, altruistic schemes, and self-interest-altruistic compromise schemes.
  • the base station transmitter ignores interference to other terminals and maximizes its own utility function.
  • the self-interest scheme has good performance when the signal-to-noise ratio (SNR) is small and the noise is dominant (that is, when the noise power is large), but the performance is deteriorated when the SNR is large and the interference is severe.
  • the base station transmitter minimizes interference to other terminals. This scheme can effectively suppress inter-terminal interference, especially when the SNR is large, that is, when the interference is dominant, the altruistic scheme can obtain good performance.
  • the altruistic scheme is less efficient at low to medium signal to noise ratios.
  • the function of maximizing its own utility and minimizing the interference to other terminals will be compromised to optimize system performance.
  • the transmit beamforming vector is a linear combination of self-interest and altruism; to maximize the signal-to-noise ratio (SLNR, Signal-to-Leakage) -and-Noise Ratio ) is the criterion, as can be seen from the objective function
  • SNR Signal-to-noise ratio
  • the above schemes can be further divided into a coordinated beamforming scheme considering the receiving vector and a coordinated beamforming scheme considering the receiving vector. Among them, the scheme considering the receiving vector has a significant improvement in the performance without considering the receiving vector. However, its feedback overhead and information sharing overhead are much larger than the overhead of not considering the receive vector scheme.
  • the traditional SLNR-based transmit beamforming vector design scheme can be implemented distributedly at each base station. However, since this design method does not consider the influence of the receive vector on performance, the system performance is degraded. However, if the reception vectors of the base stations are considered, each cooperative base station needs to share all the channel state information, which in turn increases the overhead of the X2 interface. In short, it is relatively difficult to implement. Summary of the invention
  • a method for implementing coordinated beamforming comprising: a receiving beamforming vector of each interfering terminal shared by a base station according to each base station in a cooperation set in a previous time slot according to a cooperation set. Estimating the value, obtaining a transmit beamforming vector of the current time slot;
  • the base station acquires the received beamforming vector estimation value of the current time slot according to the transmitting beamforming vector of the current time slot and the interference vector shared by the previous time slot; the base station obtains the received beamforming vector estimation value of the current time slot and itself Interference vectors to other terminals are shared to all cooperative base stations within the cooperative set.
  • the method further includes: initializing, by each of the base stations in the coordinated set: each base station in the cooperation set initializes a transmit beam shaping vector according to a maximum signal to noise ratio SLNR scheme;
  • Each base station in the coordinated set calculates an initial estimate of the received beamforming vector, and an interference initial vector for each of the interfering terminals in the cooperative set other than the serving terminal.
  • each base station in the cooperation set is initialized according to a maximum signal to noise ratio SLNR scheme.
  • the steps of transmitting the beamforming vector include:
  • Each base station initializes the transmit beamforming vector w according to the relevant SLNR scheme to be AH H, and the eigenvector corresponding to the largest generalized eigenvalue of " ⁇ N + ⁇ ?, .H ⁇ ,.
  • each base station serves one terminal, and the first terminal is the service terminal of the first base station, and ⁇ ( ) represents the channel matrix of the slot base station to the terminal ( ⁇ ⁇ ⁇ dimension), when the channel is static, ⁇ ( ) can omit the superscript (“) to indicate that the channel matrix of each time slot is represented as ⁇ ,., indicating the path loss from the base station to the terminal _/ ⁇ , “ ( ⁇ 1 dimension,
  • l) indicates the transmission beamforming vector of the "slot base station, the superscript H indicates the conjugate transpose, the transmission power of the base station is, and the noise power is ⁇ 2 ;
  • the step of calculating, by each base station in the cooperative set, the initial estimated value of the received beamforming vector includes: each base station separately calculating a receive beamforming, where v! w)
  • each base station in the cooperation set separately calculates each of the base stations themselves to the cooperative set in addition to the service terminal
  • the steps of the interference initial vector of the interference terminal other than the terminal include: each base station itself initially has an interference vector of the interference terminal other than the service terminal in the cooperation set
  • the step of initializing the transmit beamforming vector by the base station according to the maximum signal to noise ratio (SLNR) scheme includes: initializing the transmit beamforming vector by the base station according to the relevant SLNR scheme is ⁇ ! And the eigenvector corresponding to the largest generalized eigenvalue of + ⁇ AH ⁇ H ⁇ ), ie, J where m denotes that there are m base stations in the cooperative set, each base station serves 1 terminal, and the first terminal is the service terminal of the first base station, and ⁇ ( ) denotes the channel matrix of the slotted base station to the terminal ( ⁇ ⁇ dimension), ⁇ denotes the path loss of the base station ⁇ to the terminal, w") (N f xl dimension,
  • 1 )
  • the transmission beamforming vector of the time slot base station is indicated, the superscript H indicates conjugate transposition, the transmission power of the base station is, and the noise power is ⁇ 2 ;
  • the method includes: each base station separately calculating an initial estimated value of a received beamforming vector, where
  • the step of interfering with the interference initial vector of the interfering terminal other than the serving terminal includes: the initial value of the interference vector of each interfering terminal other than the serving terminal in the cooperation set by each base station itself:
  • the step of acquiring a transmit beamforming vector of the current time slot comprises: calculating, by the base station, a received beamforming vector estimation value of each interfering terminal shared by the previous time slot, based on a maximum SLNR criterion, The transmit beamforming vector of the current time slot of the base station.
  • the step of calculating, by the base station, a transmit beamforming vector of each interfering terminal shared by the previous time slot, and calculating a transmit beamforming vector of the current time slot of the local base station according to the maximum SLNR criterion where the base station includes: Transmit Beamforming Vector Beamforming Vector:
  • each base station serves 1 terminal
  • the first terminal is the service terminal of the first base station
  • ⁇ ( ) represents the channel matrix of the slot base station to the terminal ( ⁇ ⁇ ⁇ dimension)
  • indicates the path loss of the base station ⁇ to the terminal
  • wi" N f xl dimension,
  • l
  • indicates the "transmission beamforming vector of the slot base station
  • ⁇ ") indicates the receiving beamforming vector of the "slot terminal
  • the superscript H indicates the conjugate transpose
  • the transmitting power of the base station is the noise power ⁇ 2 , indicating Nf XN , the unit of the unit.
  • the step of acquiring the received beamforming vector estimation value of the current time slot comprises: the base station is based on a minimum mean square error MMSE criterion according to a transmit beamforming vector of the current time slot and an interference vector shared by the previous time slot. Calculating the receive beamforming vector of the current time slot service terminal estimated value.
  • the step of the base station calculating the received beamforming vector estimation value of the current time slot serving terminal based on the minimum mean square error MMSE criterion according to the transmit beamforming vector of the current time slot and the interference vector shared by the previous time slot includes:
  • the received beamforming vector estimate of the current time slot serving terminal is calculated according to the following formula: +. ,among them,
  • l) indicates the receiving beamforming vector of the "slot terminal", the superscript H indicates conjugate transposition, the transmitting power of the base station is, the noise power is ⁇ 2 , and l Nr represents N r xN r Dimensional unit array
  • the method further includes:
  • l) denotes the reception beamforming vector of the "slot terminal", the superscript H denotes the conjugate transpose, the transmission power of the base station is, the noise power is ⁇ 2 , and the Nr represents the N r xN r -dimensional unit Array
  • Each terminal uses the calculated received beamforming vector to receive signals from the respective serving base stations;
  • the step of the base station sharing the received beamforming vector estimation value of the current time slot and the interference vector of the other terminal to all the cooperative base stations in the cooperation set by the base station includes: The base station sends the received beamforming vector estimation value of the current time slot and its own interference vector to other terminals to other coordinated base stations in the cooperation set.
  • a base station includes a first acquiring module, a sending module, a second acquiring module, and a cooperation module.
  • the first acquiring module is configured to: each of the base stations in the cooperation set according to each other in the previous time slot. Obtaining a received beamforming vector estimate of the terminal, acquiring a transmit beamforming vector of the current slot;
  • the sending module is configured to: perform beamforming on the signal by using a transmit beamforming vector;
  • the second acquiring module is configured to: obtain the current according to the transmit beamforming vector of the current time slot and the interference vector shared by the previous time slot Receive beamforming vector estimate of the time slot;
  • the cooperation module is configured to: store the obtained received beamforming vector estimation value of the current time slot and the interference vector of the current time slot base station itself to other coordinated terminals in the storage module, and share all the cooperation in the cooperation set. Base station.
  • the base station further includes an initial module, where: the initial module is configured to: initialize a transmit beamforming vector according to a SLNR scheme; calculate an initial estimated value of the received beamforming vector, and perform a self-distribution of the service set in the cooperative set Interference initial vectors of other interfering terminals; storing the calculated received beamforming vector initial estimation values and interference initial vectors in the storage module.
  • the initial module is configured to: initialize a transmit beamforming vector according to a SLNR scheme; calculate an initial estimated value of the received beamforming vector, and perform a self-distribution of the service set in the cooperative set Interference initial vectors of other interfering terminals; storing the calculated received beamforming vector initial estimation values and interference initial vectors in the storage module.
  • the initial module is initialized in a SLNR scheme as follows:
  • Each base station initializes the transmit beamforming vector according to the relevant SLNR scheme to be AH H, and the eigenvector corresponding to the largest generalized eigenvalue of " ⁇ Nt + ⁇ ?, .H ⁇ ,.
  • each base station serves 1 terminal
  • the first terminal is the service terminal of the first base station
  • ⁇ ( ) represents the channel matrix of the time slot base station to the terminal.
  • the channel matrix is expressed as H,., indicating the path loss from the base station to the terminal.
  • H ( ⁇ 1 dimension,
  • l) indicates the transmission beamforming vector of the "slot base station", superscript H Representing conjugate transposition, the transmit power of the base station is, the noise power is ⁇ 2 ;
  • each base station in the cooperation set calculates each of the base stations themselves to the service terminal except the service terminal
  • the steps of the interference initial vector of the other interference terminals include: each base station itself initially has an interference vector for the interference terminal other than the service terminal in the cooperation set
  • the initial module is further initialized according to the SLNR scheme in the following manner: the step of initializing the transmit beamforming vector by each base station in the cooperative set according to the maximum signal to noise ratio SLNR scheme includes: The SLNR scheme initializes the transmit beamforming vector to be the feature vector corresponding to the largest generalized eigenvalue of ⁇ ) ! ) and ⁇ + ⁇ AH ⁇ H ⁇ ), ie D
  • each base station serves 1 terminal
  • the first terminal is the service terminal of the first base station
  • ⁇ ( ) represents the channel matrix of the slot base station to the terminal (NrX dimension) )
  • indicates the path loss of the base station ⁇ to the terminal
  • indicates the path loss of the base station ⁇ to the terminal
  • indicates the path loss of the base station ⁇ to the terminal
  • indicates the path loss of the base station ⁇ to the terminal
  • l
  • H indicates the conjugate rotation
  • the transmit power of the base station is, and the noise power is ⁇ 2 ; the steps include:
  • the interference initial vector of the interference terminal other than the service terminal include: the initial value of the interference vector of each of the interference terminals in the cooperation set except the service terminal by the base station itself:
  • the first acquiring module acquires a transmit beamforming vector of the current time slot according to a received beamforming vector estimation value of each interfering terminal shared by each base station in the previous time slot according to the following manner.
  • Transmitter beamforming vector beamforming vector
  • each base station serves one terminal
  • the first terminal is the service terminal of the first base station
  • ⁇ ( ) represents the channel matrix of the time slot base station to the terminal.
  • represents the path loss of base station i to terminal j
  • w Indicates the "transmission beamforming vector of the time slot base station, v"
  • the superscript H indicates conjugate transposition
  • the transmit power is the noise power is ⁇ 2
  • the I w is the NfXN, the dimensional unit matrix.
  • the second acquiring module is configured according to the transmit beam assignment vector of the current time slot and the interference vector shared by the previous time slot according to the following manner. Obtain the received beamforming vector estimate for the current time slot:
  • m indicates that there are m base stations in the cooperation set, each base station serves one terminal, and the first terminal is the service terminal of the first base station, and ⁇ ( ) indicates the channel matrix of the slot base station to the terminal (N xN, dimension) ) , indicating the path loss from the base station to the terminal _/ ⁇ , w ) ( N f xl dimension, ) indicates the "slot base"
  • the transmit beamforming vector of the station ( ⁇ ⁇ ⁇ 1 dimension,
  • l ) indicates the receiving beamforming vector of the "slot terminal", the superscript H indicates the conjugate transpose, and the base station transmits
  • the power is, the noise power is ⁇ 2 , and l Nr represents the N r xN r -dimensional unit matrix;
  • the processing at the receiving end includes:
  • l ) indicates the receiving beamforming vector of the "slot terminal", the superscript H indicates conjugate transposition, the transmitting power of the base station is, the noise power is ⁇ 2 , and l Nr represents the N r xN r dimension unit Array
  • Each terminal uses the calculated received beamforming vector to receive signals from the respective serving base stations;
  • the base station is in a cooperation set, and is a cooperative base station with other base stations in the cooperation set;
  • each base station serves one terminal and serves the terminal in a coordinated beamforming manner.
  • the technical solution of the present application includes: the base station acquires a transmit beamforming vector of the current time slot according to the received beamforming vector estimation value of each interference terminal shared by the previous time slot; and the base station allocates the beam according to the current time slot.
  • the shape vector and the interference vector shared by the previous time slot acquire the received beamforming vector estimation value of the current time slot, and share the obtained received beamforming vector estimation value of the current time slot with its own interference vector to other terminals. All cooperative base stations within the set.
  • the technical solution provided by the embodiments of the present invention considers receiving beamforming vectors in a coordinated coordinated beamforming scheme based on the maximizing SLNR criterion, and only shares the received beamforming vector estimates and interference vectors between the cooperative base stations.
  • FIG. 1 is a schematic structural diagram of a downlink coordinated multipoint transmission system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for implementing coordinated beamforming according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a comparison of a terminal average spectral efficiency waveform diagram of a first implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a comparison of a terminal average spectral efficiency waveform diagram of a second implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a comparison of a terminal average spectral efficiency waveform diagram of a third implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic diagram of the composition of a downlink cooperative multi-point transmission system according to an embodiment of the present invention. The method of the invention will be described below with reference to FIG. 1.
  • the downlink coordinated multipoint transmission system also called the cooperative set
  • the base station uses the coordinated beamforming method to serve the terminal.
  • the channel matrix N r xN t of the time slot base station i to the terminal j is represented, and the channel model uses the Rayleigh fading channel.
  • the superscript (") can be omitted to indicate that the channel matrix of each time slot is represented as H.
  • the received signal ") of the nth time slot terminal i can be expressed as shown in the formula (1):
  • x, (") is the transmission signal of the "slot base station
  • W Indicates the "transmission beamforming vector of the time slot base station
  • H indicates conjugate transposition.
  • the transmit power is the receiving noise of the terminal is n , ., and the noise power is ⁇ 2 .
  • the formula (1) can be used to obtain the “slot-to-noise ratio of the time-slot terminal” (2):
  • the transmitter can use the uplink and downlink reciprocity of the channel to obtain its channel matrix to all terminals in the cooperative set, that is, the base station is known ⁇ ..( ,2, ⁇ ⁇ , 7), after considering the receive beamforming vector, the "slotted base station's letter leakage noise is shown in equation (3):
  • FIG. 2 is a flowchart of a method for implementing coordinated beamforming according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 200 The base station acquires a transmit beamforming vector of the current time slot according to the received beamforming vector estimation value of each interference terminal shared by the previous time slot.
  • the base station calculates a transmit beamforming vector of the current time slot of the base station based on the maximum SLNR criterion according to the received beamforming vector estimation value of each interference terminal shared by the previous time slot.
  • Receive beamforming vector estimation used in obtaining the transmit beamforming vector in this step The value is an estimate of the receive beamforming vector of the base station to the terminal in the previous time slot. It should be noted that the effect of the embodiment of the present invention can be achieved by the feedback of the received beamforming vector of the last time slot by the terminal, but the feedback overhead of the uplink is slightly increased.
  • the embodiment of the present invention may further include the step 201: the base station sends the beamformed signal to its serving terminal.
  • the base station sends the beamformed signal to its serving terminal.
  • Step 202 The base station acquires the received beamforming vector estimation value of the current time slot according to the transmit beamforming vector of the current time slot and the interference vector shared by the previous time slot.
  • the base station calculates the received beamforming vector estimation value of the current slot service terminal based on the associated minimum mean square error (MMSE) criterion according to the transmit beamforming vector of the current slot and the interference vector shared by the previous slot.
  • MMSE minimum mean square error
  • step 200 the execution of step 201 and step 202 is not strictly sequential.
  • Step 203 The base station shares the obtained received beamforming vector estimation value of the current time slot with its own interference vector of other terminals to all the cooperative base stations in the cooperation set.
  • the sharing is to send the received beamforming vector estimation value of the current time slot and the interference vector of the other terminal to other coordinated base stations in the cooperation set where the base station is located.
  • the method of the embodiment of the invention significantly improves the system performance, and does not require the terminal to feedback the received vector information, thereby significantly reducing the system overhead; and simultaneously implementing the cooperative base stations. Distributed implementation.
  • the method further includes: initializing, by each base station in the cooperation set where the base station is located, where: the base station initializes a transmit beamforming vector according to a related SLNR scheme; The initial estimate of the received beamforming vector is calculated, and the interference initial vectors of the base stations themselves to other interfering terminals other than the serving terminal within the cooperative set.
  • the superscript () can be omitted to indicate that the channel matrix of each time slot is represented as ⁇ , and each base station is initialized according to the relevant SLNR scheme.
  • the transmit beamforming vector w" is the maximum generalized eigenvalue of ⁇ and + ⁇ ⁇ fl for the symbol vector, ie - ⁇ +i each base station calculates the receive beamforming, each base station itself
  • the initial value of the interference vector of the interference terminal other than the service terminal in the cooperation set is
  • H w («-!) uses the Rayleigh fading channel in the channel model, and assumes that the channel is slowly changing, the center frequency is 2 GHz, the Doppler frequency offset is 5 Hz, and each base station initializes the transmit beamforming vector according to the relevant SLNR scheme.
  • Each base station separately calculates the received wave pair in the cooperative set except the service terminal
  • the interference vector initial value of the interfering terminal other than « is.
  • Each base station in the cooperative set initializes the transmit beamforming vector w" according to the relevant SLNR scheme, which is a feature vector corresponding to the maximum generalized eigenvalue of A.H H, and + ⁇ ?, H H , ie
  • the processing of the transmitting end includes.
  • Each base station calculates the transmission of the current time slot of the own base station based on the maximum SLNR criterion: "-!
  • Each base station transmits a beamformed signal to each serving terminal according to the calculated transmit beamforming vector
  • the calculated received beamforming vector estimate and the interference vector are shared between each base station and the cooperative base station.
  • the base station sends two vectors to the other coordinated base stations 'C/ ⁇ and ⁇ / ⁇ in the cooperative set;
  • the processing for the receiving end includes:
  • Each terminal uses the calculated received beamforming vector to receive signals sent by the respective serving base stations;
  • T-SLNR SLNR-based coordinated beamforming scheme
  • JTR-CB transmit/receive beamforming vector joint design scheme
  • a method for implementing coordinated beamforming in an embodiment of the present invention under the same channel conditions, respectively, independent of the simulation 105, wherein JTR-CB iterative scheme in the slots 20 are views.
  • FIG. 3 is a schematic diagram showing a comparison of a terminal average spectral efficiency waveform diagram of a first implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention, that is, A schematic diagram comparing the scheme of the embodiment of the present invention with the T-SLNR scheme and JTR-CB.
  • the abscissa indicates the number of slots, and the ordinate indicates the average frequency efficiency per bit (bit/s/Hz);
  • the curve indicated by the open triangle of the triangle, curve 32 is the terminal average of the JTR-CB scheme.
  • the spectral efficiency curve, the curve shown by the solid dot, curve 33 is the terminal average spectral efficiency curve of the T-SLNR scheme.
  • the solution of the embodiment of the present invention presents a gradual convergence state with the time slot. Therefore, it can be seen that the average spectral efficiency of the solution of the embodiment of the present invention increases with the number of time slots. It is incremented. When the number of slots reaches 16, it basically converges to a fixed value. Further, Table 1 shows the average spectrum efficiency of the terminal in 7 terminal scenarios of 7 cells in the static channel. It can be seen from Table 1 that the convergence value is close to that of the JTR-CB scheme, which is only 3.43% lower than the JTR-CB scheme. Compared with the T-SLNR solution, it increased by 29.36%.
  • each coordinated base station only needs to share the received vector estimation value (ie, ⁇ ) of the base station and the interference vector of the cooperative base station terminal (ie, ), the amount of information sharing is only the JTR-CB program
  • each base station is in each
  • the channel is slowly changed, the center frequency is 2 GHz, and the Doppler frequency offset is 5 Hz.
  • Each base station in the cooperative set initializes a transmit beamforming vector w", w" is a feature vector corresponding to a maximum generalized eigenvalue of A - ) and + ⁇ ⁇ 1 ) ! ⁇ - 1 ) according to an associated SLNR scheme,
  • Each base station calculates the interference vector and the set of cooperating ⁇ ⁇ ⁇ ( ⁇ ) ⁇ , and [upsilon] ⁇ and shared among cooperative base stations;
  • Each base station transmits a beamformed signal to each serving terminal according to the calculated transmit beamforming vector; each base station calculates the connection of the service terminals of each base station in the current time slot based on the MMSE criterion.
  • Received beam shape vector estimate :
  • the base station 'C / ⁇ cooperative base station transmits to the other set of cooperating ⁇ - ⁇ and ⁇ / ⁇ H ⁇ - "two vectors; end for receiving a process comprising:
  • Each terminal calculates a receive beamforming vector based on the MMSE criterion, namely:
  • Each terminal uses the calculated receive beamforming vector to receive signals sent by the respective serving base stations;
  • T-SLNR SLNR-based coordinated beamforming scheme
  • JTR-CB transmit/receive beamforming vector joint design scheme
  • a method for implementing coordinated beamforming in an embodiment of the present invention under the same channel conditions, respectively, independent of the simulation 105, wherein JTR-CB iterative scheme in the slots 20 are views.
  • FIG. 4 is a schematic diagram of a comparison of a terminal average spectral efficiency waveform diagram of a second implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention, that is, an embodiment of the present invention and a T-SLNR scheme and a JTR- A comparison diagram of CB, as shown in Fig. 4, the abscissa indicates the number of slots, and the ordinate indicates the average frequency efficiency per bit (bit/s/Hz); the curve indicated by the circle indicated by the triangle, curve 42 is JTR.
  • the terminal average spectral efficiency curve of the -CB scheme, the curve indicated by the solid dot, curve 43, is the terminal average spectral efficiency curve of the T-SLNR scheme.
  • the central node needs to send its respective transmit beamforming vector to 7 base stations.
  • each coordinated base station only needs to share the received vector estimation value (ie, ⁇ - ') of the base station and the interference vector (ie, ⁇ ) for the cooperative base station terminal, and the information sharing amount is only JTR-CB. 2(Ml)N r of the scheme, and in terms of computational complexity, in the solution of the embodiment of the present invention, each base station is in each
  • M 3
  • the channel is slowly changed
  • the center frequency is 2 GHz
  • the Doppler frequency offset is 5 Hz.
  • Each base station in the cooperative set initializes the eigenvector corresponding to the largest generalized eigenvalue of the transmit beamforming vector w", w" is A - ) and + ⁇ ⁇ ⁇ ⁇ ⁇ according to the relevant SLNR scheme, + ?. ⁇ ⁇ ⁇ ,
  • Each base station calculates a transmit beamforming vector of the current time slot of the own base station based on the maximum SLNR criterion:
  • Each base station transmits a beamformed signal to each serving terminal according to the calculated transmit beamforming vector
  • Each base station calculates the connection of the service terminals of each base station in the current time slot based on the MMSE criterion.
  • the base station needs to send to the other coordinated base stations in the cooperation set (( ⁇ ;> send ⁇ - " and ⁇ / ⁇ H ⁇ -" two vectors; the processing for the receiving end includes:
  • Each terminal calculates a receive beamforming vector based on the MMSE criterion, namely:
  • Each terminal uses the calculated received beamforming vector to receive signals sent by the respective serving base stations;
  • a related SLNR-based coordinated beamforming scheme (T-SLNR), an iterative-based transmission, a received beamforming vector joint design scheme (JTR-CB), and a method for implementing coordinated beamforming in the embodiments of the present invention are under the same channel conditions, respectively, independent of the simulation 105, wherein JTR-CB iterative scheme in the slots 20 are views.
  • FIG. 5 is a schematic diagram showing a comparison of a terminal average spectral efficiency waveform diagram of a third implementation of coordinated beamforming and a related coordinated beamforming method according to an embodiment of the present invention, that is, the scheme of the present invention and the T-SLNR scheme and the JTR-CB Comparing the schematic diagrams, as shown in Fig. 5, the abscissa indicates the number of slots, the ordinate indicates the average spectral efficiency per bit (bit/s/Hz); the curve indicated by the triangle, curve 52, is the JTR-CB scheme.
  • the terminal average spectral efficiency curve, the curve shown by the solid dot, curve 53 is the terminal average spectral efficiency curve of the T-SLNR scheme.
  • each coordinated base station only needs to share the received vector estimation value (ie, ⁇ - ') of the base station and the interference vector (ie, ⁇ H ⁇ w ) to the cooperative base station terminal, and the information sharing amount is only Is the JTR-CB program
  • each base station is in each
  • an embodiment of the present invention further provides a base station, which is in a cooperative set, and is a cooperative base station with other base stations in the cooperative set; in the cooperative set, each base station serves one terminal and uses a coordinated beam.
  • the way of shaping is terminal service.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 6, the base station of the embodiment of the present invention includes at least a first acquiring module, a sending module, a second acquiring module, and a collaboration module;
  • a first acquiring module configured to acquire a transmit beamforming vector of a current time slot according to a received beamforming vector estimation value of each interference terminal shared by a previous time slot; and a sending module configured to use a transmit beamforming vector pair The signal is beamformed; it is further configured to transmit a beamformed signal to its serving terminal;
  • a second acquiring module configured to form a beamforming vector according to a current time slot and a previous time
  • the interference vector shared by the slot acquires the received beamforming vector estimation value of the current time slot;
  • the cooperation module is configured to set the received beamforming vector estimation value of the current time slot and the current time slot base station itself to other coordinated terminals
  • the interference vector is stored in the storage module and shared to all cooperative base stations within the collaborative set.
  • the base station of the embodiment of the present invention further includes an initial module configured to initialize a transmit beamforming vector according to an associated SLNR scheme; calculate an initial estimated value of the received beamforming vector, and other interferences in the cooperative set other than the serving terminal Interference initial vector of the terminal; storing the calculated initial received beamforming vector estimate and the interference initial vector in the storage module.
  • an initial module configured to initialize a transmit beamforming vector according to an associated SLNR scheme; calculate an initial estimated value of the received beamforming vector, and other interferences in the cooperative set other than the serving terminal Interference initial vector of the terminal; storing the calculated initial received beamforming vector estimate and the interference initial vector in the storage module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种实现协调波束赋形的方法及基站,包括基站根据上一时隙共享的各干扰终端的接收波束赋形矢量估计值,获取当前时隙的发送波束赋形矢量;基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量,获取当前时隙的接收波束赋形矢量估计值,共享获得的当前时隙的接收波束赋形矢量估计值与干扰矢量。本发明实施例提供的技术方案通过在相关的基于最大化SLNR准则的协调波束赋形方案中考虑接收波束赋形矢量,且各协作基站间仅共享接收波束赋形矢量估计值及干扰矢量两个信息。本发明实施例提供的技术方案显著提升了***性能,而且无需终端反馈接收矢量信息,明显降低了***开销;同时实现了各协作基站的分布式实现。

Description

一种实现协调波束赋形的方法及基站
技术领域
本发明涉及协作多点传输技术, 尤指一种实现协调波束赋形的方法及基 站。 背景技术
协作多点传输中的联合处理技术, 需要在参与协作的节点间共享数据和 信道状态信息, 这样, 虽然可以最大的提升***性能, 但是, 对回程链路 ( Backhaul ) 的吞吐量和时延是有很高的要求的, 并且对符号同步有严格的 要求。 目前, 联合处理技术难以在相关的网络架构和标准下实现。
而协调波束赋形, 是协作多点传输技术的一个重要分支, 在 Backhaul开 销和***性能之间提供了一种折衷方案。 与联合处理相比, 协调波束赋形仅 需在基站共享信道状态信息, 即可通过收发波束优化、 功率控制、 终端调度 等方法协调和抑制小区间的干扰, 因此, 协调波束赋形比较容易在相关的网 络架构下得以实现。 当***中的终端数量足够多时, 通过这种干扰协调方式 已经可以显著改善***性能。
相关的用于多输入多输出 (MIMO, Multiple Input Multiple Output ) *** 的协调波束赋形方案主要分为利己方案、利他方案,以及利己-利他折衷方案。 在利己方案中,基站发射机无视对其他终端的干扰, 最大化自身的效用函数。 利己方案在信噪比( SNR, Signal-to-Noise Ratio )较小、 噪声占优时(即噪声 功率较大时)有不错的性能, 但是, 在 SNR较大、 干扰严重时性能会恶化。 在利他方案中, 基站发射机最小化对其他终端的干扰。 该方案能够有效的抑 制终端间干扰, 特别是在 SNR较大即干扰占优时, 釆用利他方案能够得到很 好的性能。 然而, 利他方案在中低信噪比时效率较低。 在利己-利他折衷方案 中, 将最大化自身效用函数和最小化对其他终端的干扰进行折衷, 使***性 能达到最优。 有文献已经证明, 若以最大化***和速率为准则, 设计出的发 送波束赋形矢量是利己和利他两种方案的线性组合; 若以最大化信漏噪比 ( SLNR, Signal-to-Leakage-and-Noise Ratio )为准则, 从目标函数就可以看出 这也是需要在利己和利他之间作以折衷的。 以上这些方案又可以分为考虑接 收矢量的协调波束赋形方案和不考虑接收矢量的协调波束赋形方案两种, 其 中, 考虑接收矢量的方案在性能上较不考虑接收矢量的方案有明显提升, 但 是, 其反馈开销和信息共享的开销也比不考虑接收矢量方案的开销大很多。
传统的基于 SLNR准则的发送波束赋形矢量设计方案, 可以在各基站处 分布式实现, 但是, 由于这种设计方法没有考虑接收矢量对性能的影响, 降 低了***性能。 但是, 如果考虑各基站的接收矢量, 则需各协作基站共享全 部的信道状态信息, 这又增大了 X2接口的开销, 总之, 实现起来相对困难。 发明内容
本发明实施例要解决的技术问题是提供一种实现协调波束赋形的方法及 基站, 通过考虑接收波束赋形矢量对性能的影响, 提高***性能, 同时不会 增加接口开销。 为解决上述技术问题, 釆用如下技术方案: 一种实现协调波束赋形的方法, 包括: 基站根据协作集合中的每个基站在上一时隙互相共享的每个干扰终端的 接收波束赋形矢量估计值, 获取当前时隙的发送波束赋形矢量;
基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计值; 基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其他终端的 干扰矢量, 共享给所述协作集合内的所有协作基站。
可选地, 所述方法还包括协作集合中的每个所述基站均进行初始化: 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量;
所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值, 以 及每个所述基站自身对协作集合内除服务终端之外的其它干扰终端的干扰初 始矢量。
可选地, 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始 化发送波束赋形矢量的步骤包括:
每个基站按相关的 SLNR方案初始化发送波束赋形矢量 w 是 A.H H,和 ― \N + ∑ ?,.H Η,. 的 最 大广 义特征值对应 的 特征向 量 , 即
^"-
Figure imgf000005_0001
其中, m表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( Λ^χΛ^维), 在信道为静态时, Η( )可以省略上标 (《)来表示, 即将各时隙的 信道矩阵均表示为 Η,., 表示基站 到终端 _/·的路径损耗, ") (Λ^χ1维, |w")|=l )表示第《时隙基站 的发送波束赋形矢量, 上标 H表示共轭转置, 基 站 的发射功率为 , 噪声功率为 σ2; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括: 各基站分别计算接收波束赋形 , 其中, v!w)
Figure imgf000005_0002
( N i维, |ν")|=ι )表示第 "时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初
可选地, 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始 化发送波束赋形矢量的步骤包括: 各基站按相关的 SLNR方案初始化发送波 束赋形矢量 是 ^! ) ! )和 +∑ AH ^H^)的最大广义特征值 对应的特征向量 , 即 ,
Figure imgf000005_0003
J 其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( Λ^χΛ^维) , ^表示基站 ζ·到终端 ·的路径损耗, w") ( Nfxl维, | ")|=1 ) 表示第《时隙基站 的发送波束赋形矢量,上标 H表示共轭转置,基站 的发射 功率为 , 噪声功率为 σ2;
骤包括:各基站分别计算接收波束赋形矢量初始估计值 ,其中,
Figure imgf000006_0001
v|w) ( N i维, |ν")|=ι )表示第 "时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初 始值为: 。 可选地, 所述获取当前时隙的发送波束赋形矢量的步骤包括: 所述基站根据上一时隙共享的每个干扰终端的接收波束赋形矢量估计 值, 基于最大化 SLNR准则, 计算本基站当前时隙的发送波束赋形矢量。
可选地, 所述基站根据上一时隙共享的每个干扰终端的接收波束赋形矢 量估计值, 基于最大化 SLNR准则, 计算本基站当前时隙的发送波束赋形矢 量的步骤包括: 隙的发送波束赋形矢量波束赋形矢量:
Figure imgf000006_0002
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( Λ^χΛ^维) , ^表示基站 ζ·到终端 ·的路径损耗, wi") ( Nfxl维, |w")|=l ) 表示第《时隙基站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时 隙终端 的接收波束赋形矢量, 上标 H表示共轭转置, 基站 的发射功率为 噪声功率为 σ2, 表示 Nf XN,维单位阵。 可选地, 所述获取当前时隙的接收波束赋形矢量估计值的步骤包括: 所述基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢 量,基于最小均方差 MMSE准则计算当前时隙服务终端的接收波束赋形矢量 估计值。
可选地, 所述基站根据当前时隙的发送波束赋形矢量以及上一时隙共享 的干扰矢量,基于最小均方差 MMSE准则计算当前时隙服务终端的接收波束 赋形矢量估计值的步骤包括:
按照如下公式计算当前时隙服务终端的接收波束赋形矢量估计值: +。 ,其中,
Figure imgf000007_0001
m表示协作集合中有 m个基站 ,每个基站服务 1个终端,且第 个终端为第 个 基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 ζ·到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
以及干扰矢量 ^/^Η ν^。 可选地, 所述方法还包括:
于 MMSE 准则, 计算接收波束赋形矢量, 即: 其中 , = ∑ ^H» H + %r , 其中, m
Figure imgf000007_0002
表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个终端为第 个 基站的服务终端, Η(;)表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
每个终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来 的信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 束。
可选地, 所述基站将获得的当前时隙的接收波束赋形矢量估计值与自身 对其他终端的干扰矢量, 共享给协作集合内的所有协作基站的步骤包括: 所述基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其他终 端的干扰矢量, 发送给所述协作集合中的其它协作基站。
一种基站, 包括第一获取模块、 发送模块、 第二获取模块, 以及协作模 块; 其中, 所述第一获取模块设置成: 根据协作集合内的每个基站在上一时隙互相 共享的每个干扰终端的接收波束赋形矢量估计值, 获取当前时隙的发送波束 赋形矢量;
所述发送模块设置成: 利用发送波束赋形矢量对信号进行波束赋形; 所述第二获取模块设置成: 根据当前时隙的发送波束赋形矢量以及上一 时隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计值;
所述协作模块设置成: 将获得的当前时隙的接收波束赋形矢量估计值与 当前时隙基站自身对其他协作终端的干扰矢量, 存储在存储模块中, 并共享 给协作集合内的所有协作基站。
可选地, 所述基站还包括初始模块, 其中: 该初始模块设置成: 按 SLNR方案初始化发送波束赋形矢量; 计算接收 波束赋形矢量初始估计值, 以及自身对协作集合内除服务终端之外的其它干 扰终端的干扰初始矢量; 将计算得到的接收波束赋形矢量初始估计值及干扰 初始矢量存储在所述存储模块中。
可选地, 所述初始模块以如下方式按 SLNR方案进行初始化:
每个基站按相关的 SLNR方案初始化发送波束赋形矢量 是 A.H H,和 ― \Nt + ∑ ?,.H Η,. 的 最 大广 义特征值对应 的 特征向 量 , 即
Figure imgf000008_0001
其中, m表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵
( Λ^ χΛ^维), 在信道为静态时, Η( )可以省略上标 (《)来表示, 即将各时隙的 信道矩阵均表示为 H,., 表示基站 到终端 ·的路径损耗, ") (Λ^χ1维, |w")|=l )表示第《时隙基站 的发送波束赋形矢量, 上标 H表示共轭转置, 基 站 的发射功率为 , 噪声功率为 σ2; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括: 各基站分别计算接收波束赋形矢量初始估计值^ υ=ϊϊ^¾ί,
H w 其中, vW
( Nrxl维, (": =1 )表示第《时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初
可选地, 所述初始模块还以如下方式按 SLNR方案进行初始化: 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量的步骤包括: 各基站按相关的 SLNR方案初始化发送波束赋形矢 量 是 ^ ) ! )和 ^ +∑ AH ^H^)的最大广义特征值对应的特 征向量, 即 D
Figure imgf000009_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( NrX 维) , ^表示基站 ζ·到终端 ·的路径损耗, ") ( Λ^χ1维, |wi")|=l ) 表示第《时隙基站 的发送波束赋形矢量,上标 H表示共轭转置,基站 的发射 功率为 , 噪声功率为 σ2; 所 的步 骤包括: 其中,
Figure imgf000009_0002
( N l维, |v")|=l )表示第 "时隙终端 的接收波束赋形矢量. 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初 始值为: 。 可选地, 所述第一获取模块按照以下方式根据协作集合内的每个基站在 上一时隙互相共享的每个干扰终端的接收波束赋形矢量估计值, 获取当前时 隙的发送波束赋形矢量:
隙的发送波束赋形矢量波束赋形矢量:
Figure imgf000010_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵
( NrxNt维) , β表示基站 i到终端 j的路径损耗, w (":
Figure imgf000010_0002
表示第《时隙基站 的发送波束赋形矢量, v") ( N xl维, (": =1 )表示第《时 隙终端 的接收波束赋形矢量, 上标 H表示共轭转置, 基站 的发射功率为 噪声功率为 σ2, Iw表示 NfXN,维单位阵。 可选地, 所述第二获取模块按照以下方式根据当前时隙的发送波束赋 矢量以及上一时隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计 值:
按照如下公式计算当前时隙服务终端的接收波束赋形矢量估计值:
,M (D : t中. £ ^HSTW " + σ2 其中, ψ ))Η η|
m表示协作集合中有 m个基站 ,每个基站服务 1个终端,且第 个终端为第 个 基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 到终端 _/·的路径损耗, w ) ( Nfxl维, )表示第"时隙基
Figure imgf000010_0003
站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
以及干扰矢量 ^/^Η ν^。 可选地, 在接收端的处理包括:
于 MMSE 准则, 计算接收波束赋形矢量, 即: 其中, ) = ∑ ^H» H + %r , 其中, m
Figure imgf000011_0001
表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个终端为第 个 基站的服务终端, Η(;)表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 到终端 ·的路径损耗, wi") ( Nf xl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν ") ( Λ^ χ1维, |v ")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2 , lNr表示 Nr xNr维单位阵;
每个终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来 的信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 束。
可选地, 所述基站处于一协作集合中, 与协作集合中的其他基站之间互 为协作基站;
在协作集合中, 每个基站服务一个终端且釆用协调波束赋形的方式为终 端服务。
与相关技术相比, 本申请技术方案包括基站根据上一时隙共享的各干扰 终端的接收波束赋形矢量估计值, 获取当前时隙的发送波束赋形矢量; 基站 根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量, 获取当前 时隙的接收波束赋形矢量估计值, 将获得的当前时隙的接收波束赋形矢量估 计值与自身对其他终端的干扰矢量, 共享给协作集合内的所有协作基站。 本 发明实施例提供的技术方案通过在相关的基于最大化 SLNR准则的协调波束 赋形方案中考虑接收波束赋形矢量, 并且, 各协作基站间仅共享接收波束赋 形矢量估计值及干扰矢量两个少量信息。 相比相关的基于最大化 SLNR准则 的协调波束赋形方案, 显著提升了***性能, 而且无需终端反馈接收矢量信 息, 明显降低了***开销; 同时实现了各协作基站的分布式实现。 本发明实施例的其它特征和优点将在随后的说明书中阐述, 并且, 部分 地从说明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和 其他优点可通过在说明书、 权利要求书以及附图中所特别指出的结构来实现 和获得。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1为本发明实施例的一个下行协作多点传输***的组成示意图; 图 2为本发明实施例的实现协调波束赋形的方法的流程图;
图 3为本发明实施例的协调波束赋形的第一实施与相关的协调波束赋形 的方法的终端平均频谱效率波形图的对比示意图;
图 4为本发明实施例的协调波束赋形的第二实施与相关的协调波束赋形 的方法的终端平均频谱效率波形图的对比示意图;
图 5为本发明实施例的协调波束赋形的第三实施与相关的协调波束赋形 的方法的终端平均频谱效率波形图的对比示意图;
图 6为本发明实施例的基站的组成结构示意图。 具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
图 1为本发明实施例的一个下行协作多点传输***的组成示意图, 以下 会结合图 1对发明方法进行描述。 如图 1所示, 假设下行协作多点传输*** (也称协作集合) 中, 含有 7个协作基站, M表示协作集合中有 M个基站, 即 M = 7。 每个基站服务 1 个终端, 且第 个终端为第 个基站的服务终端, =1,2,...,7。 基站釆用协调波束赋形的方式为终端服务。
在图 1中, 假设每个基站 (Base Station, BS)配备 N, = 4根天线, 每个终端
(Mobile Station, MS)配备 Nr = 2根天线。 那么, 表示第《时隙基站 i到终端 j 的信道矩阵 Nr xNt , 信道模型釆用瑞利衰落信道。 需要说明的是, 如 果假设信道为静态变化的, 那么 可以省略上标 (《)来表示, 即将各时隙的 信道矩阵均表示为 H 。 表示基站 到终端 ·的路径损耗, 假设各基站到其 服务终端的路径损耗 ¾=1,=1,2,...,7,各基站到干扰终端(包括除服务终端之外 的所有终端)的路径损耗为 0~1之间的随机数, 即 A. =ra (l),≠_/·。 那么, 第 n时隙终端 i的接收信号 ")可以表示为如公式 (1)所示:
,(") ("),',(") n 在公式 (1)中, x,(")为第《时隙基站 的发送信号, W (":
Figure imgf000013_0001
表示第《时隙基站 的发送波束赋形矢量, vi") ( Nxl维, (": =1 )表示第《时 隙终端 的接收波束赋形矢量, 上标 H表示共轭转置。 基站 的发射功率为 终端 的接收噪声为 n,., 噪声功率为 σ2, 由公式 (1)可以得到第《时隙终端 的 接收信干噪比公式 (2)所示:
Figure imgf000013_0002
假设***工作于时分复用 (TDD)模式, 因此, 发射机可以利用信道的 上下行互易性获得其到协作集合内所有终端的信道矩阵, 即基站 已知 Η..( ,2,···,7), 考虑了接收波束赋形矢量后, 第《时隙基站 的信漏噪比如公 式 (3)所示:
SL R (":
Figure imgf000013_0003
+∑ 图 2为本发明实施例的实现协调波束赋形的方法的流程图,如图 2所示, 包括:
步骤 200:基站根据上一时隙共享的各干扰终端的接收波束赋形矢量估计 值, 获取当前时隙的发送波束赋形矢量。
本步骤中, 基站根据上一时隙共享的各干扰终端的接收波束赋形矢量估 计值, 基于最大化 SLNR准则计算本基站当前时隙的发送波束赋形矢量。
在获取本步骤中的发送波束赋形矢量中, 使用的接收波束赋形矢量估计 值是上一时隙中基站对终端的接收波束赋形矢量的估计值。 需要说明的是, 通过终端反馈上一时隙的接收波束赋形矢量, 也可以达到本发明实施例的效 果, 只是会稍稍增加上行链路的反馈开销。
本发明实施例还可以包括步骤 201 :基站向其服务终端发送经过波束赋形 后的信号。 具体实现属于本领域技术人员的惯用技术手段, 这里不再赘述。
步骤 202:基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干 扰矢量, 获取当前时隙的接收波束赋形矢量估计值。
本步骤中, 基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的 干扰矢量, 基于相关的最小均方差 (MMSE ) 准则计算当前时隙服务终端的 接收波束赋形矢量估计值。
需要说明的是, 在步骤 200之后, 步骤 201与步骤 202的执行并没有严格的 先后顺序。
步骤 203:基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其 他终端的干扰矢量, 共享给协作集合内的所有协作基站。 本步骤中, 共享就是将获得的当前时隙的接收波束赋形矢量估计值与自 身对其他终端的干扰矢量, 发送给基站所在协作集合中的其它协作基站。 从本发明实施例提供的技术方案可以看出, 通过在相关的基于最大化 SLNR准则的协调波束赋形方案中考虑接收矢量,获得了对干扰终端接收波束 赋形矢量的估计值, 再根据该接收波束赋形矢量估计值, 基于最大化 SLNR 准则计算得到发送波束赋形矢量。 并且, 本发明实施例中的各协作基站间仅 共享接收波束赋形矢量估计值及干扰矢量两个少量信息。 本发明实施例的方 法相比相关技术的基于最大化 SLNR准则的协调波束赋形方案,显著提升了系 统性能, 而且无需终端反馈接收矢量信息, 明显降低了***开销; 同时实现 了各协作基站的分布式实现。
在执行所有上述步骤(即, 步骤 200-203 )之前, 还包括: 基站所在协作 集合中的各基站均进行初始化, 具体包括: 各基站按相关的 SLNR方案初始化 发送波束赋形矢量; 各基站分别计算接收波束赋形矢量初始估计值, 以及各 基站自身对协作集合内除服务终端之外的其它干扰终端的干扰初始矢量。 以信道模型釆用瑞利衰落信道,并假设为静态的为例,此时 可以省略 上标 (《)来表示, 即将各时隙的信道矩阵均表示为 Η , 各基站按相关的 SLNR 方案初始化发送波束赋形矢量 w"是 ^ 和 +∑ ^fl的最大广 义特征值对婦 征向量, 即— ^ +i 各基站分别计算接收波束赋形 , 各基站自身对
Figure imgf000015_0001
协作集合内除服务终端之外的其它干扰终端的干扰矢量初始值为
H w («-!) 以信道模型釆用瑞利衰落信道, 并假设信道慢变, 中心频率为 2GHz, 多 普勒频偏为 5Hz, 各基站按相关的 SLNR方案初始化发送波束赋形矢量 是 σ
和 ^ +∑ ?.Η^) ^)的最大广义特征值对应的特征向量,即 、
; 各基站分别计算接收波 对协作集合内除服务终端
Figure imgf000015_0002
之外的其它干扰终端的干扰矢量初始值为 « 。
下面结合图 1对本发明的几个实施例进行详细描述。
第一实施例, 结合图 1所示的下行协作多点传输***, 4叚设在第一实施例 中, 信道是静态的。 在初始化过程中: 假设" =1, 那么,
协作集合中的各基站分别按相关的 SLNR方案初始化发送波束赋形矢量 w" , 是 A.H H,和 + ± ?,H H,的最大广义特征值对应的特征向 量 , 即
Figure imgf000015_0003
协作集合中的各基站计算 υ = ϊΰί 及干扰矢量 ", 并在协
H w
作基站之间共享 υ和 H w";
实现协调波束赋形的方法的过程中, 发射端的处理包括. 各基站均会基于最大化 SLNR准则,分别计算本基站自身当前时隙的发送 r:"-!)
波束赋形矢量: ^ = ' ' I, , 其中: Φ" = ^·Η Γ) — I, 表示 Nf XN,维单位阵;
各基站均根据计算得到的发送波束赋形矢量向各自的服务终端分别发射 经过波束赋形后的信号;
各基站均会基于 MMSE准则 ,分别计算当前时隙各基站的服务终端的接 收 波 束 赋 形 矢 量 估 计 值 : = > ,, , 其 中 ΧΛ^维单位阵; 以及干扰矢量
Figure imgf000016_0001
各基站与协作基站之间共享计算得到的接收波束赋形矢量估计值以及干 扰矢量。 比如, 基站 向协作集合中的其他协作基站 'C/≠ 发送^〕和 ^/^Η ^两个矢量;
对于接收端的处理包括:
即: Nr xNr
Figure imgf000016_0002
维单位阵;
各终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来的 信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 束。
在第一实施例中,假设信噪比 SNR=\ dB , 以 20个时隙为例进行仿真。对 相关的基于 SLNR的协调波束赋形方案 (T-SLNR ) 、 基于迭代的发送 /接收 波束赋形矢量联合设计方案(JTR-CB ) , 以及本发明实施例实现协调波束赋 形的方法,在相同的信道条件下,分别进行了 105次独立的仿真,其中 JTR-CB 方案在各时隙均迭代 20次。图 3为本发明实施例的协调波束赋形的第一实施 与相关的协调波束赋形的方法的终端平均频谱效率波形图的对比示意图, 即 本发明实施例的方案与 T-SLNR方案以及 JTR-CB的比较示意图。 如图 3所 示, 横坐标表示时隙数, 纵坐标表示每终端平均频语效率 (bit/s/Hz); 三角形 空心圓圈所示的曲线即曲线 32 为釆用 JTR-CB 方案的终端平均频谱效率曲 线, 实心圓点所示的曲线即曲线 33为釆用 T-SLNR方案的终端平均频谱效率 曲线。 图 3中, 在静态信道的假设下, 本发明实施例的方案呈现一种随时隙 推移而逐渐收敛态势, 因此, 可以看到本发明实施例的方案的平均频谱效率 随着时隙数的增加是递增的, 当时隙数达到 16以后, 基本收敛于一个定值。 进一步,表 1为静态信道 7个小区 7个终端场景下终端平均频谱效率,从表 1 可以看到该收敛值与 JTR-CB方案的性能接近,只比 JTR-CB方案低了 3.43%, 而与 T-SLNR方案相比则提升了 29.36%。
Figure imgf000017_0003
表 1
从信息交互开销的角度来看, 本发明实施例方案远小于 JTR-CB方案。 如果 JTR-CB方案釆用集中式方式实现, 那么, 各基站需要向中心节点发送 自身已知的 7个信道矩阵, ( =1,2,— ,7) , 中心节点计算完成后, 需 要向 7个基站发送各自的发送波束赋形矢量
Figure imgf000017_0001
而在本发明实施 例方案中, 各协作基站仅需共享本基站的接收矢量估计值(即^ ^ )和对协 作基站终端的干扰向量(即
Figure imgf000017_0002
) , 信息共享量仅是 JTR-CB方案的
2(M-l)Nr = 2 , 而从计算复杂度来说, 本发明实施例方案中, 各基站在每个
MNtNr+Nt 5
时隙内只需计算 w!")和 各一次, 而 JTR-CB方案则需要计算 20次(仿真中 设定迭代次数为 20 ) 。
第二实施例, 结合图 1所示的下行协作多点传输***, 4叚设第二实施例 中, 信道慢变, 中心频率为 2GHz, 多普勒频偏为 5Hz。 在初始化过程中: 假 设" =1 , 那么, 协作集合中的各基站按相关的 SLNR 方案初始化发送波束赋形矢量 w", w"是 A - )和 + ± ΑΗΓ1) !^-1)的最大广义特征值对应的 特征向量,
Figure imgf000018_0001
协作集合中的各基站计算 及干扰矢量^ ΑΗ(Γ) υ ,并在 协作基站之间共享 υ和 ^^ ;
实现协调波束赋形的方法的过程中, 发射端的处理包括: 各基站均会基于最大化 SLNR准则, 分别计算本基站自身当前时隙的发 送 波 束 赋 形 矢 量 : = n 其 中
«))-' ι ("-ΐ)
= 表示 NtXNt维单位阵;
Figure imgf000018_0002
各基站均根据计算得到的发送波束赋形矢量向各自的服务终端分别发射 经过波束赋形后的信号; 各基站均会基于 MMSE准则,分别计算当前时隙各基站的服务终端的接
Ψ (")„ )
收 波 束 赋 形 矢 量 估 计 值 : 其 中
Ψ"= ρ^^ ^Η^Η +o1\Nr , 表示 NrXNr维单位阵; 各基站与协作基站之间共享计算得到的接收波束赋形矢量估计值以及干 扰矢量。 比如, 基站 向协作集合中的其他协作基站 'C/≠ 发送^— υ和 ^/^H^- "两个矢量; 对于接收端的处理包括:
各终端基于 MMSE 准则 , 计算接收波束赋形矢量, 即:
I , 其中 Ί ,, Ψ τ")二= ∑ ^Η» ; Η^+σ , lNr表示
NrXNr维单位阵; 各终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来的 信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 在第二实施例中,假设信噪比 SNR=\ OdB , 以 20个时隙为例进行仿真。对 相关的基于 SLNR的协调波束赋形方案 (T-SLNR ) 、 基于迭代的发送 /接收 波束赋形矢量联合设计方案(JTR-CB ) , 以及本发明实施例实现协调波束赋 形的方法,在相同的信道条件下,分别进行了 105次独立的仿真,其中 JTR-CB 方案在各时隙均迭代 20次。图 4为本发明实施例的协调波束赋形的第二实施 与相关的协调波束赋形的方法的终端平均频谱效率波形图的对比示意图, 即 本发明实施例方案与 T-SLNR方案以及 JTR-CB的比较示意图, 如图 4所示, 横坐标表示时隙数, 纵坐标表示每终端平均频语效率 (bit/s/Hz); 三角形所示 圓圈所示的曲线即曲线 42为釆用 JTR-CB方案的终端平均频谱效率曲线, 实 心圓点所示的曲线即曲线 43为釆用 T-SLNR方案的终端平均频谱效率曲线。 图 4中, 在慢变信道条件下, 本发明实施例方案的性能较静态信道有所下降。 进一步, 表 2慢变信道 (多普勒频偏 =5Hz)7个小区 7个终端场景下终端平均 频谱效率, 从表 2可以看出, 当最大多普勒频移为 5Hz时, 本发明实施例方 案的平均频谱效率性能比 JTR-CB方案低了 4.49%。 但与 T-SLNR方案相比, 本发明实施例方案的性能优势仍然比较明显。
Figure imgf000019_0001
表 2
从信息交互开销的角度来看, 本发明实施例方案远小于 JTR-CB方案: 若 JTR-CB方案釆用集中式方式实现, 那么, 各基站需要向中心节点发送自 身已知的 7 个信道矩阵, 即^/^!^-1) ( =1,2,···, 7), 中心节点计算完成后, 需 要向 7个基站发送各自的发送波束赋形矢量
Figure imgf000020_0001
而在本发明实施 例方案中, 各协作基站仅需共享本基站的接收矢量估计值(即^ - ') )和对协 作基站终端的干扰向量(即 ^ ) , 信息共享量仅是 JTR-CB方案 的 2(M-l)Nr , 而从计算复杂度来说, 本发明实施例方案中, 各基站在每
MNtNr+Nt 5
个时隙内只需计算 w!w)和 " >各一次, 而 JTR-CB方案则需要计算 20次(仿真 中设定迭代次数为 20)
第三实施例, 结合图 1所示的下行协作多点传输***, 4叚设第三实施例 中, M=3, 信道慢变, 中心频率为 2GHz, 多普勒频偏为 5Hz。 在初始化过程 中: 4叚设" =1, 那么,
协作集合中的各基站按相关的 SLNR 方案初始化发送波束赋形矢量 w", w"是 A - )和 + ± ^ΗΓ^Η )的最大广义特征值对应的 特征向量, + ?.Η^ ^、
Figure imgf000020_0002
协作基站之间共享 υ和 « ; 实现协调波束赋形的方法的过程中, 发射端的处理包括:
各基站均会基于最大化 SLNR准 分别计算本基站自身当前时隙的发 送 波 束 赋 形 矢 量 : , 其 中 ,
Figure imgf000020_0003
= , 表示 NtXNt维单位阵;
Figure imgf000020_0004
各基站均根据计算得到的发送波束赋形矢量向各自的服务终端分别发射 经过波束赋形后的信号;
各基站均会基于 MMSE准则,分别计算当前时隙各基站的服务终端的接 波 束 赋 形 矢 量 估 计 值 : 其 中
Figure imgf000021_0001
X
Figure imgf000021_0002
, 表示 Nr xNr维单位阵; 各基站与协作基站之间共享计算得到的接收波束赋形矢量估计值以及干 扰矢量。 比如, 基站 需要向协作集合中的其他协作基站 ·( ·≠ ;>发送^ - "和 ^/^H^- "两个矢量; 对于接收端的处理包括:
各终端基于 MMSE 准则 , 计算接收波束赋形矢量, 即:
Ψ (") (")«,(")
.(«) 其中, Ψ ") = ∑ ^Η» ; Η^ + σ , lNr表示
Nr xNr维单位阵;
各终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来的 信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结
在第三实施例中,假设信噪比 SNR=\ OdB , 以 20个时隙为例进行仿真。对 相关的基于 SLNR的协调波束赋形方案(T-SLNR )、 基于迭代的发送、 接收 波束赋形矢量联合设计方案(JTR-CB ) , 以及本发明实施例实现协调波束赋 形的方法,在相同的信道条件下,分别进行了 105次独立的仿真,其中 JTR-CB 方案在各时隙均迭代 20次。图 5为本发明实施例的协调波束赋形的第三实施 与相关的协调波束赋形的方法的终端平均频谱效率波形图的对比示意图, 即 本发明方案与 T-SLNR方案以及 JTR-CB的比较示意图, 如图 5所示, 横坐 标表示时隙数, 纵坐标表示每终端平均频谱效率 (bit/s/Hz); 三角形所示的曲 示的曲线即曲线 52为釆用 JTR-CB方案的终端平均频谱效率曲线, 实心圓点 所示的曲线即曲线 53为釆用 T-SLNR方案的终端平均频谱效率曲线。图 5中, 当最大多普勒频移为 5Hz 时, 本发明实施例方案的平均频谱效率性能比 JTR-CB方案低了 2.14%,而与 T-SLNR方案相比则提升了 14.65%。与 T-SLNR 方案相比, 本发明实施例方案的性能优势仍然比较明显。 进一步, 表 3慢变 信道 (多普勒频偏 =5Hz)3个小区 3个终端场景下终端平均频谱效率, 结合图 5 与图 4对比可以看出,协作集合规模越大,本发明实施例方案相比于 T-SLNR 方案的性能提升幅度越大。
Figure imgf000022_0001
表 3
从信息交互开销的角度来看, 本发明实施例方案远小于 JTR-CB方案, 若 JTR-CB方案釆用集中式方式实现, 那么, 各基站需要向中心节点发送自 身已知的 3个信道矩阵, 即^/^ !^-1) ( =1,2,3) , 中心节点计算完成后, 需要向
3 个基站发送各自的发送波束赋形矢量 w ) ( =l,2,3)。 而在本发明实施例方案 中, 各协作基站仅需共享本基站的接收矢量估计值(即^ - ') )和对协作基站 终端的干扰向量 (即 ^H^w ) ) , 信息共享量仅是 JTR-CB 方案的
2(M-l) Nr = 2 , 而从计算复杂度来说, 本发明实施例方案中, 各基站在每个
MNtNr+Nt 7
时隙内只需计算 w!w)和 " >各一次, 而 JTR-CB方案则需要计算 20次(仿真中 设定迭代次数为 20 ) 。
结合图 1 , 本发明实施例还提供一种基站, 处于一协作集合中, 与协作集 合中的其他基站之间互为协作基站; 在协作集合中, 每个基站服务一个终端 且釆用协调波束赋形的方式为终端服务。图 6为本发明实施例的基站的组成结 构示意图, 如图 6所示, 本发明实施例的基站至少包括第一获取模块、 发送模 块、 第二获取模块, 以及协作模块; 其中,
第一获取模块, 其设置成根据上一时隙共享的各干扰终端的接收波束赋 形矢量估计值, 获取当前时隙的发送波束赋形矢量; 发送模块, 其设置成利用发送波束赋形矢量对信号进行波束赋形; 还设 置成向其服务终端发送经过波束赋形后的信号;
第二获取模块, 其设置成根据当前时隙的发送波束赋形矢量以及上一时 隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计值; 协作模块, 其设置成将获得的当前时隙的接收波束赋形矢量估计值与当 前时隙基站自身对其他协作终端的干扰矢量, 存储在存储模块中, 并共享给 协作集合内的所有协作基站。
本发明实施例的基站还包括初始模块,其设置成按相关的 SLNR方案初始 化发送波束赋形矢量; 计算接收波束赋形矢量初始估计值, 以及自身对协作 集合内除服务终端之外的其它干扰终端的干扰初始矢量; 将计算得到的接收 波束赋形矢量初始估计值及干扰初始矢量存储在存储模块中。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性 本发明实施例提供的技术方案显著提升了***性能, 而且无需终端反馈 接收矢量信息, 明显降低了***开销; 同时实现了各协作基站的分布式实现, 因此本发明具有很强的工业实用性。

Claims

权 利 要 求 书
1、 一种实现协调波束赋形的方法, 包括: 基站根据协作集合中的每个基站在上一时隙互相共享的每个干扰终端的 接收波束赋形矢量估计值, 获取当前时隙的发送波束赋形矢量;
基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计值; 基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其他终端的 干扰矢量, 共享给所述协作集合内的所有协作基站。
2、根据权利要求 1所述的实现协调波束赋形的方法, 还包括协作集合中 的每个所述基站均进行初始化: 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量;
所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值, 以 及每个所述基站自身对协作集合内除服务终端之外的其它干扰终端的干扰初 始矢量。
3、 根据权利要求 2所述的实现协调波束赋形的方法, 其中: 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量的步骤包括:
每个基站按相关的 SLNR方案初始化发送波束赋形矢量 是 A.H H,和 ^ΙΝ + ∑ ?,.H Η,. 的 最 大广 义特征值对应 的 特征向 量 , 即
Figure imgf000024_0001
其中, m表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( Λ^ χΛ^维), 在信道为静态时, Η( )可以省略上标 (《)来表示, 即将各时隙的 信道矩阵均表示为 Η , 表示基站 到终端 ·的路径损耗, ") (Λ^ χ1维, 叫|=1 )表示第《时隙基站 的发送波束赋形矢量, 上标 H表示共轭转置, 基 站 的发射功率为 , 噪声功率为 σ2; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括:
(«-!)- Η w («-!)
卄 . (": 各基站分别计算接收波束赋形矢量初始估计值 W=li^ Hr w¾i, 其中, V
( Nrxl维, =1 )表示第《时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初
4、 根据权利要求 2所述的实现协调波束赋形的方法, 其中: 所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量的步骤包括: 各基站按相关的 SLNR方案初始化发送波束赋形矢 量 是 ^ ) ! )和 +∑ AH ^H^)的最大广义特征值对应的特 征向量, 即 D
Figure imgf000025_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( NrX 维) , ^表示基站 ζ·到终端 ·的路径损耗, w") ( Nfxl维, |w")|=l ) 表示第《时隙基站 的发送波束赋形矢量,上标 H表示共轭转置,基站 的发射 功率为 , 噪声功率为 σ2; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括:各基站分别计算接收波束赋形矢量初始估计值 , W n ,其中, ■ w
( N l维, |v")|=l )表示第 "时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初 始值为: 。
5、 根据权利要求 1或 2所述的实现协调波束赋形的方法, 其中, 所述获 取当前时隙的发送波束赋形矢量的步骤包括: 所述基站根据上一时隙共享的每个干扰终端的接收波束赋形矢量估计 值, 基于最大化 SLNR准则, 计算本基站当前时隙的发送波束赋形矢量。
6、 根据权利要求 5所述的实现协调波束赋形的方法, 其中, 所述基站根 据上一时隙共享的每个干扰终端的接收波束赋形矢量估计值, 基于最大化 SLNR准则, 计算本基站当前时隙的发送波束赋形矢量的步骤包括: 隙的发送波束赋形矢量波束赋形矢量: w)
Figure imgf000026_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵
( NrX 维) , ^表示基站 ζ·到终端 ·的路径损耗, w") ( Nfxl维, |w")|=l ) 表示第《时隙基站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时 隙终端 的接收波束赋形矢量, 上标 H表示共轭转置, 基站 的发射功率为 , 噪声功率为 σ2, 表示 NfXN,维单位阵。
7、 根据权利要求 1或 2所述的实现协调波束赋形的方法, 其中, 所述获 取当前时隙的接收波束赋形矢量估计值的步骤包括:
所述基站根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢 量,基于最小均方差 MMSE准则计算当前时隙服务终端的接收波束赋形矢量 估计值。
8、 根据权利要求 7所述的实现协调波束赋形的方法, 其中, 所述基站根 据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量, 基于最小均 方差 MMSE准则计算当前时隙服务终端的接收波束赋形矢量估计值的步骤包 括: 按照如下公式计算当前时隙服务终端的接收波束赋形矢量估计值: +。 ,其中,
Figure imgf000027_0001
m表示协作集合中有 m个基站 ,每个基站服务 1个终端,且第 个终端为第 个 基站的服务终端, Η()表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 ζ·到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
以及干扰矢量 ^/^Η ν^。
9、根据权利要求 1或 2所述的实现协调波束赋形的方法,该方法还包括: 于 MMSE 准则, 计算接收波束赋形矢量, 即: 其中 , = ∑ ^H» H + %r , 其中, m
Figure imgf000027_0002
表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个终端为第 个 基站的服务终端, Η(;)表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
每个终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来 的信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 束。
10、 根据权利要求 1或 2所述的实现协调波束赋形的方法, 其中, 所述 基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其他终端的干扰 矢量, 共享给协作集合内的所有协作基站的步骤包括:
所述基站将获得的当前时隙的接收波束赋形矢量估计值与自身对其他终 端的干扰矢量, 发送给所述协作集合中的其它协作基站。
11、 一种基站, 包括第一获取模块、 发送模块、 第二获取模块, 以及协 作模块; 其中, 所述第一获取模块设置成: 根据协作集合内的每个基站在上一时隙互相 共享的每个干扰终端的接收波束赋形矢量估计值, 获取当前时隙的发送波束 赋形矢量;
所述发送模块设置成: 利用发送波束赋形矢量对信号进行波束赋形; 所述第二获取模块设置成: 根据当前时隙的发送波束赋形矢量以及上一 时隙共享的干扰矢量, 获取当前时隙的接收波束赋形矢量估计值;
所述协作模块设置成: 将获得的当前时隙的接收波束赋形矢量估计值与 当前时隙基站自身对其他协作终端的干扰矢量, 存储在存储模块中, 并共享 给协作集合内的所有协作基站。
12、 根据权利要求 11所述的基站, 该基站还包括初始模块, 其中: 该初始模块设置成: 按 SLNR方案初始化发送波束赋形矢量; 计算接收 波束赋形矢量初始估计值, 以及自身对协作集合内除服务终端之外的其它干 扰终端的干扰初始矢量; 将计算得到的接收波束赋形矢量初始估计值及干扰 初始矢量存储在所述存储模块中。
13、根据权利要求 12所述的基站,其中所述初始模块以如下方式按 SLNR 方案进行初始化:
每个基站按相关的 SLNR方案初始化发送波束赋形矢量 是 A.H H,和 ― \Nt + ∑ ?,.H Η,. 的 最 大广 义特征值对应 的 特征向 量 , 即
Figure imgf000028_0001
其中, m表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( Λ^ χΛ^维), 在信道为静态时, Η( )可以省略上标 (《)来表示, 即将各时隙的 信道矩阵均表示为 Η,. , 表示基站 到终端 _/·的路径损耗, ") (Λ^ χ1维, |w ")|=l )表示第《时隙基站 的发送波束赋形矢量, 上标 H表示共轭转置, 基 站 的发射功率为 , 噪声功率为 σ2 ; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括: n-l)
(«-!)- H w (
卄 <+ . (": 各基站分别计算接收波束赋形矢量初始估计值 W=li^ Hr w¾i, 其中, V
( Nrxl维, (": =1 )表示第《时隙终端 的接收波束赋形矢量; 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初
14、 根据权利要求 12 所述的基站, 其中所述初始模块还以如下方式按 SLNR方案进行初始化:
所述协作集合中的每个基站按最大化信漏噪比 SLNR方案初始化发送波 束赋形矢量的步骤包括: 各基站按相关的 SLNR方案初始化发送波束赋形矢 量 是 ^ ) ! )和 ^ +∑ AH ^H^)的最大广义特征值对应的特 征向量, 即 D
Figure imgf000029_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵 ( NrX 维) , ^表示基站 ζ·到终端 ·的路径损耗, w") ( Nfxl维, |w")|=l ) 表示第《时隙基站 的发送波束赋形矢量,上标 H表示共轭转置,基站 的发射 功率为 , 噪声功率为 σ2; 所述协作集合中的每个基站分别计算接收波束赋形矢量初始估计值的步 骤包括:各基站分别计算接收波束赋形矢量初始估计值^—υ= " ;„ ||,其中, ■ w
v") ( Nrxl维, |v")|=l )表示第 "时隙终端 的接收波束赋形矢量- 所述协作集合中的每个基站分别计算每个所述基站自身对协作集合内除 服务终端之外的其它干扰终端的干扰初始矢量的步骤包括: 各基站自身对协作集合内除服务终端之外的其它干扰终端的干扰矢量初 始值为: 。
15、根据权利要求 11所述的基站, 其中所述第一获取模块按照以下方式 根据协作集合内的每个基站在上一时隙互相共享的每个干扰终端的接收波束 赋形矢量估计值, 获取当前时隙的发送波束赋形矢量:
隙的发送波束赋形矢量波束赋形矢量:
Figure imgf000030_0001
其中, m表示协作集合中有 m个基站,每个基站服务 1个终端, 且第 个 终端为第 个基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵
( NrxNt维) , β表示基站 i到终端 j的路径损耗, w (":
Figure imgf000030_0002
表示第《时隙基站 的发送波束赋形矢量, v") ( N xl维, (": =1 )表示第《时 隙终端 的接收波束赋形矢量, 上标 H表示共轭转置, 基站 的发射功率为 噪声功率为 σ2, 表示 Nf XN,维单位阵。
16、根据权利要求 11所述的基站, 其中所述第二获取模块按照以下方式 根据当前时隙的发送波束赋形矢量以及上一时隙共享的干扰矢量, 获取当前 时隙的接收波束赋形矢量估计值:
按照如下公式计算当前时隙服务终端的接收波束赋形矢量估计值:
(χρ( )Υ1 ττ (») m
v(B) = .. ' ' a ; ..,其中: = £ ^ + o2lNr,其中,
Ψ H (")
.W
m表示协作集合中有 m个基站 ,每个基站服务 1个终端,且第 个终端为第 个 基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 ζ·到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
以及干扰矢量
Figure imgf000030_0003
17、 根据权利要求 11所述的基站, 其中在接收端的处理包括:
每个终端基于 MMSE 准则, 计算接收波束赋形矢量, + a%r , 其中, m
Figure imgf000030_0004
表示协作集合中有 m个基站, 每个基站服务 1个终端, 且第 个终端为第 个 基站的服务终端, Η( )表示第《时隙基站 到终端 ·的信道矩阵( N xN,维) , 表示基站 ζ·到终端 ·的路径损耗, wi") ( Nfxl维, w (": =1 )表示第《时隙基 站 的发送波束赋形矢量, ν") ( Λ^χ1维, |v")|=l )表示第《时隙终端 的接收 波束赋形矢量,上标 H表示共轭转置,基站 的发射功率为 ,噪声功率为 σ2, lNr表示 Nr xNr维单位阵;
每个终端使用计算得到的接收波束赋形矢量接收各自所属服务基站发来 的信号;
将 n增加一, 即《 «+1; 重复执行发射端和接收端的处理, 直到通信结 束。
18、 根据权利要求 11或 12所述的基站, 其中, 所述基站处于一协作集 合中, 与协作集合中的其他基站之间互为协作基站; 在协作集合中, 每个基站服务一个终端且釆用协调波束赋形的方式为终 端服务。
PCT/CN2014/000582 2014-01-06 2014-06-13 一种实现协调波束赋形的方法及基站 WO2015100689A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14876300.6A EP3079268A4 (en) 2014-01-06 2014-06-13 PROCESS AND BASIC STATION FOR COORDINATED BEAM FORMING
US15/109,842 US20160329946A1 (en) 2014-01-06 2014-06-13 Method and Base Station for Coordinated Beamforming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410005772.4 2014-01-06
CN201410005772.4A CN104767552A (zh) 2014-01-06 2014-01-06 一种实现协调波束赋形的方法及基站

Publications (1)

Publication Number Publication Date
WO2015100689A1 true WO2015100689A1 (zh) 2015-07-09

Family

ID=53493017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000582 WO2015100689A1 (zh) 2014-01-06 2014-06-13 一种实现协调波束赋形的方法及基站

Country Status (4)

Country Link
US (1) US20160329946A1 (zh)
EP (1) EP3079268A4 (zh)
CN (1) CN104767552A (zh)
WO (1) WO2015100689A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164576A1 (en) * 2010-01-06 2011-07-07 Qualcomm Incorporated Heuristic algorithm for calculating target sinr for mmse beamforming
CN103209051A (zh) * 2013-03-08 2013-07-17 西安交通大学 一种协作多点联合传输***在多用户场景下的两步预编码方法
CN103236878A (zh) * 2013-04-19 2013-08-07 西安交通大学 一种基于最大比合并接收矢量估计的协调波束赋形方法
CN103236879A (zh) * 2013-04-19 2013-08-07 西安交通大学 一种基于mrc-zf 接收矢量估计的协调波束赋形方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218422B2 (en) * 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US9031032B2 (en) * 2009-10-05 2015-05-12 Futurewei Technologies, Inc. System and method for inter-cell interference coordination
JP5518649B2 (ja) * 2010-09-13 2014-06-11 株式会社Nttドコモ 無線通信制御方法、無線通信システム、無線基地局および移動端末
US8862176B2 (en) * 2011-11-04 2014-10-14 Intel Corporation Techniques for mitigating interference associated with downlink transmissions from a base station
KR101935782B1 (ko) * 2012-03-29 2019-01-08 삼성전자주식회사 다중 셀룰러 네트워크에서 신호의 송수신 방법 및 장치
CN103580789B (zh) * 2012-07-30 2018-08-10 中兴通讯股份有限公司 多点协作传输预编码处理方法、装置及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164576A1 (en) * 2010-01-06 2011-07-07 Qualcomm Incorporated Heuristic algorithm for calculating target sinr for mmse beamforming
CN103209051A (zh) * 2013-03-08 2013-07-17 西安交通大学 一种协作多点联合传输***在多用户场景下的两步预编码方法
CN103236878A (zh) * 2013-04-19 2013-08-07 西安交通大学 一种基于最大比合并接收矢量估计的协调波束赋形方法
CN103236879A (zh) * 2013-04-19 2013-08-07 西安交通大学 一种基于mrc-zf 接收矢量估计的协调波束赋形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079268A4 *

Also Published As

Publication number Publication date
EP3079268A1 (en) 2016-10-12
CN104767552A (zh) 2015-07-08
US20160329946A1 (en) 2016-11-10
EP3079268A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US11962435B2 (en) Reciprocal calibration for channel estimation based on second-order statistics
Zheng et al. NOMA-based multi-pair two-way relay networks with rate splitting and group decoding
CN110677178B (zh) 大规模mimo-noma***中短包传输时延分析方法
EP2997705B1 (en) Large-scale fading coefficient estimation in wireless massive mimo systems
WO2010034189A1 (zh) 一种多点协作传输***及方法
WO2012159343A1 (zh) 一种发送分集方法、相关设备及***
CN105591677B (zh) 一种基于干扰对齐技术的d2d协作多点传输方法
WO2012055276A1 (zh) 业务数据下发方法和装置
CN101895486A (zh) 一种lte下行波束赋形方法、装置、基站和用户终端
WO2014180449A1 (zh) 一种基于干扰对齐的预编码***和方法
JP2013214974A (ja) 電力割当方法、システムおよび装置
Yoshioka et al. 5G massive MIMO with digital beamforming and two-stage channel estimation for low SHF band
CN102201893B (zh) 多天线组播***基于最大最小波束成型的容量估计方法
Silva et al. NOMA-aided multi-way massive MIMO relay networks
TW201304448A (zh) 通訊系統中傳輸資料之方法及其第一網路節點及第二網路節點
CN103236878A (zh) 一种基于最大比合并接收矢量估计的协调波束赋形方法
WO2013135020A1 (zh) 一种上行协作多点方法及***
TW201424290A (zh) 用於兩社區間的合作多點下行傳輸的方法和裝置
Chai et al. On two-way communications for cooperative multiple source pairs through a multi-antenna relay
Chowdhury et al. Dynamic TDD enabled distributed antenna array massive MIMO system
WO2015100689A1 (zh) 一种实现协调波束赋形的方法及基站
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
Li et al. Cooperative multibeamforming in ad hoc networks
WO2019201251A1 (zh) 一种多天线***发射和接收方法及装置
Khan et al. Multi-connectivity for URLLC: Performance comparison of different architectures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014876300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15109842

Country of ref document: US

Ref document number: 2014876300

Country of ref document: EP