WO2015098988A1 - 蓄電池装置、機器制御装置、及び制御方法 - Google Patents

蓄電池装置、機器制御装置、及び制御方法 Download PDF

Info

Publication number
WO2015098988A1
WO2015098988A1 PCT/JP2014/084197 JP2014084197W WO2015098988A1 WO 2015098988 A1 WO2015098988 A1 WO 2015098988A1 JP 2014084197 W JP2014084197 W JP 2014084197W WO 2015098988 A1 WO2015098988 A1 WO 2015098988A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
discharge
power
control
value
Prior art date
Application number
PCT/JP2014/084197
Other languages
English (en)
French (fr)
Inventor
正臣 佐竹
浩征 松本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14875142.3A priority Critical patent/EP3089309A4/en
Priority to US15/107,883 priority patent/US20160322846A1/en
Priority to JP2015554971A priority patent/JPWO2015098988A1/ja
Publication of WO2015098988A1 publication Critical patent/WO2015098988A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection

Definitions

  • the present invention relates to a storage battery device, a device control device, and a control method for performing communication according to a predetermined communication protocol.
  • EMS Energy Management System
  • a device class is defined for each type of device, and information and control targets of the device are defined for each device class as properties.
  • the storage battery device belongs to the storage battery class, and the properties corresponding to the storage battery class include a storage battery capacity, a maximum and minimum charging power value, and the like (see Non-Patent Document 1).
  • PPS Power Product Supplier
  • the power company When the actual power consumption exceeds the power demand (assumed power demand) assumed by the PPS beyond the predetermined fluctuation range, the power company will supplement the power shortage. In return, PPS pays a penalty fee to the power company.
  • the predetermined fluctuation range is, for example, 3% of the assumed demand power amount in units of 30 minutes in Japan.
  • the penalty fee is referred to as an imbalance fee (or a generation fee outside the fluctuation range).
  • Various inventions related to cost reduction have been proposed in connection with PPS (see, for example, Patent Document 1).
  • a method of using a power supply system (storage system) having a storage battery device and maximally discharging from the storage battery device according to the power consumption of the load can be considered.
  • the storage battery device is provided in a customer facility.
  • the power storage device includes a communication unit that communicates with an external device control device according to a predetermined communication protocol, and a control that performs load-following discharge that adjusts discharge power according to power consumption of a load provided in the customer facility.
  • the communication unit receives a setting request for requesting setting of a maximum discharge value of the load following discharge from the device control apparatus.
  • the control unit controls the discharge power of the load following discharge to be equal to or less than the maximum discharge value based on the setting request.
  • the device control device controls a storage battery device that performs load following discharge that adjusts discharge power according to power consumption of a load provided in a customer facility.
  • the device control device includes a communication unit that performs communication with the storage battery device according to a predetermined communication protocol.
  • the communication unit transmits a setting request for requesting setting of a maximum discharge value of the load following discharge to the storage battery device.
  • the control method according to the third feature is used in a system including a storage battery device provided in a customer facility and a device control device that controls the storage battery device.
  • the storage battery device performs a load following discharge in which discharge power is adjusted in accordance with power consumption of a load provided in the customer facility, and the device control device follows a predetermined communication protocol.
  • FIG. 1 is a block diagram illustrating a configuration of a control system according to the embodiment.
  • FIG. 2 is a sequence diagram showing a node connection sequence according to the embodiment.
  • FIG. 3 is a sequence diagram illustrating an operation according to the embodiment.
  • FIG. 4 is a flowchart showing the operation of the device control apparatus according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a specific power consumption transition.
  • FIG. 6 is a diagram illustrating a first comparative example of load following discharge control.
  • FIG. 7 is a diagram showing a comparative example 2 of the load following discharge control.
  • FIG. 8 is a diagram illustrating load following discharge control according to the embodiment.
  • the storage battery device is provided in a customer facility.
  • the power storage device includes a communication unit that communicates with an external device control device according to a predetermined communication protocol, and a control that performs load-following discharge that adjusts discharge power according to power consumption of a load provided in the customer facility.
  • the communication unit receives a setting request for requesting setting of a maximum discharge value of the load following discharge from the device control apparatus.
  • the control unit controls the discharge power of the load following discharge to be equal to or less than the maximum discharge value based on the setting request.
  • the maximum discharge value is specified by an instantaneous power value.
  • the communication unit notifies the device controller of the maximum discharge value in response to a read request from the device controller.
  • the communication unit performs communication based on the ECHONET Lite standard with the device control apparatus.
  • the maximum discharge value is a property corresponding to a device class of the storage battery device.
  • the maximum discharge value is notified from the device control device when it is necessary to control the actual power consumption amount in the customer facility so as to fall within a predetermined fluctuation range of the assumed demand power amount.
  • the apparatus control device controls a storage battery device that performs load following discharge that adjusts discharge power according to power consumption of a load provided in a customer facility.
  • the device control device includes a communication unit that performs communication with the storage battery device according to a predetermined communication protocol.
  • the communication unit transmits a setting request for requesting setting of a maximum discharge value of the load following discharge to the storage battery device.
  • the maximum discharge value is acquired when it is necessary to control the actual power consumption amount in the customer facility so as to fall within a predetermined fluctuation range of the assumed demand power amount.
  • the maximum discharge value is specified by an instantaneous power value.
  • the communication unit acquires the maximum discharge value from the storage battery device by transmitting a read request for the maximum discharge value to the storage battery device.
  • the communication unit performs communication based on the ECHONET Lite standard with the storage battery device.
  • the maximum discharge value is a property corresponding to a device class of the storage battery device.
  • the control method according to the embodiment is used in a system including a storage battery device provided in a customer facility and a device control device that controls the storage battery device.
  • the storage battery device performs a load following discharge in which discharge power is adjusted in accordance with power consumption of a load provided in the customer facility, and the device control device follows a predetermined communication protocol.
  • FIG. 1 is a block diagram illustrating a configuration of a control system 10 according to the embodiment.
  • the control system 10 is provided in a customer facility that receives power supply from a distribution line 30 (power system).
  • the customer facility receives power supply via the distribution line 30 from an electric power company (as an example, PPS).
  • the control system 10 includes a sensor 110, a load 120, a storage battery device 140, and a device control device 200.
  • the sensor 110 measures a system power (power purchased power) parameter supplied from the distribution line 30 via the power line.
  • sensor 110 is a current sensor.
  • the sensor 110 notifies the storage battery device 140 of the measured value via the signal line.
  • the signal line may be wired or wireless.
  • the load 120 is a device that consumes power supplied from the distribution line 30 and / or the storage battery device 140 via the power line.
  • the load 120 is a refrigerator, lighting, an air conditioner, a television, or the like.
  • the load 120 may be a single device or may include a plurality of devices.
  • the load 120 communicates with the device control apparatus 200 via a signal line.
  • the storage battery device 140 is a device that stores electric power.
  • the storage battery device 140 includes a storage battery 141, a direct current-direct current (DC-DC) conversion unit 142, a direct current-alternating current (DC-AC) conversion unit 143, a communication unit 144, and a control unit 145.
  • the storage battery 141 accumulates (charges) power and supplies (discharges) power.
  • the storage battery 141 may store system power or may generate power generated by the power generation device.
  • the DC-DC converter 142 boosts the DC power output from the storage battery 141 and outputs the boosted DC power to the DC-AC converter 143.
  • the DC-AC converter 143 converts the DC power output from the DC-DC converter 142 into AC, and outputs the AC power via the power line.
  • the communication unit 144 communicates with the device control apparatus 200 through a signal line according to a predetermined communication protocol.
  • the control unit 145 controls the DC-DC conversion unit 142 and the DC-AC conversion unit 143 based on the communication. Further, the control unit 145 controls the discharge based on the measurement value of the sensor 110 so that the discharge power does not flow backward to the distribution line 30. At that time, the discharge power is raised or lowered according to the power consumption of the load 120. This is called load following discharge.
  • the device control apparatus 200 controls a plurality of devices provided in the customer facility.
  • the device control apparatus 200 is, for example, a HEMS (Home Energy Management System) that controls a plurality of devices provided in a house.
  • the device control apparatus 200 may be a CEMS (Cluster / Community Energy Management System), a BEMS (Building Energy Management System), a FEMS (Factor Energy Management System, or a Management Energy Management).
  • the device control apparatus 200 includes a communication unit 210 and a control unit 220.
  • the communication unit 210 communicates with the load 120 and the storage battery device 140 through a signal line according to a predetermined communication protocol.
  • the control unit 220 controls the load 120 and the storage battery device 140 by the communication unit 210.
  • the predetermined communication protocol is described using ECHONET Lite (registered trademark) as an example.
  • the protocol stack of a device (also referred to as “node”) compliant with ECHONET Lite is divided into three layers: a lower communication layer, communication middleware, and application software.
  • the lower communication layer corresponds to the first layer to the fourth layer
  • the communication middleware corresponds to the fifth layer to the sixth layer
  • the application software corresponds to the seventh layer.
  • ECHONET Lite stipulates communication middleware specifications, but not lower communication layer specifications.
  • each of the communication unit 144 of the storage battery device 140 and the communication unit 210 of the device control device 200 performs functions of a lower communication layer and a communication middleware.
  • each of the control part 145 of the storage battery apparatus 140 and the control part 220 of the apparatus control apparatus 200 performs the function of application software.
  • a device class (also referred to as “device object”) is defined for each device type, and parameters related to the device are defined for each device class as properties.
  • the storage battery device 140 belongs to the “storage battery class”. Further, the properties corresponding to the storage battery class include a storage battery capacity and a maximum and minimum charging power value.
  • the communication unit 144 of the storage battery device 140 manages each property related to the storage battery device 140 (storage battery class). Information managed for each device class in this way is referred to as an “instance”. Further, the communication unit 144 of the storage battery device 140 manages the attribute information (for example, manufacturer code, product code, serial number) of the storage battery device 140 as a “node profile (profile object)”.
  • Messages transmitted and received by the communication middleware include, for example, “transmission source object identification code”, “transmission destination object identification code”, “service identification code”, “property identification code”, “property value”, and the like.
  • the transmission source object identification code is information for identifying the transmission source object.
  • the transmission destination object identification code is information (device class identification code) for identifying the transmission destination object.
  • the service identification code is information for identifying the operation content for the property value.
  • the service identification code is, for example, “Set” which is a property value setting request or “Get” which is a property value read request.
  • the property identification code is information for identifying a property.
  • FIG. 2 is a sequence diagram showing a node connection sequence according to the embodiment.
  • the node connection sequence is started, for example, when the device control apparatus 200 is activated.
  • Each message shown in FIG. 2 is transmitted and received by the communication unit 144 of the storage battery device 140 and the communication unit 210 of the device control device 200.
  • step S ⁇ b> 11 the device control apparatus 200 sends a read request (hereinafter referred to as “Get message”) requesting reading of a main node profile (manufacturer code, product code, serial number, etc.) to the storage battery.
  • a read request hereinafter referred to as “Get message”
  • step S12 the storage battery device 140 transmits a read response (hereinafter referred to as “Get Res message”) to notify the main node profile to the device control device 200 in response to the reception of the Get message.
  • Get Res message a read response
  • the device control apparatus 200 acquires a main node profile by using the Get Res message and detects a node.
  • step S13 the device control apparatus 200 transmits to the detected node (storage battery apparatus 140) a Get message that requests reading of an instance list that is a list of instances managed by the node.
  • step S14 the storage battery device 140 transmits a Get Res message for notifying the instance list of the own node to the device control device 200 in response to the reception of the Get message.
  • the instance list includes instances of the storage battery class.
  • the storage battery device 140 notifies the device control device 200 of the device class of the storage battery device 140.
  • the device control apparatus 200 grasps that the detected node (storage battery apparatus 140) manages an instance of the storage battery class.
  • step S15 the device control apparatus 200 transmits to the storage battery apparatus 140 a Get message requesting reading of the property map of the instance of the storage battery class.
  • the property map is a list of properties included in the instance.
  • step S16 the storage battery device 140 transmits a Get Res message that notifies the property map of the instance of the storage battery class to the device control device 200 in response to the reception of the Get message.
  • the device control apparatus 200 acquires the property map of the instance of the storage battery class by the Get Res message.
  • Examples of the properties included in the instance of the storage battery class include an operation state, an operation mode setting, an instantaneous charge / discharge power measurement value, a remaining power storage amount, and a storage battery type.
  • the device control apparatus 200 grasps the properties included in the instance managed by the storage battery device 140, and the device control apparatus 200 is in a state in which the storage battery device 140 can be controlled.
  • the property corresponding to the storage battery class includes a maximum discharge value of load following discharge. The maximum discharge value is specified by the instantaneous power value (W).
  • FIG. 3 is a sequence diagram showing an operation according to the embodiment.
  • step S101 the control unit 220 of the device control apparatus 200 acquires the maximum discharge value of the load following discharge.
  • the maximum discharge value of the load following discharge is a value smaller than the rated output value of the storage battery device 140.
  • the control unit 220 acquires the maximum discharge value of the load following discharge.
  • the device control device 200 acquires from the server device owned by the manufacturer of the storage battery device 140 via the Internet.
  • the control unit 220 may calculate the maximum discharge value of the load following discharge by prediction based on past statistical data.
  • the maximum discharge value of the load following discharge is 2.0 kW.
  • the communication unit 210 of the device control device 200 transmits a setting request for requesting setting of the maximum discharge value of the load following discharge to the storage battery device 140.
  • the maximum discharge value of the load following discharge is a property corresponding to the storage battery class.
  • the setting request includes the object identification code of the device control apparatus 200 as the “transmission source object identification code”, the object identification code of the storage battery device 140 as the “transmission destination object identification code”, and the “service identification code”, for example, Set , Including the property identification code as the “property identification code” and the property value of the property as the “property value”.
  • a message includes a “SetC message” that is a Set message that requires a response and a “SetI message” that is a Set message that does not require a response.
  • the SetC message is exemplified.
  • the device control device 200 has previously set the load following discharge mode for the storage battery device 140.
  • the device control apparatus 200 sets the load following discharge mode as the operation mode setting (or discharge mode setting) of the storage battery device 140 together with the setting request for the maximum discharge value of the load following discharge.
  • a setting request for requesting the setting may be transmitted to the storage battery device 140.
  • the communication unit 151 of the storage battery device 140 receives the SetC message from the device control device 200. Based on the SetC message, the control unit 152 of the storage battery device 140 controls the discharge power of the load following discharge to the maximum discharge value (2.0 kW) or less. For example, the control unit 152 monitors the output of the DC-AC conversion unit 143 and performs discharge control so that the output of the DC-AC conversion unit 143 does not exceed the maximum discharge value (2.0 kW).
  • step S103 the communication unit 151 of the storage battery device 140 transmits a Set Res message notifying the setting of the maximum discharge value of the load following discharge to the device control device 200.
  • the storage battery device 140 is prevented from discharging to the rated output, and the remaining power storage capacity of the storage battery device 140 is reduced. Can last longer.
  • FIG. 4 is a flowchart showing the operation of the device control apparatus 200 according to the embodiment.
  • a store is assumed as a consumer facility.
  • step S201 the control unit 220 of the device control apparatus 200 previously stores data such as date / time, outside air temperature, number of customers, power consumption transition (kW), power consumption every 30 minutes (kWh). Accumulate.
  • the control unit 220 searches past data under the conditions of the day to be predicted, derives the past power consumption of the closest condition, and sets the past power consumption as the assumed demand power. Next, assuming that the power consumption of 30 units is used on average, the control unit 220 obtains instantaneous assumed demand power (kW), and loads from the difference with the transition of power consumption at that time. Determine the maximum discharge value of the follow-up discharge.
  • step S202 the communication unit 210 of the device control apparatus 200 transmits a Set message requesting setting of the determined maximum discharge value of the load following discharge to the storage battery apparatus 140.
  • the control unit 152 of the storage battery device 140 controls the discharge power of the load following discharge to the maximum discharge value (2.0 kW) or less based on the setting request (for example, SetC message). .
  • the discharge amount of the storage battery device 140 does not become too large, and the actual power consumption amount is easily suppressed within a predetermined fluctuation range in a predetermined period (for example, 30 minutes). In other words, by suppressing the excess discharge, it is possible to extend the time until the remaining amount of power storage becomes zero while suppressing the imbalance charge.
  • FIG. 5 is a diagram showing an example of a specific power consumption transition.
  • the demand predicted electric energy for 30 minutes is 5 kWh.
  • the instantaneous target power is 10 kW (0%)
  • the variation range of the amount of power allowed in 30 minutes is 9.7 kW ( ⁇ 3%) to 10.3 kW (+3 %).
  • the actual power consumption changes as shown in the graph.
  • the power consumption for 30 minutes is 10.57 kWh. Therefore, an imbalance fee of 0.27 kWh is generated.
  • FIG. 6 is a diagram showing a comparative example 1 of load following discharge control. As shown in FIG. 6, in Comparative Example 1, control is performed to discharge from the storage battery device 140 when the target 10 kW is exceeded. In FIG. 6, the excess of 930 Wh is covered by the discharge of the storage battery device 140, but a shortage of 360 Wh occurs. Moreover, the power consumption of the grid power for 30 minutes is 9.64 kWh. Therefore, an imbalance fee of 0.06 kWh is generated.
  • FIG. 7 is a diagram showing a comparative example 2 of the load following discharge control.
  • the amount of electric power is constantly monitored so as not to become insufficiency, and the discharge is controlled in a time-sharing manner to be 0 kWh.
  • the temporary discharge is stopped so that the total amount of power becomes 0 kWh, exceeding 0 kWh
  • the discharge is resumed at the stage where In this case, the power consumption of the system power is insufficient by 0.15 kWh in 30 minutes, but no imbalance fee is generated.
  • the fact that the power consumption of the system power is insufficient means that the battery has been discharged excessively. For this reason, assuming that the storage battery capacity is 12 kWh and the DOD is 80%, if the state shown in FIG. 7 is repeated, the remaining power storage amount becomes 0% in 13.3 hours.
  • FIG. 8 is a diagram showing load following discharge control according to the embodiment.
  • the maximum discharge value of the load following discharge is 2.1 kW.
  • the discharge amount (kWh) is limited compared to Comparative Example 2.
  • the discharge amount (kW) is suppressed as compared with Comparative Example 2, as a result, it can be controlled to 0 kWh (0%). Therefore, the amount of discharge can be kept to the minimum necessary. Therefore, assuming that the storage battery capacity is 12 kWh and the DOD is 80%, if the state of FIG. 8 is repeated, the remaining power storage amount becomes 0% in 16.84 hours, and the dischargeable period is 3% compared to Comparative Example 2. It will be extended for more hours and the imbalance fee will be reduced.
  • Device control apparatus 200 may transmit to storage battery apparatus 140 a Get message that requests reading of the maximum discharge value of load following discharge of storage battery apparatus 140 as a property corresponding to the storage battery class.
  • the storage battery device 140 may transmit a Get Res message that notifies the maximum discharge value of the load following discharge to the device control device 200 in response to reception of the Get message.
  • a system conforming to ECHONET Lite is exemplified.
  • the present invention is not limited to a system conforming to ECHONET Lite, and the present invention may be applied to a system conforming to another communication protocol such as ZigBee (registered trademark) or KNX.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 需要家施設に設けられる蓄電池装置は、所定の通信プロトコルに従って外部の機器制御装置との通信を行う通信部と、前記需要家施設に設けられた負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う制御部と、を備える。前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記機器制御装置から受信し、前記制御部は、前記設定要求に基づいて、前記負荷追従放電の放電電力を前記最大放電値以下に制御する。

Description

蓄電池装置、機器制御装置、及び制御方法
 本発明は、所定の通信プロトコルに従って通信を行う蓄電池装置、機器制御装置、及び制御方法に関する。
 近年、電力の需要家施設に設けられ、複数の機器を制御する機器制御装置を備えた制御システム(EMS:Energy Management System)が注目を浴びている。このようなシステムには、様々なメーカにより提供される機器を機器制御装置が制御可能にするための通信プロトコルが導入される。
 このような通信プロトコルの一例として、ECHONET Lite(登録商標)の場合は、機器の種別ごとに機器クラスを規定し、当該機器が持つ情報及び制御対象をプロパティとして機器クラスごとに規定する。例えば、蓄電池装置は蓄電池クラスに属しており、蓄電池クラスに対応するプロパティは蓄電池容量及び最大最少充電電力値等を含む(非特許文献1参照)。
 一方で、特定規模電気事業者(PPS:Power Product Supplier)が注目を浴びている。ユーザ(企業等)は、一般的に通常の電力会社よりも安価な電力をPPSから購入することができる。
 PPSが想定した需要電力量(想定需要電力量)に対して、実際の消費電力量が所定の変動範囲を超えて超過した場合に、不足分の電力を電力会社が補うことになるが、その対価としてPPSが電力会社にペナルティ料金を支払う。ここで、所定の変動範囲は、例えば日本国内においては30分単位の想定需要電力量の3%、などである。ペナルティ料金は、インバランス料金(或いは、変動範囲外発電料金)と称される。PPSに関連し、低コスト化に関する様々な発明が提案されている(例えば、特許文献1参照)。
 インバランス料金を抑えるために、蓄電池装置を有する給電システム(蓄電システム)を利用し、負荷の消費電力に応じて蓄電池装置から最大限に放電を行う方法が考えられる。
 しかしながら、このような方法では、蓄電池装置の蓄電残量が早期に尽きてしまうため、蓄電残量が尽きた後においてインバランス料金を抑えることができない問題がある。
「ECHONET SPECIFICATION APPENDIX Detailed Requirements for ECHONET Device objects Release D」、2013年10月31日、インターネット〈http://www.echonet.gr.jp/english/spec/pdf_spec_app_d_e/SpecAppendixD_e.pdf〉
 第1の特徴に係る蓄電池装置は、需要家施設に設けられる。前記蓄電装置は、所定の通信プロトコルに従って外部の機器制御装置との通信を行う通信部と、前記需要家施設に設けられた負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う制御部と、を備える。前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記機器制御装置から受信する。前記制御部は、前記設定要求に基づいて、前記負荷追従放電の放電電力を前記最大放電値以下に制御する。
 第2の特徴に係る機器制御装置は、需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う蓄電池装置を制御する。前記機器制御装置は、所定の通信プロトコルに従って前記蓄電池装置との通信を行う通信部を備える。前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記蓄電池装置に送信する。
 第3の特徴に係る制御方法は、需要家施設に設けられる蓄電池装置と、前記蓄電池装置を制御する機器制御装置とを備えるシステムにおいて用いられる。前記制御方法は、前記蓄電池装置が、前記需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行うステップと、前記機器制御装置が、所定の通信プロトコルに従った通信により、前記負荷追従放電における最大放電電力の設定を要求する設定要求を送信するステップと、前記蓄電池装置が、前記設定要求に基づいて、前記最大放電電力以下の放電電力で前記負荷追従放電を行うステップと、を含む。
図1は、実施形態に係る制御システムの構成を示すブロック図である。 図2は、実施形態に係るノード接続時シーケンスを示すシーケンス図である。 図3は、実施形態に係る動作を示すシーケンス図である。 図4は、実施形態に係る機器制御装置の動作を示すフロー図である。 図5は、具体的な消費電力推移の例を示す図である。 図6は、負荷追従放電制御の比較例1を示す図である。 図7は、負荷追従放電制御の比較例2を示す図である。 図8は、実施形態に係る負荷追従放電制御を示す図である。
 [実施形態の概要]
 実施形態に係る蓄電池装置は、需要家施設に設けられる。前記蓄電装置は、所定の通信プロトコルに従って外部の機器制御装置との通信を行う通信部と、前記需要家施設に設けられた負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う制御部と、を備える。前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記機器制御装置から受信する。前記制御部は、前記設定要求に基づいて、前記負荷追従放電の放電電力を前記最大放電値以下に制御する。
 実施形態では、前記最大放電値は、瞬時電力値により指定される。
 実施形態では、前記通信部は、前記機器制御装置からの読み出し要求に応じて、前記最大放電値を前記機器制御装置に通知する。
 実施形態では、前記通信部は、前記機器制御装置との間でECHONET Lite規格に準拠した通信を行う。
 実施形態では、前記最大放電値は、前記蓄電池装置の機器クラスに対応するプロパティである。
 実施形態では、前記最大放電値は、前記需要家施設における実際の消費電力量を想定需要電力量の所定の変動範囲に収めるよう制御する必要がある場合に、前記機器制御装置から通知される。
 実施形態に係る機器制御装置は、需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う蓄電池装置を制御する。前記機器制御装置は、所定の通信プロトコルに従って前記蓄電池装置との通信を行う通信部を備える。前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記蓄電池装置に送信する。
 実施形態では、前記最大放電値は、前記需要家施設における実際の消費電力量を想定需要電力量の所定の変動範囲に収めるよう制御する必要がある場合に取得する。
 実施形態では、前記最大放電値は、瞬時電力値により指定される。
 実施形態では、前記通信部は、前記最大放電値の読み出し要求を前記蓄電池装置に送信することにより、前記最大放電値を前記蓄電池装置から取得する。
 実施形態では、前記通信部は、前記蓄電池装置との間でECHONET Lite規格に準拠した通信を行う。
 実施形態では、前記最大放電値は、前記蓄電池装置の機器クラスに対応するプロパティである。
 実施形態に係る制御方法は、需要家施設に設けられる蓄電池装置と、前記蓄電池装置を制御する機器制御装置とを備えるシステムにおいて用いられる。前記制御方法は、前記蓄電池装置が、前記需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行うステップと、前記機器制御装置が、所定の通信プロトコルに従った通信により、前記負荷追従放電における最大放電電力の設定を要求する設定要求を送信するステップと、前記蓄電池装置が、前記設定要求に基づいて、前記最大放電電力以下の放電電力で前記負荷追従放電を行うステップと、を含む。
 [実施形態]
 以下において、実施形態について説明する。
 (システム構成)
 図1は、実施形態に係る制御システム10の構成を示すブロック図である。
 図1に示すように、制御システム10は、配電線30(電力系統)から電力供給を受ける需要家施設に設けられる。実施形態では、需要家施設は、電力事業者(一例としてPPS)から配電線30を介して電力供給を受ける。制御システム10は、センサ110、負荷120、蓄電池装置140、及び機器制御装置200を有する。
 センサ110は、配電線30から電力線を介して供給される系統電力(買電電力)パラメータを計測する。実施形態では、センサ110は電流センサである。センサ110は、信号線を介して、計測値を蓄電池装置140に通知する。信号線は、有線であってもよく、無線であってもよい。
 負荷120は、配電線30及び/又は蓄電池装置140から電力線を介して供給される電力を消費する機器である。例えば、負荷120は、冷蔵庫、照明、エアコン、又はテレビ等である。負荷120は、単数の機器であってもよく、複数の機器を含んでもよい。負荷120は、信号線を介して機器制御装置200との通信を行う。
 蓄電池装置140は、電力を蓄積する機器である。蓄電池装置140は、蓄電池141、直流-直流(DC-DC)変換部142、直流-交流(DC-AC)変換部143、通信部144、及び制御部145を有する。蓄電池141は、電力の蓄積(充電)及び電力の供給(放電)を行う。蓄電池141は、系統電力を蓄積してもよく、発電装置の発電力を蓄積してもよい。蓄電池141の放電時において、DC-DC変換部142は、蓄電池141から出力されたDC電力を昇圧してDC-AC変換部143に出力する。DC-AC変換部143は、DC-DC変換部142が出力するDC電力をACに変換し、電力線を介してAC電力を出力する。
 通信部144は、信号線を介して、所定の通信プロトコルに従って機器制御装置200との通信を行う。制御部145は、当該通信に基づいて、DC-DC変換部142及びDC-AC変換部143を制御する。また、制御部145は、センサ110の計測値に基づいて、放電電力が配電線30に逆潮流しないように放電を制御する。その際に、負荷120の消費電力量に応じて放電電力を上下させる。これを負荷追従放電という。
 機器制御装置200は、需要家施設に設けられた複数の機器を制御する。機器制御装置200は、例えば、住宅に設けられた複数の機器を制御するHEMS(Home Energy Management System)である。或いは、機器制御装置200は、CEMS(Cluster/Community Energy Management System)、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)、又はSEMS(Store Energy Management System)等であってもよい。
 機器制御装置200は、通信部210及び制御部220を有する。通信部210は、信号線を介して、所定の通信プロトコルに従って負荷120及び蓄電池装置140との通信を行う。制御部220は、通信部210により、負荷120及び蓄電池装置140を制御する。
 (通信プロトコル)
 実施形態では、所定の通信プロトコルは、ECHONET Lite(登録商標)を例に説明を行う。
 ECHONET Liteに準拠した機器(「ノード」とも称される)のプロトコルスタックは、下位通信層、通信ミドルウェア、及びアプリケーションソフトウェアの3つに分けられる。OSI参照モデルにおいて、下位通信層は第1層乃至第4層に相当し、通信ミドルウェアは第5層乃至第6層に相当し、アプリケーションソフトウェアは第7層に相当する。ECHONET Liteは、通信ミドルウェアの仕様を規定しており、下位通信層の仕様については規定していない。実施形態において、蓄電池装置140の通信部144及び機器制御装置200の通信部210のそれぞれは、下位通信層及び通信ミドルウェアの機能を実行する。また、蓄電池装置140の制御部145及び機器制御装置200の制御部220のそれぞれは、アプリケーションソフトウェアの機能を実行する。
 また、ECHONET Liteでは、機器の種別ごとに機器クラス(「機器オブジェクト」とも称される)を規定し、当該機器に関するパラメータをプロパティとして機器クラスごとに規定する。蓄電池装置140は、「蓄電池クラス」に属する。また、蓄電池クラスに対応するプロパティは、蓄電池容量及び最大最少充電電力値等を含む。
 蓄電池装置140の通信部144は、蓄電池装置140(蓄電池クラス)に関する各プロパティを管理する。このように機器クラスごとに管理される情報は、「インスタンス」と称される。また、蓄電池装置140の通信部144は、蓄電池装置140の属性情報(例えば、メーカコード、商品コード、製造番号)を「ノードプロファイル(プロファイルオブジェクト)」として管理する。
 通信ミドルウェアが送受信するメッセージは、例えば、「送信元オブジェクト識別コード」、「送信先オブジェクト識別コード」、「サービス識別コード」、「プロパティ識別コード」、及び「プロパティ値」等を含む。送信元オブジェクト識別コードは、送信元のオブジェクトを識別するための情報である。送信先オブジェクト識別コードは、送信先のオブジェクトを識別するための情報(機器クラス識別コード)である。サービス識別コードは、当該プロパティ値に対する操作内容を識別するための情報である。サービス識別コードは、例えば、プロパティ値設定要求である「Set」又はプロパティ値読み出し要求である「Get」等である。プロパティ識別コードは、プロパティを識別するための情報である。
 (ノード接続時シーケンス)
 図2は、実施形態に係るノード接続時シーケンスを示すシーケンス図である。ノード接続時シーケンスは、例えば機器制御装置200が起動した際に開始される。図2に示す各メッセージは、蓄電池装置140の通信部144及び機器制御装置200の通信部210が送受信するものである。
 図2に示すように、ステップS11において、機器制御装置200は、主要なノードプロファイル(メーカコード、商品コード、製造番号など)の読み出しを要求する読み出し要求(以下、「Getメッセージ」という)を蓄電池装置140に送信する。
 ステップS12において、蓄電池装置140は、当該Getメッセージの受信に応じて、主要なノードプロファイルを通知する読み出し応答(以下、「Get Resメッセージ」という)を機器制御装置200に送信する。機器制御装置200は、当該Get Resメッセージにより、主要なノードプロファイルを取得し、ノードを検出する。
 ステップS13において、機器制御装置200は、検出したノード(蓄電池装置140)に対して、当該ノードが管理しているインスタンスの一覧であるインスタンスリストの読み出しを要求するGetメッセージを送信する。
 ステップS14において、蓄電池装置140は、当該Getメッセージの受信に応じて、自ノードのインスタンスリストを通知するGet Resメッセージを機器制御装置200に送信する。当該インスタンスリストは、蓄電池クラスのインスタンスを含む。換言すると、蓄電池装置140は、蓄電池装置140の機器クラスを機器制御装置200に通知する。これにより、機器制御装置200は、検出したノード(蓄電池装置140)が、蓄電池クラスのインスタンスを管理していることを把握する。
 ステップS15において、機器制御装置200は、蓄電池クラスのインスタンスのプロパティマップの読み出しを要求するGetメッセージを蓄電池装置140に送信する。プロパティマップは、当該インスタンスに含まれるプロパティの一覧である。
 ステップS16において、蓄電池装置140は、当該Getメッセージの受信に応じて、蓄電池クラスのインスタンスのプロパティマップを通知するGet Resメッセージを機器制御装置200に送信する。機器制御装置200は、当該Get Resメッセージにより、蓄電池クラスのインスタンスのプロパティマップを取得する。蓄電池クラスのインスタンスに含まれるプロパティ(以下、「蓄電池クラスに対応するプロパティ」という)としては、例えば、動作状態、運転モード設定、瞬時充放電電力計測値、蓄電残量、蓄電池タイプが挙げられる。
 (実施形態に係る動作)
 上述したノード接続時シーケンスが完了すると、機器制御装置200は、蓄電池装置140が管理しているインスタンスに含まれるプロパティを把握し、機器制御装置200が蓄電池装置140を制御可能な状態になる。実施形態では、蓄電池クラスに対応するプロパティは、負荷追従放電の最大放電値を含む。最大放電値は、瞬時電力値(W)により指定される。
 図3は、実施形態に係る動作を示すシーケンス図である。
 図3に示すように、ステップS101において、機器制御装置200の制御部220は、負荷追従放電の最大放電値を取得する。負荷追従放電の最大放電値は、蓄電池装置140の定格出力値よりも小さい値である。制御部220は、負荷追従放電の最大放電値を取得する。たとえば、蓄電池装置140のメーカーの保有するサーバ装置から、インターネット経由で機器制御装置200(制御部220)が取得する。或いは、制御部220が、過去の統計データに基づく予測により負荷追従放電の最大放電値を算出してもよい。ここでは、負荷追従放電の最大放電値が2.0kWであると仮定する。
 ステップS102において、機器制御装置200の通信部210は、負荷追従放電の最大放電値の設定を要求する設定要求を蓄電池装置140に送信する。負荷追従放電の最大放電値は、蓄電池クラスに対応するプロパティである。当該設定要求は、「送信元オブジェクト識別コード」として機器制御装置200のオブジェクト識別コードを含み、「送信先オブジェクト識別コード」として蓄電池装置140のオブジェクト識別コードを含み、「サービス識別コード」として例えばSetを含み、「プロパティ識別コード」として当該プロパティの識別コードを含み、「プロパティ値」として当該プロパティのプロパティ値を含むメッセージである。以下において、このようなメッセージを「Setメッセージ」と称する。Setメッセージには、応答を要するSetメッセージである「SetCメッセージ」及び応答を要しないSetメッセージである「SetIメッセージ」があるが、ここではSetCメッセージを例示する。
 ここでは、機器制御装置200が蓄電池装置140に対して予め負荷追従放電モードを設定していると仮定している。しかしながら、予め負荷追従放電モードを設定していない場合、機器制御装置200は、負荷追従放電の最大放電値の設定要求と共に、蓄電池装置140の運転モード設定(或いは放電モード設定)として負荷追従放電モードの設定を要求する設定要求を蓄電池装置140に送信してもよい。
 蓄電池装置140の通信部151は、当該SetCメッセージを機器制御装置200から受信する。蓄電池装置140の制御部152は、当該SetCメッセージに基づいて、負荷追従放電の放電電力を最大放電値(2.0kW)以下に制御する。例えば、制御部152は、DC-AC変換部143の出力を監視し、DC-AC変換部143の出力が最大放電値(2.0kW)を超えないように放電制御を行う。
 ステップS103において、蓄電池装置140の通信部151は、負荷追従放電の最大放電値の設定を通知するSet Resメッセージを機器制御装置200に送信する。
 このように、負荷追従放電の最大放電値を機器制御装置200から蓄電池装置140に対して設定することにより、蓄電池装置140が定格出力まで放電することを防止し、蓄電池装置140の蓄電残量を長持ちさせることができる。
 図4は、実施形態に係る機器制御装置200の動作を示すフロー図である。ここでは需要家施設として店舗を想定する。
 図4に示すように、ステップS201において、機器制御装置200の制御部220は、日時、外気温、客数、使用電力推移(kW)、30分毎の使用電力量(kWh)などのデータを予め蓄積しておく。制御部220は、予測する日の条件で過去のデータを検索して、もっとも近い条件の過去の消費電力量を導き、その過去の消費電力量を想定需要電力量とする。次に、制御部220は、30単位の消費電力量が平均して使用されると想定して、瞬時的な想定需用電力(kW)を求め、その時の消費電力の推移との差分から負荷追従放電の最大放電値を決定する。
 ここで、2013年11月18日の12時~12時30分の30分間を対象として、負荷追従放電の最大放電値を決定する具体例を説明する。対象時間帯の予想気温を19℃及び客数が100人であると想定する。この条件を満たす過去のデータが例えば2012年11月12日で外気温が19℃及び客数が95人であったとする。2012年11月12日の12時~12時30分の消費電力量が5kWhであった場合、平均すると10kWが想定需用電力となる(10kW=5kWh/0.5h)。そして、2012年11月12日の12時~12時30分の消費電力推移で10kWを超える場合が10分であり、その平均が2.1kWであった場合はその2.1kWを最大放電値として決定する。
 ステップS202において、機器制御装置200の通信部210は、決定した負荷追従放電の最大放電値の設定を要求するSetメッセージを蓄電池装置140に送信する。
 以上説明したように、実施形態では、蓄電池装置140の制御部152は、設定要求(例えば、SetCメッセージ)に基づいて、負荷追従放電の放電電力を最大放電値(2.0kW)以下に制御する。これによって、蓄電池装置140の放電量が大きくなり過ぎず、所定期間(例えば、30分)において実際の消費電力量を所定の変動範囲内に抑制しやすい。言い換えると、余分な放電の抑制によって、インバランス料金を抑制しながらも、蓄電残量がゼロになるまでの時間を延長することができる。
 (具体例)
 次に、具体的な消費電力推移の例を挙げて、実施形態に係る負荷追従放電制御の効果を比較例と比較して説明する。
 図5は、具体的な消費電力推移の例を示す図である。ここでは、30分間の需要予測電力量が5kWhであると仮定する。この場合、図5に示すように、瞬時的な目標電力は10kW(0%)であり、30分間において許容される電力量の変動範囲は9.7kW(-3%)~10.3kW(+3%)である。図5では、実際の消費電力はグラフのように推移し、30分で930Whの超過及び360Whの不足があり、結果として570Wh超過する。また、30分の消費電力量は10.57kWhである。よって、0.27kWh分のインバランス料金が発生する。
 図6は、負荷追従放電制御の比較例1を示す図である。図6に示すように、比較例1では、目標の10kWを超えた時に蓄電池装置140から放電する制御を行う。図6では、930Whの超過を蓄電池装置140の放電により賄っているが、360Whの不足が生じる。また、30分の系統電力の消費電力量は9.64kWhである。よって、0.06kWhのインバランス料金が発生する。
 図7は、負荷追従放電制御の比較例2を示す図である。図7に示すように、比較例2では、不足の状態にならないよう、常に電力量を監視し、0kWhになるように時分割で放電を制御する。具体的には、超過分を放電した後、系統電力の消費量が不足しているため、次に超過した際に電力量が合計して0kWhになるように一時放電を停止させ、0kWhを超えた段階で放電を再開している。この場合、30分間で系統電力の消費量は0.15kWh不足しているが、インバランス料金は発生しない。但し、系統電力の消費量が不足するということは、余計に放電していることになる。このため、蓄電池容量12kWhでDOD80%と仮定した場合に、図7の状態を繰り返すと、13.3時間で蓄電残量が0%になる。
 図8は、実施形態に係る負荷追従放電制御を示す図である。ここでは、負荷追従放電の最大放電値が2.1kWであると仮定する。図8に示すように、消費電力が10kW(0%)を超えた時に、最大2.1kWしか放電できないので、放電量(kWh)が比較例2に比べて制限されている。しかし、比較例2に比べて放電量(kW)が抑えられるため、結果として0kWh(0%)に制御できている。よって、放電量を必要最低限に留めることができる。このため、蓄電池容量12kWhでDOD80%と仮定した場合に、図8の状態を繰り返すと、16.84時間で蓄電残量が0%になり、比較例2に比べて、放電可能な期間が3時間以上延長され、インバランス料金が抑制される。
 [その他の実施形態]
 機器制御装置200は、蓄電池クラスに対応するプロパティとして、蓄電池装置140の負荷追従放電の最大放電値の読み出しを要求するGetメッセージを蓄電池装置140に送信してもよい。また、蓄電池装置140は、当該Getメッセージの受信に応じて、負荷追従放電の最大放電値を通知するGet Resメッセージを機器制御装置200に送信してもよい。
 上述した実施形態では、ECHONET Liteに準拠したシステムを例示した。しかしながら、ECHONET Liteに準拠したシステムに限定されるものではなく、例えばZigBee(登録商標)又はKNX等の他の通信プロトコルに準拠したシステムに対して本発明を応用してもよい。
 なお、日本国特許出願第2013-266177号(2013年12月24日出願)の全内容が、参照により、本願明細書に組み込まれている。
 実施形態によれば、効率的な放電制御を可能とする蓄電池装置、機器制御装置、及び制御方法を提供することができる。

Claims (13)

  1.  需要家施設に設けられる蓄電池装置であって、
     所定の通信プロトコルに従って外部の機器制御装置との通信を行う通信部と、
     前記需要家施設に設けられた負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う制御部と、を備え、
     前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記機器制御装置から受信し、
     前記制御部は、前記設定要求に基づいて、前記負荷追従放電の放電電力を前記最大放電値以下に制御することを特徴とする蓄電池装置。
  2.  前記最大放電値は、瞬時電力値により指定されることを特徴とする請求項1に記載の蓄電池装置。
  3.  前記通信部は、前記機器制御装置からの読み出し要求に応じて、前記最大放電値を前記機器制御装置に通知することを特徴とする請求項1又は2に記載の蓄電池装置。
  4.  前記通信部は、前記機器制御装置との間でECHONET Lite規格に準拠した通信を行うことを特徴とする請求項1乃至3の何れか一項に記載の蓄電池装置。
  5. 前記最大放電値は、前記蓄電池装置の機器クラスに対応するプロパティであることを特徴とする請求項4に記載の蓄電池装置。
  6.  前記最大放電値は、前記需要家施設における実際の消費電力量を想定需要電力量の所定の変動範囲に収めるよう制御する必要がある場合に、前記機器制御装置から通知されることを特徴とする請求項1乃至5の何れか一項に記載の蓄電池装置。
  7.  需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行う蓄電池装置を制御する機器制御装置であって、
     所定の通信プロトコルに従って前記蓄電池装置との通信を行う通信部を備え、
     前記通信部は、前記負荷追従放電の最大放電値の設定を要求する設定要求を前記蓄電池装置に送信することを特徴とする機器制御装置。
  8.  前記最大放電値は、前記需要家施設における実際の消費電力量を想定需要電力量の所定の変動範囲に収めるよう制御する必要がある場合に取得することを特徴とする請求項7に記載の機器制御装置。
  9.  前記最大放電値は、瞬時電力値により指定されることを特徴とする請求項7又は8に記載の機器制御装置。
  10.  前記通信部は、前記最大放電値の読み出し要求を前記蓄電池装置に送信することにより、前記最大放電値を前記蓄電池装置から取得することを特徴とする請求項7乃至9の何れか一項に記載の機器制御装置。
  11.  前記通信部は、前記蓄電池装置との間でECHONET Lite規格に準拠した通信を行うことを特徴とする請求項7乃至10の何れか一項に記載の蓄電池装置。
  12.  前記最大放電値は、前記蓄電池装置の機器クラスに対応するプロパティであることを特徴とする請求項11に記載の機器制御装置。
  13.  需要家施設に設けられる蓄電池装置と、前記蓄電池装置を制御する機器制御装置とを備えるシステムにおいて用いられる制御方法であって、
     前記蓄電池装置が、前記需要家施設に設けられる負荷の消費電力に合わせて放電電力を調整する負荷追従放電を行うステップと、
     前記機器制御装置が、所定の通信プロトコルに従った通信により、前記負荷追従放電における最大放電電力の設定を要求する設定要求を送信するステップと、
     前記蓄電池装置が、前記設定要求に基づいて、前記最大放電電力以下の放電電力で前記負荷追従放電を行うステップと、
    を含むことを特徴とする制御方法。
PCT/JP2014/084197 2013-12-24 2014-12-24 蓄電池装置、機器制御装置、及び制御方法 WO2015098988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14875142.3A EP3089309A4 (en) 2013-12-24 2014-12-24 Storage battery device, device-control apparatus, and control method
US15/107,883 US20160322846A1 (en) 2013-12-24 2014-12-24 Storage battery apparatus, equipment control apparatus, and control method
JP2015554971A JPWO2015098988A1 (ja) 2013-12-24 2014-12-24 蓄電池装置、機器制御装置、及び制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013266177 2013-12-24
JP2013-266177 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098988A1 true WO2015098988A1 (ja) 2015-07-02

Family

ID=53478835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084197 WO2015098988A1 (ja) 2013-12-24 2014-12-24 蓄電池装置、機器制御装置、及び制御方法

Country Status (4)

Country Link
US (1) US20160322846A1 (ja)
EP (1) EP3089309A4 (ja)
JP (1) JPWO2015098988A1 (ja)
WO (1) WO2015098988A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118148A (ja) * 2019-04-11 2019-07-18 Kddi株式会社 情報提供装置、及び情報提供方法
WO2020158591A1 (ja) * 2019-01-29 2020-08-06 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2022050576A (ja) * 2019-01-29 2022-03-30 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2022191440A (ja) * 2022-01-11 2022-12-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713701B (zh) * 2019-02-01 2022-08-30 国网江苏省电力有限公司 叠加控制的电池储能网荷互动方法、终端、***及介质
FR3142446A1 (fr) * 2022-11-30 2024-05-31 Psa Automobiles Sa Procede de reutilisation de composants d’un systeme de chaine de traction de vehicule electrique dans un systeme d’alimentation electrique autonome non automobile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330083A (ja) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The 電力供給システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (ja) * 1997-03-27 1998-10-09 Toshiba Corp 電源制御装置および電源制御方法
US6673479B2 (en) * 2001-03-15 2004-01-06 Hydrogenics Corporation System and method for enabling the real time buying and selling of electricity generated by fuel cell powered vehicles
US20080046387A1 (en) * 2006-07-23 2008-02-21 Rajeev Gopal System and method for policy based control of local electrical energy generation and use
US8706650B2 (en) * 2009-01-14 2014-04-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
JP5695464B2 (ja) * 2011-03-28 2015-04-08 株式会社東芝 充放電判定装置及び充放電判定プログラム
JP5968719B2 (ja) * 2012-08-06 2016-08-10 京セラ株式会社 管理システム、管理方法、制御装置及び蓄電池装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330083A (ja) * 2006-06-09 2007-12-20 Chugoku Electric Power Co Inc:The 電力供給システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ECHONET SPECIFICATION APPENDIX Detailed Requirements for ECHONET Device Objects Release D", ECHONET, 31 October 2013 (2013-10-31), Retrieved from the Internet <URL:http://www.echonet.gr.jp/english/spec/pdf_spec_app_d_e/SpecAppendixD_e.pdf>
"HEMS-EV/PHV Denki Jidosha-yo Juhodenki Un'yo Guideline", JSCA SMART HOUSE BIRU HYOJUN JIGYO SOKUSHIN KENTOKAI, 4 December 2013 (2013-12-04), XP055360059, Retrieved from the Internet <URL:http://www.meti.go.jp/committee/ kenkyukai/shoujo/smart_house/pdf/004_s05_00. pdf> [retrieved on 20150220] *
See also references of EP3089309A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158591A1 (ja) * 2019-01-29 2020-08-06 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2020124022A (ja) * 2019-01-29 2020-08-13 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2022050576A (ja) * 2019-01-29 2022-03-30 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP2019118148A (ja) * 2019-04-11 2019-07-18 Kddi株式会社 情報提供装置、及び情報提供方法
JP2022191440A (ja) * 2022-01-11 2022-12-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法
JP7316433B2 (ja) 2022-01-11 2023-07-27 京セラ株式会社 電力管理装置、蓄電装置及び電力管理方法

Also Published As

Publication number Publication date
US20160322846A1 (en) 2016-11-03
JPWO2015098988A1 (ja) 2017-03-23
EP3089309A4 (en) 2017-05-17
EP3089309A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6396531B2 (ja) 電力制御装置、機器制御装置、及び方法
JP6175514B2 (ja) 電力制御装置、機器制御装置、及び方法
WO2015098988A1 (ja) 蓄電池装置、機器制御装置、及び制御方法
JP5426765B2 (ja) 判定装置、判定方法および判定プログラム
JP7048740B2 (ja) 管理サーバ、管理システム、及び管理方法
JP5563008B2 (ja) 充放電制御装置、充放電監視装置、充放電制御システム及び充放電制御プログラム
WO2011065495A1 (ja) 制御装置及び制御方法
JP5695464B2 (ja) 充放電判定装置及び充放電判定プログラム
JP6366836B2 (ja) 電力変換装置、電力管理装置及び電力管理方法
JP6626940B2 (ja) 電力制御装置、機器制御装置、及び方法
JP6665134B2 (ja) 電力制御装置、機器制御装置、及び方法
WO2018052117A1 (ja) 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
AU2016293631B2 (en) Storage battery control system, storage battery control method, and program
JP2020048370A (ja) 電力管理方法および電力管理システム
JP7386915B2 (ja) 電力管理サーバ及び電力管理方法
WO2019159904A1 (ja) 電力制御装置、電力制御システム及び電力制御方法
JP2016208748A (ja) 電力管理装置及び電力管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554971

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014875142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875142

Country of ref document: EP