WO2015097420A1 - Associative water-soluble polymers and use thereof for improved recovery of hydrocarbons - Google Patents

Associative water-soluble polymers and use thereof for improved recovery of hydrocarbons Download PDF

Info

Publication number
WO2015097420A1
WO2015097420A1 PCT/FR2014/053555 FR2014053555W WO2015097420A1 WO 2015097420 A1 WO2015097420 A1 WO 2015097420A1 FR 2014053555 W FR2014053555 W FR 2014053555W WO 2015097420 A1 WO2015097420 A1 WO 2015097420A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polymer
weight
groups
boronic
Prior art date
Application number
PCT/FR2014/053555
Other languages
French (fr)
Inventor
Stéphane JOUENNE
Ulysse NAESSENS
Ludwik Leibler
Ilias Iliopoulos
Original Assignee
Fonds De L'espci- Georges Charpak
Total Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fonds De L'espci- Georges Charpak, Total Sa filed Critical Fonds De L'espci- Georges Charpak
Publication of WO2015097420A1 publication Critical patent/WO2015097420A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/698Polyesters containing atoms other than carbon, hydrogen and oxygen containing boron

Definitions

  • the present invention relates to the use of water-soluble polymers for improved hydrocarbon recovery.
  • EOR Enhanced OR Recovery
  • Water injection is the oldest and most common technique. The principle is to counteract the decrease in production by maintaining the reservoir pressure and pushing the mobile oil towards producing wells.
  • the water almost always has a lower viscosity than the oil. So, instead of pushing the oil like a piston, the water tends to sneak through the paths of less resistance that the tank offers because it is more mobile than oil. We talk about unfavorable mobility control. To remedy this problem, the mobility of the water is reduced by increasing its viscosity so as to reduce the ratio of the mobility of the water with respect to the oil.
  • the most common method for increasing the viscosity of water used for oil scavenging is to add a water-soluble polymer.
  • the choice of polymer depends on multiple parameters, including the characteristics of the field, in particular its salinity and temperature, and the composition and properties of the oil that closes.
  • the sweeping performance of the oil by water can be increased with surfactants and alkalis.
  • Surfactants have the power to dislodge the fraction of still oil trapped in the tank causing the interfacial tension between water / oil to drop.
  • the alkalis limit the adsorption of surfactants by the reservoir rock, so the loss of products as they advance in the deposit.
  • a good candidate polymer for the EOR must therefore notably have the following properties:
  • low retention i.e., limited rock adsorption and low mechanical retention, i.e. blocking of aggregates in pore thresholds
  • colloidal systems (clays, soft microgels, latex),
  • HPAM partially hydrolysed polyacrylamides
  • the systems are generally not very sensitive to mechanical degradation but they have problems of injectability, propagation in the porous medium, low viscosity and adverse interactions with oil and / or rock.
  • FR2855180 describes an aqueous fluid comprising a boronated polymer and a ligand polymer that can be used as a drilling fluid or a stimulation fluid, preferably a fracturing fluid.
  • a boronated polymer comprises a high percentage of boronate functional groups (at least one mole of boronate functional groups per polymer chain) and the molecular weight of the ligand polymer seems relatively low (molar mass greater than or equal to 200 g / mole, preferably greater than or equal to 20 000 g / mole).
  • the present invention aims to overcome the disadvantages of the prior art in the field of the EOR. It provides an aqueous polymeric composition for enhanced hydrocarbon recovery which has the advantage of being:
  • the invention relates to a method for recovering a petroleum oil in a tank in which water has been injected to push the petroleum oil to a production well, characterized in that it comprises:
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture whose viscosity is between 0.001 Pa.s and 0.05 Pa.s at a shear of 1 " , in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s and additionally an alkaline agent is injected separately to lead to
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, simultaneously or alternately.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, the two aqueous solutions or only one further comprising an alkaline agent.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture further comprising an alkaline agent whose viscosity is between 0.002 Pa.s and 1 Pa.s. , in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.002 Pa.s and 0.05 Pa.s.
  • the subject of the present invention is also an aqueous polymeric composition for implementing the method according to the invention comprising:
  • the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds to lead to the increase in the viscosity of said composition, characterized in that the polymer A comprises between 0.01 mol and 50 mol of boronic groups, in particular between 0.1 mol and 20 mol of boronic groups, more particularly between 0.2 mol and 10 mol boronic groups, more particularly between 0.5 mol and 5 mol of boronic groups.
  • the pH at which the boronic ester bond is formed is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
  • the concentration of polymer A is between 0.015% by weight and 0.5% by weight, in particular between 0.015% by weight and 0.1% by weight, more particularly between 0.015% by weight and 0% by weight. , 05% by weight.
  • the concentration of polymer B is between 0.015% by weight and 0.7% by weight, in particular between 0.015% by weight and 0.3% by weight, more particularly between 0.015% by weight and 0% by weight. , 05% by weight.
  • the total concentration of polymer A and polymer B is between 0.03% by weight and 1.2% by weight, in particular between 0.03% by weight and 0.4% by weight, more particularly between 0.03% by weight and 0.1% by weight.
  • the mass ratio of the polymer A on the polymer B is between 0.1 and 10, in particular between 0.2 and 5, more particularly between 0.5 and 2.
  • the molecular weight of the polymer A is at least 100,000 g / mol, in particular between 100,000 g / mol and 30,000,000 g / mol, more particularly between 1,000,000 and 8,000. 000 g / mol.
  • the polymer A is chosen from copolymers of acrylic acid and acrylamide, or acrylic acid, or acrylamide and acrylamido-methyl-propane sulfonate, or acrylic acid, acrylamide, acrylamido-methylpropane sulfonate and N-vinylpyrrolidone or acrylamide, acrylamido-methylpropane sulfonate and N-vinylpyrrolidone.
  • the polymer A is chosen from copolymers of acrylic acid and of acrylamide bearing phenyl boronic acid groups, in particular those comprising: between 5 mol and 50 mol of acrylic acid, particularly between 5 mol and 30 mol of acrylic acid,
  • phenyl boronic acid groups between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
  • the polymer A is chosen from copolymers of acrylamide and acrylamido-methyl-propane sulfonate bearing phenyl boronic acid groups, in particular those comprising:
  • phenyl boronic acid groups between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
  • the polymer A is chosen from copolymers of acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolydone bearing phenylboronic acid groups, in particular those comprising:
  • phenyl boronic acid groups between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
  • the molecular weight of polymer B is at least 100,000 g / mol, in particular between 100,000 g / mol and 10,000,000 g / mol, more particularly between 500,000 and 8,000,000. g / mol.
  • the polymer B is chosen from polyols, in particular polysaccharides, especially polysaccharides of natural origin, such as guar gum, xanthan gum, scleroglucan or schizophyllane and their derivatives, or well synthetic linear polyols such as polyvinyl alcohol, or derivatives of cellulose.
  • the viscosity of the aqueous polymer composition at a pH below the pH at which the boronic ester bond is formed is between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s. and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s.
  • the viscosity of the aqueous polymer composition at pH greater than or equal to the pH from which the boronic ester bond is formed. is between 0.002 Pa.s and 1 Pa.s, in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.05 Pa.s and 0.02 Pa.s.
  • the composition further comprises an alkaline agent.
  • FIG. 3 represents the elastic modulus G 'at 1 rad / s of a composition according to the invention as a function of the pH.
  • the subject of the present invention is a process for recovering a petroleum oil in a tank in which water has been injected to push the petroleum oil towards a producing well, characterized in that it comprises injection into said reservoir of an aqueous solution of polymer A carrying boronic groups and an aqueous solution of polymer B carrying diol groups, the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds for thus lead to the increase of the viscosity of said water in the tank.
  • the boronic groups of polymer A and the diol groups of polymer B are capable of forming boronic ester bonds in aqueous medium at a certain pH, to lead to the multivalent combination of the two polymers in the aqueous medium.
  • This multivalent association leads to the formation of aggregates, or even of a polymeric network. This results in an increase in the viscosity of said aqueous medium.
  • the boronic ester bonds have the characteristic of being covalent and reversible. The reversibility of the bond results from the equilibrium between the acidic and the ester species. This equilibrium depends on the pKa of the acid (s) corresponding to the boronic group (s) carried by the polymer A and the pH of the medium.
  • the major species is the ester. Therefore, if the pH of the medium is greater than or equal to this pH, the two polymers A and B then associate in aggregates or in a stable polymer network by association between chains. This results in an increase in the viscosity of the medium containing the two polymers. Under shear, the bonds Boronic ester between the two polymers can rupture and then reform, providing the system with a rheofluidifying behavior by minimizing irreversible damage to the polymer chains.
  • the majority species is in general the acid, which causes the dissociation of the two polymers A and B, and thus the decrease of the size of the aggregates or the extent of the polymeric network, or even their disappearance. This results in a decrease in the viscosity of the medium containing the two polymers.
  • the viscosity mentioned here is determined according to the conventional method of measuring viscosity in steady and steady flow.
  • a rheometer in geometry cone / plan or duvet is used.
  • the viscosity is determined over the shear range 0.ltoreq.1-100s-1.
  • the viscosity of a solution is referred to, it is the viscosity measured at the shear rate of ls-1 to 25.degree. ° C. Under these conditions, the viscosity of the water is about 0.0009 Pa.s.
  • the aqueous solution of polymer A and the aqueous solution of polymer B must be capable of forming aggregates or a polymer network by association between chains in order to increase the viscosity of the injected solution relative to the water to decrease the ratio of the mobility of the water with respect to the oil.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture.
  • Said mixture contains polymers A and B in very low concentrations which, at a pH below the pH at which the boronic ester bond is formed, lead to a very low viscosity final mixture.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture whose viscosity is between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s, and an alkaline agent is additionally injected separately to lead to an increase in the viscosity of the water in the tank.
  • the alkaline agent is preferably injected before the mixture comprising the polymers A and B, so as to form an alkaline zone in the tank.
  • This alkaline zone allows the two polymers A and B to associate in the reservoir to form a viscous zone that will allow to push the oil from the reservoir to a producing well.
  • the aqueous mixture of polymer A and polymer B is therefore injected in a very low viscosity form, which facilitates the injection itself and makes it possible to avoid any mechanical damage caused by passing through a valve. at the entrance of the oil well.
  • the amount of alkaline agent injected into the reservoir is determined according to the pH that is desired to reach in the alkaline zone.
  • the alkaline agent is injected into the reservoir in an amount to form in the reservoir an alkaline zone whose pH is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
  • the alkaline agent may be chosen from soda, sodium carbonate, or ammonia.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, simultaneously or alternately.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, the two aqueous solutions or only one further comprising an alkaline agent.
  • the alkaline agent can be injected separately from the aqueous solution of polymer A and the aqueous solution of polymer B, preferably before the injection thereof, so as to form an alkaline zone in the reservoir.
  • the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture further comprising an alkaline agent, the viscosity of which is between 0.002 Pa.s and 1 Pa. .s, in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.002 Pa.s and 0.05 Pa.s.
  • the polymer solutions A and B and the alkaline agent can be injected into the reservoir by the same injection well or by different injection wells.
  • the combination of the two polymers A and B makes it possible to increase the viscosity of the displacing fluid and thus to improve the sweeping of the oil contained in the reservoir.
  • the petroleum oil can then be recovered in one or more producing wells.
  • the subject of the invention is an aqueous polymeric composition comprising:
  • the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds to lead to the increase of the viscosity of said composition.
  • the aqueous polymer composition according to the invention is provided with a high viscosity when it is in pH conditions which allow the formation of a boronic ester bond between the polymer A and the polymer B.
  • This pH is higher or equal to the pKa of the acid corresponding to the boronic group of the polymer A. According to the species present, this pH is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
  • the composition according to The invention can thus be used as an additive to increase the viscosity of an aqueous liquid, in particular to increase the viscosity of a water intended for the sweeping and the recovery of a petroleum oil in a tank. Moreover, it is strongly rheofluidifying, and it is little or not sensitive to mechanical degradation, especially shear, which facilitates its injectivity. It is also viscoelastic, which allows a better macroscopic scan.
  • composition according to the invention thus finds application in the field of improved hydrocarbon recovery.
  • water-soluble polymer means a polymer that is capable of completely dissolving in water.
  • boronic group is understood to mean the radical -B (OH) 2 or any group containing the radical -B (OH) 2 , such as the phenylboronic acid, thienylboronic acid, methylboronic acid, cis-propenylboronic acid or trans-acid group. propénylboronique.
  • the diol group carried by the polymer B is preferably a 1,2 diol (vicinal diol), that is to say a diol whose two hydroxyl groups are carried by two adjacent carbons (-COH-COH-), or a 1,3-diol, that is to say a diol whose hydroxyl groups are borne by two non-adjacent carbons separated by a carbon.
  • the diol group may be cis or trans, preferably cis.
  • the viscosity of the composition can be readily reversibly adjusted by adjusting its pH relative to the pH at which the boronic ester bond is formed.
  • composition according to the invention may therefore also comprise an alkaline agent, such as sodium hydroxide, sodium carbonate or ammonia.
  • an alkaline agent such as sodium hydroxide, sodium carbonate or ammonia.
  • composition according to the invention contains the polymers A and B in very low concentrations which, at a pH below the pH at which the boronic ester bond is formed, lead to a very low viscosity final mixture.
  • the proportion of the polymer B with respect to the polymer A is adjusted according to the nature of the polymers A and B and the viscosity that it is desired to obtain.
  • the viscosity of the composition according to the invention may be between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s and 0. , 02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s.
  • the viscosity of the composition increases significantly, and can thus be between 0.005 Pa.s. and 0.1 Pa.s, in particular between 0.005 Pa.s and 0.5 Pa.s, more particularly between 0.005 Pa.s and 0.2 Pa.s.
  • the viscosity of the composition according to the invention depends on its pH, the nature of the polymers A and B and the number of boronic ester bonds that it is desired to form between the two polymers. The more bonds are formed between the two polymers, the higher the viscosity. The viscosity therefore depends on the number of boronic groups carried by the polymer B, the number of diol groups carried by the polymer A and the mass ratio of the polymer A on the polymer B in the composition.
  • the concentration of polymer A in the viscosifying composition of the invention can thus be between 0.015% by weight and 0.5% by weight, especially between 0.015% by weight and 0.1% by weight, more particularly between 0.015% by weight and 0.05% by weight.
  • the concentration of polymer B in the viscosifying composition of the invention may be between 0.015% by weight and 0.7% by weight, in particular between 0.015% by weight and 0.3% by weight, more particularly between 0.015% by weight. weight and 0.05% by weight.
  • the total concentration of polymer A and polymer B in the viscosifying composition of the invention may be between 0.03% by weight and 1.2% by weight, in particular between 0.03% by weight and 0.4%. by weight, more particularly between 0.03% by weight and 0.1% by weight.
  • the mass ratio of the polymer A on the polymer B in the viscosifying composition of the invention may be between 0.1 and 10, in particular between 0.2 and 5, more particularly between 0.5 and 2.
  • the molecular weight of the polymer A is at least 100,000 g / mol, in particular between 100,000 g / mol and 30,000,000 g / mol, more particularly between 1,000,000 and 8,000,000 g / mol.
  • the polymer A may be chosen from copolymers of acrylic acid and acrylamide, or acrylic acid, acrylamide and acrylamido-methyl-propane sulfonate, or acrylic acid, acrylamide, acrylamido methyl-propane sulfonate and N-vinylpyrrolidone or acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolidone.
  • the polymer A can comprise between 0.01 mol and 50 mol of boronic groups, in particular between 0.1 mol and 20 mol of boronic groups, more particularly between 0.2 mol and 10 mol of boronic groups, and even more particularly between 0 5 mol and 5 mol of boronic groups.
  • It may be prepared either by copolymerization of a monomer bearing a boronic group or by grafting boronic groups on a polymer, according to the standard techniques of the state of the art (see for example: Polymer microcapsules with carbohydrate sensitive properties, T. Levy, C. Dejugnat, GB Sukhorukov, Adv. Funct. Mater. 18, 1586-1594 (2008) DOI: 10.1002 / adfm.200701291.
  • the polymer A is chosen from copolymers of acrylic acid and of acrylamide bearing phenyl boronic acid groups, in particular those comprising:
  • phenyl boronic acid groups between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
  • Acrylic acid and acrylamide copolymers bearing phenyl boronic acid groups may be prepared by grafting phenyl boronic acid onto a copolymer of acrylic acid and acrylamide.
  • the molecular weight of polymer B is at least 100,000 g / mol, in particular between 100,000 g / mol and 10,000,000 g / mol, more particularly between 500,000 and 8,000,000 g / mol.
  • Polymer B may be chosen from polyols, in particular polysaccharides, in particular polysaccharides of natural origin, such as guar gum, xanthan gum, scleroglucan or schizophyllane and their derivatives, or linear synthetic polyols. such as polyvinyl alcohol or cellulose derivatives.
  • the polymer B may comprise between 1 mol and 60 mol of hydroxyl groups, in particular between 10 mol and 60 mol of hydroxyl groups, more particularly between 30 mol and 60 mol of hydroxyl groups.
  • the polymer B is chosen from a polysaccharide of natural origin bearing vicinal diol groups, such as guar gum or xanthan gum.
  • the polymer B is chosen from a polysaccharide of natural origin bearing vicinal diol groups, such as guar gum or xanthan gum, and the polymer A is chosen from acrylic acid and dicarboxylic acid copolymers.
  • acrylamide bearing phenyl boronic acid groups in particular those comprising:
  • phenyl boronic acid groups between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
  • Example 1 Aqueous Composition According to the Invention (Polymer A Concentration: 300 ppm, Polymer B Concentration: 300 ppm)
  • Guar gum dry powder (Polymer B) was mixed in ultrapure water (0.22 micron filtration and passed through different resins to obtain a deionized water with a resistivity of less than 18.2 ⁇ -cm at 25 ° C). C) which is left stirring overnight to obtain a 1% by weight solution of guar. Lyophilized polyacrylamide-co-polyacrylic acid is solubilized comprising 2 mol% phenyl boronic acid groups (polymer A) in ultrapure water to obtain a 1% by weight solution. 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring.
  • composition 1 has a strong elastic behavior (elastic modulus G 'high compared to the viscous modulus G ").
  • Example 2 Comparative Composition Comprising 600 ppm Polymer A
  • the lyophilized polyacrylamide-co-polyacrylic acid was solubilized comprising 2 mol% phenyl boronic acid groups (Polymer A) in ultrapure water to obtain a 1% by weight solution.
  • 0.48 g of the composition containing 1% by weight of polyacrylamide-co-polyacrylic acid comprising 2% by mole of phenyl boronic acid groups (polymer A) is added to 7.52 g of distilled water while stirring to obtain a composition of 600 ppm .
  • Example 3 Comparative Composition Comprising 600 ppm of Polymer B
  • Guar gum dry powder (Polymer B) is mixed in ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar. 0.48 g of the composition containing 1% by weight of guar is added to 7.52 g of distilled water while stirring to obtain a composition of 600 ppm.
  • Table 2 shows the polymer A and / or B concentrations in compositions 1, 2 and 3.
  • Composition 1 exhibits a strong viscoelastic behavior: under oscillatory shear (amplitude 1%) and in the studied frequency range (0.01 rad / s to 10 rad / s), its elastic modulus is greater than its loss modulus.
  • the measured plateau module is 2 Pa at lrad / s. This is an indication that a network of polymer chains with predominantly elastic behavior has formed in the sample.
  • composition 1 increases as the shear rate decreases (0.015 Pa.s at 100 / s, 0.09 Pa.s at 10 / s, 0.5 Pa. s to 1 / s) and much more strongly than the compositions 2 and 3, which indicates a strong rheofluidification of the solution and a high viscosity viscosity at low shear.
  • Guar gum dry powder (Polymer B) is mixed in Ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar.
  • the freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution.
  • 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring.
  • 0.24 g of the 1% by weight lyophilized polyacrylamide-co-polyacrylic composition comprising 2% by mole of phenyl boronic acid groups with stirring.
  • the resulting composition has a moderate viscosity.
  • compositions 4, 5, 6 and 7 Other compositions are prepared identically but with different total polymer concentrations (compositions 4, 5, 6 and 7). Table 3 shows the polymer A and B concentrations in compositions 4-7.
  • the composition 4 exhibits a viscoelastic behavior: under oscillatory shear (amplitude 1%) and in the studied frequency range (0.02 rad / s to 10 rad / s), its elastic modulus is greater than its loss modulus.
  • the measured plateau module is 0.6 Pa at lrad / s. This is an indication that a network of polymer chains with predominantly elastic behavior has formed in the sample.
  • composition 7 there is a slight increase in viscosity and no strongly rheofluidifying character for composition 7.
  • composition 4 For higher concentrations (Composition 4, 5 and 6), there is a sharp increase in viscosity and a rheofluidifying character. Mark. The higher the total polymer concentration, the higher the viscosities achieved.
  • Example 3 Influence of the pH on the composition according to the invention.
  • Guar gum dry powder (Polymer B) is mixed in Ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar.
  • the freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution.
  • 0.4 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water while stirring. Then 0.4 g of the composition is added to 1% by weight of lyophilized polyacrylamide-co-polyacrylic comprising 2 mol% of phenyl boronic acid groups with stirring. The procedure is identical seven times to obtain 7 compositions.
  • the solutions therefore have a total polymer concentration of 1000 ppm, 500 ppm of polymer A and 500 ppm of polymer B.
  • compositions with a pH> 6 exhibit an elastic behavior.
  • compositions are allowed to stir gently for 18 hours and then rheological analysis thereof.
  • the viscoelastic properties are measured under oscillatory shear with a strain amplitude of 1%.
  • FIG. 3 represents the elastic modulus G 'at 1 rad / s as a function of the pH.
  • the elastic modulus is greater than the loss modulus in the studied frequency range (0.01 rad / s to 10 rad / s).
  • the appearance of a predominantly elastic character (elastic modulus higher than the viscous modulus) reflects the formation of a network of polymer chains in the sample, conferring on it viscoelastic properties, including its high low-shear viscosity and its strongly rheofluidifying character.
  • the mixture of polymers A and B behaves as a low-viscosity liquid and low rheofluidifier.
  • the freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution. This solution is diluted with water to obtain 0.01, 0.02, 0.03, 0.05, 0.1, 0.2% and 0.4% solutions (compositions 8 to 14). ).
  • 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring. Then 0.24 g of the 1% by weight lyophilized polyacrylamide-co-polyacrylic composition comprising 2% by mole of phenyl boronic acid groups with stirring is added. This solution is diluted so as to obtain compositions with different total polymer concentrations, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2% and 0.4%. 21).
  • Table 5 shows the concentrations of polymer A and / or B in compositions 1 to 21.
  • the viscosity of each composition is measured at different shear rates (between 1 / sec and 1000 / sec).
  • Diamonds mixture of polymer solutions A and B, compositions 15 to 21.
  • the freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% of phenyl boronic acid groups (polymer A) is more viscous than guar gum in solution (polymer B).
  • the mixture of the two solutions (polymer A and polymer B) is less viscous than polymer A at 0.02% but more viscous at 0.04%.
  • the mixture of polymer solutions A and B (ratio 1/1) is much more viscous (about 10 factor) than each of the pure polymer solutions A or B. Beyond the gelling threshold being between 0.02 and 0.04%, the mixture of two viscous solutions gives a much more viscous mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention also relates to a process for recovering a petroleum oil in a reservoir in which water has been injected in order to push the petroleum oil toward a producing well, characterized in that it comprises the injection into said reservoir of said polymer A and of said polymer B under conditions that make it possible to result in the increase of the viscosity of said water in the reservoir. The invention also relates to an aqueous polymer composition comprising: - a water-soluble polymer A bearing boronic groups, - a water-soluble polymer B bearing diol groups, the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds in order to result in the increase of the viscosity of said composition.

Description

Polymères hydrosolubles associatifs et leur utilisation pour la récupération améliorée d'hydrocarbures  Associative water-soluble polymers and their use for enhanced hydrocarbon recovery
Domaine de l'invention Field of the invention
La présente invention concerne l'utilisation de polymères hydrosolubles pour la récupération améliorée d'hydrocarbures.  The present invention relates to the use of water-soluble polymers for improved hydrocarbon recovery.
Arrière-plan technique Technical background
L'amélioration des taux de récupération des hydrocarbures conventionnels est un impératif pour soutenir la production mondiale car un nombre croissant de champs pétroliers arrive à maturité et les cibles classiques de l'exploitation se raréfient.  Improving conventional oil recovery rates is imperative to support global production as an increasing number of oil fields mature and conventional farm targets become scarce.
L'EOR (Enhanced OU Recovery) est l'un des principaux moyens permettant d'extraire une part significative de l'huile résiduelle qui reste confinée dans les réservoirs de champs matures. L'injection d'eau est la technique la plus ancienne et la plus courante. Le principe consiste à contrer la diminution de la production par le maintien de la pression du réservoir et à pousser l'huile mobile vers les puits producteurs. Toutefois, dans les conditions de fond des réservoirs, l'eau a presque toujours une viscosité plus faible que l'huile. Donc, au lieu de pousser l'huile tel un piston, l'eau a tendance à se faufiler par les chemins de moindre résistance que lui offre le réservoir parce qu'elle est plus mobile que l'huile. On parle de contrôle de mobilité défavorable. Pour remédier à ce problème, on réduit la mobilité de l'eau en augmentant sa viscosité de manière à diminuer le rapport de la mobilité de l'eau par rapport à l'huile. La méthode la plus classique pour augmenter la viscosité de l'eau servant au balayage de l'huile est de lui ajouter un polymère hydrosoluble. EOR (Enhanced OR Recovery) is one of the main ways to extract a significant portion of residual oil that remains confined to mature field reservoirs. Water injection is the oldest and most common technique. The principle is to counteract the decrease in production by maintaining the reservoir pressure and pushing the mobile oil towards producing wells. However, in the bottom conditions of the tanks, the water almost always has a lower viscosity than the oil. So, instead of pushing the oil like a piston, the water tends to sneak through the paths of less resistance that the tank offers because it is more mobile than oil. We talk about unfavorable mobility control. To remedy this problem, the mobility of the water is reduced by increasing its viscosity so as to reduce the ratio of the mobility of the water with respect to the oil. The most common method for increasing the viscosity of water used for oil scavenging is to add a water-soluble polymer.
Le choix du polymère dépend de multiples paramètres, notamment des caractéristiques du champ, en particulier de sa salinité et sa température, et de la composition et des propriétés de l'huile qu'il referme. The choice of polymer depends on multiple parameters, including the characteristics of the field, in particular its salinity and temperature, and the composition and properties of the oil that closes.
Les performances de balayage de l'huile par l'eau peuvent être augmentées à l'aide de tensioactifs et d'alcalins. Les tensioactifs ont le pouvoir de déloger la fraction d'huile immobile piégée dans le réservoir en faisant chuter la tension interfaciale entre eau/huile. Les alcalins limitent quant à eux l'adsorption des tensioactifs par la roche-réservoir, donc la perte des produits au fil de leur avancée dans le gisement. Un polymère bon candidat pour l'EOR doit donc notamment présenter les propriétés suivantes : The sweeping performance of the oil by water can be increased with surfactants and alkalis. Surfactants have the power to dislodge the fraction of still oil trapped in the tank causing the interfacial tension between water / oil to drop. The alkalis limit the adsorption of surfactants by the reservoir rock, so the loss of products as they advance in the deposit. A good candidate polymer for the EOR must therefore notably have the following properties:
haut pouvoir viscosifiant,  high viscosity,
capacité à résister au cisaillement lors de son transport en tuyauterie, lors de son passage dans des puits d'injection ou lors de son entrée dans le milieu poreux de la formation pétrolière.  ability to withstand shear during its transport in pipe, during its passage in injection wells or during its entry into the porous medium of the oil formation.
sensibilité réduite à la température et à la salinité,  reduced sensitivity to temperature and salinity,
bonne compatibilité avec les tensioactifs,  good compatibility with surfactants,
bonne injectivité,  good injectivity,
bonne propagation dans la formation,  good spread in training,
- aptitude à rester stable pendant les années passées dans la formation avant qu'il n'arrive jusqu'au puits producteurs, notamment face aux bactéries présentes dans les réservoirs,  - ability to remain stable during the years spent in training before it reaches the production wells, particularly in the face of the bacteria present in the tanks,
faible rétention, c'est-à-dire adsorption sur la roche limitée et faible rétention mécanique, c'est-à-dire blocage d'agrégats dans les seuils de pore,  low retention, i.e., limited rock adsorption and low mechanical retention, i.e. blocking of aggregates in pore thresholds,
disponibilité industrielle,  industrial availability,
faible coût.  low cost.
Les voies explorées pour obtenir des systèmes permettant d'augmenter la viscosité de l'eau pour l'EOR ont été jusqu'à présent les suivantes : The routes explored for systems to increase the viscosity of water for the EOR have so far been:
polymères hydrosolubles de très grande masse moléculaire,  water-soluble polymers of very high molecular weight,
polymères hydrosolubles modifiés avec des chaînons hydrophobes (polymères associatifs),  water-soluble polymers modified with hydrophobic links (associative polymers),
tensioactifs (wormlike micelles),  surfactants (wormlike micelles),
systèmes colloïdaux (argiles, microgels mous, latex),  colloidal systems (clays, soft microgels, latex),
systèmes mixtes micelles et polymères modifiés chimiquement. Parmi les polymères hydrosolubles de très grande masse moléculaire, on distingue les polymères synthétiques, qui sont en général des polymères flexibles de très forte masse moléculaire, et les biopolymères qui peuvent être vus comme des bâtonnets rigides. Le pouvoir viscosifiant des polymères diminue lorsque la masse moléculaire des chaînes diminue. Plusieurs types de dégradation conduisent à une rupture des chaînes et ainsi à une baisse du niveau de viscosité : Mixed systems micelles and chemically modified polymers. Among the water-soluble polymers of very high molecular weight, there are synthetic polymers, which are generally flexible polymers of very high molecular weight, and biopolymers which can be seen as rigid rods. The viscosity of the polymers decreases as the molecular weight of the chains decreases. Several types of degradation lead to a break in the chains and thus to a lowering of the viscosity level:
la dégradation bactérienne qui affecte principalement les biopolymères issus eux-mêmes de fermentation bactérienne,  the bacterial degradation that mainly affects the biopolymers that are themselves the result of bacterial fermentation,
la dégradation mécanique qui est d'autant plus importante que le polymère a une masse moléculaire élevée. Dans les installations de surface et lors de l'entrée dans le milieu poreux, la solution de polymère est fortement cisaillée. L'élongation des chaînes conduit à une rupture des liaisons C-C des macromolécules,  the mechanical degradation which is all the more important that the polymer has a high molecular weight. In surface installations and when entering the porous medium, the polymer solution is strongly sheared. The elongation of the chains leads to a breakdown of the C-C bonds of the macromolecules,
la dégradation chimique qui est accélérée par différents paramètres de l'environnement physico-chimique du polymère (pH, sel, température, oxygène...). Elle se traduit par une rupture des chaînes et/ou une évolution de la composition chimique de la chaîne conduisant à des problèmes de tolérance à certains sels et de baisse de solubilité.  chemical degradation which is accelerated by various parameters of the physico-chemical environment of the polymer (pH, salt, temperature, oxygen ...). It results in a chain break and / or an evolution of the chemical composition of the chain leading to problems of tolerance to certain salts and lower solubility.
Les polymères les plus étudiés et surtout les plus utilisés sur des applications champs sont les polyacrylamides partiellement hydrolysés (HPAM). Ils sont adaptés aux formations peu chaudes (T < 70°C) et peu salées (S < 50 g/1). Toutefois, ils sont très sensibles à la dégradation mécanique. La viscosité peut parfois diminuer de 40% lorsque la perte de charge au passage de la vanne est supérieure à 10 bars. A ce jour, il n'existe pas de vanne compacte non cisaillante ce qui complique l'utilisation de HPAM en offshore. A des températures plus élevées (T > 70°C), l'un des deux motifs constituant le HPAM n'est pas stable chimiquement, la composition des chaînes évolue et conduit à une précipitation si la teneur en cations divalents (Ca2+, Mg2+...) est trop élevée. Enfin, pour les formations peu perméables, il est nécessaire d'utiliser des HPAM de faible masse moléculaire qui ont donc l'inconvénient d'être dotés un très faible pouvoir viscosifiant. The most studied polymers and especially the most used on field applications are partially hydrolysed polyacrylamides (HPAM). They are suitable for formations that are not very hot (T <70 ° C) and slightly salty (S <50 g / 1). However, they are very sensitive to mechanical degradation. The viscosity can sometimes decrease by 40% when the pressure drop at the passage of the valve is greater than 10 bar. To date, there is no compact non-shear valve which complicates the use of HPAM offshore. At higher temperatures (T> 70 ° C), one of the two units constituting the HPAM is not chemically stable, the composition of the chains evolves and leads to precipitation if the content of divalent cations (Ca 2+ , Mg 2+ ...) is too high. Finally, for low permeability formations, it is necessary to use low molecular weight HPAMs which therefore have the disadvantage of being endowed with a very low viscosity.
Concernant les autres voies explorées (polymères associatifs par chaînons hydrophobes, tensio-actifs...), les systèmes sont en général peu sensibles à la dégradation mécanique mais ils présentent des problèmes d'injectabilité, de propagation dans le milieu poreux, de faible pouvoir viscosifiant et d'interactions défavorables avec le pétrole et/ou la roche. As regards the other pathways explored (associative polymers by hydrophobic links, surfactants, etc.), the systems are generally not very sensitive to mechanical degradation but they have problems of injectability, propagation in the porous medium, low viscosity and adverse interactions with oil and / or rock.
FR2855180 décrit un fluide aqueux comprenant un polymère boronaté et un polymère ligand utilisable comme fluide de forage ou fluide de stimulation, de préférence de fracturation. Toutefois, ce document ne décrit ni ne suggère aucune application en EOR, ni aucune injection des deux polymères de manière séparée. De plus, le polymère boronaté comprend un pourcentage élevé en fonctions boronates (au moins une mole de fonctions boronates par chaîne de polymère) et le poids moléculaire du polymère ligand semble relativement faible (masse molaire supérieure ou égale à 200 g/mole, de préférence supérieure ou égale à 20 000 g/mole). FR2855180 describes an aqueous fluid comprising a boronated polymer and a ligand polymer that can be used as a drilling fluid or a stimulation fluid, preferably a fracturing fluid. However, this document neither describes nor suggests any application in EOR, nor any injection of the two polymers separately. In addition, the boronated polymer comprises a high percentage of boronate functional groups (at least one mole of boronate functional groups per polymer chain) and the molecular weight of the ligand polymer seems relatively low (molar mass greater than or equal to 200 g / mole, preferably greater than or equal to 20 000 g / mole).
La présente invention vise à remédier aux inconvénients de l'art antérieur dans le domaine de l'EOR. Elle fournit une composition polymérique aqueuse pour la récupération améliorée d'hydrocarbures qui présente l'avantage d'être : The present invention aims to overcome the disadvantages of the prior art in the field of the EOR. It provides an aqueous polymeric composition for enhanced hydrocarbon recovery which has the advantage of being:
- fortement rhéofluidifiante, ce qui facilite son injectivité dans le réservoir, peu ou pas sensible à la dégradation mécanique, notamment au cisaillement, et  - strongly rheofluidifying, which facilitates its injectivity in the reservoir, little or not sensitive to mechanical degradation, especially shear, and
de haut pouvoir viscosifiant.  high viscosity.
Résumé summary
L'invention a pour objet un procédé pour récupérer une huile pétrolière dans un réservoir dans lequel une eau a été injectée pour pousser l'huile pétrolière vers un puits producteur, caractérisé en ce qu'il comprend :  The invention relates to a method for recovering a petroleum oil in a tank in which water has been injected to push the petroleum oil to a production well, characterized in that it comprises:
(A) l'injection dans ledit réservoir d'une solution aqueuse de polymère A portant des groupes boroniques et d'une solution aqueuse de polymère B portant des groupes diol, les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire ainsi à l'augmentation de la viscosité de ladite eau dans le réservoir ; (A) injecting into said reservoir an aqueous solution of polymer A carrying boronic groups and an aqueous solution of polymer B carrying diol groups, the boronic groups of polymer A and the diol groups of polymer B being capable of forming boronic ester bonds to thereby increase the viscosity of said water in the reservoir;
(B) la récupération de l'huile pétrolière dans le puits producteur. Selon un mode de réalisation, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange. (B) the recovery of the oil oil in the producing well. According to one embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture.
Selon un mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange dont la viscosité est comprise entre 0,001 Pa.s et 0,05 Pa.s à un cisaillement de ls"1, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s et l'on injecte en outre de manière séparée un agent alcalin pour conduire à l'augmentation de la viscosité de l'eau dans le réservoir. Selon un mode de réalisation, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, de façon simultanée ou alternée. According to a particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture whose viscosity is between 0.001 Pa.s and 0.05 Pa.s at a shear of 1 " , in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s and additionally an alkaline agent is injected separately to lead to In one embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, simultaneously or alternately.
Selon un mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, les deux solutions aqueuses ou l'une seulement comprenant en outre un agent alcalin. According to a particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, the two aqueous solutions or only one further comprising an alkaline agent.
Selon un mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange comprenant en outre un agent alcalin dont la viscosité est comprise entre 0,002 Pa.s et 1 Pa.s, en particulier comprise entre 0,002 Pa.s et 0,2 Pa.s, plus particulièrement comprise entre 0,002 Pa.s et 0,05 Pa.s According to a particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture further comprising an alkaline agent whose viscosity is between 0.002 Pa.s and 1 Pa.s. , in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.002 Pa.s and 0.05 Pa.s.
La présente invention a également pour objet une composition polymérique aqueuse pour la mise en œuvre du procédé selon l'invention comprenant : The subject of the present invention is also an aqueous polymeric composition for implementing the method according to the invention comprising:
- un polymère A hydrosoluble portant des groupes boroniques,  a water-soluble polymer A carrying boronic groups,
- un polymère B hydrosoluble portant des groupes diol,  a water-soluble polymer B carrying diol groups,
les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire à l'augmentation de la viscosité de ladite composition caractérisée en ce que le polymère A comprend entre 0,01 mol et 50 mol de groupes boroniques, en particulier entre 0,1 mol et 20 mol de groupes boroniques, plus particulièrement entre 0,2 mol et 10 mol de groupes boroniques, encore plus particulièrement entre 0,5 mol et 5 mol de groupes boroniques. the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds to lead to the increase in the viscosity of said composition, characterized in that the polymer A comprises between 0.01 mol and 50 mol of boronic groups, in particular between 0.1 mol and 20 mol of boronic groups, more particularly between 0.2 mol and 10 mol boronic groups, more particularly between 0.5 mol and 5 mol of boronic groups.
Selon un mode de réalisation, le pH à partir duquel la liaison ester boronique se forme est supérieur ou égal à 4, en particulier supérieur ou égal à 7, plus particulièrement supérieur ou égal à 9. According to one embodiment, the pH at which the boronic ester bond is formed is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
Selon un mode de réalisation, la concentration en polymère A est comprise entre 0,015 % en poids et 0,5 % en poids, en particulier entre 0,015 % en poids et 0,1% en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. According to one embodiment, the concentration of polymer A is between 0.015% by weight and 0.5% by weight, in particular between 0.015% by weight and 0.1% by weight, more particularly between 0.015% by weight and 0% by weight. , 05% by weight.
Selon un mode de réalisation, la concentration en polymère B est comprise entre 0,015 % en poids et 0,7 % en poids, en particulier entre 0,015 % en poids et 0,3 % en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. According to one embodiment, the concentration of polymer B is between 0.015% by weight and 0.7% by weight, in particular between 0.015% by weight and 0.3% by weight, more particularly between 0.015% by weight and 0% by weight. , 05% by weight.
Selon un mode de réalisation, la concentration totale du polymère A et du polymère B est comprise entre 0,03 % en poids et 1,2 % en poids, en particulier entre 0,03 % en poids et 0,4 % en poids, plus particulièrement entre 0,03 % en poids et 0,1 % en poids. According to one embodiment, the total concentration of polymer A and polymer B is between 0.03% by weight and 1.2% by weight, in particular between 0.03% by weight and 0.4% by weight, more particularly between 0.03% by weight and 0.1% by weight.
Selon un mode de réalisation, le ratio massique du polymère A sur le polymère B est compris entre 0,1 et 10, en particulier entre 0,2 et 5, plus particulièrement entre 0,5 et 2. According to one embodiment, the mass ratio of the polymer A on the polymer B is between 0.1 and 10, in particular between 0.2 and 5, more particularly between 0.5 and 2.
Selon un mode de réalisation, la masse moléculaire du polymère A est d'au moins 100 000 g/mol, en particulier comprise entre 100 000 g/mol et 30 000 000 g/mol, plus particulièrement comprise entre 1 000 000 et 8 000 000 g/mol. According to one embodiment, the molecular weight of the polymer A is at least 100,000 g / mol, in particular between 100,000 g / mol and 30,000,000 g / mol, more particularly between 1,000,000 and 8,000. 000 g / mol.
Selon un mode de réalisation, le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide, ou d'acide acrylique, ou d'acrylamide et d' acrylamido-methyl-propane sulfonate, ou d'acide acrylique, d'acrylamide, d' acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone ou d'acrylamide, d' acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone. According to one embodiment, the polymer A is chosen from copolymers of acrylic acid and acrylamide, or acrylic acid, or acrylamide and acrylamido-methyl-propane sulfonate, or acrylic acid, acrylamide, acrylamido-methylpropane sulfonate and N-vinylpyrrolidone or acrylamide, acrylamido-methylpropane sulfonate and N-vinylpyrrolidone.
Selon un mode de réalisation, le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide portant des groupes acide phényl boronique, en particulier ceux comprenant : entre 5 mol et 50 mol d'acide acrylique, particulièrement entre 5 mol et 30 mol de d'acide acrylique, According to one embodiment, the polymer A is chosen from copolymers of acrylic acid and of acrylamide bearing phenyl boronic acid groups, in particular those comprising: between 5 mol and 50 mol of acrylic acid, particularly between 5 mol and 30 mol of acrylic acid,
entre 50 mol et 95 mol d' acrylamide, particulièrement entre 70 mol et 95 mol de d' acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
- entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
Selon un mode de réalisation, le polymère A est choisi parmi les copolymères d' acrylamide et d' acrylamido-methyl-propane sulfonate portant des groupes acide phényl boronique, en particulier ceux comprenant : According to one embodiment, the polymer A is chosen from copolymers of acrylamide and acrylamido-methyl-propane sulfonate bearing phenyl boronic acid groups, in particular those comprising:
entre 50 mol et 95 mol d' acrylamide, particulièrement entre 70 mol et 95 mol de d' acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
entre 5 mol et 50 mol de groupes acrylamido-methyl-propane sulfonate,  between 5 mol and 50 mol of acrylamido-methyl-propane sulfonate groups,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
Selon un mode de réalisation, le polymère A est choisi parmi les copolymères d' acrylamide, d' acrylamido-methyl-propane sulfonate et de N-vinylpyrrolydone portant des groupes acide phényl boronique, en particulier ceux comprenant : According to one embodiment, the polymer A is chosen from copolymers of acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolydone bearing phenylboronic acid groups, in particular those comprising:
entre 50 mol et 95 mol d' acrylamide, particulièrement entre 70 mol et 95 mol de d' acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
entre 5 mol et 50 mol de groupes acrylamido-methyl-propane sulfonate,  between 5 mol and 50 mol of acrylamido-methyl-propane sulfonate groups,
entre 5 mol et 50 mol de groupes N-vinylpyrrolidone,  between 5 mol and 50 mol of N-vinylpyrrolidone groups,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
Selon un mode de réalisation, la masse moléculaire du polymère B est d'au moins 100 000 g/mol, en particulier compris entre 100 000 g/mol et 10 000 000 g/mol, plus particulièrement compris entre 500 000 et 8 000 000 g/mol. Selon un mode de réalisation, le polymère B est choisi parmi les polyols, en particulier les polysaccharides, notamment les polysaccharides d'origine naturelle, tels que la gomme de guar,la gomme xanthane, le scléroglucane ou le schizophyllane ainsi que leurs dérivés, ou bien les polyols synthétiques linéaires tels que l'alcool polyvinylique, ou les dérivés de la cellulose. According to one embodiment, the molecular weight of polymer B is at least 100,000 g / mol, in particular between 100,000 g / mol and 10,000,000 g / mol, more particularly between 500,000 and 8,000,000. g / mol. According to one embodiment, the polymer B is chosen from polyols, in particular polysaccharides, especially polysaccharides of natural origin, such as guar gum, xanthan gum, scleroglucan or schizophyllane and their derivatives, or well synthetic linear polyols such as polyvinyl alcohol, or derivatives of cellulose.
Selon un mode de réalisation, la viscosité de la composition polymérique aqueuse à pH inférieur au pH à partir duquel la liaison ester boronique se forme est comprise entre 0,001 Pa.s et 0,05 Pa.s, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s Selon un mode de réalisation, la viscosité de la composition polymérique aqueuse à pH supérieur ou égal au pH à partir duquel la liaison ester boronique se forme est comprise entre 0,002 Pa.s et 1 Pa.s, en particulier comprise entre 0,002 Pa.s et 0,2 Pa.s, plus particulièrement comprise entre 0,05 Pa.s et 0,02 Pa.s. According to one embodiment, the viscosity of the aqueous polymer composition at a pH below the pH at which the boronic ester bond is formed is between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s. and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s. According to one embodiment, the viscosity of the aqueous polymer composition at pH greater than or equal to the pH from which the boronic ester bond is formed. is between 0.002 Pa.s and 1 Pa.s, in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.05 Pa.s and 0.02 Pa.s.
Selon un mode de réalisation particulier, la composition comprend en outre un agent alcalin. According to a particular embodiment, the composition further comprises an alkaline agent.
Brève description des figures Brief description of the figures
La figure 1 représente la courbe d'écoulement (Viscosité (Pa.s) en fonction du taux de cisaillement (1/s)) d'une composition selon l'invention contenant le polymère A et le polymère B, d'une composition ne comprenant que le polymère A et d'une composition ne comprenant que le polymère B, à pH = 9. FIG. 1 represents the flow curve (Viscosity (Pa.s) as a function of the shear rate (1 / s)) of a composition according to the invention containing polymer A and polymer B, of a composition not comprising that the polymer A and a composition comprising only the polymer B, at pH = 9.
La figure 2 représente la courbe d'écoulement (Viscosité (Pa.s) en fonction du taux de cisaillement (1/s)) de compositions selon l'invention à pH = 9, avec différentes concentrations en polymères. FIG. 2 represents the flow curve (Viscosity (Pa.s) as a function of the shear rate (1 / s)) of compositions according to the invention at pH = 9, with different polymer concentrations.
La figure 3 représente le module élastique G' à 1 rad/s d'une composition selon l'invention en fonction du pH. FIG. 3 represents the elastic modulus G 'at 1 rad / s of a composition according to the invention as a function of the pH.
La figure 4 représente la viscosité (Pa.s) à ls"1 en fonction de la concentration en polymère de compositions selon l'invention contenant le polymère A et le polymère B, de compositions ne comprenant que le polymère A et de compositions ne comprenant que le polymère B, à pH = 9. FIG. 4 represents the viscosity (Pa.s) at ls -1 as a function of the polymer concentration of compositions according to the invention containing the polymer A and the polymer B, compositions comprising only polymer A and compositions comprising only polymer B, at pH = 9.
Description détaillée de l'invention Detailed description of the invention
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. The invention is now described in more detail and without limitation in the description which follows.
Selon un premier aspect, la présente invention a pour objet un procédé pour récupérer une huile pétrolière dans un réservoir dans lequel une eau a été injectée pour pousser l'huile pétrolière vers un puits producteur, caractérisé en ce qu'il comprend l'injection dans ledit réservoir d'une solution aqueuse de polymère A portant des groupes boroniques et d'une solution aqueuse de polymère B portant des groupes diol, les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire ainsi à l'augmentation de la viscosité de ladite eau dans le réservoir. According to a first aspect, the subject of the present invention is a process for recovering a petroleum oil in a tank in which water has been injected to push the petroleum oil towards a producing well, characterized in that it comprises injection into said reservoir of an aqueous solution of polymer A carrying boronic groups and an aqueous solution of polymer B carrying diol groups, the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds for thus lead to the increase of the viscosity of said water in the tank.
Les groupes boroniques du polymère A et les groupes diols du polymère B sont capables de former des liaisons ester boronique en milieu aqueux à un certain pH, pour conduire à l'association multivalente des deux polymères dans le milieu aqueux. Cette association multivalente entraîne la formation d'agrégats, voire même d'un réseau polymérique. Il en résulte une augmentation de la viscosité dudit milieu aqueux. Les liaisons ester boronique ont la caractéristique d'être covalentes et réversibles. Le caractère réversible de la liaison résulte de l'équilibre qui s'opère entre l'espèce acide et l'espèce ester. Cet équilibre dépend du pKa de(s) acide(s) correspondant aux groupe(s) boronique(s) portés par le polymère A et du pH du milieu. A pH supérieur ou égal au pH à partir duquel la liaison ester boronique se forme, l'espèce majoritaire est l'ester. Donc, si le pH du milieu est supérieur ou égal à ce pH, les deux polymères A et B s'associent alors en agrégats ou bien en un réseau polymérique stable par association entre chaînes. Il en résulte une augmentation de la viscosité du milieu renfermant les deux polymères. Sous cisaillement, les liaisons ester boronique entre les deux polymères peuvent se rompre, puis se reformer, assurant au système un comportement rhéofluidifiant en minimisant l'endommagement irréversible des chaînes polymères. The boronic groups of polymer A and the diol groups of polymer B are capable of forming boronic ester bonds in aqueous medium at a certain pH, to lead to the multivalent combination of the two polymers in the aqueous medium. This multivalent association leads to the formation of aggregates, or even of a polymeric network. This results in an increase in the viscosity of said aqueous medium. The boronic ester bonds have the characteristic of being covalent and reversible. The reversibility of the bond results from the equilibrium between the acidic and the ester species. This equilibrium depends on the pKa of the acid (s) corresponding to the boronic group (s) carried by the polymer A and the pH of the medium. At a pH greater than or equal to the pH at which the boronic ester bond is formed, the major species is the ester. Therefore, if the pH of the medium is greater than or equal to this pH, the two polymers A and B then associate in aggregates or in a stable polymer network by association between chains. This results in an increase in the viscosity of the medium containing the two polymers. Under shear, the bonds Boronic ester between the two polymers can rupture and then reform, providing the system with a rheofluidifying behavior by minimizing irreversible damage to the polymer chains.
A pH inférieur au pH à partir duquel la liaison ester boronique se forme, l'espèce majoritaire est en général l'acide, ce qui entraine la dissociation des deux polymères A et B, et donc la diminution de la taille des agrégats ou de l'étendue du réseau polymérique, voire leur disparition. Il en résulte une diminution de la viscosité du milieu renfermant les deux polymères. At a pH below the pH at which the boronic ester bond is formed, the majority species is in general the acid, which causes the dissociation of the two polymers A and B, and thus the decrease of the size of the aggregates or the extent of the polymeric network, or even their disappearance. This results in a decrease in the viscosity of the medium containing the two polymers.
La viscosité ici mentionnée est déterminée selon la méthode classique de mesure de viscosité en écoulement établi et permanent. Un rhéomètre en géométrie cone/plan ou couette est utilisé. La viscosité est déterminée sur la plage de cisaillement 0, 1- 1000s- 1. Au sens de la présente invention, quand on parle de la viscosité d'une solution, c'est la viscosité mesurée au gradient de cisaillement ls-1 à 25°C. Dans ces conditions, la viscosité de l'eau est d'environ 0,0009 Pa.s. Donc, pour permettre d'améliorer le balayage de l'huile dans le réservoir, la solution aqueuse de polymère A et la solution aqueuse de polymère B doivent être capables de former des agrégats ou un réseau polymérique par association entre chaînes afin d'augmenter la viscosité de la solution injectée par rapport à l'eau pour diminuer le rapport de la mobilité de l'eau par rapport à l'huile. Selon un mode de réalisation, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange. The viscosity mentioned here is determined according to the conventional method of measuring viscosity in steady and steady flow. A rheometer in geometry cone / plan or duvet is used. The viscosity is determined over the shear range 0.ltoreq.1-100s-1. For the purposes of the present invention, when the viscosity of a solution is referred to, it is the viscosity measured at the shear rate of ls-1 to 25.degree. ° C. Under these conditions, the viscosity of the water is about 0.0009 Pa.s. Therefore, in order to improve the oil sweep in the tank, the aqueous solution of polymer A and the aqueous solution of polymer B must be capable of forming aggregates or a polymer network by association between chains in order to increase the viscosity of the injected solution relative to the water to decrease the ratio of the mobility of the water with respect to the oil. According to one embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank in the form of a mixture.
Ledit mélange contient les polymères A et B dans des concentrations très faibles qui, à pH inférieur au pH à partir duquel la liaison ester boronique se forme, conduisent à un mélange final très peu visqueux. Said mixture contains polymers A and B in very low concentrations which, at a pH below the pH at which the boronic ester bond is formed, lead to a very low viscosity final mixture.
Selon un mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange dont la viscosité est comprise entre 0,001 Pa.s et 0,05 Pa.s, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s et l'on injecte en outre de manière séparée un agent alcalin pour conduire à l'augmentation de la viscosité de l'eau dans le réservoir. According to a particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture whose viscosity is between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s, and an alkaline agent is additionally injected separately to lead to an increase in the viscosity of the water in the tank.
L'agent alcalin est injecté de préférence avant le mélange comprenant les polymères A et B, de manière à former une zone alcaline dans le réservoir. Cette zone alcaline permet aux deux polymères A et B de s'associer dans le réservoir pour former une zone visqueuse qui va permettre de pousser l'huile du réservoir vers un puits producteur. The alkaline agent is preferably injected before the mixture comprising the polymers A and B, so as to form an alkaline zone in the tank. This alkaline zone allows the two polymers A and B to associate in the reservoir to form a viscous zone that will allow to push the oil from the reservoir to a producing well.
Selon ce mode de réalisation, le mélange aqueux de polymère A et de polymère B est donc injecté sous forme très peu visqueuse, ce qui facilite l'injection elle-même et permet d'éviter les éventuelles dégradations mécaniques engendrées par le passage dans une vanne à l'entrée du puits de pétrole. According to this embodiment, the aqueous mixture of polymer A and polymer B is therefore injected in a very low viscosity form, which facilitates the injection itself and makes it possible to avoid any mechanical damage caused by passing through a valve. at the entrance of the oil well.
La quantité d'agent alcalin injectée dans le réservoir est déterminée en fonction du pH que l'on souhaite atteindre dans la zone alcaline. De préférence, l'agent alcalin est injecté dans le réservoir en une quantité permettant de former dans le réservoir une zone alcaline dont le pH est supérieur ou égal à 4, en particulier supérieur ou égal à 7, plus particulièrement supérieur ou égal à 9. The amount of alkaline agent injected into the reservoir is determined according to the pH that is desired to reach in the alkaline zone. Preferably, the alkaline agent is injected into the reservoir in an amount to form in the reservoir an alkaline zone whose pH is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
L'agent alcalin peut être choisi parmi la soude, le carbonate de sodium, ou l'ammoniac. The alkaline agent may be chosen from soda, sodium carbonate, or ammonia.
Selon un autre mode de réalisation, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, de façon simultanée ou alternée. According to another embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, simultaneously or alternately.
Selon un mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, les deux solutions aqueuses ou l'une seulement comprenant en outre un agent alcalin. Alternativement, l'agent alcalin peut être injecté séparément de la solution aqueuse de polymère A et de la solution aqueuse de polymère B, de préférence avant l'injection de ceux-ci, de manière à former une zone alcaline dans le réservoir. Selon un autre mode de réalisation particulier, la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange comprenant en outre un agent alcalin, dont la viscosité est comprise entre 0,002 Pa.s et 1 Pa.s, en particulier comprise entre 0,002 Pa.s et 0,2 Pa.s, plus particulièrement comprise entre 0,002 Pa.s et 0,05 Pa.s. According to a particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, the two aqueous solutions or only one further comprising an alkaline agent. Alternatively, the alkaline agent can be injected separately from the aqueous solution of polymer A and the aqueous solution of polymer B, preferably before the injection thereof, so as to form an alkaline zone in the reservoir. According to another particular embodiment, the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture further comprising an alkaline agent, the viscosity of which is between 0.002 Pa.s and 1 Pa. .s, in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.002 Pa.s and 0.05 Pa.s.
Les solutions de polymère A et B et l'agent alcalin peuvent être injectés dans le réservoir par le même puits d'injection ou bien par des puits d'injection différents. The polymer solutions A and B and the alkaline agent can be injected into the reservoir by the same injection well or by different injection wells.
Au sein du réservoir, l'association des deux polymères A et B permet de d'augmenter la viscosité du fluide déplaçant et donc d'améliorer le balayage de l'huile contenue dans le réservoir. L'huile pétrolière peut ensuite être récupérée dans un ou plusieurs puits producteurs. In the tank, the combination of the two polymers A and B makes it possible to increase the viscosity of the displacing fluid and thus to improve the sweeping of the oil contained in the reservoir. The petroleum oil can then be recovered in one or more producing wells.
Selon un deuxième aspect, l'invention a pour objet une composition polymérique aqueuse comprenant : According to a second aspect, the subject of the invention is an aqueous polymeric composition comprising:
- un polymère A hydrosoluble portant des groupes boroniques,  a water-soluble polymer A carrying boronic groups,
- un polymère B hydrosoluble portant des groupes diol,  a water-soluble polymer B carrying diol groups,
les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire à l'augmentation de la viscosité de ladite composition. the boronic groups of the polymer A and the diol groups of the polymer B being capable of forming boronic ester bonds to lead to the increase of the viscosity of said composition.
La composition polymérique aqueuse selon l'invention est dotée d'un haut pouvoir viscosifiant lorsqu'elle se trouve dans des conditions de pH qui permettent la formation d'une liaison ester boronique entre le polymère A et le polymère B. Ce pH est supérieur ou égal au pKa de l'acide correspondant au groupe boronique du polymère A. Selon les espèces en présence, ce pH est supérieur ou égal à 4, en particulier supérieur ou égal à 7, plus particulièrement supérieur ou égal à 9. La composition selon l'invention peut être ainsi utilisée comme additif pour augmenter la viscosité d'un liquide aqueux, notamment pour augmenter la viscosité d'une eau destinée au balayage et à la récupération d'une huile pétrolière dans un réservoir. Par ailleurs, elle est fortement rhéofluidifiante, et elle est peu ou pas sensible à la dégradation mécanique, notamment au cisaillement, ce qui facilite son injectivité. Elle est en outre viscoélastique, ce qui permet un meilleur balayage macroscopique. The aqueous polymer composition according to the invention is provided with a high viscosity when it is in pH conditions which allow the formation of a boronic ester bond between the polymer A and the polymer B. This pH is higher or equal to the pKa of the acid corresponding to the boronic group of the polymer A. According to the species present, this pH is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9. The composition according to The invention can thus be used as an additive to increase the viscosity of an aqueous liquid, in particular to increase the viscosity of a water intended for the sweeping and the recovery of a petroleum oil in a tank. Moreover, it is strongly rheofluidifying, and it is little or not sensitive to mechanical degradation, especially shear, which facilitates its injectivity. It is also viscoelastic, which allows a better macroscopic scan.
La composition selon l'invention trouve ainsi son application dans le domaine de la récupération améliorée d'hydrocarbures. The composition according to the invention thus finds application in the field of improved hydrocarbon recovery.
On entend par « polymère hydrosoluble », un polymère qui est capable de se dissoudre complètement dans l'eau. The term "water-soluble polymer" means a polymer that is capable of completely dissolving in water.
On entend par « groupe boronique » le radical -B(OH)2 ou tout groupe comportant le radical -B(OH)2, tels que le groupe acide phénylboronique, acide thiénylboronique, acide méthylboronique, acide cis-propénylboronique, ou acide trans-propénylboronique. The term "boronic group" is understood to mean the radical -B (OH) 2 or any group containing the radical -B (OH) 2 , such as the phenylboronic acid, thienylboronic acid, methylboronic acid, cis-propenylboronic acid or trans-acid group. propénylboronique.
D'autres groupes boroniques, ainsi que leur pKa, sont indiqués dans le tableau 1. Other boronic groups, as well as their pKa, are shown in Table 1.
Tableau 1 pKa Table 1 pKa
Acide 2-méthoxyphénylboronique 9.0 2-Methoxyphenylboronic acid 9.0
Acide 2-aminophénylboronique 8.9 2-Aminophenylboronic acid 8.9
Acide phénylboronique 8.8 Phenylboronic acid 8.8
Acide 4-fluorophénylboronique 8.6 4-fluorophenylboronic acid 8.6
Acide 2,4-dichlorophénylboronique 8.5 2,4-Dichlorophenylboronic acid 8.5
Acide 4-bromophénylboronique 8.8 4-Bromophenylboronic acid 8.8
Acide 4-aminométhylphénylboronique 8.3 4-Aminomethylphenylboronic acid 8.3
Acide 3-pyridinylboronique 8.1 3-pyridinylboronic acid 8.1
Acide 4-pyridinylboronique 8.0 pKa 4-pyridinylboronic acid 8.0 pK
Acide 4-carboxyphénylboronique 8.0 4-carboxyphenylboronic acid 8.0
Acide 3-acétylphénylboronique 8.0 3-Acetylphenylboronic acid 8.0
Acide 3-chloro-4-fluorophénylboronique 7.8 3-chloro-4-fluorophenylboronic acid 7.8
Acide 3-formylphénylboronique 7.8 3-Formylphenylboronic acid 7.8
Acide 4-acétylphénylboronique 7.7 4-Acetylphenylboronic acid 7.7
Acide 4-formylphénylboronique 7.6 4-formylphenylboronic acid 7.6
Acide 2,4-difluorophénylboronique 7.6 2,4-difluorophenylboronic acid 7.6
Acide 3-nitrophénylboronique 7.1 3-nitrophenylboronic acid 7.1
Acide 2,5-difluorophénylboronique 7.0 2,5-difluorophenylboronic acid 7.0
Acide 3,4,5-trifluorophénylboronique 6.8 3,4,5-Trifluorophenylboronic acid 6.8
Acide 2,3,4-trifluorophénylboronique 6.8 2,3,4-Trifluorophenylboronic acid 6.8
Acide 2,4,5-trifluorophénylboronique 6.7 2,4,5-Trifluorophenylboronic acid 6.7
Acide 2-diméthyl-aminométhylphénylboronique 6.7 2-dimethylaminomethylphenylboronic acid 6.7
Acide 2-fluoro-5-nitrophénylboronique 6.0 2-Fluoro-5-nitrophenylboronic acid 6.0
Acide N-méthyl-3-pyridiniumboronique 4.4 N-methyl-3-pyridiniumboronic acid 4.4
Acide N-benzyl-3-pyridiniumboronique 4.2 N-Benzyl-3-pyridiniumboronic acid 4.2
Le groupe diol porté par le polymère B est de préférence un 1,2 diol (diol vicinal), c'est-à-dire un diol dont les deux groupes hydroxyle sont portés par deux carbones adjacents (-COH-COH-), ou bien un 1,3 diol, c'est-à-dire un diol dont les groupes hydroxyle sont portés par deux carbones non adjacents séparés par un carbone. Le groupe diol peut être cis ou trans, de préférence cis. Comme mentionné précédemment, la viscosité de la composition peut être facilement ajustée de manière réversible en ajustant son pH par rapport au pH à partir duquel la liaison ester boronique se forme. The diol group carried by the polymer B is preferably a 1,2 diol (vicinal diol), that is to say a diol whose two hydroxyl groups are carried by two adjacent carbons (-COH-COH-), or a 1,3-diol, that is to say a diol whose hydroxyl groups are borne by two non-adjacent carbons separated by a carbon. The diol group may be cis or trans, preferably cis. As previously mentioned, the viscosity of the composition can be readily reversibly adjusted by adjusting its pH relative to the pH at which the boronic ester bond is formed.
La composition selon l'invention peut donc comprendre en outre un agent alcalin, tel que la soude, le carbonate de sodium ou l'ammoniac. The composition according to the invention may therefore also comprise an alkaline agent, such as sodium hydroxide, sodium carbonate or ammonia.
La composition selon l'invention contient les polymères A et B dans des concentrations très faibles qui, à pH inférieur au pH à partir duquel la liaison ester boronique se forme, conduisent à un mélange final très peu visqueux. The composition according to the invention contains the polymers A and B in very low concentrations which, at a pH below the pH at which the boronic ester bond is formed, lead to a very low viscosity final mixture.
La proportion du polymère B par rapport au polymère A est ajustée en fonction de la nature des polymères A et B et de la viscosité que l'on souhaite obtenir. The proportion of the polymer B with respect to the polymer A is adjusted according to the nature of the polymers A and B and the viscosity that it is desired to obtain.
A pH inférieur au pH à partir duquel la liaison ester boronique se forme, la viscosité de la composition selon l'invention peut être comprise entre 0,001 Pa.s et 0,05 Pa.s, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s. A pH supérieur ou égal au pH à partir duquel la liaison ester boronique se forme, et en raison de l'association des polymères A et B, la viscosité de la composition augmente de manière importante, et peut être ainsi comprise entre 0,005 Pa.s et 0,1 Pa.s, en particulier comprise entre 0,005 Pa.s et 0,5 Pa.s, plus particulièrement comprise entre 0,005 Pa.s et 0,2 Pa.s. La viscosité de la composition selon l'invention dépend de son pH, de la nature des polymères A et B et du nombre du nombre de liaisons ester boronique que l'on souhaite former entre les deux polymères. Plus il se forme de liaisons entre les deux polymères, plus la viscosité augmente. La viscosité dépend donc du nombre de groupes boroniques portés par le polymère B, du nombre de groupes diol portés par le polymère A et du ratio massique du polymère A sur le polymère B dans la composition.  At a pH below the pH at which the boronic ester bond is formed, the viscosity of the composition according to the invention may be between 0.001 Pa.s and 0.05 Pa.s, in particular between 0.001 Pa.s and 0. , 02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s. At a pH greater than or equal to the pH at which the boronic ester bond is formed, and because of the combination of polymers A and B, the viscosity of the composition increases significantly, and can thus be between 0.005 Pa.s. and 0.1 Pa.s, in particular between 0.005 Pa.s and 0.5 Pa.s, more particularly between 0.005 Pa.s and 0.2 Pa.s. The viscosity of the composition according to the invention depends on its pH, the nature of the polymers A and B and the number of boronic ester bonds that it is desired to form between the two polymers. The more bonds are formed between the two polymers, the higher the viscosity. The viscosity therefore depends on the number of boronic groups carried by the polymer B, the number of diol groups carried by the polymer A and the mass ratio of the polymer A on the polymer B in the composition.
La concentration en polymère A dans la composition viscosifiante de l'invention peut être ainsi comprise entre 0,015 % en poids et 0,5 % en poids, en particulier entre 0,015 % en poids et 0,1 % en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. The concentration of polymer A in the viscosifying composition of the invention can thus be between 0.015% by weight and 0.5% by weight, especially between 0.015% by weight and 0.1% by weight, more particularly between 0.015% by weight and 0.05% by weight.
La concentration en polymère B dans la composition viscosifiante de l'invention peut être comprise entre 0,015 % en poids et 0,7 % en poids, en particulier entre 0,015 % en poids et 0,3 % en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. The concentration of polymer B in the viscosifying composition of the invention may be between 0.015% by weight and 0.7% by weight, in particular between 0.015% by weight and 0.3% by weight, more particularly between 0.015% by weight. weight and 0.05% by weight.
La concentration totale du polymère A et du polymère B dans la composition viscosifiante de l'invention peut être comprise entre 0,03 % en poids et 1,2 % en poids, en particulier entre 0,03 % en poids et 0,4 % en poids, plus particulièrement entre 0,03 % en poids et 0,1 % en poids. The total concentration of polymer A and polymer B in the viscosifying composition of the invention may be between 0.03% by weight and 1.2% by weight, in particular between 0.03% by weight and 0.4%. by weight, more particularly between 0.03% by weight and 0.1% by weight.
Le ratio massique du polymère A sur le polymère B dans la composition viscosifiante de l'invention peut être compris entre 0,1 et 10, en particulier entre 0,2 et 5, plus particulièrement entre 0,5 et 2. The mass ratio of the polymer A on the polymer B in the viscosifying composition of the invention may be between 0.1 and 10, in particular between 0.2 and 5, more particularly between 0.5 and 2.
La masse moléculaire du polymère A est d'au moins 100 000 g/mol, en particulier comprise entre 100 000 g/mol et 30 000 000 g/mol, plus particulièrement comprise entre 1 000 000 et 8 000 000 g/mol. Plus la masse moléculaire du polymère A est élevée, plus le pouvoir viscosifiant de la composition sera élevé. The molecular weight of the polymer A is at least 100,000 g / mol, in particular between 100,000 g / mol and 30,000,000 g / mol, more particularly between 1,000,000 and 8,000,000 g / mol. The higher the molecular weight of the polymer A, the higher the viscosity of the composition will be.
Le polymère A peut être choisi parmi les copolymères d'acide acrylique et d'acrylamide, ou d'acide acrylique, d'acrylamide et d' acrylamido-methyl-propane sulfonate, ou d'acide acrylique, d'acrylamide, d' acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone ou d'acrylamide, d' acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone. The polymer A may be chosen from copolymers of acrylic acid and acrylamide, or acrylic acid, acrylamide and acrylamido-methyl-propane sulfonate, or acrylic acid, acrylamide, acrylamido methyl-propane sulfonate and N-vinylpyrrolidone or acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolidone.
Le polymère A peut comprendre entre 0,01 mol et 50 mol de groupes boroniques, en particulier entre 0,1 mol et 20 mol de groupes boroniques, plus particulièrement entre 0,2 mol et 10 mol de groupes boroniques, encore plsu particulièrement entre 0,5 mol et 5 mol de groupes boroniques. The polymer A can comprise between 0.01 mol and 50 mol of boronic groups, in particular between 0.1 mol and 20 mol of boronic groups, more particularly between 0.2 mol and 10 mol of boronic groups, and even more particularly between 0 5 mol and 5 mol of boronic groups.
Il peut être préparé soit par copolymérisation d'un monomère portant un groupe boronique, soit par greffage de groupes boroniques sur un polymère, selon les techniques classiques de l'état de l'art (voir par exemple: Polymer microcapsules with carbohydrate sensitive properties, T. Levy, C. Dejugnat, G.B. Sukhorukov, Adv. Funct. Mater. 18 1586-1594 (2008) DOI: 10.1002/adfm.200701291. It may be prepared either by copolymerization of a monomer bearing a boronic group or by grafting boronic groups on a polymer, according to the standard techniques of the state of the art (see for example: Polymer microcapsules with carbohydrate sensitive properties, T. Levy, C. Dejugnat, GB Sukhorukov, Adv. Funct. Mater. 18, 1586-1594 (2008) DOI: 10.1002 / adfm.200701291.
Selon un mode de réalisation, le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide portant des groupes acide phényl boronique, en particulier ceux comprenant : According to one embodiment, the polymer A is chosen from copolymers of acrylic acid and of acrylamide bearing phenyl boronic acid groups, in particular those comprising:
entre 5 mol et 50 mol d'acide acrylique, particulièrement entre 5 mol et 30 mol de d'acide acrylique,  between 5 mol and 50 mol of acrylic acid, particularly between 5 mol and 30 mol of acrylic acid,
entre 50 mol et 95 mol d'acrylamide, particulièrement entre 70 mol et 95 mol d'acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
- entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
Les copolymères d'acide acrylique et d'acrylamide portant des groupes acide phényl boronique peuvent être préparés par greffage d'acide phényl boronique sur un copolymère d'acide acrylique et d'acrylamide. Acrylic acid and acrylamide copolymers bearing phenyl boronic acid groups may be prepared by grafting phenyl boronic acid onto a copolymer of acrylic acid and acrylamide.
La masse moléculaire du polymère B est d'au moins 100 000 g/mol, en particulier compris entre 100 000 g/mol et 10 000 000 g/mol, plus particulièrement compris entre 500 000 et 8 000 000 g/mol. Plus la masse moléculaire du polymère B est élevée, plus la composition aura un pouvoir viscosifiant élevé. Le polymère B peut être choisi parmi les polyols, en particulier les polysaccharides, notamment les polysaccharides d'origine naturelle, tels que la gomme de guar, la gomme xanthane, le scléroglucane ou le schizophyllane ainsi que leurs dérivés, ou bien les polyols synthétiques linéaires tels que l'alcool polyvinylique ou les dérivés de la cellulose. Le polymère B peut comprendre entre 1 mol et 60 mol de groupes hydroxyle, en particulier entre 10 mol et 60 mol de groupes hydroxyle, plus particulièrement entre 30 mol et 60 mol de groupes hydroxyle. Selon un mode de réalisation, le polymère B est choisi parmi un polysaccharide d'origine naturelle portant des groupes diol vicinaux, tel que la gomme de guar ou gomme xanthane. The molecular weight of polymer B is at least 100,000 g / mol, in particular between 100,000 g / mol and 10,000,000 g / mol, more particularly between 500,000 and 8,000,000 g / mol. The higher the molecular weight of polymer B, the higher the viscosity of the composition will be. Polymer B may be chosen from polyols, in particular polysaccharides, in particular polysaccharides of natural origin, such as guar gum, xanthan gum, scleroglucan or schizophyllane and their derivatives, or linear synthetic polyols. such as polyvinyl alcohol or cellulose derivatives. The polymer B may comprise between 1 mol and 60 mol of hydroxyl groups, in particular between 10 mol and 60 mol of hydroxyl groups, more particularly between 30 mol and 60 mol of hydroxyl groups. According to one embodiment, the polymer B is chosen from a polysaccharide of natural origin bearing vicinal diol groups, such as guar gum or xanthan gum.
Selon un mode de réalisation particulier, le polymère B est choisi parmi un polysaccharide d'origine naturelle portant des groupes diol vicinaux, tel que la gomme de guar ou gomme xanthane, et le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide portant des groupes acide phényl boronique, en particulier ceux comprenant : According to one particular embodiment, the polymer B is chosen from a polysaccharide of natural origin bearing vicinal diol groups, such as guar gum or xanthan gum, and the polymer A is chosen from acrylic acid and dicarboxylic acid copolymers. acrylamide bearing phenyl boronic acid groups, in particular those comprising:
entre 5 mol et 50 mol d'acide acrylique, particulièrement entre 5 mol et 30 mol de d'acide acrylique,  between 5 mol and 50 mol of acrylic acid, particularly between 5 mol and 30 mol of acrylic acid,
entre 50 mol et 95 mol d'acrylamide, particulièrement entre 70 mol et 95 mol d' acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
Les exemples suivants illustrent l'invention sans la limiter. The following examples illustrate the invention without limiting it.
Exemple 1 : Composition aqueuse selon l'invention (concentration en polymère A : 300 ppm ; concentration en polymère B : 300 ppm). Example 1: Aqueous Composition According to the Invention (Polymer A Concentration: 300 ppm, Polymer B Concentration: 300 ppm)
On mélange de la poudre sèche de gomme de guar (polymère B) dans de l'eau ultrapure (filtration 0,22 micron et passage à travers différentes résines pour obtenir une eau déionisée de résistivité inférieure à 18,2 ΜΩ-cm à 25 °C) qu'on laisse sous agitation toute une nuit pour obtenir une solution à 1 % en poids de guar. On solubilise du polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) dans de l'eau Ultrapure pour obtenir une solution à 1 % en poids. 0,24 g de la composition à 1 % en poids de guar est ajouté à 6ml d'eau distillée sous agitation. Puis on ajoute 0,24 g de la composition à 1 % en poids de polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique sous agitation. La composition résultante présente une viscosité modérée. Le pH de la composition est ensuite ajusté à pH = 9 à l'aide d'une petite quantité de soude à 1M (< 100 μΐ) et de l'eau est ajoutée pour obtenir un poids total de 8 g (composition 1). La composition 1 à pH = 9 présente un fort comportement élastique (module élastique G' élevé par rapport au module visqueux G"). Guar gum dry powder (Polymer B) was mixed in ultrapure water (0.22 micron filtration and passed through different resins to obtain a deionized water with a resistivity of less than 18.2 Ω-cm at 25 ° C). C) which is left stirring overnight to obtain a 1% by weight solution of guar. Lyophilized polyacrylamide-co-polyacrylic acid is solubilized comprising 2 mol% phenyl boronic acid groups (polymer A) in ultrapure water to obtain a 1% by weight solution. 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring. Then 0.24 g of the 1% by weight lyophilized polyacrylamide-co-polyacrylic composition comprising 2% by mole of phenyl boronic acid groups with stirring is added. The resulting composition has a moderate viscosity. The pH of the composition is then adjusted to pH = 9 using a small amount of 1M sodium hydroxide (<100 μl) and water is added to obtain a total weight of 8 g (composition 1). Composition 1 at pH = 9 has a strong elastic behavior (elastic modulus G 'high compared to the viscous modulus G ").
Exemple 2 : Composition comparative comprenant 600 ppm de polymère A On solubilise le polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) dans de l'eau ultrapure pour obtenir une solution à 1 % en poids. 0,48 g de la composition à 1 % en poids de polyacrylamide-co-polyacrylique comprenant 2 % en mole de groupes acide phényl boronique (polymère A) est ajouté à 7.52g d'eau distillée sous agitation pour obtenir une composition de 600 ppm. Example 2: Comparative Composition Comprising 600 ppm Polymer A The lyophilized polyacrylamide-co-polyacrylic acid was solubilized comprising 2 mol% phenyl boronic acid groups (Polymer A) in ultrapure water to obtain a 1% by weight solution. 0.48 g of the composition containing 1% by weight of polyacrylamide-co-polyacrylic acid comprising 2% by mole of phenyl boronic acid groups (polymer A) is added to 7.52 g of distilled water while stirring to obtain a composition of 600 ppm .
Exemple 3 : Composition comparative comprenant 600 ppm de polymère B Example 3 Comparative Composition Comprising 600 ppm of Polymer B
On mélange de la poudre sèche de gomme de guar (polymère B) dans de l'eau ultrapure qu'on laisse sous agitation toute une nuit pour obtenir une solution à 1 % en poids de guar. 0,48 g de la composition à 1 % en poids de guar est ajouté à 7.52g d'eau distillée sous agitation pour obtenir une composition de 600 ppm. Guar gum dry powder (Polymer B) is mixed in ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar. 0.48 g of the composition containing 1% by weight of guar is added to 7.52 g of distilled water while stirring to obtain a composition of 600 ppm.
Le tableau 2 indique les concentrations en polymère A et/ou B dans les compositions 1, 2 et 3. Table 2 shows the polymer A and / or B concentrations in compositions 1, 2 and 3.
Tableau 2 Table 2
Composition Concentration Concentration Concentration Composition Concentration Concentration Concentration
en polymère en polymère totale en  in polymer to total polymer in
A B polymère  A B polymer
(ppm) (ppm) (ppm)  (ppm) (ppm) (ppm)
1 (selon 300 300 600  1 (according to 300 300 600
l'invention)  the invention)
2 600 0 600  2,600,000
3 0 600 600 On laisse la composition 1 à pH = 9 sous agitation modérée pendant 18 heures puis on procède à une analyse rhéologique de celle-ci. 3 600 600 Composition 1 is left at pH = 9 with gentle stirring for 18 hours and then rheological analysis thereof.
La composition 1 présente un fort comportement viscoélastique : sous cisaillement oscillatoire (amplitude 1 %) et dans la gamme de fréquence étudiée (0,01 rad/s à 10 rad/s), son module élastique est supérieur à son module de perte. Le module de plateau mesuré est de 2 Pa à lrad/s. Ceci est l'indication qu'un réseau de chaînes polymères à comportement majoritairement élastique s'est formé dans l'échantillon. Composition 1 exhibits a strong viscoelastic behavior: under oscillatory shear (amplitude 1%) and in the studied frequency range (0.01 rad / s to 10 rad / s), its elastic modulus is greater than its loss modulus. The measured plateau module is 2 Pa at lrad / s. This is an indication that a network of polymer chains with predominantly elastic behavior has formed in the sample.
On mesure la viscosité des compositions 1, 2 et 3 à pH = 9 à différents taux de cisaillements (entre 1/s et 1000/s). The viscosity of compositions 1, 2 and 3 is measured at pH = 9 at different shear rates (between 1 / sec and 1000 / sec).
La figure 1 représente la courbe d'écoulement (Viscosité (Pa.s) en fonction du taux de cisaillement (1/s)) des compositions 1, 2 et 3 à pH = 9. Figure 1 shows the flow curve (Viscosity (Pa.s) versus shear rate (1 / s)) of compositions 1, 2 and 3 at pH = 9.
Losanges : composition 1  Diamonds: composition 1
Ronds : composition 2  Rounds: Composition 2
Triangles : composition 3  Triangles: composition 3
Sur la figure 1, on observe que la viscosité apparente de la composition 1 augmente à mesure que le taux de cisaillement diminue (0,015 Pa.s à 100/s, 0,09 Pa.s à 10/s, 0,5 Pa.s à 1/s) et ce beaucoup plus fortement que les compositions 2 et 3, ce qui témoigne d'une forte rhéofluidification de la solution et d'un pouvoir viscosifiant élevé à bas cisaillement. In FIG. 1, it is observed that the apparent viscosity of composition 1 increases as the shear rate decreases (0.015 Pa.s at 100 / s, 0.09 Pa.s at 10 / s, 0.5 Pa. s to 1 / s) and much more strongly than the compositions 2 and 3, which indicates a strong rheofluidification of the solution and a high viscosity viscosity at low shear.
Exemple 2 : Compositions aqueuses selon l'invention (mélanges équimassiques contenant des quantités égales en poids de polymère A et de polymère B). EXAMPLE 2 Aqueous Compositions According to the Invention (Equimassic Mixtures Containing Equal Quantities by Weight of Polymer A and Polymer B)
On mélange de la poudre sèche de gomme de guar (polymère B) dans de l'eau Ultrapure qu'on laisse sous agitation toute une nuit pour obtenir une solution à 1 % en poids de guar. On solubilise le polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) dans de l'eau Ultrapure pour obtenir une solution à 1 % en poids. 0,24 g de la composition à 1 % en poids de guar est ajouté à 6ml d'eau distillée sous agitation. Puis on ajoute 0,24 g de la composition à 1 % en poids de polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique sous agitation. La composition résultante présente une viscosité modérée. Le pH de la composition est ensuite ajusté à pH = 9 à l'aide d'une petite quantité de soude à 1M (< 100 μΐ) et de l'eau est ajoutée pour obtenir un poids total de 8 g (composition 4). La composition 4 à pH = 9 présente un comportement élastique. Guar gum dry powder (Polymer B) is mixed in Ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar. The freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution. 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring. Then we add 0.24 g of the 1% by weight lyophilized polyacrylamide-co-polyacrylic composition comprising 2% by mole of phenyl boronic acid groups with stirring. The resulting composition has a moderate viscosity. The pH of the composition is then adjusted to pH = 9 using a small amount of 1M sodium hydroxide (<100 μl) and water is added to obtain a total weight of 8 g (composition 4). Composition 4 at pH = 9 exhibits an elastic behavior.
On prépare d'autres compositions de manière identique mais avec différentes concentrations totales en polymère (compositions 4, 5, 6 et 7). Le tableau 3 indique les concentrations en polymère A et B dans les compositions 4 à 7. Other compositions are prepared identically but with different total polymer concentrations (compositions 4, 5, 6 and 7). Table 3 shows the polymer A and B concentrations in compositions 4-7.
Tableau 3 Table 3
Figure imgf000023_0001
Figure imgf000023_0001
On laisse la composition 4 à pH = 9 sous agitation modérée pendant 18 heures puis on procède à une analyse rhéologique de celle-ci.  The composition 4 is left at pH = 9 with gentle stirring for 18 hours and then a rheological analysis thereof is carried out.
La composition 4 présente un comportement viscoélastique : sous cisaillement oscillatoire (amplitude 1 %) et dans la gamme de fréquence étudiée (0,02 rad/s à 10 rad/s), son module élastique est supérieur à son module de perte. Le module de plateau mesuré est de 0,6 Pa à lrad/s. Ceci est l'indication qu'un réseau de chaînes polymères à comportement majoritairement élastique s'est formé dans l'échantillon. The composition 4 exhibits a viscoelastic behavior: under oscillatory shear (amplitude 1%) and in the studied frequency range (0.02 rad / s to 10 rad / s), its elastic modulus is greater than its loss modulus. The measured plateau module is 0.6 Pa at lrad / s. This is an indication that a network of polymer chains with predominantly elastic behavior has formed in the sample.
On mesure la viscosité des compositions 4, 5, 6 et 7 à pH = 9 à différents taux de cisaillements (entre 1/s et 1000/s). La figure 2 représente la courbe d'écoulement (Viscosité (Pa.s) en fonction du taux de cisaillement (1/s)) des compositions 4, 5, 6 et 7 à pH = 9. The viscosity of the compositions 4, 5, 6 and 7 is measured at pH = 9 at different shear rates (between 1 / s and 1000 / s). Figure 2 shows the flow curve (Viscosity (Pa.s) versus shear rate (1 / s)) of compositions 4, 5, 6 and 7 at pH = 9.
Triangles : composition 4  Triangles: composition 4
Ronds : composition 5  Rounds: Composition 5
Carrés : composition 6  Squares: composition 6
Losanges : composition 7  Rhombuses: composition 7
Sur la figure 2, on observe une faible augmentation de viscosité et pas de caractère fortement rhéofluidifiant pour la composition 7. Pour des concentrations supérieures (Composition 4, 5 et 6), l'on observe une forte augmentation de la viscosité et un caractère rhéofluidifiant marqué. Plus la concentration totale en polymère est élevée, plus les viscosités atteintes sont élevées. In FIG. 2, there is a slight increase in viscosity and no strongly rheofluidifying character for composition 7. For higher concentrations (Composition 4, 5 and 6), there is a sharp increase in viscosity and a rheofluidifying character. Mark. The higher the total polymer concentration, the higher the viscosities achieved.
Exemple 3 : Influence du pH sur la composition selon l'invention. Example 3 Influence of the pH on the composition according to the invention.
On mélange de la poudre sèche de gomme de guar (polymère B) dans de l'eau Ultrapure qu'on laisse sous agitation toute une nuit pour obtenir une solution à 1 % en poids de guar. On solubilise le polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) dans de l'eau Ultrapure pour obtenir une solution à 1 % en poids. 0,4 g de la composition à 1 % en poids de guar est ajouté à 6ml d'eau distillée sous agitation. Puis on ajoute 0,4 g de la composition à 1 % en poids de polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique sous agitation. On procède de façon identique sept fois pour obtenir 7 compositions. Le pH des compositions est ensuite ajusté à pH = 8, 6, 5, 7, 7,6, 8, 2, 9,5 et 10 à l'aide de différentes quantités de soude à 1M. Puis, de l'eau est ajoutée pour obtenir un poids total de 8 g. Les solutions ont donc une concentration totale en polymère de 1000 ppm, 500 ppm de polymère A et 500 ppm de polymère B. Guar gum dry powder (Polymer B) is mixed in Ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar. The freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution. 0.4 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water while stirring. Then 0.4 g of the composition is added to 1% by weight of lyophilized polyacrylamide-co-polyacrylic comprising 2 mol% of phenyl boronic acid groups with stirring. The procedure is identical seven times to obtain 7 compositions. The pH of the compositions is then adjusted to pH = 8, 6, 5, 7, 7.6, 8, 2, 9.5 and 10 using different amounts of 1M sodium hydroxide. Then, water is added to obtain a total weight of 8 g. The solutions therefore have a total polymer concentration of 1000 ppm, 500 ppm of polymer A and 500 ppm of polymer B.
Les compositions avec un pH > 6 présentent un comportement élastique. The compositions with a pH> 6 exhibit an elastic behavior.
On laisse les compositions sous agitation modérée pendant 18 heures puis on procède à une analyse rhéologique de celles-ci. Les propriétés viscoélastiques sont mesurées sous cisaillement oscillatoire avec une amplitude de déformation de 1 %. The compositions are allowed to stir gently for 18 hours and then rheological analysis thereof. The viscoelastic properties are measured under oscillatory shear with a strain amplitude of 1%.
Le tableau 4 suivant indique le module élastique G' à 1 rad/s pour les sept compositions. Table 4 below indicates the elastic modulus G 'at 1 rad / s for the seven compositions.
Tableau 4 Table 4
Figure imgf000025_0001
Figure imgf000025_0001
La figure 3 représente le module élastique G' à 1 rad/s en fonction du pH.  FIG. 3 represents the elastic modulus G 'at 1 rad / s as a function of the pH.
On peut observer que le module élastique à 1 rad/s augmente à mesure que le pH augmente. It can be observed that the elastic modulus at 1 rad / s increases as the pH increases.
Le module de perte de la composition à pH = 5 est supérieur à son module élastique dans la gamme de fréquence étudiée (0,1 rad/s à 1 rad/s). The composition loss module at pH = 5 is greater than its elastic modulus in the studied frequency range (0.1 rad / s at 1 rad / s).
Le module élastique de la composition à pH = 6,5 est supérieur à son module de perte pour des fréquences allant de 0,4 rad/s à 10 rad/s. A des fréquences allant de 0,01 rad/s à 0,4 rad/s, le module de perte est supérieur au module élastique. The elastic modulus of the composition at pH = 6.5 is greater than its loss modulus for frequencies ranging from 0.4 rad / s to 10 rad / s. At frequencies ranging from 0.01 rad / s to 0.4 rad / s, the loss modulus is greater than the elastic modulus.
Pour les compositions dont le pH est supérieur ou égal à 6, 5, le module élastique est supérieur au module de perte dans la gamme des fréquences étudiées (0,01 rad/s à 10 rad/s). L'apparition d'un caractère majoritairement élastique (module élastique supérieur au module visqueux) traduit la formation d'un réseau de chaînes polymères dans l'échantillon, lui conférant des propriétés viscoélastiques, dont sa forte viscosité à bas cisaillement et son caractère fortement rhéofluidifiant. En dessous de ce pH, le mélange de polymères A et B se comporte comme un liquide peu visqueux et peu rhéofluidifiant. For compositions whose pH is greater than or equal to 6.5, the elastic modulus is greater than the loss modulus in the studied frequency range (0.01 rad / s to 10 rad / s). The appearance of a predominantly elastic character (elastic modulus higher than the viscous modulus) reflects the formation of a network of polymer chains in the sample, conferring on it viscoelastic properties, including its high low-shear viscosity and its strongly rheofluidifying character. . Below this pH, the mixture of polymers A and B behaves as a low-viscosity liquid and low rheofluidifier.
Exemple 4 : Influence de la concentration en polymère sur la viscosité pour les polymères A purs, B purs et le mélange équimassique des polymères A et B. On mélange de la poudre sèche de gomme de guar (polymère B) dans de l'eau Ultrapure qu'on laisse sous agitation toute une nuit pour obtenir une solution à 1 % en poids de guar. Cette solution est diluée avec de l'eau afin d'obtenir des solutions à 0,01 , 0,02 , 0,03 , 0,05 , 0,1 , 0,2 % et 0,3 % (compositions 1 à 7). EXAMPLE 4 Influence of the Polymer Concentration on the Viscosity for Pure, Pure B Polymers and the Equimassic Blend of Polymers A and B. Guar gum dry powder (Polymer B) is mixed in Ultrapure water which is left stirring overnight to obtain a 1% by weight solution of guar. This solution is diluted with water to obtain 0.01, 0.02, 0.03, 0.05, 0.1, 0.2% and 0.3% solutions (compositions 1 to 7). ).
On solubilise le polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) dans de l'eau Ultrapure pour obtenir une solution à 1 % en poids. Cette solution est diluée avec de l'eau afin d'obtenir des solutions à 0,01 , 0,02 , 0,03 , 0,05 , 0,1 , 0,2 % et 0,4 % (compositions 8 à 14). The freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% phenyl boronic acid groups (Polymer A) is solubilized in ultrapure water to provide a 1% by weight solution. This solution is diluted with water to obtain 0.01, 0.02, 0.03, 0.05, 0.1, 0.2% and 0.4% solutions (compositions 8 to 14). ).
0,24 g de la composition à 1 % en poids de guar est ajouté à 6ml d'eau distillée sous agitation. Puis on ajoute 0,24 g de la composition à 1 % en poids de polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique sous agitation. On dilue cette solution de manière à obtenir des compositions avec différentes concentrations totales en polymère, 0,02 , 0,04 , 0,06 , 0,08 , 0,1 , 0,2 % et 0,4 % (compositions 15 à 21). 0.24 g of the composition containing 1% by weight of guar is added to 6 ml of distilled water with stirring. Then 0.24 g of the 1% by weight lyophilized polyacrylamide-co-polyacrylic composition comprising 2% by mole of phenyl boronic acid groups with stirring is added. This solution is diluted so as to obtain compositions with different total polymer concentrations, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2% and 0.4%. 21).
Le pH de chaque composition est ensuite ajusté à pH = 9 à l'aide d'une petite quantité de soude à 1M (< 100 μΐ). Le tableau 5 indique les concentrations en polymère A et/ou B dans les compositions 1 à 21. The pH of each composition is then adjusted to pH = 9 using a small amount of 1M sodium hydroxide (<100 μl). Table 5 shows the concentrations of polymer A and / or B in compositions 1 to 21.
Tableau 5 Table 5
Composition Concentration en Concentration en Concentration  Composition Concentration Concentration Concentration
polymère A polymère B totale en polymère polymer A polymer B total polymer
(%) (%) (%) % (%) (%)
1 0,01 0 0,01  1 0.01 0 0.01
2 0,02 0 0,02  2 0.02 0 0.02
3 0,03 0 0,03  3 0.03 0 0.03
4 0,05 0 0,05  4 0.05 0 0.05
5 0,1 0 0,1  0.1 0 0.1
6 0,2 0 0,2  6 0.2 0 0.2
7 0,4 0 0,4 Composition Concentration en Concentration en Concentration polymère A polymère B totale en polymère7 0.4 0 0.4 Composition Concentration Concentration in Polymer Concentration A Polymer B Total Polymer
(%) (%) (%) % (%) (%)
8 0 0,01 0,01  8 0.01 0.01
9 0 0,02 0,02  0.02 0.02 0.02
10 0 0,03 0,03  0.03 0.03
11 0 0,05 0,05  11 0.05 0.05
12 0 0,1 0,1  12 0 0.1 0.1
13 0 0,2 0,2  13 0 0.2 0.2
14 0 0,3 0,3  14 0 0.3 0.3
15 0,01 0,01 0,02  0.01 0.01 0.02
16 0,02 0,02 0,04  16 0.02 0.02 0.04
17 0,03 0,03 0,06  17 0.03 0.03 0.06
18 0,04 0,04 0,08  18 0.04 0.04 0.08
19 0,05 0,05 0,1  0.05 0.05 0.1
20 0,1 0,1 0,2  0.1 0.1 0.2
21 0,2 0,2 0,4  0.2 0.2 0.4
On mesure la viscosité de chaque composition à différents taux de cisaillements (entre 1/s et 1000/s). The viscosity of each composition is measured at different shear rates (between 1 / sec and 1000 / sec).
La figure 4 représente la Viscosité (en Pa.s) mesurée à ls" en fonction de la concentration en polymère (en % massique) des compositions 1 à 21 à pH = 9. FIG. 4 represents the viscosity (in Pa.s) measured at ls " as a function of the polymer concentration (in mass%) of the compositions 1 to 21 at pH = 9.
Triangles : solution de gomme de guar (polymère B), compositions 1 àTriangles: solution of guar gum (polymer B), compositions 1 to
7. 7.
Ronds : solution de polyacrylamide-co-polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boro nique (polymère A), compositions 8 à 14.  Rounds: freeze-dried polyacrylamide-co-polyacrylic solution comprising 2 mol% of phenylboronic acid groups (polymer A), compositions 8 to 14.
Losanges : mélange des solutions de polymère A et B, compositions 15 à 21.  Diamonds: mixture of polymer solutions A and B, compositions 15 to 21.
Sur la gamme de concentration 0,01 à 0,2%, le polyacrylamide-co- polyacrylique lyophilisé comprenant 2 % en mole de groupes acide phényl boronique (polymère A) est plus visqueux que la gomme de guar en solution (polymère B). Le mélange des deux solutions (polymère A et polymère B) est moins visqueux que le polymère A à 0,02% mais plus visqueux à 0,04%. Au-delà de 0,04%, le mélange des solutions de polymères A et B (rapport 1/1) est beaucoup plus visqueux (facteur 10 environ) que chacune des solutions de polymère A ou B purs. Au-delà du seuil de gélification se situant entre 0,02 et 0,04%, le mélange de deux solutions visqueuses donne un mélange beaucoup plus visqueux. Over the concentration range 0.01 to 0.2%, the freeze-dried polyacrylamide-co-polyacrylic acid comprising 2 mol% of phenyl boronic acid groups (polymer A) is more viscous than guar gum in solution (polymer B). The mixture of the two solutions (polymer A and polymer B) is less viscous than polymer A at 0.02% but more viscous at 0.04%. Above 0.04%, the mixture of polymer solutions A and B (ratio 1/1) is much more viscous (about 10 factor) than each of the pure polymer solutions A or B. Beyond the gelling threshold being between 0.02 and 0.04%, the mixture of two viscous solutions gives a much more viscous mixture.

Claims

REVENDICATIONS
1. Un procédé pour récupérer une huile pétrolière dans un réservoir dans lequel une eau a été injectée pour pousser l'huile pétrolière vers un puits producteur, caractérisé en ce qu'il comprend : A process for recovering a petroleum oil from a reservoir into which water has been injected to drive the petroleum oil to a producing well, characterized in that it comprises:
(A) l'injection dans ledit réservoir d'une solution aqueuse de polymère A portant des groupes boroniques et d'une solution aqueuse de polymère B portant des groupes diol, les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire ainsi à l'augmentation de la viscosité de ladite eau dans le réservoir ;  (A) injecting into said reservoir an aqueous solution of polymer A carrying boronic groups and an aqueous solution of polymer B carrying diol groups, the boronic groups of polymer A and the diol groups of polymer B being capable of forming boronic ester bonds to thereby increase the viscosity of said water in the reservoir;
(B) la récupération de l'huile pétrolière dans le puits producteur.  (B) the recovery of the oil oil in the producing well.
2. Procédé selon la revendication 1, caractérisé en ce que la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange. 2. Method according to claim 1, characterized in that the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the tank as a mixture.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange dont la viscosité est comprise entre 0,001 Pa.s et 0,05 Pa.s à un cisaillement de 1 s"1, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s, et l'on injecte en outre de manière séparée un agent alcalin pour conduire à l'augmentation de la viscosité de l'eau dans le réservoir. 3. Method according to claim 1 or 2, characterized in that the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture whose viscosity is between 0.001 Pa.s and 0.05 Pa.s at a shear of 1 s -1 , in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s, and further injections of separating an alkaline agent to increase the viscosity of the water in the tank.
4. Procédé selon la revendication 1, caractérisé en ce que la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, de façon simultanée ou alternée. 4. Method according to claim 1, characterized in that the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, simultaneously or alternately.
5. Procédé selon la revendication 4, caractérisé en ce que la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir de manière séparée, les deux solutions aqueuses ou l'une seulement comprenant en outre un agent alcalin. 5. Method according to claim 4, characterized in that the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir separately, the two aqueous solutions or only one further comprising an alkaline agent.
6. Procédé selon la revendication 1 ou 2, caractérisé en ce que la solution aqueuse de polymère A et la solution aqueuse de polymère B sont injectées dans le réservoir sous forme de mélange comprenant en outre un agent alcalin et dont la viscosité est comprise entre 0,002 Pa.s et 1 Pa.s à un cisaillement de ls"1, en particulier comprise entre 0,002 Pa.s et 0,2 Pa.s, plus particulièrement comprise entre 0,002 Pa.s et 0,05 Pa.s. 6. Process according to claim 1 or 2, characterized in that the aqueous solution of polymer A and the aqueous solution of polymer B are injected into the reservoir in the form of a mixture further comprising an alkaline agent and whose viscosity is between 0.002 Pa.s and 1 Pa.s at a shear of 1s -1 , in particular between 0.002 Pa.s and 0.2 Pa.s more particularly between 0.002 Pa.s and 0.05 Pa.s.
7. Une composition polymérique aqueuse pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 3 et 6, comprenant : 7. An aqueous polymeric composition for carrying out the process according to any one of claims 1 to 3 and 6, comprising:
- un polymère A hydrosoluble portant des groupes boroniques,  a water-soluble polymer A carrying boronic groups,
- un polymère B hydrosoluble portant des groupes diol,  a water-soluble polymer B carrying diol groups,
les groupes boroniques du polymère A et les groupes diols du polymère B étant capables de former des liaisons ester boronique pour conduire à l'augmentation de la viscosité de ladite composition, caractérisée en ce que le polymère A comprend entre 0,01 mol et 50 mol de groupes boroniques, en particulier entre 0,1 mol et 20 mol de groupes boroniques, plus particulièrement entre 0,2 mol et 10 mol de groupes boroniques, encore plus particulièrement entre 0,5 mol et 5 mol de groupes boroniques.  the boronic groups of polymer A and the diol groups of polymer B being capable of forming boronic ester bonds in order to increase the viscosity of said composition, characterized in that polymer A comprises between 0.01 mol and 50 mol boronic groups, in particular between 0.1 mol and 20 mol of boronic groups, more particularly between 0.2 mol and 10 mol of boronic groups, still more particularly between 0.5 mol and 5 mol of boronic groups.
8. Composition polymérique aqueuse selon la revendication 7, caractérisée en ce que la concentration en polymère A dans ladite composition est comprise entre 0,015 % en poids et 0,5 % en poids, en particulier entre 0,015 % en poids et 0,1 % en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. 8. The aqueous polymeric composition according to claim 7, characterized in that the concentration of polymer A in said composition is between 0.015% by weight and 0.5% by weight, in particular between 0.015% by weight and 0.1% by weight. weight, more particularly between 0.015% by weight and 0.05% by weight.
9. Composition polymérique aqueuse selon la revendication 7 ou 8, caractérisée en ce que la concentration en polymère B dans ladite composition est comprise entre 0,015 % en poids et 0,7 % en poids, en particulier entre 0,015 % en poids et 0,3 % en poids, plus particulièrement entre 0,015 % en poids et 0,05 % en poids. 9. The aqueous polymeric composition according to claim 7 or 8, characterized in that the concentration of polymer B in said composition is between 0.015% by weight and 0.7% by weight, in particular between 0.015% by weight and 0.3% by weight. % by weight, more particularly between 0.015% by weight and 0.05% by weight.
10. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 9, caractérisée en ce que la concentration totale du polymère A et du polymère B dans ladite composition est comprise entre 0,03 % en poids et 1,2 % en poids, en particulier entre 0,03 % en poids et 0,4 % en poids, plus particulièrement entre 0,05 % en poids et 0,1 % en poids. 10. aqueous polymer composition according to any one of claims 7 to 9, characterized in that the total concentration of polymer A and polymer B in said composition is between 0.03% by weight and 1.2% by weight, in particular between 0.03% by weight and 0.4% by weight, more particularly between 0.05% by weight and 0.1% by weight.
11. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 10, caractérisée en ce que le ratio massique du polymère A sur le polymère B dans ladite composition est compris entre 0,1 et 10, en particulier entre 0,2 et 5, plus particulièrement entre 0,5 et 2. 11. The aqueous polymeric composition as claimed in any one of claims 7 to 10, characterized in that the weight ratio of polymer A to polymer B in said composition is between 0.1 and 10, in particular between 0.2 and 5. more particularly between 0.5 and 2.
12. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 11, caractérisée en ce que la masse moléculaire du polymère A est d'au moins 100 000 g/mol, en particulier comprise entre 100 000 g/mol et 30 000 000 g/mol, plus particulièrement comprise entre 1 000 000 et 8 000 000 g/mol. 12. The aqueous polymeric composition as claimed in claim 7, wherein the molecular weight of the polymer A is at least 100,000 g / mol, in particular between 100,000 g / mol and 30,000,000. g / mol, more particularly between 1 000 000 and 8 000 000 g / mol.
13. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 12, caractérisée en ce que le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide, ou d'acide acrylique, ou d'acrylamide et d'acrylamido-methyl-propane sulfonate, ou d'acide acrylique, d'acrylamide, d'acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone ou d'acrylamide, d'acrylamido-methyl-propane sulfonate et de N-vinylpyrrolidone. 13. An aqueous polymeric composition according to any one of claims 7 to 12, characterized in that the polymer A is selected from copolymers of acrylic acid and acrylamide, or acrylic acid, or acrylamide and acrylamido-methyl-propane sulfonate, or acrylic acid, acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolidone or acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolidone.
14. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 13, caractérisée en ce que le polymère A est choisi parmi les copolymères d'acide acrylique et d'acrylamide portant des groupes acide phényl boronique, en particulier ceux comprenant : 14. The aqueous polymeric composition according to any one of claims 7 to 13, characterized in that the polymer A is chosen from copolymers of acrylic acid and acrylamide bearing phenyl boronic acid groups, in particular those comprising:
entre 5 mol et 50 mol d'acide acrylique, particulièrement entre 5 mol et 30 mol de d'acide acrylique,  between 5 mol and 50 mol of acrylic acid, particularly between 5 mol and 30 mol of acrylic acid,
entre 50 mol et 95 mol d'acrylamide, particulièrement entre 70 mol et 95 mol d'acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
15. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 13, caractérisée en ce que le polymère A est choisi parmi les copolymères d'acrylamide et d'acrylamido-methyl-propane sulfonate portant des groupes acide phényl boronique, en particulier ceux comprenant : 15. The aqueous polymer composition as claimed in claim 7, wherein the polymer A is chosen from acrylamide and acrylamido-methyl-propane sulfonate copolymers bearing phenyl boronic acid groups, in particular those comprising:
- entre 50 mol et 95 mol d'acrylamide, particulièrement entre 70 mol et 95 mol de d'acrylamide, entre 5 mol et 50 mol de groupes acrylamido-methyl-propane sulfonate, between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide, between 5 mol and 50 mol of acrylamido-methyl-propane sulfonate groups,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
16. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 13, caractérisée en ce que le polymère A est choisi parmi les copolymères d'acrylamide, d' acrylamido-methyl-propane sulfonate et de N- vinylpyrrolydone portant des groupes acide phényl boronique, en particulier ceux comprenant : 16. The aqueous polymeric composition as claimed in claim 7, wherein the polymer A is chosen from acrylamide, acrylamido-methyl-propane sulfonate and N-vinylpyrrolydone copolymers bearing phenyl acid groups. boronic compounds, in particular those comprising:
entre 50 mol et 95 mol d'acrylamide, particulièrement entre 70 mol et 95 mol de d'acrylamide,  between 50 mol and 95 mol of acrylamide, particularly between 70 mol and 95 mol of acrylamide,
entre 5 mol et 50 mol de groupes acrylamido-methyl-propane sulfonate,  between 5 mol and 50 mol of acrylamido-methyl-propane sulfonate groups,
- entre 5 mol et 50 mol de groupes N-vinylpyrrolidone,  between 5 mol and 50 mol of N-vinylpyrrolidone groups,
entre 0,2 mol et 10 mol de groupes acide phényl boronique, particulièrement entre 0,5 mol et 5 mol de groupes acide phényl boronique.  between 0.2 mol and 10 mol of phenyl boronic acid groups, particularly between 0.5 mol and 5 mol of phenyl boronic acid groups.
17. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 16, caractérisée en ce que la masse moléculaire du polymère B est d'au moins 100 000 g/mol, en particulier compris entre 100 000 g/mol et 10 000 000 g/mol, plus particulièrement compris entre 500 000 et 8 000 000 g/mol. 17. Aqueous polymer composition according to any one of claims 7 to 16, characterized in that the molecular weight of the polymer B is at least 100,000 g / mol, in particular between 100,000 g / mol and 10,000,000. g / mol, more particularly between 500 000 and 8 000 000 g / mol.
18. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 17, caractérisée en ce que le polymère B est choisi parmi les polyols, en particulier les polysaccharides, notamment les polysaccharides d'origine naturelle, tels que la gomme de guar ou la gomme xanthane, le scléroglucane ou le schizophyllane ainsi que leurs dérivés, ou bien les polyols synthétiques linéaires tels que l'alcool polyvinylique, ou les dérivés de la cellulose. 18. The aqueous polymeric composition as claimed in claim 7, wherein the polymer B is chosen from polyols, in particular polysaccharides, in particular polysaccharides of natural origin, such as guar gum or xanthan gum, scleroglucan or schizophyllane and derivatives thereof, or linear synthetic polyols such as polyvinyl alcohol, or derivatives of cellulose.
19. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 18, caractérisée en ce que le pH à partir duquel la liaison ester boronique se forme est supérieur ou égal 4, en particulier supérieur ou égal à 7, plus particulièrement supérieur ou égal à 9. 19. The aqueous polymeric composition according to any one of claims 7 to 18, characterized in that the pH from which the ester bond boronic is formed is greater than or equal to 4, in particular greater than or equal to 7, more particularly greater than or equal to 9.
20. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 19, caractérisée en ce que sa viscosité à pH inférieur au pH à partir duquel la liaison ester boronique se forme est comprise entre 0,001 Pa.s et 0,05 Pa.s, en particulier comprise entre 0,001 Pa.s et 0,02 Pa.s, plus particulièrement comprise entre 0,001 Pa.s et 0,005 Pa.s. 20. An aqueous polymer composition according to any one of claims 7 to 19, characterized in that its viscosity at pH below the pH at which the boronic ester bond is formed is between 0.001 Pa.s and 0.05 Pa.s. , in particular between 0.001 Pa.s and 0.02 Pa.s, more particularly between 0.001 Pa.s and 0.005 Pa.s.
21. Composition polymérique aqueuse selon l'une quelconque des revendications 7 à 19, caractérisée en ce que sa viscosité à pH supérieur ou égal au pH à partir duquel la liaison ester boronique se forme est comprise entre 0,002 Pa.s et 1 Pa.s, en particulier comprise entre 0,002 Pa.s et 0,2 Pa.s, plus particulièrement comprise entre 0,002 Pa.s et 0,05 Pa.s. 21. An aqueous polymeric composition according to any one of claims 7 to 19, characterized in that its viscosity at pH greater than or equal to the pH at which the boronic ester bond is formed is between 0.002 Pa.s and 1 Pa. , in particular between 0.002 Pa.s and 0.2 Pa.s, more particularly between 0.002 Pa.s and 0.05 Pa.s.
22. Composition polymérique aqueuse selon la revendication 22, caractérisée en ce qu'elle comprend en outre un agent alcalin. 22. A polymeric aqueous composition according to claim 22, characterized in that it further comprises an alkaline agent.
PCT/FR2014/053555 2013-12-24 2014-12-24 Associative water-soluble polymers and use thereof for improved recovery of hydrocarbons WO2015097420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363529 2013-12-24
FR1363529A FR3015511B1 (en) 2013-12-24 2013-12-24 ASSOCIATIVE WATER-SOLUBLE POLYMERS AND THEIR USE FOR ENHANCED HYDROCARBON RECOVERY

Publications (1)

Publication Number Publication Date
WO2015097420A1 true WO2015097420A1 (en) 2015-07-02

Family

ID=50489276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/053555 WO2015097420A1 (en) 2013-12-24 2014-12-24 Associative water-soluble polymers and use thereof for improved recovery of hydrocarbons

Country Status (3)

Country Link
AR (1) AR099377A1 (en)
FR (1) FR3015511B1 (en)
WO (1) WO2015097420A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599633A1 (en) * 1992-11-25 1994-06-01 Thrombosis Research Institute Boronic ester synthesis
FR2855180A1 (en) 2003-05-23 2004-11-26 Rhodia Chimie Sa Aqueous fluid for oil and gas field applications, e.g. as drilling fluid, contains a polymer with boronate groups, a ligand polymer with groups which react with boronate, and a water-soluble salt
US20130220621A1 (en) * 2008-10-21 2013-08-29 Baker Hughes Incorporated Polyboronic Compounds and Processes of Making and Using the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599633A1 (en) * 1992-11-25 1994-06-01 Thrombosis Research Institute Boronic ester synthesis
FR2855180A1 (en) 2003-05-23 2004-11-26 Rhodia Chimie Sa Aqueous fluid for oil and gas field applications, e.g. as drilling fluid, contains a polymer with boronate groups, a ligand polymer with groups which react with boronate, and a water-soluble salt
US20130220621A1 (en) * 2008-10-21 2013-08-29 Baker Hughes Incorporated Polyboronic Compounds and Processes of Making and Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. LEVY; C. DEJUGNAT; G.B. SUKHORUKOV, ADV. FUNCT. MATER., vol. 18, 2008, pages 1586 - 1594

Also Published As

Publication number Publication date
AR099377A1 (en) 2016-07-20
FR3015511B1 (en) 2017-06-09
FR3015511A1 (en) 2015-06-26

Similar Documents

Publication Publication Date Title
EP2834320B1 (en) New aqueous fracturing fluid composition and fracturing method implementing the fluid
EP2431443B1 (en) Enhanced method for assisted recovery of petroleum using the technique known as ASP
EP2948519B1 (en) Delayed gelling agents
AU2013374213B2 (en) Nanogels for delayed gelation
WO1996021796A1 (en) Method and water-based fluid using hydrophobically modified guars as a filtrate reducer
WO2014167056A1 (en) Fracturing fluids based on associative polymers and on labile surfactants
CA2779341C (en) Injection fluid and assisted petroleum recovery method
CA2968354A1 (en) Delayed gelation of polymers with a polyethylenimine crosslinker
FR2668490A1 (en) GEL SE SCLEROGLUCANE APPLIED TO THE PETROLEUM INDUSTRY.
FR2986797A1 (en) NOVEL CLAY INFLATER AGENT, COMPOSITIONS COMPRISING THE SAME, AND METHODS USING THE SAME.
Li et al. Enhancing oil recovery from high–temperature and high–salinity reservoirs with smart thermoviscosifying polymers: A laboratory study
EP3068843A1 (en) Fluid composition for stimulation in the field of oil or gas production
WO2018031655A1 (en) Stimuli-responsive polymer particles and methods of using thereof
WO2018206881A1 (en) Composition making it possible to delay the formation of gas hydrates
WO2015097420A1 (en) Associative water-soluble polymers and use thereof for improved recovery of hydrocarbons
EP0434544B1 (en) Process and composition for the selective reduction of the water permeability in warm and salt hydrocarbon reservoirs
CA2909128A1 (en) Extraction fluids based on associative polymers and on labile surfactants
AlQuraishi et al. Adsorption of Guar, Xanthan and Xanthan-Guar mixtures on high salinity, high temperature reservoirs
FR2967686A1 (en) Assisted recovery of hydrocarbons in reservoir rock, comprises preparing aqueous solution i.e. polymer and surfactant, determining e.g. nature, inhibiting polymer hydrophobic links in reservoir rock, and increasing viscosity of solution
WO2010007222A1 (en) Method for the assisted recovery of hydrocarbons using associative polymers
FR2917747A1 (en) Optimizing method for filling zones with loss during drilling in limiting the quantities of polymeric products, comprises injecting an aqueous fluid solution comprising water soluble polymer synthesis and crosslinking agent in the zones
WO2021239599A1 (en) Method for enhanced oil recovery in a subterranean carbonate formation
RU2351628C1 (en) Biopolymer drilling agent
FR2680827A1 (en) Use of new compositions based on gels for the reduction of the production of water in oil or gas production wells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831031

Country of ref document: EP

Kind code of ref document: A1