WO2015096663A1 - 一种片上光网络***及一种光功率控制方法 - Google Patents

一种片上光网络***及一种光功率控制方法 Download PDF

Info

Publication number
WO2015096663A1
WO2015096663A1 PCT/CN2014/094325 CN2014094325W WO2015096663A1 WO 2015096663 A1 WO2015096663 A1 WO 2015096663A1 CN 2014094325 W CN2014094325 W CN 2014094325W WO 2015096663 A1 WO2015096663 A1 WO 2015096663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical power
optical
light
modulator
controller
Prior art date
Application number
PCT/CN2014/094325
Other languages
English (en)
French (fr)
Inventor
刘耀达
邓湘元
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14875591.1A priority Critical patent/EP3079280A4/en
Publication of WO2015096663A1 publication Critical patent/WO2015096663A1/zh
Priority to US15/192,419 priority patent/US20160308620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Definitions

  • the present invention relates to the field of on-chip optical network technologies, and in particular, to an on-chip optical network system and an optical power control method.
  • the on-chip optical network system may include the following components: a light source, an optical waveguide, a modulator, and the like.
  • the light source injects the light wave generated by the light source into the optical waveguide, and the optical waveguide is used to transmit the light wave
  • the modulator first obtains a certain proportion (for example, 10%) of the optical power of the optical power from the optical waveguide, and then the modulator modulates the electrical signal to On the obtained light wave, an optical signal loaded with an electrical signal is formed, and the optical signal is subsequently transmitted to other optical network devices.
  • the above-mentioned modulator obtains a ratio of the optical power of the optical wave to a fixed ratio value, which may cause an excessive amount of optical power obtained by the modulator, thereby increasing power consumption.
  • an on-chip optical network system and an optical power control method are provided, which can reduce power consumption caused by excess optical power obtained by a modulator.
  • an on-chip optical network system including a light source, an optical waveguide, a controller, an optical power splitter, and a modulator, wherein light waves emitted by the light source are transmitted to the optical power splitter through the optical waveguide
  • the optical power splitter is configured to obtain a light wave from the optical waveguide and transmit the obtained optical wave to the modulator;
  • the controller is configured to calculate a first optical power, and control the optical power splitter from Obtaining, in the optical waveguide, an optical wave whose optical power is the first optical power, the first optical power being a first optical power loss generated by optical wave transmission between the optical power splitter and the modulator, and the modulation The sum of the optical power required by the device.
  • the controller is specifically configured to send an electrical signal to an electrode of the optical power splitter by using a logic control circuit to control an electrode of the optical power splitter An electric field between the optical power dividers to control the optical power from the optical waveguide to obtain optical waves of the first optical power.
  • the controller is further configured to calculate a second optical power, and control the light source to emit optical power.
  • the light wave of the second optical power, wherein the second optical power is a sum of a second optical power loss generated by optical wave transmission between the light source and the optical power splitter and the first optical power.
  • an optical power control method is provided, the method being applied to an on-chip optical network system, the on-chip optical network system comprising a light source, an optical waveguide, a controller, an optical power splitter, and a modulator, wherein the light source The emitted light wave is transmitted to the optical power splitter through the optical waveguide; the optical power splitter obtains a light wave from the optical waveguide, and transmits the obtained optical wave to the modulator, the optical power control method include:
  • the controller calculates a first optical power, the first optical power being a first optical power loss generated by optical wave transmission between the optical power splitter and the modulator and an optical power required by the modulator with;
  • the controller controls the optical power splitter to obtain light waves of the first optical power from the optical waveguide.
  • the controller by the optical power divider, obtains, from the optical waveguide, a light wave whose optical power is the first optical power, including:
  • the controller sends an electrical signal to an electrode of the optical power splitter through a logic control circuit to control an electric field between electrodes of the optical power splitter to control the optical power splitter to obtain from the optical waveguide
  • the optical power is a light wave of the first optical power.
  • the method further includes:
  • the controller calculates a second optical power, where the second optical power is a sum of a second optical power loss generated by optical wave transmission between the light source and the optical power splitter and the first optical power;
  • the controller controls the light source to emit light waves having an optical power of the second optical power.
  • a controller and an optical power splitter are added in the on-chip optical network system, and the optical power splitter is controlled by the controller to obtain optical waves from the optical waveguide according to the optical power requirement of the modulator, thereby realizing the on-demand of the optical power.
  • Allocation changing the way in which existing light waves are obtained at a fixed optical power ratio.
  • the system realizes the on-demand distribution of optical power, thereby reducing the excess optical power obtained by the modulator and reducing the system power consumption.
  • FIG. 1 is a schematic structural diagram of a chip-on-chip optical network system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another on-chip optical network system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another on-chip optical network system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another optical power control method according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an on-chip optical network system according to an embodiment of the present invention.
  • the on-chip optical network includes a light source 11, an optical waveguide 12, a controller 13, an optical power splitter 14 and a modulator 15, wherein light waves emitted by the light source 11 are transmitted through the optical waveguide 12 to the optical power splitter 14; the optical power splitter 14 It is used to obtain light waves from the optical waveguide 12 and transmit the obtained light waves to the modulator 15.
  • the controller 13 is configured to calculate the first optical power, and control the optical power splitter 14 to obtain optical waves of the first optical power from the optical waveguide 12, the first optical power being the optical power splitter 14 and the modulator 15 The sum of the first optical power loss produced by the inter-mode optical transmission and the optical power required by the modulator 15.
  • the first optical power loss can be set according to an empirical value, or can be obtained by detecting by an instrument for measuring power loss.
  • the optical power required by the modulator 15 can be determined at the beginning of the design and can therefore be solidified into the controller as a logic.
  • the optical power required by the transmitting node in the case of a given transmitting node and receiving node can be calculated at the beginning of the controller chip design; for example, given a two-dimensional mesh
  • the optical power required by the transmitting node can be calculated according to the routing decision for a given transmitting node and a receiving node, wherein the transmitting node can be a modulator.
  • the receiving node is a device that receives the optical signal transmitted by the modulator.
  • the controller 13 calculates the sum of the optical power required by the modulator 15 and the first optical power loss as the first optical power, and uses the first optical power as the optical power splitter 14 The optical power of the light wave obtained from the optical waveguide 12 is required.
  • the controller 13 can further calculate the power distribution ratio of the optical wave that the optical power splitter 14 needs to obtain, and the subsequent optical power splitter 14 obtains the optical power from the optical waveguide 12 according to the power distribution ratio.
  • the power distribution ratio may be a ratio of the first optical power to the total power of the optical waves transmitted to the optical power splitter 14.
  • the total power of the light wave transmitted to the optical power splitter 14 is not the total power of the light wave output by the light source 11. Since the optical waveguide generates a loss of optical power during transmission, the total power of the light wave transmitted to the optical power splitter 14 follows The propagation distance of the light source 11 to the optical power splitter 14 is gradually decreased.
  • the total power of the light waves transmitted to the optical power splitter 14 can be set by empirical values or by an instrument that measures power.
  • the controller 13 After obtaining the first optical power or further obtaining the power distribution ratio, the controller 13 transmits a control signal to the optical power splitter 14 to control the optical power splitter 14 to obtain a light wave whose optical power is the first optical power from the optical waveguide 12.
  • the controller 13 can send an electrical signal to the electrodes of the optical power splitter 14 through the logic control circuit to control the electric field between the electrodes of the optical power splitter 14, thereby changing the material between the electrodes of the optical power splitter 14.
  • the refractive index controls the optical power splitter 14 to obtain light waves of the first optical power from the optical waveguide 12.
  • the control method of the controller 13 can be various, and is not limited to the control of the electrode of the optical power splitter 14 by the above logic control circuit.
  • a controller and an optical power splitter are added in the on-chip optical network system, and the optical power splitter is controlled by the controller to obtain optical waves from the optical waveguide according to the optical power requirement of the modulator, thereby realizing the on-demand of the optical power.
  • Allocation changing the way in which existing light waves are obtained at a fixed optical power ratio.
  • the system realizes the on-demand distribution of optical power, thereby reducing the excess optical power obtained by the modulator and reducing the system power consumption.
  • the on-chip optical network system includes a light source 21, an optical waveguide 22, a controller 23, an optical power splitter 24, and a modulator 25, and the on-chip optical network system and the foregoing implementation
  • the on-chip optical network system is similar in the example, and the difference is that, in this embodiment, the controller 23 is further configured to calculate the second optical power, and control the light source 21 to emit the optical power of the second optical power, wherein the second optical power The sum of the second optical power loss generated by the optical wave transmission between the light source 21 and the optical power splitter 24 and the first optical power.
  • the first optical power is the sum of the first optical power loss produced by the optical wave transmission between the optical power splitter 24 and the modulator 25 and the optical power required by the modulator 25.
  • the controller 23 first obtains the optical power loss generated by the optical wave in the transmission of the optical waveguide 22, which is recorded as the second optical power loss, which can be set according to an empirical value or by an instrument for measuring power. After obtaining the second optical power loss, the controller 23 calculates the sum of the first optical power and the second optical power loss to obtain the second optical power, that is, the total power of the optical wave that the light source needs to emit.
  • the controller 23 can control the optical power of its output by controlling the current of the light source 21 or the like so that the light source 21 emits a light wave whose optical power is the second optical power.
  • the total power outputted by the light source is controlled according to the optical power required by each optical device in the on-chip optical network system, thereby minimizing the optical power of the light wave required to be emitted by the light source, thereby not only reducing the power consumption of the light source, but also Reduces the amount of heat generated by the light source.
  • the on-chip optical network system includes a laser 31 as a light source, an optical waveguide 32 for transmitting optical waves, a controller 33, and optical power splitters 341, 342, 343, modulators. 351, 352, 353, wherein the optical power splitter and the modulator are in one-to-one correspondence.
  • the controller 33 obtains the first optical power loss between the optical power splitter 341 and the modulator 351, between the optical power splitter 342 and the modulator 352, and between the optical power splitter 343 and the modulator 353, respectively.
  • the optical power required by the modulators 351, 352, 353, respectively, is then calculated to obtain the first optical power from the optical waveguide 32, respectively, obtained by the optical power splitters 341, 342, 343, respectively.
  • the controller 33 further obtains a second optical power loss generated by the optical waveguide 32 in the process of transmitting the optical wave from the laser 31 to the optical power splitters 341, 342, 343, and then calculates the second optical power.
  • the rate loss is the sum of the first optical powers required by all of the optical power splitters 341, 342, 343 as the second optical power.
  • the second optical power is the sum of all optical power losses generated by the optical waveguide in transmitting optical waves from the light source to the optical power splitters and the optical power required by all optical power splitters.
  • the controller 33 After the controller 33 obtains the first optical power of each of the optical power splitters 341, 342, 343 and the second optical power that the laser 31 needs to output, the controller 33 respectively pairs the optical power splitters 341, 342 through the logic control circuit.
  • the electrodes of 343 emit electrical signals, respectively controlling the electric fields between the electrodes of the optical power splitters 341, 342, 343 to control the optical power splitters 341, 342, 343 to obtain the respective first required from the optical waveguides 32, respectively. Light power of light power.
  • the controller 33 controls the laser 31 to output a light wave whose optical power is the second optical power by controlling the current of the laser 31 or the like.
  • the on-chip optical network system not only realizes the on-demand distribution of optical power, thereby reducing the excessive optical power obtained by the modulator, reducing the power consumption of the system, and minimizing the light of the light wave required to be emitted by the light source. Power not only reduces the power consumption of the light source, but also reduces the heat generated by the light source.
  • FIG. 4 is a flowchart of an optical power control method according to an embodiment of the present invention.
  • the method is applied to an on-chip optical network system, the on-chip optical network system comprising a light source, an optical waveguide, a controller, an optical power splitter and a modulator, wherein the light wave emitted by the light source is transmitted to the optical power splitter through the optical waveguide; optical power distribution The optical wave is obtained from the optical waveguide, and the obtained optical wave is transmitted to the modulator.
  • the structure of the on-chip optical network system is similar to that of the foregoing embodiment, and details are not described herein again.
  • the optical power control method includes:
  • Step 401 The controller calculates a first optical power, where the first optical power is a sum of a first optical power loss generated by optical wave transmission between the optical power splitter and the modulator and an optical power required by the modulator.
  • the first optical power loss can be set according to an empirical value or can be obtained by means of an instrument for measuring power loss.
  • the optical power required by the modulator can be determined at the beginning of the design, so Can be solidified into the controller as a logic.
  • the optical power required by the transmitting node in the case of a given transmitting node and receiving node can be calculated at the beginning of the controller chip design; for example, given a two-dimensional mesh
  • the optical power required by the transmitting node can be calculated according to the routing decision for a given transmitting node and a receiving node, wherein the transmitting node can be a modulator.
  • the receiving node is a device that receives the optical signal transmitted by the modulator.
  • the controller After obtaining the first optical power loss, calculates a sum of the optical power required by the modulator and the first optical power loss as the first optical power, and uses the first optical power as the optical power splitter to obtain the optical power.
  • the optical power of the light wave obtained in the waveguide After obtaining the first optical power loss, calculates a sum of the optical power required by the modulator and the first optical power loss as the first optical power, and uses the first optical power as the optical power splitter to obtain the optical power.
  • the optical power of the light wave obtained in the waveguide After obtaining the first optical power loss, calculates a sum of the optical power required by the modulator and the first optical power loss as the first optical power, and uses the first optical power as the optical power splitter to obtain the optical power.
  • the optical power of the light wave obtained in the waveguide After obtaining the first optical power loss, calculates a sum of the optical power required by the modulator and the first optical power loss as the first optical power, and uses the first optical power as the optical power splitter to obtain the optical
  • the controller may further calculate a power distribution ratio of the optical wave that the optical power splitter needs to obtain, and the subsequent optical power splitter obtains the optical power from the optical waveguide as the first optical power according to the power distribution ratio.
  • Light waves may be a ratio of the first optical power to the total power of the optical waves transmitted to the optical power splitter.
  • the total power of the light wave transmitted to the optical power splitter is not the total power of the light wave output by the light source. Since the optical waveguide generates the loss of optical power during the transmission, the total power of the light wave transmitted to the optical power splitter follows the light source. The propagation distance of the optical power splitter gradually decreases.
  • the total power of the light waves transmitted to the optical power splitter can be set by empirical values or by an instrument that measures power.
  • Step 402 The controller controls the optical power splitter to obtain a light wave whose optical power is the first optical power from the optical waveguide.
  • the controller After obtaining the first optical power or further obtaining the power distribution ratio, the controller sends a control signal to the optical power splitter to control the optical power splitter to obtain the optical power whose optical power is the first optical power from the optical waveguide.
  • the controller can send an electrical signal to the electrodes of the optical power splitter through the logic control circuit to control the electric field between the electrodes of the optical power splitter, thereby changing the refractive index of the material between the two electrodes of the optical power splitter.
  • the optical power splitter is controlled to obtain a light wave whose optical power is the first optical power from the optical waveguide.
  • the control method of the controller can be various, and is not limited to the above logic control circuit pair. Control of the optical power splitter electrode.
  • the controller and the optical power splitter are added in the on-chip optical network system, and the optical power splitter is controlled by the controller to obtain the optical wave according to the optical power requirement of the modulator from the optical waveguide, thereby realizing the on-demand of the optical power.
  • Allocation changing the way in which existing light waves are obtained at a fixed optical power ratio.
  • the system realizes the on-demand distribution of optical power, thereby reducing the excess optical power obtained by the modulator and reducing the system power consumption.
  • the method further includes:
  • Step 501 The controller calculates a second optical power, where the second optical power is a sum of a second optical power loss generated by optical wave transmission between the light source and the optical power splitter and a first optical power.
  • the controller first obtains the optical power loss generated by the optical wave in the optical waveguide transmission, which is recorded as the second optical power loss, and the second optical power loss can be set according to an empirical value, or can be measured by an instrument for measuring power. After obtaining the second optical power loss, the controller calculates the sum of the first optical power and the second optical power loss to obtain the second optical power, that is, the total power of the optical wave that the light source needs to emit.
  • Step 502 The controller controls the light source of the light source to emit light of the second optical power.
  • the controller can control the optical power of the output by controlling the current of the light source, etc., so that the light source emits light waves of the second optical power.
  • the controller controls the total power output of the light source according to the optical power required by each optical device in the on-chip optical network system, thereby minimizing the optical power of the light wave required to be emitted by the light source, thereby reducing the power consumption of the light source. It also reduces the amount of heat generated by the light source.
  • the on-chip optical network system and the optical power control method in the embodiments of the present invention can be applied not only to a simple ring topology but also to a two-dimensional mesh topology, which is not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种片上光网络***及一种光功率控制方法。一种片上光网络***,包括光源、光波导、控制器、光功率分配器和调制器,其中,所述光源发出的光波通过所述光波导传输至所述光功率分配器;所述光功率分配器用于从所述光波导中获得光波,并将获得的光波传输至所述调制器;所述控制器用于计算第一光功率,并控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波,所述第一光功率为所述光功率分配器与所述调制器之间光波传输产生的第一光功率损耗与所述调制器所需的光功率的和。该***由于实现了光功率的按需分配,从而减少了调制器获得的光功率过量的情况,减小了***功耗。

Description

一种片上光网络***及一种光功率控制方法
本申请要求于2013年12月25日提交中国专利局、申请号为201310724541.4、发明名称为“一种片上光网络***及一种光功率控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及片上光网络技术领域,特别是涉及一种片上光网络***及一种光功率控制方法。
背景技术
从处理器产业当前的发展状况来看,集成越来越多的处理器核是目前公认的延续摩尔定律的办法。多核处理器面临的一个主要问题是如何实现多个处理器核之间的有效快速通信,为了解决这个问题,业界和学术界都已经开始了一些将光互连引入片上互连/网络的尝试。
现有技术中,片上光网络***可以包括以下组成部分:光源、光波导、调制器等。其中,光源将其产生的光波注入到光波导中,光波导用于传输光波,调制器首先从光波导中获得一定比例(如10%)光功率的光波,然后,调制器将电信号调制到获得的光波上,形成加载了电信号的光信号,光信号后续被传输至其他光网络器件中。
然而,上述调制器获得光波的光功率比例为固定比例值的方式可能导致调制器获得的光功率过量,进而增大了功耗。
发明内容
本发明实施例中提供了一种片上光网络***及一种光功率控制方法,能够减小由于调制器获得的光功率过量而产生的功耗。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
第一方面,提供一种片上光网络***,包括光源、光波导、控制器、光功率分配器和调制器,其中,所述光源发出的光波通过所述光波导传输至所述光功率分配器;所述光功率分配器用于从所述光波导中获得光波,并将获得的光波传输至所述调制器;所述控制器用于计算第一光功率,并控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波,所述第一光功率为所述光功率分配器与所述调制器之间光波传输产生的第一光功率损耗与所述调制器所需的光功率的和。
结合上述第一方面,在第一种可能的实现方式中,所述控制器具体用于通过逻辑控制电路对所述光功率分配器的电极发出电信号,控制所述光功率分配器的电极之间的电场,以控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
结合上述第一方面,和/或第一种可能的实现方式,在第二种可能的实现方式中,所述控制器还用于计算第二光功率,并控制所述光源发出光功率为所述第二光功率的光波,其中,所述第二光功率为所述光源与所述光功率分配器之间光波传输产生的第二光功率损耗与所述第一光功率的和。
第二方面,提供一种光功率控制方法,所述方法应用于片上光网络***,所述片上光网络***包括光源、光波导、控制器、光功率分配器和调制器,其中,所述光源发出的光波通过所述光波导传输至所述光功率分配器;所述光功率分配器从所述光波导中获得光波,并将获得的光波传输至所述调制器,所述光功率控制方法包括:
所述控制器计算第一光功率,所述第一光功率为所述光功率分配器与所述调制器之间光波传输产生的第一光功率损耗与所述调制器所需的光功率的和;
所述控制器控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
结合上述第二方面,在第一种可能的实现方式中,所述控制器控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波,包括:
所述控制器通过逻辑控制电路对所述光功率分配器的电极发出电信号,控制所述光功率分配器的电极之间的电场,以控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
结合上述第二方面,和/或第一种可能的实现方式,在第二种可能的实现方式中,在所述控制器计算第一光功率之后,还包括:
所述控制器计算第二光功率,所述第二光功率为所述光源与所述光功率分配器之间光波传输产生的第二光功率损耗与所述第一光功率的和;
所述控制器控制所述光源发出光功率为所述第二光功率的光波。
本发明实施例在片上光网络***中增加了控制器和光功率分配器,通过控制器控制光功率分配器从光波导中按照调制器的光功率需求来获得光波,实现了对光功率的按需分配,改变了现有的按固定光功率比例获得光波的方式。该***由于实现了光功率的按需分配,从而减少了调制器获得的光功率过量的情况,减小了***功耗。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一种片上光网络***的结构示意图;
图2为本发明实施例另一种片上光网络***的结构示意图;
图3为本发明实施例另一种片上光网络***的结构示意图;
图4为本发明实施例一种光功率控制方法的流程图;
图5为本发明实施例另一种光功率控制方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
参见图1,为本发明实施例一种片上光网络***的结构示意图。
该片上光网络包括光源11、光波导12、控制器13、光功率分配器14和调制器15,其中,光源11发出的光波通过光波导12传输至光功率分配器14;光功率分配器14用于从光波导12中获得光波,并将获得的光波传输至调制器15。其中,光功率分配器14可以有多个,调制器15也可以有多个,光功率分配器14与调制器15一一对应连接。
控制器13用于计算第一光功率,并控制光功率分配器14从光波导12中获得光功率为第一光功率的光波,该第一光功率为光功率分配器14与调制器15之间光波传输产生的第一光功率损耗与调制器15所需的光功率的和。
其中,该第一光功率损耗可以根据经验值设定,也可以借助用于测定功率损耗的仪器进行探测获得。调制器15所需的光功率可以是在设计之初即确定的,因此可以作为一种逻辑固化到控制器中。例如,在简单的环形拓扑结构中,在控制器芯片设计之初即可计算在给定发送节点和接收节点的情况下,发送节点所需的光功率;再例如,在给定一个二维mesh的拓扑结构和某个时钟周期的路由决策的情况下,可以根据该路由决策在给定发送节点和接收节点的情况下计算发送节点所需的光功率,其中,上述发送节点可以为调制器, 接收节点为接收调制器传输的光信号的器件。
控制器13在获得第一光功率损耗后,即计算该调制器15所需要的光功率与第一光功率损耗的和作为第一光功率,并将该第一光功率作为光功率分配器14需要从光波导12中获得的光波的光功率。
控制器13在计算获得第一光功率后,还可以进一步计算光功率分配器14需要获得的光波的功率分配比例,后续光功率分配器14按照该功率分配比例从光波导12中获得光功率为第一光功率的光波。其中,该功率分配比例可以是第一光功率与传输至该光功率分配器14的光波的总功率的比值。该传输至光功率分配器14的光波的总功率不是光源11输出的光波的总功率,由于光波导在传输过程中产生光功率的损耗,该传输至光功率分配器14的光波的总功率随着光源11到光功率分配器14的传播距离的增大而逐渐减小。该传输至光功率分配器14的光波的总功率可以通过经验值设定,或者通过测量功率的仪器测定。
控制器13在获得第一光功率或进一步获得功率分配比例后,向光功率分配器14发送控制信号,控制光功率分配器14从光波导12中获得光功率为第一光功率的光波。
具体的,控制器13可以通过逻辑控制电路对光功率分配器14的电极发出电信号,控制光功率分配器14的电极之间的电场,从而改变光功率分配器14的两电极间的材料的折射率,进而控制光功率分配器14从光波导12中获得光功率为第一光功率的光波。控制器13的控制方法可以有多种,不仅限于上述逻辑控制电路对光功率分配器14电极的控制。
本发明实施例在片上光网络***中增加了控制器和光功率分配器,通过控制器控制光功率分配器从光波导中按照调制器的光功率需求来获得光波,实现了对光功率的按需分配,改变了现有的按固定光功率比例获得光波的方式。该***由于实现了光功率的按需分配,从而减少了调制器获得的光功率过量的情况,减小了***功耗。
在本发明的另一实施例中,如图2所示,片上光网络***包括光源21、光波导22、控制器23、光功率分配器24和调制器25,该片上光网络***与前述实施例中的片上光网络***类似,区别在于:本实施例中,控制器23还用于计算第二光功率,并控制光源21发出光功率为第二光功率的光波,其中,第二光功率为光源21与光功率分配器24之间光波传输产生的第二光功率损耗与第一光功率的和。该第一光功率为光功率分配器24与调制器25之间光波传输产生的第一光功率损耗与调制器25所需的光功率的和。
控制器23首先获得光波在光波导22传输中所产生的光功率损耗,记为第二光功率损耗,该第二光功率损耗可以根据经验值设定,也可以通过测量功率的仪器测定。在获得第二光功率损耗后,控制器23计算第一光功率以及第二光功率损耗的和,即可获得第二光功率,也即光源需要发出的光波的总功率。
控制器23可以通过控制光源21的电流等方式实现对其输出的光功率的控制,以使得光源21发出光功率为第二光功率的光波。
本实施例通过根据片上光网络***中各光器件所需的光功率来控制光源输出的总功率,最大程度的降低了光源所需发射的光波的光功率,不仅降低了光源功耗,而且也降低了光源产生的热量。
在一具体实例中,如图3所示,该片上光网络***包括作为光源的激光器31,用于传输光波的光波导32,控制器33,以及光功率分配器341、342、343,调制器351、352、353,其中光功率分配器与调制器一一对应。
控制器33分别获得光功率分配器341与调制器351之间、光功率分配器342与调制器352之间、光功率分配器343与调制器353之间的第一光功率损耗,并调取调制器351、352、353分别所需的光功率,然后计算,分别获得光功率分配器341、342、343各自需要从光波导32中获得第一光功率。
控制器33还进一步获得光波导32在将光波由激光器31传输至光功率分配器341、342、343的过程中所产生的第二光功率损耗,然后计算第二光功 率损耗与所有光功率分配器341、342、343所需要的第一光功率的和,作为第二光功率。总之,该第二光功率为光波导从光源传输光波至各光功率分配器的过程中所产生的所有光功率损耗与所有光功率分配器所需的光功率的和。
控制器33在获得光功率分配器341、342、343各自的第一光功率,以及激光器31所需要输出的第二光功率之后,控制器33通过逻辑控制电路分别对光功率分配器341、342、343的电极发出电信号,分别控制光功率分配器341、342、343的电极之间的电场,以控制光功率分配器341、342、343分别从光波导32中获得各自所需的第一光功率的光波。
同时,控制器33通过控制激光器31的电流等方式,控制激光器31输出光功率为第二光功率的光波。
该片上光网络***不仅实现了光功率的按需分配,从而减少了调制器获得的光功率过量的情况,减小了***功耗,而且,最大程度的降低了光源所需发射的光波的光功率,不仅降低了光源功耗,而且也降低了光源产生的热量。
以上是对本发明装置实施例的描述,下面对光功率控制方法进行介绍。
参见图4,为本发明实施例一种光功率控制方法的流程图。
该方法应用于片上光网络***,该片上光网络***包括光源、光波导、控制器、光功率分配器和调制器,其中,光源发出的光波通过光波导传输至光功率分配器;光功率分配器从光波导中获得光波,并将获得的光波传输至调制器,该片上光网络***的结构与前述实施例类似,此处不再赘述。
该光功率控制方法包括:
步骤401,控制器计算第一光功率,该第一光功率为光功率分配器与调制器之间光波传输产生的第一光功率损耗与调制器所需的光功率的和。
该第一光功率损耗可以根据经验值设定,也可以借助用于测定功率损耗的仪器进行探测获得。调制器所需的光功率可以是在设计之初即确定的,因此 可以作为一种逻辑固化到控制器中。例如,在简单的环形拓扑结构中,在控制器芯片设计之初即可计算在给定发送节点和接收节点的情况下,发送节点所需的光功率;再例如,在给定一个二维mesh的拓扑结构和某个时钟周期的路由决策的情况下,可以根据该路由决策在给定发送节点和接收节点的情况下计算发送节点所需的光功率,其中,上述发送节点可以为调制器,接收节点为接收调制器传输的光信号的器件。
控制器在获得第一光功率损耗后,即计算该调制器所需要的光功率与第一光功率损耗的和作为第一光功率,并将该第一光功率作为光功率分配器需要从光波导中获得的光波的光功率。
控制器在计算获得第一光功率后,还可以进一步计算光功率分配器需要获得的光波的功率分配比例,后续光功率分配器按照该功率分配比例从光波导中获得光功率为第一光功率的光波。其中,该功率分配比例可以是第一光功率与传输至该光功率分配器的光波的总功率的比值。该传输至光功率分配器的光波的总功率不是光源输出的光波的总功率,由于光波导在传输过程中产生光功率的损耗,该传输至光功率分配器的光波的总功率随着光源到光功率分配器的传播距离的增大而逐渐减小。该传输至光功率分配器的光波的总功率可以通过经验值设定,或者通过测量功率的仪器测定。
步骤402,控制器控制光功率分配器从光波导中获得光功率为第一光功率的光波。
控制器在获得第一光功率或进一步获得功率分配比例后,向光功率分配器发送控制信号,控制光功率分配器从光波导中获得光功率为第一光功率的光波。
具体的,控制器可以通过逻辑控制电路对光功率分配器的电极发出电信号,控制光功率分配器的电极之间的电场,从而改变光功率分配器的两电极间的材料的折射率,进而控制光功率分配器从光波导中获得光功率为第一光功率的光波。控制器的控制方法可以有多种,不仅限于上述逻辑控制电路对 光功率分配器电极的控制。
本发明实施例通过在片上光网络***中增加控制器和光功率分配器,通过控制器控制光功率分配器从光波导中按照调制器的光功率需求来获得光波,实现了对光功率的按需分配,改变了现有的按固定光功率比例获得光波的方式。该***由于实现了光功率的按需分配,从而减少了调制器获得的光功率过量的情况,减小了***功耗。
在本发明的另一实施例中,如图5所示,在控制器计算第一光功率之后,还包括:
步骤501,控制器计算第二光功率,该第二光功率为光源与光功率分配器之间光波传输产生的第二光功率损耗与第一光功率的和。
控制器首先获得光波在光波导传输中所产生的光功率损耗,记为第二光功率损耗,该第二光功率损耗可以根据经验值设定,也可以通过测量功率的仪器测定。在获得第二光功率损耗后,控制器计算第一光功率以及第二光功率损耗的和,即可获得第二光功率,也即光源需要发出的光波的总功率。
步骤502,控制器控制所光源发出光功率为第二光功率的光波。
控制器可以通过控制光源的电流等方式实现对其输出的光功率的控制,以使得光源发出光功率为第二光功率的光波。
本实施例通过控制器根据片上光网络***中各光器件所需的光功率来控制光源输出的总功率,最大程度的降低了光源所需发射的光波的光功率,不仅降低了光源功耗,而且也降低了光源产生的热量。
本发明实施例中的片上光网络***及上述光功率控制方法不仅可以应用于简单的环形拓扑结构,还可以应用于二维mesh拓扑结构,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁 碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (6)

  1. 一种片上光网络***,其特征在于,包括光源、光波导、控制器、光功率分配器和调制器,其中,所述光源发出的光波通过所述光波导传输至所述光功率分配器;所述光功率分配器用于从所述光波导中获得光波,并将获得的光波传输至所述调制器;所述控制器用于计算第一光功率,并控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波,所述第一光功率为所述光功率分配器与所述调制器之间光波传输产生的第一光功率损耗与所述调制器所需的光功率的和。
  2. 根据权利要求1所述的片上光网络***,其特征在于,
    所述控制器具体用于通过逻辑控制电路对所述光功率分配器的电极发出电信号,控制所述光功率分配器的电极之间的电场,以控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
  3. 根据权利要求1或2所述的片上光网络***,其特征在于,
    所述控制器还用于计算第二光功率,并控制所述光源发出光功率为所述第二光功率的光波,其中,所述第二光功率为所述光源与所述光功率分配器之间光波传输产生的第二光功率损耗与所述第一光功率的和。
  4. 一种光功率控制方法,其特征在于,所述方法应用于片上光网络***,所述片上光网络***包括光源、光波导、控制器、光功率分配器和调制器,其中,所述光源发出的光波通过所述光波导传输至所述光功率分配器;所述光功率分配器从所述光波导中获得光波,并将获得的光波传输至所述调制器,所述光功率控制方法包括:
    所述控制器计算第一光功率,所述第一光功率为所述光功率分配器与所述调制器之间光波传输产生的第一光功率损耗与所述调制器所需的光功率的和;
    所述控制器控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
  5. 根据权利要求4所述的方法,其特征在于,所述控制器控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波,包括:
    所述控制器通过逻辑控制电路对所述光功率分配器的电极发出电信号,控制所述光功率分配器的电极之间的电场,以控制所述光功率分配器从所述光波导中获得光功率为所述第一光功率的光波。
  6. 根据权利要求4或5所述的方法,其特征在于,在所述控制器计算第一光功率之后,还包括:
    所述控制器计算第二光功率,所述第二光功率为所述光源与所述光功率分配器之间光波传输产生的第二光功率损耗与所述第一光功率的和;
    所述控制器控制所述光源发出光功率为所述第二光功率的光波。
PCT/CN2014/094325 2013-12-25 2014-12-19 一种片上光网络***及一种光功率控制方法 WO2015096663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14875591.1A EP3079280A4 (en) 2013-12-25 2014-12-19 On-chip optical network system and optical power control method
US15/192,419 US20160308620A1 (en) 2013-12-25 2016-06-24 On-Chip Optical Network System and Optical Power Control Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310724541.4A CN104753603A (zh) 2013-12-25 2013-12-25 一种片上光网络***及一种光功率控制方法
CN201310724541.4 2013-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,419 Continuation US20160308620A1 (en) 2013-12-25 2016-06-24 On-Chip Optical Network System and Optical Power Control Method

Publications (1)

Publication Number Publication Date
WO2015096663A1 true WO2015096663A1 (zh) 2015-07-02

Family

ID=53477536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094325 WO2015096663A1 (zh) 2013-12-25 2014-12-19 一种片上光网络***及一种光功率控制方法

Country Status (4)

Country Link
US (1) US20160308620A1 (zh)
EP (1) EP3079280A4 (zh)
CN (1) CN104753603A (zh)
WO (1) WO2015096663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460696A (zh) * 2021-05-21 2022-05-10 长芯盛(武汉)科技有限公司 一种能够对功耗和状态进行管理的usb插头及有源光缆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106407154B (zh) * 2015-08-03 2019-04-19 华为技术有限公司 一种片上光网络拓扑及数据传输方法
CN109257662B (zh) * 2018-08-14 2021-06-08 西安电子科技大学 基于微环功率分配器和组化的广播光片上结构及通信方法
CN109348317A (zh) * 2018-12-04 2019-02-15 杭州芯河光电科技有限公司 一种集成片上光网络的芯片结构及动态分配方法
AU2018427247B2 (en) 2018-12-29 2021-09-23 Huawei Technologies Co., Ltd. Optical splitting apparatus
CN115085852B (zh) * 2022-08-19 2022-11-08 南京光智元科技有限公司 时钟信号传输装置及其制造方法、光学时钟平衡装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567008A (zh) * 2003-06-27 2005-01-19 武汉光迅科技有限责任公司 适合于城域网智能型双通道光纤放大器
CN101087179A (zh) * 2006-06-09 2007-12-12 缪健 波分复用无源光网络
CN101614607A (zh) * 2009-07-31 2009-12-30 武汉光子科技有限公司 光纤f-p压力传感器及其压力液位传感装置
CN101981491A (zh) * 2008-03-31 2011-02-23 三菱电机株式会社 数字信号处理光发送装置
US20130129348A1 (en) * 2011-11-21 2013-05-23 Ciena Corporation Subcarrier power balance control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991060A (en) * 1997-07-24 1999-11-23 Lucent Technologies Inc. Automatic power control for a wavelength selective EML module
US6862136B2 (en) * 2002-01-31 2005-03-01 Cyoptics Ltd. Hybrid optical transmitter with electroabsorption modulator and semiconductor optical amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567008A (zh) * 2003-06-27 2005-01-19 武汉光迅科技有限责任公司 适合于城域网智能型双通道光纤放大器
CN101087179A (zh) * 2006-06-09 2007-12-12 缪健 波分复用无源光网络
CN101981491A (zh) * 2008-03-31 2011-02-23 三菱电机株式会社 数字信号处理光发送装置
CN101614607A (zh) * 2009-07-31 2009-12-30 武汉光子科技有限公司 光纤f-p压力传感器及其压力液位传感装置
US20130129348A1 (en) * 2011-11-21 2013-05-23 Ciena Corporation Subcarrier power balance control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460696A (zh) * 2021-05-21 2022-05-10 长芯盛(武汉)科技有限公司 一种能够对功耗和状态进行管理的usb插头及有源光缆
CN114460696B (zh) * 2021-05-21 2024-01-19 长芯盛(武汉)科技有限公司 一种能够对功耗和状态进行管理的usb插头及有源光缆

Also Published As

Publication number Publication date
EP3079280A1 (en) 2016-10-12
US20160308620A1 (en) 2016-10-20
CN104753603A (zh) 2015-07-01
EP3079280A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2015096663A1 (zh) 一种片上光网络***及一种光功率控制方法
US10897141B2 (en) Power transmitting apparatus, power receiving apparatus, control methods thereof, and program
KR101830905B1 (ko) 무선 디바이스의 전송 출력을 예측하기 위한 방법 및 장치
US20190149233A1 (en) System, method, and device for measuring optical fiber channel loss in photonic communication
US8897313B2 (en) Out-of-band signaling support over standard optical SFP
US20170272231A1 (en) Distribution of forwarded clock
US20200274823A1 (en) Method and apparatus for setting link priority
US20160294469A1 (en) Methods and Device for Sending and Receiving Information of Terminal, and Terminals
KR20140143793A (ko) 유니버셜 직렬 버스 디바이스들에 대한 데이터 재지향
US20170047789A1 (en) Wireless Energy Transmission Methods and Wireless Energy Sending Devices
CN107003975A (zh) 用于控制链路电力状态的方法和装置
CN103793347A (zh) 自配置其端口的路由属性的sas扩展器的方法和结构
US11664983B2 (en) Hybrid quantum key distribution link for an optical transceiver
CN110417471A (zh) 一种基于光纤的能信共传***
TW201429103A (zh) 用於電力分配管理之方法、系統及裝置
CN110808806B (zh) 一种基于光纤频率传递的量子双向时间同步方法及***
WO2008125033A1 (fr) Module optique enfichable et appareil de conversion de signal électronique/optique
US20190157837A1 (en) Current channel for iii-v silicon hybrid laser
Grani et al. Simultaneous optical path-setup for reconfigurable photonic networks in tiled CMPS
WO2021056995A1 (zh) 一种基于并机***的通信方法、通信装置及终端
US10764836B2 (en) Broadcast message transmission
CN107346165B (zh) 用于电子设备的功率管理方法和装置
KR20200086393A (ko) 클라우드 서버의 자동 스케일링 방법, 장치 및 컴퓨터-판독가능기록매체
Killian et al. Energy and performance trade-off in nanophotonic interconnects using coding techniques
Cairncross et al. AI Benchmarking on Achronix Speedster® 7t FPGAs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014875591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875591

Country of ref document: EP