WO2015096550A1 - 磷酸铁锂制备装置 - Google Patents

磷酸铁锂制备装置 Download PDF

Info

Publication number
WO2015096550A1
WO2015096550A1 PCT/CN2014/089739 CN2014089739W WO2015096550A1 WO 2015096550 A1 WO2015096550 A1 WO 2015096550A1 CN 2014089739 W CN2014089739 W CN 2014089739W WO 2015096550 A1 WO2015096550 A1 WO 2015096550A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
furnace tube
iron phosphate
lithium iron
temperature sintering
Prior art date
Application number
PCT/CN2014/089739
Other languages
English (en)
French (fr)
Inventor
何向明
王莉
李建军
罗晶
张建利
张宏生
高剑
任玉梅
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2015096550A1 publication Critical patent/WO2015096550A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model relates to a lithium iron phosphate preparation device, in particular to a lithium iron phosphate preparation device.
  • lithium-ion batteries have been widely used in consumer electronic products such as notebook computers, mobile phones, and video cameras.
  • Lithium iron phosphate has been receiving great attention as a positive active material for lithium ion batteries with good safety, low cost and environmental friendliness.
  • the synthesis methods of lithium iron phosphate in the laboratory mainly include high temperature solid phase method, spray method, hydrothermal synthesis method, coprecipitation method, emulsion drying method and microwave synthesis method.
  • lithium iron phosphate is mainly synthesized on a large scale by a high temperature solid phase method.
  • the industrial synthesis of lithium iron phosphate equipment is still a discontinuous staged equipment, which can only achieve intermittent production, which leads to inconsistent performance of different batches of lithium iron phosphate products.
  • a lithium iron phosphate preparation device comprising a powder input system, a powder dehydration system, a second temperature sintering system, a third temperature sintering system, a powder cooling system, a powder output system, a circuit control system, and a gas control system
  • the powder dehydration system includes a first transmission device, a first powder transport device, a first furnace tube, and a first temperature heating device, the first furnace tube including a first powder feeding end, a first powder discharging end, and the first a first inlet port connected to the powder end, the first powder inlet end being connected to the powder input system;
  • the second temperature sintering system comprising a second transmission device, a second powder conveying device, a second furnace tube and a a second temperature sintering device, the second furnace tube includes a second powder feeding end, a second powder discharging end and an exhaust port near the second powder discharging end, the second powder feeding end of the second furnace tube and the first furnace tube
  • the utility model realizes large-scale industrialized continuous production of the product through the cooperation of the powder dehydration system, the second temperature sintering system, the third temperature sintering system and the powder cooling system, and greatly improves the consistency of the lithium iron phosphate product, and has the
  • the design of “intake at both ends, out of gas” means that the powder is discharged in the powder dehydration system, the third temperature sintering system and the powder cooling system, and the gas is discharged in the second temperature sintering system to avoid the second temperature sintering system.
  • a large number of harmful gases affect the synthesis of lithium iron phosphate.
  • FIG. 1 is a schematic structural view of a lithium iron phosphate preparation device according to an embodiment of the present invention.
  • Lithium iron phosphate preparation device 10 Powder input system 100 Powder dehydration system 200 First transmission 210 First powder transport device 220 First furnace tube 230 First powder inlet 232 First powder end 234 First air inlet 236 First temperature heating device 240 Second temperature sintering system 300 Second transmission 310 Second powder transport device 320 Second furnace tube 330 Second powder inlet 332 Second powder end 334 exhaust vent 336 Second temperature sintering device 340 First blanking channel 350 Third temperature sintering system 400 Third transmission 410 Third powder transport device 420 Third furnace tube 430 Third powder inlet 432 Third powder end 434 Second air inlet 436 Third temperature sintering device 440 Second blanking channel 450 Powder cooling system 500 Fourth transmission 510 Fourth powder transport device 520 Fourth furnace tube 530 Fourth powder inlet 532 Fourth powder end 534 Third air inlet 536 Cooling device 540 Powder output system 600 Circuit control system 700 Transmission control system 710 Furnace tube heating control system 720 Gas control system 800
  • the present invention provides a lithium iron phosphate preparation device 10 , comprising a powder input system 100 , a powder dehydration system 200 , a second temperature sintering system 300 , a third temperature sintering system 400 , and a powder cooling system 500 .
  • the second temperature is less than the third temperature.
  • the raw material powder for synthesizing lithium iron phosphate is input into the lithium iron phosphate preparation device through the powder input system 100.
  • the powder dehydration system 200 includes a first transmission 210, a first powder transport device 220, a first furnace tube 230, and a first temperature heating device 240.
  • the first furnace tube 230 includes a first powder inlet end 232, a first powder output end 234, and a first air inlet port 236 adjacent to the first powder inlet end 232.
  • the first powder inlet end 232 is coupled to the powder input system 100.
  • the heating temperature of the first temperature heating device 240 may be 60 ° C to 100 ° C, and may include a heating tube disposed on an outer surface of the first furnace tube 230 for heating the first furnace tube 230. Since the first temperature is lower, the first temperature heating device 240 may be an oil bath heating device or a water bath heating device.
  • the first powder conveying device 220 is driven by the first transmission device 210 to continuously transport the raw material powder from the first powder feeding end 232 to the first powder discharging end 234.
  • the raw material powder may include a lithium source, a phosphorus source, and an iron source, and may further include a carbon source. Since the raw material powder has adsorbed water, gas such as carbon dioxide and oxygen, water and carbon dioxide, oxygen and the like have a great influence on the synthesis reaction in the subsequent synthesis process, and need to be removed in advance.
  • the powder dehydration system 200 is for removing water, carbon dioxide and oxygen adsorbed on the surface of the raw material powder.
  • the first furnace tube 230 can be at an angle a to the horizontal direction, 0° ⁇ a ⁇ 30°, so that the raw material powder can easily travel to the first powder discharging end 234 by the action of gravity. Especially when the length of the first furnace tube 230 is long, such as 2 to 10 meters, it is particularly important to tilt the first furnace tube 230 to ensure that the raw material powder can be uniformly transported to the first powder discharging end 234.
  • the gas control system 800 passes a protective gas, such as nitrogen, into the first furnace tube 230 through the first intake port 236.
  • a protective gas such as nitrogen
  • the first furnace tube 230 may further include an observation window (not shown) disposed on the wall of the tube to facilitate the user to observe the state of the raw material powder inside the first furnace tube 230.
  • the powder dehydration system 200 may further include a pressure detecting device (not shown) and a gas detecting device (not labeled), respectively disposed on the first furnace tube 230, the pressure detecting device for detecting the inside of the furnace tube
  • the gas pressure is used to detect the gas component inside the furnace tube.
  • the second temperature sintering system 300 includes a second transmission 310, a second powder transport device 320, a second furnace tube 330, and a second temperature sintering device 340.
  • the second furnace tube 330 includes a second powder inlet end 332, a second powder outlet end 334, and an exhaust port 336 adjacent to the second powder outlet end 334.
  • the second powder feeding end 332 of the second furnace tube 330 is in direct communication with the first powder discharging end 234 of the first furnace tube 230.
  • the sintering temperature of the second temperature sintering device 340 may be 100 ° C ⁇ 300 ° C, and may include a resistance wire disposed outside the second furnace tube 330, an insulation layer surrounding the resistance wire, and the second furnace tube A 230-contact thermocouple for detecting and controlling the heating temperature.
  • the second powder conveying device 320 is driven by the second transmission device 310 to continuously transport the powder passing through the first furnace tube 230 from the second powder feeding end 332 to the second powder discharging end 334.
  • the lithium source, the phosphorus source and the iron source may further contain crystal water, and the low molecular carbon source needs to be cracked to form conductive carbon, the crystallization water is removed and the carbon source is cracked to generate a large amount of gas such as water vapor and carbon dioxide, and the iron phosphate is The synthesis reaction of lithium has a large effect and needs to be removed in advance.
  • the second temperature sintering device 340 is for removing the crystal water in the lithium source, the phosphorus source, and the iron source, and causing the carbon source to undergo a cracking reaction.
  • the exhaust port 336 is disposed at the second powder discharging end 334 of the second furnace tube 330 to quickly and effectively discharge harmful gases, which is advantageous for the synthesis of lithium iron phosphate.
  • the second furnace tube 330 may be horizontally disposed, and the first furnace tube 230 and the second furnace tube 330 may have the same diameter and communicate seamlessly to maintain gas tightness.
  • the protective gas is input from the first furnace tube 230 to the second furnace tube 330.
  • the second furnace tube 330 may further include an observation window (not shown) disposed on the wall of the tube to facilitate the user to observe the state of the powder inside the second furnace tube 330.
  • the second temperature sintering system 300 may further include a pressure detecting device (not labeled) and a gas detecting device (not labeled), respectively disposed on the second furnace tube 330, the pressure detecting device for detecting the furnace tube
  • the internal gas pressure is used to detect the gas composition inside the furnace tube.
  • the third temperature sintering system 400 includes a third transmission 410, a third powder transport device 420, a third furnace tube 430, and a third temperature sintering device 440.
  • the third furnace tube 430 includes a third powder inlet end 432, a third powder outlet end 434, and a second inlet port 436.
  • the third powder feeding end 432 of the third furnace tube 430 is in communication with the second powder discharging end 334 of the second furnace tube 330.
  • the third temperature sintering device 440 may have a sintering temperature of 300 ° C to 700 ° C, and may include a resistance wire disposed around the third furnace tube 430, an insulation layer surrounding the resistance wire, and the third furnace tube.
  • a 430 contact thermocouple for detecting and controlling the heating temperature.
  • the third powder conveying device 420 is driven by the third transmission device 410 to continuously transport the powder passing through the second furnace tube 330 from the third powder feeding end 432 to the third powder discharging end 434.
  • the third temperature sintering device 440 is used for lithium iron phosphate synthesis, and the lithium iron phosphate begins to gradually nucleate and grow, and the carbon source coated on the surface of the powder is further carbonized to form a conductive carbon layer.
  • the third furnace tube 430 can be horizontally disposed.
  • the third powder feeding end 432 of the third furnace tube 430 and the second powder discharging end 334 of the second furnace tube 330 can be connected through the first cutting channel 350, and the powder passes through the first lower portion.
  • the material passage 350 enters the third furnace tube 430 directly from the second furnace tube 330.
  • the second furnace tube 330 and the third furnace tube 430 are coaxially disposed and seamlessly communicated at the ends to form a through-flow and maintain gas tightness.
  • the second furnace tube 330 and the third furnace tube 430 may have the same diameter.
  • the protective gas is input from the second intake port 436 to the third furnace tube 430.
  • the second intake port 436 may be disposed adjacent to the third powder exit end 434 of the third furnace tube 430.
  • the third furnace tube 430 may further include an observation window (not shown) disposed on the wall of the tube to facilitate the user to observe the state of the powder inside the third furnace tube 430.
  • the third temperature sintering system 400 may further include a pressure detecting device (not shown) and a gas detecting device (not labeled), respectively disposed on the third furnace tube 430, the pressure detecting device for detecting the furnace tube
  • the internal gas pressure is used to detect the gas composition inside the furnace tube.
  • the powder cooling system 500 includes a fourth transmission 510, a fourth powder transport device 520, a fourth furnace tube 530, and a cooling device 540.
  • the fourth furnace tube 530 includes a fourth powder inlet end 532, a fourth powder outlet end 534, and a third inlet port 536.
  • the fourth powder feeding end 532 of the fourth furnace tube 530 is in communication with the third powder discharging end 434 of the third furnace tube 430.
  • the fourth powder output end 534 is coupled to the powder output system 600.
  • the cooling device 540 may include a cooling water jacket sleeved outside the fourth furnace tube 530, and the cooling water jacket contains continuously circulating cooling water for cooling the product powder in the fourth furnace tube 530.
  • the fourth powder conveying device 520 is driven by the fourth transmission device 510 to continuously transport the powder passing through the fourth furnace tube 530 from the fourth powder feeding end 532 to the fourth powder discharging end 534.
  • the fourth furnace tube 530 can be at an angle b to the horizontal, 0° ⁇ b ⁇ 30°.
  • the third powder discharging end 434 of the third furnace tube 430 and the fourth powder feeding end 532 of the fourth furnace tube 530 are connected through the second blanking passage 450, and the powder passes through the second discharging passage 450.
  • the fourth furnace tube 530 is directly introduced from the third furnace tube 430.
  • the third furnace tube 430 and the fourth furnace tube 530 are coaxially disposed and seamlessly communicated at the ends to form a through-flow and maintain gas tightness.
  • the third furnace tube 430 and the fourth furnace tube 530 may have the same diameter.
  • the protective gas is input from the third intake port 536 to the fourth furnace tube 530.
  • the third intake port 536 may be disposed adjacent to the fourth powder feed end 532 of the fourth furnace tube 530.
  • the obtained lithium iron phosphate product powder enters the powder output system 600 through the fourth powder discharging end 534.
  • the circuit control system 700 can include a transmission control system 710 and a furnace tube heating control system 720.
  • the transmission control system 710 can be coupled to the first transmission 210, the second transmission 310, the third transmission 410, and the fourth transmission 510 to provide power to the transmission.
  • the furnace tube heating control system 720 can be coupled to the second temperature sintering device 340 and the third temperature sintering device 440 to control the sintering temperature of the sintering device.
  • the gas control system 800 is coupled to the first intake port 236, the second intake port 436, and the third intake port 536.
  • the first transmission device 210, the second transmission device 310, the third transmission device 410, and the fourth transmission device 510 are magnetic coupling transmission devices or mechanical transmission devices.
  • the first powder transport device 220, the second powder transport device 320, the third powder transport device 420, and the fourth powder transport device 520 are coaxially disposed on the first furnace tube 230, respectively.
  • the first furnace tube 230, the second furnace tube 330, the third furnace tube 430, and the fourth furnace tube 530 may be stainless steel tubes having a circular cross section, and the first furnace tube 230 and the second furnace tube 330 are
  • the inner wall has a surface coating to prevent the powder from adhering to the tube wall of the furnace tube.
  • the material of the surface coating layer is polytetrafluoroethylene or ceramic.
  • the lithium iron phosphate preparation device has the following features: First, the design has “intake at both ends, intermediate gas”, that is, in the powder dehydration system 200, the third temperature sintering system 400, and the powder cooling system.
  • the 500 intake air exhausts the gas at the second temperature sintering system 300, and the large amount of harmful gas generated in the second temperature sintering system 300 can be prevented from affecting the synthesis of lithium iron phosphate.
  • the stainless steel seamless steel pipe is used from the input of the raw material to the output of the product. In the power transmission, the magnetic coupling transmission device is adopted to avoid the air leakage at the interface. Thirdly, the consistency of the product has always been an important problem that plagues the lithium iron phosphate product.
  • the lithium iron phosphate preparation device of the embodiment of the present invention controls the gap between the powder transport device and the inner wall of the furnace tube to avoid the residual problem of the powder during the propulsion process. To ensure that the product is synthesized under the same sintering conditions, greatly improving the consistency of the product. Further, in the case of sticking a carbon source such as sucrose, the inner wall surface of the furnace tube is subjected to an anti-adhesive wall treatment. In addition, the impurities in the preparation process may affect the electrochemical performance such as lithium iron phosphate capacity.
  • the device uses stainless steel as the material of the furnace tube or ceramic surface treatment on the inner wall of the furnace tube to avoid the introduction of metal impurities such as iron.
  • the lithium iron phosphate preparation device provided by the utility model realizes large-scale industrial production of the product, and greatly improves the production efficiency of the lithium iron phosphate product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种磷酸铁锂制备装置(10),包括粉体输入***(100)、粉体脱水***(200)、第二温度烧结***(300)、第三温度烧结***(400)、粉体冷却***(500)、粉体输出***(600)、电路控制***(700)和气体控制***(800)。

Description

磷酸铁锂制备装置 技术领域
本实用新型涉及一种磷酸铁锂制备装置,尤其涉及一种磷酸铁锂制备装置。
背景技术
能源问题一直是人类社会与科学技术发展的一个重大问题。锂离子电池作为能量密度较高的绿色二次电池,已广泛应用于笔记本电脑、手机、摄影机等消费性电子产品。
磷酸铁锂作为一种具有较好安全性,价格低廉且对环境友好的锂离子电池正极活性材料一直受到人们极大关注。目前磷酸铁锂在实验室中的合成方法主要有高温固相法、喷雾法、水热合成法、共沉淀法、乳剂干燥法和微波合成法等。在工业上磷酸铁锂主要通过高温固相法大规模合成。然而,工业上合成磷酸铁锂的设备目前仍然为不连续的分阶段设备,仅能实现间歇性生产,这导致了不同批次生产的磷酸铁锂产品性能不一致。
发明内容
有鉴于此,确有必要提供一种磷酸铁锂制备装置,通过该装置能够实现磷酸铁锂的大规模制备,满足工业化产品性一致性需要。
一种磷酸铁锂制备装置,包括粉体输入***、粉体脱水***、第二温度烧结***、第三温度烧结***、粉体冷却***、粉体输出***、电路控制***和气体控制***,该粉体脱水***包括第一传动装置、第一粉体输运装置、第一炉管及第一温度加热装置,该第一炉管包括第一进粉端、第一出粉端及靠近该第一进粉端的第一进气口,该第一进粉端与该粉体输入***相连;该第二温度烧结***包括第二传动装置、第二粉体输运装置、第二炉管及第二温度烧结装置,该第二炉管包括第二进粉端、第二出粉端及靠近第二出粉端的排气口,该第二炉管的第二进粉端与该第一炉管的第一出粉端直接连通;该第三温度烧结***包括第三传动装置、第三粉体输运装置、第三炉管和第三温度烧结装置,该第三炉管包括第三进粉端、第三出粉端及第二进气口,该第三炉管的第三进粉端与第二炉管的第二出粉端连通;该粉体冷却***包括第四传动装置、第四粉体输运装置、第四炉管及冷却装置,该第四炉管包括第四进粉端、第四出粉端及第三进气口,该第四炉管的第四进粉端与第三炉管的第三出粉端连通,该第四出粉端与该粉体输出***相连。
本实用新型通过粉体脱水***、第二温度烧结***、第三温度烧结***及粉体冷却***的配合,实现了产品大规模工业化连续生产,大大提高了磷酸铁锂产品的一致性,并具有“两端进气,中间出气”的设计,即在粉体脱水***、第三温度烧结***及粉体冷却***进气,在第二温度烧结***排出气体,可以避免第二温度烧结***中产生的大量有害气体影响磷酸铁锂的合成。
附图说明
图1为本实用新型实施例磷酸铁锂制备装置的结构示意图。
主要元件符号说明
磷酸铁锂制备装置 10
粉体输入*** 100
粉体脱水*** 200
第一传动装置 210
第一粉体输运装置 220
第一炉管 230
第一进粉端 232
第一出粉端 234
第一进气口 236
第一温度加热装置 240
第二温度烧结*** 300
第二传动装置 310
第二粉体输运装置 320
第二炉管 330
第二进粉端 332
第二出粉端 334
排气口 336
第二温度烧结装置 340
第一下料通道 350
第三温度烧结*** 400
第三传动装置 410
第三粉体输运装置 420
第三炉管 430
第三进粉端 432
第三出粉端 434
第二进气口 436
第三温度烧结装置 440
第二下料通道 450
粉体冷却*** 500
第四传动装置 510
第四粉体输运装置 520
第四炉管 530
第四进粉端 532
第四出粉端 534
第三进气口 536
冷却装置 540
粉体输出*** 600
电路控制*** 700
传动装置控制*** 710
炉管加热控制*** 720
气体控制*** 800
如下具体实施方式将结合上述附图进一步说明本实用新型。
具体实施方式
下面将结合附图及具体实施例对本实用新型提供的磷酸铁锂制备装置作进一步的详细说明。
请参阅图1,本实用新型提供一种磷酸铁锂制备装置10,包括粉体输入***100、粉体脱水***200、第二温度烧结***300、第三温度烧结***400、粉体冷却***500、粉体输出***600、电路控制***700和气体控制***800。该第二温度小于第三温度。
用于合成磷酸铁锂的原料粉体通过该粉体输入***100输入该磷酸铁锂制备装置中。
该粉体脱水***200包括第一传动装置210、第一粉体输运装置220、第一炉管230及第一温度加热装置240。该第一炉管230包括第一进粉端232、第一出粉端234及靠近该第一进粉端232的第一进气口236。该第一进粉端232与该粉体输入***100相连。
该第一温度加热装置240的加热温度可以为60℃~100℃,可以包括一套设在该第一炉管230外表面的加热管,用于加热该第一炉管230。由于该第一温度较低,该第一温度加热装置240可以为油浴加热装置或水浴加热装置。
该第一粉体输运装置220通过该第一传动装置210驱动,将原料粉体从该第一进粉端232不断输运至该第一出粉端234。该原料粉体可以包括锂源、磷源及铁源,还可进一步包括碳源。由于该原料粉体中存在吸附水和二氧化碳、氧气等气体,在后续的合成过程中,水及二氧化碳、氧气等气体均会对合成反应产生较大影响,需要预先去除。该粉体脱水***200用于脱除该原料粉体表面吸附的水和二氧化碳及氧气。
该第一炉管230可以与水平方向呈一角度a,0°<a≤30°,从而使原料粉体通过重力的作用较为容易的行进至该第一出粉端234。尤其当该第一炉管230的长度较长,如2至10米时,将该第一炉管230倾斜尤为重要,可以确保原料粉体能够均匀输运至该第一出粉端234。
该气体控制***800通过该第一进气口236向该第一炉管230中通入保护性气体,如氮气。
该第一炉管230还可进一步包括一设置在管壁上的观察窗(图未标),便于用户对第一炉管230内部的原料粉体的状态进行观察。
该粉体脱水***200还可进一步包括一压力检测装置(图未标)及气体检测装置(图未标),分别设置在该第一炉管230上,该压力检测装置用于检测炉管内部的气体压力,该气体检测装置用于检测炉管内部的气体组分。
该第二温度烧结***300包括第二传动装置310、第二粉体输运装置320、第二炉管330及第二温度烧结装置340。该第二炉管330包括第二进粉端332、第二出粉端334及靠近第二出粉端334的排气口336。该第二炉管330的第二进粉端332与该第一炉管230的第一出粉端234直接连通。
该第二温度烧结装置340的烧结温度可以为100℃~300℃,可以包括绕设在该第二炉管330外的电阻丝、包围在该电阻丝外的保温层及与该第二炉管330接触的热电偶,用于对加热温度进行探测及控制。
该第二粉体输运装置320通过该第二传动装置310驱动,将经过第一炉管230的粉体从该第二进粉端332不断输运至该第二出粉端334。由于锂源、磷源及铁源可能进一步含有结晶水,而低分子碳源需要经过裂解形成导电碳,结晶水的脱出及碳源的裂解将产生大量水汽及二氧化碳等气体,均会对磷酸铁锂的合成反应产生较大影响,需要预先去除。该第二温度烧结装置340用于脱除锂源、磷源及铁源中的结晶水,并使碳源发生裂解反应。由于该第二炉管330中会产生大量气体,该排气口336设置在该第二炉管330的第二出粉端334可以迅速有效的排出有害气体,利于磷酸铁锂的合成。
该第二炉管330可以呈水平设置,该第一炉管230与第二炉管330可具有相同的管径,并无缝连通,保持气体密闭性。该保护性气体从第一炉管230输入至该第二炉管330。
该第二炉管330还可进一步包括一设置在管壁上的观察窗(图未标),便于用户对第二炉管330内部的粉体的状态进行观察。
该第二温度烧结***300还可进一步包括一压力检测装置(图未标)及气体检测装置(图未标),分别设置在该第二炉管330上,该压力检测装置用于检测炉管内部的气体压力,该气体检测装置用于检测炉管内部的气体组分。
该第三温度烧结***400包括第三传动装置410、第三粉体输运装置420、第三炉管430和第三温度烧结装置440。该第三炉管430包括第三进粉端432、第三出粉端434及第二进气口436。该第三炉管430的第三进粉端432与第二炉管330的第二出粉端334连通。
该第三温度烧结装置440的烧结温度可以为300℃~700℃,可以包括绕设在该第三炉管430外的电阻丝、包围在该电阻丝外的保温层及与该第三炉管430接触的热电偶,用于对加热温度进行探测及控制。
该第三粉体输运装置420通过该第三传动装置410驱动,将经过第二炉管330的粉体从该第三进粉端432不断输运至该第三出粉端434。该第三温度烧结装置440用于磷酸铁锂合成,使磷酸铁锂开始逐步成核并生长,且包覆在粉体表面碳源进一步碳化,形成导电碳层。
该第三炉管430可以呈水平设置。在一实施例中,该第三炉管430的第三进粉端432与第二炉管330的第二出粉端334之间可通过第一下料通道350连接,粉体经第一下料通道350直接从第二炉管330进入第三炉管430。在另一实施例中,该第二炉管330与第三炉管430可同轴设置并在端部无缝连通,从而形成直通并保持气体密闭性。该第二炉管330与第三炉管430可具有相同的管径。该保护性气体从该第二进气口436输入至该第三炉管430。该第二进气口436可设置在该第三炉管430的第三出粉端434附近。
该第三炉管430还可进一步包括一设置在管壁上的观察窗(图未标),便于用户对第三炉管430内部的粉体的状态进行观察。
该第三温度烧结***400还可进一步包括一压力检测装置(图未标)及气体检测装置(图未标),分别设置在该第三炉管430上,该压力检测装置用于检测炉管内部的气体压力,该气体检测装置用于检测炉管内部的气体组分。
该粉体冷却***500包括第四传动装置510、第四粉体输运装置520、第四炉管530及冷却装置540。该第四炉管530包括第四进粉端532、第四出粉端534及第三进气口536。该第四炉管530的第四进粉端532与第三炉管430的第三出粉端434连通。该第四出粉端534与该粉体输出***600相连。
该冷却装置540可以包括套设在该第四炉管530外的冷却水套管,该冷却水套管中含有不断循环的冷却水,用于给第四炉管530中的产物粉体降温。
该第四粉体输运装置520通过该第四传动装置510驱动,将经过第四炉管530的粉体从该第四进粉端532不断输运至该第四出粉端534。
该第四炉管530可以与水平呈一角度b,0°<b≤30°。在一实施例中,该第三炉管430的第三出粉端434与第四炉管530的第四进粉端532通过第二下料通道450连接,粉体经第二下料通道450直接从第三炉管430进入第四炉管530。在另一实施例中,该第三炉管430与第四炉管530可同轴设置并在端部无缝连通,从而形成直通并保持气体密闭性。该第三炉管430与第四炉管530可具有相同的管径。该保护性气体从该第三进气口536输入至该第四炉管530。该第三进气口536可设置在该第四炉管530的第四进粉端532附近。该得到的磷酸铁锂产物粉体通过该第四出粉端534进入该粉体输出***600。
该电路控制***700可以包括传动装置控制***710及炉管加热控制***720。该传动装置控制***710可以与该第一传动装置210、第二传动装置310、第三传动装置410及第四传动装置510连接,为传动装置提供电力。该炉管加热控制***720可以与该第二温度烧结装置340及第三温度烧结装置440连接,控制该烧结装置的烧结温度。
该气体控制***800与该第一进气口236、第二进气口436及第三进气口536相连。
该第一传动装置210、第二传动装置310、第三传动装置410及第四传动装置510为磁力耦合传动装置或机械传动装置。
该第一粉体输运装置220、第二粉体输运装置320、第三粉体输运装置420及第四粉体输运装置520分别为同轴设置在该第一炉管230、第二炉管330、第三炉管430及第四炉管530中的螺杆,该螺杆包括螺旋翼,可以通过转动带动粉体沿炉管的轴向前进,该螺旋翼的外径与所在炉管内径的比值在0.90至0.99。
该第一炉管230、第二炉管330、第三炉管430及第四炉管530可以为不锈钢管,横截面为圆环型,且该第一炉管230及第二炉管330的内壁具有表面涂覆层,防止粉体粘附在炉管的管壁上。该表面涂覆层的材料为聚四氟乙烯或陶瓷。
本实用新型实施例提供的磷酸铁锂制备装置具有以下特点:首先,具有“两端进气,中间出气”的设计,即在粉体脱水***200、第三温度烧结***400及粉体冷却***500进气,在第二温度烧结***300排出气体,可以避免第二温度烧结***300中产生的大量有害气体影响磷酸铁锂的合成。其次,从原料的输入到产品的输出采用不锈钢无缝钢管,在动力传动方面,采用磁力耦合传动装置,避免了接口处的漏气。再次,产品的一致性一直是困扰磷酸铁锂产品的重要难题,本实用新型实施例的磷酸铁锂制备装置控制粉体输运装置与炉管内壁的间隙,避免粉体在推进过程的残留问题,确保产品在同样的烧结条件下合成,大大提高了产品的一致性。并且,针对蔗糖等碳源粘壁的问题,对炉管内壁表面进行了防粘壁处理。另外,在制备过程中的杂质会影响磷酸铁锂容量等电化学性能,本装置采用不锈钢作为炉管的材料或者通过对炉管内壁进行陶瓷表面处理,避免了铁等金属杂质的引入。本实用新型提供的磷酸铁锂制备装置实现了产品大规模工业化生产,大大提高了磷酸铁锂产品的生产效率。
另外,本领域技术人员还可在本实用新型精神内做其他变化,当然,这些依据本实用新型精神所做的变化,都应包含在本实用新型所要求保护的范围之内。

Claims (10)

  1. 一种磷酸铁锂制备装置,其特征在于,包括粉体输入***、粉体脱水***、第二温度烧结***、第三温度烧结***、粉体冷却***、粉体输出***、电路控制***和气体控制***,
    该粉体脱水***包括第一传动装置、第一粉体输运装置、第一炉管及第一温度加热装置,该第一炉管包括第一进粉端、第一出粉端及靠近该第一进粉端的第一进气口,该第一进粉端与该粉体输入***相连;
    该第二温度烧结***包括第二传动装置、第二粉体输运装置、第二炉管及第二温度烧结装置,该第二炉管包括第二进粉端、第二出粉端及靠近第二出粉端的排气口,该第二炉管的第二进粉端与该第一炉管的第一出粉端直接连通;
    该第三温度烧结***包括第三传动装置、第三粉体输运装置、第三炉管和第三温度烧结装置,该第三炉管包括第三进粉端、第三出粉端及第二进气口,该第三炉管的第三进粉端与第二炉管的第二出粉端连通;
    该粉体冷却***包括第四传动装置、第四粉体输运装置、第四炉管及冷却装置,该第四炉管包括第四进粉端、第四出粉端及第三进气口,该第四炉管的第四进粉端与第三炉管的第三出粉端连通,该第四出粉端与该粉体输出***相连。
  2. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该第一传动装置、第二传动装置、第三传动装置及第四传动装置为磁力耦合传动装置或机械传动装置。
  3. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该第一炉管、第二炉管、第三炉管及第四炉管的横截面为圆环型,且该第一炉管及第二炉管的内壁具有表面涂覆层,该表面涂覆层的材料为聚四氟乙烯或陶瓷。
  4. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该第一粉体输运装置、第二粉体输运装置、第三粉体输运装置及第四粉体输运装置分别为同轴设置在该第一炉管、第二炉管、第三炉管及第四炉管中的螺杆,该螺杆包括螺旋翼,该螺旋翼的外径与所在炉管内径的比值在0.90至0.99。
  5. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该第二炉管及第三炉管为水平设置,该第一炉管与水平呈一角度a,0°<a≤30°。
  6. 如权利要求5所述的磷酸铁锂制备装置,其特征在于,该第四炉管与水平呈一角度b,0°<b≤30°。
  7. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该第三炉管的第三进粉端与第二炉管的第二出粉端通过第一下料通道连接,该第三炉管的第三出粉端与第四炉管的第四进粉端通过第二下料通道连接。
  8. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该冷却装置包括套设在该第四炉管外的冷却水套管。
  9. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该电路控制***该电路控制***包括传动装置控制***及炉管加热控制***,该传动装置控制***与该第一传动装置、第二传动装置、第三传动装置及第四传动装置连接,该炉管加热控制***与该第二温度烧结装置及第三温度烧结装置连接。
  10. 如权利要求1所述的磷酸铁锂制备装置,其特征在于,该气体控制***与该第一进气口、第二进气口及第三进气口相连。
PCT/CN2014/089739 2013-12-23 2014-10-28 磷酸铁锂制备装置 WO2015096550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320852541.8U CN203728581U (zh) 2013-12-23 2013-12-23 磷酸铁锂制备装置
CN201320852541.8 2013-12-23

Publications (1)

Publication Number Publication Date
WO2015096550A1 true WO2015096550A1 (zh) 2015-07-02

Family

ID=51198668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089739 WO2015096550A1 (zh) 2013-12-23 2014-10-28 磷酸铁锂制备装置

Country Status (2)

Country Link
CN (1) CN203728581U (zh)
WO (1) WO2015096550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213449A (zh) * 2021-04-22 2021-08-06 湖南阿斯米科技有限公司 锂离子电池石墨类负极材料/锂离子电池磷酸盐、三元正极材料连续反应处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203728581U (zh) * 2013-12-23 2014-07-23 江苏华东锂电技术研究院有限公司 磷酸铁锂制备装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092699A (zh) * 2009-12-11 2011-06-15 河南联合新能源有限公司 磷酸铁锂前驱体烧结制备磷酸铁锂方法及微波烧结设备
CN203728581U (zh) * 2013-12-23 2014-07-23 江苏华东锂电技术研究院有限公司 磷酸铁锂制备装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092699A (zh) * 2009-12-11 2011-06-15 河南联合新能源有限公司 磷酸铁锂前驱体烧结制备磷酸铁锂方法及微波烧结设备
CN203728581U (zh) * 2013-12-23 2014-07-23 江苏华东锂电技术研究院有限公司 磷酸铁锂制备装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213449A (zh) * 2021-04-22 2021-08-06 湖南阿斯米科技有限公司 锂离子电池石墨类负极材料/锂离子电池磷酸盐、三元正极材料连续反应处理方法

Also Published As

Publication number Publication date
CN203728581U (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN206783318U (zh) 一种可连续化生产石墨烯导热薄膜的设备
CN102072620A (zh) 一种用于电池极片的真空烘箱
WO2015096550A1 (zh) 磷酸铁锂制备装置
WO2015180543A1 (zh) 锂离子电池电极活性材料制备装置
CN207774811U (zh) 一种适用于锂电池石墨负极材料生产线的石墨化炉
CN201686500U (zh) 一种用于铀化学浓缩物煅烧的微波回转窑
CN107199008B (zh) 人造石墨前驱体二次造粒用高温反应装置及投料方法
CN203855414U (zh) 管式石墨化炉
CN107058977A (zh) 一种pecvd镀膜方法及装置
CN203432297U (zh) 一种推板式微波高温多用炉
CN102538450B (zh) 一种连续式高性能陶瓷纤维的制造设备
CN207163136U (zh) 一种干燥粉煤的回转反应器
CN109579517B (zh) 一种生产三元锂电材料的螺旋推进气氛烧结炉
CN106115663A (zh) 一种高纯度石墨蠕虫的低成本、大规模连续生产设备及工艺
CN206680187U (zh) 高效密封连续石墨化炉
CN202329206U (zh) 一种带有冷却装置的高温管式炉
CN209806109U (zh) 辐射管冷却装置
CN203550534U (zh) 一种微波辅助烧结炉
CN109250708B (zh) 一种光微波还原氧化石墨烯的***
CN202928339U (zh) 一种多用途微波高温推板窑
CN109368630B (zh) 一种用于石墨烯形成的***
CN102135377A (zh) 无氟化学溶液沉积法动态连续制备高温超导带材热处理炉
CN206781069U (zh) 一种连续化生产石墨烯导热膜的设备
CN102419075B (zh) 一种微波、蒸汽混合加热辊道干燥窑
CN202420127U (zh) 一种微波、蒸汽混合加热辊道干燥窑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875799

Country of ref document: EP

Kind code of ref document: A1