WO2015093894A1 - 음극 활물질 및 이를 포함하는 리튬 이차전지 - Google Patents

음극 활물질 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015093894A1
WO2015093894A1 PCT/KR2014/012585 KR2014012585W WO2015093894A1 WO 2015093894 A1 WO2015093894 A1 WO 2015093894A1 KR 2014012585 W KR2014012585 W KR 2014012585W WO 2015093894 A1 WO2015093894 A1 WO 2015093894A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
graphite
artificial graphite
electrode active
Prior art date
Application number
PCT/KR2014/012585
Other languages
English (en)
French (fr)
Inventor
이수민
정동섭
김은경
우상욱
신선영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140183434A external-priority patent/KR101790400B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL14872940T priority Critical patent/PL3086392T3/pl
Priority to JP2016516844A priority patent/JP6243012B2/ja
Priority to EP14872940.3A priority patent/EP3086392B1/en
Priority to CN201480053509.0A priority patent/CN105659417B/zh
Priority to US14/767,655 priority patent/US10177380B2/en
Publication of WO2015093894A1 publication Critical patent/WO2015093894A1/ko
Priority to US16/197,964 priority patent/US10964946B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material and a lithium secondary battery, and more particularly, to a negative electrode active material including natural graphite and mosaic cokes artificial graphite and a lithium secondary battery including the same.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • a carbon-based material As the negative electrode material of the lithium secondary battery, a carbon-based material is mainly used, and the carbon-based material includes crystalline carbon and amorphous carbon.
  • Crystalline carbon is typical of graphite carbon such as natural graphite and artificial graphite, and amorphous carbon is heat treated to non-graphitizable carbons (hard carbons) and pitch obtained by carbonizing a polymer resin.
  • Graphitizable carbons soft carbons).
  • soft carbons are made by applying 1000 levels of heat to coke, a by-product generated from crude oil refining process. Unlike conventional graphite anode active materials or hardened carbon-based anode active materials, soft carbons have high output and require time for charging. short.
  • Hard carbons may be prepared by carbonizing materials such as resin, thermosetting polymer, wood, and the like.
  • the cured carbon is used as a lithium secondary battery negative electrode material, the reversible capacity is superior to 400 mAh / g due to micropores, but the initial efficiency is about 70% or less, so it is irreversibly consumed when used as an electrode of a lithium secondary battery.
  • the disadvantage is that the amount of lithium is large.
  • spherical natural graphite has a limited ion conductivity, and when only the spherical natural graphite is used as a negative electrode active material, a void space is formed between the active material and the active material to increase the resistance of the electrode, thereby reducing the rate characteristic There is a problem.
  • the problem to be solved of the present invention is to provide a negative electrode active material that not only improves conductivity, but also reduces interfacial resistance and has excellent rate characteristics.
  • Another problem to be solved by the present invention is to provide a negative electrode having a specific orientation index and electrode density, and thereby a lithium secondary battery with improved performance by including the negative electrode active material.
  • a negative electrode active material comprising natural graphite and mosaic cokes-based artificial graphite.
  • a negative electrode including the negative electrode active material is provided.
  • the present invention provides a lithium secondary battery including a cathode, a cathode, and a separator interposed between the cathode and the anode using the anode.
  • the insertion / desorption of lithium ions more easily, and a conductive material is not used. Otherwise, even small amounts can increase the conductivity of the electrode.
  • the conductivity not only the rate characteristic of the lithium secondary battery may be further improved, but also the interface resistance may be reduced.
  • FIG. 1 shows a schematic diagram of a negative electrode active material according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a structure of graphite particles.
  • Figure 3 is a graph of the XRD measurement results of the mosaic coke-based artificial graphite used according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating measurement results of rate rate characteristics of lithium secondary batteries prepared in Example 3 and Comparative Example 4 according to an embodiment of the present disclosure.
  • Example 5 is a graph illustrating a result of measuring resistance of an electrode with respect to a negative electrode in a lithium secondary battery prepared in Example 3 and Comparative Example 4 according to an embodiment of the present invention.
  • the negative electrode active material according to the embodiment of the present invention may include natural graphite and mosaic cokes-based artificial graphite.
  • the negative electrode active material according to an embodiment of the present invention as shown in the schematic diagram shown in Figure 1, by containing natural graphite and mosaic coke-based artificial graphite is mixed together, compared to when using the natural graphite alone active material and active material By filling the empty space between the mosaic coke-based artificial graphite, the conductivity can be increased, thereby improving the rate characteristic of the secondary battery, the interface resistance can be reduced.
  • the mosaic coke-based artificial graphite is due to the random crystal structure of only the mosaic coke-based artificial graphite, it is easier to insert and detach the lithium ions can further improve the performance of the secondary battery.
  • the mosaic coke-based artificial graphite may serve as a conductive material by being included in the negative electrode active material together with the natural graphite, even if the conductive material is not used or the amount thereof is reduced, the mosaic coke-based artificial graphite is equivalent to or higher than the conventional negative electrode active material using the conductive material Can be represented.
  • the mosaic coke artificial graphite may be expressed due to the random crystal structure of the mosaic phase
  • lithium ion may be used as the needle coke artificial graphite having a plate or needle shape that can be generally used. It may be difficult to facilitate the insertion and desorption of, and thus it may be difficult to obtain the advantages of improving the rate characteristic or decreasing the interface resistance.
  • the mosaic coke-based artificial graphite included in the negative electrode active material according to an embodiment of the present invention is based on coal coke, for example, and when the polishing surface of the carbonized sample is observed with a polarization microscope, It may have an anisotropic texture shown as a mosaic texture.
  • the crystal structure of the anisotropic mosaic is random (random), when applied to a lithium secondary battery, insertion and desorption of lithium ions may be easier.
  • the average major axis length of the mosaic coke-based artificial graphite usable in accordance with an embodiment of the present invention may be, for example, 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 25 ⁇ m.
  • the initial efficiency of the battery may decrease due to an increase in specific surface area, thereby degrading battery performance, and when exceeding 30 ⁇ m, they may penetrate through the separator.
  • the capacity retention rate may be low.
  • the mosaic coke artificial graphite according to an embodiment of the present invention has a specific surface area of 3.0 / g to 4.0 / g, the compression density of 1.5 g / cc to 2.1 g / cc under a pressure of 8 mPa to 25 mPa It is preferable to have.
  • the compression density When the compression density is less than 1.5 g / cc, the energy density per unit volume may decrease, and when the compression density exceeds 2.1 g / cc, it may cause a decrease in initial efficiency and deterioration of high temperature characteristics, and may also decrease the adhesion of the electrode. have.
  • the mosaic coke artificial graphite has a Lc (002) of 21.6 nm to 21.9 nm, which is the size of the crystallite in the C-axis direction, and the surface spacing d 002 of the (002) plane is 0.3377 nm or less, preferably 0.3357. It is preferred that it is a crystalline phase of nm to 0.3377 nm, most preferably 0.3376 nm.
  • D 002 of the mosaic coke-based artificial graphite is obtained by obtaining a graph of two values measured using XRD, and the peak position of the graph can be obtained by the integration method, and it can be calculated by the following equation (1) by the Bragg formula.
  • crystallite size Lc of the mosaic coke-based artificial graphite can calculate the crystallite size Lc (002) in the C-axis direction of the particle by the equation of Scherrer of Equation 2 below.
  • the mosaic coke-based artificial graphite may have a crystallite size Lc (002) of 21.6 nm to 21.9 nm in the C-axis direction when measured by XRD using CuK.
  • Lc crystallite size
  • the electrical conductivity is excellent and the diffusion rate of lithium ions is faster, so that insertion and desorption of lithium ions may occur more easily.
  • Lc is greater than 21.9 nm, the movement distance of lithium ions may be increased to act as a resistance, thereby lowering output characteristics, and when less than 21.6 nm, it may be difficult to express a capacity inherent in graphite.
  • the negative electrode active material according to an embodiment of the present invention preferably comprises natural graphite together with the mosaic coke-based artificial graphite.
  • natural graphite exhibits high voltage flatness and high capacity close to the theoretical capacity at low cost, and thus has high utility as an active material.
  • the natural graphite may be used in the form of a plate or a sphere, spherical natural graphite may be preferred.
  • the content ratio of the natural graphite and mosaic coke artificial graphite is preferably 1: 0.1 to 1: 1 weight ratio, preferably 1: 0.3 to 1: 1 weight ratio. .
  • the weight of the mosaic coke artificial graphite exceeds the above range, the mosaic coke-based artificial graphite is covered with an excessive amount of natural graphite, there is a problem that the specific surface area is increased to increase the decomposition reaction of the electrolyte, If it is less than the range, the conductivity may be degraded because the void space between the natural graphite cannot be filled as a whole.
  • the natural graphite may use an average particle diameter (D 50 ) of 5 to 30, preferably 20 to 25.
  • D 50 average particle diameter of the spherical natural graphite
  • the initial efficiency of the secondary battery may decrease due to an increase in specific surface area, thereby degrading battery performance, and when the average particle diameter (D 50 ) exceeds 30 They may penetrate the separator and cause a short circuit. Since the filling density is low, the capacity retention rate may be low.
  • the average particle diameter of natural graphite according to an embodiment of the present invention may be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the average particle diameter (D 50 ) of the natural graphite may be defined as the particle size based on 50% of the particle size distribution.
  • a method for measuring the average particle diameter (D 50 ) of natural graphite is, for example, after dispersing natural graphite in a solution of ethanol / water, a commercially available laser diffraction particle size measuring apparatus (eg Microtrac MT 3000), and irradiated with an ultrasonic wave of about 28 kHz at an output of 60 W, the average particle diameter D 50 at the 50% reference of the particle size distribution in the measuring device can be calculated.
  • a commercially available laser diffraction particle size measuring apparatus eg Microtrac MT 3000
  • the spherical natural graphite satisfying the average particle size range of the natural graphite is introduced into the spheronization apparatus (Nara Hybridization System, NHS-2), for example, the rotor speed (rotor speed) can be obtained by spheroidizing for about 30 m / s to 100 m / s, 10 minutes to 30 minutes, but is not limited thereto.
  • the spheronization apparatus Naara Hybridization System, NHS-2
  • the rotor speed rotor speed
  • the rotor speed can be obtained by spheroidizing for about 30 m / s to 100 m / s, 10 minutes to 30 minutes, but is not limited thereto.
  • the natural graphite has a specific surface area (BET-SSA) of 2 m 2 / g to 8 m 2 / g. If the specific surface area of the natural graphite is less than 2 m 2 / g, the adhesion between the electrodes may be lowered, and if it exceeds 8 m 2 / g is preferable because it leads to an increase of the initial irreversible capacity during charging and discharging not.
  • BET-SSA specific surface area
  • the specific surface area may be measured by Brunauer-Emmett-Teller (BET) method.
  • BET Brunauer-Emmett-Teller
  • it can be measured by BET 6-point method by nitrogen gas adsorption distribution method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • the manufacturing method of the negative electrode active material according to an embodiment of the present invention may include mixing natural graphite and mosaic coke-based artificial graphite.
  • the mixing method for producing the negative electrode active material may be mixed by simple mixing or mechanical milling using conventional methods known in the art. For example, it is possible to simply mix by using a mortar, or to rotate at a rotational speed of 100 to 1000rpm using a blade or ball mill to mechanically apply compressive stress to form a carbon composite.
  • a negative electrode including a current collector and the negative electrode active material formed on at least one surface of the current collector may be provided using the negative electrode active material.
  • the negative electrode according to an embodiment of the present invention includes a natural graphite and mosaic coke artificial graphite in the negative electrode active material, so that the orientation index (I110 / I004) at a compression density of 1.40 g / cc to 1.85 g / cc is 0.08 to 0.086 , Preferably 0.0819 to 0.0836.
  • the orientation index of the negative electrode due to the use of the mosaic coke-based artificial graphite it is possible to further improve the performance of the lithium secondary battery.
  • the orientation index of the negative electrode due to the use of the mosaic coke-based artificial graphite it is possible to further improve the performance of the lithium secondary battery.
  • the index of orientation of the negative electrode may depend on the compressive force applied when the negative electrode active material is coated and rolled on the negative electrode current collector.
  • the orientation index may be measured by, for example, X-ray diffraction (XRD).
  • Orientation index of the negative electrode according to an embodiment of the present invention is the negative electrode, more specifically, the (110) and (004) plane of the negative electrode active material included in the negative electrode after the XRD of the (110) and (004) plane It is the area ratio (110) / (004) obtained by integrating peak intensity. More specifically, XRD measurement conditions are as follows.
  • Measuring zone and step angle / measuring time Measuring zone and step angle / measuring time:
  • (004) plane 53.5 degrees ⁇ 2 ⁇ ⁇ 56.0 degrees, 0.01 degrees / 3 seconds, where 2 ⁇ represents the diffraction angle.
  • the XRD measurement is one example, other measurement methods may also be used, and the orientation index of the negative electrode may be measured by the above method.
  • the negative electrode according to an embodiment of the present invention can be prepared by conventional methods known in the art.
  • a negative electrode may be manufactured by mixing and stirring a solvent in a negative electrode active material and, if necessary, a binder to prepare a slurry, and then applying the coating (coating) to a current collector of a metal material, compressing the same, and drying the same.
  • the negative electrode active material slurry may further include a conductive material.
  • Available conductive materials include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon nanotube, fullerene, carbon fiber, metal fiber, carbon fluoride, aluminum, nickel It may be any one selected from the group consisting of powder, zinc oxide, potassium titanate, titanium oxide and polyphenylene derivatives, or a mixture of two or more thereof, and preferably carbon black.
  • the positive electrode according to the present invention may be manufactured by a conventional method in the art similar to the negative electrode.
  • a binder and a solvent, and a conductive material and a dispersant may be mixed and stirred in the positive electrode active material of the present invention to prepare a slurry, and then coated on a current collector and compressed to prepare an electrode.
  • the binder used in the present invention is used to bind the positive electrode active material and the negative electrode active material particles to maintain the molded body, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), styrene-butadiene rubber (styrene binders such as butadiene rubber (SBR).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR butadiene rubber
  • the binder is any one selected from the group consisting of a solvent-based binder represented by polyvinylidene (PVdF) (that is, a binder having an organic solvent as a solvent), acrylonitrile-butadiene rubber, styrene-butadiene rubber, and acrylic rubber Or an aqueous binder (that is, a binder having water as a solvent) which is a mixture of two or more of them.
  • PVdF polyvinylidene
  • acrylonitrile-butadiene rubber acrylonitrile-butadiene rubber
  • styrene-butadiene rubber styrene-butadiene rubber
  • acrylic rubber an aqueous binder
  • an aqueous binder that is, a binder having water as a solvent which is a mixture of two or more of them.
  • Aqueous binders unlike solvent binders, are economical, environmentally friendly, harmless to the health of workers, and have a greater binding effect
  • a lithium-containing transition metal oxide commonly used in the art may be preferably used.
  • the lithium-containing transition metal oxide may be coated with a metal or metal oxide such as aluminum (Al).
  • sulfides, selenides, and halides may be used in addition to the lithium-containing transition metal oxides.
  • a lithium secondary battery having a separator and an electrolyte interposed between the positive electrode and the negative electrode which is commonly used in the art, may be manufactured using the electrode.
  • the lithium salt that may be included as an electrolyte may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO
  • the organic solvent included in the electrolyte solution those conventionally used in the electrolyte solution for lithium secondary batteries may be used without limitation.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • Natural graphite particles having an average particle diameter of 100 ⁇ m were introduced into a spherical hybridization apparatus (Nara Hybridization System, NHS-2), spheroidized at a rotor speed of 65 m / sec for 10 minutes, and an average particle diameter (D 50 ) of 20 ⁇ m.
  • Mosaic coke artificial graphite having a long axis length of about 20 ⁇ m and a specific density of 1.7 g / cc to 1.8 g / cc under a pressure of 3 m 2 / g to 4 m 2 / g and 12 mPa to 16 mPa ( Hitachi Chemical, MAGE3) was used.
  • the spherical natural graphite and mosaic coke-based artificial graphite were mixed at a weight ratio of 1: 0.3, and uniformly stirred using mortar to prepare a negative electrode active material.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that the spherical natural graphite and mosaic coke-based artificial graphite were mixed in a weight ratio of 1: 1.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 100% of spherical natural graphite was used without using a mosaic coke-based artificial graphite.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that the spherical natural graphite and mosaic coke-based artificial graphite were mixed at a weight ratio of 1: 0.05.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that the spherical natural graphite and mosaic coke artificial graphite were mixed in a weight ratio of 1.2.
  • the negative electrode active material obtained in Example 1, SBR (styrene-butadiene rubber) as a binder, CMC (carboxy methyl cellulose) as a thickener and acetylene black as a conductive material in a weight ratio of 95: 2: 2: 1, and these are solvent Mixing with water (H 2 O) produced a uniform negative electrode slurry.
  • the prepared negative electrode slurry was coated on one surface of a copper current collector to a thickness of 65 ⁇ m, dried and rolled, and then punched to a required size to prepare a negative electrode.
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in a volume ratio of 30:70, and LiPF 6 was added to the nonaqueous electrolyte solvent to prepare a 1M LiPF 6 nonaqueous electrolyte.
  • a lithium metal foil was used as a counter electrode, that is, a positive electrode, a polyolefin separator was interposed between both electrodes, and the electrolyte was injected to prepare a coin-type half cell.
  • a negative electrode and a lithium secondary battery were manufactured in the same manner as in Example 3, except that the negative electrode active material prepared in Example 2 was used.
  • a negative electrode and a lithium secondary battery were manufactured in the same manner as in Example 3, except that the negative electrode active materials prepared in Comparative Examples 1 to 3 were used.
  • a negative electrode and a lithium secondary battery were manufactured in the same manner as in Example 3, except that the negative electrode active material prepared in Example 2 was used and no conductive material was added during the preparation of the negative electrode.
  • Example 5 In the same manner as in Example 5, except that needle coke artificial graphite was mixed with natural graphite in a weight ratio of 1: 1, instead of mosaic coke artificial graphite, and a conductive material was not added in the preparation of the negative electrode. A negative electrode and a lithium secondary battery were prepared.
  • XRD diffraction measurements using Cu (K-rays) were performed on the cathodes prepared in Example 3 and Comparative Example 4.
  • the orientation index is obtained by measuring the (110) and (004) planes of the negative electrode active material included in the negative electrode by XRD and then integrating the peak intensities of the (110) plane and (004) plane ((110) / (004) ) More specifically, XRD measurement conditions are as follows.
  • Measuring zone and step angle / measuring time Measuring zone and step angle / measuring time:
  • (004) plane 53.5 degrees ⁇ 2 ⁇ ⁇ 56.0 degrees, 0.01 degrees / 3 seconds, where 2 ⁇ represents the diffraction angle.
  • crystallite size Lc of the mosaic coke-based artificial graphite can calculate the crystallite size Lc (002) in the C-axis direction of the particle by the equation of Scherrer of Equation 2 below.
  • the mosaic coke artificial graphite has Lc (002) of 21.6 nm to 21.9 nm, which is the size of crystallites in the C-axis direction at the time of XRD measurement, and the plane spacing d 002 of the (002) plane is 0.3376 nm.
  • the crystalline phase is shown.
  • Rate characteristics of the lithium secondary batteries obtained in Examples 3 and 4 and Comparative Examples 4 to 6 in a voltage range of 0 V to 1.5 V at room temperature were measured.
  • the battery was charged under 0.1 C constant current / constant voltage (CC / CV) conditions up to 1.5 V, then discharged in constant current mode until the current reached 0.1 C at 5 mV, and then finished.
  • CC / CV constant current / constant voltage
  • Example 1 was mixed with natural graphite and mosaic coke-based artificial graphite. It can be seen that the lithium secondary battery of Example 3 using the negative electrode active material has improved rate characteristics about 5 to 10% compared to the lithium secondary battery of Comparative Example 4 using the negative electrode active material of Comparative Example 1, which does not use the mosaic coke system. have.
  • the lithium secondary batteries of Examples 3 and 4 and Comparative Examples 5 and 6 were used in a voltage range of 0 V to 1.5 V at room temperature.
  • the rate-rate characteristics of 0.2C, 0.5C, and 1C were compared, respectively, and the results are shown in Table 1 below.
  • Negative electrode active material (weight ratio of natural graphite: mosaic coke-based artificial graphite) Rate characteristics 0.2C 0.5C 1C
  • Example 3 1: 0.3 100% 97.5% 81.2%
  • Example 4 1: 1 100% 98.6% 89.7%
  • Comparative Example 6 1: 0.05 100% 95.9% 76.7%
  • Comparative Example 7 1: 1.2 100% 94.8% 75.8%
  • the rate characteristic during charging and discharging of the lithium secondary batteries of Example 5 and Comparative Example 8 was evaluated. Charging measures the rate of charging to 0.005 V at 0.2C constant current / constant voltage (CC / CV), 0.2C constant current, 0.5C constant current and 1.0C constant current, respectively, and discharge ranges from 0.005 V to 1.5 V at room temperature. At 0.2C, 0.5C, 1C and 2C at the rate of discharge was measured, respectively, the results are shown in Table 2 below.
  • Example 5 using a negative electrode active material in which spherical natural graphite and mosaic coke artificial graphite were mixed in a range of 1: 1 by weight, the natural graphite: needle coke artificial graphite 1: It can be seen that the rate characteristic at the time of charging is about 5 to 10% superior to the comparative example 8 mixed in 1 weight ratio, and the rate characteristic at the time of discharge is about 10 to 15% excellent.
  • the electrode resistance after long-term charge and discharge of the lithium secondary battery of Example 3 using the negative electrode containing spherical natural graphite and mosaic coke artificial graphite and the lithium secondary battery of Comparative Example 4 using the negative electrode containing only spherical natural graphite for a long time was measured.
  • the results are shown in FIG. Measurement conditions are as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 천연 흑연과 모자이크 코크스(Mosaic cokes)계 인조 흑연을 포함하는 것을 특징으로 하는 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명의 일 실시예에 따르면, 천연 흑연과 모자이크 코크스계 인조 흑연을 포함하는 음극 활물질을 사용함으로써, 리튬 이차전지에 적용할 경우 리튬 이온의 삽입 및 탈리를 더욱 용이하게 하며, 도전재를 사용하지 않거나, 적은 양을 사용하여도 전극의 도전성을 증가시킬 수 있다. 또한, 상기 도전성 증가에 의해 리튬 이차전지의 율속 특성을 더욱 향상시킬 수 있을 뿐만 아니라, 계면 저항을 감소시킬 수 있다.

Description

음극 활물질 및 이를 포함하는 리튬 이차전지
본 발명은 음극 활물질 및 리튬 이차전지에 관한 것으로, 더욱 구체적으로는 천연 흑연과 모자이크 코크스(Mosaic cokes)계 인조 흑연을 포함하는 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화됨에 따라, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지의 음극 재료는 주로 탄소계 물질이 사용되고 있으며, 상기 탄소계 물질은 결정질 탄소와 비정질 탄소가 있다. 결정질 탄소는 천연 흑연과 인조 흑연과 같은 흑연질(graphite) 탄소가 대표적이며, 비정질 탄소는 고분자 수지를 탄화시켜서 얻는 난흑연화성 탄소(non-graphitizable carbons, hard carbons)와, 핏치(pitch)를 열처리하여 얻는 이흑연화성 탄소(graphitizable carbons, soft carbons) 등이 있다.
일반적으로 연화 탄소(soft carbons)는 원유 정제과정에서 발생하는 부산물인 코크스에 1000 수준의 열을 가해 만든 것으로서, 기존의 흑연 음극 활물질이나 경화 탄소계 음극 활물질과는 달리 출력이 높고 충전에 필요한 시간이 짧다.
한편, 경화 탄소(hard carbons)는 레진(resin), 열경화성 고분자, 목재 등과 같은 물질을 탄화하여 제조될 수 있다. 이러한 경화 탄소를 리튬 이차전지 음극 재료로 사용할 경우, 미세기공으로 인해 가역 용량이 400 mAh/g 이상으로 우수하지만 초기 효율이 약 70% 내외로 작기 때문에, 리튬 이차전지의 전극으로 사용될 경우 비가역적으로 소모되는 리튬의 양이 많다는 단점이 있다.
이러한 비가역이 생기는 원인은, 충전시에 전극의 표면에서 전해질이 분해 반응하여 표면 피막인 SEI(solid electrolyte interphase)가 생성되는 것에 기인하는 경우와, 충전시에 탄소입자 내에 저장된 리튬이 방전시에 방출되지 못하는 것에 기인하는 경우가 있다. 이중 보다 문제가 되는 것은 전자의 경우로서, 표면 피막의 생성이 주요한 비가역의 원인으로 알려져 있다.
또한, 상기 고용량의 흑연 재료의 대부분은 층상 구조가 고도로 발달되어 있어 흑연화도가 높고, 플레이크 형상을 취하는 것이 알려져 있다. 그리고 이와 같은 플레이크 형상 흑연은, 그 층 사이에 Li 이온이 침입하는 부위, 즉 에지면이 적기 때문에, 이 플레이크 형상 흑연을 리튬 이차전지의 음극 활물질에 사용한 경우, 대전류로 방전한 경우의 특성, 즉, 고율 방전특성이 나빠진다는 문제가 있다.
또한, 구형의 천연 흑연은 한정된 이온 전도도를 가지며, 상기 구형의 천연 흑연만을 음극 활물질로 사용하는 경우 활물질과 활물질간의 빈 공간이 형성되어 전극의 저항을 증가시키는 단점을 가지며, 이로 인해 율속 특성이 저하되는 문제가 있다.
따라서, 종래의 음극 활물질을 대체할 수 있고, 리튬 이차전지에 적용시 계면 저항을 감소시키고 율속 특성을 개선시킬 수 있는 음극 활물질의 개발이 요구되고 있다.
본 발명의 해결하고자 하는 과제는 도전성이 개선될 뿐만 아니라, 계면 저항을 감소시키고, 우수한 율속(rate) 특성을 갖는 음극 활물질을 제공하는 것이다.
또한, 본 발명의 해결하고자 하는 또 다른 과제는 상기 음극 활물질을 포함함으로써, 특정 배향지수 및 전극 밀도를 갖는 음극, 및 이로 인해 성능이 향상된 리튬 이차전지를 제공하는 것이다.
본 발명이 해결하려는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 천연 흑연과 모자이크 코크스(Mosaic cokes)계 인조 흑연을 포함하는 것을 특징으로 하는 음극 활물질을 제공한다.
또한, 본 발명의 일 실시예에 따르면, 상기 음극 활물질을 포함하는 음극을 제공한다.
나아가, 본 발명은 상기 음극을 사용하여 양극, 음극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따르면, 천연 흑연과 모자이크 코크스계 인조 흑연을 포함하는 음극 활물질을 사용함으로써, 리튬 이차전지에 적용할 경우 리튬 이온의 삽입/탈리를 더욱 용이하게 하며, 도전재를 사용하지 않거나, 적은 양을 사용하여도 전극의 도전성을 증가시킬 수 있다. 또한, 상기 도전성 증가에 의해 리튬 이차전지의 율속 특성을 더욱 향상시킬 수 있을 뿐만 아니라, 계면 저항을 감소시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 음극 활물질의 모식도를 나타낸 것이다.
도 2는 흑연 입자의 구조를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따라 사용된 모자이크 코크스계 인조 흑연의 XRD 측정 결과 그래프이다.
도 4는 본 발명의 일 실시예에 따른 실시예 3 및 비교예 4에서 제조된 리튬 이차전지의 율속 특성 측정 결과 그래프이다.
도 5는 본 발명의 일 실시예에 따른 실시예 3 및 비교예 4에서 제조된 리튬 이차전지에 있어서, 음극에 대한 전극의 저항 측정 결과 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 음극 활물질은 천연 흑연 및 모자이크 코크스(Mosaic cokes)계 인조 흑연을 포함할 수 있다.
더욱 구체적으로, 본 발명의 일 실시예에 따른 음극 활물질은 도 1에 나타낸 모식도와 같이, 천연 흑연과 모자이크 코크스계 인조 흑연이 함께 혼합되어 포함됨으로써, 천연 흑연을 단독으로 사용하였을 때에 비해 활물질과 활물질간의 빈 공간을 모자이크 코크스계 인조 흑연이 채워줌으로써, 도전성이 증가될 수 있고, 이로 인해 이차전지의 율속 특성이 향상되며, 계면 저항이 감소될 수 있다.
또한, 상기 모자이크 코크스계 인조 흑연은 모자이크 코크스계 인조 흑연만이 갖는 랜덤한 결정구조로 인해, 리튬 이온의 삽입 및 탈리가 더욱 용이하여 이차전지의 성능을 더욱 향상시킬 수 있다. 뿐만 아니라, 상기 모자이크 코크스계 인조 흑연은 천연 흑연과 함께 음극 활물질에 포함됨으로써 도전재의 역할을 할 수 있으므로, 도전재를 사용하지 않거나, 그 사용량을 줄여도 종래의 도전재를 사용한 음극 활물질과 동등 이상의 도전성을 나타낼 수 있다.
나아가, 상기 모자이크 코크스계 인조 흑연은 모자이크상이 갖는 상기와 같은 랜덤한 결정 구조로 인해 특성이 발현될 수 있기 때문에, 일반적으로 사용될 수 있는 판상 또는 침상의 형상을 갖는 니들 코크스계 인조 흑연으로는 리튬 이온의 삽입 및 탈리를 용이하게 해 주기 어려울 수 있으며, 그에 따라 율속 특성의 향상 또는 계면 저항의 감소라는 장점을 얻기 어려울 수 있다.
구체적으로 살펴보면, 본 발명의 일 실시예에 따른 음극 활물질에 포함되는 모자이크 코크스계 인조 흑연은, 예를 들어 석탄 코크스를 원료로 한 것으로서, 탄화 시료의 연마면을 편광 현미경으로 관찰하였을 경우 모자이크상(mosaic texture)으로 보이는 이방성 조직을 가질 수 있다. 또한, 상기 모자이크상의 이방성 조직은 그 결정 구조가 랜덤(random)하므로, 리튬 이차전지에 적용할 경우, 리튬 이온의 삽입 및 탈리가 더욱 용이할 수 있다.
본 발명의 일 실시예에 따라 사용 가능한 모자이크 코크스계 인조 흑연의 평균 장축길이는 예를 들어, 5 ㎛ 내지 30 ㎛, 바람직하게는 10 ㎛ 내지 25 ㎛일 수 있다.
상기 모자이크 코크스계 인조 흑연의 장축길이가 5 ㎛ 미만인 경우, 비표면적 증가로 인해 전지의 초기 효율이 감소하여 전지 성능이 저하될 수 있고, 30 ㎛를 초과할 경우 이들이 세퍼레이터를 관통하여 단락을 일으킬 우려가 있으며, 충진 밀도가 낮으므로 용량 보유율이 낮을 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 모자이크 코크스계 인조 흑연은 3.0 /g 내지 4.0 /g의 비표면적을 갖고, 8 mPa 내지 25 mPa의 압력하에서 1.5 g/cc 내지 2.1 g/cc의 압축 밀도를 갖는 것이 바람직하다.
상기 압축 밀도가 1.5 g/cc 미만이면 단위 부피당 에너지 밀도가 감소할 수 있으며, 2.1 g/cc를 초과하는 경우 초기 효율의 감소와 고온 특성의 열화를 야기할 수 있으며, 전극의 접착력 감소도 있을 수 있다.
또한, 상기 모자이크 코크스계 인조 흑연은 XRD 측정시 C축 방향의 결정자의 크기인 Lc(002)가 21.6 nm 내지 21.9 nm이고, (002)면의 면간격 d002가 0.3377 nm 이하, 바람직하게는 0.3357 nm 내지 0.3377 nm, 가장 바람직하게는 0.3376 nm인 결정성상인 것이 바람직하다.
상기 모자이크 코크스계 인조 흑연의 d002는 XRD를 이용하여 측정한 2값의 그래프를 얻어 그래프의 피크 위치를 적분법에 의해 구하여 Bragg 공식에 의해 하기 수학식 1에 의해 계산할 수 있다.
<수학식 1>
d002 = λ/2sinθ
또한, 모자이크 코크스계 인조 흑연의 결정자 크기(Lc)는 하기 수학식 2의 Scherrer의 식에 의해 입자의 C축 방향의 결정자 크기 Lc(002)를 계산할 수 있다.
<수학식 2>
Figure PCTKR2014012585-appb-I000001
K = Scherrer 상수 (K=0.9)
β = 반가폭
λ = 파장 (0.154056nm)
θ = 최대 피크에서의 각
본 발명의 일 실시예에 따르면, 상기 모자이크 코크스계 인조 흑연은 CuK를 이용하여 XRD 측정시 C축 방향의 결정자 크기인 Lc(002)가 21.6 nm 내지 21.9 nm일 수 있다. 상기 모자이크 코크스계 인조 흑연의 Lc가 상기 범위 내에 있을 경우, 전기 전도도가 우수하여 리튬 이온의 확산 속도가 보다 빨라, 리튬 이온의 삽입 및 탈리가 보다 용이하게 일어날 수 있다. 만약, Lc가 21.9 nm를 초과하는 경우, 리튬 이온의 이동 거리가 멀어져 저항으로 작용하여 출력 특성 저하가 발생할 수 있고, 21.6 nm 미만인 경우 흑연 고유의 용량을 발현하기 어려울 수 있다.
한편, 본 발명의 일 실시예에 따른 음극 활물질은 상기 모자이크 코크스계 인조 흑연과 함께 천연 흑연을 포함하는 것이 바람직하다.
인조 흑연의 경우, 충방전 효율은 높지만 비용이 고가일 뿐만 아니라, 수계 슬러리 내에서는 분산성이 매우 낮아 공정성 면에서 어려움이 있고, 용량이 낮아 원하는 수준의 전지의 물성 특성을 얻기 어렵다.
이에 반해, 천연 흑연은 저가이면서도 우수한 전압 평탄성 및 이론 용량에 가까운 고용량을 나타내므로 활물질로서의 효용성이 높다.
본 발명의 일 실시예에 따르면, 상기 천연 흑연은 판상 또는 구형 모두를 사용할 수 있지만, 구형의 천연 흑연이 바람직할 수 있다.
본 발명의 일 실시예에 따른 음극 활물질에 있어서, 상기 천연 흑연과 모자이크 코크스계 인조 흑연의 함량비는 1 : 0.1 내지 1 : 1 중량비, 바람직하게는 1 : 0.3 내지 1 : 1 중량비인 것이 바람직하다.
이때, 상기 모자이크 코크스계 인조 흑연의 중량이 상기 범위를 초과할 경우, 상기 모자이크 코크스계 인조 흑연이 천연 흑연에 과량으로 덮여있어 비표면적이 증가하여 전해액의 분해 반응이 커지는 문제가 있을 수 있고, 상기 범위 미만일 경우 천연 흑연 사이의 빈 공간을 전체적으로 채울 수 없기 때문에 도전성이 저하될 수 있다.
본 발명의 일 실시예에 따르면, 상기 천연 흑연은 평균 입경(D50)이 5 내지 30 , 바람직하게는 20 내지 25 인 것을 사용할 수 있다. 상기 구형의 천연 흑연의 평균 입경(D50)이 5 미만인 경우, 비표면적 증가로 인해 이차전지의 초기 효율이 감소하여 전지 성능이 저하될 수 있고, 평균 입경(D50)이 30 를 초과할 경우 이들이 세퍼레이터를 관통하여 단락을 일으킬 우려가 있으며, 충진 밀도가 낮으므로 용량 보유율이 낮을 수 있다.
본 발명의 일 실시예에 따른 천연 흑연의 평균 입경은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다. 상기 천연 흑연의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다.
본 발명의 일 실시예에 따른, 천연 흑연의 평균 입경(D50)의 측정 방법은 예를 들면, 천연 흑연을 에탄올/물의 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
본 발명의 일 실시예에 따르면, 상기 천연 흑연의 평균 입경 범위를 만족하는 구형의 천연 흑연은 천연 흑연 입자를 구형화 장치(Nara Hybridization System, NHS-2)에 도입하여, 예를 들어 로터 속도(rotor Speed) 약 30 m/초 내지 100 m/초, 10분 내지 30분 정도 동안 구형화 시킴으로써 얻을 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 일 실시예에 따르면, 상기 천연 흑연은 비표면적(BET-SSA)이 2 m2/g 내지 8 m2/g 인 것이 바람직하다. 상기 천연 흑연의 비표면적이 2 m2/g 미만인 경우, 전극간의 접착력이 저하될 수 있으며, 8 m2/g를 초과하는 경우 충방전시에 있어서의 초기 비가역 용량의 증가를 초래하기 때문에 바람직하지 않다.
본 발명의 일 실시예에 따르면, 상기 비표면적은 BET(Brunauer-Emmett-Teller; BET)법으로 측정할 수 있다. 예를 들어, 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 음극 활물질의 제조방법은 천연 흑연과 모자이크 코크스계 인조 흑연을 혼합하는 단계를 포함할 수 있다.
본 발명의 음극 활물질의 제조방법에 있어서, 상기 음극 활물질을 제조하기 위한 혼합 방법은 당 분야에서 공지된 통상의 방법을 이용하여 단순 혼합 또는 기계적 밀링에 의해 혼합 할 수 있다. 예를 들어, 단순하게 모르타르(mortar)를 이용하여 혼합하거나, 블레이드 또는 볼밀을 사용하여 회전수 100 내지 1000rpm으로 회전시켜 기계적으로 압축응력을 가하여 탄소 복합체를 형성할 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질을 사용하여, 집전체, 및 상기 집전체의 적어도 일면에 형성된 상기 음극 활물질을 포함하는 음극을 제공할 수 있다.
본 발명의 일 실시예에 따른 음극은 음극 활물질에 천연 흑연과 모자이크 코크스계 인조 흑연을 함께 포함함으로써, 1.40 g/cc 내지 1.85 g/cc의 압축 밀도에서 배향 지수(I110/I004)가 0.08 내지 0.086, 바람직하게는 0.0819 내지 0.0836일 수 있다.
본 발명의 일 실시예에 따르면, 상기 모자이크 코크스계 인조 흑연의 사용으로 인해 음극의 배향 지수를 조절함으로써, 리튬 이차전지의 성능을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 모자이크 코크스계 인조 흑연의 사용으로 인해 음극의 배향 지수를 조절함으로써, 리튬 이차전지의 성능을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극의 배향 지수는 상기 음극 활물질을 음극 집전체에 도포압연할 때 가하여 지는 압축력에 의존할 수 있다.
본 발명의 일 실시예에 따른 음극에 있어서, 상기 배향 지수는 예를 들어, X-선 회절(XRD)로 측정될 수 있다.
본 발명의 일실시예에 따른 음극의 배향 지수는 음극, 보다 구체적으로 음극에 포함된 음극 활물질의 (110)면과 (004)면을 XRD로 측정한 후 (110)면과 (004)면의 피크 강도를 적분하여 얻어진 면적비((110)/(004))이다. 더욱 구체적으로, XRD 측정 조건은 다음과 같다.
- 타겟: Cu(Kα-선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1, 산란 슬릿 = 1도
- 측정 구역 및 스텝 각도/측정 시간:
(110) 면: 76.5 도 < 2θ < 78.5도, 0.01도 / 3초
(004) 면: 53.5 도 < 2θ < 56.0도, 0.01도 / 3초, 여기서 2θ는 회절 각도를 나타낸다. 상기 XRD 측정은 하나의 예로서, 다른 측정 방법 또한 사용될 수 있으며, 상기와 같은 방법으로 음극의 배향 지수를 측정할 수 있다.
본 발명의 일 실시예에 따른 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 상기 음극 활물질에 용매, 필요에 따라 바인더를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 음극을 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질 슬러리는 도전재를 더 포함할 수 있다. 사용 가능한 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소 나노튜브, 플러렌, 탄소 섬유, 금속 섬유, 불화 카본, 알루미늄, 니켈 분말, 산화 아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으며, 바람직하게는 카본블랙일 수 있다.
또한, 본 발명에 따른 양극도 상기 음극과 마찬가지로 당 분야의 통상적인 방법으로 제조될 수 있다.
예를 들면, 본 발명의 양극 활물질에 바인더와 용매, 필요에 따라 도전재와 분산제를 혼합 및 교반하여 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 전극을 제조할 수 있다.
본 발명에 사용되는 바인더로는 양극 활물질 및 음극 활물질 입자들을 결착시켜 성형체를 유지하기 위하여 사용되는 것으로서, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF), 스티렌-부타디엔 고무(styrene-butadiene rubber; SBR) 등과 같은 바인더가 사용된다. 바인더는 폴리비닐리덴(PVdF)으로 대표되는 용제계 바인더(즉, 유기용제를 용매로 하는 바인더)와, 아크릴로나이트릴-부타디엔고무, 스티렌-부타디엔 고무 및 아크릴 고무로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 수계 바인더(즉, 물을 용매로 하는 바인더)로 나뉜다. 수계 바인더는 용제계 바인더와 달리 경제적, 친환경적이고, 작업자의 건강에도 무해하며, 용제계 바인더에 비하여 결착효과도 크므로 동일체적당 활물질의 비율을 높일 수 있어 고용량화가 가능하다. 수계 바인더로는 스티렌-부타디엔 고무인 것이 바람직하다.
양극 활물질로는 당 분야에서 통상적으로 사용되는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있다. 또한, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물 (sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
전극이 제조되면, 이를 사용하여 당분야에 통상적으로 사용되는, 양극과 음극 사이에 개재된 세퍼레이터 및 전해액을 구비하는 리튬 이차전지가 제조될 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<음극 활물질의 제조>
실시예 1
평균 입경 100 ㎛의 천연 흑연 입자를 구형화 장치(Nara Hybridization System, NHS-2)에 도입하여, 로터 속도(rotor Speed) 65 m/초로 10 분간 구형화 처리하여, 평균 입경(D50) 20 ㎛, FWHM 7.0 ㎛, BET 비표면적 2.60 m2/g의 구형의 천연 흑연 입자를 얻었다.
장축길이가 20 ㎛ 내외이고, 비표면적이 3 m2/g 내지 4 m2/g, 12 mPa 내지 16 mPa의 압력하에서 압축 밀도가 1.7 g/cc 내지 1.8 g/cc 인 모자이크 코크스계 인조 흑연(히타치 케미칼, MAGE3)을 사용하였다.
상기 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 0.3 중량비로 혼합하여, 모르타르를 이용하여 균일하게 교반하여 음극 활물질을 제조하였다.
실시예 2
상기 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 1 중량비로 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
비교예 1
모자이크 코크스계 인조 흑연을 사용하지 않고, 구형의 천연 흑연을 100% 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
비교예 2
상기 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 0.05 중량비로 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
비교예 3
상기 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 1.2 중량비로 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
<리튬 이차전지의 제조>
실시예 3
음극의 제조
상기 실시예 1에서 얻은 음극 활물질, 바인더로 SBR(styrene-butadiene rubber), 증점제로 CMC(carboxy methyl cellulose) 및 도전재로 아세틸렌 블랙을 95:2:2:1의 중량비로 혼합하고, 이들을 용매인 물(H2O)와 함께 혼합하여 균일한 음극 슬러리를 제조하였다. 제조된 음극 슬러리를 구리 집전체의 일면에 65 ㎛의 두께로 코팅하고, 건조 및 압연한 후 필요한 크기로 펀칭(punching)하여 음극을 제조하였다.
리튬 이차전지의 제조
에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)를 30:70의 부피비로 혼합하고, 상기 비수전해액 용매에 LiPF6를 첨가하여 1M LiPF6 비수전해액을 제조하였다.
또한, 상대전극, 즉 양극으로 리튬 금속 호일(foil)을 사용하며, 양 전극 사이에 폴리올레핀 세퍼레이터를 개재시킨 후, 상기 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.
실시예 4
상기 실시예 2에서 제조된 음극 활물질을 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 음극 및 리튬 이차전지를 제조하였다.
비교예 4 내지 6
상기 비교예 1 내지 3에서 제조된 음극 활물질을 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 음극 및 리튬 이차전지를 제조하였다.
실시예 5
상기 실시예 2에서 제조된 음극 활물질을 사용하고 음극 제조시 도전재를 첨가하지 않은 것을 제외하고는, 실시예 3과 동일한 방법으로 음극 및 리튬 이차전지를 제조하였다.
비교예 7
모자이크 코크스계 인조 흑연 대신 니들 코크스계 인조 흑연을 천연 흑연과 1:1의 중량비로 혼합한 것을 음극 활물질로 사용하고 음극 제조시 도전재를 첨가하지 않은 것을 제외하고는, 실시예 5와 동일한 방법으로 음극 및 리튬 이차전지를 제조하였다.
실험예 1: 배향 지수 측정
실시예 3 및 비교예 4에서 제조된 음극에 대하여 Cu(K-선)을 이용한 XRD 회절 측정을 하였다. 배향 지수는 음극에 포함된 음극 활물질의 (110)면과 (004)면을 XRD로 측정한 후 (110)면과 (004)면의 피크 강도를 적분하여 얻어진 면적비((110)/(004))로 계산하였다. 더욱 구체적으로, XRD 측정 조건은 다음과 같다.
- 타겟: Cu(Kα-선) 흑연 단색화 장치
- 슬릿(slit): 발산 슬릿 = 1도, 수신 슬릿 = 0.1, 산란 슬릿 = 1도
- 측정 구역 및 스텝 각도/측정 시간:
(110) 면: 76.5 도 < 2θ < 78.5도, 0.01도 / 3초
(004) 면: 53.5 도 < 2θ < 56.0도, 0.01도 / 3초, 여기서 2θ는 회절 각도를 나타낸다.
또한, 실시예 1과 2에서 사용한 모자이크 코크스계 인조 흑연을 XRD 측정하였고, 그 결과를 도 3에 나타내었다. 모자이크 코크스계 인조 흑연의 Lc(002) 및 d002는 하기 수학식 1과 2를 이용하여 계산하였다:
<수학식 1>
d002 = λ/2sinθ
또한, 모자이크 코크스계 인조 흑연의 결정자 크기(Lc)는 하기 수학식 2의 Scherrer의 식에 의해 입자의 C축 방향의 결정자 크기 Lc(002)를 계산할 수 있다.
<수학식 2>
Figure PCTKR2014012585-appb-I000002
K = Scherrer 상수 (K=0.9)
β= 반가폭
λ = 파장 (0.154056nm)
θ = 최대 피크에서의 각
도 3에 나타낸 바와 같이, 상기 모자이크 코크스계 인조 흑연은 XRD 측정시 C축 방향의 결정자의 크기인 Lc(002)가 21.6 nm 내지 21.9 nm이고, (002)면의 면간격 d002가 0.3376 nm인 결정성상을 나타내었다.
실험예 2: 율속 특성 평가 A
실시예 3과 4, 및 비교예 4 내지 6에서 얻은 리튬 이차전지를 상온에서 0 V에서 1.5 V의 전압 범위에서 율속 특성을 측정하였다. 전지의 충전은 1.5V까지 0.1 C 정전류/정전압(CC/CV) 조건에서 충전한 후, 5 mV에서 전류가 0.1 C에 도달할 때까지 정전류 모드로 방전한 후 종료하였다.
도 4에 나타낸 바와 같이, 상온에서 0 V에서 1.5 V의 전압 범위에서 0.2C, 0.5C, 1C의 각각 율속 특성을 비교 분석한 결과, 천연 흑연과 모자이크 코크스계 인조 흑연을 혼합한 실시예 1의 음극 활물질을 사용한 실시예 3의 리튬 이차전지가, 모자이크 코크스계를 사용하지 않은 비교예 1의 음극 활물질을 사용한 비교예 4의 리튬 이차전지에 비해 약 5 내지 10% 정도 율속 특성이 개선되었음을 알 수 있다.
또한, 천연 흑연과 모자이크 코크스계 인조 흑연의 혼합 중량비에 따른 율속 특성을 알아보기 위해, 실시예 3과 4, 및 비교예 5와 6의 리튬 이차전지를 상온에서 0 V에서 1.5 V의 전압 범위에서 0.2C, 0.5C, 1C의 각각 율속 특성을 비교하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
음극 활물질(천연흑연:모자이크 코크스계 인조흑연의 중량비) 율속 특성
0.2C 0.5C 1C
실시예 3 1 : 0.3 100% 97.5% 81.2%
실시예 4 1 : 1 100% 98.6% 89.7%
비교예 6 1 : 0.05 100% 95.9% 76.7%
비교예 7 1 : 1.2 100% 94.8% 75.8%
상기 표 1에서 확인할 수 있는 바와 같이, 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 0.3 내지 1 중량비의 범위로 혼합한 음극 활물질을 사용한 실시예 3 및 4는, 천연 흑연 : 모자이크 코크스계 인조 흑연을 1 : 0.05 중량비로 모자이크 코크스계 인조 흑연을 소량 사용한 비교예 5 및 1 : 1.2 중량비로 모자이크 코크스계 인조 흑연을 과량 혼합한 비교예 6에 비해 율속 특성, 특히 0.5C 및 1C의 율속 특성이 현저히 우수함을 확인할 수 있다.
실험예 3: 율속 특성 평가 B
천연 흑연과 혼합되는 인조 흑연의 형태에 따른 율속 특성을 알아보기 위해, 실시예 5 및 비교예 8의 리튬 이차전지의 충전 및 방전시의 율속 특성을 평가하였다. 충전은 각각 0.2C 정전류/정전압(CC/CV), 0.2C 정전류, 0.5C 정전류 및 1.0C 정전류 조건에서 0.005 V까지 충전시의 율속을 측정하고, 방전은 상온에서 0.005 V부터 1.5 V의 전압 범위에서 0.2C, 0.5C, 1C 및 2C 각각의 방전시의 율속을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
표 2
충전 율속 방전 율속
0.2C 0.2C 0.5C 1.0C 0.2C 0.5C 1C 2C
실시예 5 100 76.0 39.3 15.1 100 99.6 94.6 70.8
비교예 8 100 70.0 33.6 10.0 100.0 86.5 86.5 56.8
상기 표 2에서 확인할 수 있는 바와 같이, 구형의 천연 흑연 및 모자이크 코크스계 인조 흑연을 1 : 1 중량비의 범위로 혼합한 음극 활물질을 사용한 실시예 5는, 천연 흑연 : 니들 코크스계 인조 흑연을 1 : 1 중량비로 혼합한 비교예 8에 비해 충전시의 율속 특성이 약 5 내지 10% 가량 우수함을 확인할 수 있고, 방전시의 율속 특성은 약 10 내지 15% 가량 우수함을 확인할 수 있다.
실험예 4: 전극 저항 평가
구형의 천연 흑연과 모자이크 코크스계 인조 흑연을 포함한 음극을 사용한 실시예 3의 리튬 이차전지와 구형의 천연 흑연만을 포함하는 음극을 사용한 비교예 4의 리튬 이차전지를 장기간 충방전 한 후, 전극의 저항을 측정하였다. 그 결과를 도 5에 나타내었다. 측정 조건은 다음과 같다.
- 샘플 준비: 실시예 3 및 비교예 4의 리튬 이차전지를 200 회 사이클 충방전 후, 전지를 분해하여 음극만 얻은 후, 이것을 음극으로 대칭 전지(symmetric cell)를 만든 뒤, 임피던스를 측정
- 임피던스 진동수 범위: 100,000 ~ 0.005 Hz
도 5에 나타낸 바와 같이, 상기 실시예 3의 리튬 이차전지를 장기간 충방전 과정을 거쳤을 때, 실시예 3과 같이 구형의 천연 흑연과 모자이크 코크스계 인조 흑연을 포함한 음극을 사용한 경우, 구형의 천연 흑연만을 포함하는 음극을 사용한 비교예 4에 비해 그래프의 반원이 더 작으므로, 계면 저항이 감소하였다는 것을 알 수 있다.

Claims (12)

  1. 천연 흑연과 모자이크 코크스(Mosaic cokes)계 인조 흑연을 포함하는 것을 특징으로 하는 음극 활물질.
  2. 제 1 항에 있어서,
    상기 천연 흑연과 모자이크 코크스계 인조 흑연의 함량비는 1 : 0.1 내지 1 : 1 중량비인 것을 특징으로 하는 음극 활물질.
  3. 제 1 항에 있어서,
    상기 모자이크 코크스계 인조 흑연의 평균 장축 길이는 5 내지 30 인 것을 특징으로 하는 음극 활물질.
  4. 제 1 항에 있어서,
    상기 모자이크 코크스계 인조 흑연은 XRD 측정시 C축 방향의 결정자의 크기인 Lc(002)가 21.6 nm 내지 21.9 nm인 것을 특징으로 하는 음극 활물질.
  5. 제 4 항에 있어서,
    상기 모자이크 코크스계 인조 흑연은 XRD 측정시 (002)면의 면간격 d002가 0.3377 nm 이하인 것을 특징으로 하는 음극 활물질.
  6. 제 1 항에 있어서,
    상기 모자이크 코크스계 인조 흑연은 3.0 m2/g 내지 4.0 m2/g의 비표면적을 갖고, 8 mPa 내지 25 mPa의 압력하에서 1.5 g/cc 내지 2.1 g/cc의 압축 밀도를 갖는 것을 특징으로 하는 음극 활물질.
  7. 제 1 항에 있어서,
    상기 천연 흑연은 구형인 것을 특징으로 하는 음극 활물질.
  8. 제 7 항에 있어서,
    상기 천연 흑연의 평균 입경(D50)은 5 ㎛ 내지 30 ㎛ 인 것을 특징으로 하는 음극 활물질.
  9. 제 1 항에 있어서,
    상기 천연 흑연의 비표면적(BET)은 2 m2/g 내지 8 m2/g인 것을 특징으로 하는 음극 활물질.
  10. 집전체, 및 상기 집전체의 적어도 일면에 형성된 제 1 항의 음극 활물질을 포함하는 것을 특징으로 하는 음극.
  11. 제 10 항에 있어서,
    1.40 g/cc 내지 1.85 g/cc의 압축 밀도에서 배향 지수(I110/I004)가 0.08 내지 0.086인 것을 특징으로 하는 음극.
  12. 제 10 항의 음극을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/012585 2013-12-20 2014-12-19 음극 활물질 및 이를 포함하는 리튬 이차전지 WO2015093894A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL14872940T PL3086392T3 (pl) 2013-12-20 2014-12-19 Materiał czynny anody oraz zawierający go akumulator litowy
JP2016516844A JP6243012B2 (ja) 2013-12-20 2014-12-19 負極活物質及びこれを含むリチウム二次電池
EP14872940.3A EP3086392B1 (en) 2013-12-20 2014-12-19 Anode active material, and lithium secondary battery comprising same
CN201480053509.0A CN105659417B (zh) 2013-12-20 2014-12-19 负极活性材料和包含其的锂二次电池
US14/767,655 US10177380B2 (en) 2013-12-20 2014-12-19 Anode active material and lithium secondary battery including the same
US16/197,964 US10964946B2 (en) 2013-12-20 2018-11-21 Anode active material and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130160717 2013-12-20
KR10-2013-0160717 2013-12-20
KR10-2014-0183434 2014-12-18
KR1020140183434A KR101790400B1 (ko) 2013-12-20 2014-12-18 음극 활물질 및 이를 포함하는 리튬 이차전지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/767,655 A-371-Of-International US10177380B2 (en) 2013-12-20 2014-12-19 Anode active material and lithium secondary battery including the same
US16/197,964 Continuation US10964946B2 (en) 2013-12-20 2018-11-21 Anode active material and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2015093894A1 true WO2015093894A1 (ko) 2015-06-25

Family

ID=53403146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012585 WO2015093894A1 (ko) 2013-12-20 2014-12-19 음극 활물질 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2015093894A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342755A1 (en) * 2017-05-29 2018-11-29 Sk Innovation Co., Ltd. Lithium secondary battery
EP3396745A4 (en) * 2016-09-29 2019-06-12 LG Chem, Ltd. MULTILAYER ANODE COMPRISING NATURAL GRAPHITE AND ARTIFICIAL GRAPHITE, AND LITHIUM SECONDARY BATTERY COMPRISING SAME
CN110391395A (zh) * 2018-04-20 2019-10-29 三星Sdi株式会社 用于可再充电锂电池的负极和包括其的可再充电锂电池
EP4273960A3 (en) * 2016-09-29 2024-02-28 Lg Energy Solution, Ltd. Multi-layer negative electrode comprising natural graphite and artificial graphite and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737618A (ja) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH07296814A (ja) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd 二次電池電極用黒鉛質材料およびその製造法
KR20040012541A (ko) * 2002-07-31 2004-02-11 마쯔시다덴기산교 가부시키가이샤 리튬이차전지
KR20090016462A (ko) * 2006-06-02 2009-02-13 니폰 카본 컴퍼니 리미티드 리튬 이온 2차 전지용 음극 활물질 및 음극
JP2009187924A (ja) * 2008-01-11 2009-08-20 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737618A (ja) * 1993-07-22 1995-02-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH07296814A (ja) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd 二次電池電極用黒鉛質材料およびその製造法
KR20040012541A (ko) * 2002-07-31 2004-02-11 마쯔시다덴기산교 가부시키가이샤 리튬이차전지
KR20090016462A (ko) * 2006-06-02 2009-02-13 니폰 카본 컴퍼니 리미티드 리튬 이온 2차 전지용 음극 활물질 및 음극
JP2009187924A (ja) * 2008-01-11 2009-08-20 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396745A4 (en) * 2016-09-29 2019-06-12 LG Chem, Ltd. MULTILAYER ANODE COMPRISING NATURAL GRAPHITE AND ARTIFICIAL GRAPHITE, AND LITHIUM SECONDARY BATTERY COMPRISING SAME
EP4273960A3 (en) * 2016-09-29 2024-02-28 Lg Energy Solution, Ltd. Multi-layer negative electrode comprising natural graphite and artificial graphite and lithium secondary battery comprising the same
US20180342755A1 (en) * 2017-05-29 2018-11-29 Sk Innovation Co., Ltd. Lithium secondary battery
US11145888B2 (en) * 2017-05-29 2021-10-12 Sk Innovation Co., Ltd. Lithium secondary battery
US20210384546A1 (en) * 2017-05-29 2021-12-09 Sk Innovation Co., Ltd. Lithium secondary battery
CN110391395A (zh) * 2018-04-20 2019-10-29 三星Sdi株式会社 用于可再充电锂电池的负极和包括其的可再充电锂电池
CN110391395B (zh) * 2018-04-20 2022-10-21 三星Sdi株式会社 用于可再充电锂电池的负极和包括其的可再充电锂电池
US11715830B2 (en) 2018-04-20 2023-08-01 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
WO2017099456A1 (ko) 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR100888685B1 (ko) 코어-쉘형 리튬 이차전지용 음극 활물질 및 그 제조방법과이를 포함하는 리튬 이차전지
WO2014119960A1 (ko) 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2010137753A1 (ko) 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
WO2014084679A1 (ko) 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2019107936A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
KR101790400B1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019035669A2 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2017135794A1 (ko) 음극활물질 및 이를 포함하는 이차전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2013180411A1 (ko) 규소계 물질과 탄소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2021066584A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2020149688A1 (ko) 이차전지용 음극 활물질, 이를 포함하는 음극 및 이의 제조방법
JP3709987B2 (ja) リチウムイオン系二次電池用負極材およびその製造方法、および該負極材を用いたリチウムイオン系二次電池
WO2015093894A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020036392A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767655

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014872940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872940

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016516844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE