WO2015093365A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2015093365A1
WO2015093365A1 PCT/JP2014/082654 JP2014082654W WO2015093365A1 WO 2015093365 A1 WO2015093365 A1 WO 2015093365A1 JP 2014082654 W JP2014082654 W JP 2014082654W WO 2015093365 A1 WO2015093365 A1 WO 2015093365A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific resistance
substrate
liquid
static elimination
main surface
Prior art date
Application number
PCT/JP2014/082654
Other languages
French (fr)
Japanese (ja)
Inventor
宮城 雅宏
田中 眞人
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2015093365A1 publication Critical patent/WO2015093365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a technique for processing a substrate.
  • substrate In a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on a substrate having an insulating film such as an oxide film using a substrate processing apparatus. For example, a process such as etching is performed on the surface of the substrate by supplying a processing liquid to the substrate having a resist pattern formed on the surface. In addition, after the etching or the like is finished, a process for removing the resist on the substrate is also performed.
  • the substrate processed by the substrate processing apparatus is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus.
  • a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition)
  • the substrate is carried into the substrate processing apparatus in a charged state (so-called carry-in charging).
  • carry-in charging when a processing liquid having a small specific resistance such as an SPM liquid is supplied onto the substrate, the charge in the device rapidly moves from the device to the processing liquid (that is, into the processing liquid). And the device may be damaged by the heat generated by the movement.
  • a neutralizing liquid such as pure water having a specific resistance higher than that of the processing liquid is supplied onto the substrate, and the upper surface of the substrate The whole is paddled with a static neutralizer. As a result, the substrate is discharged relatively slowly. Thereafter, the charge removal liquid is removed from the substrate, and the treatment liquid such as the SPM liquid is supplied onto the substrate, so that the substrate is prevented from being damaged due to the above-described rapid movement of the charges.
  • the present invention is directed to a substrate processing apparatus and a substrate processing method for processing a substrate.
  • An object of the present invention is to neutralize the main surface in a short time while preventing damage to the main surface of the substrate.
  • a substrate processing apparatus includes a substrate holding unit that holds a substrate with a main surface facing upward, a processing liquid supply unit that supplies a processing liquid onto the main surface of the substrate, and the substrate Controlling the static elimination liquid supply part which supplies static elimination liquid on a main surface, the specific resistance adjustment part which adjusts the specific resistance of the said static elimination liquid, the said process liquid supply part, the said static elimination liquid supply part, and the said specific resistance adjustment part
  • the neutralization liquid having a first specific resistance larger than the specific resistance of the treatment liquid onto the main surface of the substrate and padding the entire main surface with the neutralization liquid
  • Reducing the specific resistance of the neutralizing liquid supplied to the second specific resistance smaller than the first specific resistance and paddles the entire main surface with the neutralizing liquid having the second specific resistance.
  • the processing liquid is supplied onto the main surface of the substrate And a control unit for performing predetermined processing.
  • the main surface can be neutralized in a short time while preventing damage to the main surface of
  • the static eliminating liquid having the first specific resistance is pure water.
  • the specific resistance adjusting unit increases the ion concentration in the static elimination liquid of the first specific resistance, thereby changing the specific resistance of the static elimination liquid to the second specific resistance. To do.
  • the specific resistance adjustment unit causes the specific resistance of the static elimination liquid to be the second specific resistance by dissolving carbon dioxide in the static elimination liquid having the first specific resistance to increase the ion concentration. .
  • the specific resistance adjusting unit increases the ion concentration by dissolving the first solute in the static elimination liquid having the first specific resistance, and then dissolves the second solute in the static elimination liquid to adjust the ion concentration.
  • the specific resistance of the static elimination liquid is made the second specific resistance.
  • the specific resistance adjusting unit raises the temperature of the static elimination liquid having the first specific resistance, thereby setting the specific resistance of the static elimination liquid to the second specific resistance.
  • the second specific resistance is greater than or equal to the specific resistance of the treatment liquid.
  • a plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate are stored in advance in the control unit, and are on the main surface of the substrate.
  • a device is formed in advance, and the plurality of static elimination processing information respectively indicate the first specific resistance, the second specific resistance, and the specific resistance of the static elimination liquid supplied on the main surface.
  • the control unit corresponds to one type of static electricity corresponding to the type of the device on the main surface among the plurality of static elimination processing information.
  • the specific resistance adjustment unit is controlled based on the processing information.
  • a plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on a substrate are stored in advance in the control unit, and the static elimination liquid supply unit
  • the type of the static elimination liquid can be switched between a plurality of liquid types, a device is formed in advance on the main surface of the substrate, and the control unit includes the static elimination liquid type information among the plurality of static elimination liquid type information.
  • the type of the neutralizing liquid is switched based on one type of neutralizing liquid type corresponding to the type of the device on the main surface.
  • the apparatus further includes another charge removal liquid supply unit that supplies a charge removal liquid to the other main surface of the substrate, and the control unit controls the other charge removal liquid supply unit.
  • the neutralization liquid is supplied to the other main surface of the substrate before the supply of the neutralization solution to the main surface of the substrate or in parallel with the supply of the neutralization solution to the main surface.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to a first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes semiconductor substrates 9 (hereinafter simply referred to as “substrates 9”) one by one.
  • an SPM (sulfuric acid / hydrogen peroxide mixture) solution is supplied to the substrate 9 to perform SPM processing, that is, removal processing of the resist film on the substrate 9.
  • the substrate processing apparatus 1 controls the substrate holding unit 2, the processing liquid supply unit 3, the cup unit 4, the substrate rotating mechanism 5, the neutralization liquid supply unit 6, the specific resistance adjusting unit 7, and these mechanisms. And a control unit 8.
  • the substrate holding unit 2 holds the substrate 9 with one main surface 91 (hereinafter, referred to as “upper surface 91”) of the substrate 9 facing upward. Devices are formed in advance on the upper surface 91 of the substrate 9.
  • the processing liquid supply unit 3 discharges a processing liquid such as an SPM liquid toward the upper surface 91 of the substrate 9 and supplies the processing liquid onto the upper surface 91.
  • the neutralization liquid supply unit 6 discharges the neutralization liquid toward the upper surface 91 of the substrate 9 and supplies the neutralization liquid onto the upper surface 91.
  • the specific resistance adjusting unit 7 adjusts the specific resistance of the static elimination liquid.
  • the substrate rotation mechanism 5 rotates the substrate 9 horizontally with the substrate holding unit 2 around a rotation axis that passes through the center of the substrate 9 and is perpendicular to the upper surface 91 of the substrate 9.
  • the cup unit 4 surrounds the periphery of the substrate 9 and the substrate holding unit 2 and receives a liquid such as a processing liquid scattered from the rotating substrate 9 to the periphery.
  • the substrate holding unit 2, the cup unit 4, the substrate rotating mechanism 5 and the like are accommodated in a chamber (not shown).
  • the treatment liquid supply unit 3 includes a sulfuric acid supply part 31, a hydrogen peroxide solution supply part 32, a mixed liquid generation part 33, a treatment liquid nozzle 34, and a treatment liquid nozzle rotation mechanism 35.
  • the sulfuric acid supply unit 31 is connected to the mixed solution generation unit 33 and a sulfuric acid supply source (not shown), and supplies sulfuric acid to the mixed solution generation unit 33.
  • the hydrogen peroxide solution supply unit 32 is connected to the mixed solution generating unit 33 and a hydrogen peroxide solution supply source (not shown), and supplies the hydrogen peroxide solution to the mixed solution generating unit 33.
  • the sulfuric acid supply source and the hydrogen peroxide solution supply source are provided outside the substrate processing apparatus 1.
  • the mixed liquid generating unit 33 includes a mixing valve 331, a processing liquid pipe 332, and a stirring flow pipe 333.
  • a sulfuric acid supply unit 31 and a hydrogen peroxide solution supply unit 32 are connected to the mixing valve 331.
  • the processing liquid pipe 332 connects the mixing valve 331 and the processing liquid nozzle 34.
  • the stirring flow pipe 333 is provided on the processing liquid pipe 332.
  • heated sulfuric acid is supplied from the sulfuric acid supply unit 31 to the mixing valve 331, and hydrogen peroxide solution at room temperature (that is, a temperature that is about the same as room temperature) is supplied to the mixing valve 331.
  • the temperature of sulfuric acid supplied to the mixing valve 331 is, for example, about 130 ° C. to 150 ° C.
  • sulfuric acid and hydrogen peroxide are mixed to generate an SPM liquid (sulfuric acid / hydrogen peroxide) that is a mixed liquid.
  • the SPM liquid that is the processing liquid passes through the processing liquid pipe 332 and the stirring flow pipe 333 and is sent to the processing liquid nozzle 34.
  • the stirring flow pipe 333 the chemical reaction between sulfuric acid and hydrogen peroxide solution is promoted by stirring the SPM liquid.
  • the processing liquid nozzle 34 is disposed above the substrate 9 and discharges the processing liquid from the tip toward the upper surface 91 of the substrate 9.
  • the processing liquid nozzle rotation mechanism 35 includes an arm 352 that extends in the horizontal direction from the rotation shaft 351 and to which the processing liquid nozzle 34 is attached.
  • the processing liquid nozzle rotating mechanism 35 rotates the processing liquid nozzle 34 and the arm 352 horizontally around the rotation shaft 351.
  • the neutralizing liquid is pure water (DIW: deionized water) or a liquid containing ions.
  • the specific resistance of the neutralizing solution is preferably 0.05 M ⁇ ⁇ cm or more and 18 M ⁇ ⁇ cm or less.
  • the liquid containing the ions for example, a solution obtained by dissolving carbon dioxide (CO 2 ) in pure water is used.
  • the neutralization liquid supply unit 6 includes a pure water supply unit 61, an additive supply unit 62, an additive mixing unit 63, a neutralization liquid nozzle 64, a neutralization liquid nozzle rotating mechanism 65, a flow meter 66, and a specific resistance. 67 in total.
  • the pure water supply unit 61 is connected to the additive mixing unit 63 and a pure water supply source (not shown), and supplies pure water to the additive mixing unit 63.
  • the flow meter 66 is provided on the pure water pipe 611 connecting the pure water supply unit 61 and the additive mixing unit 63, and measures the flow rate of pure water flowing through the pure water pipe 611.
  • the additive supply unit 62 is connected to the additive mixing unit 63 and an additive supply source (not shown), and supplies the additive to the additive mixing unit 63.
  • the additive supplied from the additive supply unit 62 is, for example, carbon dioxide gas.
  • the pure water supply source and the additive supply source are provided outside the substrate processing apparatus 1, for example.
  • the additive from the additive supply part 62 is mixed with the pure water from the pure water supply part 61, and the liquid containing the ion which is a static elimination liquid is produced
  • carbon dioxide is supplied as an additive
  • carbon dioxide is dissolved in pure water, and carbon dioxide water (CO 2 water) that is a static elimination liquid is generated.
  • the neutralization liquid is sent from the additive mixing unit 63 to the neutralization liquid nozzle 64 via the neutralization liquid pipe 631.
  • the pure water supplied from the pure water supply unit 61 to the additive mixing unit 63 is removed as a charge removal liquid via the charge removal liquid pipe 631.
  • a neutralization liquid valve 632 is provided on the neutralization liquid pipe 631.
  • the neutralization liquid valve 632 is a neutralization liquid supply amount adjustment unit that adjusts the flow rate of the neutralization liquid sent from the additive mixing unit 63 to the neutralization liquid nozzle 64.
  • the neutralizing liquid nozzle 64 is disposed above the substrate 9 and discharges the neutralizing liquid from the tip toward the upper surface 91 of the substrate 9.
  • the neutralization liquid nozzle rotation mechanism 65 includes an arm 652 that extends in the horizontal direction from the rotation shaft 651 and to which the neutralization liquid nozzle 64 is attached. The neutralization liquid nozzle rotation mechanism 65 rotates the neutralization liquid nozzle 64 and the arm 652 horizontally around the rotation shaft 651.
  • the specific resistance adjusting unit 7 includes an additive valve 71.
  • the additive valve 71 is provided on an additive pipe 621 that connects the additive supply unit 62 and the additive mixing unit 63.
  • the additive valve 71 is an additive supply amount adjusting unit that adjusts the amount of additive supplied from the additive supply unit 62 to the additive mixing unit 63.
  • the control valve 8 causes the additive valve 71 of the specific resistance adjustment section 7 to be Feedback controlled.
  • the amount of the additive mixed with pure water in the additive mixing unit 63 is controlled, and the ion concentration in the static elimination liquid sent from the additive mixing unit 63 to the static elimination liquid pipe 631 is controlled.
  • the specific resistance of the static elimination liquid becomes a desired specific resistance.
  • FIG. 2 is a diagram showing the flow of processing of the substrate 9 in the substrate processing apparatus 1.
  • the additive supplied from the additive supply unit 62 is carbon dioxide.
  • the substrate processing apparatus 1 first, the substrate 9 is loaded and held by the substrate holding unit 2. The substrate 9 is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus 1. In the substrate 9 on which the drying process has been performed, electric charges are generated in the device on the upper surface 91, and the substrate 9 is in a charged state.
  • a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition)
  • the static elimination liquid valve 632 of the static elimination liquid supply unit 6 is controlled by the control unit 8 in a state where the static elimination liquid nozzle 64 is positioned at the standby position outside the outer peripheral edge of the substrate 9. Discharge of the charge removal liquid is started from the charge removal nozzle 64. Based on the output from the resistivity meter 67, feedback control for the additive valve 71 is performed by the control unit 8. Thereby, the amount of carbon dioxide dissolved in pure water in the additive mixing unit 63 is controlled. That is, the ion concentration in the static elimination liquid is controlled. As a result, the specific resistance of the static elimination liquid becomes the first specific resistance stored in advance in the control unit 8 (step S11).
  • the first specific resistance is larger than the specific resistance of the processing liquid supplied from the processing liquid supply unit 3 to the substrate 9.
  • the static elimination liquid is pure water.
  • the neutralizing liquid having the first specific resistance that is, the neutralizing liquid having a specific resistance equal to the first specific resistance
  • step S11 the additive valve 71 is closed, and the supply of carbon dioxide from the additive supply unit 62 to the additive mixing unit 63 is stopped.
  • the neutralization liquid nozzle 64 is moved from the standby position by the neutralization liquid nozzle rotating mechanism 65, and the discharge port at the tip of the neutralization liquid nozzle 64 faces the center of the upper surface 91 of the substrate 9 as shown in FIG. .
  • the substrate rotation mechanism 5 is controlled by the control unit 8 so as to stop or rotate at a low rotation speed. Therefore, the substrate 9 is not rotated or is rotated at a low rotation speed (for example, 10 to 200 rpm).
  • the neutralization liquid having the first specific resistance is supplied from the neutralization liquid nozzle 64 onto the upper surface 91 of the substrate 9, and spreads from the central portion of the substrate 9 to the entire upper surface 91.
  • Step S12 a thin layer (for example, a layer having a thickness of about 1 mm) of the first specific resistance neutralizing solution is formed on the upper surface 91 of the substrate 9, and the entire upper surface 91 is padded with the first specific resistance neutralizing solution.
  • the charge in the device on the upper surface 91 of the substrate 9 moves from the device to the charge removal liquid, and the charge on the upper surface 91 decreases.
  • the specific resistance adjusting unit 7 is controlled by the control unit 8 and the additive valve 71 is opened.
  • carbon dioxide is supplied from the additive supply unit 62 to the additive mixing unit 63 and is dissolved in pure water from the pure water supply unit 61 by the additive mixing unit 63.
  • the ion concentration in the neutralization liquid of the first specific resistance sent from the additive mixing unit 63 to the neutralization liquid nozzle 64 increases, and the specific resistance of the neutralization liquid decreases.
  • the specific resistance of the static elimination liquid supplied onto the upper surface 91 of the substrate 9 is smaller than the first specific resistance. It decreases to 2 specific resistance (step S13).
  • the specific resistance adjusting unit 7 dissolves carbon dioxide in the neutralizing solution having the first specific resistance to increase the ion concentration in the neutralizing solution, whereby the specific resistance of the neutralizing solution becomes the second specific resistance.
  • the second specific resistance is also stored in advance in the control unit 8 in the same manner as the first specific resistance.
  • the second specific resistance is preferably greater than or equal to the specific resistance of the treatment liquid described above. More preferably, the second specific resistance is slightly larger than the specific resistance of the treatment liquid.
  • the control unit 8 the time required to change the specific resistance of the charge removal liquid supplied onto the upper surface 91 of the substrate 9 from the first specific resistance to the second specific resistance (hereinafter referred to as “specific resistance adjustment time”). Is also remembered. While performing steps S11 to S13, the control unit 8 opens the opening of the additive valve 71 of the specific resistance adjusting unit 7 based on the static elimination processing information including the first specific resistance, the second specific resistance, and the specific resistance adjusting time. To control.
  • a neutralization liquid having a second specific resistance (that is, a neutralization liquid whose specific resistance is equal to the second specific resistance) is supplied from the neutralization liquid nozzle 64 onto the upper surface 91 of the substrate 9.
  • the entire upper surface 91 extends.
  • the entire upper surface 91 of the substrate 9 is padded with the neutralizing solution having the second specific resistance (step S14).
  • substrate 9 was padded with the static elimination liquid of the 2nd specific resistance is maintained only for the predetermined time.
  • the charge in the device on the upper surface 91 of the substrate 9 moves from the device to the charge removal liquid, and the charge on the upper surface 91 of the substrate 9 decreases.
  • the charge removal process of the substrate 9 is finished.
  • the supply of the second specific resistance neutralization liquid from the neutralization liquid nozzle 64 may be continued or stopped.
  • FIGS. 3A and 3B are diagrams showing the surface potential distribution on the upper surface 91 of the substrate 9 before and after the charge removal process.
  • FIG. 3A shows the surface potential distribution on one diameter of the substrate 9.
  • FIG. 3B shows the surface potential distribution on one diameter orthogonal to the diameter corresponding to FIG. 3A. 3A and 3B, the horizontal axis indicates the position on the diameter of the substrate 9, and the vertical axis indicates the potential at the position.
  • a broken line 901 indicates the potential distribution before the charge removal process, and a solid line 902 indicates the potential distribution after the charge removal process.
  • the charge removal process described above reduces the charge on the upper surface 91 of the substrate 9 and reduces the overall potential of the upper surface 91 of the substrate 9.
  • the neutralizing liquid nozzle rotating mechanism 65 returns the neutralizing liquid nozzle 64 to the standby position. Subsequently, the rotation speed of the substrate 9 is increased by controlling the substrate rotation mechanism 5 by the control unit 8.
  • the rotation of the substrate 9 is started.
  • the neutralizing liquid on the upper surface 91 of the substrate 9 moves toward the edge of the substrate 9, and is scattered from the edge of the substrate 9 to the outside and removed from the substrate 9 (step S15).
  • the neutralizing liquid scattered from the substrate 9 is received by the cup portion 4.
  • the substrate rotation mechanism 5 functions as a liquid removal unit that removes the liquid on the upper surface 91 by rotating the substrate 9.
  • the rotation speed of the substrate 9 by the substrate rotation mechanism 5 is decreased, and the rotation speed is changed to the rotation speed during the SPM processing. Also, the processing liquid nozzle rotating mechanism 35 starts to rotate the processing liquid nozzle 34, and the processing liquid nozzle 34 repeats reciprocating motion between the center portion and the edge of the substrate 9.
  • sulfuric acid heated to about 130 ° C. to 150 ° C. is supplied from the sulfuric acid supply unit 31 to the mixing valve 331, and hydrogen peroxide solution at room temperature is excessive. It is supplied from the hydrogen oxide water supply unit 32 to the mixing valve 331.
  • the mixing valve 331 the heated sulfuric acid and the hydrogen peroxide solution at room temperature are mixed to generate an SPM liquid having a specific resistance smaller than the first specific resistance described above.
  • the temperature of the SPM liquid is higher than the temperature of the sulfuric acid supplied from the sulfuric acid supply unit 31 due to the reaction between the sulfuric acid and the hydrogen peroxide solution, for example, about 150 ° C. to 195 ° C.
  • the SPM liquid passes through the processing liquid pipe 332 and the stirring flow pipe 333 and is supplied from the processing liquid nozzle 34 onto the upper surface 91 of the substrate 9.
  • heated sulfuric acid and hydrogen peroxide solution are mixed and supplied onto the upper surface 91 of the substrate 9 by the processing liquid supply unit 3.
  • the SPM liquid spreads over the entire upper surface 91 of the substrate 9 due to the rotation of the substrate 9, scatters from the edge of the substrate 9 to the outside, and is received by the cup portion 4.
  • the supply of the SPM liquid to the substrate 9 is continuously performed for a predetermined time, and the SPM process for the substrate 9, that is, the resist film on the substrate 9 due to the strong oxidizing power of caloic acid contained in the SPM liquid.
  • a removal process is performed (step S16).
  • the SPM liquid or the like may be supplied from the processing liquid nozzle 34 stopped above the center of the substrate 9.
  • the SPM process that is, the chemical process using the processing liquid
  • the supply of sulfuric acid from the sulfuric acid supply unit 31 is stopped while the supply of the hydrogen peroxide solution from the hydrogen peroxide solution supply unit 32 is continued.
  • the hydrogen peroxide solution is supplied from the treatment liquid nozzle 34 onto the upper surface 91 of the substrate 9 from which the resist film has been removed.
  • the SPM liquid remaining in the mixing valve 331, the processing liquid pipe 332, the stirring flow pipe 333, and the processing liquid nozzle 34 is removed.
  • the hydrogen peroxide solution supplied onto the upper surface 91 of the substrate 9 spreads over the entire upper surface 91 due to the rotation of the substrate 9, and the SPM liquid that is the processing liquid remaining on the substrate 9 is removed from the edge of the substrate 9. It is pushed out and removed (step S17).
  • a rinsing process in which a rinsing liquid is supplied to the upper surface 91 of the substrate 9 is performed (step S18).
  • a rinsing liquid For example, pure water or carbon dioxide water is used as the rinse liquid.
  • the rinsing liquid may be supplied from a rinsing liquid supply unit (not shown) or may be supplied by the charge removal liquid supply unit 6.
  • the rinse liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9. Thereby, the hydrogen peroxide remaining on the substrate 9 is washed away.
  • the supply of the rinsing liquid is stopped.
  • the rotational speed of the substrate 9 is increased, and a drying process is performed to remove the rinse liquid remaining on the substrate 9 by the rotation of the substrate 9 (step S19).
  • the rotation of the substrate 9 is stopped, and the substrate 9 is unloaded from the substrate processing apparatus 1.
  • the substrate processing apparatus 1 before the processing with the SPM liquid as the processing liquid is performed on the substrate 9 on which the device is charged by dry processing such as dry etching or plasma CVD, static elimination is performed.
  • the neutralization process with a liquid is performed.
  • the entire upper surface 91 of the substrate 9 is paddle with a charge removal liquid having a first specific resistance larger than the specific resistance of the treatment liquid.
  • the entire upper surface 91 of the substrate 9 is discharged relatively slowly.
  • the charges in the device on the upper surface 91 of the substrate 9 do not move suddenly to the charge removal liquid (that is, discharge into the treatment liquid) and do not generate heat. It is possible to prevent the upper device from being damaged.
  • the specific resistance of the neutralization liquid is reduced to a second specific resistance smaller than the first specific resistance. Then, the entire upper surface 91 of the substrate 9 is paddled with a neutralization solution having a second specific resistance.
  • FIG. 4 is a conceptual diagram showing a change with time of the potential difference between the substrate 9 and the charge removal solution during the charge removal process in the substrate processing apparatus 1.
  • the horizontal axis in FIG. 4 indicates the elapsed time from the start of the supply of the static elimination liquid onto the substrate 9.
  • the vertical axis in FIG. 4 indicates the absolute value of the potential difference between the substrate 9 and the charge removal solution.
  • a solid line 905 indicates a potential difference (hereinafter also simply referred to as “potential difference”) between the substrate 9 and the neutralizing solution during the above-described neutralization process in the substrate processing apparatus 1.
  • a solid line 908 which is a straight line parallel to the horizontal axis, indicates a potential difference in which damage due to rapid charge transfer occurs in the device due to contact between the device on the substrate 9 and the charge removal solution. That is, when the peak of the potential difference with time becomes larger than the solid line 908, the device on the substrate 9 is damaged.
  • a broken line 906 indicates a potential difference between the substrate 9 and the static elimination liquid when the static elimination treatment is continued without changing the specific resistance of the static elimination liquid from the first specific resistance.
  • the peak of the potential difference with time is the first peak 905a of the solid line 905, the device is not damaged.
  • the reduction rate of the potential difference is slow, the time required for the static elimination process becomes long.
  • the alternate long and short dash line 907 indicates that the specific resistance of the neutralizing liquid at the start of supply onto the substrate 9 is the second specific resistance, and thereafter, the neutralizing process is performed without changing the specific resistance of the neutralizing liquid from the second specific resistance.
  • substrate 9 and the static elimination liquid in the case of continuing is shown. In this case, since the peak of the potential difference with time is larger than the solid line 908, the device on the substrate 9 may be damaged.
  • the entire upper surface 91 of the substrate 9 is paddled by the first specific resistance neutralizing solution.
  • the first peak 905a of the potential change with time is equal to or less than the solid line 908, and damage to the device on the substrate 9 is prevented.
  • the entire upper surface 91 of the substrate 9 is paddled by the charge removal liquid having the second specific resistance.
  • a second peak 905b occurs in the change in potential difference with time, but the peak 905b is also below the solid line 908, and damage to the device on the substrate 9 is prevented.
  • the upper surface 91 of the substrate 9 can be formed in a shorter time than in the case where the charge removal process is performed only with the charge removal liquid having the first specific resistance. Static elimination can be performed.
  • the substrate processing apparatus 1 As described above, even when the substrate 9 comes into contact with the processing liquid having a small specific resistance by supplying the processing liquid to the substrate 9 after the charge removal processing is performed, the substrate 9 A large amount of charge does not move rapidly to the processing solution. For this reason, even when the substrate 9 is processed with the processing liquid, it is possible to prevent damage to devices on the substrate 9 due to movement of electric charges, that is, damage to the substrate 9.
  • the first specific resistance neutralization liquid supplied to the substrate 9 from the neutralization liquid supply unit 6 is pure water. In this way, by supplying the neutralization solution having a large specific resistance onto the upper surface 91 of the substrate 9 first, the device on the substrate 9 is damaged during the paddle treatment with the neutralization solution having the first specific resistance. Can be further prevented. Further, in the substrate processing apparatus 1, the specific resistance of the static elimination liquid becomes the second specific resistance by increasing the ion concentration in the static elimination liquid of the first specific resistance by the specific resistance adjusting unit 7. As described above, in the substrate processing apparatus 1, the specific resistance of the charge removal solution can be easily adjusted by adjusting the ion concentration in the charge removal solution.
  • the substrate processing apparatus 1 carbon dioxide, which is relatively easy to handle, is dissolved in the neutralization solution having the first specific resistance to increase the ion concentration in the neutralization solution, whereby the specific resistance of the neutralization solution is increased to the second ratio. It becomes resistance. For this reason, the specific resistance of a static elimination liquid can be adjusted much more easily.
  • the static elimination liquid supply unit 6 can be used as a rinsing liquid supply unit that supplies a rinsing liquid onto the substrate 9. For this reason, the substrate 9 can be neutralized without increasing the size of the substrate processing apparatus 1 and without complicating the structure of the substrate processing apparatus 1.
  • the second specific resistance of the static elimination liquid may be smaller than the specific resistance of the treatment liquid, but is preferably equal to or higher than the specific resistance of the treatment liquid as described above. If the second specific resistance is equal to the specific resistance of the processing liquid, it is very unlikely that an abrupt charge transfer (ie, discharge) occurs between the device and the processing liquid when the substrate 9 is processed with the processing liquid. Therefore, by setting the second specific resistance to be equal to or higher than the specific resistance of the treatment liquid, it is possible to suppress an increase in time required for the static elimination treatment without excessively reducing the specific resistance of the static elimination liquid from the first specific resistance. In addition, in order to further prevent discharge during the treatment with the treatment liquid while shortening the time required for the static elimination treatment, the second specific resistance is equal to the specific resistance of the treatment liquid or more than the specific resistance of the treatment liquid. Is slightly more preferable.
  • the first specific resistance, the second specific resistance, and the specific resistance adjustment time included in the above-described static elimination processing information are variously changed according to the type of device formed on the upper surface 91 of the substrate 9.
  • the specific resistance adjustment time is relatively long.
  • the device size is large (that is, resistance to damage due to charge transfer is high)
  • the first specific resistance and the second specific resistance are relatively small, and the specific resistance adjustment time is relatively short.
  • the control unit 8 of the substrate processing apparatus 1 stores in advance a plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate before step S11.
  • Each of the plurality of static elimination processing information includes a first specific resistance, a second specific resistance, and a specific resistance adjustment time corresponding to the corresponding device.
  • the control unit 8 among the plurality of static elimination processing information, one static elimination processing information corresponding to the type of device formed in advance on the upper surface 91 of the substrate 9 held by the substrate holding unit 2 is selected.
  • the specific resistance adjustment unit 7 is controlled by the control unit 8 as described above based on the single static elimination process information. Thereby, it is possible to perform an appropriate charge removal process according to the characteristics of the device on the upper surface 91 of the substrate 9.
  • the substrate processing apparatus 1 includes another discharging liquid supply unit 6 a that discharges and supplies the discharging liquid toward the other main surface 92 (hereinafter referred to as “lower surface 92”) of the substrate 9. Furthermore, you may provide.
  • the other static elimination liquid supply unit 6a (hereinafter referred to as “lower static elimination liquid supply unit 6a”) includes a lower static elimination nozzle 64a, a branch pipe 633, and a lower static elimination liquid valve 634.
  • the lower static elimination nozzle 64a is disposed below the substrate 9 and faces the central portion of the lower surface 92 of the substrate 9 in the vertical direction.
  • the branch pipe 633 branches from the static elimination liquid pipe 631 of the static elimination liquid supply part 6, and is connected to the lower static elimination nozzle 64a.
  • the lower static elimination valve 634 is provided on the branch pipe 633. By opening the lower static elimination liquid valve 634, the static elimination liquid sent out from the additive mixing unit 63 is sent to the lower static elimination nozzle 64a via the branch pipe 633, and the lower static elimination nozzle 64a passes through the lower surface 92 of the substrate 9. Supplied to the center.
  • the control unit 8 is not shown (the same applies to FIGS. 8 and 11).
  • the lower discharge liquid supply unit 6 a is controlled by the control unit 8 between step S ⁇ b> 11 and step S ⁇ b> 12, whereby the lower surface 92 of the substrate 9 is discharged from the lower discharge nozzle 64 a.
  • a neutralizing solution having a first specific resistance step S31.
  • the substrate 9 is preferably rotated.
  • Step S31 may be performed before step S11 as long as it is performed before the supply of the charge removal liquid to the upper surface 91 of the substrate 9.
  • pure water for example, is supplied as the charge eliminating liquid.
  • the supply of the charge removal liquid to the lower surface 92 of the substrate 9 is performed before the supply of the charge removal liquid to the upper surface 91 of the substrate 9, so that the inside of the substrate main body before the charge removal process of the upper surface 91 of the substrate 9 is performed. Therefore, it is possible to further prevent the device on the substrate 9 from being damaged due to discharge during the charge removal process on the upper surface 91 of the substrate 9 and the process using the processing liquid.
  • step S31 the supply of the charge removal liquid to the lower surface 92 of the substrate 9 (step S31) is performed at any timing with the supply of the charge removal liquid to the upper surface 91 of the substrate 9 in steps S12 to S14. It may be performed in parallel. In other words, step S31 may be performed in parallel with at least one of step S12 and steps S13 and S14.
  • the specific resistance of the static elimination liquid supplied from the lower static elimination nozzle 64 a to the lower surface 92 of the substrate 9 is equal to the specific resistance of the static elimination liquid supplied to the upper surface 91 of the substrate 9.
  • the substrate main body is discharged as described above, and the charge transfer from the substrate main body to the device is suppressed. As a result, it is possible to further prevent the device on the substrate 9 from being damaged by electric discharge.
  • the lower neutralization liquid supply unit 6 a shares the pure water supply unit 61, the additive supply unit 62, the additive mixing unit 63, and the like with the neutralization liquid supply unit 6.
  • the neutralization liquid supply unit 6 a may be connected to another supply source of the neutralization liquid independently from the neutralization liquid supply unit 6.
  • the type and specific resistance of the static elimination liquid supplied from the lower static elimination liquid supply unit 6a to the lower surface 92 of the substrate 9 are the same as the type and specific resistance of the static elimination liquid supplied from the static elimination liquid supply unit 6 to the upper surface 91 of the substrate 9. Can be different.
  • FIG. 8 is a diagram showing a configuration of the substrate processing apparatus 1a according to the second embodiment.
  • a neutralization liquid supply unit 6 b having a structure different from that of the neutralization liquid supply unit 6 shown in FIG. 1 is provided, and the specific resistance adjustment unit 7 further includes another additive valve 72.
  • Other configurations are the same as those of the substrate processing apparatus 1 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.
  • the static elimination liquid supply part 6b is provided with the other additive supply part 62a and the other additive piping 622 in addition to each structure of the static elimination liquid supply part 6 shown in FIG.
  • the additive pipe 622 connects the additive supply part 62 a and the additive mixing part 63.
  • An additive valve 72 of the specific resistance adjusting unit 7 is provided on the additive pipe 622.
  • the additive supply units 62 and 62a are referred to as “first additive supply unit 62” and “second additive supply unit 62a”, respectively, in order to facilitate the distinction between the additive supply units 62 and 62a.
  • the additive valves 71 and 72 are referred to as a “first additive valve 71” and a “second additive valve 72”, respectively.
  • the second additive supply unit 62 a is connected to the additive mixing unit 63 and an additive supply source (not shown), and supplies the additive to the additive mixing unit 63.
  • the additive supply source to which the second additive supply unit 62a is connected is provided, for example, outside the substrate processing apparatus 1a.
  • the additive supply source to which the second additive supply unit 62a is connected is different from the above-described additive supply source to which the first additive supply unit 62 is connected. Further, the additive supplied from the second additive supply unit 62 a to the additive mixing unit 63 is different from the additive supplied from the first additive supply unit 62 to the additive mixing unit 63.
  • first solute the additive supplied by the first additive supply unit 62
  • second solute the additive supplied by the second additive supply unit 62a
  • the first solute is, for example, carbon dioxide gas.
  • the second solute is, for example, liquid hydrochloric acid.
  • the second additive valve 72 is an additive supply amount adjusting unit that adjusts the amount of the second solute supplied from the second additive supply unit 62a to the additive mixing unit 63.
  • the control part 8 controls the 1st additive valve
  • the solute dissolved in the pure water supplied to the mixing unit 63 can be switched between the first solute and the second solute.
  • substrate 9 can be switched among several liquid types.
  • the first solute is carbon dioxide and the second solute is hydrochloric acid
  • the static elimination liquid supplied from the static elimination liquid nozzle 64 can be switched among pure water, carbon dioxide water and dilute hydrochloric acid.
  • the specific resistance can be further reduced as compared with the neutralization solution in which carbon dioxide is dissolved in pure water until saturation.
  • the specific resistance of the static elimination liquid in which the second solute is dissolved can be made smaller than the specific resistance of the static elimination liquid in which the first solute is dissolved.
  • Step S41 a plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on the substrate is stored in advance before step S11.
  • the control unit 8 is previously formed on the upper surface 91 of the substrate 9 held by the substrate holding unit 2 among the plurality of static elimination liquid type information after step S41 and before step S11 described above.
  • One static elimination liquid type information corresponding to the type of the selected device is selected.
  • the type of static elimination liquid supplied on the upper surface 91 of the substrate 9 in steps S12 to S14 is determined (step S42).
  • the control unit 8 controls the specific resistance adjusting unit 7 to switch the type of the discharging liquid discharged from the discharging liquid nozzle 64, and the type determined in step S42. Then, as described above, the control unit 8 controls the specific resistance adjustment unit 7 based on one type of charge removal processing information corresponding to the type of device on the top surface 91 of the substrate 9, while eliminating charge from the top surface 91 of the substrate 9. Processing (steps S11 to S14) is performed.
  • the neutralization solution of the second specific resistance is carbon dioxide water in which carbon dioxide, which is the first solute, is dissolved in pure water.
  • the neutralization solution having the second specific resistance is dilute hydrochloric acid obtained by dissolving hydrochloric acid as the second solute in pure water.
  • the second solute is not hydrochloric acid, for example, ammonia. In this case, ammonia water in which ammonia is dissolved in pure water is used as the neutralization liquid having the second specific resistance.
  • the type of the charge removal liquid is switched according to the type of the device formed on the upper surface 91 of the substrate 9, so that the appropriateness according to the characteristics of the device on the upper surface 91 of the substrate 9 is obtained. Can be performed.
  • the type of the charge removal liquid may be changed during the above charge removal process.
  • step S ⁇ b> 12 pure water is supplied on the upper surface 91 of the substrate 9 as the first specific resistance neutralizing solution, and the entire upper surface 91 is padded with pure water.
  • step S13 first, as shown in FIG. 10, the first solute (for example, carbon dioxide) from the first additive supply unit 62 is dissolved in the neutralizing solution having the first specific resistance, and the ion concentration in the neutralizing solution is set. Increase (step S131).
  • Step S132 the supply of the first solute from the first additive supply unit 62 to the additive mixing unit 63 may be continued or stopped.
  • the second solute is further dissolved to set the specific resistance of the neutralization solution to the second specific resistance.
  • the adjustment range of the specific resistance of the static elimination liquid in step S13 can be increased. In other words, the difference between the first specific resistance and the second specific resistance can be increased.
  • the second additive supply unit 62a is not necessarily connected to the additive mixing unit 63 to which the first additive supply unit 62 is connected.
  • the second additive supply unit 62a is connected to the additive mixing unit 63. Also good.
  • FIG. 11 is a diagram showing a configuration of a substrate processing apparatus 1b according to the second embodiment.
  • the specific resistance adjusting unit 7 includes a heating unit 73.
  • Other configurations are the same as those of the substrate processing apparatus 1 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.
  • the heating unit 73 is provided on the pure water pipe 611 of the static elimination liquid supply unit 6, and heats pure water sent from the pure water supply unit 61 to the additive mixing unit 63.
  • the specific resistance of pure water decreases as the temperature increases.
  • the static elimination liquid supplied from the static elimination liquid nozzle 64 onto the upper surface 91 of the substrate 9 is, for example, pure water.
  • the control unit 8 (see FIG. 1) feedback-controls the heating unit 73 of the specific resistance adjustment unit 7 based on the output from the specific resistance meter 67, so The temperature of the static elimination liquid supplied on the upper surface 91 is controlled, and thereby the specific resistance of the static elimination liquid is controlled.
  • step S ⁇ b> 11 the control unit 8 controls the heating unit 73 to control the temperature of the static elimination liquid, and the specific resistance of the static elimination liquid becomes the first specific resistance.
  • step S13 the control unit 8 controls the heating unit 73 to increase the temperature of the neutralizing liquid having the first specific resistance, and the specific resistance of the neutralizing liquid becomes the second specific resistance.
  • the specific resistance of the static elimination liquid can be easily adjusted by adjusting the temperature of the static elimination liquid.
  • a temperature measurement unit that measures the temperature of the static elimination liquid is provided on the static elimination liquid pipe 631, and the heating unit 73 is based on the temperature of the static elimination liquid output from the temperature measurement unit. 8 may be feedback controlled.
  • a liquid in which an additive (for example, carbon dioxide) supplied from the additive supply unit 62 is dissolved in pure water at a predetermined concentration may be used as the static elimination liquid.
  • the control of the specific resistance of the static elimination liquid may be performed by controlling both the temperature of the static elimination liquid and the ion concentration in the static elimination liquid.
  • the first specific resistance may be less than 18 M ⁇ ⁇ cm as long as it is larger than the specific resistance of the processing liquid supplied from the processing liquid supply unit 3 to the substrate 9. Therefore, the neutralization liquid having the first specific resistance may be a liquid containing ions such as carbon dioxide water instead of pure water.
  • Step S13 is performed in parallel with step S12. Immediately after step S12, that is, immediately after the entire top surface 91 of the substrate 9 is paddled by the neutralizing liquid having the first specific resistance, the top surface 91 of the substrate 9 is removed from the neutralizing liquid nozzle 64. For this, a static elimination liquid having a specific resistance smaller than the first specific resistance may be supplied.
  • the additive supplied from the additive supply unit 62 to the additive mixing unit 63 may be other than carbon dioxide.
  • the additive for example, hydrochloric acid, ammonia or hydrogen peroxide water is used.
  • step S15 the liquid removal isopropyl alcohol (hereinafter referred to as “IPA”) may be supplied onto the upper surface 91 of the substrate 9 to remove the charge removal liquid from the upper surface 91 of the substrate 9.
  • IPA liquid removal isopropyl alcohol
  • a processing liquid other than the SPM liquid may be supplied onto the substrate 9 to perform other processing on the substrate 9.
  • the substrate 9 may be etched by supplying buffered hydrofluoric acid (BHF) as a treatment liquid onto the substrate 9 on which the resist film is formed.
  • BHF buffered hydrofluoric acid
  • the structure of the substrate processing apparatuses 1, 1 a, 1 b is particularly suitable for an apparatus that performs processing with a processing solution having a very low specific resistance, such as an SPM solution or buffered hydrofluoric acid.
  • step S15 the removal of the charge removal liquid from the substrate 9 (step S15) is omitted, and the treatment liquid is present in the state where the charge removal liquid exists on the upper surface 91 of the substrate 9. May be supplied to process the substrate 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

In this substrate treatment device (1), a substrate (9) having devices that are charged due to dry processing undergoes a charge removal treatment with a charge removal solution prior to processing with a processing solution. In the charge removal treatment, the entirety of the top face (91) of the substrate (9) is puddled with a charge removal solution having a first specific resistance that is greater than the specific resistance of the processing solution. This removes charges from the entirety of the top face (91) of the substrate (9) relatively gently while preventing damage to the devices on the substrate (9). Next, the specific resistance of the charge removal solution is lowered to a second specific resistance, which is smaller than the first specific resistance. Then, the entirety of the top face (91) of the substrate (9) is puddled with the charge removal solution having the second specific resistance. This accelerates the movement of the electric charges within the devices toward the charge removal solution, while preventing the top face (91) of the substrate (9) from being damaged, allowing charge removal from the top face (91) of the substrate (9) to be carried out in a short time.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板を処理する技術に関する。 The present invention relates to a technique for processing a substrate.
 従来より、半導体基板(以下、単に「基板」という。)の製造工程では、基板処理装置を用いて酸化膜等の絶縁膜を有する基板に対して様々な処理が施される。例えば、表面上にレジストのパターンが形成された基板に処理液を供給することにより、基板の表面に対してエッチング等の処理が行われる。また、エッチング等の終了後、基板上のレジストを除去する処理も行われる。 Conventionally, in a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on a substrate having an insulating film such as an oxide film using a substrate processing apparatus. For example, a process such as etching is performed on the surface of the substrate by supplying a processing liquid to the substrate having a resist pattern formed on the surface. In addition, after the etching or the like is finished, a process for removing the resist on the substrate is also performed.
 基板処理装置にて処理される基板には、基板処理装置に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程が行われている。このようなドライ工程では、デバイス内に電荷が発生して帯電するため、基板は、帯電した状態で基板処理装置に搬入される(いわゆる、持ち込み帯電)。そして、基板処理装置において、SPM液のような比抵抗が小さい処理液が基板上に供給されると、デバイス内の電荷が、デバイスから処理液へと急激に移動し(すなわち、処理液中へと放電し)、当該移動に伴う発熱によりデバイスにダメージが生じるおそれがある。そこで、処理液を基板に供給する前に、イオナイザにより基板を除電することが考えられるが、基板の帯電量が大きい場合、効率的に除電することは困難である。 The substrate processed by the substrate processing apparatus is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus. In such a dry process, since charges are generated in the device and charged, the substrate is carried into the substrate processing apparatus in a charged state (so-called carry-in charging). In the substrate processing apparatus, when a processing liquid having a small specific resistance such as an SPM liquid is supplied onto the substrate, the charge in the device rapidly moves from the device to the processing liquid (that is, into the processing liquid). And the device may be damaged by the heat generated by the movement. In view of this, it is conceivable to neutralize the substrate with an ionizer before supplying the treatment liquid to the substrate. However, it is difficult to efficiently eliminate the charge when the charge amount of the substrate is large.
 特開2013-77624号公報(文献1)の基板処理装置では、処理液による処理よりも前に、処理液よりも比抵抗が大きい純水等の除電液が基板上に供給され、基板の上面全体が除電液にてパドルされる。これにより、基板が比較的緩やかに除電される。その後、基板上から除電液が除去され、SPM液等の処理液が基板上に供給されるため、上述の電荷の急激な移動に伴う基板の損傷が防止される。 In the substrate processing apparatus disclosed in Japanese Patent Application Laid-Open No. 2013-77624 (Reference 1), before the processing with the processing liquid, a neutralizing liquid such as pure water having a specific resistance higher than that of the processing liquid is supplied onto the substrate, and the upper surface of the substrate The whole is paddled with a static neutralizer. As a result, the substrate is discharged relatively slowly. Thereafter, the charge removal liquid is removed from the substrate, and the treatment liquid such as the SPM liquid is supplied onto the substrate, so that the substrate is prevented from being damaged due to the above-described rapid movement of the charges.
 ところで、文献1のような基板処理装置では、除電液により基板の上面をパドルした後、基板が所望のレベルまで除電されるためには、比較的長い時間が必要となる。一方、基板処理装置では、基板の処理に要する時間を短縮することが求められている。 By the way, in the substrate processing apparatus as in Document 1, it takes a relatively long time for the substrate to be neutralized to a desired level after the upper surface of the substrate is paddled by the neutralizing liquid. On the other hand, in the substrate processing apparatus, it is required to shorten the time required for processing the substrate.
 本発明は、基板を処理する基板処理装置および基板処理方法に向けられている。本発明は、基板の主面におけるダメージを防止しつつ短時間にて主面の除電を行うことを目的としている。 The present invention is directed to a substrate processing apparatus and a substrate processing method for processing a substrate. An object of the present invention is to neutralize the main surface in a short time while preventing damage to the main surface of the substrate.
 本発明に係る基板処理装置は、主面を上側に向けた状態で基板を保持する基板保持部と、前記基板の前記主面上に処理液を供給する処理液供給部と、前記基板の前記主面上に除電液を供給する除電液供給部と、前記除電液の比抵抗を調節する比抵抗調節部と、前記処理液供給部、前記除電液供給部および前記比抵抗調節部を制御することにより、前記処理液の比抵抗よりも大きい第1比抵抗の前記除電液を前記基板の前記主面上に供給して前記主面全体を前記除電液にてパドルした後、前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗よりも小さい第2比抵抗まで減少させ、前記第2比抵抗の前記除電液にて前記主面全体をパドルすることにより前記主面上の電荷を減少させた後、前記処理液を前記基板の前記主面上に供給して所定の処理を行う制御部とを備える。当該基板処理装置によれば、基板の主面におけるダメージを防止しつつ短時間にて主面の除電を行うことができる。 A substrate processing apparatus according to the present invention includes a substrate holding unit that holds a substrate with a main surface facing upward, a processing liquid supply unit that supplies a processing liquid onto the main surface of the substrate, and the substrate Controlling the static elimination liquid supply part which supplies static elimination liquid on a main surface, the specific resistance adjustment part which adjusts the specific resistance of the said static elimination liquid, the said process liquid supply part, the said static elimination liquid supply part, and the said specific resistance adjustment part Thus, after supplying the neutralization liquid having a first specific resistance larger than the specific resistance of the treatment liquid onto the main surface of the substrate and padding the entire main surface with the neutralization liquid, Reducing the specific resistance of the neutralizing liquid supplied to the second specific resistance smaller than the first specific resistance, and paddles the entire main surface with the neutralizing liquid having the second specific resistance. After reducing the charge on the substrate, the processing liquid is supplied onto the main surface of the substrate And a control unit for performing predetermined processing. According to the substrate processing apparatus, the main surface can be neutralized in a short time while preventing damage to the main surface of the substrate.
 本発明の一の好ましい実施の形態では、前記第1比抵抗の前記除電液が純水である。 In one preferable embodiment of the present invention, the static eliminating liquid having the first specific resistance is pure water.
 本発明の他の好ましい実施の形態では、前記比抵抗調節部が、前記第1比抵抗の前記除電液中のイオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。 In another preferred embodiment of the present invention, the specific resistance adjusting unit increases the ion concentration in the static elimination liquid of the first specific resistance, thereby changing the specific resistance of the static elimination liquid to the second specific resistance. To do.
 より好ましくは、前記比抵抗調節部が、前記第1比抵抗の前記除電液に二酸化炭素を溶解させて前記イオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。 More preferably, the specific resistance adjustment unit causes the specific resistance of the static elimination liquid to be the second specific resistance by dissolving carbon dioxide in the static elimination liquid having the first specific resistance to increase the ion concentration. .
 あるいは、前記比抵抗調節部が、前記第1比抵抗の前記除電液に第1溶質を溶解させて前記イオン濃度を増大させた後、前記除電液に第2溶質を溶解させて前記イオン濃度をさらに増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。 Alternatively, the specific resistance adjusting unit increases the ion concentration by dissolving the first solute in the static elimination liquid having the first specific resistance, and then dissolves the second solute in the static elimination liquid to adjust the ion concentration. By further increasing, the specific resistance of the static elimination liquid is made the second specific resistance.
 本発明の他の好ましい実施の形態では、前記比抵抗調節部が、前記第1比抵抗の前記除電液の温度を上昇させることにより、前記除電液の比抵抗を前記第2比抵抗とする。 In another preferred embodiment of the present invention, the specific resistance adjusting unit raises the temperature of the static elimination liquid having the first specific resistance, thereby setting the specific resistance of the static elimination liquid to the second specific resistance.
 本発明の他の好ましい実施の形態では、前記第2比抵抗が、前記処理液の比抵抗以上である。 In another preferred embodiment of the present invention, the second specific resistance is greater than or equal to the specific resistance of the treatment liquid.
 本発明の他の好ましい実施の形態では、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電処理情報が、前記制御部に予め記憶されており、前記基板の前記主面上にデバイスが予め形成されており、前記複数の除電処理情報がそれぞれ、前記第1比抵抗、前記第2比抵抗、および、前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗から前記第2比抵抗へと変更する際に要する比抵抗調節時間を含み、前記制御部が、前記複数の除電処理情報のうち前記主面上の前記デバイスの種類に対応する1つの除電処理情報に基づいて前記比抵抗調節部を制御する。 In another preferred embodiment of the present invention, a plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate are stored in advance in the control unit, and are on the main surface of the substrate. A device is formed in advance, and the plurality of static elimination processing information respectively indicate the first specific resistance, the second specific resistance, and the specific resistance of the static elimination liquid supplied on the main surface. Including a specific resistance adjustment time required for changing from a specific resistance to the second specific resistance, wherein the control unit corresponds to one type of static electricity corresponding to the type of the device on the main surface among the plurality of static elimination processing information. The specific resistance adjustment unit is controlled based on the processing information.
 本発明の他の好ましい実施の形態では、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電液種情報が、前記制御部に予め記憶されており、前記除電液供給部において、前記除電液の種類を複数の液種の間で切り替え可能であり、前記基板の前記主面上にデバイスが予め形成されており、前記制御部が、前記複数の除電液種情報のうち前記主面上の前記デバイスの種類に対応する1つの除電液種情報に基づいて、前記除電液の種類を切り替える。 In another preferred embodiment of the present invention, a plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on a substrate are stored in advance in the control unit, and the static elimination liquid supply unit The type of the static elimination liquid can be switched between a plurality of liquid types, a device is formed in advance on the main surface of the substrate, and the control unit includes the static elimination liquid type information among the plurality of static elimination liquid type information. The type of the neutralizing liquid is switched based on one type of neutralizing liquid type corresponding to the type of the device on the main surface.
 本発明の他の好ましい実施の形態では、前記基板の他方の主面に除電液を供給する他の除電液供給部をさらに備え、前記制御部が前記他の除電液供給部を制御することにより、前記基板の前記主面への前記除電液の供給よりも前に、または、前記主面への前記除電液の供給と並行して、前記基板の前記他方の主面に除電液が供給される。 In another preferred embodiment of the present invention, the apparatus further includes another charge removal liquid supply unit that supplies a charge removal liquid to the other main surface of the substrate, and the control unit controls the other charge removal liquid supply unit. The neutralization liquid is supplied to the other main surface of the substrate before the supply of the neutralization solution to the main surface of the substrate or in parallel with the supply of the neutralization solution to the main surface. The
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
第1の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 1st Embodiment. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board | substrate. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 基板と除電液との間の電位差の経時変化を示す概念図である。It is a conceptual diagram which shows a time-dependent change of the electrical potential difference between a board | substrate and a static elimination liquid. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板処理装置の他の例を示す図である。It is a figure which shows the other example of a substrate processing apparatus. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 第2の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 2nd Embodiment. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 第3の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 3rd Embodiment.
 図1は、本発明の第1の実施の形態に係る基板処理装置1の構成を示す図である。図1に示すように、基板処理装置1は、半導体基板9(以下、単に「基板9」という。)を1枚ずつ処理する枚葉式の装置である。基板処理装置1では、基板9にSPM(sulfuric acid / hydrogen peroxide mixture)液が供給されてSPM処理、すなわち、基板9上のレジスト膜の除去処理が行われる。 FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to a first embodiment of the present invention. As shown in FIG. 1, the substrate processing apparatus 1 is a single-wafer type apparatus that processes semiconductor substrates 9 (hereinafter simply referred to as “substrates 9”) one by one. In the substrate processing apparatus 1, an SPM (sulfuric acid / hydrogen peroxide mixture) solution is supplied to the substrate 9 to perform SPM processing, that is, removal processing of the resist film on the substrate 9.
 基板処理装置1は、基板保持部2と、処理液供給部3と、カップ部4と、基板回転機構5と、除電液供給部6と、比抵抗調節部7と、これらの機構を制御する制御部8とを備える。基板保持部2は、基板9の一方の主面91(以下、「上面91」という。)を上側に向けた状態で、基板9を保持する。基板9の上面91には、予めデバイスが形成されている。 The substrate processing apparatus 1 controls the substrate holding unit 2, the processing liquid supply unit 3, the cup unit 4, the substrate rotating mechanism 5, the neutralization liquid supply unit 6, the specific resistance adjusting unit 7, and these mechanisms. And a control unit 8. The substrate holding unit 2 holds the substrate 9 with one main surface 91 (hereinafter, referred to as “upper surface 91”) of the substrate 9 facing upward. Devices are formed in advance on the upper surface 91 of the substrate 9.
 処理液供給部3は、基板9の上面91に向けてSPM液等の処理液を吐出し、上面91上に処理液を供給する。除電液供給部6は、基板9の上面91に向けて除電液を吐出し、上面91上に除電液を供給する。比抵抗調節部7は、除電液の比抵抗を調節する。基板回転機構5は、基板9の中心を通るとともに基板9の上面91に垂直な回転軸を中心として、基板9を基板保持部2と共に水平に回転する。カップ部4は、基板9および基板保持部2の周囲を囲み、回転する基板9から周囲に飛散する処理液等の液体を受ける。基板処理装置1では、基板保持部2、カップ部4、基板回転機構5等が、図示省略のチャンバ内に収容される。 The processing liquid supply unit 3 discharges a processing liquid such as an SPM liquid toward the upper surface 91 of the substrate 9 and supplies the processing liquid onto the upper surface 91. The neutralization liquid supply unit 6 discharges the neutralization liquid toward the upper surface 91 of the substrate 9 and supplies the neutralization liquid onto the upper surface 91. The specific resistance adjusting unit 7 adjusts the specific resistance of the static elimination liquid. The substrate rotation mechanism 5 rotates the substrate 9 horizontally with the substrate holding unit 2 around a rotation axis that passes through the center of the substrate 9 and is perpendicular to the upper surface 91 of the substrate 9. The cup unit 4 surrounds the periphery of the substrate 9 and the substrate holding unit 2 and receives a liquid such as a processing liquid scattered from the rotating substrate 9 to the periphery. In the substrate processing apparatus 1, the substrate holding unit 2, the cup unit 4, the substrate rotating mechanism 5 and the like are accommodated in a chamber (not shown).
 処理液供給部3は、硫酸供給部31と、過酸化水素水供給部32と、混合液生成部33と、処理液ノズル34と、処理液ノズル回動機構35とを備える。硫酸供給部31は、混合液生成部33および図示省略の硫酸供給源に接続され、混合液生成部33に硫酸を供給する。過酸化水素水供給部32は、混合液生成部33および図示省略の過酸化水素水供給源に接続され、混合液生成部33に過酸化水素水を供給する。硫酸供給源および過酸化水素水供給源は、例えば、基板処理装置1の外部に設けられる。 The treatment liquid supply unit 3 includes a sulfuric acid supply part 31, a hydrogen peroxide solution supply part 32, a mixed liquid generation part 33, a treatment liquid nozzle 34, and a treatment liquid nozzle rotation mechanism 35. The sulfuric acid supply unit 31 is connected to the mixed solution generation unit 33 and a sulfuric acid supply source (not shown), and supplies sulfuric acid to the mixed solution generation unit 33. The hydrogen peroxide solution supply unit 32 is connected to the mixed solution generating unit 33 and a hydrogen peroxide solution supply source (not shown), and supplies the hydrogen peroxide solution to the mixed solution generating unit 33. For example, the sulfuric acid supply source and the hydrogen peroxide solution supply source are provided outside the substrate processing apparatus 1.
 混合液生成部33は、ミキシングバルブ331と、処理液配管332と、攪拌流通管333とを備える。ミキシングバルブ331には、硫酸供給部31および過酸化水素水供給部32が接続される。処理液配管332は、ミキシングバルブ331と処理液ノズル34とを接続する。攪拌流通管333は、処理液配管332上に設けられる。 The mixed liquid generating unit 33 includes a mixing valve 331, a processing liquid pipe 332, and a stirring flow pipe 333. A sulfuric acid supply unit 31 and a hydrogen peroxide solution supply unit 32 are connected to the mixing valve 331. The processing liquid pipe 332 connects the mixing valve 331 and the processing liquid nozzle 34. The stirring flow pipe 333 is provided on the processing liquid pipe 332.
 処理液供給部3では、加熱された硫酸が硫酸供給部31からミキシングバルブ331に供給され、常温(すなわち、室温と同程度の温度)の過酸化水素水がミキシングバルブ331に供給される。ミキシングバルブ331に供給される硫酸の温度は、例えば、約130℃~150℃である。ミキシングバルブ331では、硫酸と過酸化水素水とが混合され、混合液であるSPM液(硫酸過水)が生成される。処理液であるSPM液は、処理液配管332および攪拌流通管333を通過して処理液ノズル34へと送られる。攪拌流通管333では、SPM液が攪拌されることにより、硫酸と過酸化水素水との化学反応が促進される。 In the treatment liquid supply unit 3, heated sulfuric acid is supplied from the sulfuric acid supply unit 31 to the mixing valve 331, and hydrogen peroxide solution at room temperature (that is, a temperature that is about the same as room temperature) is supplied to the mixing valve 331. The temperature of sulfuric acid supplied to the mixing valve 331 is, for example, about 130 ° C. to 150 ° C. In the mixing valve 331, sulfuric acid and hydrogen peroxide are mixed to generate an SPM liquid (sulfuric acid / hydrogen peroxide) that is a mixed liquid. The SPM liquid that is the processing liquid passes through the processing liquid pipe 332 and the stirring flow pipe 333 and is sent to the processing liquid nozzle 34. In the stirring flow pipe 333, the chemical reaction between sulfuric acid and hydrogen peroxide solution is promoted by stirring the SPM liquid.
 処理液ノズル34は、基板9の上方に配置され、先端から基板9の上面91に向けて処理液を吐出する。処理液ノズル回動機構35は、回転軸351から水平方向に延びるとともに処理液ノズル34が取り付けられるアーム352を備える。処理液ノズル回動機構35は、処理液ノズル34およびアーム352を、回転軸351を中心として水平に回動する。 The processing liquid nozzle 34 is disposed above the substrate 9 and discharges the processing liquid from the tip toward the upper surface 91 of the substrate 9. The processing liquid nozzle rotation mechanism 35 includes an arm 352 that extends in the horizontal direction from the rotation shaft 351 and to which the processing liquid nozzle 34 is attached. The processing liquid nozzle rotating mechanism 35 rotates the processing liquid nozzle 34 and the arm 352 horizontally around the rotation shaft 351.
 除電液供給部6では、比抵抗が制御された除電液が、基板9の上面91上に供給される。除電液は、純水(DIW:deionized water)、または、イオンを含む液体である。除電液の比抵抗は、好ましくは、0.05MΩ・cm以上18MΩ・cm以下である。当該イオンを含む液体としては、例えば、純水に二酸化炭素(CO)を溶解させたものが利用される。 In the static elimination liquid supply unit 6, the static elimination liquid whose specific resistance is controlled is supplied onto the upper surface 91 of the substrate 9. The neutralizing liquid is pure water (DIW: deionized water) or a liquid containing ions. The specific resistance of the neutralizing solution is preferably 0.05 MΩ · cm or more and 18 MΩ · cm or less. As the liquid containing the ions, for example, a solution obtained by dissolving carbon dioxide (CO 2 ) in pure water is used.
 除電液供給部6は、純水供給部61と、添加物供給部62と、添加物混合部63と、除電液ノズル64と、除電液ノズル回動機構65と、流量計66と、比抵抗計67とを備える。純水供給部61は、添加物混合部63および図示省略の純水供給源に接続され、添加物混合部63に純水を供給する。流量計66は、純水供給部61と添加物混合部63とを接続する純水配管611上に設けられ、純水配管611を流れる純水の流量を測定する。添加物供給部62は、添加物混合部63およびおよび図示省略の添加物供給源に接続され、添加物混合部63に添加物を供給する。添加物供給部62から供給される添加物は、例えば、二酸化炭素ガスである。純水供給源および添加物供給源は、例えば、基板処理装置1の外部に設けられる。 The neutralization liquid supply unit 6 includes a pure water supply unit 61, an additive supply unit 62, an additive mixing unit 63, a neutralization liquid nozzle 64, a neutralization liquid nozzle rotating mechanism 65, a flow meter 66, and a specific resistance. 67 in total. The pure water supply unit 61 is connected to the additive mixing unit 63 and a pure water supply source (not shown), and supplies pure water to the additive mixing unit 63. The flow meter 66 is provided on the pure water pipe 611 connecting the pure water supply unit 61 and the additive mixing unit 63, and measures the flow rate of pure water flowing through the pure water pipe 611. The additive supply unit 62 is connected to the additive mixing unit 63 and an additive supply source (not shown), and supplies the additive to the additive mixing unit 63. The additive supplied from the additive supply unit 62 is, for example, carbon dioxide gas. The pure water supply source and the additive supply source are provided outside the substrate processing apparatus 1, for example.
 添加物混合部63では、純水供給部61からの純水に、添加物供給部62からの添加物が混合され、除電液であるイオンを含む液体が生成される。添加物として二酸化炭素が供給される場合、添加物混合部63では、純水に二酸化炭素が溶解し、除電液である二酸化炭素水(CO水)が生成される。除電液は、添加物混合部63から除電液配管631を介して除電液ノズル64へと送られる。一方、添加物供給部62からの添加物の供給が停止されている場合、純水供給部61から添加物混合部63に供給された純水が、除電液として除電液配管631を介して除電液ノズル64へと送られる。除電液配管631上には、除電液バルブ632が設けられる。除電液バルブ632は、添加物混合部63から除電液ノズル64へと送出される除電液の流量を調節する除電液供給量調節部である。 In the additive mixing part 63, the additive from the additive supply part 62 is mixed with the pure water from the pure water supply part 61, and the liquid containing the ion which is a static elimination liquid is produced | generated. When carbon dioxide is supplied as an additive, in the additive mixing unit 63, carbon dioxide is dissolved in pure water, and carbon dioxide water (CO 2 water) that is a static elimination liquid is generated. The neutralization liquid is sent from the additive mixing unit 63 to the neutralization liquid nozzle 64 via the neutralization liquid pipe 631. On the other hand, when the supply of the additive from the additive supply unit 62 is stopped, the pure water supplied from the pure water supply unit 61 to the additive mixing unit 63 is removed as a charge removal liquid via the charge removal liquid pipe 631. It is sent to the liquid nozzle 64. A neutralization liquid valve 632 is provided on the neutralization liquid pipe 631. The neutralization liquid valve 632 is a neutralization liquid supply amount adjustment unit that adjusts the flow rate of the neutralization liquid sent from the additive mixing unit 63 to the neutralization liquid nozzle 64.
 除電液ノズル64は、基板9の上方に配置され、先端から基板9の上面91に向けて除電液を吐出する。除電液ノズル回動機構65は、回転軸651から水平方向に延びるとともに除電液ノズル64が取り付けられるアーム652を備える。除電液ノズル回動機構65は、除電液ノズル64およびアーム652を、回転軸651を中心として水平に回動する。 The neutralizing liquid nozzle 64 is disposed above the substrate 9 and discharges the neutralizing liquid from the tip toward the upper surface 91 of the substrate 9. The neutralization liquid nozzle rotation mechanism 65 includes an arm 652 that extends in the horizontal direction from the rotation shaft 651 and to which the neutralization liquid nozzle 64 is attached. The neutralization liquid nozzle rotation mechanism 65 rotates the neutralization liquid nozzle 64 and the arm 652 horizontally around the rotation shaft 651.
 比抵抗調節部7は、添加物バルブ71を備える。添加物バルブ71は、添加物供給部62と添加物混合部63とを接続する添加物配管621上に設けられる。添加物バルブ71は、添加物供給部62から添加物混合部63に供給される添加物の量を調節する添加物供給量調節部である。比抵抗調節部7により添加物混合部63に供給される添加物の量が調節されることにより、添加物混合部63において純水供給部61からの純水に混合される添加物の量が調節される。これにより、添加物混合部63から送出される除電液中のイオン濃度が調節される。除電液中のイオン濃度が増大すると除電液の比抵抗は減少し、除電液中のイオン濃度が減少すると除電液の比抵抗は増大する。 The specific resistance adjusting unit 7 includes an additive valve 71. The additive valve 71 is provided on an additive pipe 621 that connects the additive supply unit 62 and the additive mixing unit 63. The additive valve 71 is an additive supply amount adjusting unit that adjusts the amount of additive supplied from the additive supply unit 62 to the additive mixing unit 63. By adjusting the amount of the additive supplied to the additive mixing unit 63 by the specific resistance adjusting unit 7, the amount of the additive mixed in the pure water from the pure water supply unit 61 in the additive mixing unit 63 is reduced. Adjusted. Thereby, the ion concentration in the static elimination liquid sent out from the additive mixing part 63 is adjusted. When the ion concentration in the static elimination liquid increases, the specific resistance of the static elimination liquid decreases, and when the ion concentration in the static elimination liquid decreases, the specific resistance of the static elimination liquid increases.
 基板処理装置1では、比抵抗計67からの出力(すなわち、除電液配管631内の除電液の比抵抗の測定値)に基づいて、制御部8により比抵抗調節部7の添加物バルブ71がフィードバック制御される。これにより、添加物混合部63において純水に混合する添加物の量が制御され、添加物混合部63から除電液配管631へと送出される除電液におけるイオン濃度が制御される。その結果、除電液の比抵抗が、所望の比抵抗となる。 In the substrate processing apparatus 1, based on the output from the specific resistance meter 67 (that is, the measured value of the specific resistance of the static elimination liquid in the static elimination liquid pipe 631), the control valve 8 causes the additive valve 71 of the specific resistance adjustment section 7 to be Feedback controlled. Thereby, the amount of the additive mixed with pure water in the additive mixing unit 63 is controlled, and the ion concentration in the static elimination liquid sent from the additive mixing unit 63 to the static elimination liquid pipe 631 is controlled. As a result, the specific resistance of the static elimination liquid becomes a desired specific resistance.
 図2は、基板処理装置1における基板9の処理の流れを示す図である。以下では、添加物供給部62から供給される添加物が二酸化炭素であるものとして説明する。基板処理装置1では、まず、基板9が搬入されて基板保持部2により保持される。基板9は、基板処理装置1に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程を経ている。ドライ工程が行われた基板9では、上面91上のデバイス内に電荷が発生し、基板9が帯電した状態となっている。 FIG. 2 is a diagram showing the flow of processing of the substrate 9 in the substrate processing apparatus 1. In the following description, it is assumed that the additive supplied from the additive supply unit 62 is carbon dioxide. In the substrate processing apparatus 1, first, the substrate 9 is loaded and held by the substrate holding unit 2. The substrate 9 is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus 1. In the substrate 9 on which the drying process has been performed, electric charges are generated in the device on the upper surface 91, and the substrate 9 is in a charged state.
 続いて、除電液供給部6において、除電液ノズル64が基板9の外周縁よりも外側の待機位置に位置した状態で、制御部8により除電液供給部6の除電液バルブ632が制御され、除電液ノズル64から除電液の吐出が開始される。そして、比抵抗計67からの出力に基づいて、制御部8により添加物バルブ71に対するフィードバック制御が行われる。これにより、添加物混合部63において純水に溶解する二酸化炭素の量が制御される。すなわち、除電液中のイオン濃度が制御される。その結果、除電液の比抵抗が、制御部8に予め記憶されている第1比抵抗となる(ステップS11)。 Subsequently, in the static elimination liquid supply unit 6, the static elimination liquid valve 632 of the static elimination liquid supply unit 6 is controlled by the control unit 8 in a state where the static elimination liquid nozzle 64 is positioned at the standby position outside the outer peripheral edge of the substrate 9. Discharge of the charge removal liquid is started from the charge removal nozzle 64. Based on the output from the resistivity meter 67, feedback control for the additive valve 71 is performed by the control unit 8. Thereby, the amount of carbon dioxide dissolved in pure water in the additive mixing unit 63 is controlled. That is, the ion concentration in the static elimination liquid is controlled. As a result, the specific resistance of the static elimination liquid becomes the first specific resistance stored in advance in the control unit 8 (step S11).
 第1比抵抗は、処理液供給部3から基板9に供給される処理液の比抵抗よりも大きい。第1比抵抗が、例えば約18MΩ・cmである場合、除電液は純水である。以下、第1比抵抗の除電液(すなわち、比抵抗が第1比抵抗に等しい除電液)が純水であるものとして説明する。この場合、ステップS11では、添加物バルブ71は閉じられており、添加物供給部62から添加物混合部63への二酸化炭素の供給は停止されている。 The first specific resistance is larger than the specific resistance of the processing liquid supplied from the processing liquid supply unit 3 to the substrate 9. When the first specific resistance is, for example, about 18 MΩ · cm, the static elimination liquid is pure water. In the following description, it is assumed that the neutralizing liquid having the first specific resistance (that is, the neutralizing liquid having a specific resistance equal to the first specific resistance) is pure water. In this case, in step S11, the additive valve 71 is closed, and the supply of carbon dioxide from the additive supply unit 62 to the additive mixing unit 63 is stopped.
 次に、除電液ノズル回動機構65により除電液ノズル64が待機位置から移動し、図1に示すように、除電液ノズル64の先端の吐出口が、基板9の上面91の中心部を向く。このとき、基板回転機構5は停止、または、低い回転速度にて回転するように制御部8により制御される。したがって、基板9は、回転していない状態、または、低い回転速度(例えば、10~200rpm)にて回転している状態である。そして、除電液ノズル64から基板9の上面91上に第1比抵抗の除電液が供給され、基板9の中心部から上面91全体に拡がる。これにより、基板9の上面91上に第1比抵抗の除電液の薄い層(例えば、厚さ約1mmの層)が形成され、上面91全体が第1比抵抗の除電液にてパドルされる(ステップS12)。基板処理装置1では、基板9の上面91上のデバイス内の電荷が、デバイスから除電液へと移動し、上面91上の電荷が減少する。 Next, the neutralization liquid nozzle 64 is moved from the standby position by the neutralization liquid nozzle rotating mechanism 65, and the discharge port at the tip of the neutralization liquid nozzle 64 faces the center of the upper surface 91 of the substrate 9 as shown in FIG. . At this time, the substrate rotation mechanism 5 is controlled by the control unit 8 so as to stop or rotate at a low rotation speed. Therefore, the substrate 9 is not rotated or is rotated at a low rotation speed (for example, 10 to 200 rpm). Then, the neutralization liquid having the first specific resistance is supplied from the neutralization liquid nozzle 64 onto the upper surface 91 of the substrate 9, and spreads from the central portion of the substrate 9 to the entire upper surface 91. As a result, a thin layer (for example, a layer having a thickness of about 1 mm) of the first specific resistance neutralizing solution is formed on the upper surface 91 of the substrate 9, and the entire upper surface 91 is padded with the first specific resistance neutralizing solution. (Step S12). In the substrate processing apparatus 1, the charge in the device on the upper surface 91 of the substrate 9 moves from the device to the charge removal liquid, and the charge on the upper surface 91 decreases.
 基板9の上面91全体が除電液によりパドルされると、制御部8により比抵抗調節部7が制御され、添加物バルブ71が開かれる。これにより、添加物供給部62から添加物混合部63へと二酸化炭素が供給され、添加物混合部63にて純水供給部61からの純水に溶解する。このため、添加物混合部63から除電液ノズル64へと送出される第1比抵抗の除電液中のイオン濃度が増大し、除電液の比抵抗が減少する。基板処理装置1では、添加物供給部62からの二酸化炭素の供給開始から所定時間の経過後に、基板9の上面91上に供給される除電液の比抵抗が、第1比抵抗よりも小さい第2比抵抗まで減少する(ステップS13)。換言すれば、比抵抗調節部7が、第1比抵抗の除電液に二酸化炭素を溶解させて除電液中のイオン濃度を増大させることにより、除電液の比抵抗が第2比抵抗となる。 When the entire upper surface 91 of the substrate 9 is padded with the charge removal liquid, the specific resistance adjusting unit 7 is controlled by the control unit 8 and the additive valve 71 is opened. As a result, carbon dioxide is supplied from the additive supply unit 62 to the additive mixing unit 63 and is dissolved in pure water from the pure water supply unit 61 by the additive mixing unit 63. For this reason, the ion concentration in the neutralization liquid of the first specific resistance sent from the additive mixing unit 63 to the neutralization liquid nozzle 64 increases, and the specific resistance of the neutralization liquid decreases. In the substrate processing apparatus 1, after the elapse of a predetermined time from the start of the supply of carbon dioxide from the additive supply unit 62, the specific resistance of the static elimination liquid supplied onto the upper surface 91 of the substrate 9 is smaller than the first specific resistance. It decreases to 2 specific resistance (step S13). In other words, the specific resistance adjusting unit 7 dissolves carbon dioxide in the neutralizing solution having the first specific resistance to increase the ion concentration in the neutralizing solution, whereby the specific resistance of the neutralizing solution becomes the second specific resistance.
 第2比抵抗も、第1比抵抗と同様に、制御部8に予め記憶されている。第2比抵抗は、好ましくは、上述の処理液の比抵抗以上である。より好ましくは、第2比抵抗は、処理液の比抵抗よりも少し大きい。制御部8では、基板9の上面91上に供給される除電液の比抵抗を第1比抵抗から第2比抵抗へと変更する際に要する時間(以下、「比抵抗調節時間」という。)も記憶されている。制御部8は、ステップS11~S13が行われる間、第1比抵抗、第2比抵抗および比抵抗調節時間を含む除電処理情報に基づいて、比抵抗調節部7の添加物バルブ71の開度を制御する。 The second specific resistance is also stored in advance in the control unit 8 in the same manner as the first specific resistance. The second specific resistance is preferably greater than or equal to the specific resistance of the treatment liquid described above. More preferably, the second specific resistance is slightly larger than the specific resistance of the treatment liquid. In the control unit 8, the time required to change the specific resistance of the charge removal liquid supplied onto the upper surface 91 of the substrate 9 from the first specific resistance to the second specific resistance (hereinafter referred to as “specific resistance adjustment time”). Is also remembered. While performing steps S11 to S13, the control unit 8 opens the opening of the additive valve 71 of the specific resistance adjusting unit 7 based on the static elimination processing information including the first specific resistance, the second specific resistance, and the specific resistance adjusting time. To control.
 基板処理装置1では、除電液ノズル64から基板9の上面91上に第2比抵抗の除電液(すなわち、比抵抗が第2比抵抗に等しい除電液)が供給され、基板9の中心部から上面91全体に拡がる。これにより、基板9の上面91全体が、第2比抵抗の除電液にてパドルされる(ステップS14)。そして、基板9の上面91全体が第2比抵抗の除電液にてパドルされた状態が、所定時間だけ維持される。基板処理装置1では、基板9の上面91上のデバイス内の電荷が、デバイスから除電液へと移動し、基板9の上面91上の電荷が減少する。基板9の上面91上の電荷が所定のレベルまで減少すると、基板9の除電処理が終了する。第2比抵抗の除電液による基板9のパドル処理中は、除電液ノズル64からの第2比抵抗の除電液の供給は継続されていてもよく、停止されていてもよい。 In the substrate processing apparatus 1, a neutralization liquid having a second specific resistance (that is, a neutralization liquid whose specific resistance is equal to the second specific resistance) is supplied from the neutralization liquid nozzle 64 onto the upper surface 91 of the substrate 9. The entire upper surface 91 extends. As a result, the entire upper surface 91 of the substrate 9 is padded with the neutralizing solution having the second specific resistance (step S14). And the state where the whole upper surface 91 of the board | substrate 9 was padded with the static elimination liquid of the 2nd specific resistance is maintained only for the predetermined time. In the substrate processing apparatus 1, the charge in the device on the upper surface 91 of the substrate 9 moves from the device to the charge removal liquid, and the charge on the upper surface 91 of the substrate 9 decreases. When the charge on the upper surface 91 of the substrate 9 is reduced to a predetermined level, the charge removal process of the substrate 9 is finished. During the paddle treatment of the substrate 9 with the second specific resistance neutralization liquid, the supply of the second specific resistance neutralization liquid from the neutralization liquid nozzle 64 may be continued or stopped.
 図3Aおよび図3Bは、除電処理前後の基板9の上面91における表面電位分布を示す図である。図3Aは、基板9の1つの直径上における表面電位分布を示す。図3Bは、図3Aに対応する直径に直交する1つの直径上における表面電位分布を示す。図3Aおよび図3Bの横軸は基板9の直径上の位置を示し、縦軸は当該位置における電位を示す。破線901は、除電処理前の電位分布を示し、実線902は除電処理後の電位分布を示す。図3Aおよび図3Bに示すように、上述の除電処理により、基板9の上面91上の電荷が減少し、基板9の上面91の電位が全体的に低減される。 3A and 3B are diagrams showing the surface potential distribution on the upper surface 91 of the substrate 9 before and after the charge removal process. FIG. 3A shows the surface potential distribution on one diameter of the substrate 9. FIG. 3B shows the surface potential distribution on one diameter orthogonal to the diameter corresponding to FIG. 3A. 3A and 3B, the horizontal axis indicates the position on the diameter of the substrate 9, and the vertical axis indicates the potential at the position. A broken line 901 indicates the potential distribution before the charge removal process, and a solid line 902 indicates the potential distribution after the charge removal process. As shown in FIGS. 3A and 3B, the charge removal process described above reduces the charge on the upper surface 91 of the substrate 9 and reduces the overall potential of the upper surface 91 of the substrate 9.
 上述の除電処理が終了すると、除電液ノズル回動機構65により除電液ノズル64が待機位置へと戻される。続いて、制御部8により基板回転機構5が制御されることにより、基板9の回転速度が増加する。上述の除電処理が、基板9が停止している状態で行われた場合は、基板9の回転が開始される。基板9の回転により、基板9の上面91上の除電液が基板9のエッジに向かって移動し、基板9のエッジから外側へと飛散して基板9上から除去される(ステップS15)。基板9から飛散した除電液はカップ部4により受けられる。基板処理装置1では、基板回転機構5が、基板9を回転することにより上面91上の液体を除去する液体除去部として働く。 When the above-described neutralization process is completed, the neutralizing liquid nozzle rotating mechanism 65 returns the neutralizing liquid nozzle 64 to the standby position. Subsequently, the rotation speed of the substrate 9 is increased by controlling the substrate rotation mechanism 5 by the control unit 8. When the above-described charge removal process is performed in a state where the substrate 9 is stopped, the rotation of the substrate 9 is started. By the rotation of the substrate 9, the neutralizing liquid on the upper surface 91 of the substrate 9 moves toward the edge of the substrate 9, and is scattered from the edge of the substrate 9 to the outside and removed from the substrate 9 (step S15). The neutralizing liquid scattered from the substrate 9 is received by the cup portion 4. In the substrate processing apparatus 1, the substrate rotation mechanism 5 functions as a liquid removal unit that removes the liquid on the upper surface 91 by rotating the substrate 9.
 除電液の除去が終了すると、基板回転機構5による基板9の回転速度が減少し、SPM処理時の回転速度に変更される。また、処理液ノズル回動機構35による処理液ノズル34の回動が開始され、処理液ノズル34が基板9の中心部とエッジとの間で往復運動を繰り返す。 When the removal of the static elimination liquid is completed, the rotation speed of the substrate 9 by the substrate rotation mechanism 5 is decreased, and the rotation speed is changed to the rotation speed during the SPM processing. Also, the processing liquid nozzle rotating mechanism 35 starts to rotate the processing liquid nozzle 34, and the processing liquid nozzle 34 repeats reciprocating motion between the center portion and the edge of the substrate 9.
 次に、制御部8により処理液供給部3が制御されることにより、約130℃~150℃加熱された硫酸が硫酸供給部31からミキシングバルブ331に供給され、常温の過酸化水素水が過酸化水素水供給部32からミキシングバルブ331へと供給される。ミキシングバルブ331では、加熱された硫酸と常温の過酸化水素水とが混合されて、上述の第1比抵抗よりも比抵抗が小さいSPM液が生成される。SPM液の温度は、硫酸と過酸化水素水との反応により、硫酸供給部31から供給される硫酸の温度よりも高く、例えば、約150℃~195℃となる。 Next, when the processing liquid supply unit 3 is controlled by the control unit 8, sulfuric acid heated to about 130 ° C. to 150 ° C. is supplied from the sulfuric acid supply unit 31 to the mixing valve 331, and hydrogen peroxide solution at room temperature is excessive. It is supplied from the hydrogen oxide water supply unit 32 to the mixing valve 331. In the mixing valve 331, the heated sulfuric acid and the hydrogen peroxide solution at room temperature are mixed to generate an SPM liquid having a specific resistance smaller than the first specific resistance described above. The temperature of the SPM liquid is higher than the temperature of the sulfuric acid supplied from the sulfuric acid supply unit 31 due to the reaction between the sulfuric acid and the hydrogen peroxide solution, for example, about 150 ° C. to 195 ° C.
 SPM液は、処理液配管332および攪拌流通管333を通過し、処理液ノズル34から基板9の上面91上に供給される。換言すれば、処理液供給部3により、加熱された硫酸と過酸化水素水とが混合されつつ基板9の上面91上に供給される。SPM液は、基板9の回転により、基板9の上面91全体に拡がり、基板9のエッジから外側へと飛散してカップ部4により受けられる。基板処理装置1では、基板9に対するSPM液の供給が所定時間だけ連続的に行われ、基板9に対するSPM処理、すなわち、SPM液に含まれるカロ酸の強酸化力による基板9上のレジスト膜の除去処理が行われる(ステップS16)。なお、基板処理装置1では、基板9の中心部の上方にて停止した処理液ノズル34からSPM液等の供給が行われてもよい。 The SPM liquid passes through the processing liquid pipe 332 and the stirring flow pipe 333 and is supplied from the processing liquid nozzle 34 onto the upper surface 91 of the substrate 9. In other words, heated sulfuric acid and hydrogen peroxide solution are mixed and supplied onto the upper surface 91 of the substrate 9 by the processing liquid supply unit 3. The SPM liquid spreads over the entire upper surface 91 of the substrate 9 due to the rotation of the substrate 9, scatters from the edge of the substrate 9 to the outside, and is received by the cup portion 4. In the substrate processing apparatus 1, the supply of the SPM liquid to the substrate 9 is continuously performed for a predetermined time, and the SPM process for the substrate 9, that is, the resist film on the substrate 9 due to the strong oxidizing power of caloic acid contained in the SPM liquid. A removal process is performed (step S16). In the substrate processing apparatus 1, the SPM liquid or the like may be supplied from the processing liquid nozzle 34 stopped above the center of the substrate 9.
 SPM処理(すなわち、処理液による薬液処理)が終了すると、過酸化水素水供給部32からの過酸化水素水の供給が継続された状態で、硫酸供給部31からの硫酸の供給が停止される。このため、処理液ノズル34から、レジスト膜が除去された基板9の上面91上に過酸化水素水が供給される。これにより、ミキシングバルブ331、処理液配管332、攪拌流通管333および処理液ノズル34内に残っているSPM液が除去される。また、基板9の上面91上に供給された過酸化水素水は、基板9の回転により上面91全体に拡がり、基板9上に残っている処理液であるSPM液を、基板9のエッジから外側へと押し出して除去する(ステップS17)。 When the SPM process (that is, the chemical process using the processing liquid) is completed, the supply of sulfuric acid from the sulfuric acid supply unit 31 is stopped while the supply of the hydrogen peroxide solution from the hydrogen peroxide solution supply unit 32 is continued. . For this reason, the hydrogen peroxide solution is supplied from the treatment liquid nozzle 34 onto the upper surface 91 of the substrate 9 from which the resist film has been removed. As a result, the SPM liquid remaining in the mixing valve 331, the processing liquid pipe 332, the stirring flow pipe 333, and the processing liquid nozzle 34 is removed. Further, the hydrogen peroxide solution supplied onto the upper surface 91 of the substrate 9 spreads over the entire upper surface 91 due to the rotation of the substrate 9, and the SPM liquid that is the processing liquid remaining on the substrate 9 is removed from the edge of the substrate 9. It is pushed out and removed (step S17).
 SPM液の除去が終了すると、処理液ノズル34からの過酸化水素水の供給が停止され、処理液ノズル回動機構35により、処理液ノズル34が基板9の外側の待機位置へと移動される。次に、基板9の上面91にリンス液が供給されるリンス処理が行われる(ステップS18)。リンス液としては、例えば、純水や二酸化炭素水が利用される。リンス液は、図示省略のリンス液供給部から供給されてもよく、除電液供給部6により供給されてもよい。 When the removal of the SPM liquid is completed, the supply of the hydrogen peroxide solution from the processing liquid nozzle 34 is stopped, and the processing liquid nozzle rotating mechanism 35 moves the processing liquid nozzle 34 to a standby position outside the substrate 9. . Next, a rinsing process in which a rinsing liquid is supplied to the upper surface 91 of the substrate 9 is performed (step S18). For example, pure water or carbon dioxide water is used as the rinse liquid. The rinsing liquid may be supplied from a rinsing liquid supply unit (not shown) or may be supplied by the charge removal liquid supply unit 6.
 リンス液は、基板9の回転により、基板9の上面91全体に拡がる。これにより、基板9上に残っている過酸化水素水が洗い流される。リンス処理が所定時間だけ連続的に行われると、リンス液の供給が停止される。そして、基板9の回転速度を増大させ、基板9の回転により基板9上に残っているリンス液を除去する乾燥処理が行われる(ステップS19)。その後、基板9の回転が停止され、基板9が基板処理装置1から搬出される。 The rinse liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9. Thereby, the hydrogen peroxide remaining on the substrate 9 is washed away. When the rinsing process is continuously performed for a predetermined time, the supply of the rinsing liquid is stopped. Then, the rotational speed of the substrate 9 is increased, and a drying process is performed to remove the rinse liquid remaining on the substrate 9 by the rotation of the substrate 9 (step S19). Thereafter, the rotation of the substrate 9 is stopped, and the substrate 9 is unloaded from the substrate processing apparatus 1.
 以上に説明したように、基板処理装置1では、ドライエッチングやプラズマCVD等のドライ処理によりデバイスが帯電している基板9に対し、処理液であるSPM液による処理を行うよりも前に、除電液による除電処理が行われる。除電処理では、処理液の比抵抗よりも大きい第1比抵抗の除電液にて基板9の上面91全体をパドルする。これにより、基板9の上面91全体が比較的緩やかに除電される。当該除電処理の際には、基板9の上面91上のデバイス内の電荷が急激に除電液へと移動して(すなわち、処理液中へと放電して)発熱することがないため、基板9上のデバイスにダメージが生じることを防止することができる。 As described above, in the substrate processing apparatus 1, before the processing with the SPM liquid as the processing liquid is performed on the substrate 9 on which the device is charged by dry processing such as dry etching or plasma CVD, static elimination is performed. The neutralization process with a liquid is performed. In the charge removal process, the entire upper surface 91 of the substrate 9 is paddle with a charge removal liquid having a first specific resistance larger than the specific resistance of the treatment liquid. As a result, the entire upper surface 91 of the substrate 9 is discharged relatively slowly. During the charge removal process, the charges in the device on the upper surface 91 of the substrate 9 do not move suddenly to the charge removal liquid (that is, discharge into the treatment liquid) and do not generate heat. It is possible to prevent the upper device from being damaged.
 また、基板処理装置1では、第1比抵抗の除電液によるパドル処理の後、除電液の比抵抗を第1比抵抗よりも小さい第2比抵抗まで減少させる。そして、第2比抵抗の除電液にて基板9の上面91全体をパドルする。これにより、基板9の上面91におけるダメージ(すなわち、上面91上のデバイスのダメージ)を防止しつつ、当該デバイス内の電荷の除電液への移動を促進し、短時間にて基板9の上面91の除電を行うことができる。 In the substrate processing apparatus 1, after the paddle treatment with the first specific resistance neutralization liquid, the specific resistance of the neutralization liquid is reduced to a second specific resistance smaller than the first specific resistance. Then, the entire upper surface 91 of the substrate 9 is paddled with a neutralization solution having a second specific resistance. Thus, while preventing damage on the upper surface 91 of the substrate 9 (that is, damage to the device on the upper surface 91), the movement of the charge in the device to the charge eliminating liquid is promoted, and the upper surface 91 of the substrate 9 is shortened in a short time. Can be removed.
 図4は、基板処理装置1における除電処理時の基板9と除電液との間の電位差の経時変化を示す概念図である。以下、図4を参照しつつ、上述の基板処理装置1における効果について詳細に説明する。図4中の横軸は、基板9上への除電液の供給開始からの経過時間を示す。図4中の縦軸は、基板9と除電液との間の電位差の絶対値を示す。実線905は、基板処理装置1における上述の除電処理時の基板9と除電液との間の電位差(以下、単に「電位差」ともいう。)を示す。 FIG. 4 is a conceptual diagram showing a change with time of the potential difference between the substrate 9 and the charge removal solution during the charge removal process in the substrate processing apparatus 1. Hereinafter, the effects of the above-described substrate processing apparatus 1 will be described in detail with reference to FIG. The horizontal axis in FIG. 4 indicates the elapsed time from the start of the supply of the static elimination liquid onto the substrate 9. The vertical axis in FIG. 4 indicates the absolute value of the potential difference between the substrate 9 and the charge removal solution. A solid line 905 indicates a potential difference (hereinafter also simply referred to as “potential difference”) between the substrate 9 and the neutralizing solution during the above-described neutralization process in the substrate processing apparatus 1.
 横軸に平行な直線である実線908は、基板9上のデバイスと除電液との接触により、急激な電荷移動によるダメージがデバイスに生じる電位差を示す。すなわち、電位差の経時変化のピークが実線908よりも大きくなると、基板9上のデバイスにダメージが生じる。 A solid line 908, which is a straight line parallel to the horizontal axis, indicates a potential difference in which damage due to rapid charge transfer occurs in the device due to contact between the device on the substrate 9 and the charge removal solution. That is, when the peak of the potential difference with time becomes larger than the solid line 908, the device on the substrate 9 is damaged.
 破線906は、仮に、除電液の比抵抗を第1比抵抗から変化させずに除電処理を継続した場合における基板9と除電液との間の電位差を示す。この場合、電位差の経時変化のピークは、実線905の最初のピーク905aであるため、デバイスにダメージは生じない。しかしながら、電位差の減少速度が遅いため、除電処理に要する時間が長くなってしまう。一点鎖線907は、仮に、基板9上への供給開始時における除電液の比抵抗が第2比抵抗であり、その後も、除電液の比抵抗を第2比抵抗から変化させずに除電処理を継続した場合における基板9と除電液との間の電位差を示す。この場合、電位差の経時変化のピークが実線908よりも大きくなるため、基板9上のデバイスにダメージが生じるおそれがある。 A broken line 906 indicates a potential difference between the substrate 9 and the static elimination liquid when the static elimination treatment is continued without changing the specific resistance of the static elimination liquid from the first specific resistance. In this case, since the peak of the potential difference with time is the first peak 905a of the solid line 905, the device is not damaged. However, since the reduction rate of the potential difference is slow, the time required for the static elimination process becomes long. The alternate long and short dash line 907 indicates that the specific resistance of the neutralizing liquid at the start of supply onto the substrate 9 is the second specific resistance, and thereafter, the neutralizing process is performed without changing the specific resistance of the neutralizing liquid from the second specific resistance. The potential difference between the board | substrate 9 and the static elimination liquid in the case of continuing is shown. In this case, since the peak of the potential difference with time is larger than the solid line 908, the device on the substrate 9 may be damaged.
 これに対し、図1に示す基板処理装置1では、まず、第1比抵抗の除電液により基板9の上面91全体がパドルされる。このとき、実線905にて示すように、電位差の経時変化の最初のピーク905aは実線908以下となり、基板9上のデバイスにダメージが生じることが防止される。続いて、第2比抵抗の除電液により基板9の上面91全体がパドルされる。このとき、電位差の経時変化に2番目のピーク905bが生じるが、ピーク905bも実線908以下となり、基板9上のデバイスにダメージが生じることが防止される。また、ピーク905bよりも後において、破線906に比べて電位差が迅速に減少するため、第1比抵抗の除電液のみにより除電処理を行う場合に比べて、短時間にて基板9の上面91の除電を行うことができる。 On the other hand, in the substrate processing apparatus 1 shown in FIG. 1, first, the entire upper surface 91 of the substrate 9 is paddled by the first specific resistance neutralizing solution. At this time, as indicated by the solid line 905, the first peak 905a of the potential change with time is equal to or less than the solid line 908, and damage to the device on the substrate 9 is prevented. Subsequently, the entire upper surface 91 of the substrate 9 is paddled by the charge removal liquid having the second specific resistance. At this time, a second peak 905b occurs in the change in potential difference with time, but the peak 905b is also below the solid line 908, and damage to the device on the substrate 9 is prevented. In addition, since the potential difference is rapidly reduced after the peak 905b as compared with the broken line 906, the upper surface 91 of the substrate 9 can be formed in a shorter time than in the case where the charge removal process is performed only with the charge removal liquid having the first specific resistance. Static elimination can be performed.
 基板処理装置1では、上述のように、除電処理が行われた後の基板9に処理液が供給されることにより、基板9が、比抵抗が小さい処理液と接触しても、基板9から処理液へと大量の電荷が急激に移動することがない。このため、処理液による基板9の処理の際にも、電荷の移動による基板9上のデバイスのダメージ、すなわち、基板9の損傷を防止することができる。 In the substrate processing apparatus 1, as described above, even when the substrate 9 comes into contact with the processing liquid having a small specific resistance by supplying the processing liquid to the substrate 9 after the charge removal processing is performed, the substrate 9 A large amount of charge does not move rapidly to the processing solution. For this reason, even when the substrate 9 is processed with the processing liquid, it is possible to prevent damage to devices on the substrate 9 due to movement of electric charges, that is, damage to the substrate 9.
 上述のように、除電液供給部6から基板9に最初に供給される第1比抵抗の除電液は純水である。このように、比抵抗の大きい除電液を、基板9の上面91上に最初に供給することにより、第1比抵抗の除電液によるパドル処理の際に、基板9上のデバイスにダメージが生じることをより一層防止することができる。また、基板処理装置1では、比抵抗調節部7により第1比抵抗の除電液中のイオン濃度を増大させることにより、除電液の比抵抗が第2比抵抗となる。このように、基板処理装置1では、除電液中のイオン濃度を調節することにより、除電液の比抵抗を容易に調節することができる。 As described above, the first specific resistance neutralization liquid supplied to the substrate 9 from the neutralization liquid supply unit 6 is pure water. In this way, by supplying the neutralization solution having a large specific resistance onto the upper surface 91 of the substrate 9 first, the device on the substrate 9 is damaged during the paddle treatment with the neutralization solution having the first specific resistance. Can be further prevented. Further, in the substrate processing apparatus 1, the specific resistance of the static elimination liquid becomes the second specific resistance by increasing the ion concentration in the static elimination liquid of the first specific resistance by the specific resistance adjusting unit 7. As described above, in the substrate processing apparatus 1, the specific resistance of the charge removal solution can be easily adjusted by adjusting the ion concentration in the charge removal solution.
 さらに、基板処理装置1では、比較的取り扱いが容易な二酸化炭素を、第1比抵抗の除電液に溶解させて除電液中のイオン濃度を増大させることにより、除電液の比抵抗が第2比抵抗となる。このため、除電液の比抵抗をより一層容易に調節することができる。また、基板処理装置1において、基板9のリンス処理に二酸化炭素水を使用する場合、基板9上にリンス液を供給するリンス液供給部として除電液供給部6を利用することができる。このため、基板処理装置1を大型化することなく、また、基板処理装置1の構造を複雑化することなく、基板9の除電処理を行うことができる。 Further, in the substrate processing apparatus 1, carbon dioxide, which is relatively easy to handle, is dissolved in the neutralization solution having the first specific resistance to increase the ion concentration in the neutralization solution, whereby the specific resistance of the neutralization solution is increased to the second ratio. It becomes resistance. For this reason, the specific resistance of a static elimination liquid can be adjusted much more easily. Further, in the substrate processing apparatus 1, when carbon dioxide water is used for the rinsing process of the substrate 9, the static elimination liquid supply unit 6 can be used as a rinsing liquid supply unit that supplies a rinsing liquid onto the substrate 9. For this reason, the substrate 9 can be neutralized without increasing the size of the substrate processing apparatus 1 and without complicating the structure of the substrate processing apparatus 1.
 除電液の第2比抵抗は、処理液の比抵抗よりも小さくてもよいが、上述のように、処理液の比抵抗以上であることが好ましい。第2比抵抗が処理液の比抵抗に等しければ、処理液による基板9の処理時に、デバイスと処理液との間で電荷の急激な移動(すなわち、放電)が生じる可能性は極めて低い。したがって、第2比抵抗を処理液の比抵抗以上とすることにより、除電液の比抵抗を第1比抵抗から過剰に減少させることなく、除電処理に要する時間の増大を抑制することができる。なお、除電処理に要する時間を短縮しつつ、処理液による処理時の放電をより一層防止するためには、第2比抵抗は、処理液の比抵抗に等しい、または、処理液の比抵抗よりも少し大きい程度がさらに好ましい。 The second specific resistance of the static elimination liquid may be smaller than the specific resistance of the treatment liquid, but is preferably equal to or higher than the specific resistance of the treatment liquid as described above. If the second specific resistance is equal to the specific resistance of the processing liquid, it is very unlikely that an abrupt charge transfer (ie, discharge) occurs between the device and the processing liquid when the substrate 9 is processed with the processing liquid. Therefore, by setting the second specific resistance to be equal to or higher than the specific resistance of the treatment liquid, it is possible to suppress an increase in time required for the static elimination treatment without excessively reducing the specific resistance of the static elimination liquid from the first specific resistance. In addition, in order to further prevent discharge during the treatment with the treatment liquid while shortening the time required for the static elimination treatment, the second specific resistance is equal to the specific resistance of the treatment liquid or more than the specific resistance of the treatment liquid. Is slightly more preferable.
 基板処理装置1では、上述の除電処理情報に含まれる第1比抵抗、第2比抵抗および比抵抗調節時間は、基板9の上面91上に形成されたデバイスの種類に合わせて様々に変更される。例えば、デバイスのサイズが小さい場合、第1比抵抗および第2比抵抗は比較的大きく、比抵抗調節時間は比較的長い。また、デバイスのサイズが大きい(すなわち、電荷の移動によるダメージに対する耐性が高い)場合、第1比抵抗および第2比抵抗は比較的小さく、比抵抗調節時間は比較的短い。 In the substrate processing apparatus 1, the first specific resistance, the second specific resistance, and the specific resistance adjustment time included in the above-described static elimination processing information are variously changed according to the type of device formed on the upper surface 91 of the substrate 9. The For example, when the device size is small, the first specific resistance and the second specific resistance are relatively large, and the specific resistance adjustment time is relatively long. In addition, when the device size is large (that is, resistance to damage due to charge transfer is high), the first specific resistance and the second specific resistance are relatively small, and the specific resistance adjustment time is relatively short.
 基板処理装置1の制御部8には、図5に示すように、ステップS11よりも前に、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電処理情報が予め記憶される(ステップS21)。当該複数の除電処理情報はそれぞれ、対応するデバイスに応じた第1比抵抗、第2比抵抗および比抵抗調節時間を含む。制御部8では、当該複数の除電処理情報のうち、基板保持部2により保持される基板9の上面91上に予め形成されたデバイスの種類に対応する1つの除電処理情報が選択される。ステップS11~S14の除電処理では、当該1つの除電処理情報に基づいて、上述のように、制御部8により比抵抗調節部7が制御される。これにより、基板9の上面91上のデバイスの特性に応じた適切な除電処理を行うことができる。 As shown in FIG. 5, the control unit 8 of the substrate processing apparatus 1 stores in advance a plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate before step S11. (Step S21). Each of the plurality of static elimination processing information includes a first specific resistance, a second specific resistance, and a specific resistance adjustment time corresponding to the corresponding device. In the control unit 8, among the plurality of static elimination processing information, one static elimination processing information corresponding to the type of device formed in advance on the upper surface 91 of the substrate 9 held by the substrate holding unit 2 is selected. In the static elimination process of steps S11 to S14, the specific resistance adjustment unit 7 is controlled by the control unit 8 as described above based on the single static elimination process information. Thereby, it is possible to perform an appropriate charge removal process according to the characteristics of the device on the upper surface 91 of the substrate 9.
 基板処理装置1は、図6に示すように、基板9の他方の主面92(以下、「下面92」という。)に向けて除電液を吐出して供給する他の除電液供給部6aをさらに備えていてもよい。他の除電液供給部6a(以下、「下部除電液供給部6a」という。)は、下部除電ノズル64aと、分岐配管633と、下部除電液バルブ634とを備える。下部除電ノズル64aは、基板9の下方に配置され、基板9の下面92の中央部と上下方向に対向する。分岐配管633は、除電液供給部6の除電液配管631から分岐して下部除電ノズル64aに接続される。下部除電液バルブ634は、分岐配管633上に設けられる。下部除電液バルブ634が開かれることにより、添加物混合部63から送出された除電液が、分岐配管633を介して下部除電ノズル64aへと送られ、下部除電ノズル64aから基板9の下面92の中央部へと供給される。なお、図6では、制御部8の図示を省略している(図8および図11においても同様)。 As shown in FIG. 6, the substrate processing apparatus 1 includes another discharging liquid supply unit 6 a that discharges and supplies the discharging liquid toward the other main surface 92 (hereinafter referred to as “lower surface 92”) of the substrate 9. Furthermore, you may provide. The other static elimination liquid supply unit 6a (hereinafter referred to as “lower static elimination liquid supply unit 6a”) includes a lower static elimination nozzle 64a, a branch pipe 633, and a lower static elimination liquid valve 634. The lower static elimination nozzle 64a is disposed below the substrate 9 and faces the central portion of the lower surface 92 of the substrate 9 in the vertical direction. The branch pipe 633 branches from the static elimination liquid pipe 631 of the static elimination liquid supply part 6, and is connected to the lower static elimination nozzle 64a. The lower static elimination valve 634 is provided on the branch pipe 633. By opening the lower static elimination liquid valve 634, the static elimination liquid sent out from the additive mixing unit 63 is sent to the lower static elimination nozzle 64a via the branch pipe 633, and the lower static elimination nozzle 64a passes through the lower surface 92 of the substrate 9. Supplied to the center. In FIG. 6, the control unit 8 is not shown (the same applies to FIGS. 8 and 11).
 基板処理装置1では、図7に示すように、ステップS11とステップS12との間において、制御部8により下部除電液供給部6aが制御されることにより、下部除電ノズル64aから基板9の下面92に第1比抵抗の除電液が供給される(ステップS31)。このとき、基板9は回転していることが好ましい。ステップS31は、基板9の上面91への除電液の供給よりも前に行われるのであれば、ステップS11よりも前に行われてもよい。この場合、除電液として、例えば純水が供給される。 In the substrate processing apparatus 1, as shown in FIG. 7, the lower discharge liquid supply unit 6 a is controlled by the control unit 8 between step S <b> 11 and step S <b> 12, whereby the lower surface 92 of the substrate 9 is discharged from the lower discharge nozzle 64 a. Is supplied with a neutralizing solution having a first specific resistance (step S31). At this time, the substrate 9 is preferably rotated. Step S31 may be performed before step S11 as long as it is performed before the supply of the charge removal liquid to the upper surface 91 of the substrate 9. In this case, pure water, for example, is supplied as the charge eliminating liquid.
 下部除電ノズル64aから基板9の下面92に除電液が供給されることにより、上記デバイスが上面上に設けられた基板本体内の電荷(例えば、カップ部4との間の誘導帯電により生じた電荷)が、下面92に供給された除電液へと移動して減少する。換言すれば、基板本体が除電される。これにより、基板本体の電荷がデバイスへと移動することを抑制することができる。その結果、基板9の上面91の除電処理および処理液による処理の際に、基板9上のデバイスに放電によるダメージが生じることをより一層防止することができる。また、基板9の下面92への除電液の供給が、基板9の上面91への除電液の供給よりも前に行われることにより、基板9の上面91の除電処理よりも前に基板本体内の電荷を減少させることができるため、基板9の上面91の除電処理および処理液による処理の際に、基板9上のデバイスに放電によるダメージが生じることをさらに防止することができる。 By supplying the charge removal liquid from the lower charge removal nozzle 64a to the lower surface 92 of the substrate 9, charges in the substrate body provided with the device on the upper surface (for example, charges generated by induction charging with the cup portion 4). ) Moves to the charge removing liquid supplied to the lower surface 92 and decreases. In other words, the substrate body is neutralized. Thereby, it can suppress that the electric charge of a board | substrate body moves to a device. As a result, it is possible to further prevent the device on the substrate 9 from being damaged by electric discharge during the charge removal processing of the upper surface 91 of the substrate 9 and the processing with the processing liquid. Further, the supply of the charge removal liquid to the lower surface 92 of the substrate 9 is performed before the supply of the charge removal liquid to the upper surface 91 of the substrate 9, so that the inside of the substrate main body before the charge removal process of the upper surface 91 of the substrate 9 is performed. Therefore, it is possible to further prevent the device on the substrate 9 from being damaged due to discharge during the charge removal process on the upper surface 91 of the substrate 9 and the process using the processing liquid.
 図6に示す基板処理装置1では、基板9の下面92への除電液の供給(ステップS31)は、ステップS12~S14における基板9の上面91への除電液の供給と、いずれかのタイミングで並行して行われてもよい。換言すれば、ステップS31は、ステップS12、および、ステップS13,S14の少なくとも一方と並行して行われてもよい。この場合、下部除電ノズル64aから基板9の下面92に供給される除電液の比抵抗は、基板9の上面91に供給される除電液の比抵抗に等しい。下部除電ノズル64aから基板9の下面92に除電液が供給されることにより、上記と同様に、基板本体が除電されて基板本体からデバイスへの電荷移動が抑制される。その結果、基板9上のデバイスに放電によるダメージが生じることをより一層防止することができる。 In the substrate processing apparatus 1 shown in FIG. 6, the supply of the charge removal liquid to the lower surface 92 of the substrate 9 (step S31) is performed at any timing with the supply of the charge removal liquid to the upper surface 91 of the substrate 9 in steps S12 to S14. It may be performed in parallel. In other words, step S31 may be performed in parallel with at least one of step S12 and steps S13 and S14. In this case, the specific resistance of the static elimination liquid supplied from the lower static elimination nozzle 64 a to the lower surface 92 of the substrate 9 is equal to the specific resistance of the static elimination liquid supplied to the upper surface 91 of the substrate 9. By supplying the charge removing liquid from the lower charge eliminating nozzle 64a to the lower surface 92 of the substrate 9, the substrate main body is discharged as described above, and the charge transfer from the substrate main body to the device is suppressed. As a result, it is possible to further prevent the device on the substrate 9 from being damaged by electric discharge.
 図6に示す基板処理装置1では、下部除電液供給部6aは、純水供給部61、添加物供給部62および添加物混合部63等を除電液供給部6と共有しているが、下部除電液供給部6aは、除電液供給部6から独立して除電液の他の供給源に接続されてもよい。この場合、下部除電液供給部6aから基板9の下面92に供給される除電液の種類や比抵抗を、除電液供給部6から基板9の上面91に供給される除電液の種類や比抵抗と異ならせることが可能である。 In the substrate processing apparatus 1 shown in FIG. 6, the lower neutralization liquid supply unit 6 a shares the pure water supply unit 61, the additive supply unit 62, the additive mixing unit 63, and the like with the neutralization liquid supply unit 6. The neutralization liquid supply unit 6 a may be connected to another supply source of the neutralization liquid independently from the neutralization liquid supply unit 6. In this case, the type and specific resistance of the static elimination liquid supplied from the lower static elimination liquid supply unit 6a to the lower surface 92 of the substrate 9 are the same as the type and specific resistance of the static elimination liquid supplied from the static elimination liquid supply unit 6 to the upper surface 91 of the substrate 9. Can be different.
 図8は、第2の実施の形態に係る基板処理装置1aの構成を示す図である。基板処理装置1aでは、図1に示す除電液供給部6と構造が異なる除電液供給部6bが設けられ、比抵抗調節部7が他の添加物バルブ72をさらに備える。その他の構成は、図1に示す基板処理装置1と同様であり、以下の説明では、対応する構成に同符号を付す。 FIG. 8 is a diagram showing a configuration of the substrate processing apparatus 1a according to the second embodiment. In the substrate processing apparatus 1 a, a neutralization liquid supply unit 6 b having a structure different from that of the neutralization liquid supply unit 6 shown in FIG. 1 is provided, and the specific resistance adjustment unit 7 further includes another additive valve 72. Other configurations are the same as those of the substrate processing apparatus 1 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.
 除電液供給部6bは、図1に示す除電液供給部6の各構成に加えて、他の添加物供給部62aと、他の添加物配管622とを備える。添加物配管622は、添加物供給部62aと添加物混合部63とを接続する。添加物配管622上には、比抵抗調節部7の添加物バルブ72が設けられる。以下の説明では、添加物供給部62,62aの区別を容易にするために、添加物供給部62,62aをそれぞれ「第1添加物供給部62」および「第2添加物供給部62a」という。また、添加物バルブ71,72をそれぞれ「第1添加物バルブ71」および「第2添加物バルブ72」という。 The static elimination liquid supply part 6b is provided with the other additive supply part 62a and the other additive piping 622 in addition to each structure of the static elimination liquid supply part 6 shown in FIG. The additive pipe 622 connects the additive supply part 62 a and the additive mixing part 63. An additive valve 72 of the specific resistance adjusting unit 7 is provided on the additive pipe 622. In the following description, the additive supply units 62 and 62a are referred to as “first additive supply unit 62” and “second additive supply unit 62a”, respectively, in order to facilitate the distinction between the additive supply units 62 and 62a. . The additive valves 71 and 72 are referred to as a “first additive valve 71” and a “second additive valve 72”, respectively.
 第2添加物供給部62aは、添加物混合部63およびおよび図示省略の添加物供給源に接続され、添加物混合部63に添加物を供給する。第2添加物供給部62aが接続される添加物供給源は、例えば、基板処理装置1aの外部に設けられる。第2添加物供給部62aが接続される添加物供給源は、第1添加物供給部62が接続される上述の添加物供給源とは異なる。また、第2添加物供給部62aから添加物混合部63に供給される添加物は、第1添加物供給部62から添加物混合部63に供給される添加物とは異なる。以下、第1添加物供給部62により供給される添加物を「第1溶質」といい、第2添加物供給部62aにより供給される添加物を「第2溶質」という。第1溶質は、例えば、二酸化炭素ガスである。第2溶質は、例えば、液状の塩酸である。第2添加物バルブ72は、第2添加物供給部62aから添加物混合部63に供給される第2溶質の量を調節する添加物供給量調節部である。 The second additive supply unit 62 a is connected to the additive mixing unit 63 and an additive supply source (not shown), and supplies the additive to the additive mixing unit 63. The additive supply source to which the second additive supply unit 62a is connected is provided, for example, outside the substrate processing apparatus 1a. The additive supply source to which the second additive supply unit 62a is connected is different from the above-described additive supply source to which the first additive supply unit 62 is connected. Further, the additive supplied from the second additive supply unit 62 a to the additive mixing unit 63 is different from the additive supplied from the first additive supply unit 62 to the additive mixing unit 63. Hereinafter, the additive supplied by the first additive supply unit 62 is referred to as “first solute”, and the additive supplied by the second additive supply unit 62a is referred to as “second solute”. The first solute is, for example, carbon dioxide gas. The second solute is, for example, liquid hydrochloric acid. The second additive valve 72 is an additive supply amount adjusting unit that adjusts the amount of the second solute supplied from the second additive supply unit 62a to the additive mixing unit 63.
 除電液供給部6bでは、制御部8(図1参照)により比抵抗調節部7の第1添加物バルブ71および第2添加物バルブ72が制御されることにより、純水供給部61から添加物混合部63に供給される純水に溶解させる溶質が、第1溶質と第2溶質との間で切り替え可能である。これにより、除電液ノズル64から基板9の上面91上に供給される除電液の種類が、複数の液種の間で切り替え可能となる。第1溶質が二酸化炭素であり、第2溶質が塩酸である場合、除電液ノズル64から供給される除電液は、純水、二酸化炭素水および希塩酸の間で切り替え可能である。除電液を希塩酸とすることにより、二酸化炭素を飽和するまで純水に溶解させた除電液よりも、比抵抗をさらに小さくすることが可能である。換言すれば、第2溶質を溶解させた除電液の比抵抗は、第1溶質を溶解させた除電液の比抵抗よりも小さくすることが可能である。 In the static elimination liquid supply part 6b, the control part 8 (refer FIG. 1) controls the 1st additive valve | bulb 71 and the 2nd additive valve | bulb 72 of the specific resistance adjustment part 7, and the additive from the pure water supply part 61 is carried out. The solute dissolved in the pure water supplied to the mixing unit 63 can be switched between the first solute and the second solute. Thereby, the kind of the static elimination liquid supplied from the static elimination liquid nozzle 64 on the upper surface 91 of the board | substrate 9 can be switched among several liquid types. When the first solute is carbon dioxide and the second solute is hydrochloric acid, the static elimination liquid supplied from the static elimination liquid nozzle 64 can be switched among pure water, carbon dioxide water and dilute hydrochloric acid. By using dilute hydrochloric acid as the neutralization solution, the specific resistance can be further reduced as compared with the neutralization solution in which carbon dioxide is dissolved in pure water until saturation. In other words, the specific resistance of the static elimination liquid in which the second solute is dissolved can be made smaller than the specific resistance of the static elimination liquid in which the first solute is dissolved.
 基板処理装置1aの制御部8には、図9に示すように、ステップS11よりも前に、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電液種情報が予め記憶される(ステップS41)。制御部8では、ステップS41よりも後、かつ、上述のステップS11よりも前に、当該複数の除電液種情報のうち、基板保持部2により保持される基板9の上面91上に予め形成されたデバイスの種類に対応する1つの除電液種情報が選択される。そして、当該1つの除電液種情報に基づいて、ステップS12~S14において基板9の上面91上に供給される除電液の種類が決定される(ステップS42)。 In the control unit 8 of the substrate processing apparatus 1a, as shown in FIG. 9, a plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on the substrate is stored in advance before step S11. (Step S41). The control unit 8 is previously formed on the upper surface 91 of the substrate 9 held by the substrate holding unit 2 among the plurality of static elimination liquid type information after step S41 and before step S11 described above. One static elimination liquid type information corresponding to the type of the selected device is selected. Then, based on the one type of static elimination liquid type, the type of static elimination liquid supplied on the upper surface 91 of the substrate 9 in steps S12 to S14 is determined (step S42).
 基板処理装置1aでは、制御部8により比抵抗調節部7が制御されることにより、除電液ノズル64から吐出される除電液の種類が切り替えられ、ステップS42にて決定された種類とされる。そして、上述のように、基板9の上面91上のデバイスの種類に対応する1つの除電処理情報に基づいて、制御部8により比抵抗調節部7が制御されつつ、基板9の上面91に対する除電処理(ステップS11~S14)が行われる。 In the substrate processing apparatus 1a, the control unit 8 controls the specific resistance adjusting unit 7 to switch the type of the discharging liquid discharged from the discharging liquid nozzle 64, and the type determined in step S42. Then, as described above, the control unit 8 controls the specific resistance adjustment unit 7 based on one type of charge removal processing information corresponding to the type of device on the top surface 91 of the substrate 9, while eliminating charge from the top surface 91 of the substrate 9. Processing (steps S11 to S14) is performed.
 例えば、基板9の上面91上に形成されたデバイスが比較的小さい場合、第2比抵抗の除電液は、純水に第1溶質である二酸化炭素を溶解させた二酸化炭素水であり、当該デバイスが比較的大きい場合、第2比抵抗の除電液は、純水に第2溶質である塩酸を溶解させた希塩酸である。また、基板9上のデバイスが、酸性の除電液との接触が好ましくない種類の場合、第2溶質は塩酸ではなく、例えばアンモニアとされる。この場合、第2比抵抗の除電液として、純水にアンモニアを溶解させたアンモニア水が使用される。 For example, when the device formed on the upper surface 91 of the substrate 9 is relatively small, the neutralization solution of the second specific resistance is carbon dioxide water in which carbon dioxide, which is the first solute, is dissolved in pure water. Is relatively large, the neutralization solution having the second specific resistance is dilute hydrochloric acid obtained by dissolving hydrochloric acid as the second solute in pure water. In addition, when the device on the substrate 9 is of a type that is not preferable to contact with an acidic charge removal solution, the second solute is not hydrochloric acid, for example, ammonia. In this case, ammonia water in which ammonia is dissolved in pure water is used as the neutralization liquid having the second specific resistance.
 このように、基板処理装置1aでは、基板9の上面91上に形成されたデバイスの種類に応じて除電液の種類が切り替えられることにより、基板9の上面91上のデバイスの特性に応じた適切な除電処理を行うことができる。 As described above, in the substrate processing apparatus 1a, the type of the charge removal liquid is switched according to the type of the device formed on the upper surface 91 of the substrate 9, so that the appropriateness according to the characteristics of the device on the upper surface 91 of the substrate 9 is obtained. Can be performed.
 基板処理装置1aでは、基板9の上面91上に形成されるデバイスの種類等に応じて、上述の除電処理の途中で、除電液の種類が変更されてもよい。例えば、ステップS12において、第1比抵抗の除電液として純水が基板9の上面91上に供給され、上面91全体が純水によりパドルされる。ステップS13では、まず、図10に示すように、第1比抵抗の除電液に第1添加物供給部62からの第1溶質(例えば、二酸化炭素)を溶解させて除電液中のイオン濃度を増大させる(ステップS131)。その後、除電液に第2添加物供給部62aからの第2溶質(例えば、塩酸)を溶解させて除電液中のイオン濃度をさらに増大させ、これにより、除電液の比抵抗を第2比抵抗とする(ステップS132)。ステップS132では、第1添加物供給部62から添加物混合部63への第1溶質の供給は、継続されていてもよく、停止されていてもよい。 In the substrate processing apparatus 1a, depending on the type of device formed on the upper surface 91 of the substrate 9, etc., the type of the charge removal liquid may be changed during the above charge removal process. For example, in step S <b> 12, pure water is supplied on the upper surface 91 of the substrate 9 as the first specific resistance neutralizing solution, and the entire upper surface 91 is padded with pure water. In step S13, first, as shown in FIG. 10, the first solute (for example, carbon dioxide) from the first additive supply unit 62 is dissolved in the neutralizing solution having the first specific resistance, and the ion concentration in the neutralizing solution is set. Increase (step S131). Thereafter, the second solute (for example, hydrochloric acid) from the second additive supply unit 62a is dissolved in the static elimination liquid to further increase the ion concentration in the static elimination liquid, thereby reducing the specific resistance of the static elimination liquid to the second specific resistance. (Step S132). In step S132, the supply of the first solute from the first additive supply unit 62 to the additive mixing unit 63 may be continued or stopped.
 このように、基板処理装置1aでは、第1比抵抗の除電液に第1溶質を溶解させた後、さらに第2溶質を溶解させて除電液の比抵抗を第2比抵抗とすることにより、ステップS13における除電液の比抵抗の調節幅を大きくすることができる。換言すれば、第1比抵抗と第2比抵抗との差を大きくすることができる。 As described above, in the substrate processing apparatus 1a, after the first solute is dissolved in the neutralization solution having the first specific resistance, the second solute is further dissolved to set the specific resistance of the neutralization solution to the second specific resistance. The adjustment range of the specific resistance of the static elimination liquid in step S13 can be increased. In other words, the difference between the first specific resistance and the second specific resistance can be increased.
 図8に示す基板処理装置1aでは、第2添加物供給部62aは、必ずしも第1添加物供給部62が接続された添加物混合部63に接続される必要はない。例えば、もう1組の純水供給部61、添加物混合部63および除電液ノズル64が基板処理装置1aに設けられ、第2添加物供給部62aは、当該添加物混合部63に接続されてもよい。 In the substrate processing apparatus 1a shown in FIG. 8, the second additive supply unit 62a is not necessarily connected to the additive mixing unit 63 to which the first additive supply unit 62 is connected. For example, another set of pure water supply unit 61, additive mixing unit 63, and static elimination liquid nozzle 64 are provided in the substrate processing apparatus 1a, and the second additive supply unit 62a is connected to the additive mixing unit 63. Also good.
 図11は、第2の実施の形態に係る基板処理装置1bの構成を示す図である。基板処理装置1bでは、比抵抗調節部7が加熱部73を備える。その他の構成は、図1に示す基板処理装置1と同様であり、以下の説明では、対応する構成に同符号を付す。 FIG. 11 is a diagram showing a configuration of a substrate processing apparatus 1b according to the second embodiment. In the substrate processing apparatus 1 b, the specific resistance adjusting unit 7 includes a heating unit 73. Other configurations are the same as those of the substrate processing apparatus 1 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.
 加熱部73は、除電液供給部6の純水配管611上に設けられ、純水供給部61から添加物混合部63へと送られる純水を加熱する。純水の比抵抗は、温度が高くなるに従って小さくなる。基板処理装置1bでは、除電液ノズル64から基板9の上面91上へと供給される除電液は、例えば純水である。基板処理装置1bでは、比抵抗計67からの出力に基づいて、制御部8(図1参照)が比抵抗調節部7の加熱部73をフィードバック制御することにより、除電液ノズル64から基板9の上面91上に供給される除電液の温度が制御され、これにより、当該除電液の比抵抗が制御される。 The heating unit 73 is provided on the pure water pipe 611 of the static elimination liquid supply unit 6, and heats pure water sent from the pure water supply unit 61 to the additive mixing unit 63. The specific resistance of pure water decreases as the temperature increases. In the substrate processing apparatus 1b, the static elimination liquid supplied from the static elimination liquid nozzle 64 onto the upper surface 91 of the substrate 9 is, for example, pure water. In the substrate processing apparatus 1b, the control unit 8 (see FIG. 1) feedback-controls the heating unit 73 of the specific resistance adjustment unit 7 based on the output from the specific resistance meter 67, so The temperature of the static elimination liquid supplied on the upper surface 91 is controlled, and thereby the specific resistance of the static elimination liquid is controlled.
 基板処理装置1bにおける基板9の処理の流れは図2に示すものとほぼ同様である。ステップS11では、制御部8により加熱部73が制御されることにより、除電液の温度が制御され、除電液の比抵抗が第1比抵抗となる。また、ステップS13では、制御部8により加熱部73が制御されることにより、第1比抵抗の除電液の温度が上昇し、これにより、除電液の比抵抗が第2比抵抗となる。このように、基板処理装置1bでは、除電液の温度を調節することにより、除電液の比抵抗を容易に調節することができる。 The flow of processing of the substrate 9 in the substrate processing apparatus 1b is almost the same as that shown in FIG. In step S <b> 11, the control unit 8 controls the heating unit 73 to control the temperature of the static elimination liquid, and the specific resistance of the static elimination liquid becomes the first specific resistance. In step S13, the control unit 8 controls the heating unit 73 to increase the temperature of the neutralizing liquid having the first specific resistance, and the specific resistance of the neutralizing liquid becomes the second specific resistance. As described above, in the substrate processing apparatus 1b, the specific resistance of the static elimination liquid can be easily adjusted by adjusting the temperature of the static elimination liquid.
 基板処理装置1bでは、例えば、除電液の温度を測定する温度測定部が除電液配管631上に設けられ、当該温度測定部から出力される除電液の温度に基づいて、加熱部73が制御部8によりフィードバック制御されてもよい。また、添加物供給部62から供給される添加物(例えば、二酸化炭素)が所定の濃度にて純水に溶解した液体が、除電液として利用されてもよい。さらには、除電液の比抵抗の制御は、除電液の温度、および、除電液中のイオン濃度の双方を制御することにより行われてもよい。 In the substrate processing apparatus 1b, for example, a temperature measurement unit that measures the temperature of the static elimination liquid is provided on the static elimination liquid pipe 631, and the heating unit 73 is based on the temperature of the static elimination liquid output from the temperature measurement unit. 8 may be feedback controlled. In addition, a liquid in which an additive (for example, carbon dioxide) supplied from the additive supply unit 62 is dissolved in pure water at a predetermined concentration may be used as the static elimination liquid. Furthermore, the control of the specific resistance of the static elimination liquid may be performed by controlling both the temperature of the static elimination liquid and the ion concentration in the static elimination liquid.
 基板処理装置1,1aでは、様々な変更が可能である。 Various changes can be made in the substrate processing apparatuses 1 and 1a.
 例えば、第1比抵抗は、処理液供給部3から基板9に供給される処理液の比抵抗よりも大きければ、18MΩ・cm未満であってもよい。したがって、第1比抵抗の除電液は、純水ではなく、二酸化炭素水のようなイオンを含む液体であってもよい。 For example, the first specific resistance may be less than 18 MΩ · cm as long as it is larger than the specific resistance of the processing liquid supplied from the processing liquid supply unit 3 to the substrate 9. Therefore, the neutralization liquid having the first specific resistance may be a liquid containing ions such as carbon dioxide water instead of pure water.
 ステップS13は、ステップS12と並行して行われ、ステップS12の直後、すなわち、第1比抵抗の除電液により基板9の上面91全体がパドルされた直後、除電液ノズル64から基板9の上面91に向けて、第1比抵抗よりも小さい比抵抗の除電液が供給されてもよい。 Step S13 is performed in parallel with step S12. Immediately after step S12, that is, immediately after the entire top surface 91 of the substrate 9 is paddled by the neutralizing liquid having the first specific resistance, the top surface 91 of the substrate 9 is removed from the neutralizing liquid nozzle 64. For this, a static elimination liquid having a specific resistance smaller than the first specific resistance may be supplied.
 添加物供給部62から添加物混合部63に供給される添加物は、二酸化炭素以外であってもよい。当該添加物としては、例えば、塩酸、アンモニアまたは過酸化水素水が利用される。 The additive supplied from the additive supply unit 62 to the additive mixing unit 63 may be other than carbon dioxide. As the additive, for example, hydrochloric acid, ammonia or hydrogen peroxide water is used.
 ステップS15では、基板9の上面91上に液状のイソプロピルアルコール(以下、「IPA」という。)が供給されることにより、除電液が基板9の上面91上から除去されてもよい。除電液の除去後のIPAは、基板9の回転により、基板9のエッジから外側へと飛散して基板9上から除去される。 In step S15, the liquid removal isopropyl alcohol (hereinafter referred to as “IPA”) may be supplied onto the upper surface 91 of the substrate 9 to remove the charge removal liquid from the upper surface 91 of the substrate 9. The IPA after removal of the charge removal liquid is scattered from the edge of the substrate 9 to the outside by the rotation of the substrate 9 and is removed from the substrate 9.
 ステップS16では、SPM液以外の処理液が基板9上に供給され、基板9に対する他の処理が行われてもよい。例えば、レジスト膜が形成された基板9上に処理液としてバッファードフッ酸(BHF)が供給され、基板9のエッチング処理が行われてもよい。基板処理装置1,1a,1bでは、上述のように、帯電した基板9と処理液との接触による電荷の急激な移動に伴う基板9の損傷を防止することができる。したがって、基板処理装置1,1a,1bの構造は、SPM液やバッファードフッ酸のように、比抵抗が非常に小さい処理液による処理が行われる装置に特に適している。 In step S16, a processing liquid other than the SPM liquid may be supplied onto the substrate 9 to perform other processing on the substrate 9. For example, the substrate 9 may be etched by supplying buffered hydrofluoric acid (BHF) as a treatment liquid onto the substrate 9 on which the resist film is formed. In the substrate processing apparatuses 1, 1a, 1b, as described above, it is possible to prevent the substrate 9 from being damaged due to a rapid movement of charges due to contact between the charged substrate 9 and the processing liquid. Therefore, the structure of the substrate processing apparatuses 1, 1 a, 1 b is particularly suitable for an apparatus that performs processing with a processing solution having a very low specific resistance, such as an SPM solution or buffered hydrofluoric acid.
 除電液と処理液との混合による悪影響が生じないのであれば、基板9上からの除電液の除去(ステップS15)は省略され、基板9の上面91上に除電液が存在する状態で処理液が供給されて基板9の処理が行われてもよい。 If there is no adverse effect due to the mixing of the charge removal liquid and the treatment liquid, the removal of the charge removal liquid from the substrate 9 (step S15) is omitted, and the treatment liquid is present in the state where the charge removal liquid exists on the upper surface 91 of the substrate 9. May be supplied to process the substrate 9.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1,1a,1b  基板処理装置
 2  基板保持部
 3  処理液供給部
 6,6b  除電液供給部
 6a  下部除電液供給部
 7  比抵抗調節部
 8  制御部
 9  基板
 91  (基板の)上面
 92  (基板の)下面
 S11~S19,S21,S31,S41,S42,S131,S132  ステップ
DESCRIPTION OF SYMBOLS 1, 1a, 1b Substrate processing apparatus 2 Substrate holding part 3 Processing liquid supply part 6, 6b Static elimination liquid supply part 6a Lower static elimination liquid supply part 7 Resistivity adjustment part 8 Control part 9 Substrate 91 Upper surface 92 (Substrate) ) Lower surface S11 to S19, S21, S31, S41, S42, S131, S132 Steps

Claims (20)

  1.  基板を処理する基板処理装置であって、
     主面を上側に向けた状態で基板を保持する基板保持部と、
     前記基板の前記主面上に処理液を供給する処理液供給部と、
     前記基板の前記主面上に除電液を供給する除電液供給部と、
     前記除電液の比抵抗を調節する比抵抗調節部と、
     前記処理液供給部、前記除電液供給部および前記比抵抗調節部を制御することにより、前記処理液の比抵抗よりも大きい第1比抵抗の前記除電液を前記基板の前記主面上に供給して前記主面全体を前記除電液にてパドルした後、前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗よりも小さい第2比抵抗まで減少させ、前記第2比抵抗の前記除電液にて前記主面全体をパドルすることにより前記主面上の電荷を減少させた後、前記処理液を前記基板の前記主面上に供給して所定の処理を行う制御部と、
    を備える。
    A substrate processing apparatus for processing a substrate,
    A substrate holding part for holding the substrate with the main surface facing upward;
    A treatment liquid supply unit for supplying a treatment liquid onto the main surface of the substrate;
    A charge removal liquid supply unit for supplying charge removal liquid onto the main surface of the substrate;
    A specific resistance adjusting unit that adjusts the specific resistance of the static elimination liquid;
    By controlling the treatment liquid supply unit, the neutralization liquid supply unit, and the specific resistance adjustment unit, the neutralization liquid having a first specific resistance larger than the specific resistance of the treatment liquid is supplied onto the main surface of the substrate. Then, after padding the entire main surface with the neutralization liquid, the specific resistance of the neutralization liquid supplied onto the main surface is reduced to a second specific resistance smaller than the first specific resistance, and the second specific resistance is reduced. Control of performing a predetermined process by supplying the processing liquid onto the main surface of the substrate after the charge on the main surface is reduced by paddling the entire main surface with the neutralizing liquid having a specific resistance. And
    Is provided.
  2.  請求項1に記載の基板処理装置であって、
     前記第1比抵抗の前記除電液が純水である。
    The substrate processing apparatus according to claim 1,
    The static elimination liquid having the first specific resistance is pure water.
  3.  請求項1または2に記載の基板処理装置であって、
     前記比抵抗調節部が、前記第1比抵抗の前記除電液中のイオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    The substrate processing apparatus according to claim 1, wherein:
    The specific resistance adjustment unit increases the ion concentration of the first specific resistance in the static elimination liquid, thereby setting the specific resistance of the static elimination liquid as the second specific resistance.
  4.  請求項3に記載の基板処理装置であって、
     前記比抵抗調節部が、前記第1比抵抗の前記除電液に二酸化炭素を溶解させて前記イオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    The substrate processing apparatus according to claim 3, wherein
    The specific resistance adjusting unit increases the ion concentration by dissolving carbon dioxide in the static elimination liquid having the first specific resistance, thereby setting the specific resistance of the static elimination liquid as the second specific resistance.
  5.  請求項3に記載の基板処理装置であって、
     前記比抵抗調節部が、前記第1比抵抗の前記除電液に第1溶質を溶解させて前記イオン濃度を増大させた後、前記除電液に第2溶質を溶解させて前記イオン濃度をさらに増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    The substrate processing apparatus according to claim 3, wherein
    The specific resistance adjustment unit dissolves the first solute in the charge removal solution having the first specific resistance to increase the ion concentration, and then dissolves the second solute in the charge removal solution to further increase the ion concentration. As a result, the specific resistance of the static elimination liquid is set to the second specific resistance.
  6.  請求項1ないし5のいずれかに記載の基板処理装置であって、
     前記比抵抗調節部が、前記第1比抵抗の前記除電液の温度を上昇させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    A substrate processing apparatus according to any one of claims 1 to 5,
    The specific resistance adjusting unit raises the temperature of the static elimination liquid of the first specific resistance, thereby setting the specific resistance of the static elimination liquid as the second specific resistance.
  7.  請求項1ないし6のいずれかに記載の基板処理装置であって、
     前記第2比抵抗が、前記処理液の比抵抗以上である。
    A substrate processing apparatus according to any one of claims 1 to 6,
    The second specific resistance is greater than or equal to the specific resistance of the treatment liquid.
  8.  請求項1ないし7のいずれかに記載の基板処理装置であって、
     基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電処理情報が、前記制御部に予め記憶されており、
     前記基板の前記主面上にデバイスが予め形成されており、
     前記複数の除電処理情報がそれぞれ、前記第1比抵抗、前記第2比抵抗、および、前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗から前記第2比抵抗へと変更する際に要する比抵抗調節時間を含み、
     前記制御部が、前記複数の除電処理情報のうち前記主面上の前記デバイスの種類に対応する1つの除電処理情報に基づいて前記比抵抗調節部を制御する。
    A substrate processing apparatus according to any one of claims 1 to 7,
    A plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate are stored in advance in the control unit,
    A device is formed in advance on the main surface of the substrate,
    The plurality of static elimination processing information respectively change the first specific resistance, the second specific resistance, and the specific resistance of the static elimination liquid supplied on the main surface from the first specific resistance to the second specific resistance. And the specific resistance adjustment time required to change
    The control unit controls the specific resistance adjustment unit based on one static elimination processing information corresponding to the type of the device on the main surface among the plurality of static elimination processing information.
  9.  請求項1ないし8のいずれかに記載の基板処理装置であって、
     基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電液種情報が、前記制御部に予め記憶されており、
     前記除電液供給部において、前記除電液の種類を複数の液種の間で切り替え可能であり、
     前記基板の前記主面上にデバイスが予め形成されており、
     前記制御部が、前記複数の除電液種情報のうち前記主面上の前記デバイスの種類に対応する1つの除電液種情報に基づいて、前記除電液の種類を切り替える。
    A substrate processing apparatus according to any one of claims 1 to 8,
    A plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on the substrate is stored in advance in the control unit,
    In the static elimination liquid supply unit, the type of the static elimination liquid can be switched between a plurality of liquid types,
    A device is formed in advance on the main surface of the substrate,
    The said control part switches the kind of said static elimination liquid based on one static elimination liquid type information corresponding to the kind of the said device on the said main surface among the said several static elimination liquid type information.
  10.  請求項1ないし9のいずれかに記載の基板処理装置であって、
     前記基板の他方の主面に除電液を供給する他の除電液供給部をさらに備え、
     前記制御部が前記他の除電液供給部を制御することにより、前記基板の前記主面への前記除電液の供給よりも前に、または、前記主面への前記除電液の供給と並行して、前記基板の前記他方の主面に除電液が供給される。
    A substrate processing apparatus according to any one of claims 1 to 9,
    Further provided with another static elimination liquid supply unit for supplying static elimination liquid to the other main surface of the substrate,
    The control unit controls the other neutralization liquid supply unit to supply the neutralization liquid to the main surface before or in parallel with the neutralization liquid supply to the main surface of the substrate. Then, the charge eliminating liquid is supplied to the other main surface of the substrate.
  11.  基板を処理する基板処理方法であって、
     a)主面を上側に向けた状態で保持される基板の前記主面上に第1比抵抗の除電液を供給して前記主面全体を前記除電液にてパドルする工程と、
     b)前記a)工程よりも後に、前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗よりも小さい第2比抵抗まで減少させ、前記第2比抵抗の前記除電液にて前記主面全体をパドルすることにより、前記主面上の電荷を減少させる工程と、
     c)前記b)工程よりも後に、前記第1比抵抗よりも比抵抗が小さい処理液を前記基板の前記主面上に供給して所定の処理を行う工程と、
    を備える。
    A substrate processing method for processing a substrate, comprising:
    a) supplying a neutralizing solution having a first specific resistance onto the principal surface of the substrate held with the principal surface facing upward, and padding the entire principal surface with the neutralizing solution;
    b) After the step a), the specific resistance of the static elimination liquid supplied on the main surface is reduced to a second specific resistance smaller than the first specific resistance, and the static elimination liquid of the second specific resistance is reduced. Reducing the charge on the main surface by paddle the entire main surface at
    c) after the step b), supplying a treatment liquid having a specific resistance lower than the first specific resistance on the main surface of the substrate to perform a predetermined process;
    Is provided.
  12.  請求項11に記載の基板処理方法であって、
     前記a)工程における前記第1比抵抗の前記除電液が純水である。
    The substrate processing method according to claim 11, comprising:
    The static eliminating liquid having the first specific resistance in the step a) is pure water.
  13.  請求項11または12に記載の基板処理方法であって、
     前記b)工程において、前記第1比抵抗の前記除電液中のイオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    The substrate processing method according to claim 11 or 12,
    In the step b), by increasing the ion concentration of the first specific resistance in the static elimination liquid, the specific resistance of the static elimination liquid is set to the second specific resistance.
  14.  請求項13に記載の基板処理方法であって、
     前記b)工程において、前記第1比抵抗の前記除電液に二酸化炭素を溶解させて前記イオン濃度を増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    The substrate processing method according to claim 13, comprising:
    In the step b), carbon dioxide is dissolved in the static elimination liquid having the first specific resistance to increase the ion concentration, whereby the specific resistance of the static elimination liquid is set to the second specific resistance.
  15.  請求項13に記載の基板処理方法であって、
     前記b)工程が、
     b1)前記第1比抵抗の前記除電液に第1溶質を溶解させて前記イオン濃度を増大させる工程と、
     b2)前記b1)工程よりも後に、前記除電液に第2溶質を溶解させて前記イオン濃度をさらに増大させることにより、前記除電液の比抵抗を前記第2比抵抗とする工程と、
    を備える。
    The substrate processing method according to claim 13, comprising:
    Step b)
    b1) dissolving the first solute in the charge removal solution having the first specific resistance to increase the ion concentration;
    b2) after the step b1), by dissolving the second solute in the static elimination liquid and further increasing the ion concentration, the specific resistance of the static elimination liquid is set to the second specific resistance;
    Is provided.
  16.  請求項11ないし15のいずれかに記載の基板処理方法であって、
     前記b)工程において、前記第1比抵抗の前記除電液の温度を上昇させることにより、前記除電液の比抵抗を前記第2比抵抗とする。
    A substrate processing method according to any one of claims 11 to 15,
    In the step b), the specific resistance of the charge removal liquid is set to the second specific resistance by increasing the temperature of the charge removal liquid having the first specific resistance.
  17.  請求項11ないし16のいずれかに記載の基板処理方法であって、
     前記第2比抵抗が、前記処理液の比抵抗以上である。
    A substrate processing method according to any one of claims 11 to 16,
    The second specific resistance is greater than or equal to the specific resistance of the treatment liquid.
  18.  請求項11ないし17のいずれかに記載の基板処理方法であって、
     前記a)工程よりも前に、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電処理情報を記憶する工程をさらに備え、
     前記複数の除電処理情報がそれぞれ、前記第1比抵抗、前記第2比抵抗、および、前記基板の前記主面上に供給される前記除電液の比抵抗を前記第1比抵抗から前記第2比抵抗へと変更する際に要する比抵抗調節時間を含み、
     前記b)工程において、前記複数の除電処理情報のうち前記基板の前記主面上に予め形成されたデバイスの種類に対応する1つの除電処理情報に基づいて、前記主面上に供給される前記除電液の比抵抗が調節される。
    A substrate processing method according to any one of claims 11 to 17,
    Before the step a), the method further comprises a step of storing a plurality of static elimination processing information respectively corresponding to a plurality of types of devices that can be formed on the substrate,
    The plurality of pieces of static elimination processing information respectively change the first specific resistance, the second specific resistance, and the specific resistance of the static elimination liquid supplied on the main surface of the substrate from the first specific resistance to the second specific resistance. Includes specific resistance adjustment time required to change to specific resistance,
    In the step b), the one of the plurality of static elimination processing information supplied on the main surface based on one static elimination processing information corresponding to the type of device previously formed on the main surface of the substrate. The specific resistance of the neutralizing liquid is adjusted.
  19.  請求項11ないし18のいずれかに記載の基板処理方法であって、
     前記基板の前記主面上に供給される前記除電液の種類が、複数の液種の間で切り替え可能であり、
     前記基板処理方法が、
     d)前記a)工程よりも前に、基板上に形成され得るデバイスの複数の種類にそれぞれ対応する複数の除電液種情報を記憶する工程と、
     e)前記d)工程よりも後、かつ、前記a)工程よりも前に、前記複数の除電液種情報のうち前記基板の前記主面上に予め形成されたデバイスの種類に対応する1つの除電液種情報に基づいて、前記基板の前記主面上に供給される前記除電液の種類を決定する工程と、
    をさらに備える。
    A substrate processing method according to any one of claims 11 to 18,
    The type of the neutralizing liquid supplied on the main surface of the substrate is switchable between a plurality of liquid types,
    The substrate processing method comprises:
    d) before the step a), storing a plurality of static elimination liquid type information respectively corresponding to a plurality of types of devices that can be formed on the substrate;
    e) After the step d) and before the step a), one of the plurality of static elimination liquid type information corresponding to the type of device previously formed on the main surface of the substrate A step of determining a type of the neutralizing liquid supplied on the main surface of the substrate based on the neutralizing liquid type information;
    Is further provided.
  20.  請求項11ないし19のいずれかに記載の基板処理方法であって、
     前記a)工程よりも前に、または、前記a)工程および前記b)工程の少なくとも一方と並行して、前記基板の他方の主面に除電液を供給する工程をさらに備える。
    The substrate processing method according to any one of claims 11 to 19,
    Before the a) step, or in parallel with at least one of the a) step and the b) step, the method further includes a step of supplying a charge removing liquid to the other main surface of the substrate.
PCT/JP2014/082654 2013-12-20 2014-12-10 Substrate treatment device and substrate treatment method WO2015093365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263310 2013-12-20
JP2013263310A JP6195788B2 (en) 2013-12-20 2013-12-20 Substrate processing apparatus and substrate processing method

Publications (1)

Publication Number Publication Date
WO2015093365A1 true WO2015093365A1 (en) 2015-06-25

Family

ID=53402714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082654 WO2015093365A1 (en) 2013-12-20 2014-12-10 Substrate treatment device and substrate treatment method

Country Status (3)

Country Link
JP (1) JP6195788B2 (en)
TW (1) TWI634607B (en)
WO (1) WO2015093365A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697031B (en) * 2016-07-26 2020-06-21 聯華電子股份有限公司 Patterning method
JP7281868B2 (en) * 2018-01-23 2023-05-26 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP7403362B2 (en) 2020-03-26 2023-12-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344821A (en) * 2003-05-23 2004-12-09 Nomura Micro Sci Co Ltd Electrification prevention method and electrification prevention device for ultrapure water or pure water
JP2008016660A (en) * 2006-07-06 2008-01-24 Dainippon Screen Mfg Co Ltd Method for treating substrate and substrate treating apparatus
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344821A (en) * 2003-05-23 2004-12-09 Nomura Micro Sci Co Ltd Electrification prevention method and electrification prevention device for ultrapure water or pure water
JP2008016660A (en) * 2006-07-06 2008-01-24 Dainippon Screen Mfg Co Ltd Method for treating substrate and substrate treating apparatus
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TWI634607B (en) 2018-09-01
JP2015119128A (en) 2015-06-25
JP6195788B2 (en) 2017-09-13
TW201532173A (en) 2015-08-16

Similar Documents

Publication Publication Date Title
JP5911689B2 (en) Substrate processing apparatus and substrate processing method
JP7343543B2 (en) Removal methods for high aspect ratio structures
JP5911690B2 (en) Substrate processing apparatus and substrate processing method
CN107818912B (en) Substrate processing method and substrate processing apparatus
JP5615650B2 (en) Substrate processing method and substrate processing apparatus
KR101450965B1 (en) Substrate Processing Apparatus and Substrate Processing Method
TWI546878B (en) Substrate processing apparatus and substrate processing method
JP6493839B2 (en) Substrate processing method and substrate processing apparatus
WO2015147237A1 (en) Substrate treatment device and substrate treatment method
WO2015093365A1 (en) Substrate treatment device and substrate treatment method
JP5215013B2 (en) Substrate processing method and substrate processing apparatus
JP6032878B2 (en) Substrate processing apparatus and substrate processing method
JP2004063521A (en) Method for manufacturing semiconductor device
WO2016152371A1 (en) Substrate processing method and substrate processing device
JP6262431B2 (en) Substrate processing apparatus and substrate processing method
JP6262430B2 (en) Substrate processing apparatus and substrate processing method
US20240153779A1 (en) Substrate treatment method and substrate treatment device
JP7194623B2 (en) Substrate processing method and substrate processing apparatus
JP2024075338A (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2022168743A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871135

Country of ref document: EP

Kind code of ref document: A1