WO2015089857A1 - 影像信号获取方法及影像信号获取装置 - Google Patents

影像信号获取方法及影像信号获取装置 Download PDF

Info

Publication number
WO2015089857A1
WO2015089857A1 PCT/CN2013/090301 CN2013090301W WO2015089857A1 WO 2015089857 A1 WO2015089857 A1 WO 2015089857A1 CN 2013090301 W CN2013090301 W CN 2013090301W WO 2015089857 A1 WO2015089857 A1 WO 2015089857A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
picture
grayscale
gray
scale
Prior art date
Application number
PCT/CN2013/090301
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to JP2016526829A priority Critical patent/JP2017502323A/ja
Priority to US14/131,911 priority patent/US9437125B2/en
Priority to GB1604518.9A priority patent/GB2534065B/en
Priority to KR1020167011096A priority patent/KR101807686B1/ko
Publication of WO2015089857A1 publication Critical patent/WO2015089857A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • H04N13/125Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues for crosstalk reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing

Definitions

  • the present invention relates to the field of signal processing, and in particular, to an image signal acquisition method and an image signal acquisition device. Background technique
  • the 3D shutter type liquid crystal display device can greatly satisfy the user's need for viewing 3D movies.
  • the left eye signal and the right eye signal need to be displayed through different frame images, so the picture refresh frequency is high, and when the left eye signal and the right eye signal are switched, the switching interval is short, and crosstalk is prone to occur. (cro sstalk) phenomenon.
  • the 3D shutter type liquid crystal display performs overdrive processing on the switching signal when the left eye signal and the right eye signal are switched, thereby shortening the switching of the left eye signal and the right eye signal. Interval, avoiding the occurrence of crosstalk.
  • the setting of the luminance signal of the grayscale switching screen of the 3D shutter type LCD (the crosstalk phenomenon does not occur under the luminance signal) needs to be realized by measuring the luminance signal when 256*256 groups are switched (ie, fixing the left eye).
  • the gray level of the picture, the brightness signal of the right eye picture of the 256 gray levels after the switching is measured, and then the gray level of the left eye picture is switched, and then the brightness signal of the right eye picture of the switched 256 gray levels is measured until the switch is performed.
  • 256 gray-scale left-eye images or measure the luminance signal when 64 * 64 sets are switched, and then perform linear interpolation on the measurement results.
  • An object of the present invention is to provide an image signal acquisition method and a video signal acquisition device for efficiently acquiring luminance signals of different gray levels of a liquid crystal display, so as to solve the existing image signal acquisition method and the image signal acquisition device for acquiring a liquid crystal display.
  • the efficiency of the luminance signal of different grayscale switching pictures is relatively low.
  • the invention provides a method for acquiring an image signal, which comprises the steps of:
  • the linear fitting operation is a fitting operation using a two-dimensional least squares method
  • the steps of performing the fitting operation using the two-dimensional least squares method include:
  • the luminance signal of the grayscale switching picture of the sampling gray scale X is a gray level of the picture before switching of the sampling gray level, and y is a gray level of the picture after switching of the sampling gray level, p is the The number of samples of the picture before switching, q is the number of samples of the picture after switching, and the coefficient is constant;
  • the number of samples p before the switching is 9, and the number q of samples after the switching is 9.
  • the number of samples p before the switching is 17, and the number q of samples after the switching is 17.
  • the grayscale number of the screen before the switching of the full grayscale switching screen is 256
  • the grayscale number of the screen after the switching of the full grayscale switching screen is 256.
  • the invention provides a method for acquiring an image signal, which comprises the steps of:
  • a nonlinear fitting operation is performed to obtain a luminance signal of the full grayscale switching picture; wherein the two-dimensional nonlinear fitting operation is a fitting operation using a two-dimensional least squares method.
  • the step of performing the fitting operation by using the two-dimensional least square method includes:
  • the luminance signal of the grayscale switching picture of the sampling gray scale X is a gray level of the picture before switching of the sampling gray level, and y is a gray level of the picture after switching of the sampling gray level, p is the The number of samples of the picture before switching, q is the number of samples of the picture after switching, and the coefficient is constant;
  • z is the luminance signal of the full grayscale switching picture
  • n is the grayscale number of the full grayscale switching picture.
  • the number of samples p of the pre-switching picture is 9, and the number of samples of the picture after the switching is 9.
  • the number of samples p of the pre-switching picture is 17, and the number of samples of the picture after the switching is 17.
  • the grayscale number of the screen before the switching of the full grayscale switching screen is 256
  • the grayscale number of the screen after the switching of the full grayscale switching screen is 256.
  • the image signal acquisition method of the present invention the image signal
  • the law also includes the steps:
  • the present invention also provides an image signal acquisition device, comprising:
  • a sampling gray scale brightness measuring module configured to measure a brightness signal of a gray scale switching picture of a sampling gray scale
  • a full gray scale brightness obtaining module configured to perform a two-dimensional nonlinear fitting operation on the measured luminance signal of the gray scale switching picture of the gray scale of the sampling, to obtain a brightness signal of the full gray scale switching picture;
  • the full gray scale brightness acquisition module performs the two-dimensional nonlinear fitting operation by using a two-dimensional least squares method.
  • the two-dimensional nonlinear fitting operation by using the two-dimensional least squares method by the full grayscale luminance acquiring module includes: switching the screen according to the grayscale of the sampling grayscale
  • the luminance signal constructs a binary polynomial function: ,, 1
  • / is the luminance signal of the grayscale switching picture of the grayscale
  • X is the grayscale of the grayscale pre-switching picture
  • y is the switching of the sampling grayscale Gray scale of the picture
  • p is the number of samples of the picture before the switching
  • q is the number of samples of the picture after the switching
  • the coefficient is constant
  • z is the luminance signal of the full grayscale switching picture
  • n is the grayscale number of the full grayscale switching picture.
  • the number of samples p before the switching is 9, and the number of samples of the screen after the switching is 9.
  • the number of samples p before the switching is 17, and the number of samples of the screen after the switching is 17.
  • the grayscale number of the screen before the switching of the full grayscale switching screen is 256
  • the grayscale number of the screen after the switching of the full grayscale switching screen is 256.
  • the return includes:
  • a compensation module configured to switch to the full grayscale screen
  • the luminance signal is compensated for redundancy, and the low gray scale switching picture
  • the gray scale is 0 to 48.
  • the ⁇ 3 ⁇ 4 degree is number of the picture, which can efficiently obtain the brightness signals of different grayscale switching pictures, and solve the existing image signal acquisition method and the image signal acquisition device to obtain the liquid ⁇
  • the efficiency of the redundancy signal of the different grayscale switching pictures of the Japanese display device is relatively low.
  • FIG. 1 is a flow chart of a first preferred embodiment of a method for acquiring an image signal according to the present invention
  • FIG. 2 is a flow chart of a second preferred embodiment of the image signal acquisition method of the present invention.
  • FIG. 3 is a schematic structural view of a first preferred embodiment of the image signal acquiring apparatus of the present invention.
  • FIG. 4 is a schematic structural view of a second preferred embodiment of the image signal acquiring apparatus of the present invention.
  • Fig. 5 is a comparison diagram of a luminance signal obtained by using the image signal acquiring method of the present invention and a luminance signal obtained by a method of measuring a luminance signal of 64*64 sets of gray scales.
  • the image signal acquisition method and image signal acquisition device of the present invention can be used in a corresponding 3D shutter type liquid crystal display device.
  • the 3D shutter type liquid crystal display device includes a shutter type liquid crystal display and shutter glasses.
  • the shutter type liquid crystal display includes a backlight, a liquid crystal panel, and a driving circuit for driving the liquid crystal panel for display.
  • the liquid crystal panel alternately generates a left eye image and a right eye image using a higher refresh rate (generally above 120 Hz), while the shutter glasses also switch the left eye lens and the right eye lens on and off at the same refresh rate. This allows users to get a better 3D picture experience with shutter glasses.
  • the image signal acquisition method and the image signal acquisition device of the present invention are used/disposed in the drive circuit of the shutter type liquid crystal display for better driving the liquid crystal panel for display, thereby avoiding the occurrence of crosstalk.
  • FIG. 1 is a flowchart of a first preferred embodiment of a method for acquiring a video signal according to the present invention.
  • the image signal acquisition method of the preferred embodiment includes:
  • Step S101 measuring a luminance signal of the grayscale switching picture of the grayscale sampling step
  • Step S102 performing a two-dimensional nonlinear fitting operation on the luminance signal of the grayscale switching screen of the measured grayscale to obtain a full grayscale switching The luminance signal of the picture; the image signal acquisition method of the preferred embodiment ends in step S102.
  • step S101 the luminance signal of the grayscale switching picture of the sampling gray scale is measured.
  • the gray scale of the sampling includes the gray scale of the screen before switching (such as the left eye image) and the gray scale of the screen after the switching (such as the right eye image), where the grayscale sampling number of the screen before switching can be set to 17, the number of grayscale samples of the screen after switching is 17, which is to set a 15-step intermediate grayscale image between the grayscale of the blacklist and the grayscale of the all-white screen, so that the pre-switching screen and the gray of the screen after switching are sampled.
  • the order is 0 (all black screen), 16, 32, 48, 64, 80, 96, 1 12, 128, 144, 160, 176, 192, 208, 224, 240, 255 (all white screen).
  • the gray scale of the screen before switching is set to the 0th gray scale, and then the driving luminance signal of the switched image of the 17 gray scales after the switching is measured; then the gray scale of the screen before switching is set to the 16th gray.
  • Step and then measuring the driving brightness signal of the switched gray screen after switching, until the gray level of the screen before switching is set to the 255th gray level; thereby obtaining the luminance signal of the grayscale switching picture of the sampling gray level 17 * 17 matrix.
  • the luminance signals of the grayscale switching pictures of different sampling gray levels obtained do not crosstalk when the screen is switched. Then it proceeds to step S102.
  • step S102 a two-dimensional nonlinear fitting operation is performed on the 17*17 matrix of the luminance signal acquired in step S102, thereby obtaining a luminance signal of the full grayscale switching picture of the 256*256 matrix.
  • a two-dimensional least squares method is employed to perform a two-dimensional nonlinear fitting operation.
  • the two-dimensional nonlinear fitting operation using the two-dimensional least square method is as follows: Construct a binary polynomial function according to the luminance signal (17 * 17 matrix) of the gray scale switching picture of the gray scale of the above sampling: w _l
  • / is the gray level of the sampling gray scale switching picture brightness signal
  • X is the gray level of the picture before the switching gray level of the sampling gray
  • y is the gray level of the picture after the switching gray level
  • p is the number of samples of the picture before switching
  • q is the number of samples of the picture after switching
  • the coefficient is constant, and then the two-dimensional least squares method is used to construct a multivariate function about the coefficient.
  • the point ( , ..., a pq ) is the minimum of the multivariate function 5 ( 3 ⁇ 4 , ⁇ , )
  • z is the luminance signal of the full grayscale switching picture
  • n is the grayscale number of the full grayscale switching picture
  • the brightness signal of the full grayscale switching picture can be obtained. I.e. select the appropriate switch on the front surface of the screen gray Xg and after the switching picture gray y g, can be used for obtaining luminance signals corresponding to the acquired switching screens so that is a full 256 gray level matrix switch 256 * The brightness signal of the picture.
  • the number of grayscale samples of the screen before switching can also be set to 9, and the number of grayscale samples of the screen after switching is also set to 9, which further reduces the measurement operation of the luminance signal.
  • the amount of work, but this operation will sacrifice the accuracy of the brightness signal of a part of the acquired full grayscale switching picture.
  • the image signal acquisition method of the preferred embodiment performs a two-dimensional nonlinear fitting operation on the luminance signal of the grayscale switching picture of the gray scale of the sampling to obtain the luminance signal of the full grayscale switching picture, so that the grayscale signals of different grayscales can be efficiently acquired. Switch the brightness signal of the picture.
  • FIG. 2 is a flowchart of a second preferred embodiment of the image signal acquisition method of the present invention.
  • the image signal acquisition method of the preferred embodiment includes:
  • Step S201 measuring a luminance signal of a grayscale switching picture of the gray scale of the sampling; step S202, performing a two-dimensional nonlinear fitting operation on the luminance signal of the grayscale switching screen of the measured grayscale to obtain a full grayscale switching picture a brightness signal; step S203, performing brightness compensation on a luminance signal of the low grayscale switching picture in the full grayscale switching picture;
  • the image signal acquisition method of the preferred embodiment ends in step S203.
  • the specific flow of each step of the image signal acquisition method of the preferred embodiment will be described in detail below.
  • step S101 is the same as the specific process of the step S101 in the first preferred embodiment of the image signal acquisition method. For details, refer to step S101 of the first preferred embodiment of the image signal acquisition method.
  • step S202 The specific process of the step S202 is the same as the specific process of the step S102 in the first preferred embodiment of the image signal obtaining method. For details, refer to step S102 of the first preferred embodiment of the image signal obtaining method.
  • step S203 the luminance signal of the low grayscale switching picture in the full grayscale switching picture acquired in step S202 is subjected to luminance compensation.
  • the low grayscale switching screen means that the grayscale of the screen after switching is a low grayscale, that is, the grayscale of the screen after switching is 0 to 48.
  • the curved surface of the luminance signal of the full grayscale switching picture obtained by the above two-dimensional nonlinear fitting operation is inaccurate in the portion of the low grayscale switching picture, such as the grayscale before the switching, and the grayscale after the switching. ;
  • the screen before switching is 16 grayscale, and the screen after switching is 32 grayscale.
  • the compensated brightness signal is generally a brightness signal represented by a curved surface of the brightness signal of the full gray scale switching picture obtained by the two-dimensional nonlinear fitting operation.
  • the brightness signal obtained by the above surface is reduced by about 70%.
  • the luminance signal of the full grayscale switching picture after the brightness compensation is more accurate.
  • the image signal acquisition method of the preferred embodiment performs brightness compensation on the luminance signal of the full grayscale switching picture on the basis of the first preferred embodiment, so that the full grayscale switching The brightness signal of the picture is more accurate.
  • FIG. 3 is a schematic structural diagram of a first preferred embodiment of the image signal acquisition device of the present invention.
  • the image signal acquiring device 30 of the preferred embodiment includes a sampling gray scale brightness measuring module 3 1 and a full gray level brightness obtaining module 32.
  • the sampling gray scale brightness measuring module 31 is configured to measure a brightness signal of the gray scale switching picture of the sampling gray level 33
  • the full gray level brightness obtaining module 32 is configured to switch the brightness signal of the gray scale switching picture of the gray scale 33 of the measurement
  • a two-dimensional nonlinear fitting operation is performed to obtain a luminance signal 34 of the full grayscale switching picture; wherein the full grayscale luminance acquiring module 32 performs a two-dimensional nonlinear fitting operation using a two-dimensional least squares method.
  • the grayscale luminance measuring module 31 first measures the luminance signal of the grayscale switching picture of the sampling grayscale 33, and then the grayscale filtering module 32 selects the grayscale of the measured grayscale.
  • the luminance signal of the grayscale switching picture of 33 performs a two-dimensional nonlinear fitting operation to obtain the luminance signal 34 of the full grayscale switching picture.
  • the specific working principle of the image signal acquiring device 30 of the preferred embodiment is the same as or similar to the related description in the first preferred embodiment of the image signal acquiring method. For details, refer to the first preferred embodiment of the image signal acquiring method. Related description.
  • the image signal acquiring apparatus of the preferred embodiment performs a two-dimensional nonlinear fitting operation on the luminance signal of the grayscale switching screen of the sampling gray scale to obtain a full grayscale switching screen.
  • the brightness signal so that the brightness signals of the switching pictures of different gray levels can be efficiently obtained.
  • FIG. 4 is a schematic structural diagram of a second preferred embodiment of the image signal acquiring apparatus of the present invention.
  • the image signal acquiring device 40 of the preferred embodiment includes a sampling gray scale brightness measuring module 41, an all gray level brightness obtaining module 42 and a compensation module 45.
  • the sampling gray scale brightness measuring module 41 is configured to measure a brightness signal of a gray scale picture of the gray scale 43
  • the full gray level brightness obtaining module 42 is configured to perform a brightness signal of the gray scale switching picture of the measured gray scale 43 Dimensional nonlinear fitting operation to obtain a luminance signal 44 of the full grayscale switching picture; wherein the full grayscale luminance obtaining module 42 performs a two-dimensional nonlinear fitting operation using a two-dimensional least squares method; the compensation module 45 is used for the full gray
  • the luminance signal of the low grayscale switching picture in the step switching picture is subjected to luminance compensation, wherein the grayscale of the picture after switching of the low grayscale switching picture is 0 to 48.
  • the grayscale brightness measuring module 41 first measures the brightness signal of the grayscale switching picture of the sampling gray level 43, and then the gray level index of the measured gray level 43 by the full gray level brightness acquiring module 42.
  • the luminance signal of the grayscale switching picture is subjected to a two-dimensional nonlinear fitting operation to obtain the luminance signal 44 of the full grayscale switching picture; and finally the compensation module 45 performs the luminance signal of the low grayscale switching picture in the full grayscale switching picture. Brightness compensation.
  • the specific working principle of the image signal acquiring device 40 of the preferred embodiment is the same as or similar to the related description in the second preferred embodiment of the image signal acquiring method. For details, refer to the second preferred embodiment of the image signal acquiring method. Related description.
  • the image signal acquiring apparatus of the preferred embodiment performs brightness compensation on the luminance signal of the full grayscale switching picture on the basis of the first preferred embodiment, so that the luminance signal of the full grayscale switching picture is more accurate.
  • FIG. 5 is a schematic diagram of comparison between a luminance signal obtained by using the image signal acquisition method of the present invention and a luminance signal obtained by a method of measuring luminance signals of 64*64 gray scales.
  • the abscissa of Fig. 5 is the gray scale of the screen after switching, and the ordinate is the difference of the two kinds of brightness signals.
  • the gray scale of the screen before switching is 0 gray scale.
  • the image signal acquisition method of the present invention only needs to measure the brightness signals of 17 * 17 sets of gray scales, and the measurement time taken by the method is only four quarters of the measurement time consumed by the method of measuring the luminance signals of 64*64 sets of gray scales. Therefore, the image signal acquisition method of the present invention greatly improves the efficiency of acquiring luminance signals of different grayscale switching pictures of the liquid crystal display.
  • the image signal acquisition method and the image signal acquisition device of the present invention perform a two-dimensional nonlinear fitting operation on the luminance signal of the grayscale switching screen of the sampling gray scale to obtain the luminance signal of the full grayscale switching picture, so that the difference can be efficiently obtained.
  • the gray level switching picture brightness signal solves the problem that the existing image signal acquisition method and the image signal acquisition device obtain the brightness signals of different gray scale switching pictures of the liquid crystal display are relatively low. The technical problem below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 本发明提供一种影像信号获取方法及影像信号获取装置。该方法包括步骤:测量采样灰阶的灰阶切换画面的亮度信号;以及对测量的采样灰阶的灰阶切换画面的亮度信号进行二维非线性拟合操作;其中二维非线性拟合操作为采用二维最小二乘法进行拟合操作。本发明还提供一种影像信号获取装置。本发明对采样灰阶的灰阶切换画面的亮度信号采用二维非线性拟合操作,这样可高效的获取不同灰阶切换画面的亮度信号。

Description

影像信号获取方法及影像信号获取装 技术领域
本发明涉及信号处理领域, 特别是涉及一种影像信号获取方 法及影像信号获取装置。 背景技术
随着社会的发展, 越来越多的用户使用液晶显示器进行各种 社会活动。 特别是 3D 快门式液晶显示设备, 可以大大满足用户 对于观看 3D影片的需要。 使用 3D快门式液晶显示设备时, 需要 通过不同帧的画面显示左眼信号以及右眼信号, 因此画面刷新频 率较高, 左眼信号与右眼信号进行切换时, 切换间隔较短, 容易 出现串扰 (cro sstalk ) 现象。
为了较好的消除画面串扰现象, 3 D快门式液晶显示器会对左 眼信号与右眼信号进行切换时的切换信号进行过驱动 ( Over Drive ) 处理, 从而缩短左眼信号和右眼信号的切换间隔, 避免串 扰现象的产生。
因此 3D 快门式液晶显示器的不同灰阶切换画面的亮度信号 (在该亮度信号下不会产生串扰现象) 的设定, 需要通过测量 256 * 256 组切换时的亮度信号来实现 (即固定左眼画面的灰阶, 测量切换后的 256个灰阶的右眼画面的亮度信号, 然后切换左眼 画面的灰阶,再测量切换后的 256个灰阶的右眼画面的亮度信号, 直至切换了 256个灰阶的左眼画面),或测量 64 * 64组切换时的亮 度信号, 然后通过对测量结果进行线性插值来实现。 但是无论是测量 256 * 256组灰阶的亮度信号的方法还是测量 64 * 64 组灰阶的亮度信号的方法, 均需要进行大量的测量操作或 灰阶亮度的运算操作, 获取液晶显示器的不同灰阶的亮度信号的 效率比较低下。
故,有必要提供一种影像信号获取方法及影像信号获取装置, 以解决现有技术所存在的问题。
发明内容
本发明的目的在于提供一种可高效的获取液晶显示器的不同 灰阶的亮度信号的影像信号获取方法及影像信号获取装置, 以解 决现有的影像信号获取方法及影像信号获取装置获取液晶显示器 的不同灰阶切换画面的亮度信号的效率比较低下的技术问题。
为解决上述问题, 本发明提供的技术方案如下:
本发明提供一种影像信号获取方法, 其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号 ,
对测量的所述采样灰阶的灰阶切换画面的 度 ^号进行二维 非线性拟合操作, 以获取全灰阶切换画面的冗度信号 , 以及
对所述全灰阶切换画面中的低灰阶切换画面的亮度信号进行 禽冗 /又补偿, 所述低灰阶切换画面的切换后画面的灰阶为 0至 48 ; 其中所述二维非线性拟合操作为采用二维最小二乘法进行拟 合操作;
所述采用二维最小二乘法进行拟合操作的步骤包括:
根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数
/o, =
Figure imgf000004_0001
y=i,i '.=i j=i
其中 为所述采样灰阶的灰阶切换画面的亮度信号, X为 所述采样灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
Figure imgf000004_0002
W W) ∑ 其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
在本发明所述的影像信号获取方法中, 所述切换前画面的采 样数 p为 9, 所述切换后画面的采样数 q为 9。
在本发明所述的影像信号获取方法中, 所述切换前画面的采 样数 p为 17, 所述切换后画面的采样数 q为 17。
在本发明所述的影像信号获取方法中, 所述全灰阶切换画面 的切换前画面的灰阶数为 256, 所述全灰阶切换画面的切换后画 面的灰阶数为 256。
本发明提供一种影像信号获取方法, 其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号; 以及
对测量的所述采样灰阶的灰阶切换画面的亮度信号进行二维 非线性拟合操作, 以获取全灰阶切换画面的亮度信号; 其中所述二维非线性拟合操作为采用二维最小二乘法进行拟 合操作。
在本发明所述的影像信号获取方法中, 所述采用二维最小二 乘法进行拟合操作的步骤包括:
根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数:
/0, =
Figure imgf000005_0001
' =1,1 /=i j=i
其中 为所述采样灰阶的灰阶切换画面的亮度信号, X为 所述采样灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
W W) ∑
Figure imgf000005_0002
其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
在本发明所述的影像信号获取方法中, 所述切换前画面的采 样数 p为 9, 所述切换后画面的采样数为 9。 在本发明所述的影像信号获取方法中, 所述切换前画面的采 样数 p为 17, 所述切换后画面的采样数为 17。 在本发明所述的影像信号获取方法中, 所述全灰阶切换画面 的切换前画面的灰阶数为 256, 所述全灰阶切换画面的切换后画 面的灰阶数为 256 。
在本发明所述的影 信号获取方法中 所述影像信
法还包括步骤:
对所述全灰阶切换画面中的低灰阶切换画面的亮度
冗度补偿 , 所述低灰阶切换画面的切换后画面的灰阶为
本发明还提供一种影象信号获取装 苴 Z、包括:
采样灰阶亮度测量模块, 用于测量采样灰阶的灰阶切换画面 的亮度信号; 以及
全灰阶亮度获取模块, 用于对测量的所述采样灰阶的灰阶切 换画面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换 画面的亮度信号;
其中所述全灰阶亮度获取模块采用二维最小二乘法进行所述 二维非线性拟合操作。
在本发明所述的影像信号获取装置中, 所述全灰阶亮度获取 模块采用二维最小二乘法进行所述二维非线性拟合操作包括: 根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数: 、, 1
Figure imgf000006_0001
其中 / 为所述采样灰阶的灰阶切换画面的亮度信号, X为 灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
Figure imgf000007_0001
其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
在本发明所述的影像信号获取装置中, 所述切换前画面的采 样数 p为 9, 所述切换后画面的采样数为 9。
在本发明所述的影像信号获取装置中, 所述切换前画面的采 样数 p为 17, 所述切换后画面的采样数为 17。
在本发明所述的影像信号获取装置中, 所述全灰阶切换画面 的切换前画面的灰阶数为 256, 所述全灰阶切换画面的切换后画 面的灰阶数为 256。
在本发明所述的影像信号获取装置中 所
置还包括:
补偿模块, 用于对所述全灰阶切换画面中
的亮度信号进行冗度补偿, 所述低灰阶切换画
灰阶为 0至 48。
相较于现有的影像信号获取方法及影像信
明的影像信号获取方法及影像信号获取装 对
换画面的亮度信号进行二维非线性拟合操作 画面的 ί¾度 is号, 这样可高效的获取不同灰阶切换画面的亮度信 号, 解决了现有的影像信号获取方法及影像信号获取装置获取液 曰 曰
曰日业示器的不同灰阶切换画面的冗度信号的效率比较低下的技术 问题。
为让本发明的上述内容能更明显易懂,下文特举优选实施例, 并配合所附图式, 作详细说明如下:
附图说明
图 1 为本发明的影像信号获取方法的第一优选实施例的流程 图;
图 2为本发明的影像信号获取方法的第二优选实施例的流程 图;
图 3为本发明的影像信号获取装置的第一优选实施例的结构 示意图;
图 4为本发明的影像信号获取装置的第二优选实施例的结构 示意图;
图 5为使用本发明的影像信号获取方法获取的亮度信号与采 用测量 64*64组灰阶的亮度信号的方法获取的亮度信号的比较示 意图。 具体实施方式
以下各实施例的说明是参考附加的图式, 用以例示本发明可 用以实施的特定实施例。 本发明所提到的方向用语, 例如 「上」、 「下」、 「前」、 「后」、 「左」、 「右」、 「内」、 「外」、 「侧面」 等, 仅 是参考附加图式的方向。 因此, 使用的方向用语是用以说明及理 解本发明, 而非用以限制本发明。
在图中, 结构相似的单元是以相同标号表示。
本发明的影像信号获取方法及影像信号获取装置可使用在相 应的 3D快门式液晶显示设备中。该 3D快门式液晶显示设备包括 快门式液晶显示器以及快门式眼镜。 其中快门式液晶显示器包括 背光源、 液晶面板以及驱动液晶面板进行显示的驱动电路。 该液 晶面板使用较高的刷新频率 (一般高于 120Hz ) 交替生成左眼画 面以及右眼画面, 同时快门式眼镜也以相同的刷新频率切换左眼 镜片以及右眼镜片的开启以及关闭。 这样用户可通过快门式眼镜 获得较好的 3D 画面体验。 本发明的影像信号获取方法及影像信 号获取装置使用 /设置在该快门式液晶显示器的驱动电路中, 用于 更好的驱动液晶面板进行显示, 避免串扰现象的产生。
请参照图 1, 图 1 为本发明的影像信号获取方法的第一优选 实施例的流程图。 本优选实施例的影像信号获取方法包括:
步骤 S 101 , 测量采样灰阶的灰阶切换画面的亮度信号; 步骤 S 102 , 对测量的采样灰阶的灰阶切换画面的亮度信号进 行二维非线性拟合操作, 以获取全灰阶切换画面的亮度信号; 本优选实施例的影像信号获取方法结束于步骤 S 102。
下面详细说明本优选实施例的影像信号获取方法的各步骤的 具体流程。
在步骤 S 101 中, 测量采样灰阶的灰阶切换画面的亮度信号 (即过驱动信号), 该采样灰阶包括切换前画面 (如左眼画面) 的 灰阶以及切换后画面 (如右眼画面) 的灰阶, 这里可以设置切换 前画面的灰阶采样数为 17, 切换后画面的灰阶采样数为 17, 即将 全黑画面的灰阶和全白画面的灰阶之间均匀设置 15 档中间灰阶 画面, 这样采样的切换前画面和切换后画面的灰阶均为 0 (全黑 画面)、 16、 32、 48、 64、 80、 96、 1 12、 128、 144、 160、 176、 192、 208、 224、 240、 255 (全白画面)。 具体为将切换前画面的 灰阶设定为第 0灰阶,然后测量切换后的上述 17个灰阶的切换后 画面的驱动亮度信号; 然后将切换前画面的灰阶设定为第 16 灰 阶, 然后测量切换后的 17个灰阶的切换后画面的驱动亮度信号, 直至切换前画面的灰阶设定为第 255灰阶; 从而获取采样灰阶的 灰阶切换画面的亮度信号的 17 * 17矩阵。 其中获取的不同采样灰 阶的灰阶切换画面的亮度信号在画面切换时均不会发生串扰现 象。 随后转到步骤 S 102。
在步骤 S 102中, 对步骤 S 102中获取的亮度信号的 17 * 17矩 阵进行二维非线性拟合操作, 从而获取 256 * 256矩阵的全灰阶切 换画面的亮度信号。 在本优选实施例中, 采用二维最小二乘法进 行二维非线性拟合操作。
采用二维最小二乘法进行二维非线性拟合操作具体为: 根据上述采样灰阶的灰阶切换画面的亮度信号 ( 17 * 17矩阵) 构造二元多项式函数:
Figure imgf000010_0001
w _l
y=i,i '.=ι j=i . 其中 / 为采样灰阶的灰阶切换画面的亮度信号, X为采样 灰阶的切换前画面的灰阶, y为采样灰阶的切换后画面的灰阶, p 为切换前画面的采样数, q 为切换后画面的采样数, 系数 为常 随后采用二维最小二乘法构造关于系数 的多元函数,
*(¾1'-"'^?) =∑¾[ (¾'3;,)-¾]2 =∑¾(∑∑ — 1 - Zg )
g=i !·=ι ;=ι
点 ( , …, apq ) 是多元函数 5(¾,···, )的极小点, 其
函数, 在%=1的情况下, 有
ds d
Figure imgf000011_0001
2[f(xg,yg)-zg]xg i ly
2Σ[χΓ ·— 1 , ) - χΓΟ
因此可得到多元函数
Figure imgf000011_0002
y8 ∑∑v8 y8 =∑χ 8
a=l β=1
1 /-1 a-l β-Ι i-l j-l
αβ=1,1 g=l
Figure imgf000011_0003
其中 z 为全灰阶切换画面的亮度信号, n 为全灰阶切换画面 的灰阶数 这样根据多元函数
αβ=1,1 ∑ Γ^Γ¾对应的曲
Figure imgf000012_0001
面, 可获取全灰阶切换画面的亮度信号。 即在该曲面上选择相应 的切换前画面的灰阶 Xg以及切换后画面的灰阶 yg,就可获取相应 的用于切换画面的亮度信号 这样即获取了 256 * 256矩阵的全 灰阶切换画面的亮度信号。
这样即完成了本优选实施例的影像信号获取方法的信号获取 过程。
在本优选实施例的影像信号获取方法中, 也可将切换前画面 的灰阶采样数设置为 9, 切换后画面的灰阶采样数也设置为 9, 这 样将进一步减小亮度信号的测量操作的工作量, 但是此操作会牺 牲一部分获取的全灰阶切换画面的亮度信号的精度。
本优选实施例的影像信号获取方法对采样灰阶的灰阶切换画 面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换画面 的亮度信号,这样可高效的获取不同灰阶的切换画面的亮度信号。
请参照图 2, 图 2 为本发明的影像信号获取方法的第二优选 实施例的流程图。 本优选实施例的影像信号获取方法包括:
步骤 S201 , 测量采样灰阶的灰阶切换画面的亮度信号; 步骤 S202 , 对测量的采样灰阶的灰阶切换画面的亮度信号进 行二维非线性拟合操作, 以获取全灰阶切换画面的亮度信号; 步骤 S203 , 对全灰阶切换画面中的低灰阶切换画面的亮度信 号进行亮度补偿;
本优选实施例的影像信号获取方法结束于步骤 S203 下面详细说明本优选实施例的影像信号获取方法的各步骤的 具体流程。
步骤 S201 的具体流程与影像信号获取方法的第一优选实施 例中的步骤 S 101 的具体流程相同, 具体请参见上述影像信号获 取方法的第一优选实施例的步骤 S 101。
步骤 S202 的具体流程与影像信号获取方法的第一优选实施 例中的步骤 S 102 的具体流程相同, 具体请参见上述影像信号获 取方法的第一优选实施例的步骤 S 102。
在步骤 S203 中, 对步骤 S202中获取的全灰阶切换画面中的 低灰阶切换画面的亮度信号进行亮度补偿。 这里的低灰阶切换画 面是指切换后画面的灰阶为低灰阶, 即切换后画面的灰阶为 0至 48。 由于采用上述的二维非线性拟合操作获取的全灰阶切换画面 的亮度信号的曲面在低灰阶切换画面的部分不准确, 如切换前画 面为 0灰阶, 切换后画面为 16灰阶; 切换前画面为 16灰阶, 切 换后画面为 32灰阶等。这时需要对该部分的曲面所表示的亮度信 号进行亮度补偿, 补偿后的亮度信号一般为通过二维非线性拟合 操作获取的全灰阶切换画面的亮度信号的曲面所表示的亮度信号 的 30 %左右, 即将通过上述曲面获取的亮度信号减小 70 %左右。 进行亮度补偿后的全灰阶切换画面的亮度信号更加准确。
这样即完成了本优选实施例的影像信号获取方法的信号获取 过程。
本优选实施例的影像信号获取方法在第一优选实施例的基础 上对全灰阶切换画面的亮度信号进行亮度补偿, 使得全灰阶切换 画面的亮度信号更加准确。
本发明还提供一种影像信号获取装置, 请参照图 3, 图 3 为 本发明的影像信号获取装置的第一优选实施例的结构示意图。 本 优选实施例的影像信号获取装置 30 包括采样灰阶亮度测量模块 3 1 以及全灰阶亮度获取模块 32。 该采样灰阶亮度测量模块 3 1用 于测量采样灰阶 33 的灰阶切换画面的亮度信号,该全灰阶亮度获 取模块 32用于对测量的采样灰阶 33 的灰阶切换画面的亮度信号 进行二维非线性拟合操作, 以获取全灰阶切换画面的亮度信号 34 ;其中全灰阶亮度获取模块 32采用二维最小二乘法进行二维非 线性拟合操作。
本优选实施例的影像信号获取装置 30使用时,首先采样灰阶 亮度测量模块 3 1测量采样灰阶 33 的灰阶切换画面的亮度信号, 随后全灰阶亮度获取模块 32对测量的采样灰阶 33 的灰阶切换画 面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换画面 的亮度信号 34。
这样即完成了本优选实施例的影像信号获取装置 30 的信号 获取过程。
本优选实施例的影像信号获取装置 30 的具体工作原理与上 述的影像信号获取方法的第一优选实施例中的相关描述相同或相 似, 具体请参见上述影像信号获取方法的第一优选实施例中的相 关描述。
本优选实施例的影像信号获取装置对采样灰阶的灰阶切换画 面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换画面 的亮度信号,这样可高效的获取不同灰阶的切换画面的亮度信号。 请参照图 4, 图 4 为本发明的影像信号获取装置的第二优选 实施例的结构示意图。本优选实施例的影像信号获取装置 40包括 采样灰阶亮度测量模块 41、 全灰阶亮度获取模块 42 以及补偿模 块 45。 该采样灰阶亮度测量模块 41用于测量采样灰阶 43 的灰阶 画面的亮度信号,该全灰阶亮度获取模块 42用于对测量的采样灰 阶 43 的灰阶切换画面的亮度信号进行二维非线性拟合操作,以获 取全灰阶切换画面的亮度信号 44 ; 其中全灰阶亮度获取模块 42 采用二维最小二乘法进行二维非线性拟合操作;补偿模块 45用于 对全灰阶切换画面中的低灰阶切换画面的亮度信号进行亮度补 偿, 其中低灰阶切换画面的切换后画面的灰阶为 0至 48。
本优选实施例的影像信号获取装置 40使用时,首先采样灰阶 亮度测量模块 41测量采样灰阶 43 的灰阶切换画面的亮度信号, 随后全灰阶亮度获取模块 42对测量的采样灰阶 43 的灰阶切换画 面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换画面 的亮度信号 44 ; 最后补偿模块 45 对全灰阶切换画面中的低灰阶 切换画面的亮度信号进行亮度补偿。
这样即完成了本优选实施例的影像信号获取装置 40 的信号 获取过程。
本优选实施例的影像信号获取装置 40 的具体工作原理与上 述的影像信号获取方法的第二优选实施例中的相关描述相同或相 似, 具体请参见上述影像信号获取方法的第二优选实施例中的相 关描述。 本优选实施例的影像信号获取装置在第一优选实施例的基础 上对全灰阶切换画面的亮度信号进行亮度补偿, 使得全灰阶切换 画面的亮度信号更加准确。
请参照图 5, 图 5 为使用本发明的影像信号获取方法获取的 亮度信号与采用测量 64 * 64组灰阶的亮度信号的方法获取的亮度 信号的比较示意图。
其中图 5 的横坐标为切换后画面的灰阶, 纵坐标为两种亮度 信号的差异, 此处切换前画面的灰阶均为 0灰阶。 从图中可见本 发明的影像信号获取方法获取的亮度信号仅仅在低灰阶切换画面 的部分, 与采用测量 64 * 64组灰阶的亮度信号的方法获取的亮度 信号差异较大; 因此通过对全灰阶切换画面中的低灰阶切换画面 的亮度信号进行亮度补偿后, 采用本发明的影像信号获取方法获 取的亮度信号可与采用测量 64 * 64组灰阶的亮度信号的方法获取 的亮度信号基本一致。 而本发明的影像信号获取方法仅仅只需测 量 17 * 17 组灰阶的亮度信号, 其耗费的测量时间仅为采用测量 64* 64 组灰阶的亮度信号的方法耗费的测量时间的四分之一, 因 此本发明的影像信号获取方法大大提升了获取液晶显示器的不同 灰阶切换画面的亮度信号的效率。
本发明的影像信号获取方法及影像信号获取装置对采样灰阶 的灰阶切换画面的亮度信号进行二维非线性拟合操作, 以获取全 灰阶切换画面的亮度信号, 这样可高效的获取不同灰阶切换画面 的亮度信号, 解决了现有的影像信号获取方法及影像信号获取装 置获取液晶显示器的不同灰阶切换画面的亮度信号的效率比较低 下的技术问题。
综上所述, 虽然本发明已以优选实施例揭露如上, 但上述优 选实施例并非用以限制本发明, 本领域的普通技术人员, 在不脱 离本发明的精神和范围内, 均可作各种更动与润饰, 因此本发明 的保护范围以权利要求界定的范围为准。

Claims

权 利 要 求
1、 一种影像信号获取方法, 其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号;
对测量的所述采样灰阶的灰阶切换画面的亮度信号进行二维 非线性拟合操作, 以获取全灰阶切换画面的亮度信号; 以及
对所述全灰阶切换画面中的低灰阶切换画面的亮度信号进行 亮度补偿, 所述低灰阶切换画面的切换后画面的灰阶为 0至 48 ; 其中所述二维非线性拟合操作为采用二维最小二乘法进行拟 合操作;
所述采用二维最小二乘法进行拟合操作的步骤包括: 根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数:
/0, =
Figure imgf000018_0001
' =1,1 /=i j=i
其中 为所述采样灰阶的灰阶切换画面的亮度信号, X为 所述采样灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
Figure imgf000018_0002
其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
2、 根据权利要求 1所述的影像信号获取方法, 其中所述切换 前画面的采样数 p为 9, 所述切换后画面的采样数 q为 9。
3、 根据权利要求 1所述的影像信号获取方法, 其中所述切换 前画面的采样数 p为 17, 所述切换后画面的采样数 q为 17。
4、 根据权利要求 1所述的影像信号获取方法, 其中所述全灰 阶切换画面的切换前画面的灰阶数为 256, 所述全灰阶切换画面 的切换后画面的灰阶数为 256。
5、 一种影像信号获取方法, 其包括步骤:
测量采样灰阶的灰阶切换画面的亮度信号; 以及
对测量的所述采样灰阶的灰阶切换画面的亮度信号进行二维 非线性拟合操作, 以获取全灰阶切换画面的亮度信号;
其中所述二维非线性拟合操作为采用二维最小二乘法进行拟 合操作。
6、 根据权利要求 5所述的影像信号获取方法, 其中所述采用 二维最小二乘法进行拟合操作的步骤包括:
根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数:
Figure imgf000019_0001
w _l
y=i,i '.=ι ;=i ;
其中 为所述采样灰阶的灰阶切换画面的亮度信号, X为 所述采样灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
Figure imgf000020_0001
其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
7、 根据权利要求 6所述的影像信号获取方法, 其中所述切换 前画面的采样数 p为 9, 所述切换后画面的采样数 q为 9。
8、 根据权利要求 6所述的影像信号获取方法, 其中所述切换 前画面的采样数 p为 17, 所述切换后画面的采样数 q为 17。
9、 根据权利要求 6所述的影像信号获取方法, 其中所述全灰 阶切换画面的切换前画面的灰阶数为 256, 所述全灰阶切换画面 的切换后画面的灰阶数为 256。
10、 根据权利要求 5所述的影像信号获取方法, 其中所述影 像信号获取方法还包括步骤:
对所述全灰阶切换画面中的低灰阶切换画面的亮度信号进行 亮度补偿, 所述低灰阶切换画面的切换后画面的灰阶为 0至 48。
11、 一种影像信号获取装置, 其包括:
采样灰阶亮度测量模块, 用于测量采样灰阶的灰阶切换画面 的亮度信号; 以及
全灰阶亮度获取模块, 用于对测量的所述采样灰阶的灰阶切 换画面的亮度信号进行二维非线性拟合操作, 以获取全灰阶切换 画面的亮度信号;
其中所述全灰阶亮度获取模块采用二维最小二乘法进行所述 二维非线性拟合操作。
12、 根据权利要求 11所述的影像信号获取装置, 其中所述全 灰阶亮度获取模块采用二维最小二乘法进行所述二维非线性拟合 操作包括:
根据所述采样灰阶的灰阶切换画面的亮度信号构造二元多项 式函数:
/0, =
Figure imgf000021_0001
' =1,1 /=i j=i
其中 为所述采样灰阶的灰阶切换画面的亮度信号, X为 所述采样灰阶的切换前画面的灰阶, y 为所述采样灰阶的切换后 画面的灰阶, p为所述切换前画面的采样数, q为所述切换后画面 的采样数, 系数 为常数;
根据所述二元多项式函数, 采用二维最小二乘法构建多元函
Figure imgf000021_0002
其中 z 为所述全灰阶切换画面的亮度信号, n 为所述全灰阶 切换画面的灰阶数。
13、 根据权利要求 12所述的影像信号获取装置, 其中所述切 换前画面的采样数 p为 9, 所述切换后画面的采样数 q为 9。
14、 根据权利要求 12所述的影像信号获取装置, 其中所述切 换前画面的采样数 p为 17, 所述切换后画面的采样数 q为 17。
15、 根据权利要求 12所述的影像信号获取装置, 其中所述全 灰阶切换画面的切换前画面的灰阶数为 256, 所述全灰阶切换画 面的切换后画面的灰阶数为 256。
16、 根据权利要求 11所述的影像信号获取装置, 其中所述影 像信号获取装置还包括:
补偿模块, 用于对所述全灰阶切换画面中的低灰阶切换画面 的亮度信号进行亮度补偿, 所述低灰阶切换画面的切换后画面的 灰阶为 0至 48。
PCT/CN2013/090301 2013-12-17 2013-12-24 影像信号获取方法及影像信号获取装置 WO2015089857A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016526829A JP2017502323A (ja) 2013-12-17 2013-12-24 映像信号取得方法及び映像信号取得装置
US14/131,911 US9437125B2 (en) 2013-12-17 2013-12-24 Method and device for obtaining image signals
GB1604518.9A GB2534065B (en) 2013-12-17 2013-12-24 Method and device for obtaining image signals
KR1020167011096A KR101807686B1 (ko) 2013-12-17 2013-12-24 이미지 신호 획득 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310693359.7 2013-12-17
CN201310693359.7A CN103700353B (zh) 2013-12-17 2013-12-17 影像信号获取方法及影像信号获取装置

Publications (1)

Publication Number Publication Date
WO2015089857A1 true WO2015089857A1 (zh) 2015-06-25

Family

ID=50361861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090301 WO2015089857A1 (zh) 2013-12-17 2013-12-24 影像信号获取方法及影像信号获取装置

Country Status (5)

Country Link
JP (1) JP2017502323A (zh)
KR (1) KR101807686B1 (zh)
CN (1) CN103700353B (zh)
GB (1) GB2534065B (zh)
WO (1) WO2015089857A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082370A1 (zh) * 2020-10-19 2022-04-28 西安诺瓦星云科技股份有限公司 灰阶测量方法和装置
CN113724644B (zh) * 2021-08-27 2023-01-10 京东方科技集团股份有限公司 补偿显示装置的亮度与色度的方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495476A (zh) * 2011-12-19 2012-06-13 友达光电股份有限公司 快门式3d眼镜及含其的3d显示***
CN102789774A (zh) * 2012-08-15 2012-11-21 贵阳海信电子有限公司 优化液晶屏3d显示效果的方法、装置及液晶电视
CN102802001A (zh) * 2012-08-14 2012-11-28 深圳市华星光电技术有限公司 一种用于降低快门式3d液晶动态串扰的方法、装置以及液晶显示器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594822B (en) * 2003-01-29 2004-06-21 Chunghwa Picture Tubes Ltd Plasma display panel with gray level white balance device
KR20050109223A (ko) * 2004-05-14 2005-11-17 삼성전자주식회사 영상 신호 보정용 기준 데이터 생성 장치 및 방법
CN100504518C (zh) * 2005-03-03 2009-06-24 奇美电子股份有限公司 过驱动装置及其方法
KR100710258B1 (ko) * 2005-06-01 2007-04-20 엘지전자 주식회사 디스플레이 장치의 계조 조절 장치 및 방법
KR101386264B1 (ko) * 2007-02-28 2014-04-30 엘지디스플레이 주식회사 액정 표시 장치용 오버 드라이빙 룩-업 테이블 자동 설정장치 및 그 제어 방법
US20100054606A1 (en) * 2008-08-29 2010-03-04 Kabushiki Kaisha Toshiba Image processing apparatus, image processing method, and computer program product
KR101748844B1 (ko) * 2010-12-16 2017-06-20 삼성디스플레이 주식회사 액정표시장치 구동장치 및 구동방법
CN102968979B (zh) * 2012-11-12 2015-06-17 广东欧珀移动通信有限公司 一种基于曲线拟合的屏幕亮度调节方法
CN103165096B (zh) * 2013-04-08 2015-06-03 深圳市华星光电技术有限公司 一种液晶面板的驱动方法、驱动电路和液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495476A (zh) * 2011-12-19 2012-06-13 友达光电股份有限公司 快门式3d眼镜及含其的3d显示***
CN102802001A (zh) * 2012-08-14 2012-11-28 深圳市华星光电技术有限公司 一种用于降低快门式3d液晶动态串扰的方法、装置以及液晶显示器
CN102789774A (zh) * 2012-08-15 2012-11-21 贵阳海信电子有限公司 优化液晶屏3d显示效果的方法、装置及液晶电视

Also Published As

Publication number Publication date
JP2017502323A (ja) 2017-01-19
GB2534065A (en) 2016-07-13
GB201604518D0 (en) 2016-05-04
GB2534065B (en) 2020-04-08
KR20160065147A (ko) 2016-06-08
KR101807686B1 (ko) 2017-12-11
CN103700353B (zh) 2016-03-30
CN103700353A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
CN103474016B (zh) 分区驱动处理方法、处理装置及显示器
CN103778897B (zh) 一种图像显示控制方法及装置
US20160351139A1 (en) Adjusting method of display parameter and liquid crystal display system
US7728616B2 (en) Apparatus and method for testing picture quality of liquid crystal display
CN107093410B (zh) 液晶显示亮度调控方法、装置以及液晶显示屏
CN108039155B (zh) 获取液晶显示器的过驱动查找表的方法
US9202403B2 (en) Pixel circuit capable of determining displayed gray scale and method for driving the same
JP2017527848A (ja) 液晶パネルのグレースケール値の設定方法及び液晶ディスプレイ
CN106328090B (zh) 液晶显示器的驱动方法及驱动***
WO2017133113A1 (zh) 测量方法及其测量***
CN105825840B (zh) 一种光学补偿方法、光学补偿装置及显示面板
CN110942754A (zh) 数据补偿方法及像素补偿装置
WO2015096240A1 (zh) 一种TFT-LCD液晶屏的Gamma曲线调整方法及调整装置
US20210035512A1 (en) Method and apparatus for adjusting luminance of display device
US20140043376A1 (en) Method for inserting frames in a liquid crystal display apparatus and the liquid crystal display apparatus
US20160155404A1 (en) Liquid crystal display and driving method thereof
US20110084966A1 (en) Method for forming three-dimension images and related display module
US10916173B2 (en) Method and apparatus for converting grayscale, and display device
WO2019085100A1 (zh) 一种显示驱动方法及相关装置
CN104183223A (zh) 一种显示装置、驱动装置和驱动方法
KR101829459B1 (ko) 영상처리방법과 이를 이용한 입체영상 표시장치
WO2015089857A1 (zh) 影像信号获取方法及影像信号获取装置
US11488554B2 (en) Systems and methods for generating an overdrive look-up table (LUT) for response time compensation of a display device
CN113516937A (zh) 驱动方法和显示装置
KR101773616B1 (ko) 영상처리방법과 이를 이용한 입체영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14131911

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201604518

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131224

ENP Entry into the national phase

Ref document number: 20167011096

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016526829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899579

Country of ref document: EP

Kind code of ref document: A1