WO2015089611A1 - Geopolymer cement produced from recycled glass and method for producing same - Google Patents

Geopolymer cement produced from recycled glass and method for producing same Download PDF

Info

Publication number
WO2015089611A1
WO2015089611A1 PCT/BR2014/000452 BR2014000452W WO2015089611A1 WO 2015089611 A1 WO2015089611 A1 WO 2015089611A1 BR 2014000452 W BR2014000452 W BR 2014000452W WO 2015089611 A1 WO2015089611 A1 WO 2015089611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
recycled
geopolimeric
geopolymer
obtaining process
Prior art date
Application number
PCT/BR2014/000452
Other languages
French (fr)
Portuguese (pt)
Inventor
Sidnei Antonio PIANARO
Gino CAPOBIANCO
Original Assignee
Universidade Estadual De Ponta Grossa
Aguia Sistemas De Armazenagem S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Ponta Grossa, Aguia Sistemas De Armazenagem S/A filed Critical Universidade Estadual De Ponta Grossa
Priority to US15/106,744 priority Critical patent/US10315954B2/en
Priority to JP2016559476A priority patent/JP2017502913A/en
Priority to CN201480075919.5A priority patent/CN106170462A/en
Priority to EP14872968.4A priority patent/EP3085676A4/en
Publication of WO2015089611A1 publication Critical patent/WO2015089611A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/041Aluminium silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to building compounds in general, more specifically to geopolymer cement from recycled glass and its process of obtaining which, according to its characteristics, has as its basic principle the formation of a geopolymeric cement in its own, specific rigid solid type binder structure, formulated based on recycled glass (waste), alkalis and water and obtained directly by grinding, homogenization, alkalinization and curing at room temperature or forced components - ground glass in the presence of alkalis and water is the essence of geopolymeric cement, with the aim of making it extremely practical, safe and economical to apply as a new geopolymer matrix in substitution of the traditional ones formed by metakaolin, blast furnace slag, fly ash or volcanic rock in most diverse applications - cement board manufacturing , concretes, fibrous composites and coating materials, allied to the concept of environmentally friendly by the complete reuse of this waste discarded in nature and, based on a high strength, durability and precision geopolymeric cement that presents practicality in handling and application. for better adaptation and safety of users, very affordable and, due to its
  • geopolymeric cement can be defined as a binder system that hardens at room temperature, has strong chemical bonding properties with most rock aggregates and can be made from minimally processed natural materials or by-products, greatly contributing to the reduction of carbon emissions directly into the atmosphere.
  • Geopolymeric cement is an innovative material and an excellent alternative to the application of conventional Portland cement in construction and transportation infrastructure, among others, such as in the manufacture of concretes primarily due to its ability to form strong chemical bonds. with all kinds of rocky aggregates.
  • the main forming agent of geopolymer cements are materials that have amorphous structure, susceptible to the formation of a three-dimensional network of aluminosilicates, it is proposed a new inorganic and amorphous matrix based on recycled glasses to form geopolymer cements and its derived materials.
  • This is a lower energy and environmentally friendly alternative for the production of cement-based materials, in addition to the current efforts on green or greenhouse housing, which primarily aim to mitigate CO 2 materials with low energy cost of manufacture.
  • tailings / wastes are glasses of various types, originating from their most diverse manufacturing processes, whether they are flat, laminated or tempered glass, borosilicate, transparent or colored waste, incandescent or fluorescent lamps, packaging or stoning, among others. that is, any type of waste glass / waste from industrial processes, civil or domestic constructions, which when properly processed constitute the new geopolymer matrix replacing the traditional ones formed by metakaolin, blast furnace slag or volcanic rock.
  • the general design of the present geopolymer cement from recycled glass and its obtaining process, object of the present patent is based entirely on its simple and robust composition with a minimum required components and extremely simplified, safe and optimized applicability. , combined with very practical obtaining procedures, in order to generate a practical and efficient geopolymeric cement that, from waste glass normally disposed of in nature, has the property of forming strong chemical bonds with most of the rocky aggregates, being the quality This bond of geopolymer cement paste - aggregate, when compared to that of Portland cement concretes, is much higher, since the latter develops an interface formed by a porous transition region rich in calcium hydroxide, which is characterized by being a fragile and low strength material.
  • the finely divided glass itself is the cementing raw material, unlike the other geopolymeric cements, that is, energy savings are generated. and minimizing the emission of C0 2 into the atmosphere - the main cause of the greenhouse effect.
  • the Portland cement clinker manufacturing process which comprises calcination of calcium carbonate, that is, it releases the pollutant into the atmosphere chemical C0 2
  • polymeric cement from recycled glass is extremely less polluting.
  • the temperature acts as an accelerator of the geopolymer cement hardening process which can reach the mechanical compressive strength of approximately forty-one megapascal after treatment at sixty-five degrees Celsius for four hours, ie a power of heals faster, gaining most of your endurance within 24 hours.
  • the present patent is characterized by bringing together components and processes in a different design, which will meet the various requirements that the nature of use demands, that is, obtaining a geopolymer cement based on recycled glass.
  • This design guarantees a geopolymer cement of high efficiency, strength, functionality, versatility, durability, safety, integrity, reliability and economy due to the excellent technical qualities, which provides advantages and improvements in the production and application procedures of geopolymer cement, as well as as in the recycling of solid waste such as glass and whose general characteristics differ from other forms and models known by the current state of the art.
  • the present patent consists of the use of a modern, efficient and precise geopolymer cement from recycled glass and its obtaining process formed by a set of correctly incorporated physicochemical and structural solutions, constituting a geopolymer cement in its own specific binding structure.
  • a differentiated general formulation in rigid solid form which, by its own characteristics, is obtained by a specific process through grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, and a general composition based on defined proportions of recycled glass (residue), alkalis and water, in order to obtain an excellent ground glass composition in the presence of alkalis and water that is the essence of geopolymer cement, characterized by its highly binding power for the formation of other materials in the most diverse applications - manufacture of cementitious slabs, concrete in general, fibrous composites and coating materials.
  • This geopolymeric cement is based on the application of components and processes in a different design, aiming to achieve excellence in obtaining and applying it, without, however, achieving a high degree of sophistication and complexity, making it possible to solve some of the main drawbacks of other forms and models known by the current state of the art and employed in obtaining geopolymer cements, which are in a working range in which forms and / or models present difficulties in obtaining and applying, low efficiency and performance. , very frequent accidents, poor durability and resistance, low versatility, laborious application, high losses, high air pollution, and high energy consumption.
  • the present invention of "Geopolymer Cement from Recycled Glass and its Process of Obtaining” is comprised of a geopolymer cement in binder structure with differentiated general formulation in rigid solid form which, by its own characteristics, is obtained by means of a specific process through grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, and a general composition based on defined proportions of recycled glass (waste), alkalis and water to provide an excellent composition at Recycled glass base for use as an alternative to conventional Portland cement in the most diverse applications, the formulation and, consequently, the quantities employed, based directly on the intended applications.
  • Geopolymer cement from recycled glass and its process is comprised of a general composition in which its basic formulation consists of a range of approximately forty-five to eighty per cent. percent recycled glass; half to five percent alkali; and twenty to fifty-five percent water, retaining all the other characteristics of geopolymer cement.
  • Geopolymeric cement from recycled glass and its process of obtaining is comprised of the alkalis being potassium hydroxide or sodium hydroxide, maintaining all the other characteristics of geopolymeric cement.
  • Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of twenty-five to thirty-five per cent natural or synthetic mineral fillers, all retaining the other characteristics of geopolymer cement.
  • Geopolymer cement from recycled glass and its process of obtaining it is understood that the synthetic inert mineral fillers are aluminum oxide, zinc oxide or magnesium, maintaining all other characteristics of geopolymer cement.
  • Geopolymeric cement from recycled glass and its production process is understood as the natural inert mineral fillers are clay minerals, silicates or aluminosilicates, maintaining all other characteristics of geopolymeric cement.
  • Geopolymeric cement from recycled glass and its process of obtaining it is understood to be able to contain inert fibrous materials - natural or synthetic fibers, maintaining all the other characteristics of geopolymeric cement.
  • Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of one to five percent inert fibrous materials - natural or synthetic fibers, all retaining the other characteristics of geopolymer cement.
  • Geopolymeric cement from recycled glass and its production process is comprised of inert fibrous materials - natural-type fibers. be saw dust, cellulose fiber, rice husk or sugarcane bagasse, maintaining all other characteristics of geopolymer cement.
  • Geopolymeric cement from recycled glass and its process of obtaining is comprised of the inert fibrous materials - synthetic fibers being nylon, polypropylene, or fiberglass, maintaining all the other characteristics of geopolymeric cement.
  • Geopolymeric cement from recycled glass and its process of obtaining it is understood to be able to contain construction residues, maintaining all other characteristics of geopolymeric cement.
  • Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of one to five percent of construction waste, maintaining all other characteristics of geopolymeric cement. .
  • the process of obtaining geopolymer cement from recycled glass is based on perfect grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, ie a mixture of the components with rheology consistency of room-temperature cured mortar. or under the action of temperature to speed up the gripping process.
  • the recycled glass is milled to a finely ground material.
  • the basic components of the formulation recycled glass, alkalis and water are homogenized, as well as other materials such as inert mineral filler of the mature or synthetic type, inert fibrous material - natural or synthetic fibers, or construction waste.
  • the homogenized compound is alkalized through alkalis such as potassium hydroxide and sodium hydroxide and water to give a mortar.
  • the mortar is cured at room temperature for approximately twelve hours or the forced oven temperature at sixty-five to one hundred seventy-five degrees Celsius for two to four hours to give a rigid solid. as geopolymeric cement.
  • This geopolymer cement base composed in the proportion by weight per Forty-five percent ground glass, half to five percent alkali, and twenty to fifty-five percent water have mechanical compressive strength of twenty to thirty megapascal after twelve hours of curing at room temperature. When cured in an oven at sixty-five to seventy-five degrees Celsius the compositions reach these values after a period of two hours, that is, temperature is an important variable to consider when accelerating the curing process.
  • the glass finally divided after the milling step and alkalized with potassium hydroxide or sodium hydroxide, in the presence of water acquires consistency by the rapid increase in viscosity, becoming a rigid solid after a certain curing time, with resistance.
  • mechanics variable as a function of Si Al stoichiometry, the amount of water added and the presence or absence of inert mineral fillers.
  • An example, not restrictive of the claimed object, is based on geopolymeric compositions with partial replacement of ground glass with inert materials (mineral fillers) in which they can be manufactured having a minimum of forty five to eighty percent ground glass.
  • cementing agent one to five percent alkali, twenty five to thirty five percent mineral filler and water at a stoichiometric ratio of thirty fifty percent by weight.
  • Mineral fillers used may come from natural raw materials consisting largely of clay minerals such as talc, kaolin, siltites, quartzites, shales / shales, lateritic soils, ie silicates and / or aluminosilicates and other raw materials.
  • waste materials of properly grounded building materials may also be used for the manufacture of mortar, concrete and other monolithic materials. Because these materials also have cementitious materials in their composition, they have highly favorable characteristics as to cure time and ultimate mechanical strength.
  • Geopolymeric cement from recycled glass and its production process have as specific advantages both in its obtaining and its application: efficient alternative to conventional Portland cement; high energy savings in the procurement process; decrease in the emission of C0 2 into the atmosphere during acquisition; lower pollution capacity of the environment; does not require heat treatment; high recyclability of glasses that are non-biodegradable materials; high resistance to high temperatures as against fire; great thermal and acoustic insulation; highly refractory; great binder - strong chemical bonds; and inorganic to amorphous matrix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention patent, geopolymer cement produced from recycled glass and method for producing same, describes geopolymer cement produced from recycled glass and a method for producing same which, according to the features thereof, provides the formation of a geopolymer cement with its own specific rigid solid binding structure, wherein said geopolymer cement is formulated from recycled glass (waste), alkalis and water, and produced directly by grinding, homogenizing, alkalinizing and curing (hardening), at room temperature or induced, the components thereof, with the intention of enabling use thereof, in an extremely practical, safe and economical manner, as a novel geopolymer matrix for replacing traditional matrices formed from metakaolin, blast furnace slag, fly ash or volcanic rock, in the most diverse applications - for manufacturing cement panels, concrete, fibrous composites and coating materials, allied with the concept of being environmentally friendly by completely recycling said waste disposed of in the environment.

Description

"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO"  "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS"
001 Refere-se a presente patente de invenção a compostos para construção civil em geral, mais especificamente a cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção que, de acordo com as suas características, possui como princípio básico propiciar à formação de um cimento geopolimérico em estrutura ligante própria e específica do tipo sólido rígido, formulada a base de vidro reciclado (resíduo), álcalis e água e obtido diretamente por meio de moagem, homogeneização, alcalinização e cura em temperatura ambiente ou forçada dos seus componentes - vidro moído em presença de álcalis e água é a essência do cimento geopolimérico, com vistas a possibilitar de forma extremamente prática, segura e económica a aplicação como nova matriz geopolimérica em substituição as tradicionais formadas por metacaulim, escória de alto forno, cinzas volante ou rocha vulcânica nas mais diversas aplicações - fabricação de placas cimentícias, concretos, compósitos fibrosos e materiais para recobrimentos, aliado ao conceito de ecologicamente correto pelo completo reaproveitamento deste resíduo descartado na natureza e, tendo como base, um cimento geopolimérico de grande resistência, durabilidade e precisão que apresenta características de praticidade no manuseio e na aplicação para melhor adaptação e segurança dos usuários, de custo bastante acessível e, devido às suas características gerais e composição, facilmente adaptável a uma vasta gama de resíduos de vidros, locais e usuários em geral, independentes das características que estes possam apresentar.  The present invention relates to building compounds in general, more specifically to geopolymer cement from recycled glass and its process of obtaining which, according to its characteristics, has as its basic principle the formation of a geopolymeric cement in its own, specific rigid solid type binder structure, formulated based on recycled glass (waste), alkalis and water and obtained directly by grinding, homogenization, alkalinization and curing at room temperature or forced components - ground glass in the presence of alkalis and water is the essence of geopolymeric cement, with the aim of making it extremely practical, safe and economical to apply as a new geopolymer matrix in substitution of the traditional ones formed by metakaolin, blast furnace slag, fly ash or volcanic rock in most diverse applications - cement board manufacturing , concretes, fibrous composites and coating materials, allied to the concept of environmentally friendly by the complete reuse of this waste discarded in nature and, based on a high strength, durability and precision geopolymeric cement that presents practicality in handling and application. for better adaptation and safety of users, very affordable and, due to its general characteristics and composition, easily adaptable to a wide range of glass waste, locations and users in general, regardless of the characteristics they may have.
002 A industrialização de um modo geral, além de trazer acentuado progresso económico à humanidade nas últimas décadas, acabou ocasionando um crescimento totalmente desordenado da população, principalmente nas regiões urbanas de países menos industrializados. O resultado imediato foi o aumento do consumo da população e, com isso, a geração de maior quantidade de resíduos, que, geralmente, possuem manejo e destino totalmente inadequados, provocando, assim, efeitos diretos e indesejáveis ao meio ambiente.  Industrialization in general, in addition to bringing marked economic progress to humanity in recent decades, has led to a totally disorderly population growth, especially in the urban regions of less industrialized countries. The immediate result was increased consumption of the population and, thus, the generation of more waste, which generally have totally inappropriate handling and destination, thus causing direct and undesirable effects on the environment.
003 Atualmente, grande parte dos entulhes gerados nas cidades possui como seu destino final os aterros, de modo a gerar um impacto ambiental de grandes proporções que preocupa engenheiros especializados em meio ambiente. A solução, para eles, deve ser a reciclagem do material, que pode gerar emprego e renda para uma vasta gama de mão-de-obra, pois se estima que nos lixões, até setenta por cento dos resíduos sejam de matérias de construção e, desse total, até oitenta por cento poderia ser material reciclado como, por exemplo, os vidros, isto é, o reaproveitamento de resíduos da construção civil ainda é pouco significativo, para não se dizer nulo, e só poderá crescer à medida que se desenvolva um grande mercado de utilização segura do entulho reciclado. 003 Currently, most of the notches generated in the cities have as their landfill, so as to generate a major environmental impact that worries environmental engineers. The solution for them should be to recycle the material, which can generate employment and income for a wide range of labor, as it is estimated that up to seventy per cent of the waste is from construction materials and, up to eighty per cent of this total could be recycled material such as glass, ie the reuse of construction waste is still insignificant, not to say nil, and can only grow as a result of large market for the safe use of recycled rubble.
004 Nesta linha de ação, tem se tornado imprescindível para a sociedade como um todo, principalmente as empresas e órgãos governamentais responsáveis pelo acondicionamento e tratamento de resíduos sólidos em geral, a estruturação de versáteis, práticas, seguras, eficientes e económicas estruturas capazes de possibilitar um amplo, quando não completo, reaproveitamento dos resíduos sólidos gerados e em grande parte descartados em lixões, entre os quais se encontra a enorme quantidade e tipos de vidros descartados.  004 In this line of action, it has become essential for society as a whole, especially the companies and government agencies responsible for the packaging and treatment of solid waste in general, the structuring of versatile, practical, safe, efficient and economical structures capable of enabling a large, if not complete, reuse of solid waste generated and largely discarded in dumps, including the huge amount and types of glass discarded.
005 O cimento geopolimérico, sob o ponto de vista terminológico, pode ser definido como um sistema ligante que endurece a temperatura ambiente, apresenta propriedades de formar ligações químicas fortes com a maioria dos agregados rochosos e pode ser fabricado a partir de materiais naturais minimamente processados ou subprodutos, contribuindo em muito para a redução da emissão de carbono diretamente para a atmosfera.  From a terminological point of view, geopolymeric cement can be defined as a binder system that hardens at room temperature, has strong chemical bonding properties with most rock aggregates and can be made from minimally processed natural materials or by-products, greatly contributing to the reduction of carbon emissions directly into the atmosphere.
006 O cimento geopolimérico apresenta-se como um material inovador e uma excelente alternativa a aplicação do cimento Portland convencional na construção civil e infraestrutura de transporte entre outras, como, por exemplo, na fabricação de concretos primordialmente devido a sua habilidade em formar ligações químicas fortes com todo tipo de agregados rochosos.  Geopolymeric cement is an innovative material and an excellent alternative to the application of conventional Portland cement in construction and transportation infrastructure, among others, such as in the manufacture of concretes primarily due to its ability to form strong chemical bonds. with all kinds of rocky aggregates.
007 Atualmente, para a produção de cimento geopolimérico tradicional é necessário uma matéria-prima à base de aluminossilicato natural, um reagente alcalino compatível como silicato solúvel de sódio ou os hidróxidos de sódio, de potássio e água. Como exemplo de matérias-primas principais para a produção de cimento geopolimérico convencional pode-se citar argilas cauliníticas e lateríticas calcinadas, rochas vulcânicas, resíduos de mineração e matérias-primas oriundas de subprodutos industriais como escória de alto-forno e cinzas volantes da produção de carvão. 007 Currently, traditional geopolymeric cement production requires a natural aluminosilicate-based raw material, an alkaline reagent compatible with sodium soluble silicate or sodium hydroxides of potassium and water. Examples of main raw materials for the production of conventional geopolymeric cement include calcined kaolinitic and lateritic clays, volcanic rocks, mining waste and raw materials from industrial by-products such as blast furnace slag and fly ash from coal.
008 Em uma ampla análise da literatura com o intuito de se estabelecer o estado da técnica vigente frente a cimentos geopoliméricos e seus processos de obtenção, objetos da presente patente de invenção, não foram descritos na literatura documentos relevantes ao estado da técnica que relacionem o objeto específico reivindicado na presente patente de invenção, ou seja, um cimento geopolimérico com formulação baseada no completo reaproveitamento de vidros reciclados.  In a broad analysis of the literature in order to establish the state of the art in relation to geopolymer cements and their obtaining processes, objects of the present invention, no relevant documents related to the state of the art have been described in the literature. specific claim claimed in the present invention, namely a geopolymer cement with formulation based on the complete reuse of recycled glass.
009 Considerando que o principal agente formador dos cimentos geopoliméricos são materiais que apresentam estrutura amorfa, susceptíveis a formação de uma rede tridimensional de aíuminossilicatos, propõe-se uma nova matriz inorgânica e amorfa a base de vidros reciclados para formação de cimentos geopoliméricos è seus materiais derivados, sendo esta, uma alternativa de menor custo energético e ambientalmente correio para a produção de materiais de base cimentícia, somando- se aos esforços em voga atualmente dedicados a construções habitacionais do tipo verde ou greenhouse, as quais objetivam primordialmente a mitigação do CO2 de materiais com baixo custo energético de fabricação. Considering that the main forming agent of geopolymer cements are materials that have amorphous structure, susceptible to the formation of a three-dimensional network of aluminosilicates, it is proposed a new inorganic and amorphous matrix based on recycled glasses to form geopolymer cements and its derived materials. This is a lower energy and environmentally friendly alternative for the production of cement-based materials, in addition to the current efforts on green or greenhouse housing, which primarily aim to mitigate CO 2 materials with low energy cost of manufacture.
0010 De forma mais específica, propõem-se um material alternativo ao metacaulim (argilas cauliníticas e lateríticas calcinadas), rochas vulcânicas, escórias de alto forno e cinzas volantes como principal agente formador de cimentos geopoliméricos, com a vantagem adicional do material em questão - vidro reciclado, não necessitar de tratamento térmico para sua ativação, já que a sua estrutura é essencialmente amorfa. Além disso, por se tratar de um resíduo/rejeito doméstico e industrial que muitas vezes é disposto diretamente em aterros sanitários provocando sérios problemas ambientais e riscos a saúde humana, a sua eliminação do meio ambiente e fabricação de novos materiais vem a apresentar uma alternativa ambientalmente correia e eficaz para utilização destes rejeitos/resíduos industriais extremamente importante, considerando principalmente que os vidros não são materiais biodegradáveis. More specifically, an alternative material to metakaolin (calcined kaolinitic and lateritic clays), volcanic rocks, blast furnace slag and fly ash is proposed as the main forming agent of geopolymer cements, with the additional advantage of the material in question - glass. recycled, does not require heat treatment for its activation, since its structure is essentially amorphous. In addition, as it is a domestic and industrial waste / waste that is often disposed directly in landfills causing serious environmental problems and risks to human health, its elimination from the environment and the manufacture of new materials presents an environmentally alternative. effective and efficient use of these industrial wastes / wastes extremely important considering that glass is not a biodegradable material.
001 1 Estes rejeitos/resíduos são vidros de vários tipos, oriundos de seus mais diferentes processos de fabricação, sejam eles rejeitos de vidros planos, laminados ou temperados, borossilicatos, transparentes ou coloridas, lâmpadas incandescentes ou fluorescentes, embalagens ou oriundos de lapidação entre outros, ou seja, qualquer tipo de resíduo/rejeito de vidro de processos industriais, construções civis ou domésticos, os quais quando adequadamente processados constituem a nova matriz geopolimérica em substituição as tradicionais formadas por metacaulim, escória de alto forno ou rocha vulcânica.  001 1 These tailings / wastes are glasses of various types, originating from their most diverse manufacturing processes, whether they are flat, laminated or tempered glass, borosilicate, transparent or colored waste, incandescent or fluorescent lamps, packaging or stoning, among others. that is, any type of waste glass / waste from industrial processes, civil or domestic constructions, which when properly processed constitute the new geopolymer matrix replacing the traditional ones formed by metakaolin, blast furnace slag or volcanic rock.
0012 Desta forma, a concepção geral do presente cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção, objeto da presente patente, é baseada totalmente na sua composição simples e robusta com um mínimo necessário de componentes e aplicabilidade extremamente simplificada, segura e otimizada, aliado aos procedimentos de obtenção bastante práticos, de modo a gerar um cimento geopolimérico prático e eficiente que, a partir de resíduos de vidros normalmente descartados na natureza, possui a propriedade de formar ligações químicas fortes com a maioria dos agregados rochosos, sendo a qualidade desta ligação pasta de cimento geopolimérico - agregado, quando comparada a de concretos a base do cimento Portland, ser muito superior, já que este último desenvolve uma interface formada por uma região de transição porosa rica em hidróxido de cálcio, que é caracterizado por ser um material frágil e de baixa resistência.  Accordingly, the general design of the present geopolymer cement from recycled glass and its obtaining process, object of the present patent, is based entirely on its simple and robust composition with a minimum required components and extremely simplified, safe and optimized applicability. , combined with very practical obtaining procedures, in order to generate a practical and efficient geopolymeric cement that, from waste glass normally disposed of in nature, has the property of forming strong chemical bonds with most of the rocky aggregates, being the quality This bond of geopolymer cement paste - aggregate, when compared to that of Portland cement concretes, is much higher, since the latter develops an interface formed by a porous transition region rich in calcium hydroxide, which is characterized by being a fragile and low strength material.
0013 Cabe ressaltar ainda que, não se faz necessário o emprego da temperatura para obtenção do cimento geopolimérico, o próprio vidro finamente dividido constitui-se na matéria-prima cimentante, ao contrário dos demais cimentos geopoliméricos, isto é, gera-se economia de energia e minimização da emissão de C02 para a atmosfera - principal causador do efeito estufa. Comparativamente com o processo de fabricação do clínquer do cimento Portland que compreende a calcinação do carbonato de cálcio, isto é, libera para a atmosfera o poluente químico C02, o cimento polimérico a partir de vidro reciclado é extremamente menos poluente. It is also worth mentioning that, since the use of temperature is not necessary to obtain the geopolymeric cement, the finely divided glass itself is the cementing raw material, unlike the other geopolymeric cements, that is, energy savings are generated. and minimizing the emission of C0 2 into the atmosphere - the main cause of the greenhouse effect. Compared to the Portland cement clinker manufacturing process which comprises calcination of calcium carbonate, that is, it releases the pollutant into the atmosphere chemical C0 2 , polymeric cement from recycled glass is extremely less polluting.
0014 Neste mesmo conceito, a temperatura atua como acelerador do processo de endurecimento do cimento geopolimérico o qual pode atingir a resistência mecânica a compressão aproximada de quarenta e um megapascal após tratamento a sessenta e cinco graus Celsius por quatro horas, ou seja, um poder de cura mais rápido, chegando a ganhar a maior parte de sua resistência num período de vinte e quatro horas.  In this same concept, the temperature acts as an accelerator of the geopolymer cement hardening process which can reach the mechanical compressive strength of approximately forty-one megapascal after treatment at sixty-five degrees Celsius for four hours, ie a power of heals faster, gaining most of your endurance within 24 hours.
0015 A patente em apreço caracteriza-se por reunir componentes e processos em uma concepção diferenciada, a qual atenderá às diversas exigências que a natureza da utilização demanda, isto é, obtenção de um cimento geopolimérico a base de vidro reciclado. Concepção esta que garante um cimento geopolimérico de grande eficiência, resistência, funcionalidade, versatilidade, durabilidade, segurança, integridade, confiabilidade e economia em razão das excelentes qualidades técnicas, o que proporciona vantagens e melhoras nos procedimentos de produção e aplicação de cimento geopolimérico, assim como na reciclagem de resíduos sólidos como os vidros e, cujas características gerais, diferem das demais formas e modelos conhecidos pelo atual estado da técnica.  The present patent is characterized by bringing together components and processes in a different design, which will meet the various requirements that the nature of use demands, that is, obtaining a geopolymer cement based on recycled glass. This design guarantees a geopolymer cement of high efficiency, strength, functionality, versatility, durability, safety, integrity, reliability and economy due to the excellent technical qualities, which provides advantages and improvements in the production and application procedures of geopolymer cement, as well as as in the recycling of solid waste such as glass and whose general characteristics differ from other forms and models known by the current state of the art.
0016 A presente patente consiste no emprego de um moderno, eficiente e preciso cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção formada por um conjunto de soluções físico-químicas e estruturais corretamente incorporadas, constituindo um cimento geopolimérico em estrutura ligante própria e específica com formulação geral diferenciada na forma sólida rígida que, por suas características próprias, é obtida mediante um processo específico através de moagem, homogeneização, alcalinização e cura (endurecimento) em temperatura ambiente ou forçada, e uma composição geral baseada em proporções definidas de vidro reciclado (resíduo), álcalis e água, de modo a possibilitar a obtenção de uma excelente composição à base de vidro moído em presença de álcalis e água que constitui a essência do cimento geopolimérico, caracterizando-se por seu poder altamente aglutinante para a formação de outros materiais nas mais diversas aplicações - fabricação de placas cimentícias, concretos em geral, compósitos fibrosos e materiais para recobrimentos. The present patent consists of the use of a modern, efficient and precise geopolymer cement from recycled glass and its obtaining process formed by a set of correctly incorporated physicochemical and structural solutions, constituting a geopolymer cement in its own specific binding structure. with a differentiated general formulation in rigid solid form which, by its own characteristics, is obtained by a specific process through grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, and a general composition based on defined proportions of recycled glass (residue), alkalis and water, in order to obtain an excellent ground glass composition in the presence of alkalis and water that is the essence of geopolymer cement, characterized by its highly binding power for the formation of other materials in the most diverse applications - manufacture of cementitious slabs, concrete in general, fibrous composites and coating materials.
0017 O presente cimento geopolimérico baseia-se na aplicação de componentes e processos em uma concepção diferenciada, com o objetivo de se alcançar a excelência na obtenção e aplicação deste, sem, no entanto, atingir um alto grau de sofisticação e complexibilidade, tornando possível solucionar alguns dos principais inconvenientes das demais formas e modelos conhecidos pelo atual estado da técnica e empregados na obtenção de cimentos geopoliméricos, que se situam em uma faixa de trabalho na qual as formas e/ou modelos apresentam dificuldades de obtenção e aplicação, baixa eficiência e performance, acidentes muito frequentes, pouca durabilidade e resistência, baixa versatilidade, trabalhosa na aplicação, elevadas perdas, elevado índice de poluição da atmosfera, e alto consumo de energia.  This geopolymeric cement is based on the application of components and processes in a different design, aiming to achieve excellence in obtaining and applying it, without, however, achieving a high degree of sophistication and complexity, making it possible to solve some of the main drawbacks of other forms and models known by the current state of the art and employed in obtaining geopolymer cements, which are in a working range in which forms and / or models present difficulties in obtaining and applying, low efficiency and performance. , very frequent accidents, poor durability and resistance, low versatility, laborious application, high losses, high air pollution, and high energy consumption.
0018 Os objetivos, vantagens e demais características importantes da patente em apreço poderão ser mais facilmente compreendidas quando lidas em conjunto com a composição e os procedimentos de obtenção.  The objectives, advantages and other important features of the patent may be more readily understood when read in conjunction with the composition and the procedures for obtaining it.
0019 A presente patente de invenção de "Cimento Geopolimérico a partir de Vidros Reciclados e seu Processo de Obtenção", é compreendida por um cimento geopolimérico em estrutura ligante com formulação geral diferenciada na forma sólida rígida que, por suas características próprias, é obtida mediante um processo específico através de moagem, homogeneização, alcalinização e cura (endurecimento) em temperatura ambiente ou forçada, e uma composição geral baseada em proporções definidas de vidro reciclado (resíduo), álcalis e água, de modo a possibilitar a obtenção de uma excelente composição à base de vidro reciclado para utilização como alternativa ao cimento Portland convencional nas mais diversas aplicações, sendo a formulação e, consequentemente, as quantidades empregadas, baseadas diretamente nas aplicações a que se destinam.  The present invention of "Geopolymer Cement from Recycled Glass and its Process of Obtaining" is comprised of a geopolymer cement in binder structure with differentiated general formulation in rigid solid form which, by its own characteristics, is obtained by means of a specific process through grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, and a general composition based on defined proportions of recycled glass (waste), alkalis and water to provide an excellent composition at Recycled glass base for use as an alternative to conventional Portland cement in the most diverse applications, the formulation and, consequently, the quantities employed, based directly on the intended applications.
0020 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por uma composição geral na qual a sua formulação básica consiste de uma faixa de aproximadamente quarenta e cinco a oitenta por cento de vidro reciclado; meio a cinco por cento de álcalis; e vinte a cinquenta e cinco por cento de água, mantendo todas as demais características do cimento geopolimérico. Geopolymer cement from recycled glass and its process is comprised of a general composition in which its basic formulation consists of a range of approximately forty-five to eighty per cent. percent recycled glass; half to five percent alkali; and twenty to fifty-five percent water, retaining all the other characteristics of geopolymer cement.
0021 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por os álcalis serem hidróxido de potássio ou hidróxido de sódio, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining is comprised of the alkalis being potassium hydroxide or sodium hydroxide, maintaining all the other characteristics of geopolymeric cement.
0022 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido em sua composição geral na qual sua formulação básica pode consistir de uma faixa de vinte e cinco a trinta e cinco por cento de cargas minerais tipos naturais ou sintéticas, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of twenty-five to thirty-five per cent natural or synthetic mineral fillers, all retaining the other characteristics of geopolymer cement.
0023 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por as cargas minerais inertes tipo sintética serem óxido de alumínio, óxido de zinco ou magnésio, mantendo todas as demais características do cimento geopolimérico.  Geopolymer cement from recycled glass and its process of obtaining it is understood that the synthetic inert mineral fillers are aluminum oxide, zinc oxide or magnesium, maintaining all other characteristics of geopolymer cement.
0024 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por as cargas minerais inertes tipo naturais serem argilominerais, silicatos ou aluminosilicatos, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its production process is understood as the natural inert mineral fillers are clay minerals, silicates or aluminosilicates, maintaining all other characteristics of geopolymeric cement.
0025 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por poder conter materiais fibrosos inertes - fibras do tipo natural ou sintética, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining it is understood to be able to contain inert fibrous materials - natural or synthetic fibers, maintaining all the other characteristics of geopolymeric cement.
0026 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido em sua composição geral na qual sua formulação básica pode consistir de uma faixa de um a cinco por cento de materiais fibrosos inertes - fibras do tipo natural ou sintética, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of one to five percent inert fibrous materials - natural or synthetic fibers, all retaining the other characteristics of geopolymer cement.
0027 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por os materiais fibrosos inertes - fibras do tipo natural serem pó de serra, fibra celulose, casca de arroz ou bagaço de cana, mantendo todas as demais características do cimento geopolimérico. Geopolymeric cement from recycled glass and its production process is comprised of inert fibrous materials - natural-type fibers. be saw dust, cellulose fiber, rice husk or sugarcane bagasse, maintaining all other characteristics of geopolymer cement.
0028 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por os materiais fibrosos inertes - fibras do tipo sintética serem nylon, polipropileno, ou fibra de vidro, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining is comprised of the inert fibrous materials - synthetic fibers being nylon, polypropylene, or fiberglass, maintaining all the other characteristics of geopolymeric cement.
0029 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido por poder conter resíduos da construção civil, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining it is understood to be able to contain construction residues, maintaining all other characteristics of geopolymeric cement.
0030 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção é compreendido em sua composição geral na qual sua formulação básica pode consistir de uma faixa de um a cinco por cento de resíduos da construção civil, mantendo todas as demais características do cimento geopolimérico.  Geopolymeric cement from recycled glass and its process of obtaining is comprised in its general composition in which its basic formulation may consist of a range of one to five percent of construction waste, maintaining all other characteristics of geopolymeric cement. .
0031 O processo de obtenção do cimento geopolimérico a partir de vidros reciclados baseia-se na perfeita moagem, homogeneização, alcalinização e cura (endurecimento) em temperatura ambiente ou forçada, isto é, uma mistura dos componentes com consistência reologia de argamassa curada a temperatura ambiente ou sob a ação da temperatura para acelerar o processo de pega. Inicialmente, realiza-se a moagem do vidro reciclado até obter-se um material finamente moído. Em seguida, realiza-se a homogeneização dos componentes básicos da formulação vidro reciclado, álcalis e água, assim como dos demais materiais como carga mineral inerte do tipo maturais ou sintéticas, material fibrosos inertes - fibras natural ou sintética, ou resíduo da construção civil. Na sequência, realiza-se a alcalinização do composto homogeneizado através dos álcalis como hidróxido de potássio e hidróxido de sódio e água obtendo-se uma argamassa. Por último, realiza-se a cura da argamassa através de temperatura ambiente durante aproximadamente doze horas ou a temperatura forçada em estufa com temperatura entre sessenta e cinco a cento e setenta e cinco graus Celsius durante duas a quatro horas, obtendo-se um sólido rígido como cimento geopolimérico.  The process of obtaining geopolymer cement from recycled glass is based on perfect grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, ie a mixture of the components with rheology consistency of room-temperature cured mortar. or under the action of temperature to speed up the gripping process. Initially, the recycled glass is milled to a finely ground material. Subsequently, the basic components of the formulation recycled glass, alkalis and water are homogenized, as well as other materials such as inert mineral filler of the mature or synthetic type, inert fibrous material - natural or synthetic fibers, or construction waste. Subsequently, the homogenized compound is alkalized through alkalis such as potassium hydroxide and sodium hydroxide and water to give a mortar. Finally, the mortar is cured at room temperature for approximately twelve hours or the forced oven temperature at sixty-five to one hundred seventy-five degrees Celsius for two to four hours to give a rigid solid. as geopolymeric cement.
0032 Esta base de cimento geopolimérico composta na proporção em peso por quarenta e cinco por cento de vidro moído, meio a cinco por cento de álcalis, e vinte a cinquenta e cinco por cento de água, possui resistência mecânica a compressão de vinte a trinta megapascal após doze horas de cura a temperatura ambiente. Quando curado em estufa entre sessenta e cinco e setenta e cinco graus Celsius as composições atingem estes valores após um período de duas horas, isto é, a temperatura é uma variável importante a ser considerada quando se deseja acelerar o processo de cura. 0032 This geopolymer cement base composed in the proportion by weight per Forty-five percent ground glass, half to five percent alkali, and twenty to fifty-five percent water have mechanical compressive strength of twenty to thirty megapascal after twelve hours of curing at room temperature. When cured in an oven at sixty-five to seventy-five degrees Celsius the compositions reach these values after a period of two hours, that is, temperature is an important variable to consider when accelerating the curing process.
0033 De uma forma mais específica, para a obtenção do cimento geopolimérico, resíduos/rejeitos de vidro plano das mais variadas fontes devem ser moídos até uma granulometria apropriada, sendo que, o grau de finura do vidro obtido no processo de moagem está relacionado com o seu poder reativo, ou seja, quanto mais fino, maior a velocidade da reação com os álcalis do processo de geopolimerização. Uma boa reatividade é obtida com partículas de vidro em tamanho médio menor do que 250μιη até 1 μιη. O grau de finura das partículas é uma variável dependente do tipo de material geopolimérico a ser fabricado, ou seja, para aplicação como compostos cimentantes, de acabamento superficial, materiais monolíticos ou ainda materiais compósitos. Desta forma, o vidro finalmente dividido após a etapa de moagem e alcalinizado com hidróxido de potássio ou hidróxido de sódio, em presença de água, adquire consistência pelo rápido aumento da viscosidade, tornando-se um sólido rígido decorrido certo tempo de cura, com resistência mecânica variável em função da estequiometria Si: Al, da quantidade de água adicionada e da presença ou não de cargas minerais inertes. Adição dos álcalis hidróxido de cálcio, juntamente com o hidróxido de sódio e silicato de sódio, acelera o processo de cura e atuam no sentido de aumentar a resistência mecânica dos materiais.  More specifically, in order to obtain geopolymeric cement, flat glass waste / tailings from a variety of sources must be ground to an appropriate particle size, and the degree of fineness of the glass obtained in the grinding process is related to the its reactive power, that is, the thinner, the faster the reaction with alkalis of the geopolymerization process. Good reactivity is obtained with glass particles of an average size smaller than 250μιη to 1 μιη. The fineness of the particles is a variable dependent on the type of geopolymer material to be manufactured, ie for application as cementitious, surface finish, monolithic or even composite materials. Thus, the glass finally divided after the milling step and alkalized with potassium hydroxide or sodium hydroxide, in the presence of water, acquires consistency by the rapid increase in viscosity, becoming a rigid solid after a certain curing time, with resistance. mechanics variable as a function of Si: Al stoichiometry, the amount of water added and the presence or absence of inert mineral fillers. Addition of alkali calcium hydroxide, together with sodium hydroxide and sodium silicate, accelerates the curing process and acts to increase the mechanical strength of materials.
0034 Um exemplo, não restritivo frente ao objeto reivindicado, baseia-se em composições geopoliméricas com substituição parcial do vidro moído por materiais inertes (cargas minerais) na qual estes podem ser fabricadas tendo um mínimo de quarenta e cinco a oitenta por cento de vidro moído como agente cimentante, um a cinco por cento de álcalis, vinte cinco a trinta e cinco por cento de carga mineral e água na proporção estequiométrica de trinta e cinquenta por cento em peso. As cargas minerais utilizadas podem ser oriundas de matérias-primas naturais constituídos em grande parte por argilominerais, tais como o talco, caulim, siltitos, quartzitos, xistos/folhelhos, solos lateríticos, ou seja, silicatos e/ou aluminossilicatos diversos e outras matérias-primas naturais tais como o calcário calcítico ou dolomítico, cal virgem, os quais constituem as matérias-primas inertes naturais. A alumina (óxido de alumínio), óxidos de zinco e magnésio, constituem as matérias primas inertes sintéticas, e também podem ser utilizadas em composições geopoliméricas a base de vidro. Podem também ser utilizados resíduos de materiais de construções civis devidamente moídos para fabricação de argamassas, concretos e outros materiais monolíticos. Devido á estes materiais também possuírem materiais cimentantes em sua composição, as mesmas apresentam características altamente favoráveis quanto ao tempo de cura e resistência mecânica final. An example, not restrictive of the claimed object, is based on geopolymeric compositions with partial replacement of ground glass with inert materials (mineral fillers) in which they can be manufactured having a minimum of forty five to eighty percent ground glass. as cementing agent one to five percent alkali, twenty five to thirty five percent mineral filler and water at a stoichiometric ratio of thirty fifty percent by weight. At Mineral fillers used may come from natural raw materials consisting largely of clay minerals such as talc, kaolin, siltites, quartzites, shales / shales, lateritic soils, ie silicates and / or aluminosilicates and other raw materials. natural materials such as calcitic or dolomitic limestone, virgin lime, which constitute the natural inert raw materials. Alumina (aluminum oxide), zinc and magnesium oxides, are the synthetic inert raw materials, and can also be used in glass based geopolymer compositions. Waste materials of properly grounded building materials may also be used for the manufacture of mortar, concrete and other monolithic materials. Because these materials also have cementitious materials in their composition, they have highly favorable characteristics as to cure time and ultimate mechanical strength.
0035 Desta forma, na aplicação em concretos, além das altas resistências obtidas num período relativamente curto e as resistências à corrosão química, abrasão, choque térmico e altas temperaturas, superam a dos concretos tradicionais que utilizam o cimento Portland como composto ligante.  Thus, in concrete application, in addition to the high strengths obtained in a relatively short period and the resistance to chemical corrosion, abrasion, thermal shock and high temperatures, they outperform traditional concretes that use Portland cement as a binder compound.
0036 O cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção apresentam como vantagens específicas tanto na sua obtenção como na sua aplicação: alternativa eficiente ao cimento Portland convencional; elevada economia de energia no processo de obtenção; diminuição na emissão de C02 na atmosfera durante a obtenção; menor capacidade de poluição do ambiente; não necessita de tratamento térmico; alta capacidade de reciclagem de vidros que são materiais não biodegradáveis; alta resistência a elevadas temperaturas como frente ao fogo; ótimo isolante térmico e acústico; altamente refratário; ótimo ligante - ligações químicas fortes; e matriz inorgânica a amorfa. Geopolymeric cement from recycled glass and its production process have as specific advantages both in its obtaining and its application: efficient alternative to conventional Portland cement; high energy savings in the procurement process; decrease in the emission of C0 2 into the atmosphere during acquisition; lower pollution capacity of the environment; does not require heat treatment; high recyclability of glasses that are non-biodegradable materials; high resistance to high temperatures as against fire; great thermal and acoustic insulation; highly refractory; great binder - strong chemical bonds; and inorganic to amorphous matrix.
0037 Por tudo que foi exposto, trata-se de um composto para construção civil que será bem recebido pelos usuários de cimentos Portland e cimentos geopoliméricos em geral, pois o presente cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção apresentam inúmeras vantagens, tais como: grande segurança, confiabilidade e agilidade na obtenção e nas aplicações; grande resistência e durabilidade geral, aliado a um baixo grau de deterioração; grande rendimento e desempenho na sua aplicação em virtude de sua concepção geral; elevado conforto, comodidade e segurança aos usuários; custos totalmente acessíveis, o que possibilita uma ótima relação custo/benefício; prática e segura utilização por quaisquer usuários; grande faixa de alcance; perfeita e direta adaptação aos mais diversos tipos de vidros reciclados; baseado no conceito de ecologicamente correto; excelente precisão na formulação: e a certeza de se ter um cimento geopolimérico que atenda plenamente as legislações e normas vigentes e as condições básicas necessárias a sua aplicação como um todo. For all of the above, it is a building compound that will be well received by users of Portland cement and geopolymer cement in general, as the present geopolymer cement from recycled glass and its process of obtaining present numerous advantages, such as: great safety, reliability and agility in obtaining and in applications; great strength and overall durability coupled with a low degree of deterioration; great performance and performance in its application due to its general design; high comfort, convenience and safety to users; fully accessible costs, which enables a great cost / benefit ratio; practical and safe use by any users; wide range; perfect and direct adaptation to the most diverse types of recycled glass; based on the concept of ecologically correct; excellent formulation accuracy: and the certainty of having a geopolymer cement that fully complies with current legislation and standards and the basic conditions necessary for its application as a whole.
0038 Todos estes atributos permitem classificar este cimento geopolimérico a partir de vidros reciclados e seu processo de obtenção, como uma solução totalmente versátil, eficiente, prática e segura para ser aplicado diretamente tanto na forma de cimentos como elemento aglutinante, materiais de revestimento (acabamento), união de diferentes materiais de base metálica, mineral ou vegetal, ou ainda na forma de materiais monolíticos tradicionais ou materiais compósitos, pelos mais variados usuários e nos mais diversos tipos de locais, independente das características gerais, que estas possam apresentar, sendo ainda de grande facilidade de aplicação e manuseio, aliada ao grande desempenho e excelentes características gerais; contudo as quantidades podem variar de acordo com as necessidades de cada aplicação.  All these attributes allow us to classify this geopolymer cement from recycled glass and its process of obtaining it as a totally versatile, efficient, practical and safe solution to be applied directly in the form of both cement and binder, coating materials (finishing). , the union of different metallic, mineral or vegetal base materials, or in the form of traditional monolithic materials or composite materials, by the most varied users and in the most diverse types of places, regardless of the general characteristics that they may present, being also of great ease of application and handling, coupled with great performance and excellent overall characteristics; however quantities may vary according to the needs of each application.

Claims

REIVINDICAÇÕES
1. )"CIMENTO GEOPOLIMERICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", caracterizado por ser compreendido por um cimento geopoíimérico em estrutura ligante na forma sólida rígida obtida mediante um processo específico a partir de uma composição geral baseada em proporções definidas de vidro reciclado (resíduo), álcalis e água, sendo a formulação e, consequentemente, as quantidades empregadas, baseadas díretamente nas aplicações a que se destinam.  1.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS", characterized in that it comprises a rigid solid-form geopolymeric binder cement obtained by a specific process from a general composition based on defined proportions of glass recycled (waste), alkali and water, the formulation and, consequently, the quantities employed, based directly on the intended applications.
2. )"CIMENTO GEOPOLIMERICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com a reivindicação 1 e caracterizado por ser compreendido por uma composição geral na qual a sua formulação básica consiste de uma faixa de quarenta e cinco a oitenta por cento de vidro reciclado; meio a cinco por cento de álcalis; e vinte a cinquenta e cinco por cento de água, mantendo todas as demais características do cimento geopoíimérico. 2.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claim 1 and comprising a general composition in which its basic formulation consists of a range of forty-five to eighty per cent. percent recycled glass; half to five percent alkali; and twenty to fifty-five percent water, retaining all the other features of geopoietic cement.
3. )"CIMENTO GEOPOLIMERICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1 e 2 e caracterizado por ser compreendido por os álcalis serem hidróxido de potássio ou hidróxido de sódio, mantendo todas as demais características do cimento geopoíimérico. 3.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1 and 2, characterized in that the alkalis are potassium hydroxide or sodium hydroxide, maintaining all other characteristics of cement. geopoimeric.
4. )"CIMENTO GEOPOLIMERICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2 e 3 e caracterizado por ser compreendido em sua composição geral na qual sua formulação básica consiste de uma faixa de vinte e cinco a trinta e cinco por cento de cargas minerais tipos naturais ou sintéticas, mantendo todas as demais características do cimento geopoíimérico.  4.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2 and 3 and characterized in that it is comprised in its general composition in which its basic formulation consists of a range of twenty-five thirty five percent of natural or synthetic mineral fillers, maintaining all the other characteristics of geopoietic cement.
5. )"CIMENTO GEOPOLIMERICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3 e 4 e caracterizado por ser compreendido por as cargas minerais inertes tipo sintética serem óxido de alumínio, óxido de zinco ou magnésio, mantendo todas as demais características do cimento geopoíimérico. 5.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3 and 4 and characterized in that the synthetic inert mineral fillers are aluminum oxide, zinc oxide or magnesium, retaining all other characteristics of geopoimeric cement.
6. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4 e 5 e caracterizado por ser compreendido por as cargas minerais inertes tipo naturais serem argilominerais, silicatos ou aluminosilicatos, mantendo todas as demais características do cimento geopolimérico. 6.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4 and 5 and characterized in that the natural inert mineral fillers are clay minerals, silicates or aluminosilicates. , maintaining all other characteristics of geopolymer cement.
7. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5 e 6 e caracterizado por ser compreendido por materiais fibrosos inertes - fibras do tipo natural ou sintética, mantendo todas as demais características do cimento geopolimérico.  7.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5 and 6 and comprising inert fibrous materials - natural or synthetic fibers , maintaining all other characteristics of geopolymer cement.
8. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6 e 7 e caracterizado por ser compreendido em sua composição geral na qual sua formulação básica consiste de uma faixa de um a cinco por cento de materiais fibrosos inertes - fibras do tipo natural ou sintética, mantendo todas as demais características do cimento geopolimérico.  8.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5, 6 and 7 and characterized in that it is comprised in its general composition in which its basic formulation It consists of one to five percent strip of inert fibrous materials - natural or synthetic fibers, retaining all the other characteristics of geopolymer cement.
9. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6, 7 e 8 e caracterizado por ser compreendido por os materiais fibrosos inertes - fibras do tipo natural serem pó de serra, fibra celulose, casca de arroz ou bagaço de cana, mantendo todas as demais características do cimento geopolimérico.  9.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5, 6, 7 and 8 and comprising inert fibrous materials - fibers natural types are saw dust, cellulose fiber, rice husk or sugarcane bagasse, maintaining all the other characteristics of geopolymer cement.
10. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6, 7, 8 e 9 e caracterizado por ser compreendido por os materiais fibrosos inertes - fibras do tipo sintética serem nylon ou fibra de vidro, mantendo todas as demais características do cimento geopolimérico.  10.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5, 6, 7, 8 and 9 and comprising inert fibrous materials - Synthetic fibers are nylon or fiberglass, retaining all other characteristics of geopolymer cement.
11. yCIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10 e caracterizado por ser compreendido por resíduos da construção civil, mantendo todas as demais características do cimento geopolimérico. 11. GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS "according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 and comprised of construction waste , maintaining all other characteristics of geopolymer cement.
12. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 e 1 1 e caracterizado por ser compreendido em sua composição geral na qual sua formulação básica consiste de uma faixa de um a cinco por cento de resíduos da construção civil, mantendo todas as demais características do cimento geopolimérico. 12.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 and characterized in that it is comprised of in its general composition in which its basic formulation consists of a range of one to five percent of construction waste, retaining all other characteristics of geopolymer cement.
13. )"CIMENTO GEOPOLIMÉRICO A PARTIR DE VIDROS RECICLADOS E SEU PROCESSO DE OBTENÇÃO", de acordo com as reivindicações 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e 12 e caracterizado por ser o processo de obtenção do cimento geopolimérico a partir de vidros reciclados basear-se na moagem, homogeneização, alcalinização e cura (endurecimento) em temperatura ambiente ou forçada, isto é, uma mistura dos componentes com consistência reologia de argamassa curada a temperatura ambiente ou sob a ação da temperatura para acelerar o processo de pega, onde inicialmente, realiza-se a moagem do vidro reciclado até obter-se um material finamente moído; em seguida, realiza-se a homogeneização dos componentes básicos da formulação vidro reciclado, álcalis e água, assim como dos demais materiais como carga mineral inerte do tipo maturais ou sintéticas, material fibrosos inertes - fibras natural ou sintética, ou resíduo da construção civil; na sequência, realiza-se a alcalinização do composto homogeneizado através dos álcalis como hidróxido de potássio e hidróxido de sódio e água obtendo-se uma argamassa; e por último, realiza-se a cura da argamassa através de temperatura ambiente durante aproximadamente doze horas ou a temperatura forçada em estufa com temperatura entre sessenta e cinco a cento e setenta e cinco graus Célsius durante duas a quatro horas, obtendo-se um sólido rígido como cimento geopolimérico.  13.) "GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS" according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. The process of obtaining geopolymeric cement from recycled glass is based on grinding, homogenization, alkalinization and curing (hardening) at room or forced temperature, that is, a mixture of rheology-consistent components of mortar cured at room temperature or under the action of temperature to accelerate the gripping process, where initially the recycled glass is grinded to a finely ground material; Then, the basic components of the formulation recycled glass, alkalis and water are homogenized, as well as the other materials such as inert mineral filler of the matural or synthetic type, inert fibrous material - natural or synthetic fibers, or construction waste; Subsequently, the homogenized compound is alkalized through alkalis such as potassium hydroxide and sodium hydroxide and water to give a mortar; and finally, the mortar is cured at room temperature for approximately twelve hours or the forced oven temperature at sixty-five to one hundred and seventy-five degrees Celsius for two to four hours to give a solid. hard as geopolymer cement.
PCT/BR2014/000452 2013-12-20 2014-12-22 Geopolymer cement produced from recycled glass and method for producing same WO2015089611A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/106,744 US10315954B2 (en) 2013-12-20 2014-12-22 Geopolymer cement produced from recycled glass and method for producing same
JP2016559476A JP2017502913A (en) 2013-12-20 2014-12-22 Geopolymer cement made from recycled glass and its manufacturing process
CN201480075919.5A CN106170462A (en) 2013-12-20 2014-12-22 By the geopolymeric cement reclaiming made by glass with and preparation method thereof
EP14872968.4A EP3085676A4 (en) 2013-12-20 2014-12-22 Geopolymer cement produced from recycled glass and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130330140 2013-12-20
BR102013033014A BR102013033014A2 (en) 2013-12-20 2013-12-20 manufacturing process of geopolymer cement and its derived materials from the recycling of glass and other materials for use as construction materials

Publications (1)

Publication Number Publication Date
WO2015089611A1 true WO2015089611A1 (en) 2015-06-25

Family

ID=53401827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000452 WO2015089611A1 (en) 2013-12-20 2014-12-22 Geopolymer cement produced from recycled glass and method for producing same

Country Status (6)

Country Link
US (1) US10315954B2 (en)
EP (1) EP3085676A4 (en)
JP (1) JP2017502913A (en)
CN (1) CN106170462A (en)
BR (1) BR102013033014A2 (en)
WO (1) WO2015089611A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170349488A1 (en) * 2016-06-07 2017-12-07 Council Of Scientific & Industrial Research Novel Multifunctional Material for Workability of Geopolymeric System and its Process Thereof
WO2018026711A1 (en) 2016-08-04 2018-02-08 Geopolymer Solutions LLC Cold fusion concrete
CN110498647A (en) * 2019-07-23 2019-11-26 东北电力大学 A kind of fiber reinforcement type recycled fine aggregate cement-base composite material
US10954162B1 (en) 2019-09-24 2021-03-23 Geopolymer Solutions, LLC Protective coating
US10995452B2 (en) 2016-02-09 2021-05-04 Bradley University Lignocellulosic composites prepared with aqueous alkaline and urea solutions in cold temperatures systems and methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700013702A1 (en) * 2017-02-08 2017-05-08 Vittorio Gorlier REACTIVE SINTERING ALUMINUM LIQUID PHASE SILICATES AT AMBIENT TEMPERATURE.
CN107564597B (en) * 2017-08-24 2019-04-30 海南大学 A kind of high-level waste geology treatment padded coaming and its processing method
EP3617172A1 (en) 2018-09-03 2020-03-04 Saint-Gobain Ecophon AB Method for recycling mineral wool, a method for production of acoustical panel elements and such an acoustical panel element
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
US20210207756A1 (en) * 2019-12-06 2021-07-08 Ina Acquisition Corp. Method of Reinforcing Pipe and Reinforced Pipe
EP4090637A1 (en) * 2020-01-14 2022-11-23 General Electric Company Methods for manufacturing geopolymer concrete using recycled wind turbine rotor blades
CN111718159B (en) * 2020-07-01 2022-04-26 南京工业大学 Recycled FRP powder geopolymer concrete and preparation method thereof
US11760690B2 (en) 2020-07-19 2023-09-19 KLAW Industries LLC Recycled glass pozzolan for concrete
CN114105540B (en) * 2021-12-11 2022-08-30 武汉昌华汇鑫建材有限公司 Recycled concrete and preparation method thereof
EP4371960A1 (en) 2022-11-21 2024-05-22 Saint-Gobain Ecophon AB Porous geopolymer product
CN116947391B (en) * 2023-07-28 2024-02-13 湖北工业大学 Multifunctional geopolymer composite material with sandwich structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244726A (en) * 1988-02-23 1993-09-14 The Hera Corporation Advanced geopolymer composites
US20110132230A1 (en) * 2009-12-08 2011-06-09 Chan Han Geopolymer precursor dry mixture, package, processes and methods
KR101078336B1 (en) * 2011-06-01 2011-11-01 주식회사 영일화성 Process of producing geopolymer using waste glass and geo concrete composition using the geopolymer
US20120152153A1 (en) * 2010-12-17 2012-06-21 The Catholic University Of America Geopolymer composite for ultra high performance concrete
US20120156381A1 (en) * 2010-12-20 2012-06-21 Erez Allouche Geopolymer Mortar and Method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159922A (en) * 1974-11-22 1976-05-25 Seto Yogyo Genryo Kk Taisan taiarukari taimamoseigesuiyosementokan
DE3678325D1 (en) * 1985-04-06 1991-05-02 Huels Troisdorf INORGANIC SHAPE WITH CONTENT OF A STONE-FORMING COMPONENT.
US6969422B2 (en) * 2000-09-20 2005-11-29 Goodrich Corporation Inorganic matrix composition and composites incorporating the matrix composition
DE10129873C1 (en) * 2001-06-21 2002-10-24 Iff Weimar Light building material used in the production of molded bodies for walls, ceilings and roofs consists of plant or mineral additives, and activated aluminosilicate compounds in the form of a reactive mixture
CZ20021011A3 (en) * 2002-03-20 2003-12-17 Vysoká škola chemicko-technologická v Praze Geopolymeric binding agent based on fly ashes
WO2010030560A2 (en) * 2008-09-09 2010-03-18 Ceramatec, Inc. Previous concrete comprising a geopolymerized pozzolanic ash binder
MX354642B (en) * 2009-01-22 2018-03-14 Univ America Catholic Tailored geopolymer composite binders for cement and concrete applications.
CN101570426B (en) * 2009-04-21 2012-07-04 同济大学 Geo-polymer recycled concrete and preparation method thereof
CN101712546B (en) * 2009-10-31 2012-03-07 浙江大学宁波理工学院 Geopolymer grouting material
WO2011135584A2 (en) * 2010-04-29 2011-11-03 Aditya Birla Science And Technology Company Limited Geopolymer concrete
ES2394979B1 (en) * 2011-06-17 2013-12-16 Consejo Superior De Investigaciones Científicas (Csic) PROCEDURE FOR THE MANUFACTURE OF ALKALINE CEMENTS FROM URBAN AND INDUSTRIAL VITREOUS WASTE.
US9327326B2 (en) * 2011-07-20 2016-05-03 Total E&P Canada Ltd. Geopolymer additives and methods of use for treatment of fluid fine tailings
US9296654B2 (en) * 2011-09-21 2016-03-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Geopolymer resin materials, geopolymer materials, and materials produced thereby
US20130087939A1 (en) * 2011-10-07 2013-04-11 Boral Material Technologies Inc. Retardant-Free Inorganic Polymer Compositions
US20130133555A1 (en) * 2011-11-30 2013-05-30 Boral Material Technologies Inc. Inorganic Polymer Compositions Containing Tricalcium Aluminate Additive and Methods of Making Same
CN102633449A (en) * 2012-05-03 2012-08-15 南京大学 High-strength glass base polymer and preparation method thereof
CN103641324A (en) * 2013-12-03 2014-03-19 南京大学 Method for preparing sintering-free geopolymer foam glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244726A (en) * 1988-02-23 1993-09-14 The Hera Corporation Advanced geopolymer composites
US20110132230A1 (en) * 2009-12-08 2011-06-09 Chan Han Geopolymer precursor dry mixture, package, processes and methods
US20120152153A1 (en) * 2010-12-17 2012-06-21 The Catholic University Of America Geopolymer composite for ultra high performance concrete
US20120156381A1 (en) * 2010-12-20 2012-06-21 Erez Allouche Geopolymer Mortar and Method
KR101078336B1 (en) * 2011-06-01 2011-11-01 주식회사 영일화성 Process of producing geopolymer using waste glass and geo concrete composition using the geopolymer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAO, HUICONG; ET AL.: "Utilization of solar panel waste glass for metakaolinite-based geopolymer synthesis.", ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY., vol. 32, no. 3., October 2013 (2013-10-01), pages 797 - 803, XP055353845, DOI: 10.1002/EP.11693 *
See also references of EP3085676A4 *
SHI, X.S; ET AL.: "Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete.", JOURNAL OF HAZARDOUS MATERIALS., vol. 237 -238, 1 January 2012 (2012-01-01), pages 20 - 29, XP055353846, DOI: 10.1016/J.JHAZMAT.2012.07.070 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995452B2 (en) 2016-02-09 2021-05-04 Bradley University Lignocellulosic composites prepared with aqueous alkaline and urea solutions in cold temperatures systems and methods
US20170349488A1 (en) * 2016-06-07 2017-12-07 Council Of Scientific & Industrial Research Novel Multifunctional Material for Workability of Geopolymeric System and its Process Thereof
US10023497B2 (en) * 2016-06-07 2018-07-17 Council Of Scientific & Industrial Research Multifunctional material for workability of geopolymeric system and its process thereof
WO2018026711A1 (en) 2016-08-04 2018-02-08 Geopolymer Solutions LLC Cold fusion concrete
US10196310B2 (en) 2016-08-04 2019-02-05 Geopolymer Solutions LLC Cold fusion concrete
CN110498647A (en) * 2019-07-23 2019-11-26 东北电力大学 A kind of fiber reinforcement type recycled fine aggregate cement-base composite material
CN110498647B (en) * 2019-07-23 2021-10-08 东北电力大学 Fiber-reinforced recycled fine aggregate cement-based composite material
US10954162B1 (en) 2019-09-24 2021-03-23 Geopolymer Solutions, LLC Protective coating

Also Published As

Publication number Publication date
EP3085676A1 (en) 2016-10-26
JP2017502913A (en) 2017-01-26
US20160318803A1 (en) 2016-11-03
CN106170462A (en) 2016-11-30
EP3085676A4 (en) 2017-09-06
BR102013033014A2 (en) 2020-12-29
US10315954B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2015089611A1 (en) Geopolymer cement produced from recycled glass and method for producing same
Huseien et al. Geopolymer mortars as sustainable repair material: A comprehensive review
Abdulkareem et al. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation
Hardjito et al. Development and properties of low-calcium fly ash-based geopolymer concrete
Jawahar et al. Strength properties of fly ash and GGBS based geopolymer concrete
Sata et al. Properties of pervious geopolymer concrete using recycled aggregates
Freeda et al. Greener building material with flyash
Bondar et al. Alkali-activated natural pozzolan concrete as new construction material
Nemaleu et al. Investigation of groundnut shell powder on development of lightweight metakaolin based geopolymer composite: mechanical and microstructural properties
Bondar Geo-polymer concrete as a new type of sustainable construction materials
CN108178653B (en) Preparation method of perforated brick sintered by manganese slag
Rajesh et al. Study of the strength geopolymer concrete with alkaline solution of varying molarity
CN101255032B (en) Powder composition
Liu et al. Assessment and prediction of the mechanical properties of ternary geopolymer concrete
Thampi et al. Strength studies on geopolymer mortar for ferro geopolymer water tank
KR101364149B1 (en) Composition of alkali activated mortar for partial-depth repair of road and airport pavement
Kumar et al. Strength Characteristics of Low Calcium Fly Ash Based Geopolymer Concrete
Chindaprasirt et al. Fire resistance of recycled aggregate alkali-activated concrete
BR102014032028A2 (en) GEOPOLIMERIC CEMENT FROM RECYCLED GLASSES AND THEIR OBTAINING PROCESS
Ashalatha et al. Mechanical Properties of Geopolymer Concrete by Using Mill Rejected Coal Aggregate as Partial Replacement of Coarse Aggergate
Kirupa et al. Possible materials for producing Geopolymer concrete and its performance with and without Fibre addition-A State of the art review
Nura Isa et al. A Potential Environmental Sustainability of Wood Ash in Normal and Geopolymer Concrete–A Review
KR101755626B1 (en) Method of manufacturing a solidifying agent with granite sludge and eco-friendly resin
Bao-min et al. Development of studies and applications of activation techniques of fly ash
Beghoura Development of alkali-activated foamed materials combining both mining waste mud and expanded granulated cork

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872968

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014872968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872968

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15106744

Country of ref document: US