WO2015087753A1 - Supercharging system for engine - Google Patents

Supercharging system for engine Download PDF

Info

Publication number
WO2015087753A1
WO2015087753A1 PCT/JP2014/081956 JP2014081956W WO2015087753A1 WO 2015087753 A1 WO2015087753 A1 WO 2015087753A1 JP 2014081956 W JP2014081956 W JP 2014081956W WO 2015087753 A1 WO2015087753 A1 WO 2015087753A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
combustion chamber
supercharging system
compressed air
supercharging
Prior art date
Application number
PCT/JP2014/081956
Other languages
French (fr)
Japanese (ja)
Inventor
宗篤 柿木
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015087753A1 publication Critical patent/WO2015087753A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine supercharging system, and more particularly to an engine supercharging system that can more quickly compensate for a shortage of supercharging amount due to a delay in response of the supercharger.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-263040
  • Patent Document 2 the amount of air passing through the turbine of the exhaust turbocharger is controlled by a valve mechanism. Control by opening and closing has been proposed. Further, as described in Japanese Patent Application Laid-Open No. 2011-21558 (Patent Document 3) of the Japanese application, it has been proposed to discharge the exhaust gas of the engine stored in the pressure vessel to the intake system at the time of transition. .
  • An object of the present invention is to provide an engine supercharging system that can more quickly compensate for an insufficient supercharging amount to the engine due to a delay in response of the supercharger.
  • An engine supercharging system that achieves the above object is an engine supercharging system having a combustion chamber, comprising compressed air supply means for supplying compressed air into the combustion chamber, and control means.
  • the control means supplies the compressed air into the combustion chamber by the compressed air supply means when the amount of supercharging to the engine is insufficient.
  • the compressed air is directly supplied into the combustion chamber by a route different from the intake pipe. It is possible to make up for the shortage of the supercharging amount to the engine due to the response delay of the system more quickly than before.
  • FIG. 1 is a configuration diagram of an engine supercharging system according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an engine supercharging system according to the second embodiment of the present invention.
  • FIG. 3 is a configuration diagram of an engine supercharging system according to a third embodiment of the present invention.
  • FIG. 4 is a configuration diagram of an engine supercharging system according to a fourth embodiment of the present invention.
  • FIG. 5 is a configuration diagram of an engine supercharging system according to a fifth embodiment of the present invention.
  • FIG. 6 is a sectional view in the radial direction of the combustion chamber showing the direction in which the air outlet opens.
  • FIG. 6A shows a case where the opening opens in the direction tangential to the inner peripheral wall of the combustion chamber, and FIG.
  • FIG. 7 is an example of a configuration diagram of an engine supercharging system according to a sixth embodiment of the present invention.
  • FIG. 8 is an example of a configuration diagram of an engine supercharging system according to a seventh embodiment of the present invention.
  • FIG. 9 is a sectional view in the radial direction of the combustion chamber in FIG.
  • FIG. 10 is a configuration diagram of an engine supercharging system according to an eighth embodiment of the present invention.
  • FIG. 1 shows an engine supercharging system according to a first embodiment of the present invention.
  • the arrow in a figure has shown the direction through which gas flows.
  • the air sucked into the intake pipe 3 from the intake port 2 passes through an intake manifold (not shown), and is supplied to the diesel engine 4.
  • the gas is supplied into a plurality of cylinders 5 (four in the example of FIG. 1).
  • the piston is expanded by the combustion pressure, and then exhausted through an exhaust manifold (not shown).
  • an EGR cooler 9 and an EGR valve 10 are provided in the EGR passage 8 in order from the exhaust pipe 7 side.
  • the exhaust gas that has not been split into the EGR passage 8 is discharged to the outside from the exhaust port 11.
  • the supercharging system 1A is provided with compressed air supply means 12 for supplying compressed air into the combustion chamber 6 by a route different from that of the intake pipe 3.
  • This compressed air supply means 12 is comprised from the supply pipe
  • One end of the supply pipe 16 is connected to an outlet 17 provided in the combustion chamber 6 via a control valve 15, and the other end is an inlet 18 that opens to the outside of the engine.
  • Examples of the control valve 15 include an electromagnetic valve and an actuator composed of a piezoelectric element.
  • ECU19 is a control means through the signal line shown with the dotted line.
  • the control contents of the ECU 19 in the supercharging system 1A are as follows.
  • the ECU 19 controls the air compressor 13 so that the pressure of the compressed air stored in the pressure accumulating tank 14 becomes higher than the measured pressure in the combustion chamber 6 or a preset maximum pressure in the combustion chamber 6. Like that.
  • the control valve 15 When the amount of supercharging to the diesel engine 4 is insufficient, for example, during transient operation where the output of the diesel engine 4 suddenly increases, the control valve 15 is individually opened and stored in the pressure accumulation tank 14. The compressed air thus produced is supplied directly into the combustion chamber 6. At this time, since the pressure of the compressed air is maintained immediately before the combustion chamber 6, the time until the compressed air reaches the combustion chamber 6 is not affected by the length of the flow path or dirt in the flow path. In addition, no pressure loss or control delay occurs.
  • such a supercharging system 1A can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than in the past.
  • FIG. 2 shows an engine supercharging system according to the second embodiment.
  • the same portions as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • This supercharging system 1B supplies compressed air directly into the combustion chamber 6 of each cylinder 5 instead of air sucked from the intake port 2 in the configuration of the supercharging system 1A, and recirculates through the EGR passage 8. Only the EGR gas to be supplied is supplied from the intake system.
  • the ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1A.
  • FIG. 3 shows an engine supercharging system according to a third embodiment of the present invention.
  • This supercharging system 1C has the same structure as that of the supercharging system 1A, but is composed of a compressor 20 installed in the intake pipe 3 and an exhaust turbo-type supercharger that is coaxial with the compressor 20 and installed in the exhaust pipe 7. A feeder 22 is added. Further, the other end of the supply pipe 16 of the compressed air supply means 12 is connected to the intake pipe 3 on the downstream side of the compressor 20.
  • the ECU 19 opens the control valve 15 to directly transfer the compressed air stored in the pressure accumulation tank 14 into the combustion chamber 6. To supply. At this time, since the pressure of the compressed air is maintained immediately before the combustion chamber 6, the time until the compressed air reaches the combustion chamber 6 is not affected by the length of the flow path or dirt in the flow path. In addition, no pressure loss or control delay occurs.
  • such a supercharging system 1C can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than in the past. Moreover, since a part of the air compressed by the compressor 20 is used in the compressed air supply means 12, the burden on the air compressor 13 can be reduced and the fuel efficiency of the diesel engine 4 can be improved.
  • FIG. 4 shows an engine supercharging system according to the fourth embodiment of the present invention.
  • This supercharging system 1D has the same structure as the supercharging system 1C, a small turbine 23 installed in the exhaust pipe 7 on the upstream side of the turbine 21, and a coaxial with the small turbine 23 on the upstream side of the air compressor 13.
  • a small supercharger 25 composed of a small compressor 24 installed in the supply pipe 16 is added.
  • the compressed air supply means 12 can use the air compressed to a higher pressure by the small compressor 24, so the air compressor 13 can be downsized and the mass of the engine system can be reduced. .
  • FIG. 5 shows an engine supercharging system according to the fifth embodiment of the present invention.
  • the exhaust gas turbocharger 22 is added to the configuration of the supercharging system 1B so that the EGR gas recirculating through the EGR passage 8 is compressed by the compressor 20 and then the combustion chamber of each cylinder 5 is compressed. 6 is supplied directly.
  • the ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1B. Moreover, the apparatus concerning the conventional intake system becomes unnecessary.
  • the direction in which the outlet 17 of the supply pipe 16 opens to the combustion chamber 6 is determined from the direction tangential to the inner peripheral wall 26 of the combustion chamber 6 (see FIG. 6A). It is desirable to set within the range up to the direction of the central axis 27 (see FIG. 6B). In addition, the dashed-dotted line in FIG. 6 has shown the direction through which gas flows.
  • Such a configuration can improve the combustion efficiency by controlling the distribution of air in the combustion chamber 6.
  • FIG. 7 shows an example of a supercharging system according to the sixth embodiment of the present invention.
  • the supercharging system 1F is configured such that a component separation device 28 for separating air into components is interposed between the air compression device 13 and the pressure accumulating tank 14 in the configuration of the supercharging system 1A.
  • the component separation device 28 is connected to the ECU 19 through a signal line.
  • the ECU 19 controls the component separation device 28 so that air having a preset composition is stored in the pressure accumulation tank 14.
  • the composition of the air in the combustion chamber 6 can be controlled to improve the combustion efficiency.
  • the ECU 19 controls the component separation device 28 so that oxygen is stored in the accumulator tank 14, thereby allowing pure oxygen combustion in the diesel engine 4.
  • the combustion efficiency can be greatly improved.
  • the supercharging system 1F has a supercharging system 1A as a basic configuration, but the sixth embodiment may have any of the supercharging systems 1B to 1E as a basic configuration.
  • FIG. 8 shows an example of an engine supercharging system according to the seventh embodiment of the present invention.
  • This supercharging system 1G is a modification of the configuration of the supercharging system 1F, and a pair of small pressure accumulating tanks 29A and 29B and small control valves 30A and 30B are provided downstream of the component separator 28, respectively.
  • the supply branches 31A and 31B are branched. Further, the direction in which the outlets 17A and 17B of the pair of supply branch pipes 31A and 31B open to the combustion chamber 6 is the same as in the case of FIG. 6 from the tangential side direction of the inner peripheral wall 26 of the combustion chamber 6 to the central axis 27 side. It is desirable to set each within the range up to the direction.
  • the ECU 19 controls the component separation device 28 so that air having different compositions is stored in the pair of small pressure accumulating tanks 29A and 29B, respectively. And the control similar to the case of the supercharging system 1A is performed.
  • the pair of small control valves 30A and 30B are opened at the same time or with a time difference.
  • the seventh embodiment may have any of the supercharging systems 1B to 1E as a basic configuration.
  • FIG. 10 shows an example of an engine supercharging system according to the eighth embodiment of the present invention.
  • the supercharging system 1H directly supplies EGR gas that recirculates through the EGR passage 8 instead of air sucked from the intake port 2 into the combustion chamber 6 of each cylinder 5 in the configuration of the supercharging system 1G. It is a thing.
  • the ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1G.

Abstract

A supercharging system for an engine is able to more rapidly compensate for the shortage of the amount of supercharging of the engine due to the response delay of a supercharger than in the prior art, and is implemented by directly supplying compressed air into a combustion chamber (6) using a compressed air supply means (12) composed of a supply pipe (16) in which an air compression device (13), a pressure accumulation tank (14), and control valves (15) are sequentially disposed when the amount of supercharging of a diesel engine (4) runs short.

Description

エンジンの過給システムEngine supercharging system
 本発明はエンジンの過給システムに関し、更に詳しくは、過給器の応答遅れによるエンジンへの過給量不足をより迅速に補うことができるエンジンの過給システムに関する。 The present invention relates to an engine supercharging system, and more particularly to an engine supercharging system that can more quickly compensate for a shortage of supercharging amount due to a delay in response of the supercharger.
 近年、ディーゼルエンジンやガソリンエンジンの気筒内に空気を送り込む過給システムは、構造が複雑化しかつ構成部品の点数が増加する傾向にある。また、過給システムの制御内容も複雑化している。そのため、例えば日本出願の特開2007-263040号公報(特許文献1)に記載されているように、過給される空気の増減を制御する際に応答遅れが発生し、目標としている制御を行うことができない可能性が高くなっている。 In recent years, a supercharging system that sends air into a cylinder of a diesel engine or a gasoline engine tends to have a complicated structure and an increased number of components. Moreover, the control content of the supercharging system is also complicated. Therefore, for example, as described in Japanese Patent Application Laid-Open No. 2007-263040 (Patent Document 1), a response delay occurs when controlling increase / decrease in supercharged air, and target control is performed. The possibility of not being able to be increased.
 このような問題を解決するために、日本出願の特開2007-192155号公報(特許文献2)に記載されているように、排気ターボ式過給器のタービンを通過する空気量をバルブ機構を開閉させることにより制御することが提案されている。また、日本出願の特開2011-21558号公報(特許文献3)に記載されているように、圧力容器に貯留されたエンジンの排ガスを、過渡時において吸気系に放出することが提案されている。 In order to solve such problems, as described in Japanese Patent Application Laid-Open No. 2007-192155 (Patent Document 2), the amount of air passing through the turbine of the exhaust turbocharger is controlled by a valve mechanism. Control by opening and closing has been proposed. Further, as described in Japanese Patent Application Laid-Open No. 2011-21558 (Patent Document 3) of the Japanese application, it has been proposed to discharge the exhaust gas of the engine stored in the pressure vessel to the intake system at the time of transition. .
 しかしながら、特許文献2の発明では、バルブの開閉によって制御された空気がエンジン気筒内に到達するまでの時間が、流路の長さや流路内の汚れなどにより左右されるため、目的とする空気量が得られないおそれがある。また、特許文献3の発明では、圧力容器から吸気系に至る配管内を通過する排ガスの制御については考慮されていないため、圧力損失や制御の応答遅れが発生するおそれがある。 However, in the invention of Patent Document 2, since the time until the air controlled by opening / closing of the valve reaches the engine cylinder depends on the length of the flow path, dirt in the flow path, etc., the target air The amount may not be obtained. Further, in the invention of Patent Document 3, since control of exhaust gas passing through the piping from the pressure vessel to the intake system is not taken into consideration, there is a possibility that pressure loss or control response delay may occur.
日本出願の特開2007-263040号公報Japanese Patent Application Publication No. 2007-263040 日本出願の特開2007-192155号公報Japanese Patent Application Publication No. 2007-192155 日本出願の特開2011-21558号公報Japanese Patent Application No. 2011-21558
 本発明の目的は、過給器の応答遅れによるエンジンへの過給量不足を、従来よりも迅速に補うことができるエンジンの過給システムを提供することにある。 An object of the present invention is to provide an engine supercharging system that can more quickly compensate for an insufficient supercharging amount to the engine due to a delay in response of the supercharger.
 上記の目的を達成する本発明のエンジンの過給システムは、燃焼室を有するエンジンの過給システムであって、前記燃焼室内に圧縮空気を供給する圧縮空気供給手段と、制御手段とを有し、前記制御手段は、前記エンジンへの過給量の不足時に、前記圧縮空気供給手段により前記圧縮空気を前記燃焼室内へ供給することを特徴とするものである。 An engine supercharging system according to the present invention that achieves the above object is an engine supercharging system having a combustion chamber, comprising compressed air supply means for supplying compressed air into the combustion chamber, and control means. The control means supplies the compressed air into the combustion chamber by the compressed air supply means when the amount of supercharging to the engine is insufficient.
 本発明のエンジンの過給システムによれば、エンジンへの過給量が不足したときには、吸気管とは別ルートで、燃焼室内へ圧縮空気を直接的に供給するようにしたので、過給器の応答遅れによるエンジンへの過給量不足を従来よりも迅速に補うことができる。 According to the engine supercharging system of the present invention, when the amount of supercharging to the engine is insufficient, the compressed air is directly supplied into the combustion chamber by a route different from the intake pipe. It is possible to make up for the shortage of the supercharging amount to the engine due to the response delay of the system more quickly than before.
図1は、本発明の第1の実施形態からなるエンジンの過給システムの構成図である。FIG. 1 is a configuration diagram of an engine supercharging system according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態からなるエンジンの過給システムの構成図である。FIG. 2 is a configuration diagram of an engine supercharging system according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態からなるエンジンの過給システムの構成図である。FIG. 3 is a configuration diagram of an engine supercharging system according to a third embodiment of the present invention. 図4は、本発明の第4の実施形態からなるエンジンの過給システムの構成図である。FIG. 4 is a configuration diagram of an engine supercharging system according to a fourth embodiment of the present invention. 図5は、本発明の第5の実施形態からなるエンジンの過給システムの構成図である。FIG. 5 is a configuration diagram of an engine supercharging system according to a fifth embodiment of the present invention. 図6は、吹出口が開口する方向を示す燃焼室の径方向の断面図であって、(a)は燃焼室の内周壁の接線側の方向に開口する場合を、(b)は燃焼室の中心軸側の方向に開口する場合を、それぞれ示す。FIG. 6 is a sectional view in the radial direction of the combustion chamber showing the direction in which the air outlet opens. FIG. 6A shows a case where the opening opens in the direction tangential to the inner peripheral wall of the combustion chamber, and FIG. Each of the cases shown in FIG. 図7は、本発明の第6の実施形態からなるエンジンの過給システムの構成図の例である。FIG. 7 is an example of a configuration diagram of an engine supercharging system according to a sixth embodiment of the present invention. 図8は、本発明の第7の実施形態からなるエンジンの過給システムの構成図の例である。FIG. 8 is an example of a configuration diagram of an engine supercharging system according to a seventh embodiment of the present invention. 図9は、図8における燃焼室の径方向の断面図である。FIG. 9 is a sectional view in the radial direction of the combustion chamber in FIG. 図10は、本発明の第8の実施形態からなるエンジンの過給システムの構成図である。FIG. 10 is a configuration diagram of an engine supercharging system according to an eighth embodiment of the present invention.
 以下に、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態からなるエンジンの過給システムを示す。なお、図中の矢印は気体の流れる方向を示している。 FIG. 1 shows an engine supercharging system according to a first embodiment of the present invention. In addition, the arrow in a figure has shown the direction through which gas flows.
 このエンジンの過給システム(以下、「過給システム」という。)1Aにおいては、吸気口2から吸気管3内へ吸入された空気は、インテークマニホールド(図示せず)を経て、ディーゼルエンジン4の複数の気筒5内(図1の例では4個)にそれぞれ供給される。そして、各気筒5内に形成された燃焼室6内において噴射燃料と混合した後に燃焼して、その燃焼圧力によってピストンを膨張させた後に、エキゾーストマニホールド(図示せず)を経て、排ガスとなって排気管7へ排出されるが、その一部は排気管7から分岐して吸気管3に合流するEGR通路8にEGRガスとなって分流する。EGR通路8には、EGRクーラー9とEGR弁10とが、排気管7側から順に介設されている。EGR通路8に分流しなかった排ガスは、排気口11から外部へ放出される。 In the engine supercharging system (hereinafter referred to as “supercharging system”) 1A, the air sucked into the intake pipe 3 from the intake port 2 passes through an intake manifold (not shown), and is supplied to the diesel engine 4. The gas is supplied into a plurality of cylinders 5 (four in the example of FIG. 1). Then, after being mixed with the injected fuel in the combustion chamber 6 formed in each cylinder 5 and combusting, the piston is expanded by the combustion pressure, and then exhausted through an exhaust manifold (not shown). Although being discharged to the exhaust pipe 7, a part of it is branched from the exhaust pipe 7 and branched into the EGR passage 8 that joins the intake pipe 3 as EGR gas. An EGR cooler 9 and an EGR valve 10 are provided in the EGR passage 8 in order from the exhaust pipe 7 side. The exhaust gas that has not been split into the EGR passage 8 is discharged to the outside from the exhaust port 11.
 そして、この過給システム1Aには、吸気管3とは別ルートで燃焼室6内へ圧縮空気を供給する圧縮空気供給手段12が設けられている。この圧縮空気供給手段12は、空気圧縮装置13、蓄圧タンク14及び制御弁15が順に介設された供給管16から構成されている。供給管16の一端は制御弁15を介して燃焼室6に設けられた吹出口17へ接続するとともに、他端はエンジン外部へ開口する吸入口18となっている。この制御弁15としては、電磁弁やピエゾ素子からなるアクチュエータなどが例示される。これらの空気圧縮装置13及び各制御弁15は、点線で示された信号線を通じて、制御手段であるECU19にそれぞれ接続している。 The supercharging system 1A is provided with compressed air supply means 12 for supplying compressed air into the combustion chamber 6 by a route different from that of the intake pipe 3. This compressed air supply means 12 is comprised from the supply pipe | tube 16 in which the air compressor 13, the pressure accumulation tank 14, and the control valve 15 were interposed in order. One end of the supply pipe 16 is connected to an outlet 17 provided in the combustion chamber 6 via a control valve 15, and the other end is an inlet 18 that opens to the outside of the engine. Examples of the control valve 15 include an electromagnetic valve and an actuator composed of a piezoelectric element. These air compressor 13 and each control valve 15 are respectively connected to ECU19 which is a control means through the signal line shown with the dotted line.
 この過給システム1AにおけるECU19の制御内容は次のようになる。 The control contents of the ECU 19 in the supercharging system 1A are as follows.
 まず、ECU19は、空気圧縮装置13を制御して、蓄圧タンク14に貯留される圧縮空気の圧力が、燃焼室6内の測定圧力又は予め設定された燃焼室6内の最高圧力よりも高くなるようにする。 First, the ECU 19 controls the air compressor 13 so that the pressure of the compressed air stored in the pressure accumulating tank 14 becomes higher than the measured pressure in the combustion chamber 6 or a preset maximum pressure in the combustion chamber 6. Like that.
 そして、ディーゼルエンジン4への過給量が不足する場合、例えばディーゼルエンジン4の出力が急激に増加する過渡運転時などになったときには、制御弁15を個別に開弁して蓄圧タンク14に貯留された圧縮空気を直接的に燃焼室6内へ供給する。このとき、燃焼室6の直前まで圧縮空気の圧力が維持されるので、圧縮空気が燃焼室6内に到達するまでの時間が流路の長さや流路内の汚れに左右されることはなく、かつ圧力損失や制御の遅れが発生することもない。 When the amount of supercharging to the diesel engine 4 is insufficient, for example, during transient operation where the output of the diesel engine 4 suddenly increases, the control valve 15 is individually opened and stored in the pressure accumulation tank 14. The compressed air thus produced is supplied directly into the combustion chamber 6. At this time, since the pressure of the compressed air is maintained immediately before the combustion chamber 6, the time until the compressed air reaches the combustion chamber 6 is not affected by the length of the flow path or dirt in the flow path. In addition, no pressure loss or control delay occurs.
 従って、このような過給システム1Aにより、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができるのである。 Therefore, such a supercharging system 1A can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than in the past.
 図2は、第2の実施形態からなるエンジンの過給システムを示す。なお、これ以降の図面においては、図1と同じ箇所には同一の符号を付し、その説明を省略する。 FIG. 2 shows an engine supercharging system according to the second embodiment. In the following drawings, the same portions as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 この過給システム1Bは、過給システム1Aの構成において、吸気口2から吸入する空気の代わりに、各気筒5の燃焼室6内に圧縮空気を直接的に供給するとともに、EGR通路8を還流するEGRガスだけを吸気系から供給するようにしたものである。 This supercharging system 1B supplies compressed air directly into the combustion chamber 6 of each cylinder 5 instead of air sucked from the intake port 2 in the configuration of the supercharging system 1A, and recirculates through the EGR passage 8. Only the EGR gas to be supplied is supplied from the intake system.
 ECU19は、過給システム1Aの場合と同様の制御を行うことにより、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができる。 The ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1A.
 図3は、本発明の第3の実施形態からなるエンジンの過給システムを示す。 FIG. 3 shows an engine supercharging system according to a third embodiment of the present invention.
 この過給システム1Cは、過給システム1Aの構成に、吸気管3に設置されたコンプレッサ20と、そのコンプレッサ20と同軸であって排気管7に設置されたタービン21とからなる排気ターボ式過給器22を加えたものである。更に、圧縮空気供給手段12の供給管16の他端は、コンプレッサ20の下流側で吸気管3に接続している。 This supercharging system 1C has the same structure as that of the supercharging system 1A, but is composed of a compressor 20 installed in the intake pipe 3 and an exhaust turbo-type supercharger that is coaxial with the compressor 20 and installed in the exhaust pipe 7. A feeder 22 is added. Further, the other end of the supply pipe 16 of the compressed air supply means 12 is connected to the intake pipe 3 on the downstream side of the compressor 20.
 ECU19は、過渡運転時などで排気ターボ式過給器22の応答遅れが発生する場合には、制御弁15を開弁して蓄圧タンク14に貯留された圧縮空気を直接的に燃焼室6内へ供給する。このとき、燃焼室6の直前まで圧縮空気の圧力が維持されるので、圧縮空気が燃焼室6内に到達するまでの時間が流路の長さや流路内の汚れに左右されることはなく、かつ圧力損失や制御の遅れが発生することもない。 When a response delay of the exhaust turbocharger 22 occurs during transient operation or the like, the ECU 19 opens the control valve 15 to directly transfer the compressed air stored in the pressure accumulation tank 14 into the combustion chamber 6. To supply. At this time, since the pressure of the compressed air is maintained immediately before the combustion chamber 6, the time until the compressed air reaches the combustion chamber 6 is not affected by the length of the flow path or dirt in the flow path. In addition, no pressure loss or control delay occurs.
 従って、このような過給システム1Cにより、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができるのである。また、圧縮空気供給手段12において、コンプレッサ20で圧縮された空気の一部を利用するので、空気圧縮装置13の負担を軽減してディーゼルエンジン4の燃費を向上することができる。 Therefore, such a supercharging system 1C can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than in the past. Moreover, since a part of the air compressed by the compressor 20 is used in the compressed air supply means 12, the burden on the air compressor 13 can be reduced and the fuel efficiency of the diesel engine 4 can be improved.
 図4は、本発明の第4の実施形態からなるエンジンの過給システムを示す。 FIG. 4 shows an engine supercharging system according to the fourth embodiment of the present invention.
 この過給システム1Dは、過給システム1Cの構成に、タービン21の上流側の排気管7に設置された小型タービン23と、その小型タービン23と同軸であって空気圧縮装置13の上流側の供給管16に設置された小型コンプレッサ24とからなる小型過給器25を加えたものである。 This supercharging system 1D has the same structure as the supercharging system 1C, a small turbine 23 installed in the exhaust pipe 7 on the upstream side of the turbine 21, and a coaxial with the small turbine 23 on the upstream side of the air compressor 13. A small supercharger 25 composed of a small compressor 24 installed in the supply pipe 16 is added.
 このように構成することで、圧縮空気供給手段12において、小型コンプレッサ24でより高圧に圧縮された空気を利用できるので、空気圧縮装置13を小型化して、エンジンシステムの質量を低減することができる。 With this configuration, the compressed air supply means 12 can use the air compressed to a higher pressure by the small compressor 24, so the air compressor 13 can be downsized and the mass of the engine system can be reduced. .
 図5は、本発明の第5の実施形態からなるエンジンの過給システムを示す。 FIG. 5 shows an engine supercharging system according to the fifth embodiment of the present invention.
 この過給システム1Eは、過給システム1Bの構成に、排気ターボ式過給器22を加えることで、EGR通路8を還流するEGRガスを、コンプレッサ20で圧縮してから各気筒5の燃焼室6内に直接的に供給するものである。 In the supercharging system 1E, the exhaust gas turbocharger 22 is added to the configuration of the supercharging system 1B so that the EGR gas recirculating through the EGR passage 8 is compressed by the compressor 20 and then the combustion chamber of each cylinder 5 is compressed. 6 is supplied directly.
 ECU19は、過給システム1Bの場合と同様の制御を行うことにより、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができる。また、従来の吸気系に係る機器類が不要となる。 The ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1B. Moreover, the apparatus concerning the conventional intake system becomes unnecessary.
 上述した過給システム1A~1Eにおいては、供給管16の吹出口17が燃焼室6へ開口する方向を、燃焼室6の内周壁26の接線側の方向(図6(a)を参照)から中心軸27側の方向(図6(b)を参照)までの範囲内で設定することが望ましい。なお、図6中の一点鎖線は、気体の流れる方向を示している。 In the supercharging systems 1A to 1E described above, the direction in which the outlet 17 of the supply pipe 16 opens to the combustion chamber 6 is determined from the direction tangential to the inner peripheral wall 26 of the combustion chamber 6 (see FIG. 6A). It is desirable to set within the range up to the direction of the central axis 27 (see FIG. 6B). In addition, the dashed-dotted line in FIG. 6 has shown the direction through which gas flows.
 このような構成により、燃焼室6内における空気の分布を制御して、燃焼効率を向上することができる。 Such a configuration can improve the combustion efficiency by controlling the distribution of air in the combustion chamber 6.
 図7は、本発明の第6の実施形態からなる過給システムの例を示す。 FIG. 7 shows an example of a supercharging system according to the sixth embodiment of the present invention.
 この過給システム1Fは、過給システム1Aの構成における空気圧縮装置13と蓄圧タンク14との間に、空気を含有成分毎に分離する成分分離装置28を介設したものである。この成分分離装置28は、信号線を通じてECU19に接続されている。 The supercharging system 1F is configured such that a component separation device 28 for separating air into components is interposed between the air compression device 13 and the pressure accumulating tank 14 in the configuration of the supercharging system 1A. The component separation device 28 is connected to the ECU 19 through a signal line.
 ECU19は、成分分離装置28を制御して、蓄圧タンク14に予め設定された組成の空気が貯留されるようにする。 The ECU 19 controls the component separation device 28 so that air having a preset composition is stored in the pressure accumulation tank 14.
 このようにすることで、燃焼室6内における空気の組成を制御して、燃焼効率を向上することができる。具体的には、例えばECU19は、図2での適用においては、成分分離装置28を制御して、蓄圧タンク14に酸素が貯留されるようにすることで、ディーゼルエンジン4における純酸素燃焼が可能となり、燃焼効率を大幅に向上することができる。 In this way, the composition of the air in the combustion chamber 6 can be controlled to improve the combustion efficiency. Specifically, for example, in the application shown in FIG. 2, the ECU 19 controls the component separation device 28 so that oxygen is stored in the accumulator tank 14, thereby allowing pure oxygen combustion in the diesel engine 4. Thus, the combustion efficiency can be greatly improved.
 なお、過給システム1Fは過給システム1Aを基本構成としているが、この第6の実施形態は、過給システム1B~1Eのいずれかを基本構成とするものであってもよい。 The supercharging system 1F has a supercharging system 1A as a basic configuration, but the sixth embodiment may have any of the supercharging systems 1B to 1E as a basic configuration.
 図8は、本発明の第7の実施形態からなるエンジンの過給システムの例を示す。 FIG. 8 shows an example of an engine supercharging system according to the seventh embodiment of the present invention.
 この過給システム1Gは、過給システム1Fの構成を変形したものであり、成分分離装置28の下流側を、小型蓄圧タンク29A、29B及び小型制御弁30A、30Bがそれぞれ介設された一対の供給支管31A、31Bに分岐させたものである。また、一対の供給支管31A、31Bの吹出口17A、17Bが燃焼室6へ開口する方向は、図6の場合と同様に、燃焼室6の内周壁26の接線側の方向から中心軸27側の方向までの範囲内でそれぞれ設定することが望ましい。 This supercharging system 1G is a modification of the configuration of the supercharging system 1F, and a pair of small pressure accumulating tanks 29A and 29B and small control valves 30A and 30B are provided downstream of the component separator 28, respectively. The supply branches 31A and 31B are branched. Further, the direction in which the outlets 17A and 17B of the pair of supply branch pipes 31A and 31B open to the combustion chamber 6 is the same as in the case of FIG. 6 from the tangential side direction of the inner peripheral wall 26 of the combustion chamber 6 to the central axis 27 side. It is desirable to set each within the range up to the direction.
 ECU19は、成分分離装置28を制御して、一対の小型蓄圧タンク29A、29Bに互いに組成の異なる空気がそれぞれ貯留されるようにする。そして、過給システム1Aの場合と同様の制御を行う。なお、一対の小型制御弁30A、30B同士は、同時に又は時間差を置いて開弁させる。 The ECU 19 controls the component separation device 28 so that air having different compositions is stored in the pair of small pressure accumulating tanks 29A and 29B, respectively. And the control similar to the case of the supercharging system 1A is performed. The pair of small control valves 30A and 30B are opened at the same time or with a time difference.
 このようにすることで、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができるとともに、燃焼室6内の空気の分布及び組成を制御して、燃焼効率を更に向上することができる。 By doing so, the shortage of the supercharging amount to the diesel engine 4 can be compensated more quickly than before, and the distribution and composition of the air in the combustion chamber 6 can be controlled to further improve the combustion efficiency. Can do.
 一対の小型蓄圧タンク29A、29Bには、酸素と窒素がそれぞれ貯留されるようにすることが望ましい。そして、図9に示すように、酸素が貯留された小型蓄圧タンク29Aから延びる供給支管31Aの吹出口17Aを、燃焼室6の中心軸27側の方向へ向けて開口させる一方で、窒素が貯留された小型蓄圧タンク29Bから延びる供給支管31Bの吹出口17Bを、燃焼室6の内周壁26の接線側の方向へ向けて開口させる。 It is desirable to store oxygen and nitrogen in the pair of small pressure accumulating tanks 29A and 29B, respectively. And as shown in FIG. 9, while opening the blower outlet 17A of the supply branch pipe 31A extending from the small pressure accumulating tank 29A in which oxygen is stored toward the central axis 27 side of the combustion chamber 6, nitrogen is stored. The outlet 17B of the supply branch pipe 31B extending from the small pressure accumulating tank 29B is opened toward the tangential side of the inner peripheral wall 26 of the combustion chamber 6.
 このようにすることで、燃料が噴射される燃焼室6の中心部に高酸素濃度領域が形成される一方で、内周壁26の近傍には窒素を主成分とする低酸素濃度のガス層が形成されるため、燃焼効率を向上させつつ火炎の接触による燃焼室6の熱負荷を低減することができる。 In this way, a high oxygen concentration region is formed at the center of the combustion chamber 6 into which fuel is injected, while a low oxygen concentration gas layer mainly composed of nitrogen is formed in the vicinity of the inner peripheral wall 26. Therefore, the heat load of the combustion chamber 6 due to the contact of the flame can be reduced while improving the combustion efficiency.
 なお、過給システム1Gは過給システム1Aを基本構成としているが、この第7の実施形態は、過給システム1B~1Eのいずれかを基本構成とするものであってもよい。 Although the supercharging system 1G has a basic configuration of the supercharging system 1A, the seventh embodiment may have any of the supercharging systems 1B to 1E as a basic configuration.
 図10は、本発明の第8の実施形態からなるエンジンの過給システムの例を示す。 FIG. 10 shows an example of an engine supercharging system according to the eighth embodiment of the present invention.
 この過給システム1Hは、過給システム1Gの構成において、吸気口2から吸入する空気の代わりにEGR通路8を還流するEGRガスを、各気筒5の燃焼室6内に直接的に供給するようにしたものである。 The supercharging system 1H directly supplies EGR gas that recirculates through the EGR passage 8 instead of air sucked from the intake port 2 into the combustion chamber 6 of each cylinder 5 in the configuration of the supercharging system 1G. It is a thing.
 ECU19は、過給システム1Gの場合と同様の制御を行うことにより、従来よりも迅速にディーゼルエンジン4への過給量不足を補うことができる。 The ECU 19 can compensate for the shortage of the supercharging amount to the diesel engine 4 more quickly than before by performing the same control as in the supercharging system 1G.
1A~1H 過給システム
3 吸気管
6 燃焼室
8 EGR通路
12 圧縮空気供給手段
13 空気圧縮装置
14 蓄圧タンク
15 制御弁
16 供給管
19 ECU
20 コンプレッサ
21 タービン
23 小型タービン
24 小型コンプレッサ
26 内周壁
27 中心軸
28 成分分離装置
29A、29B 小型蓄圧タンク
30A、30B 小型制御弁
31A、31B 供給支管
1A to 1H Supercharging system 3 Intake pipe 6 Combustion chamber 8 EGR passage 12 Compressed air supply means 13 Air compressor 14 Accumulation tank 15 Control valve 16 Supply pipe 19 ECU
20 Compressor 21 Turbine 23 Small turbine 24 Small compressor 26 Inner peripheral wall 27 Central shaft 28 Component separators 29A and 29B Small pressure accumulator tanks 30A and 30B Small control valves 31A and 31B Supply branch pipes

Claims (11)

  1.  燃焼室を有するエンジンの過給システムであって、
     前記燃焼室内に圧縮空気を供給する圧縮空気供給手段と、制御手段とを有し、
     前記制御手段は、前記エンジンへの過給量の不足時に、前記圧縮空気供給手段により前記圧縮空気を前記燃焼室内へ供給することを特徴とするエンジンの過給システム。
    An engine supercharging system having a combustion chamber,
    Compressed air supply means for supplying compressed air into the combustion chamber, and control means,
    The engine supercharging system, wherein the control means supplies the compressed air into the combustion chamber by the compressed air supply means when the supercharging amount to the engine is insufficient.
  2.  前記圧縮空気供給手段が、前記エンジンの外部からの空気、又は該エンジンの吸気系からの空気を圧縮して供給する請求項1に記載のエンジンの過給システム。 The engine supercharging system according to claim 1, wherein the compressed air supply means compresses and supplies air from the outside of the engine or air from an intake system of the engine.
  3.  前記圧縮空気供給手段により前記圧縮空気を前記燃焼室内へ供給する方向を、該燃焼室の内周壁の接線側の方向から中心軸側の方向までの範囲内で設定した請求項1又は2に記載のエンジンの過給システム。 The direction in which the compressed air is supplied into the combustion chamber by the compressed air supply means is set within a range from a tangential side direction to a central axis side direction of the inner peripheral wall of the combustion chamber. Engine supercharging system.
  4.  前記圧縮空気供給手段を、一端が前記燃焼室に接続し、他端が前記エンジンの外部に開口又は該エンジンの吸気系に接続する供給管と、前記供給管に他端側から順に介設された空気圧縮装置、蓄圧タンク及び制御弁とから構成し、
     前記制御手段は、前記エンジンへの過給量の不足時に、前記制御弁を開弁する請求項2又は3に記載のエンジンの過給システム。
    The compressed air supply means has one end connected to the combustion chamber and the other end opened to the outside of the engine or connected to the intake system of the engine, and the supply pipe is provided in order from the other end side. Comprising an air compressor, an accumulator tank and a control valve,
    The engine supercharging system according to claim 2 or 3, wherein the control means opens the control valve when a supercharging amount to the engine is insufficient.
  5.  前記空気圧縮装置と前記蓄圧タンクとの間に、前記供給管内を流れる空気を含有成分毎に分離する成分分離装置を介設した請求項4に記載のエンジンの過給システム。 The engine supercharging system according to claim 4, wherein a component separation device is provided between the air compression device and the pressure accumulating tank to separate the air flowing in the supply pipe for each contained component.
  6.  前記成分分離装置の下流側の前記供給管及び制御弁を、一対の供給支管及び小型制御弁からそれぞれ構成するとともに、前記蓄圧タンクを前記一対の供給支管のそれぞれに介設された一対の小型蓄圧タンクから構成し、
     前記制御手段は、前記一対の小型蓄圧タンクに互いに異なる組成のガスを貯蔵するとともに、前記エンジンへの過給量の不足時に、前記一対の小型制御弁をそれぞれ開弁する請求項4又は5に記載のエンジンの過給システム。
    The supply pipe and the control valve on the downstream side of the component separation device are each composed of a pair of supply branch pipes and a small control valve, and a pair of small pressure accumulations interposed between the pair of supply branch pipes. Composed of tanks,
    6. The control means according to claim 4 or 5, wherein the control means stores gas having different compositions in the pair of small pressure accumulating tanks and opens the pair of small control valves when the supercharging amount to the engine is insufficient. The engine supercharging system described.
  7.  前記一対の小型タンクに貯蔵されるガスが、それぞれ酸素及び窒素であって、前記酸素が貯蔵された小型蓄圧タンクから延びる前記供給支管が前記燃焼室内へ開口する方向を該燃焼室の中心軸側の方向に設定する一方で、前記窒素が貯蔵された小型蓄圧タンクから延びる前記供給支管が該燃焼室内へ開口する方向を該燃焼室の内周壁の接線側の方向に設定した請求項6に記載のエンジンの過給システム。 The gas stored in the pair of small tanks is oxygen and nitrogen, respectively, and the direction in which the supply branch extending from the small pressure accumulation tank storing the oxygen opens into the combustion chamber is the central axis side of the combustion chamber The direction in which the supply branch pipe extending from the small pressure accumulating tank in which the nitrogen is stored opens into the combustion chamber is set to a direction tangential to the inner peripheral wall of the combustion chamber. Engine supercharging system.
  8.  前記エンジンの排気系に設置されたタービンと、該エンジンの吸気系に設置されたコンプレッサとからなる過給器を備えた請求項1~7のいずれか1項に記載のエンジンの過給システム。 The engine supercharging system according to any one of claims 1 to 7, comprising a supercharger comprising a turbine installed in an exhaust system of the engine and a compressor installed in an intake system of the engine.
  9.  前記エンジンの排気系に設置された小型タービンと、該圧縮空気供給手段の上流側に設置された小型コンプレッサとからなる小型過給器を設置した請求項8に記載のエンジンの過給システム。 The engine supercharging system according to claim 8, further comprising a small supercharger comprising a small turbine installed in the exhaust system of the engine and a small compressor installed upstream of the compressed air supply means.
  10.  前記エンジンの排気系から吸気系へ該エンジンの排ガスの一部を還流するEGR通路と、前記EGR通路に順に介設されたEGRクーラ及びEGR弁とからなるEGRシステムを備えた請求項1~9のいずれか1項に記載のエンジンの過給システム。 10. An EGR system comprising an EGR passage that recirculates part of the exhaust gas from the engine exhaust system to the intake system, and an EGR cooler and an EGR valve that are sequentially provided in the EGR passage. The engine supercharging system according to any one of the above.
  11.  前記エンジンの吸気系が前記EGR通路である請求項10に記載のエンジンの過給システム。 The engine supercharging system according to claim 10, wherein the intake system of the engine is the EGR passage.
PCT/JP2014/081956 2013-12-10 2014-12-03 Supercharging system for engine WO2015087753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-254883 2013-12-10
JP2013254883A JP6287148B2 (en) 2013-12-10 2013-12-10 Engine supercharging system

Publications (1)

Publication Number Publication Date
WO2015087753A1 true WO2015087753A1 (en) 2015-06-18

Family

ID=53371061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081956 WO2015087753A1 (en) 2013-12-10 2014-12-03 Supercharging system for engine

Country Status (2)

Country Link
JP (1) JP6287148B2 (en)
WO (1) WO2015087753A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10517861B2 (en) 2013-05-14 2019-12-31 Eisai R&D Management Co., Ltd. Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds
WO2016140717A1 (en) 2015-03-04 2016-09-09 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
US10054039B2 (en) * 2016-04-29 2018-08-21 Caterpillar Inc. Turbocharger system for an engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187333U (en) * 1984-05-24 1985-12-12 日産ディーゼル工業株式会社 Internal combustion engine with turbocharger
JPH05240057A (en) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp Engine for vehicle
JPH08254161A (en) * 1995-03-16 1996-10-01 Isuzu Motors Ltd Supercharging type internal combustion engine
JP2005171778A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Cylinder supercharging engine
JP2008115786A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Supercharging system for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218093A (en) * 2006-02-14 2007-08-30 Nissan Motor Co Ltd Gas enrichment device for internal combustion engine
JP5678835B2 (en) * 2011-08-01 2015-03-04 株式会社デンソー Gas supply device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187333U (en) * 1984-05-24 1985-12-12 日産ディーゼル工業株式会社 Internal combustion engine with turbocharger
JPH05240057A (en) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp Engine for vehicle
JPH08254161A (en) * 1995-03-16 1996-10-01 Isuzu Motors Ltd Supercharging type internal combustion engine
JP2005171778A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Cylinder supercharging engine
JP2008115786A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Supercharging system for internal combustion engine

Also Published As

Publication number Publication date
JP6287148B2 (en) 2018-03-07
JP2015113738A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
CN107110073B (en) EGR system with particulate filter for gasoline engine
US9316180B2 (en) Internal combustion engine
US9273602B2 (en) Intake air oxygen compensation for EGR
US8739530B2 (en) Compressor flow control
US8365519B2 (en) Charging device with exhaust gas temperature control device
US9243547B2 (en) Dual inlet and outlet exhaust gas recirculation cooler for turbocharged engine
JP5029780B2 (en) Multistage supercharging system controller
US9835116B2 (en) Internal combustion engine for a motor vehicle, and method for operating such an internal combustion engine
US10060335B2 (en) Turbocharger arrangement having compressor wheels arranged in parallel and a method for operating a turbocharger arrangement
US9021804B2 (en) Self-sustaining low pressure EGR and exhaust system
US10215086B2 (en) Exhaust gas recirculation system for an internal combustion engine and method for operating such an exhaust gas recirculation system
WO2015087753A1 (en) Supercharging system for engine
JP2015129457A (en) Internal combustion engine controller
JP2013167218A (en) Recirculating device of internal combustion engine
US9488138B2 (en) Control device of internal combustion engine
CN105008705A (en) Exhaust gas system for an internal combustion engine
JP2008261294A (en) Control device for internal combustion engine with supercharger
US10316738B2 (en) Turbocharger engine
JP2012233412A (en) Compressed air supply method for internal combustion engine and internal combustion engine
JP6675781B2 (en) Supercharged engine
JP2010138759A (en) Supercharging system for internal combustion engine and control method therefor
FI124513B (en) A wastegate arrangement for a turbocharger unit comprising a valve arrangement for controlling a gas stream in a turbocharged piston combustion engine and a method for controlling gas flowing past a turbine in the turbocharger unit
JP2009299540A (en) Exhaust gas recirculation device in multi-cylinder internal combustion engine
GB2459694A (en) Exhaust gas recirculation
JP6459496B2 (en) EGR gas supply structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869016

Country of ref document: EP

Kind code of ref document: A1