WO2015087579A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2015087579A1
WO2015087579A1 PCT/JP2014/070995 JP2014070995W WO2015087579A1 WO 2015087579 A1 WO2015087579 A1 WO 2015087579A1 JP 2014070995 W JP2014070995 W JP 2014070995W WO 2015087579 A1 WO2015087579 A1 WO 2015087579A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
air conditioner
outdoor
receiver
Prior art date
Application number
PCT/JP2014/070995
Other languages
English (en)
French (fr)
Inventor
上野円
田中慎一
瀬津道生
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015087579A1 publication Critical patent/WO2015087579A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/42Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner capable of adjusting the amount of refrigerant circulating in a refrigerant circuit.
  • the amount of refrigerant required for the refrigerant circuit varies greatly depending on the size of the condenser.
  • the refrigerant flow path between the indoor heat exchanger and the outdoor heat exchanger that constitute the refrigerant circuit The volume of is different. Therefore, the amount of refrigerant required for the refrigerant circuit varies greatly between the cooling operation and the heating operation. The greater the difference between the amount of refrigerant required for the refrigerant circuit and the amount of refrigerant that actually circulates in the refrigerant circuit, the lower the efficiency of operation of the air conditioner.
  • Patent Document 1 discloses a refrigerant storage device (receiver) connected in flow communication with a refrigerant circuit by at least one refrigerant line, and a refrigerant flow control device arranged in at least one refrigerant line.
  • the refrigerant flow control device is described as a refrigerant vapor compression system having an open position where the refrigerant flows through the refrigerant line and a closed position where the refrigerant flow through the refrigerant line is blocked.
  • the amount of refrigerant in the refrigerant circuit can be adjusted by controlling opening and closing of the refrigerant flow control device.
  • an object of the present invention is to provide an air conditioner that can easily adjust the amount of refrigerant using a receiver without complicating the structure and has high operating efficiency. .
  • a refrigerant circuit including a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger, a receiver that stores the refrigerant, and a connecting pipe that connects the refrigerant circuit and the receiver.
  • the connecting pipe has one end connected to the inlet / outlet of the receiver and the other end connected to the refrigerant circuit, and at least a part of the high-pressure refrigerant discharged from the compressor during cooling operation is provided in the refrigerant pipe.
  • the receiver is connected to an area existing as a liquid phase, and the receiver is provided so that heat can be exchanged with a pipe through which a refrigerant flows from the indoor heat exchanger to the compressor during cooling operation.
  • the temperature of the refrigerant flowing through a pipe (hereinafter referred to as a heat exchange pipe) provided so as to be able to exchange heat with the receiver is introduced into the receiver through the connecting pipe,
  • the temperature is lower than the supercooled high-pressure refrigerant temperature mixed with the gas phase. Therefore, the refrigerant introduced into the receiver is cooled and can be stored in the receiver in a liquefied state.
  • the receiver since the high-temperature and high-pressure gaseous refrigerant discharged from the compressor passes through the heat exchange pipe, the receiver is also heated to a high temperature. Thereby, since the refrigerant in the receiver is in a gaseous state, the refrigerant in the receiver can be returned to the refrigerant circuit.
  • the present invention is preferably applied to a case where the optimum amount of refrigerant circulating through the refrigerant circuit during cooling operation (optimum refrigerant amount) is smaller than the optimum refrigerant amount during heating operation due to design reasons. . That is, in the above case, by adopting the configuration of the present invention, the refrigerant quantity (circulating refrigerant quantity) circulating in the refrigerant circuit is automatically adjusted according to the operation mode (air-conditioning operation), and the operation efficiency is excellent.
  • An air conditioner can be provided.
  • the optimum refrigerant amount means the refrigerant amount that maximizes the COP (coefficient of performance) represented by “air conditioning capacity” / “power consumption”.
  • the rated operation means an operation in which the rotation speed of the compressor is driven at a preset constant value. As the rotation speed of the compressor, a standard rotation speed with high operation efficiency between the minimum rotation speed and the maximum rotation speed is set.
  • the receiver that stores the refrigerant in the refrigerant circuit, is connected to an area in which at least a part of the high-pressure refrigerant discharged from the compressor during the cooling operation exists as a liquid phase, Since heat exchange with the pipe through which the refrigerant flows from the heat exchanger to the compressor is possible, the refrigerant can be automatically stored in the receiver during cooling operation, and the refrigerant in the receiver can be returned to the refrigerant circuit during heating operation. Become. Therefore, an air conditioner with high operating efficiency can be obtained in the type of air conditioner in which the optimum refrigerant amount is smaller during cooling operation than during heating operation.
  • the figure which shows the refrigerant circuit of the air conditioner of this invention The schematic diagram which shows the 2nd arrangement
  • the figure which shows the principal part of the refrigerant circuit of a form different from the connection pipe in FIG. The perspective view which shows the state which removed the cabinet and outdoor fan of the outdoor unit of this invention.
  • the top view of the baseplate (state in which the outdoor heat exchanger is installed) of the outdoor unit of the present invention The perspective view which shows the state which removed the cabinet of the outdoor unit of this invention
  • the schematic diagram which shows the positional relationship of the outdoor fan and drain outlet of this invention Partial sectional view showing the bottom plate of a conventional outdoor unit
  • the partial cross section figure which shows the baseplate of the outdoor unit of this invention The perspective view of the baseplate which attached the scattering prevention wall of another form of this invention
  • Sectional view showing a conventional electric expansion valve Refrigerant circuit diagram showing a second embodiment of the present invention Schematic which shows a form different from the aperture mechanism in this embodiment.
  • Control block diagram of the air conditioner of this embodiment The flowchart figure which shows the control of the differential pressure reduction of this embodiment
  • FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention.
  • the air conditioner of the present embodiment is a separate air conditioner in which an indoor unit and an outdoor unit are connected by a thin tube and a thick tube. More specifically, it is a single-type air conditioner in which one indoor unit 2 is connected to one outdoor unit 1, and includes a compressor 3, an outdoor heat exchanger 4 and a throttle device accommodated in the outdoor unit 1. 5 are connected in series by refrigerant piping in this order.
  • the indoor heat exchanger 7 accommodated in the indoor unit 2 is connected by piping from the expansion device 5 via the two-way valve 6, and the outdoor compressor 3 is again connected from the indoor heat exchanger 7 via the three-way valve 8.
  • a refrigerant circuit is configured by connecting to the pipe.
  • the expansion device 5 is a device that adjusts the flow rate of the refrigerant.
  • the electric expansion valve is used, but the invention is not limited to this, and a capillary tube can also be used.
  • the compressor 3 is connected to the refrigerant circuit via a four-way valve 9 that is a switching valve. By switching the four-way valve 9, either direction of the outdoor heat exchanger 4 side or the indoor heat exchanger 7 side is selected. The compressed refrigerant can be sent out. By switching the four-way valve 9, the outdoor heat exchanger 4 and the indoor heat exchanger 7 are used as a condenser or an evaporator.
  • the high-temperature refrigerant discharged from the compressor 3 is circulated in the direction indicated by the solid line in the figure, and passes through the outdoor heat exchanger 4 as a condenser and the expansion device 5 and the indoor heat as an evaporator. Cooling operation is realized by flowing into the exchanger 7.
  • the refrigerant discharged from the compressor 3 is circulated in the direction of the broken arrow shown in the figure, and flows into the outdoor heat exchanger 4 as an evaporator via the indoor heat exchanger 7 as a condenser and the expansion device 5. By this, heating operation is realized.
  • the receiver 13 for storing the refrigerant is connected to the refrigerant circuit via the connecting pipe 14.
  • An entrance / exit 15 is formed on the bottom surface of the receiver 13 downward.
  • At least one end side of the connecting pipe 14 is disposed upward, and an upper end thereof is inserted into the receiver 13 from the entrance / exit 15.
  • the other end of the connecting pipe 14 is connected to an area in the refrigerant circuit where at least a part of the high-pressure refrigerant discharged from the compressor 3 during the cooling operation exists as a liquid phase, that is, the refrigerant exists in a supercooled state.
  • the other end side of the connecting pipe 14 is connected to a pipe 11 that connects the outdoor heat exchanger 4 and the expansion device 5.
  • the end portion on the other end side of the connecting pipe 14 is connected to the refrigerant circuit so as not to be higher than the horizontal end portion on the one end side of the connecting pipe 14. This is to prevent a trap in which refrigerant or oil accumulates in the connecting pipe.
  • the indoor heat exchanger 7 and the compressor 3 are connected by piping via a three-way valve 8.
  • the receiver 13 is welded by a copper brazing material 16 to a pipe 12 connecting the three-way valve 8 and the four-way valve 9 among the pipes connecting the indoor heat exchanger 7 and the compressor 3. Thereby, heat exchange can be performed between the receiver 13 and the pipe 12.
  • what is necessary is just to provide the receiver 13 so that heat exchange with the piping 12 is possible.
  • providing so that heat exchange is possible means contacting both directly or indirectly so that heat exchange is possible between the receiver 13 and the pipe 12.
  • a method of forming a concave surface to which the pipe 12 can be in close contact with the receiver 13 and fixing them both in direct contact with a fastener such as a band can be illustrated.
  • the receiver 13 may be brought into contact with the branch pipe 12a, or, as shown in FIG. 3, a bypass pipe 12b connected in parallel to the pipe 12 is provided in a part of the pipe 12, and the receiver is provided in the bypass pipe 12b. 13 may be brought into contact with each other.
  • the installation position of the receiver 13 can be determined regardless of the position of the pipe 12 in the outdoor unit 1, and the degree of freedom in design can be increased.
  • the capacity of the outdoor heat exchanger 4 is designed to be smaller than the capacity of the indoor heat exchanger 7. Therefore, more refrigerant is required during heating operation than during cooling operation.
  • the optimum refrigerant amount during the heating rated operation is larger than the optimum refrigerant amount during the cooling rated operation. That is, the cooling operation and the dehumidifying operation are an air conditioning operation with a small optimal refrigerant amount, and the heating operation is an air conditioning operation with a large optimal refrigerant amount.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 3 is in a supercooled state in which a gas phase and a liquid phase are mixed while passing through the outdoor heat exchanger 4, Most of the light passes through the expansion device 5 as it is, but a part is introduced into the receiver 13 via the connecting pipe 14.
  • the refrigerant that has passed through the expansion device 5 and the indoor heat exchanger 7 in this order passes through a state pipe 12 of low-temperature and low-pressure gas. Then, the receiver 13 is at a lower temperature than the supercooled refrigerant introduced into the receiver 13 by heat exchange with the pipe 12. Therefore, the refrigerant introduced into the receiver 13 is cooled and stored in the receiver 13 in a liquefied state. Thereby, the amount of circulating refrigerant can be reduced during the cooling operation.
  • the receiver 13 is also heated to a high temperature. Accordingly, since the refrigerant in the receiver 13 exists in a gaseous state, the refrigerant can be returned to the refrigerant circuit without accumulating the refrigerant in the receiver 13. Thereby, at the time of heating operation, the amount of circulating refrigerant can be increased.
  • the other end side of the connecting pipe 14 is connected to the pipe 11, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the supercooling concentrates on the 4a after the receiver until the refrigerant has accumulated in the receiver in the heat exchanger 4.
  • the heat exchange amount increases when the refrigerant is in a gas state or a two-phase state. That is, in the heat exchanger 4, the portion from the heat exchanger entrance to the receiver is overheated or in a two-phase state, and the heat exchange capability can be sufficiently exhibited.
  • a fin-and-tube heat exchanger has a large number of heat radiation fins arranged in parallel at equal intervals and a plurality of stages of refrigerant pipes that penetrate the heat radiation fins, and the end of the refrigerant pipe is U-shaped.
  • the structure is connected by a tube.
  • the connecting pipe 14 in the supercooling region 4a of the outdoor heat exchanger 4 the other end of the connecting pipe 14 may be connected to the U-shaped pipe.
  • an outdoor fan 17 is installed in the outdoor unit 1 after taking outside air into the outdoor unit 1 and passing it through the outdoor heat exchanger 4 and then sending it out of the unit.
  • an inlet and an outlet are formed in an outdoor unit cabinet (not shown), and the outdoor heat exchanger 4 and the outdoor fan 17 are arranged in this order between the inlet and the outlet.
  • the bottom plate 18 of the outdoor unit is formed with a recess 19 that collects the condensed water C dripped from the outdoor heat exchanger 4, and the drain port 20 that drains the condensed water C to the outside of the outdoor unit 1 is formed at the bottom of the recess 19. Is done.
  • the bottom plate 18 is formed in a substantially rectangular shape in which the length in the left-right direction X is longer than the length in the front-rear direction Y.
  • the outdoor heat exchanger 4 is formed in a substantially L shape, and is installed on the bottom plate 18 so that the long side portion of the outdoor heat exchanger 4 is parallel to the left-right direction X.
  • An outdoor fan 17 is installed on the front side of the long side portion of the outdoor heat exchanger 4.
  • the drain port 20 is formed in a long hole shape, and the long edge portion is arranged along the left-right direction X of the bottom plate 18.
  • the scattering prevention wall 21 for preventing the condensate C accumulated in the recess 19 from scattering is formed on a part of the peripheral edge of at least one of the recess 19 and the drain port 20. Thereby, it is possible to prevent the condensed water C from being scattered as minute water droplets D and adhering to the outdoor fan 17 or the outdoor heat exchanger 4. Moreover, it can suppress blowing out of an outdoor unit.
  • the scattering prevention wall 21 is formed at a part of the peripheral edge of the drain port 20.
  • the scattering prevention wall 21 will be described in detail.
  • the scattering prevention wall 21 is formed in a portion near the outdoor fan 17 in the entire peripheral edge of the drain port 20.
  • the side close to the outdoor fan 17 is the front side when the drainage port 20 is divided into two equal parts in the front and rear direction Y in the front-rear direction Y of the bottom plate 18 by a center line in the longitudinal direction (dashed line). (The arrow side divided by the alternate long and short dash line).
  • the air flow A collides from the front with the condensate C that has risen in the peripheral edge (the front edge of the drain outlet 20) on the side close to the outdoor fan 17 in the peripheral edge of the drain outlet 20.
  • the condensed water C is scattered as water droplets D.
  • the water droplet D adheres to the outdoor fan 17 or the outdoor heat exchanger 4 and freezes, thereby causing problems such as the outdoor fan 17 being damaged or the heat exchanger performance of the outdoor heat exchanger 4 being lowered. Moreover, it may be blown out of the outdoor unit.
  • the scattering prevention wall 21 is formed at the front edge portion of the entire peripheral edge of the drain port 20, the condensed water C is exposed to the air flow A by the scattering prevention wall 21, as shown in FIG. Therefore, scattering of the condensed water C can be effectively suppressed.
  • the scattering prevention wall 21 is formed over the straight edge portion formed in parallel with the left-right direction X in the front edge portion of the drain port 20.
  • the scattering prevention wall 21 may be formed for each of the recesses 19 and / or the drain ports 20 as described above.
  • the scattering prevention wall 21 protrudes radially inward of the drain port 20 (if the scattering prevention wall 21 is provided on the peripheral edge of the recess, it protrudes radially inward of the recess), or It is preferable to project toward the upper side of the drain port (or recess). Furthermore, it is more preferable to project upward toward the inside in the radial direction of the drain port 20, that is, to incline obliquely upward (see FIG. 10). At this time, in the case of being obliquely upward, it is preferably 30 ° or more and around 45 °.
  • the scattering prevention wall 21 can be formed not only on the peripheral edge of the drain outlet 20 but also on the peripheral edge of the recess 19 as shown in FIG.
  • the anti-scattering wall 21 may be provided so as to protrude radially inward of the concave portion at a portion (front side portion) closer to the outdoor fan 17 in the entire peripheral edge portion of the concave portion.
  • the objective is to block the water droplet D splashed from the peripheral part of the drain outlet 20 with the scattering prevention wall 21, and to adhere to the outdoor fan 17 or the outdoor heat exchanger 4. Is to prevent it.
  • the scattering prevention wall 21 in this case may be provided so as to protrude in the horizontal direction so as to cover a part of the recess 19.
  • the scattering prevention wall 21 may be formed on either the peripheral edge of the drain outlet or the peripheral edge of the recess, or may be formed on both the peripheral edge of the drain outlet and the peripheral edge of the recess. .
  • the scattering prevention wall 21 can be formed separately from the bottom plate 18 and attached to the bottom plate 18.
  • the anti-scatter wall 21 is integrated with the bottom plate 18 by leaving a part when the drain port of the bottom plate 18 is punched. It is also possible to form it. In this case, it is preferable that the anti-scattering wall 21 is bent upward to form a cut and raised piece. According to the said structure, compared with the case where a scattering prevention wall is provided separately from a baseplate, the process of producing a scattering prevention wall and the process of attaching a scattering prevention wall to a bottomplate can be skipped, and productivity is improved. It becomes possible.
  • the air conditioner of the present invention includes a refrigerant circuit including a compressor, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger, and the compressor, the outdoor heat exchanger, and the throttling device are accommodated in an outdoor unit, and the outdoor unit
  • a recess for collecting condensed water dripped from the outdoor heat exchanger is formed on the bottom plate of the machine, a drain outlet is formed on the bottom surface of the recess, and a recess is formed in a part of the peripheral edge of at least one of the recess and the drain outlet. It can be set as the structure in which the scattering prevention wall which prevents scattering of the condensed water accumulated in was formed.
  • the invention according to the present embodiment relates to an air conditioner capable of reheat dehumidification.
  • an electric expansion valve used in an air conditioner one having a configuration in which an opening degree is adjusted by driving a stepping motor as described in JP-A-2006-258380 is known.
  • the electric expansion valve having such a configuration includes a valve main body 30, a ring-shaped valve seat 31 formed inside the valve main body 30, and a center line of the valve seat 31. And a valve stem 32 disposed along the same.
  • valve stem (valve element) 32 is formed in a conical shape, and the valve stem 32 is provided so as to be movable toward or away from the valve seat 31, that is, in the vertical direction in the figure. Yes.
  • An inlet side pipe 33 is joined to the side opening of the valve body 30, and an outlet side pipe 34 is joined to the lower side opening of the valve body 30.
  • a stepping motor 35 for moving the valve rod 32 up and down is provided on the upper portion of the valve body 30.
  • the rotor 36 of the stepping motor 35 is coupled to the upper end portion of the valve rod 32.
  • a screw groove is formed in the upper outer peripheral portion of the valve body 30, and the inner peripheral portion of the rotor 36 is screwed into the screw groove.
  • the electromagnetic valve described in FIG. 12 has a problem that the expansion valve is also expensive because an expensive part such as a stepping motor is used. Therefore, the present embodiment aims to provide an air conditioner that can suppress a decrease in convenience while using inexpensive parts instead of an electric expansion valve using a stepping motor.
  • an expansion valve that is interposed between indoor heat exchangers and functions as an expansion valve during reheat dehumidification operation The purpose is to condense the moisture in the air, so there is little need to adjust the valve opening during the dehumidification operation, and it can be replaced with a throttle mechanism that uses a direct acting solenoid valve instead of an electric expansion valve.
  • the cooling operation can be smoothly performed without reducing the convenience by performing the control for reducing the differential pressure.
  • the present invention includes a refrigerant circuit including a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger, and an indoor unit that houses the indoor heat exchanger and an indoor fan
  • the indoor heat exchanger includes: The first heat exchanger and the second heat exchanger are connected in series via a throttle mechanism, the first heat exchanger functions as a condenser, and the second heat exchanger functions as an evaporator.
  • An air conditioner capable of thermal dehumidification operation wherein the throttle mechanism uses a solenoid valve, and when the reheat dehumidification operation ends, the difference between the upstream refrigerant pressure and the downstream refrigerant pressure of the throttle mechanism Control is performed to reduce the pressure.
  • the throttle mechanism uses a solenoid valve
  • the basic structure is the same as that of a direct acting solenoid valve, but a part of the structure is used as a throttle mechanism, or a part of the throttle mechanism is used directly. This means using a dynamic solenoid valve.
  • a structure in which a refrigerant flow passage having a throttle function is formed in a closed state by partially changing the direct acting solenoid valve can be used as the throttle mechanism.
  • the throttle mechanism that functions as an expansion valve during the reheat dehumidifying operation uses a direct acting solenoid valve, and is inexpensive.
  • the upstream side refrigerant pressure of the throttle mechanism By performing control to reduce the differential pressure between the refrigerant pressure and the downstream refrigerant pressure, it is possible to obtain a highly convenient air conditioner that can quickly shift to the cooling operation.
  • FIGS. 13 and 14 are views showing a second embodiment of the present invention
  • FIG. 13 is a refrigerant circuit diagram of the present embodiment
  • FIG. 14 is a schematic view of another embodiment of the throttle mechanism.
  • the air conditioner of this embodiment is a single-type air conditioner in which one indoor unit 2 is connected to one outdoor unit 1. And the compressor 3, the outdoor heat exchanger 4, and the expansion device 5 accommodated in the outdoor unit 1 are connected in series by the refrigerant pipe in this order.
  • the indoor heat exchanger 7 accommodated in the indoor unit 2 is connected by piping from the expansion device 5 via the two-way valve 6, and the outdoor compressor 3 is again connected from the indoor heat exchanger 7 via the three-way valve 8.
  • a refrigerant circuit is configured by connecting to the pipe.
  • An indoor fan 22 is installed in the indoor unit 2 after taking air into the indoor unit and passing it through the indoor heat exchanger 7, and then sending it out of the unit.
  • the expansion device 5 is composed of an electric expansion valve that can be fully opened without a throttle operation.
  • the compressor 3 is connected to the refrigerant circuit via a four-way valve 9 that is a switching valve. By switching the four-way valve 9, either direction of the outdoor heat exchanger 4 side or the indoor heat exchanger 7 side is selected. The compressed refrigerant can be sent out. By switching the four-way valve 9, the outdoor heat exchanger 4 and the indoor heat exchanger 7 are used as a condenser or an evaporator.
  • the indoor heat exchanger 7 is configured such that the first heat exchanger 7a and the second heat exchanger 7b are connected in series via the throttle mechanism 23.
  • a direct acting solenoid valve is used as the throttle mechanism 23 in which a refrigerant flow passage having a throttle function in a closed state is formed.
  • the direct acting solenoid valve used as the throttle mechanism 23 uses an elastic body such as a solenoid and a coil to move the valve stem up and down instead of the stepping motor of the electric expansion valve shown in FIG.
  • valve stem moves downward so that the valve stem approaches the valve seat against the elastic body and closes, and when the energization stops, the valve stem moves upward by the restoring force of the elastic body And it is set as the structure which will return to the original position and will be in an open state.
  • the valve body which is the tip of the valve stem and is in contact with the valve seat, is provided with a notch, a protrusion, a through hole, etc., so that a refrigerant flow passage having a throttling function is formed in the closed state.
  • the direct acting solenoid valve is fully opened during the cooling operation and the heating operation, and no pressure difference is generated between the first heat exchanger 7a and the second heat exchanger 7b.
  • the refrigerant discharged from the compressor 3 is circulated in the direction of the broken arrow shown in the figure, and passes through the indoor heat exchanger 7 as a condenser and the expansion device 5, and the outdoor heat exchanger as an evaporator.
  • the heating operation is realized by flowing into the power source 4.
  • the high-temperature refrigerant discharged from the compressor 3 is circulated in the direction of the solid arrow shown in the figure, and flows into the outdoor heat exchanger 4 as a condenser and the indoor heat exchanger 7 as an evaporator via the expansion device 5.
  • the cooling operation is realized.
  • the refrigerant flows in the direction of the solid arrow as in the cooling operation.
  • the expansion device 5 is fully opened, and the expansion mechanism 23 functions as an expansion valve by forming a refrigerant flow passage with the electromagnetic valve closed.
  • the 1st heat exchanger 7a functions as a condenser
  • the 2nd heat exchanger 7b functions as an evaporator
  • the size of the refrigerant flow passage is the size that exerts the most throttling action.
  • a cavity tube 24 and a direct acting solenoid valve 25 are arranged in parallel between the first heat exchanger 7a and the second heat exchanger 7b.
  • the air conditioner includes a control device 26 that controls the operation of the refrigeration circuit and controls air conditioning operations such as cooling operation, heating operation, and reheat dehumidification operation.
  • the air conditioner has a room temperature sensor 27 that detects the room temperature, a humidity sensor 28 that detects the room humidity, and a detection unit 29 that detects that the valve rod of the direct acting solenoid valve of the throttle mechanism 23 is in the “open” position.
  • a detection unit 29 for example, a limit switch that contacts the valve rod and outputs a detection signal when the valve rod returns to the open position can be used.
  • the control device 26 is composed of a microcomputer equipped with a CPU, a memory, etc., and according to the operation mode of the air conditioning operation, based on the output of these temperature sensor / humidity sensor, the remote control, the operation signal of the operation switch of the main body, etc.
  • the operation of the refrigerant circuit is controlled by controlling the operation of the compressor 3, the indoor fan 22, the expansion device 5, the expansion mechanism 23, the four-way valve 9, and the like.
  • FIG. 16 is a flowchart showing an example of control in the present embodiment.
  • the control device 26 starts the heating operation at the end of the reheat dehumidifying operation.
  • “at the end of the reheat dehumidification operation” means that during the reheat dehumidification operation, an operation switching command from the dehumidification operation to the cooling operation was received by the operation signal of the remote control or the operation switch of the main body.
  • the control device 26 only receives a stop command for the reheat dehumidification operation because it may be possible to operate the start button for the cooling operation after pressing the stop button for the reheat dehumidification operation. Even so, it may be determined that “at the end of the reheat dehumidifying operation” and control for reducing the differential pressure may be performed.
  • the direction of the refrigerant flow is switched to the heating operation side by the four-way valve 9.
  • the rotation speed of the compressor 3 is set to the rotation speed during normal heating operation.
  • the refrigerant flows in the opposite direction to that during the reheat dehumidifying operation, so that the differential pressure generated between the upstream side and the downstream side of the throttle mechanism 23 during the reheat dehumidifying operation is reduced.
  • the valve stem of the solenoid valve is quickly returned to the “open” position by the restoring force of the elastic body or by the reverse pressure of the refrigerant being applied to the valve stem in addition to the restoring force of the elastic body.
  • the room temperature sensor 27 is usually installed between the air inlet of the indoor unit and the indoor heat exchanger 7. Therefore, whether the louver panel is opened as usual for heating operation and the indoor fan 22 is operated or the louver panel is closed and the indoor fan 22 is stopped, the direct acting solenoid valve is By returning to the open state, the temperature of the room temperature sensor 27 rises.
  • the control device 26 determines that the direct acting solenoid valve (valve rod) has returned to the open state by receiving either a detection signal from the detection unit 29 or detecting whether the temperature in the room temperature sensor 27 has increased. The heating operation is finished and the reheat dehumidification operation is finished.
  • the control device 26 stops the compressor 3 and stops the direct acting solenoid valve of the throttle mechanism 23. It is also possible to operate the indoor fan 22 until it is in the open state or until it is detected that a predetermined time has passed. In this case, the time for operating the indoor fan 22 may be determined in advance by experiments. At this time, the rotational speed of the indoor fan may be faster than that during reheat dehumidification. By doing so, the pressure difference is quickly eliminated.
  • the air conditioner of the present embodiment includes a refrigerant circuit including a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger, and the indoor heat exchanger and the indoor fan.
  • the indoor heat exchanger includes a first heat exchanger and a second heat exchanger connected in series via a throttle mechanism, and the first heat exchanger functions as a condenser.
  • An air conditioner capable of reheating and dehumidifying operation in which the second heat exchanger functions as an evaporator, wherein the throttling mechanism uses an electromagnetic valve, and when the reheating and dehumidifying operation ends, the throttling mechanism The control is performed to reduce the differential pressure between the upstream refrigerant pressure and the downstream refrigerant pressure.
  • the throttle mechanism may be configured to form a refrigerant flow passage having a throttle function in a closed state.
  • the throttle mechanism may be configured such that a cavity tube and a direct acting solenoid valve are arranged in parallel between the first heat exchanger and the second heat exchanger.
  • a control device for controlling the air conditioning operation is provided, and the control device controls whether the direct acting solenoid valve is open at the end of the reheat dehumidifying operation as a control for reducing the differential pressure.
  • the heating operation can be performed until it is detected that the room temperature has increased.
  • a control apparatus stops the said indoor fan during the said heating operation.
  • control device as a control to reduce the differential pressure, at the end of the reheat dehumidification operation, the compressor is stopped, the direct acting solenoid valve is open, or You may make it drive the said indoor fan until it detects that predetermined time passed.
  • the present invention is not limited to the above embodiment, and many modifications and changes can be made to the above embodiment within the scope of the present invention.
  • the supercooling region is formed in a part of the outdoor heat exchanger.
  • the present invention is not limited to this, and the third embodiment is a separate body from the outdoor heat exchanger.
  • a supercooler may be used.
  • the outdoor heat exchanger and the subcooler can be regarded as one outdoor heat exchanger.
  • the pipe diameter of the connecting pipe 14 in the first embodiment may be the same diameter as the pipe 12, or may be a small diameter or a large diameter. In the case of a large diameter, it becomes strong against vibration, but it becomes difficult to bend and the degree of freedom of receiver installation becomes low. On the other hand, if it is a small diameter, it becomes weak against vibration, but it is easy to bend and the degree of freedom of receiver installation is increased. Therefore, an appropriate pipe diameter of the connecting pipe 14 may be selected by experiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

構造が複雑化することなく、レシーバを用いて冷媒量調整を容易に行なうことが可能で、運転効率の高い空気調和機を提供することを目的とする。 圧縮機3、室内熱交換器7、絞り装置5及び室外熱交換器4を含む冷媒回路と、冷媒を溜めるレシーバ13と、前記冷媒回路及びレシーバ13を連結する連結管14とを備えた空気調和機であって、連結管14は、一端側が、レシーバ13の出入口15に接続され、他端側が、前記冷媒回路において、冷房運転時に圧縮機3から吐出した高圧冷媒の少なくとも一部が液相として存在するエリアに接続され、レシーバ13は、冷房運転時に室内熱交換器7から圧縮機3に冷媒が流れる配管12と熱交換可能なように設けられたことを特徴とする。

Description

空気調和機
 本発明は、冷媒回路を循環する冷媒量を調整可能な空気調和機に関する。
 現在の空気調和機のほとんどは、冷房と暖房が切り替えられるように冷媒回路が構成されている。また、冷媒回路に必要な冷媒量は、凝縮器の大きさによって大きく変化するところ、一般的な空気調和機においては、冷媒回路を構成する室内熱交換器と室外熱交換器とで冷媒流路の容積が異なる。したがって、冷房運転時と暖房運転時とで、冷媒回路に必要とされる冷媒量が大きく変化する。冷媒回路に必要とされる冷媒量と、実際に冷媒回路を循環する冷媒量との差が大きくなるほど、空気調和機の運転の効率が低下する。
 上記課題に対して、特許文献1には、少なくとも1つの冷媒ラインによって冷媒回路と流通連通して接続される冷媒貯蔵装置(レシーバ)と、少なくとも1つの冷媒ラインに配された冷媒流制御装置とを備え、冷媒流制御装置は、冷媒が冷媒ラインを通流する開位置と、冷媒ラインを通る冷媒の流れを遮断する閉位置とを有する冷媒蒸気圧縮システムが記載されている。特許文献1では、冷媒流制御装置の開閉を制御することで、冷媒回路内の冷媒量を調整可能としている。
特開2011-521194号公報
 上述のように、特許文献1では、冷媒制御装置の開閉制御が必要とされていた。
 そこで、本発明においては、上記に鑑み、構造が複雑化することなく、レシーバを用いて冷媒量調整を容易に行なうことが可能で、運転効率の高い空気調和機を提供することを目的とする。
 上記目的を達成するために、本発明では、圧縮機、室内熱交換器、絞り装置及び室外熱交換器を含む冷媒回路と、冷媒を溜めるレシーバと、前記冷媒回路及びレシーバを連結する連結管とを備えた空気調和機であって、前記連結管は、一端側が、前記レシーバの出入口に接続され、他端側が、前記冷媒回路において、冷房運転時に圧縮機から吐出した高圧冷媒の少なくとも一部が液相として存在するエリアに接続され、前記レシーバは、冷房運転時に室内熱交換器から圧縮機に冷媒が流れる配管と熱交換可能なように設けられたことを特徴とする。
 上記構成によれば、冷房運転時において、レシーバとの間で熱交換可能に設けられる配管(以下、熱交換配管)を流れる冷媒温度は、連結管を通ってレシーバに導入される、液相と気相とが混在した過冷却状態の高圧冷媒温度よりも低温となる。従って、レシーバ内に導入された冷媒は冷却され、液化した状態でレシーバに貯蔵することが可能となる。また、暖房運転時は、熱交換配管は、圧縮機から吐出された高温高圧のガス状の冷媒が通過するため、レシーバも加熱されて高温となる。これによって、レシーバ内の冷媒はガス状となるため、レシーバ内の冷媒を冷媒回路に戻すことが可能となる。
 本発明は、設計上の理由により、冷房運転時に冷媒回路を循環する冷媒の最適量(最適冷媒量)が、暖房運転時の最適冷媒量よりも少なくなるようなケースにおいて、好適に適用される。すなわち、上記ケースにおいて、本発明の構成を採用することで、運転モード(冷暖房運転)に応じて、冷媒回路を循環する冷媒量(循環冷媒量)を自動的に調整して運転効率に優れた空気調和機を提供することが可能となる。
 ここで、最適冷媒量とは、「空調能力」/「消費電力」で表わされるCOP(成績係数)が最大となる冷媒量を意味する。冷房運転と暖房運転とで最適冷媒量を比較する場合、冷暖房運転とも定格運転を行ったときの最適冷媒量を比較することができる。また、定格運転とは、圧縮機の回転数を予め設定した一定値で駆動させる運転を意味する。圧縮機の回転数としては、最小回転数と最大回転数の間の、運転効率が高く標準的な回転数が設定される。
 上述のように、本発明によれば、冷媒回路において、冷房運転時に圧縮機から吐出した高圧冷媒の少なくとも一部が液相として存在するエリアに冷媒を溜めるレシーバを接続するとともに、冷房運転時に室内熱交換器から圧縮機に冷媒が流れる配管と熱交換可能なように設けたため、自動的に冷房運転時にはレシーバ内に冷媒を溜め、暖房運転時にはレシーバ内の冷媒を冷媒回路に戻すことが可能となる。したがって、冷房運転時の方が暖房運転時よりも最適冷媒量が少なくなるタイプの空気調和機において、運転効率の高い空気調和機を得ることができる。
本発明の空気調和機の冷媒回路を示す図 本発明のレシーバと熱交換配管との第2の配置形態を示す模式図 本発明のレシーバと熱交換配管との第3の配置形態を示す模式図 図1における連結管とは別形態の冷媒回路の要部を示す図 本発明の室外機のキャビネット及び室外ファンを外した状態を示す斜視図 本発明の室外機の底板(室外熱交換器が設置された状態)の平面図 本発明の室外機のキャビネットを外した状態を示す斜視図 本発明の室外ファンと排水口の位置関係を示す模式図 従来の室外機の底板を示す一部断面図 本発明の室外機の底板を示す一部断面図 本発明の別の形態の飛散防止壁を取り付けた底板の斜視図 従来の電動膨張弁を示す断面図 本発明の第2実施形態を示す冷媒回路図 本実施形態における絞り機構とは別の形態を示す概略図 本実施形態の空気調和機の制御ブロック図 本実施形態の差圧低減の制御を示すフローチャート図 図16とは別の制御を示すフローチャート図
[第1実施形態]
 以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明に係る空気調和機の実施形態を示す冷媒回路図である。図示のごとく、本実施形態の空気調和機は、室内機と室外機が、細管、太管で連結されたセパレート型空気調和機である。より具体的には、1台の室外機1に1台の室内機2が接続されたシングル型空気調和機であり、室外機1に収容される圧縮機3、室外熱交換器4及び絞り装置5をこの順に冷媒配管で直列に接続している。
 さらに、絞り装置5から二方弁6を介して、室内機2に収容される室内熱交換器7を配管接続し、室内熱交換器7から三方弁8を介して、再び室外の圧縮機3に配管接続して冷媒回路を構成している。絞り装置5は、冷媒の流量を調整する装置であり、本実施形態では電動膨張弁が用いられているが、これに限らずキャピラリチューブを用いることもできる。
 圧縮機3は、切換弁である四方弁9を介して冷媒回路に接続されており、四方弁9を切り換えることにより、室外熱交換器4側、又は、室内熱交換器7側のいずれの方向へも圧縮した冷媒を送出可能な構成とされている。この四方弁9の切り換えにより、室外熱交換器4と室内熱交換器7とが、凝縮器又は蒸発器として使用される。
 具体的に、図1では、圧縮機3から吐出される高温の冷媒が、図示する実線矢印方向に流通され、凝縮器としての室外熱交換器4、絞り装置5を経て蒸発器としての室内熱交換器7に流入されることによって冷房運転が実現される。また、圧縮機3から吐出される冷媒が、図示する破線矢印方向に流通され、凝縮器としての室内熱交換器7、絞り装置5を経て蒸発器としての室外熱交換器4に流入されることによって暖房運転が実現される。
 本発明では、冷媒を溜めるレシーバ13が連結管14を介して上記冷媒回路に接続される。レシーバ13の底面に出入口15が下向きに形成される。連結管14は少なくとも一端側が上向きに配置され、その上端が出入口15からレシーバ13内に挿入される。連結管14の他端側は、冷媒回路において、冷房運転時に圧縮機3から吐出した高圧冷媒の少なくとも一部が液相として存在する、すなわち、冷媒が過冷却状態で存在するエリアに接続される。本実施形態では、連結管14の他端側は、室外熱交換器4と絞り装置5とをつなぐ配管11に接続される。このとき、連結管14の他端側の端部は、連結管14の一端側の端部よりも水平以上の上方にならないように冷媒回路に接続する。連結管内に冷媒やオイルが溜まるトラップが生じないようにするためである。
 室内熱交換器7と圧縮機3(四方弁9)とは、三方弁8を介して配管接続される。レシーバ13は、室内熱交換器7と圧縮機3とを接続する配管の中でも、三方弁8と四方弁9とを接続する配管12に対して銅のろう材16によって溶接される。これにより、レシーバ13と配管12との間で熱交換が可能となる。なお、レシーバ13は、配管12と熱交換可能なように設ければよい。
 ここで、熱交換可能なように設けるとは、レシーバ13と、配管12との間で熱交換可能なように、両者を直接的又は間接的に接触させることを意味する。具体的には、レシーバ13を配管12に溶接するほかに、レシーバ13に配管12が密着可能な凹面を形成し、両者をバンド等の固定具によって直接的に接触させた状態で固定する方法を例示することができる。
 さらに、レシーバ13と配管12とを熱交換可能にする例として、レシーバ13を配管12本体に接触させるだけでなく、例えば、図2に示すように、配管12から先端を閉塞した支管12aを分岐させ、支管12aにレシーバ13を接触さてもよいし、図3に示すように、配管12の一部に、配管12に対して並列的に接続されたバイパス管12bを設け、バイパス管12bにレシーバ13を接触させるようにしてもよい。
 配管12に支管12aやバイパス管12bを設けることにより、室外機1内における配管12の位置に関係なく、レシーバ13の設置位置を決めることができ、設計上の自由度を高めることができる。なお、配管12に支管12aを設ける場合、支管12aは基端から先端に向けて水平よりも上向きになるようにする。熱交換して液化した冷媒が、支管12a内に溜まることなく、配管12に戻るようにするためである。
 本実施形態では、室外熱交換器4の容量が室内熱交換器7の容量より小さくなるように設計されている。従って、暖房運転時には、冷房運転時より多くの冷媒が必要となる。この場合、暖房定格運転時の最適冷媒量は冷房定格運転時の最適冷媒量よりも多くなる。すなわち、冷房運転および除湿運転が最適冷媒量の少ない空調運転、暖房運転が最適冷媒量の多い空調運転とされる。
 上記構成において、冷房運転を行なうと、圧縮機3から吐出された高温高圧のガス状の冷媒は、室外熱交換器4を通過する間に気相と液相とが混在する過冷却状態となり、大部分はそのまま絞り装置5を通過するが、一部は連結管14を介してレシーバ13内に導入される。
 絞り装置5、室内熱交換器7の順に通過した冷媒は、低温低圧のガスの状態配管12を通過する。そうすると、レシーバ13は、配管12との熱交換によってレシーバ13に導入される過冷却状態の冷媒よりも低温となる。したがって、レシーバ13内に導入された冷媒は冷却され、液化した状態でレシーバ13に貯蔵される。これにより、冷房運転時には、循環冷媒量を少なくすることができる。
 一方、暖房運転時には、配管12は、圧縮機3から吐出された高温高圧のガス状の冷媒が通過するため、レシーバ13も加熱されて高温となる。これによって、レシーバ13内の冷媒はガス状として存在するため、レシーバ13内に冷媒を溜めずに冷媒回路に戻すことが可能となる。これにより、暖房運転時には、循環冷媒量を多くすることができる。
 なお、本実施形態では、配管11に連結管14の他端側が接続されているが、これに限定されるものではなく、例えば、図4に示すように、室外熱交換器4の下流側に形成される過冷却領域4aに接続することも可能である。このような形態にする事により、過冷却は熱交換器4の内、レシーバに冷媒が溜まりきるまで、レシーバ以降の4aに過冷却が集中する。熱交換量は、冷媒がガス状態又は2相状態の場合に大きくなる。つまり、熱交換器4のうち、熱交換器入り口からレシーバまでの間は、過熱、または2相状態となり、熱交換能力を十分に発揮する事ができる。
 一般的に、フィンアンドチューブ型熱交換器は、等間隔に平行に並べられた多数の放熱フィンと、放熱フィンを貫通する複数段の冷媒管とを有し、冷媒管の端部はU字管によって連結された構造とされる。室外熱交換器4の過冷却領域4aにおいて連結管14を接続する場合には、U字管に連結管14の他端側を接続すればよい。
 図5~図7に示すように、室外機1内には室外機1に外気を取り入れて室外熱交換器4を通過させた後、機外に送出する室外ファン17が設置される。なお、図示しない室外機のキャビネットには吸込口及び吹出口が形成され、吸込口と吹出口の間に室外熱交換器4と室外ファン17がこの順に配置される。室外機の底板18には、室外熱交換器4から滴下した凝縮水Cを集める凹部19が形成され、凹部19の底面には凝縮水Cを室外機1の外部に排水する排水口20が形成される。
 より具体的には、底板18は前後方向Yの長さよりも左右方向Xの長さが長い略矩形形状に形成される。室外熱交換器4は、略L字形状に形成され、室外熱交換器4の長辺部が左右方向Xに平行になるようにして、底板18に設置される。室外熱交換器4の長辺部の前側に室外ファン17が設置される。また、排水口20は、長孔形状に形成され、長縁部が底板18の左右方向Xに沿うように配置される。
 上記構成において、凹部19及び排水口20の少なくとも一方の周縁部の一部に、凹部19に溜まった凝縮水Cの飛散を防止する飛散防止壁21を形成する。これにより、凝縮水Cが微小な水滴Dとして飛散して室外ファン17や室外熱交換器4に付着するのを抑制することが可能となる。また、室外機外へ吹き出されるのを抑制することができる。なお、本実施形態では、排水口20の周縁部の一部に飛散防止壁21を形成している。
 飛散防止壁21について詳述すると、飛散防止壁21は、排水口20の周縁部全体のうち、室外ファン17に近い側の部分に形成される。室外ファン17に近い側とは、図8に示すように、排水口20を長手方向の中心線(一点鎖線)によって底板18の前後方向Yの前側と後側とに二等分したときの前側(一点鎖線で分割された矢印側)を意味する。
 凝縮水Cが飛散するメカニズムについて説明すると、図9に示すように、凹部19に集められた凝縮水Cは、所定量に達するまでは、水の表面張力により、排水口20の周縁部に盛り上がった状態で保持される。その状態で、室外ファン17が稼動すると、排水口20から室外ファン17に向かう空気流Aが発生する(図8及び図9参照)。
 このとき、空気流Aは、排水口20の周縁部の中でも、室外ファン17に近い側の周縁部(排水口20の前縁部)において盛り上がった凝縮水Cと正面から衝突するため、この部分の凝縮水Cが水滴Dとなって飛散する。これにより、水滴Dが室外ファン17や室外熱交換器4に付着し、氷結することで、室外ファン17が破損したり、室外熱交換器4の熱交換器性能が低下するといった問題が生じる。また、室外機外へ吹き出されてしまうことがある。
 一方、飛散防止壁21を排水口20の周縁部全体のうち、前縁部の部分に形成すると、図10に示すように、飛散防止壁21によって凝縮水Cが空気流Aに曝されるのを回避することができるため、凝縮水Cの飛散を効果的に抑制することが可能となる。本実施形態では、飛散防止壁21は、排水口20の前縁部のうち、左右方向Xに平行に形成された直線部分いっぱいに形成されている。
 なお、排水口20の形成位置は、図6に示すように、底板18を平面視したときに、排水口20の前縁部の少なくとも一部が、室外熱交換器4の長辺部の前端部よりも前方に位置するようにするのが好ましい。これによって、水滴Dが飛散した場合であっても、室外熱交換器4への付着を抑制することができる。また、凹部19や排水口20が複数設けられた場合でも、上述のようにして、凹部19及び/又は排水口20ごとに飛散防止壁21を形成すればよい。
 飛散防止壁21は、排水口20の半径方向内側に向けて突設する(飛散防止壁21が凹部の周縁部に設けられる場合は、凹部の半径方向内側に向けて突設する)か、あるいは、排水口(又は凹部)の上方に向けて突設するのが好ましい。さらに、排水口20の半径方向内側に向けて上方に突設する、すなわち、斜め上方に傾斜して形成するのがより好ましい(図10参照)。このとき、斜め上方とする場合は、30°以上で45°前後がよい。
 飛散防止壁21は、排水口20の周縁部に形成するだけでなく、例えば、他の形態として、図11に示すように、凹部19の周縁部に形成することも可能である。この場合、飛散防止壁21は、凹部の周縁部全体のうち、室外ファン17に近い側の部分(前側部分)において、凹部の半径方向内側に向けて突設すればよい。なお、飛散防止壁21を凹部19の周縁部に設ける場合、その目的は排水口20の周縁部から飛散した水滴Dを飛散防止壁21で遮断し、室外ファン17や室外熱交換器4に付着するのを防止することにある。
 よって、この場合の飛散防止壁21は、凹部19の一部を覆うように、水平方向に突設すればよい。なお、飛散防止壁21は、排水口の周縁部又は凹部の周縁部のいずれか一方に形成してもよいし、排水口の周縁部及び凹部の周縁部の両方に形成することも可能である。
 飛散防止壁21は、底板18と別体に形成し、底板18に取り付けることができる。そのほか、飛散防止壁21を排水口20の周縁部に形成する場合には、飛散防止壁21を、底板18の排水口を打ち抜き加工する際に、一部を抜き残すことにより底板18と一体的に形成することも可能である。この場合、飛散防止壁21を上方に屈曲することで切起片とするのが好ましい。上記構成によれば、飛散防止壁を底板と別体に設ける場合に比べて、飛散防止壁を作製する工程、及び、飛散防止壁を底板に取り付ける工程を省略することができ、生産性を高めることが可能となる。
 本発明の空気調和機は、圧縮機、室内熱交換器、絞り装置及び室外熱交換器を含む冷媒回路を備え、前記圧縮機、室外熱交換器及び絞り装置が室外機に収容され、前記室外機の底板に、前記室外熱交換器から滴下した凝縮水を集める凹部が形成され、前記凹部の底面に排水口が形成され、前記凹部及び排水口の少なくとも一方の周縁部の一部に、凹部に溜まった凝縮水の飛散を防止する飛散防止壁が形成された構成とすることができる。
[第2実施形態]
 本実施形態に係る発明は、再熱除湿可能な空気調和機に関するものである。従来、空気調和機に使用される電動膨張弁としては、特開2006-258380号に記載されているようにステッピングモータの駆動により開度を調節する構成のものが知られている。具体的に、このような構成の電動膨張弁は、図12に示すように、弁本体30と、弁本体30の内部に形成されるリング状の弁座31と、弁座31の中心線に沿って配置される弁棒32とを備えている。
 弁棒(弁体)32の下端は円錐状に形成されており、弁棒32は、弁座31に対して近づき、または、離れる方向、すなわち、図中、上下方向に移動可能に設けられている。弁本体30の横側開口部には入口側配管33が接合され、弁本体30の下側開口部には出口側配管34が接合されている。また、弁本体30の上部には、弁棒32を上下動させるためのステッピングモータ35が設けられている。ステッピングモータ35のロータ36は弁棒32の上端部に結合されている。弁本体30の上部外周部にはネジ溝が形成されており、ロータ36の内周部はそのネジ溝に螺合されている。
 ステッピングモータ35のステータ37の電磁コイル38に正パルスを与えると、ロータ36が正方向に所定角度だけ回転して弁棒32が所定距離だけ弁座31に近づく。電磁コイル38に負パルスを与えるとロータ36が負方向に所定角度だけ回転して弁棒32が所定距離だけ弁座31から離れる。弁棒32を上下動させることにより、弁棒32の先端部と弁座31の隙間面積を変化させて、そこを通過する冷媒の流量を調節することができる。冷媒は入口側配管33から弁座31と弁棒32の隙間を介して出口側配管34に流れる。
 しかしながら、図12に記載された電磁弁においては、ステッピングモータのような高価な部品を用いているため、膨張弁も高価になるという問題点があった。そこで、本実施形態では、ステッピングモータを用いた電動膨張弁の代わりに安価な部品を使用しつつ、利便性の低下を抑制可能な空気調和機の提供を目的としている。
 上記目的を達成するため、本発明者が検討した結果、冷媒回路に組込まれる膨張弁の中でも、室内熱交換器の間に介装され、再熱除湿運転時に膨張弁として機能する膨張弁は、空気中の水分を凝縮させることを目的とするため、除湿運転中に弁の開度を調整する必要性が低く、電動膨張弁の代わりに直動式電磁弁を利用した絞り機構に代替可能であるとともに、除湿運転終了後に、差圧を低減する制御を行なうことで利便性を低下させることなくスムーズに冷房運転を行なうことができることを見出した。
 すなわち、本発明は、圧縮機、室内熱交換器、絞り装置および室外熱交換器を含む冷媒回路と、前記室内熱交換器及び室内ファンを収容する室内機とを備え、前記室内熱交換器は、絞り機構を介して第1熱交換器及び第2熱交換器が直列的に接続され、前記第1熱交換器が凝縮器として機能し、前記第2熱交換器が蒸発器として機能する再熱除湿運転が可能な空気調和機であって、前記絞り機構が、電磁弁を利用したものであり、再熱除湿運転終了時に、前記絞り機構の上流側冷媒圧力と下流側冷媒圧力との差圧を低減する制御を行なうことを特徴とする。
 ここで、絞り機構が電磁弁を利用するとは、基本的構造は直動式電磁弁と同じ構造としつつ、一部の構造を変更したものを絞り機構として用いたり、絞り機構の一部に直動式電磁弁を用いることを意味する。
 具体的には、直動式電磁弁を一部変更し、閉状態で絞り機能を有する冷媒の流通路が形成される構成としたものを絞り機構として使用することができる。そのほかにも、第1熱交換器及び第2熱交換器の間に、キャビラリチューブと、直動式電磁弁とを並列配置したものを絞り機構として使用することも可能である。
 上記構成によれば、再熱除湿運転時に膨張弁として機能する絞り機構が直動式電磁弁を利用したものであって安価である一方、再熱除湿運転終了後に、絞り機構の上流側冷媒圧力と下流側冷媒圧力との差圧を低減する制御を行なうことで、速やかに冷房運転に移行することが可能な、利便性の高い空気調和機を得ることができる。
 図13及び図14は、本発明の第2実施形態を示す図であり、図13は本実施形態の冷媒回路図を、図14は絞り機構の別形態の概略図を、それぞれ示す。本実施形態の空気調和機は、1台の室外機1に1台の室内機2が接続されたシングル型空気調和機である。そして、室外機1に収容される圧縮機3、室外熱交換器4及び絞り装置5をこの順に冷媒配管で直列に接続している。
 さらに、絞り装置5から二方弁6を介して、室内機2に収容される室内熱交換器7を配管接続し、室内熱交換器7から三方弁8を介して、再び室外の圧縮機3に配管接続して冷媒回路を構成している。室内機2内には室内機に空気を取り入れて室内熱交換器7を通過させた後、機外に送出する室内ファン22が設置される。なお、絞り装置5は、絞り作用の無い全開状態にすることが可能な電動膨張弁からなる。
 圧縮機3は、切換弁である四方弁9を介して冷媒回路に接続されており、四方弁9を切り換えることにより、室外熱交換器4側、又は、室内熱交換器7側のいずれの方向へも圧縮した冷媒を送出可能な構成とされている。この四方弁9の切り換えにより、室外熱交換器4と室内熱交換器7とが、凝縮器又は蒸発器として使用される。
 室内熱交換器7は、絞り機構23を介して第1熱交換器7a及び第2熱交換器7bが直列的に接続された構成とされる。本実施形態では絞り機構23として、閉状態で絞り機能を有する冷媒の流通路が形成される直動式電磁弁が用いられている。絞り機構23として使用される直動式電磁弁は、図12に示す電動膨張弁のステッピングモータの代りに、弁棒を上下動させるためにソレノイド及びコイル等の弾性体が使用される。
 具体的には、ソレノイドへの通電時に、弾性体に抗して弁棒が弁座に近づくように下向きに移動して閉状態となり、通電停止とともに弾性体の復元力によって弁棒は上向きに移動して元の位置に戻って開状態となる構成とされる。そして、弁棒の先端部分であって弁座に接触する弁体に、切込み、突起部、貫通孔等を設けることで、閉状態で絞り機能を有する冷媒の流通路が形成される構成とされる。
 上記構成において、冷房運転時及び暖房運転時には直動式電磁弁は全開とされ、第1熱交換器7aと第2熱交換器7bとの間に圧力差は生じず、両者を合わせて一つの熱交換器として機能する。具体的に、図13では、圧縮機3から吐出される冷媒が、図示する破線矢印方向に流通され、凝縮器としての室内熱交換器7、絞り装置5を経て蒸発器としての室外熱交換器4に流入されることによって暖房運転が実現される。
 また、圧縮機3から吐出される高温の冷媒が、図示する実線矢印方向に流通され、凝縮器としての室外熱交換器4、絞り装置5を経て蒸発器としての室内熱交換器7に流入されることによって冷房運転が実現される。再熱除湿運転時には、冷媒は、冷房運転と同じく実線矢印方向に流通する。しかし、冷房運転時と異なり、絞り装置5は全開とされ、絞り機構23は電磁弁が閉状態とされ、冷媒流通路が形成されて膨張弁としての機能を発揮する。
 これにより、第1熱交換器7aは凝縮器として機能し、第2熱交換器7bは蒸発器として機能することで、第2熱交換器7bの表面において空気中の水分が凝縮し、室内熱交換器7全体として再熱除湿が行なわれる。なお、冷媒流通路の大きさは、最も絞り作用を発揮する大きさとされる。
 絞り機構23の別の形態としては、図14に示すように、第1熱交換器7a及び第2熱交換器7bの間に、キャビラリチューブ24と、直動式電磁弁25とを並列配置した構成とすることができる。すなわち、再熱除湿運転時には、絞り機構23の直動式電磁弁25は全閉状態とされ、冷媒はキャピラリチューブ24を通過することで膨張弁としての機能を発揮する。一方、冷房運転時及び暖房運転時には直動式電磁弁25は全開とされ、第1熱交換器7aと第2熱交換器7bを合わせて一つの熱交換器として機能する。
 図15に示すように、空気調和機は、冷凍回路の運転を制御して、冷房運転、暖房運転及び再熱除湿運転等の空調運転を制御する制御装置26を備えている。空気調和機には、室内温度を検出する室温センサ27、室内湿度を検出する湿度センサ28、絞り機構23直動式電磁弁の弁棒が「開」位置にあることを検知する検知部29が設けられる。検知部29としては、例えば、弁棒が開位置に戻ったときに弁棒に接触して検知信号を出力するリミットスイッチを用いることができる。
 制御装置26は、CPU、メモリ等を備えたマイコンから構成され、空調運転の運転モードに応じて、これらの温度センサ・湿度センサの出力や、リモコン、本体の操作スイッチの操作信号等に基づき、圧縮機3、室内ファン22、絞り装置5、絞り機構23、四方弁9の動作等を制御して、冷媒回路の運転を制御する。
 図16は、本実施形態における制御の一例を示すフローチャート図である。制御装置26は、再熱除湿運転終了時に、暖房運転を開始する。ここで、「再熱除湿運転終了時に」とは、本来的に、再熱除湿運転中に、リモコンや本体の操作スイッチの操作信号により、除湿運転から冷房運転への運転切替えの指令を受けたときを意味するが、再熱除湿運転の停止ボタンを押した後、冷房運転の開始ボタンを操作する場合も考えられることから、制御装置26が再熱除湿運転の停止指令を受けただけの場合であっても、「再熱除湿運転終了時に」と判断して差圧低減の制御を行なっておいてもよい。
 具体的には、圧縮機3の回転数を低下又は停止させた上で、四方弁9によって冷媒の流れる方向を暖房運転側に切替える。なお、このとき、短時間に暖房運転を完了させるために、室内ファン22を停止しておくのが好ましく、さらに加えて、室内機の空気吹出口に設置されるルーバパネルを閉じた状態にしておくのがより好ましい。
 次に、圧縮機3の回転数を通常の暖房運転時の回転数に設定する。このように、再熱除湿運転時とは逆向きに冷媒が流通することで、再熱除湿運転時に絞り機構23の上流側と下流側との間に生じていた差圧は低減され、電動式電磁弁の弁棒は弾性体の復元力によって、あるいは、弾性体の復元力に加えて弁棒に冷媒の逆圧がかかることにより、弁棒は早期に「開」位置に復帰する。
 その結果、検知部29から検知信号が出力される。また、第1熱交換器7a及び第2熱交換器7bともに凝縮器として機能するため、室内熱交換器7の周辺温度が高くなる。室温センサ27は、通常、室内機の空気吸込口と室内熱交換器7との間に設置される。したがって、暖房運転として通常どおりルーバパネルを開放して、室内ファン22を運転した場合でも、ルーバパネルを閉鎖して室内ファン22を停止した状態にした場合のどちらであっても、直動式電磁弁が開状態に復帰することで室温センサ27の温度が上昇する。
 制御装置26は、検知部29の検知信号を受けるか、室温センサ27における温度が上昇するかいずれかを検知することで直動式電磁弁(弁棒)が開状態に復帰したと判断して暖房運転を終了して再熱除湿運転が終了する。
 これにより、再熱除湿運転の途中で冷房運転に切り替えても、速やかに再熱除湿運転を完了させて、冷房運転を行なうことが可能となり、電動膨張弁を使用した場合と同程度の利便性を維持することが可能となる。
 また、差圧を低減する別の制御として、図17に示すように、再熱除湿運転終了時に、制御装置26は、圧縮機3を停止した状態で、絞り機構23の直動式電磁弁が開状態であるか、又は、所定時間が経過したことを検知するまで室内ファン22を運転させるようにすることも可能である。この場合、室内ファン22を運転させる時間は予め実験によって決定しておけばよい。また、このとき、室内ファンの回転数は、再熱除湿時よりも早い回転数としてもよい。このようにすることで、早く圧力差が解消する。
 以上の実施形態の説明から明らかな通り、本実施形態の空気調和機は、圧縮機、室内熱交換器、絞り装置および室外熱交換器を含む冷媒回路と、前記室内熱交換器及び室内ファンを収容する室内機とを備え、前記室内熱交換器は、絞り機構を介して第1熱交換器及び第2熱交換器が直列的に接続され、前記第1熱交換器が凝縮器として機能し、前記第2熱交換器が蒸発器として機能する再熱除湿運転が可能な空気調和機であって、前記絞り機構が電磁弁を利用したものであり、再熱除湿運転終了時に、前記絞り機構の上流側冷媒圧力と下流側冷媒圧力との差圧を低減する制御を行なうことを特徴とする。
 前記絞り機構は、閉状態で絞り機能を有する冷媒の流通路が形成される構成とすることができる。また、絞り機構として、前記第1熱交換器及び第2熱交換器の間に、キャビラリチューブと、直動式電磁弁とを並列配置した構成とすることも可能である。
 また、上記構成に加えて、空調運転を制御する制御装置を備え、制御装置は、前記差圧を低減する制御として、再熱除湿運転終了時に、前記直動式電磁弁が開状態であるか、又は、室内温度が上昇したことを検知するまで暖房運転を行なうことができる。なお、制御装置は、前記暖房運転の間、前記室内ファンを停止させるのが好ましい。
 上記制御の代わりに、前記制御装置は、前記差圧を低減する制御として、再熱除湿運転終了時に、圧縮機を停止した状態で、前記直動式電磁弁が開状態であるか、又は、所定時間が経過したことを検知するまで前記室内ファンを運転させることようにしてもよい。
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加えることができる。具体的に、第1実施形態において、過冷却領域は、室外熱交換器の一部に形成された形態としたが、これに限らず、第3実施形態として、室外熱交換器と別体の過冷却器としてもよい。この場合、室外熱交換器及び過冷却器を合せて一つの室外熱交換器とみなすことができる。
 また、第1実施形態における連結管14の管径は、配管12と同径であってもよいし、細径でも太径であってもよい。太径とする場合、振動に対して強くなるが、折り曲げが難しくなり、レシーバ設置の自由度が低くなる。一方、細径とすると、振動に対して弱くなるが、折り曲げがしやすく、レシーバ設置の自由度が高くなる。したがって、連結管14の管径は、実験などにより適切なものを選択すればよい。
  1  室外機
  2  室内機
  3  圧縮機
  4  室外熱交換器
  5  絞り装置
  6  二方弁
  7  室内熱交換器
  8  三方弁
  9  四方弁
 11  配管
 12  配管
 12a 支管
 12b バイパス管
 13  レシーバ
 14  連結管
 15  出入口
 16  ろう材
 17  室外ファン
 18  底板
 19  凹部
 20  排水口
 21  飛散防止壁
 22  室内ファン
 23  絞り機構
 24  キャピラリチューブ
 25  直動式電磁弁
 26  制御装置
 27  室温センサ
 28  湿度センサ
 29  検知部

Claims (13)

  1.  圧縮機、室内熱交換器、絞り装置及び室外熱交換器を含む冷媒回路と、冷媒を溜めるレシーバと、前記冷媒回路及びレシーバを連結する連結管とを備えた空気調和機であって、前記連結管は、一端側が、前記レシーバの出入口に接続され、他端側が、前記冷媒回路において、冷房運転時に圧縮機から吐出した高圧冷媒の少なくとも一部が液相として存在するエリアに接続され、前記レシーバは、冷房運転時に室内熱交換器から圧縮機に冷媒が流れる配管と熱交換可能なように設けられたことを特徴とする空気調和機。
  2.  前記連結管は、他端側が前記室外熱交換器と絞り装置とをつなぐ配管に接続されたことを特徴とする請求項1記載の空気調和機。
  3.  前記連結管は、他端側が前記室外熱交換器の過冷却領域に接続されたことを特徴とする請求項1記載の空気調和機。
  4.  前記圧縮機、室外熱交換器及び絞り装置が室外機に収容され、前記室外機の底板に、前記室外熱交換器から滴下した凝縮水を集める凹部が形成され、前記凹部の底面に排水口が形成され、前記凹部及び排水口の少なくとも一方の周縁部の一部に、凹部に溜まった凝縮水の飛散を防止する飛散防止壁が形成されたことを特徴とする請求項1~3のいずれかに記載の空気調和機。
  5.  前記室外機に室外ファンが収容され、前記飛散防止壁は、前記周縁部全体のうち、前記室外ファンに近い側の部分に形成されたことを特徴とする請求項4記載の空気調和機。
  6.  前記飛散防止壁は、前記周縁部から前記凹部又は排水口の半径方向内側に向けて突設されたことを特徴とする請求項4又は5記載の空気調和機。
  7.  前記飛散防止壁は、前記凹部又は排水口の上方に向けて突設されたことを特徴とする請求項4~6のいずれかに記載の空気調和機。
  8.  前記飛散防止壁は、前記底板の排水口を打ち抜き加工する際に、一部を抜き残すことにより底板と一体的に形成されたものであることを特徴とする請求項4~7のいずれかに記載の空気調和機。
  9.  圧縮機、室内熱交換器、絞り装置および室外熱交換器を含む冷媒回路と、前記室内熱交換器及び室内ファンを収容する室内機とを備え、前記室内熱交換器は、絞り機構を介して第1熱交換器及び第2熱交換器が直列的に接続され、前記第1熱交換器が凝縮器として機能し、前記第2熱交換器が蒸発器として機能する再熱除湿運転が可能な空気調和機であって、前記絞り機構が電磁弁を利用したものであり、再熱除湿運転終了時に、前記絞り機構の上流側冷媒圧力と下流側冷媒圧力との差圧を低減する制御を行なうことを特徴とする空気調和機。
  10.  前記絞り機構が、前記第1熱交換器及び第2熱交換器の間に、キャビラリチューブと、直動式電磁弁とを並列配置したものであることを特徴とする請求項9記載の空気調和機。
  11.  空調運転を制御する制御装置を備え、前記制御装置は、前記差圧を低減する制御として、再熱除湿運転終了時に、前記電磁弁が開状態であるか、又は、室内温度が上昇したことを検知するまで暖房運転を行なうことを特徴とする請求項9又は10記載の空気調和機。
  12. 前記制御装置は、前記暖房運転の間、前記室内ファンを停止させることを特徴とする請求項11記載の空気調和機。
  13.  空調運転を制御する制御装置を備え、前記制御装置は、前記差圧を低減する制御として、再熱除湿運転終了時に、圧縮機を停止した状態で、前記電磁弁が開状態であるか、又は、所定時間が経過したことを検知するまで前記室内ファンを運転させることを特徴とする請求項9又は10記載の空気調和機。
PCT/JP2014/070995 2013-12-10 2014-08-08 空気調和機 WO2015087579A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-254998 2013-12-10
JP2013254998A JP2015114010A (ja) 2013-12-10 2013-12-10 空気調和機

Publications (1)

Publication Number Publication Date
WO2015087579A1 true WO2015087579A1 (ja) 2015-06-18

Family

ID=53370898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070995 WO2015087579A1 (ja) 2013-12-10 2014-08-08 空気調和機

Country Status (2)

Country Link
JP (1) JP2015114010A (ja)
WO (1) WO2015087579A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023049799A (ja) * 2021-09-29 2023-04-10 ダイキン工業株式会社 空気調和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146970U (ja) * 1979-04-11 1980-10-22
JPS56142355A (en) * 1980-04-02 1981-11-06 Mitsubishi Heavy Ind Ltd Air conditioner
JPS6428729U (ja) * 1987-08-12 1989-02-20
JPH04227436A (ja) * 1990-10-04 1992-08-17 Nippondenso Co Ltd 冷凍装置、モジュレータ付熱交換器、及び冷凍装置用モジュレータ
JPH0814701A (ja) * 1994-06-29 1996-01-19 Toshiba Corp 空気調和機
JPH09210409A (ja) * 1996-01-30 1997-08-12 Mitsubishi Heavy Ind Ltd 空気調和機の室外ユニット
JPH1163632A (ja) * 1997-08-28 1999-03-05 Hitachi Ltd 空気調和装置
JPH11281096A (ja) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd 空気調和機の室外機
JP2003014334A (ja) * 2001-06-27 2003-01-15 Toshiba Kyaria Kk 空気調和機及びその室内ユニットの乾燥運転方法
JP2006177599A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc 空気調和機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146970U (ja) * 1979-04-11 1980-10-22
JPS56142355A (en) * 1980-04-02 1981-11-06 Mitsubishi Heavy Ind Ltd Air conditioner
JPS6428729U (ja) * 1987-08-12 1989-02-20
JPH04227436A (ja) * 1990-10-04 1992-08-17 Nippondenso Co Ltd 冷凍装置、モジュレータ付熱交換器、及び冷凍装置用モジュレータ
JPH0814701A (ja) * 1994-06-29 1996-01-19 Toshiba Corp 空気調和機
JPH09210409A (ja) * 1996-01-30 1997-08-12 Mitsubishi Heavy Ind Ltd 空気調和機の室外ユニット
JPH1163632A (ja) * 1997-08-28 1999-03-05 Hitachi Ltd 空気調和装置
JPH11281096A (ja) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd 空気調和機の室外機
JP2003014334A (ja) * 2001-06-27 2003-01-15 Toshiba Kyaria Kk 空気調和機及びその室内ユニットの乾燥運転方法
JP2006177599A (ja) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc 空気調和機

Also Published As

Publication number Publication date
JP2015114010A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
US9347697B2 (en) Air conditioner and control method thereof
EP2829829B1 (en) Refrigerator
JP6148001B2 (ja) 空気調和機
JP2010060274A (ja) 相違する流れを有するマルチチャネル熱交換器
EP2530411A1 (en) Refrigeration cycle apparatus
JP2008082589A (ja) 空気調和装置
EP2835589A2 (en) Air conditioner
JP2008224210A (ja) 空気調和装置、及び空気調和装置の運転制御方法
JP4001149B2 (ja) 空気調和機
JP2013104623A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
WO2013088684A1 (ja) 空気調和機
JP5071100B2 (ja) 空気調和装置
JP2016153700A (ja) 空気調和機
JP3941817B2 (ja) 空気調和機
KR101414860B1 (ko) 공기 조화기 및 그의 제어방법
JP2018204814A (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
JP5028927B2 (ja) 空気調和装置
WO2015087579A1 (ja) 空気調和機
JP2007032857A (ja) 冷凍装置
JP4981411B2 (ja) 空気調和機
JP2014119154A (ja) 空気調和機
JP2020153604A (ja) 冷凍サイクル装置
JP5973336B2 (ja) 空気調和機
JP2010127602A (ja) 冷凍装置
JP3619533B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869923

Country of ref document: EP

Kind code of ref document: A1