WO2015087434A1 - Solar cell panel and manufacturing method thereof - Google Patents

Solar cell panel and manufacturing method thereof Download PDF

Info

Publication number
WO2015087434A1
WO2015087434A1 PCT/JP2013/083394 JP2013083394W WO2015087434A1 WO 2015087434 A1 WO2015087434 A1 WO 2015087434A1 JP 2013083394 W JP2013083394 W JP 2013083394W WO 2015087434 A1 WO2015087434 A1 WO 2015087434A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
laminated
translucent substrate
light
cell panel
Prior art date
Application number
PCT/JP2013/083394
Other languages
French (fr)
Japanese (ja)
Inventor
陽一郎 西本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015552262A priority Critical patent/JP6045718B2/en
Priority to PCT/JP2013/083394 priority patent/WO2015087434A1/en
Priority to TW103116036A priority patent/TWI556463B/en
Publication of WO2015087434A1 publication Critical patent/WO2015087434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell panel and a manufacturing method thereof.
  • the penetration rate of residential solar power generation in Hokkaido is the lowest in the country.
  • the installation rate of residential solar power generation in the Hokkaido Electric Power jurisdiction is 1/100 of the installation rate of residential solar power generation in the Kyushu Electric Power jurisdiction.
  • the reason for the low penetration rate of solar cells in houses in Hokkaido is that the installation cost is high in addition to the decrease in power generation due to snow cover.
  • installing the solar cell panel perpendicular to the horizontal direction (ground) means installing the solar cell panel (solar cell) so that the light receiving surface of the solar cell panel (solar cell) is perpendicular to the horizontal direction (ground).
  • Non-Patent Document 2 when a solar cell panel is installed at an angle (vertical) of 90 degrees with respect to the horizontal direction (ground) on the wall of a city hall in Ebetsu city near Sapporo, and with respect to the horizontal direction (ground) Comparison of annual power generation with installation at an angle of 75 degrees.
  • the solar panel is installed at an angle of 75 degrees with respect to the horizontal direction (ground)
  • the amount of power generated by the solar panel is about 16% than when it is installed at an angle of 90 degrees with respect to the horizontal direction (ground). high. Therefore, there is a demand for a solar cell panel that does not reduce the amount of power generation even when installed vertically.
  • Patent Document 1 and Patent Document 2 use a method of suppressing the reflectance of the solar cell panel.
  • vertical is used.
  • a belt-like portion having a refractive index different from that of other portions is provided inside a glass substrate disposed on the light incident side of the photoelectric conversion element.
  • the light incident on the solar cell device is refracted by the band-shaped portion having a different refractive index, reflected by the interface of the band-shaped portion, and incident on the photoelectric conversion element at an angle closer to vertical. For this reason, the amount of light incident on the photoelectric conversion element increases, and the photoelectric conversion efficiency can be improved.
  • such a glass substrate is produced by scanning an ion beam with respect to a glass substrate.
  • the refractive index of the strip portion depends on the scanning speed of the ion beam, and the refractive index of the strip portion increases as the scanning speed is decreased.
  • the refractive index of the belt-like portion when the ion beam scanning speed is 1 mm / s is 1.51
  • the belt-like portion when the ion beam scanning speed is 0.1 mm / s.
  • the mass productivity of the glass substrate is inferior compared with the case where the scanning speed of the ion beam is 1 mm / s.
  • the ion beam scanning interval is as short as 5.3 mm, and the processing time is further extended. Even if an attempt is made to obtain such a structure by stacking two types of glasses having different refractive indexes in a layered manner, the superposition of the glass becomes multiple, and high mass productivity is difficult to obtain.
  • the present invention has been made in view of the above, and can effectively take sunlight irradiated obliquely with respect to the light receiving surface of the solar cell panel into the solar cell, has a high power generation amount, and is mass-produced.
  • An object is to obtain a highly efficient solar cell panel and a method for producing the same.
  • a solar cell panel includes a laminated translucent substrate disposed on the light receiving surface side of the solar cell, and the laminated translucent substrate side is a light incident side.
  • the laminated translucent substrate is laminated such that a plurality of translucent substrates having different refractive indexes higher than the refractive index of the atmosphere increase in refractive index from the light incident side toward the solar cell side.
  • the surface on the light incident side and the solar cell side is a plane parallel to the light receiving surface of the solar cell.
  • the sunlight irradiated diagonally with respect to the light-receiving surface of a solar cell panel can be taken in into a solar cell effectively, and a solar cell panel with high electric power generation amount and high mass productivity is obtained. , Has the effect.
  • FIG. 1 is a schematic cross-sectional view showing a state in which a solar cell panel according to Embodiment 1 of the present invention is installed perpendicular to the horizontal direction (ground).
  • FIG. 2 is a plan view showing a state in which the solar cell panel according to Embodiment 1 of the present invention is viewed from the light receiving surface side (light incident side).
  • FIG. 3 is a top view of the solar battery cell viewed from the light receiving surface side.
  • FIG. 4 is a bottom view of the solar battery cell viewed from the side opposite to the light receiving surface.
  • FIG. 5 is a cross-sectional view of the main part of the solar battery cell in the AA direction of FIG. FIG.
  • FIG. 6 is a schematic cross-sectional view showing a state in which a general solar battery panel is installed perpendicular to the horizontal direction (ground).
  • FIG. 7 is a schematic cross-sectional view showing a state in which the solar cell panel according to Embodiment 2 of the present invention is installed perpendicular to the horizontal direction (ground).
  • FIG. 8 is a schematic cross-sectional view showing a state where another solar cell panel according to an embodiment having a different angle ⁇ is installed perpendicular to the horizontal direction (ground).
  • FIG. 9 is a schematic cross-sectional view showing a state in which the solar cell panel according to Embodiment 3 of the present invention is installed perpendicular to the horizontal direction (ground).
  • FIG. 1 is a schematic cross-sectional view showing a state in which a solar cell panel 10 according to Embodiment 1 of the present invention is installed perpendicular to the horizontal direction (ground).
  • the installation of the solar cell panel 10 perpendicular to the horizontal direction (ground) means that the light receiving surface of the solar cell panel 10 that receives sunlight (the light receiving surface of the solar cells 16) is horizontal in the solar cell panel 10. It means to be installed perpendicular to the direction (ground).
  • FIG. 2 is a plan view showing a state in which the solar cell panel 10 according to the first exemplary embodiment of the present invention is viewed from the light receiving surface side (light incident side).
  • a flat laminated translucent substrate 11 is attached to the light receiving surface side of the solar cell 16 through a sealing material 15.
  • the solar cell panel 10 has a quadrangular outer shape in the surface direction, that is, a shape viewed from the light receiving surface side.
  • the external shape in the surface direction of the solar cell panel 10 is made into square shape. This outer shape corresponds to the outer shape of the laminated translucent substrate 11.
  • the external shape in the surface direction of the solar cell panel 10 is not limited to a square shape, and may be a desired shape.
  • the laminated translucent substrate 11 is made of a translucent material and is disposed on the light receiving surface side of the solar cell panel 10 and has a function of protecting the light receiving surface side of the solar cell panel 10.
  • the laminated translucent substrate 11 has a quadrangular outer shape in the surface direction, that is, a shape viewed from the light receiving surface side.
  • a material of the laminated translucent substrate 11 for example, glass or translucent plastic is used.
  • substrate 11 uses what does not change a phase by a lamination process (heating process).
  • a material that changes phase in the laminating step (heating step) is a sealing material
  • a material that does not change phase is a translucent substrate.
  • the laminated translucent substrate 11 is a multilayer structure in which two flat translucent substrate portions are laminated so that the refractive index increases in order from the atmosphere side toward the solar cell 16 side. It is said that. That is, the laminated translucent substrate 11 includes, from the light receiving surface side of the solar cell panel 10, the first translucent substrate 12 having a relatively low refractive index and the second translucent substrate 13 having a relatively high refractive index. Are stacked.
  • the refractive index of the second translucent substrate 13 is larger than the refractive index of the first translucent substrate 12.
  • the first translucent substrate 12 is a glass substrate having a refractive index of 1.5, for example.
  • the second translucent substrate 13 is a glass substrate having a refractive index of 1.8, for example.
  • the first translucent substrate 12 and the second translucent substrate 13 are formed with the same shape and the same dimension in the surface direction.
  • a translucent adhesive is applied to the mating surface 14 of the first translucent base 12 and the second translucent base 13, and the first translucent base 12 and the second translucent are applied by the adhesive.
  • the substrate 13 is bonded.
  • the mating surface 14 of the first light transmissive substrate 12 and the second light transmissive substrate 13 is a surface parallel to the light receiving surface of the solar cell panel 10 (the surface on the light incident side of the first light transmissive substrate 12). ing.
  • the adhesive is provided with a thickness that can be optically ignored, and is not shown in FIG.
  • the front and back surfaces and the mating surface 14 of the laminated translucent substrate 11 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16. That is, the front and back surfaces of the first translucent substrate 12 and the second translucent substrate 13 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16.
  • the laminated translucent substrate 11 is composed of two layers of translucent substrate, and the case where the laminated translucent substrate 11 is composed of two layers of translucent substrate will be described below. There is no problem even if the laminated translucent substrate 11 is a multilayer structure having three or more layers. Further, the material of the laminated translucent substrate 11 is not limited to glass, and may be, for example, polycarbonate or other plastics.
  • the laminated translucent substrate 11 has an incident light angle adjustment function that refracts incident light incident on the solar cell panel 10 and makes the incident angle of light incident on the solar cell 16 closer to vertical as described later. . This function will be described later.
  • the sealing material 15 is made of a material having translucency, and is disposed between the laminated translucent substrate 11 and the solar battery cell 16.
  • the sealing material 15 is disposed so as to cover the entire light receiving surface side of the solar battery cell 16 and seals the solar battery cell 16.
  • the laminated translucent substrate 11 and the solar battery cell 16 are bonded by a sealing material 15.
  • a resin having translucency such as EVA, silicone, and urethane is used.
  • FIG. 3 to 5 are diagrams showing a schematic configuration of an example of the solar battery cell 16.
  • 3 is a top view of the solar cell 16 viewed from the light receiving surface side
  • FIG. 4 is a bottom view of the solar cell 16 viewed from the side opposite to the light receiving surface
  • FIG. 5 is a solar cell in the AA direction of FIG. FIG.
  • the solar battery cell 16 includes a solar battery substrate having a photoelectric conversion function and a semiconductor substrate 21 having a pn junction.
  • the semiconductor substrate 21 has a first conductivity type p-type polycrystalline silicon substrate 22 and a second conductivity type n-type impurity diffusion layer 23 in which the conductivity type of the surface of the p-type polycrystalline silicon substrate 22 is inverted. These constitute a pn junction.
  • a texture structure composed of pyramidal fine irregularities (texture) 22a is formed as a texture structure on the surface on the light receiving surface side of the semiconductor substrate 21 (n-type impurity diffusion layer 23).
  • the pyramidal micro unevenness (texture) 22a has a structure that increases the area of the light receiving surface that absorbs light from the outside, suppresses the reflectance on the light receiving surface, and efficiently confines the light in the solar cells 16.
  • An antireflection film 24 that prevents reflection of incident light on the light receiving surface is formed on the light receiving surface side surface (front surface) of the semiconductor substrate 21, and an antireflection film 24 on the light receiving surface side surface (front surface) of the semiconductor substrate 21.
  • a light receiving surface side electrode 25 that is a first electrode surrounded by the first electrode.
  • the light receiving surface side electrode 25 includes a front silver grid electrode 27 and a front silver bus electrode 28.
  • the front silver grid electrode 27 is locally provided on the light receiving surface to collect electricity generated by the semiconductor substrate 21.
  • the front silver bus electrode 28 is provided substantially orthogonal to the front silver grid electrode 27 in order to take out the electricity collected by the front silver grid electrode 27.
  • a back aluminum electrode 29 made of an aluminum material is provided on the entire back surface of the semiconductor substrate 21 (a surface opposite to the light receiving surface) except for a part of the outer edge region, and is substantially the same as the front silver bus electrode 28.
  • a back silver electrode 30 made of a silver material extending in the direction is provided.
  • the back aluminum electrode 29 and the back silver electrode 30 constitute a back electrode 26 that is a second electrode.
  • a p + layer (BSF (Back Surface Field)) 31 containing a high concentration impurity is formed on the surface layer portion on the back surface (surface opposite to the light receiving surface) of the semiconductor substrate 21.
  • the p + layer (BSF) 31 is provided in order to obtain the BSF effect, and the p-type layer (p-type polycrystal) is formed by an electric field having a band structure so that electrons in the p-type layer (p-type polycrystalline silicon substrate 22) do not disappear. The electron concentration in the silicon substrate 22) is increased.
  • the solar battery cell 16 is produced by a known method.
  • An adhesive is applied to the surface.
  • the mating surfaces 14 of the first translucent substrate 12 and the second translucent substrate 13 are bonded and bonded together.
  • the adhesive may be applied to one of the mating surfaces 14 of the first translucent substrate 12 and the second translucent substrate 13.
  • the laminated translucent substrate 11 is formed of three or more translucent substrates, the respective translucent substrates are laminated and bonded so that the refractive index becomes higher in order.
  • the sealing material 15 and the solar battery cell 16 are arranged in this order on the second light-transmitting substrate 13 having a relatively high refractive index in the layered light-transmitting substrate 11. It arrange
  • FIG. The solar battery cell 16 is disposed with the light receiving surface facing the sealing material 15. That is, the laminated translucent substrate 11 is arranged in a state where the surface with the higher refractive index faces the light receiving surface of the solar battery cell 16.
  • the laminated translucent substrate 11 and the solar battery cell 16 are bonded and integrated by the sealing material 15. Thereby, the above solar cell panel 10 is obtained.
  • FIG. 6 is a schematic cross-sectional view showing a state in which a general solar battery panel 100 is installed perpendicular to the horizontal direction (ground).
  • a single-layer translucent substrate 111 is attached to the light incident side (light-receiving surface side) of the solar cell 116 through a sealing material 115 having translucency.
  • the translucent substrate 111 is made of, for example, a glass substrate and has a refractive index of 1.4 to 1.5, for example, 1.5.
  • the light L incident on the translucent substrate 111 from the atmosphere is refracted at the interface between the atmosphere and the translucent substrate 111 and travels through the translucent substrate 111 at an angle ⁇ .
  • substrate 111 reaches
  • FIG. Therefore, when the light quantity of the light L is La, the light component that can contribute to the power generation of the solar battery cell 116 in the light incident on the translucent substrate 111 is La ⁇ cos ⁇ .
  • the component of the light reaching the solar battery cell 116 is expressed as La ⁇ cos ⁇ ⁇ cos ⁇ . Therefore, by making the angle ⁇ close to 0 °, the amount of light incident on the solar battery cell 116 is increased, and the output of the solar battery panel 100 can be increased.
  • the refractive index is air ⁇ first translucent substrate 12 ⁇ second translucent substrate 13.
  • the incident angle of the light L from the atmosphere to the laminated translucent substrate 11 (first translucent substrate 12) is the angle ⁇
  • An incident angle of L is an angle ⁇
  • an incident angle of light L from the second light-transmissive substrate 13 to the solar battery cell 16 is an angle ⁇ .
  • the relationship “ ⁇ > ⁇ > ⁇ ” is established.
  • the incident angle of the light L to the solar battery cell 16 when the translucent substrate 111 is a single layer is an angle ⁇ .
  • the light L is incident on the solar cell 16.
  • the angle can be made more vertical, and the power generation amount of the solar cell panel 10 can be improved.
  • the solar cell panel 10 includes a laminated translucent substrate 11 in which a first translucent substrate 12 having a refractive index of 1.5 and a second translucent substrate 13 having a refractive index of 1.8 are laminated from the atmosphere side. Is provided.
  • the incident angle of the light L from the atmosphere to the laminated translucent substrate 11 is the angle ⁇
  • the first translucent substrate 12 to the second translucent substrate 13 Assume that the incident angle of the light L is an angle ⁇ , and the incident angle of the light L from the second translucent substrate 13 to the solar battery cell 16 is an angle ⁇ .
  • the second translucent substrate 12 having a higher refractive index is disposed on the solar cell 16 side, so that The incident angle of the light L to the solar battery cell 16 can be reduced as compared with the case where the transparent substrate of the layer is provided.
  • the light component that can contribute to the power generation of the solar cell 16 in the light L incident on the laminated translucent substrate 11 increases, the amount of light incident on the solar cell 16 increases, and photoelectric conversion in the solar cell 16 occurs. Efficiency can be improved and the output of the solar cell panel 10 can be increased.
  • the laminated light-transmitting substrate 11 is composed of two layers of light-transmitting substrates.
  • You may comprise the translucent base
  • a refractive index may become high in order as it progresses to the battery cell 16 side.
  • Patent Document 3 also uses a method of causing light to reach the solar cell in the panel at an angle closer to vertical.
  • the first light-transmitting substrate 12 having a relatively low refractive index and the second light-transmitting substrate 13 having a relatively high refractive index are different in refractive index.
  • the laminated translucent substrate 11 in which two flat translucent substrates are superposed so that the refractive index increases in order from the air side toward the solar cell 16 side light to the solar cell 16 is obtained. The incident angle is reduced.
  • Patent Document 3 a glass substrate provided with a band-like portion having a refractive index different from that of other portions is manufactured by scanning an ion beam on the glass substrate.
  • the refractive index of glass depends on the scanning speed of the ion beam, and the refractive index increases as the scanning speed decreases. It is considered that the larger the difference in refractive index, the easier it is to reflect light at the glass-glass interface. Therefore, it is preferable to select a slow scanning speed in order to increase the amount of power generation. However, in this case, the mass productivity of the glass substrate is lowered.
  • the first translucent substrate 12 having a relatively low refractive index and the second translucent substrate 13 having a relatively high refractive index are bonded.
  • the laminated translucent substrate 11 can be produced.
  • the situation where light is irradiated obliquely with respect to the light receiving surface of the solar cell panel is not limited to the solar cell panel installed vertically to the horizontal direction (ground), but the solar cell installed on the roof This also applies to solar panels that cannot change the installation angle after installation, such as panels. That is, even for solar cell panels installed on the roof in a state inclined with respect to the horizontal direction (ground), light is irradiated obliquely to the light receiving surface of the solar cell panel in the morning and evening, and the power generation amount Less.
  • the solar cell panel 10 according to the first embodiment can obtain a high power generation amount when light is irradiated obliquely with respect to the light receiving surface of the solar cell panel. Therefore, the solar battery panel 10 according to the first embodiment is not limited to the case where the solar battery panel 10 is installed vertically with respect to the horizontal direction (ground) as in the case of wall surface installation, but the solar battery cells 16 at a certain angle with respect to the vertical direction. Even when installed in a state inclined to the side, the power generation amount in the morning and evening increases, which can contribute to the improvement of the power generation amount of the day.
  • the solar cell panel 10 includes the first light-transmitting substrate 12 having a relatively low refractive index from the atmosphere side and the second light-transmitting substrate 13 having a relatively high refractive index.
  • a laminated translucent substrate 11 having a configuration in which the refractive index is increased in order from the atmosphere side toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16.
  • the component of the light which can contribute to the electric power generation of the photovoltaic cell 16 in the light incident on the laminated translucent substrate 11 is increased, the amount of light incident on the photovoltaic cell 16 is increased, and the photoelectric conversion of the photovoltaic cell 16 is performed. Efficiency can be improved and the output (power generation amount) of the solar cell panel 10 can be increased.
  • Embodiment 1 aims at improving the output of the solar cell panel 10 by allowing light to reach the light receiving surface of the solar cell 16 in the solar cell panel 10 at an incident angle closer to the vertical. is there. That is, a high power generation amount is obtained when light is irradiated obliquely with respect to the light receiving surface of the solar cell panel 10. Therefore, as in Patent Document 1 and Patent Document 2, output is not improved by suppressing the reflectance of the solar cell panel, and there is no conflict. Therefore, it is also possible to use Embodiment 1 and the technique of Patent Document 1 (or Patent Document 2) in combination.
  • the laminated light-transmitting substrate 11 is configured by superimposing two flat light-transmitting substrates.
  • an angle is set to the mating surface of the two light-transmitting substrates. Give it. Thereby, the incident light incident on the laminated translucent substrate 11 can be refracted more, and the light can be incident on the solar battery cell at an angle closer to the vertical.
  • FIG. 7 is a schematic cross-sectional view showing a state in which the solar cell panel 40 according to the second embodiment of the present invention is installed perpendicular to the horizontal direction (ground).
  • the laminated translucent base 41 is attached to the light receiving surface side of the solar battery cell 16 through the sealing material 15.
  • the solar cell panel 40 according to the second embodiment has the same structure as the solar cell panel 10 according to the first embodiment except for the structure of the laminated translucent substrate 41. Therefore, about the same member as the solar cell panel 10, detailed description is abbreviate
  • the laminated translucent substrate 41 is the same as the laminated translucent substrate according to Embodiment 1 except that an angle is given to the mating surface of the two translucent substrates constituting the laminated translucent substrate 41. 11 has the same configuration.
  • the laminated translucent substrate 41 is a multi-layer structure in which two translucent substrates are laminated and arranged so that the refractive index sequentially increases from the atmosphere side toward the solar cell 16 side. . That is, the laminated translucent substrate 41 includes a first translucent substrate 42 having a relatively low refractive index and a second translucent substrate 43 having a relatively high refractive index from the light receiving surface side of the solar cell panel 40. Are stacked.
  • the refractive index of the second light transmissive substrate 43 is larger than the refractive index of the first light transmissive substrate 42.
  • the first translucent substrate 42 is a glass substrate having a refractive index of 1.5, for example.
  • the second translucent substrate 43 is a glass substrate having a refractive index of 1.8, for example.
  • the first translucent substrate 42 and the second translucent substrate 43 are formed with the same shape and the same dimensions in the surface direction.
  • a translucent adhesive is applied to the mating surface 44 of the first translucent base 42 and the second translucent base 43, and the first translucent base 42 and the second translucent are applied by the adhesive.
  • the substrate 43 is bonded. This adhesive is provided with a thickness that can be ignored optically, and is not shown in FIG.
  • the front and back surfaces of the laminated translucent substrate 41 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16. That is, the surface on the atmosphere side of the first translucent substrate 42 and the surface on the solar cell 16 side of the second translucent substrate 43 are parallel to the in-plane direction of the light receiving surface of the solar cell 16. .
  • a plurality of inclined surfaces 44 a having a specific inclination angle with respect to the light receiving surface of the solar cell panel 40 are provided on the mating surface 44 of the first light transmitting substrate 42 and the second light transmitting substrate 43.
  • the inclined surfaces 44 a are provided at a certain length D and a certain pitch along a specific first direction in the surface direction of the laminated translucent substrate 41.
  • the specific first direction is a pair of side directions (vertical direction in FIG. 7, Y direction in FIG. 2) that face each other in the surface direction of the laminated translucent substrate 41 having a square shape.
  • the inclined surface 44 a extends continuously over the entire width of the laminated translucent substrate 41 along a specific second direction in the surface direction of the laminated translucent substrate 41.
  • the specific second direction is the depth direction in FIG. 7 (the other pair of opposite side directions in the surface direction of the laminated translucent substrate 41, the X direction in FIG. 2).
  • the length D is a length along the first direction of one inclined surface 44a.
  • the angle ⁇ that is an inclination angle of the inclined surface 44a with respect to the light receiving surface of the solar cell panel 40 is, for example, 15 °.
  • the inclined surface 44a is laminated laminated translucent substrate 41 when the solar cell panel 40 is installed in a direction perpendicular to the horizontal direction (ground) or inclined to a solar cell 16 side at a certain angle with respect to the vertical direction. In the surface direction, the surface is inclined toward the solar cell 16 side from the upper part toward the lower part. That is, the inclined surface 44a is a surface that is inclined toward the solar battery cell 16 as it goes in the specific first direction.
  • Such a solar cell panel 40 is the same as the case of the solar cell panel 10 except that an inclined surface 44 a is provided on the mating surface 44 of the first light-transmissive substrate 42 and the second light-transmissive substrate 43. It is produced by the process.
  • the refractive index is such that the air ⁇ the first translucent substrate 42 ⁇ the second translucent substrate 43.
  • the incident angle of the light L from the atmosphere to the laminated translucent substrate 41 (first translucent substrate 42) is the angle ⁇ , and the light L is refracted at the interface between the atmosphere and the first translucent substrate 42.
  • the angle ⁇ is the angle
  • the incident angle of the light L from the first translucent substrate 42 to the second translucent substrate 43 is the angle ( ⁇ + ⁇ )
  • the first translucent substrate 42 and the second translucent substrate 43 are
  • the refraction angle of the light L at the interface is an angle ⁇ 1
  • the incident angle of the light L from the second translucent substrate 43 to the solar battery cell 16 is an angle ⁇ .
  • the angle ⁇ 1 is an angle with respect to the inclined surface 44a in the mating surface 44 of the laminated translucent substrate 41. Therefore, the incident angle of the light L on the light receiving surface of the solar battery cell 16 is about 24.5 ° as ⁇ 1- ⁇ : (39.5 ° -15 °).
  • the solar cell panel 40 concerning Embodiment 2 compared with the example of an incident angle analysis in Embodiment 1, it turns out that the light L injects into the photovoltaic cell 16 at an angle nearer perpendicular
  • the solar cell panel 40 refracts the light L incident on the solar cell panel 40 and traveling through the solar cell panel 40 more greatly than when the mating surface 44 is parallel to the front and back surfaces of the laminated translucent substrate 41.
  • the solar cell 16 can be reached at an incident angle that is more perpendicular to the light receiving surface of the solar cell 16. Therefore, in the solar cell panel 40, the light component that can contribute to the power generation of the solar cell 16 in the light L incident on the laminated translucent substrate 41 is further increased, and the amount of light incident on the solar cell 16 is increased.
  • the photoelectric conversion efficiency of the solar battery cell 16 can be improved, and the output (power generation amount) of the solar battery panel 40 can be increased.
  • the laminated translucent substrate 41 becomes thicker when the mating surface 44 is configured with one inclined surface 44 a. That is, as the length D increases, the thickness of the laminated translucent substrate 41 also increases. For this reason, it is not practical to configure the mating surface 44 with one inclined surface 44a, and the mating surface 44 preferably includes a plurality of inclined surfaces 44a as shown in FIG.
  • a surface connecting adjacent inclined surfaces 44a on a surface perpendicular to the surface direction of the laminated translucent substrate 41 is defined as a connection surface 44b.
  • An angle formed between the surface 44a and the connection surface 44b is defined as an angle ⁇ .
  • 45 °
  • is about 10 °
  • the light L enters the solar battery cell 16 at an angle closer to the vertical.
  • the length of the inclined surface 44a in this case is only the same as the length of the connection surface 44b even when the angle ⁇ is a right angle, and half of the light L is incident on the connection surface 44b.
  • the length of the inclined surface 44a is shorter than the connecting surface 44b.
  • the angle ⁇ is a right angle
  • the length of the inclined surface 44a can be expressed as Lcos ⁇
  • FIG. 8 is a schematic cross-sectional view showing a state in which another solar cell panel according to the second embodiment having a different angle ⁇ is installed perpendicular to the horizontal direction (ground).
  • 8A shows a solar cell panel 40a when the angle ⁇ is an acute angle
  • FIG. 8B shows a solar cell panel 40b when the angle ⁇ is a right angle
  • FIG. 8C shows the sun when the angle ⁇ is an obtuse angle.
  • the battery panel 40c is shown.
  • the solar cell panel 40 in order to acquire the effect mentioned above, as shown in FIG. 7, it is necessary to irradiate the light L from diagonally upward direction. That is, when the light L is irradiated from obliquely below, the above-described effect cannot be obtained. Therefore, when the surface on the light receiving surface side of the solar cell panel 40 or the solar cell panel 40 is installed in order to make the inclined surface 44a a surface that inclines toward the solar cell 16 side in the specific first direction. It is preferable to attach a direction recognition marker for recognizing a specific first direction to the installation frame attached to the solar cell panel 40. The recognition marker should just be arrange
  • the installation frame is provided with a direction recognition marker
  • the installation frame on which the direction recognition marker is formed in advance may be attached to the solar cell panel 40, and the direction after the installation frame is attached to the solar cell panel 40.
  • a recognition marker may be formed on the surface of the installation frame.
  • the solar cell panel 40 includes the first light-transmitting substrate 42 having a relatively low refractive index from the atmosphere side and the second light-transmitting substrate 43 having a relatively high refractive index.
  • a laminated translucent substrate 41 having a configuration in which the refractive index increases in order from the atmosphere side toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16.
  • the light entering the solar cell panel 40 and refracting the light traveling through the solar cell panel 40 is refracted, and is more perpendicular to the light receiving surface of the solar cell 16.
  • the solar cells 16 can be reached at a close incident angle.
  • the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 41 is increased, and the amount of light incident on the solar cell 16 is increased.
  • the mating surface 44 of the first translucent substrate 42 and the second translucent substrate 43 in the laminated translucent substrate 41 has a specific inclination with respect to the light receiving surface of the solar cell panel 40.
  • the light incident on the laminated translucent substrate 41 is refracted more than the case where the mating surface 44 is parallel to the front and back surfaces of the laminated translucent substrate 41, and the solar cell 16 receives light.
  • the solar battery cell 16 can be reached at an incident angle that is more perpendicular to the surface.
  • the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 41 is further increased and is incident on the solar cell 16.
  • the photoelectric conversion efficiency of the solar battery cell 16 can be further improved by increasing the amount of light, and the output (power generation amount) of the solar battery panel 40 can be further increased.
  • 3 is a combination of a configuration in which the mating surface is parallel to the front and back surfaces of the laminated translucent substrate 41 and a configuration in which the mating surface has a specific inclination angle with respect to the front and back surfaces of the laminated translucent substrate 41.
  • the solar cell panel 40 concerning Embodiment 2 obtains high electric power generation amount, when light is irradiated diagonally with respect to the light-receiving surface of a solar cell panel similarly to the solar cell panel 10 concerning Embodiment 1. It is done.
  • the solar cell panel 40 according to the second embodiment is not limited to the case where the solar battery panel 40 is installed vertically with respect to the horizontal direction (ground) as in the case of wall surface installation, but the sun is at a certain angle relative to the horizontal direction (ground). Even when installed in a state of being inclined toward the battery cell 16, the power generation amount in the morning and evening increases, which can contribute to the improvement of the power generation amount of the day.
  • FIG. 9 is a schematic cross-sectional view showing a state in which the solar cell panel 50 according to the third embodiment of the present invention is installed perpendicular to the horizontal direction (ground).
  • the laminated translucent substrate 51 is attached to the light receiving surface side of the solar battery cell 16 through the sealing material 54.
  • a laminated translucent substrate is configured by superimposing two translucent substrates.
  • the light-transmitting substrates constituting the laminated light-transmitting substrate the light-transmitting substrate closest to the solar cells 16 (the light-transmitting substrate having the highest refractive index) has a higher refractive index and light on the solar cell 16 side.
  • a sealing material having transparency is used for the purpose of light refraction of incident light, it is possible to obtain an effect of reaching the solar cell 16 at an incident angle that is closer to the vertical with respect to the light receiving surface of the solar cell 16.
  • Examples of such a sealing material include translucent resins such as EVA, silicone, and urethane.
  • the mating surface of the translucent substrate constituting the laminated translucent substrate may be a surface parallel to the front and back surfaces of the laminated translucent substrate (light receiving surface of the solar cell panel). It may have an inclined surface having a specific inclination angle with respect to the front and back surfaces (light receiving surface of the solar cell panel).
  • Such a sealing material is also a light-transmitting substance.
  • a material that changes phase in the laminating process is a sealing material, and a material that does not change phase is a light-transmitting substrate.
  • heating at about 150 ° C. is performed.
  • EVA which is a typical sealing material, is a sheet-like solid, but melts when heat is applied and hardens when cooled.
  • Silicone resin can also be a sealing material, but this also changes from liquid to solid.
  • the sealing material and the translucent substrate are compared, the long-term reliability is inferior to the sealing material.
  • a sealing material having a higher refractive index and light transmittance is further applied to the solar cell 16 side of the light-transmitting substrate closest to the solar cell 16 (the light-transmitting substrate having the highest refractive index).
  • the reliability of the incident light angle adjustment function is inferior to that of the first and second embodiments.
  • an angle is provided on the mating surface between the light-transmitting substrate closest to the solar battery cell 16 and the sealing material, the unevenness on the surface of the light-transmitting substrate on the side of the solar battery cell 16 increases. Since bubbles tend to remain in the panel 10, care must be taken in the production.
  • the laminated translucent substrate 51 is a multi-layer structure in which two translucent substrates are laminated and arranged so that the refractive index sequentially increases from the atmosphere side toward the solar cell 16 side. . That is, the laminated translucent substrate 51 includes a first translucent substrate 52 having a relatively low refractive index and a second translucent substrate 53 having a relatively high refractive index from the light receiving surface side of the solar cell panel 50. Are stacked.
  • the refractive index of the second translucent substrate 53 is larger than the refractive index of the first translucent substrate 52.
  • the first translucent substrate 52 is, for example, a glass substrate having a refractive index of 1.5.
  • the second translucent substrate 53 is a glass substrate having a refractive index of 1.8, for example.
  • the first translucent substrate 52 and the second translucent substrate 53 are formed in the same shape and the same dimension in the surface direction.
  • a translucent adhesive is applied to the mating surface 55 of the first translucent base 52 and the second translucent base 53, and the first translucent base 52 and the second translucent are applied by the adhesive.
  • the base 53 is bonded.
  • a mating surface 55 between the first light transmissive substrate 52 and the second light transmissive substrate 53 is a surface parallel to the front and back surfaces of the laminated light transmissive substrate (light receiving surface of the solar cell panel 10).
  • This adhesive is provided with a thickness that can be optically ignored, and is not shown in FIG.
  • the surface of the laminated translucent substrate 51 that is, the light receiving surface of the laminated translucent substrate 51 is a plane parallel to the in-plane direction of the light receiving surface of the solar battery cell 16.
  • a sealing material 54 is disposed on the surface of the second translucent substrate 53 on the solar cell 16 side.
  • the sealing material 54 is formed with the same dimensions as the second light-transmitting substrate 53 in the surface direction. It is preferable that the sealing material 54 is formed in the dimension which includes the photovoltaic cell 16 in a surface direction.
  • the back surface of the sealing material 54 that is, the surface on the solar cell 16 side of the laminated translucent substrate 51 is a surface parallel to the in-plane direction of the light receiving surface of the solar cell 16 and seals the solar cell 16. It has stopped.
  • a plurality of inclined surfaces 56 a having a specific inclination angle with respect to the light receiving surface of the solar cell panel 50 are provided on the mating surface 56 of the second translucent substrate 53 with the sealing material 54.
  • the inclined surfaces 56 a are provided at a certain length and a certain pitch along a specific first direction in the surface direction of the laminated translucent substrate 51.
  • the specific first direction is a pair of opposing side directions (vertical direction in FIG. 9) in the plane direction of the laminated translucent substrate 51 having a square shape in the in-plane direction.
  • the inclined surface 56 a extends continuously over the entire width of the laminated translucent substrate 51 along a specific second direction in the surface direction of the laminated translucent substrate 51.
  • the specific second direction is the depth direction in FIG. 9 (the other pair of side directions facing each other in the surface direction of the laminated translucent substrate 51).
  • the angle formed between the connecting surface 56b and the inclined surface 56a connecting the adjacent inclined surfaces 56a in the plane perpendicular to the surface direction of the laminated translucent substrate 51 is a right angle or an obtuse angle. ing.
  • Such a solar cell panel 50 is basically the same as the case of the solar cell panel 10 except that the solar cell 16 is bonded to the inclined surface 56a of the second light-transmitting substrate 53 via the sealing material 54. It is produced by the process.
  • Such a solar cell panel 50 is formed by laminating a first light-transmitting substrate 52 having a relatively low refractive index from the atmosphere side and a second light-transmitting substrate 53 having a relatively high refractive index from the atmosphere side.
  • a laminated translucent substrate 51 having a configuration in which the refractive index increases in order toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16.
  • the light component that can contribute to the power generation of the solar battery cell 16 in the light incident on the laminated translucent substrate 51 is increased, and the amount of light incident on the solar battery cell 16 is increased to increase the amount of light incident on the solar battery cell 16.
  • the photoelectric conversion efficiency of the cell 16 can be improved, and the output (power generation amount) of the solar cell panel 40 can be increased.
  • the mating surface 56 of the second light transmissive substrate 53 and the sealing material 54 in the laminated light transmissive substrate 51 has a specific inclination angle with respect to the light receiving surface of the solar cell panel 50. And has an inclined surface 56a.
  • the light incident on the laminated translucent substrate 51 is further refracted by the inclined surface 56 a, and is incident on the solar cell 16 at an incident angle that is closer to the light receiving surface of the solar cell 16. Can be reached.
  • substrate 51 and the sealing material 54 are seen as a translucent base
  • the solar cell panel 50 the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 51 is further increased, and the amount of light incident on the solar cell 16 is further increased.
  • the photoelectric conversion efficiency of the solar battery cell 16 can be further improved, and the output (power generation amount) of the solar battery panel 50 can be further increased.
  • the sealing material 54 seals the solar battery cell 16 to adhere the solar battery cell 16 and the translucent substrate, and has a function as a part of the translucent substrate. Therefore, compared with the case where three light-transmitting substrates are bonded to form a light-transmitting substrate, the bonding process for one light-transmitting substrate can be omitted, and the operation can be simplified.
  • Embodiment 4 the surface of the semiconductor substrate 21 (n-type impurity diffusion layer 23) on the light-receiving surface side is formed with a texture structure made of pyramidal fine irregularities (texture) 22a as a texture structure.
  • a texture structure made of pyramidal fine irregularities (texture) 22a as a texture structure.
  • the size of the micro unevenness is defined by the size of the bottom surface portion and the height of the convex portion in the case of a convex type, and the size of the bottom surface portion and the depth of the concave portion in the case of a concave shape, the production of a translucent substrate is made. In view of the above, a height of about several ⁇ m to several hundred ⁇ m and a bottom size are preferable.
  • the photoelectric conversion efficiency of the battery cell 16 can be further improved. Thereby, the output (power generation amount) of the solar cell panel can be further increased.
  • an antireflection film 24 is formed on the surface of the minute irregularities 22a formed on the surface of the solar battery cell 16 so as to minimize the reflection when light is incident on the solar battery vertically. Yes. Since the antireflection film 24 is formed with a film thickness that minimizes reflection when light enters the solar cell vertically, by making the incident angle of the light to the solar cell 16 close to vertical. The effect of reducing the reflection on the surface of the solar battery cell 16 is also obtained.
  • the solar battery panel including one solar battery cell has been described as an example.
  • a plurality of solar battery cells are electrically connected in series or in parallel. It is common. It goes without saying that the above-described effects can be obtained even in such a case.
  • the bulk type solar battery cell has been described as an example.
  • the solar battery used in the above-described solar battery panel is not limited to the bulk type. That is, various forms of solar cells can be applied. Further, the above-described techniques can be used in any combination.
  • the solar cell panel according to the present invention effectively takes sunlight irradiated obliquely with respect to the light receiving surface of the solar cell panel into the solar cell panel, and has a high power generation amount and high mass productivity. This is useful for realizing a solar cell panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 The solar cell panel is characterized in that a laminated, translucent base is arranged on the light-receiving surface side of a solar cell, the laminated, translucent base side serving as the light-incidence side, the laminated, translucent base being a laminated structure in which a plurality of translucent bases having different refractive indices higher than the refractive index of air are laminated such that the refractive index increases from the light-incidence side towards the solar cell side, and the surfaces at the light-incidence side and the solar cell side being surfaces which are parallel to the light-receiving surface side of the solar cell. In so doing, sunlight illuminating the light-receiving surface of the solar panel on the diagonal can be effectively introduced into the solar cell panel interior, and a solar cell panel that generates a large amount of electricity and that is moreover highly mass-producible can be achieved.

Description

太陽電池パネルおよびその製造方法Solar cell panel and manufacturing method thereof
 本発明は、太陽電池パネルおよびその製造方法に関する。 The present invention relates to a solar cell panel and a manufacturing method thereof.
 日射条件は良好であり且つ気温の低さによる発電効率の向上効果という利点があるにも関わらず、北海道における住宅用太陽光発電の普及率は全国で一番低い。たとえば九州電力管内と北海道電力管内とを比べると、北海道電力管内における住宅用太陽光発電の設置率は、九州電力管内における住宅用太陽光発電の設置率の1/100である。北海道の住宅における太陽電池の普及率が低い要因として、積雪による発電量の低下の他に、設置費用が高いことが挙げられる。 Despite the advantages of good solar radiation conditions and the effect of improving power generation efficiency due to low temperatures, the penetration rate of residential solar power generation in Hokkaido is the lowest in the country. For example, comparing the Kyushu Electric Power jurisdiction with the Hokkaido Electric Power jurisdiction, the installation rate of residential solar power generation in the Hokkaido Electric Power jurisdiction is 1/100 of the installation rate of residential solar power generation in the Kyushu Electric Power jurisdiction. The reason for the low penetration rate of solar cells in houses in Hokkaido is that the installation cost is high in addition to the decrease in power generation due to snow cover.
 北海道の住宅では、屋根の下に発泡性の断熱ボードが配置されている。このため、この断熱ボードを除去しないと太陽電池パネルを設置することができない。また、積雪対策のために屋根の傾斜が急峻とされているため、太陽電池パネルを設置するためには足場を要する。 In Hokkaido houses, foaming insulation boards are placed under the roof. For this reason, a solar cell panel cannot be installed unless this heat insulation board is removed. In addition, since the roof is steep for snow cover, a scaffold is required to install the solar cell panel.
 無落雪スノーダクト屋根の場合にはこのような問題はないが、太陽電池パネルの重量に応じたオーダーメイドの架台が必要となる。また、太陽電池パネルが雪で埋まらないよう嵩上げする必要がある(たとえば、非特許文献1参照)。 ¡There is no such problem in the case of a snow-free snow duct roof, but a custom-made gantry according to the weight of the solar cell panel is required. Moreover, it is necessary to raise so that a solar cell panel may not be buried with snow (for example, refer nonpatent literature 1).
 これらの問題の解決策の1つは、太陽電池パネルを壁面に設置することである。太陽電池パネルを壁面に設置することにより、太陽電池パネル上の積雪の心配がなくなり、現状よりも設置コストを安くすることができる。 One solution to these problems is to install solar panels on the wall. By installing the solar cell panel on the wall surface, there is no worry of snow accumulation on the solar cell panel, and the installation cost can be made lower than the current situation.
 しかしながら、太陽電池パネルを水平方向(地面)に対して垂直に設置する場合と、水平方向(地面)に対して少しの傾きを設けて設置する場合とでは、太陽電池パネルにおける発電量に差が生じる。ここで、太陽電池パネルを水平方向(地面)に対して垂直に設置するとは、太陽電池パネル(太陽電池)の受光面が水平方向(地面)に対して垂直になるように設置することを意味する。たとえば非特許文献2では、札幌近郊の江別市の市役所の壁面に太陽電池パネルを水平方向(地面)に対して90度の角度(垂直)で設置した場合と、水平方向(地面)に対して75度の角度で設置した場合との年間発電量の比較を行っている。太陽電池パネルを水平方向(地面)に対して75度の角度で設置した場合は、水平方向(地面)に対して90度の角度で設置した場合よりも16%ほど太陽電池パネルの発電量が高い。したがって、垂直設置しても発電量が低下しない太陽電池パネルが求められている。 However, there is a difference in the amount of power generated in the solar panel between the case where the solar panel is installed perpendicular to the horizontal direction (ground) and the case where the solar panel is installed with a slight inclination with respect to the horizontal direction (ground). Arise. Here, installing the solar cell panel perpendicular to the horizontal direction (ground) means installing the solar cell panel (solar cell) so that the light receiving surface of the solar cell panel (solar cell) is perpendicular to the horizontal direction (ground). To do. For example, in Non-Patent Document 2, when a solar cell panel is installed at an angle (vertical) of 90 degrees with respect to the horizontal direction (ground) on the wall of a city hall in Ebetsu city near Sapporo, and with respect to the horizontal direction (ground) Comparison of annual power generation with installation at an angle of 75 degrees. When the solar panel is installed at an angle of 75 degrees with respect to the horizontal direction (ground), the amount of power generated by the solar panel is about 16% than when it is installed at an angle of 90 degrees with respect to the horizontal direction (ground). high. Therefore, there is a demand for a solar cell panel that does not reduce the amount of power generation even when installed vertically.
 このような問題に対して、特許文献1および特許文献2では太陽電池パネルの反射率を抑えるという方法を用いている。また、特許文献3では、より垂直に近い角度でパネル内の太陽電池に光を到達させるという方法を用いている。特許文献3では、光電変換素子の光入射側に配置されたガラス基板の内部に他の部分とは屈折率が異なる帯状部分を設ける。これにより、太陽電池装置に入射した光は、屈折率の異なる帯状部分で屈折すると共に、帯状部分の界面で反射して、より垂直に近い角度で光電変換素子に入射する。このため、光電変換素子に入射させる光量が増大し、光電変換効率を向上させることができる。特許文献3では、このようなガラス基板を、ガラス基板に対してイオンビームを走査することにより作製している。 For such problems, Patent Document 1 and Patent Document 2 use a method of suppressing the reflectance of the solar cell panel. Moreover, in patent document 3, the method of making light reach | attain the solar cell in a panel at an angle nearer perpendicular | vertical is used. In Patent Document 3, a belt-like portion having a refractive index different from that of other portions is provided inside a glass substrate disposed on the light incident side of the photoelectric conversion element. As a result, the light incident on the solar cell device is refracted by the band-shaped portion having a different refractive index, reflected by the interface of the band-shaped portion, and incident on the photoelectric conversion element at an angle closer to vertical. For this reason, the amount of light incident on the photoelectric conversion element increases, and the photoelectric conversion efficiency can be improved. In patent document 3, such a glass substrate is produced by scanning an ion beam with respect to a glass substrate.
特開2010-219518号公報JP 2010-219518 A 特開2013-122949号公報JP 2013-122949 A 特開平10-247738号公報Japanese Patent Laid-Open No. 10-247738
 しかしながら、帯状部分の屈折率はイオンビームの走査速度に依存し、走査速度を遅くするにつれて、帯状部分の屈折率が高くなる。たとえば屈折率1.50のガラスを用いると、イオンビームの走査速度:1mm/sの場合の帯状部分の屈折率は1.51、イオンビームの走査速度:0.1mm/sの場合の帯状部分の屈折率は1.65となる。屈折率の差が大きいほど、ガラス基板-帯状部分界面で光を反射しやすくなると考えられる。このため、発電量を上げるためには、イオンビームの走査速度として0.1mm/sの走査速度を選択することが好ましい。 However, the refractive index of the strip portion depends on the scanning speed of the ion beam, and the refractive index of the strip portion increases as the scanning speed is decreased. For example, when glass having a refractive index of 1.50 is used, the refractive index of the belt-like portion when the ion beam scanning speed is 1 mm / s is 1.51, and the belt-like portion when the ion beam scanning speed is 0.1 mm / s. Has a refractive index of 1.65. It is considered that the greater the difference in refractive index, the easier it is for light to be reflected at the glass substrate-band-like part interface. For this reason, in order to increase the power generation amount, it is preferable to select a scanning speed of 0.1 mm / s as the scanning speed of the ion beam.
 しかし、この場合にはイオンビームの走査速度が1mm/sの場合と比べてガラス基板の量産性が劣る。また、ガラス厚5mmの太陽電池パネルを札幌(北緯43°)に垂直設置すると仮定した場合、イオンビームの走査間隔は5.3mmという短い値となり、処理時間を更に延長させることになる。仮に、このような構造を屈折率の異なる2種類のガラスを層状に積み重ねることにより得ようとしても、ガラスの重ね合わせが幾重にもなり、高い量産性は得られにくい。 However, in this case, the mass productivity of the glass substrate is inferior compared with the case where the scanning speed of the ion beam is 1 mm / s. Further, when it is assumed that a solar cell panel having a glass thickness of 5 mm is vertically installed in Sapporo (north latitude 43 °), the ion beam scanning interval is as short as 5.3 mm, and the processing time is further extended. Even if an attempt is made to obtain such a structure by stacking two types of glasses having different refractive indexes in a layered manner, the superposition of the glass becomes multiple, and high mass productivity is difficult to obtain.
 本発明は、上記に鑑みてなされたものであって、太陽電池パネルの受光面に対して斜めに照射された太陽光を有効に太陽電池内部に取り込むことができ、発電量が高く、且つ量産性の高い太陽電池パネルおよびその製造方法を得ることを目的とする。 The present invention has been made in view of the above, and can effectively take sunlight irradiated obliquely with respect to the light receiving surface of the solar cell panel into the solar cell, has a high power generation amount, and is mass-produced. An object is to obtain a highly efficient solar cell panel and a method for producing the same.
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池パネルは、太陽電池の受光面側に積層透光性基体が配置されて前記積層透光性基体側が光入射側とされ、前記積層透光性基体は、大気の屈折率よりも高く異なる屈折率を有する複数の透光性基体が前記光入射側から前記太陽電池側に向かって屈折率が高くなるように積層された積層構造体であり、前記光入射側および前記太陽電池側の面が前記太陽電池の受光面と平行な面であること、を特徴とする。 In order to solve the above-described problems and achieve the object, a solar cell panel according to the present invention includes a laminated translucent substrate disposed on the light receiving surface side of the solar cell, and the laminated translucent substrate side is a light incident side. The laminated translucent substrate is laminated such that a plurality of translucent substrates having different refractive indexes higher than the refractive index of the atmosphere increase in refractive index from the light incident side toward the solar cell side. The surface on the light incident side and the solar cell side is a plane parallel to the light receiving surface of the solar cell.
 本発明によれば、太陽電池パネルの受光面に対して斜めに照射された太陽光を有効に太陽電池内部に取り込むことができ、発電量が高く、且つ量産性の高い太陽電池パネルが得られる、という効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, the sunlight irradiated diagonally with respect to the light-receiving surface of a solar cell panel can be taken in into a solar cell effectively, and a solar cell panel with high electric power generation amount and high mass productivity is obtained. , Has the effect.
図1は、本発明の実施の形態1にかかる太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a state in which a solar cell panel according to Embodiment 1 of the present invention is installed perpendicular to the horizontal direction (ground). 図2は、本発明の実施の形態1にかかる太陽電池パネルを受光面側(光入射側)から見た状態を示す平面図である。FIG. 2 is a plan view showing a state in which the solar cell panel according to Embodiment 1 of the present invention is viewed from the light receiving surface side (light incident side). 図3は、受光面側から見た太陽電池セルの上面図である。FIG. 3 is a top view of the solar battery cell viewed from the light receiving surface side. 図4は、受光面と反対側から見た太陽電池セルの下面図である。FIG. 4 is a bottom view of the solar battery cell viewed from the side opposite to the light receiving surface. 図5は、図3のA-A方向における太陽電池セルの要部断面図である。FIG. 5 is a cross-sectional view of the main part of the solar battery cell in the AA direction of FIG. 図6は、一般的な太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing a state in which a general solar battery panel is installed perpendicular to the horizontal direction (ground). 図7は、本発明の実施の形態2にかかる太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a state in which the solar cell panel according to Embodiment 2 of the present invention is installed perpendicular to the horizontal direction (ground). 図8は、角度εが異なる実施の形態にかかる他の太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing a state where another solar cell panel according to an embodiment having a different angle ε is installed perpendicular to the horizontal direction (ground). 図9は、本発明の実施の形態3にかかる太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing a state in which the solar cell panel according to Embodiment 3 of the present invention is installed perpendicular to the horizontal direction (ground).
 以下に、本発明にかかる太陽電池パネルおよびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Hereinafter, embodiments of a solar cell panel and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池パネル10が水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。ここで、太陽電池パネル10を水平方向(地面)に対して垂直に設置するとは、太陽電池パネル10において太陽光を受光する太陽電池パネル10の受光面(太陽電池セル16の受光面)が水平方向(地面)に対して垂直になるように設置することを意味する。図2は、本発明の実施の形態1にかかる太陽電池パネル10を受光面側(光入射側)から見た状態を示す平面図である。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing a state in which a solar cell panel 10 according to Embodiment 1 of the present invention is installed perpendicular to the horizontal direction (ground). Here, the installation of the solar cell panel 10 perpendicular to the horizontal direction (ground) means that the light receiving surface of the solar cell panel 10 that receives sunlight (the light receiving surface of the solar cells 16) is horizontal in the solar cell panel 10. It means to be installed perpendicular to the direction (ground). FIG. 2 is a plan view showing a state in which the solar cell panel 10 according to the first exemplary embodiment of the present invention is viewed from the light receiving surface side (light incident side).
 太陽電池パネル10においては、平板状の積層透光性基体11が、封止材15を介して太陽電池セル16の受光面側に取り付けられている。太陽電池パネル10は、面方向における外形形状、すなわち受光面側から見た形状が四角形状とされている。本実施の形態では、太陽電池パネル10の面方向における外形形状を正方形状としている。なお、この外形形状は、積層透光性基体11の外形形状に対応する。また、太陽電池パネル10の面方向における外形形状は四角形状に限定されず、所望の形状とされればよい。 In the solar cell panel 10, a flat laminated translucent substrate 11 is attached to the light receiving surface side of the solar cell 16 through a sealing material 15. The solar cell panel 10 has a quadrangular outer shape in the surface direction, that is, a shape viewed from the light receiving surface side. In this Embodiment, the external shape in the surface direction of the solar cell panel 10 is made into square shape. This outer shape corresponds to the outer shape of the laminated translucent substrate 11. Moreover, the external shape in the surface direction of the solar cell panel 10 is not limited to a square shape, and may be a desired shape.
 積層透光性基体11は、透光性を有する材料からなり、太陽電池パネル10の受光面側に配置されて太陽電池パネル10の受光面側を保護する機能を有する。積層透光性基体11は、面方向における外形形状、すなわち受光面側から見た形状が四角形状とされている。積層透光性基体11の材料としては、たとえばガラスまたは透光性プラスチックが用いられる。なお、積層透光性基体11を構成する材料は、ラミネート工程(加熱工程)で相変化しないものが用いられる。本明細書では、ラミネート工程(加熱工程)で相変化するものを封止材、相変化しないものを透光性基体とする。 The laminated translucent substrate 11 is made of a translucent material and is disposed on the light receiving surface side of the solar cell panel 10 and has a function of protecting the light receiving surface side of the solar cell panel 10. The laminated translucent substrate 11 has a quadrangular outer shape in the surface direction, that is, a shape viewed from the light receiving surface side. As a material of the laminated translucent substrate 11, for example, glass or translucent plastic is used. In addition, the material which comprises the laminated translucent base | substrate 11 uses what does not change a phase by a lamination process (heating process). In this specification, a material that changes phase in the laminating step (heating step) is a sealing material, and a material that does not change phase is a translucent substrate.
 積層透光性基体11は、大気側から太陽電池セル16側に進むにつれて屈折率が順に高くなるように、2枚の平板状の透光性基体部が積層して配置された複層構造体とされている。すなわち、積層透光性基体11は、太陽電池パネル10の受光面側から、相対的に屈折率が低い第1透光性基体12と相対的に屈折率が高い第2透光性基体13とが積層されている。ここで、第1透光性基体12の屈折率は、大気の屈折率(=1)よりも大きく、第2透光性基体13の屈折率よりも小さい。第2透光性基体13の屈折率は、第1透光性基体12の屈折率よりも大きい。第1透光性基体12は、たとえば屈折率が1.5のガラス基板である。第2透光性基体13は、たとえば屈折率が1.8のガラス基板である。 The laminated translucent substrate 11 is a multilayer structure in which two flat translucent substrate portions are laminated so that the refractive index increases in order from the atmosphere side toward the solar cell 16 side. It is said that. That is, the laminated translucent substrate 11 includes, from the light receiving surface side of the solar cell panel 10, the first translucent substrate 12 having a relatively low refractive index and the second translucent substrate 13 having a relatively high refractive index. Are stacked. Here, the refractive index of the first translucent substrate 12 is larger than the refractive index of the atmosphere (= 1) and smaller than the refractive index of the second translucent substrate 13. The refractive index of the second translucent substrate 13 is larger than the refractive index of the first translucent substrate 12. The first translucent substrate 12 is a glass substrate having a refractive index of 1.5, for example. The second translucent substrate 13 is a glass substrate having a refractive index of 1.8, for example.
 第1透光性基体12および第2透光性基体13は、面方向において同形状および同寸法で形成されている。第1透光性基体12と第2透光性基体13との合わせ面14には透光性を有する接着剤が塗布され、該接着剤により第1透光性基体12と第2透光性基体13とが接着されている。第1透光性基体12と第2透光性基体13との合わせ面14は、太陽電池パネル10の受光面(第1透光性基体12の光入射側の面)と平行な面とされている。 The first translucent substrate 12 and the second translucent substrate 13 are formed with the same shape and the same dimension in the surface direction. A translucent adhesive is applied to the mating surface 14 of the first translucent base 12 and the second translucent base 13, and the first translucent base 12 and the second translucent are applied by the adhesive. The substrate 13 is bonded. The mating surface 14 of the first light transmissive substrate 12 and the second light transmissive substrate 13 is a surface parallel to the light receiving surface of the solar cell panel 10 (the surface on the light incident side of the first light transmissive substrate 12). ing.
 なお、この接着剤は光学的に無視できる程度の厚みで設けられ、図1においては図示を省略している。そして、積層透光性基体11の表裏面および合わせ面14は、太陽電池セル16の受光面の面内方向と平行な面とされている。すなわち第1透光性基体12と第2透光性基体13との表裏面は、太陽電池セル16の受光面の面内方向と平行な面とされている。 The adhesive is provided with a thickness that can be optically ignored, and is not shown in FIG. The front and back surfaces and the mating surface 14 of the laminated translucent substrate 11 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16. That is, the front and back surfaces of the first translucent substrate 12 and the second translucent substrate 13 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16.
 なお、図1では積層透光性基体11が2層の透光性基体からなることを想定し、以下においても積層透光性基体11が2層の透光性基体からなる場合について説明するが、積層透光性基体11は3層以上の複層構造体であっても問題ない。また、積層透光性基体11の材質は、ガラスに限定されることはなく、たとえばポリカーボネイト、その他のプラスチックなどでも構わない。 In FIG. 1, it is assumed that the laminated translucent substrate 11 is composed of two layers of translucent substrate, and the case where the laminated translucent substrate 11 is composed of two layers of translucent substrate will be described below. There is no problem even if the laminated translucent substrate 11 is a multilayer structure having three or more layers. Further, the material of the laminated translucent substrate 11 is not limited to glass, and may be, for example, polycarbonate or other plastics.
 また、積層透光性基体11は、後述するように太陽電池パネル10へ入射した入射光を屈折させて、太陽電池セル16への光の入射角度をより垂直に近づける入射光角度調整機能を有する。この機能については後述する。 In addition, the laminated translucent substrate 11 has an incident light angle adjustment function that refracts incident light incident on the solar cell panel 10 and makes the incident angle of light incident on the solar cell 16 closer to vertical as described later. . This function will be described later.
 封止材15は、透光性を有する材料からなり、積層透光性基体11と太陽電池セル16との間に配置される。封止材15は、太陽電池セル16の受光面側の全面を覆って配置され、太陽電池セル16を封止する。積層透光性基体11と太陽電池セル16とは、封止材15により接着されている。封止材15の材料としては、たとえばEVA、シリコーン、ウレタンなどの透光性を有する樹脂が用いられる。 The sealing material 15 is made of a material having translucency, and is disposed between the laminated translucent substrate 11 and the solar battery cell 16. The sealing material 15 is disposed so as to cover the entire light receiving surface side of the solar battery cell 16 and seals the solar battery cell 16. The laminated translucent substrate 11 and the solar battery cell 16 are bonded by a sealing material 15. As the material of the sealing material 15, for example, a resin having translucency such as EVA, silicone, and urethane is used.
 つぎに、太陽電池セル16の構成について説明する。図3~図5は、太陽電池セル16の一例の概略構成を示す図である。図3は受光面側から見た太陽電池セル16の上面図、図4は受光面と反対側から見た太陽電池セル16の下面図、図5は図3のA-A方向における太陽電池セル16の要部断面図である。 Next, the configuration of the solar battery cell 16 will be described. 3 to 5 are diagrams showing a schematic configuration of an example of the solar battery cell 16. 3 is a top view of the solar cell 16 viewed from the light receiving surface side, FIG. 4 is a bottom view of the solar cell 16 viewed from the side opposite to the light receiving surface, and FIG. 5 is a solar cell in the AA direction of FIG. FIG.
 太陽電池セル16は、図3~図5に示されるように、光電変換機能を有する太陽電池基板であってpn接合を有する半導体基板21を備える。半導体基板21は、第1の導電型のp型多結晶シリコン基板22と、該p型多結晶シリコン基板22の表面の導電型が反転した第2の導電型のn型不純物拡散層23を有し、これらによりpn接合が構成される。 As shown in FIGS. 3 to 5, the solar battery cell 16 includes a solar battery substrate having a photoelectric conversion function and a semiconductor substrate 21 having a pn junction. The semiconductor substrate 21 has a first conductivity type p-type polycrystalline silicon substrate 22 and a second conductivity type n-type impurity diffusion layer 23 in which the conductivity type of the surface of the p-type polycrystalline silicon substrate 22 is inverted. These constitute a pn junction.
 また、半導体基板21(n型不純物拡散層23)の受光面側の表面には、テクスチャー構造としてピラミッド状の微小凹凸(テクスチャー)22aからなるテクスチャー構造が形成されている。ピラミッド状の微小凹凸(テクスチャー)22aは、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、効率良く光を太陽電池セル16に閉じ込める構造となっている。 Further, a texture structure composed of pyramidal fine irregularities (texture) 22a is formed as a texture structure on the surface on the light receiving surface side of the semiconductor substrate 21 (n-type impurity diffusion layer 23). The pyramidal micro unevenness (texture) 22a has a structure that increases the area of the light receiving surface that absorbs light from the outside, suppresses the reflectance on the light receiving surface, and efficiently confines the light in the solar cells 16.
 半導体基板21の受光面側の面(表面)には、受光面での入射光の反射を防止する反射防止膜24と、半導体基板21の受光面側の面(表面)において反射防止膜24に囲まれて形成された第1電極である受光面側電極25とを備える。受光面側電極25としては、表銀グリッド電極27および表銀バス電極28を含む。表銀グリッド電極27は、半導体基板21で発電された電気を集電するために受光面に局所的に設けられている。表銀バス電極28は、表銀グリッド電極27で集電された電気を取り出すために表銀グリッド電極27にほぼ直交して設けられている。 An antireflection film 24 that prevents reflection of incident light on the light receiving surface is formed on the light receiving surface side surface (front surface) of the semiconductor substrate 21, and an antireflection film 24 on the light receiving surface side surface (front surface) of the semiconductor substrate 21. And a light receiving surface side electrode 25 that is a first electrode surrounded by the first electrode. The light receiving surface side electrode 25 includes a front silver grid electrode 27 and a front silver bus electrode 28. The front silver grid electrode 27 is locally provided on the light receiving surface to collect electricity generated by the semiconductor substrate 21. The front silver bus electrode 28 is provided substantially orthogonal to the front silver grid electrode 27 in order to take out the electricity collected by the front silver grid electrode 27.
 一方、半導体基板21の裏面(受光面と反対側の面)には、外縁領域の一部を除いた全体にわたってアルミニウム材料からなる裏アルミニウム電極29が設けられ、また表銀バス電極28と略同一方向に延在して銀材料からなる裏銀電極30が設けられている。そして、裏アルミニウム電極29と裏銀電極30とにより第2電極である裏面側電極26が構成される。 On the other hand, a back aluminum electrode 29 made of an aluminum material is provided on the entire back surface of the semiconductor substrate 21 (a surface opposite to the light receiving surface) except for a part of the outer edge region, and is substantially the same as the front silver bus electrode 28. A back silver electrode 30 made of a silver material extending in the direction is provided. The back aluminum electrode 29 and the back silver electrode 30 constitute a back electrode 26 that is a second electrode.
 また、半導体基板21の裏面(受光面と反対側の面)側の表層部には、高濃度不純物を含んだp+層(BSF(Back Surface Field))31が形成されている。p+層(BSF)31は、BSF効果を得るために設けられ、p型層(p型多結晶シリコン基板22)中の電子が消滅しないようにバンド構造の電界でp型層(p型多結晶シリコン基板22)中の電子濃度を高めるようにする。 Further, a p + layer (BSF (Back Surface Field)) 31 containing a high concentration impurity is formed on the surface layer portion on the back surface (surface opposite to the light receiving surface) of the semiconductor substrate 21. The p + layer (BSF) 31 is provided in order to obtain the BSF effect, and the p-type layer (p-type polycrystal) is formed by an electric field having a band structure so that electrons in the p-type layer (p-type polycrystalline silicon substrate 22) do not disappear. The electron concentration in the silicon substrate 22) is increased.
 つぎに、上記のように構成された実施の形態1にかかる太陽電池パネル10の製造方法の一例について説明する。まず、公知の方法により太陽電池セル16が作製される。 Next, an example of a method for manufacturing the solar cell panel 10 according to the first embodiment configured as described above will be described. First, the solar battery cell 16 is produced by a known method.
 つぎに、相対的に屈折率が低い平板状の第1透光性基体12と、相対的に屈折率が高い平板状の第2透光性基体13とにおいて、合わせ面14となるそれぞれの面に接着剤が塗布される。そして、第1透光性基体12と第2透光性基体13とのそれぞれの合わせ面14とを貼り合わせて接着する。これにより、積層透光性基体11として、表裏面が平行な平板状の積層透光性基体が形成される。なお、接着剤は、第1透光性基体12と第2透光性基体13との合わせ面14のうち一方に塗布されてもよい。なお、3枚以上の透光性基体により積層透光性基体11が形成される場合には、屈折率が順に高くなるように各透光性基体を積層して貼り合わせる。 Next, in each of the flat first transparent substrate 12 having a relatively low refractive index and the flat second transparent substrate 13 having a relatively high refractive index, the surfaces to be the mating surfaces 14. An adhesive is applied to the surface. Then, the mating surfaces 14 of the first translucent substrate 12 and the second translucent substrate 13 are bonded and bonded together. Thereby, as the laminated translucent substrate 11, a flat laminated translucent substrate having parallel front and back surfaces is formed. The adhesive may be applied to one of the mating surfaces 14 of the first translucent substrate 12 and the second translucent substrate 13. In the case where the laminated translucent substrate 11 is formed of three or more translucent substrates, the respective translucent substrates are laminated and bonded so that the refractive index becomes higher in order.
 つぎに、積層透光性基体11における相対的に屈折率が高い第2透光性基体13上に、封止材15と太陽電池セル16とをこの順で、積層透光性基体11の表裏面が太陽電池セル16の受光面と平行になるように配置する。太陽電池セル16は、受光面を封止材15に対向させて配置される。すなわち、積層透光性基体11は、屈折率の高い側の面が太陽電池セル16の受光面に対向した状態で配置される。 Next, the sealing material 15 and the solar battery cell 16 are arranged in this order on the second light-transmitting substrate 13 having a relatively high refractive index in the layered light-transmitting substrate 11. It arrange | positions so that a back surface may become in parallel with the light-receiving surface of the photovoltaic cell 16. FIG. The solar battery cell 16 is disposed with the light receiving surface facing the sealing material 15. That is, the laminated translucent substrate 11 is arranged in a state where the surface with the higher refractive index faces the light receiving surface of the solar battery cell 16.
 そして、これらを例えば真空中で加熱プレスして、いわゆるラミネート加工を実施する。これにより、積層透光性基体11と太陽電池セル16とが封止材15により接着されて一体化する。これにより、上記のような太陽電池パネル10が得られる。 And these are heated and pressed in a vacuum, for example, and a so-called laminating process is performed. Thereby, the laminated translucent substrate 11 and the solar battery cell 16 are bonded and integrated by the sealing material 15. Thereby, the above solar cell panel 10 is obtained.
 つぎに、積層透光性基体11における入射光角度調整機能について説明する。まず、一般的な太陽電池パネルにおける入射光の屈折について説明する。図6は、一般的な太陽電池パネル100が水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。太陽電池パネル100においては、単層の透光性基体111が、透光性を有する封止材115を介して太陽電池セル116の光入射側(受光面側)に取り付けられている。透光性基体111は、たとえばガラス基板からなり、屈折率はたとえば1.4~1.5であり、ここでは1.5とする。 Next, the incident light angle adjustment function in the laminated translucent substrate 11 will be described. First, refraction of incident light in a general solar battery panel will be described. FIG. 6 is a schematic cross-sectional view showing a state in which a general solar battery panel 100 is installed perpendicular to the horizontal direction (ground). In the solar cell panel 100, a single-layer translucent substrate 111 is attached to the light incident side (light-receiving surface side) of the solar cell 116 through a sealing material 115 having translucency. The translucent substrate 111 is made of, for example, a glass substrate and has a refractive index of 1.4 to 1.5, for example, 1.5.
 図6に示すように太陽電池パネル100に入射角度が角度α(α>0°)で光Lが照射された場合、光Lの光量をLaとすると、この光の照射面(受光面)に垂直な成分はLa×cosαと表される。α>0°であるため、発電に寄与できる光は垂直入射(α=0°)の場合に比べて少ない。 As shown in FIG. 6, when the solar cell panel 100 is irradiated with the light L at an incident angle α (α> 0 °), assuming that the light amount of the light L is La, the light irradiation surface (light receiving surface) The vertical component is expressed as La × cos α. Since α> 0 °, the amount of light that can contribute to power generation is small compared to the case of normal incidence (α = 0 °).
 大気中から透光性基体111に入射する光Lは、大気と透光性基体111との界面で屈折して角度βの屈折角度で透光性基体111を進行する。そして、透光性基体111を通過した光は、太陽電池セル116の受光面に対して角度βの入射角度で太陽電池セル116に到達する。このため、光Lの光量をLaとすると、透光性基体111に入射した光において太陽電池セル116の発電に寄与できる光の成分はLa×cosβとなる。透光性基体111の表面反射、光吸収、封止材115での光の屈折、吸収を無視した場合、太陽電池セル116に到達する光の成分はLa×cosα×cosβと表される。したがって、角度βを0°に近づけることにより太陽電池セル116へ入射する光量が増え、太陽電池パネル100の出力を上げることができる。 The light L incident on the translucent substrate 111 from the atmosphere is refracted at the interface between the atmosphere and the translucent substrate 111 and travels through the translucent substrate 111 at an angle β. And the light which passed the translucent base | substrate 111 reaches | attains the photovoltaic cell 116 with the incident angle of angle (beta) with respect to the light-receiving surface of the photovoltaic cell 116. FIG. Therefore, when the light quantity of the light L is La, the light component that can contribute to the power generation of the solar battery cell 116 in the light incident on the translucent substrate 111 is La × cos β. When the surface reflection of the translucent substrate 111, light absorption, light refraction and absorption at the sealing material 115 are ignored, the component of the light reaching the solar battery cell 116 is expressed as La × cos α × cos β. Therefore, by making the angle β close to 0 °, the amount of light incident on the solar battery cell 116 is increased, and the output of the solar battery panel 100 can be increased.
 つぎに、実施の形態1にかかる太陽電池パネル10の積層透光性基体11における入射光の屈折について説明する。なお、以下においても透光性基体の表面反射、光吸収、封止材での光の屈折、吸収を無視する。積層透光性基体11において、屈折率は、大気<第1透光性基体12<第2透光性基体13となる。この場合、大気中から積層透光性基体11(第1透光性基体12)への光Lの入射角度を角度α、第1透光性基体12から第2透光性基体13への光Lの入射角度を角度β、第2透光性基体13から太陽電池セル16への光Lの入射角度を角度γとする。この場合、「α>β>γ」という関係が成り立つ。 Next, refraction of incident light in the laminated translucent substrate 11 of the solar cell panel 10 according to the first embodiment will be described. In the following description, surface reflection, light absorption, and light refraction and absorption at the sealing material are ignored. In the laminated translucent substrate 11, the refractive index is air <first translucent substrate 12 <second translucent substrate 13. In this case, the incident angle of the light L from the atmosphere to the laminated translucent substrate 11 (first translucent substrate 12) is the angle α, and the light from the first translucent substrate 12 to the second translucent substrate 13 An incident angle of L is an angle β, and an incident angle of light L from the second light-transmissive substrate 13 to the solar battery cell 16 is an angle γ. In this case, the relationship “α> β> γ” is established.
 図6に示すように透光性基体111が単層の場合の太陽電池セル16への光Lの入射角度は角度βである。ここで、透光性基体111と太陽電池セル16との間に透光性基体111よりも屈折率の大きな他の透光性基体を挿入することにより、太陽電池セル16への光Lの入射角度をより垂直に近づけ、太陽電池パネル10の発電量を向上させることができる。 As shown in FIG. 6, the incident angle of the light L to the solar battery cell 16 when the translucent substrate 111 is a single layer is an angle β. Here, by inserting another light-transmitting substrate having a refractive index higher than that of the light-transmitting substrate 111 between the light-transmitting substrate 111 and the solar cell 16, the light L is incident on the solar cell 16. The angle can be made more vertical, and the power generation amount of the solar cell panel 10 can be improved.
 たとえば、図6に示すように水平方向(地面)に対して垂直設置した太陽電池パネル100(透光性基体111は単層、屈折率は1.5と仮定する)に入射角度60°で光Lが照射された場合を考える。この場合の太陽電池セル116への光Lの入射角度(屈折角度:角度β)については、スネルの法則により、
sin60°/sinβ=1.5/1
の式が成り立つ。この式より、
sinβ=0.5773
となる。したがって、角度βは約35°となる。
For example, as shown in FIG. 6, light is incident on a solar cell panel 100 (assuming that the translucent substrate 111 is a single layer and the refractive index is 1.5) installed vertically to the horizontal direction (ground) at an incident angle of 60 °. Consider the case where L is irradiated. In this case, the incident angle (refractive angle: angle β) of the light L to the solar battery cell 116 is according to Snell's law
sin 60 ° / sin β = 1.5 / 1
The following equation holds. From this formula:
sin β = 0.5773
It becomes. Therefore, the angle β is about 35 °.
 一方、本実施の形態にかかる太陽電池パネル10を水平方向(地面)に対して垂直設置し、入射角度60°で光Lが照射された場合を考える。太陽電池パネル10は、大気側から屈折率が1.5の第1透光性基体12と屈折率が1.8の第2透光性基体13とが積層されてなる積層透光性基体11を備える。上記のように大気中から積層透光性基体11(第1透光性基体12)への光Lの入射角度を角度α、第1透光性基体12から第2透光性基体13への光Lの入射角度を角度β、第2透光性基体13から太陽電池セル16への光Lの入射角度を角度γとする。 On the other hand, consider a case where the solar cell panel 10 according to the present embodiment is installed vertically with respect to the horizontal direction (ground) and the light L is irradiated at an incident angle of 60 °. The solar cell panel 10 includes a laminated translucent substrate 11 in which a first translucent substrate 12 having a refractive index of 1.5 and a second translucent substrate 13 having a refractive index of 1.8 are laminated from the atmosphere side. Is provided. As described above, the incident angle of the light L from the atmosphere to the laminated translucent substrate 11 (first translucent substrate 12) is the angle α, and the first translucent substrate 12 to the second translucent substrate 13 Assume that the incident angle of the light L is an angle β, and the incident angle of the light L from the second translucent substrate 13 to the solar battery cell 16 is an angle γ.
 この場合、角度α=60°で光Lが照射されたとすると、図1に示すように太陽電池セル16への光Lの入射角度である角度γは以下のようにして求められる。すなわち、スネルの法則により、
sinβ/sinγ=1.8/1.5
sin60°/sinβ=1.5/1
の式が成り立つ。この式より、
sinγ=(1.5/1.8)×sinβ=0.481
となる。したがって、γは約29.5°となる。
In this case, assuming that the light L is irradiated at an angle α = 60 °, the angle γ, which is the incident angle of the light L to the solar battery cell 16, is obtained as follows as shown in FIG. That is, according to Snell's law,
sin β / sin γ = 1.8 / 1.5
sin 60 ° / sin β = 1.5 / 1
The following equation holds. From this formula:
sin γ = (1.5 / 1.8) × sin β = 0.481
It becomes. Therefore, γ is about 29.5 °.
 このように図6に示す単層の透光性基体を備える太陽電池パネルの構成に対して、より屈折率の高い第2透光性基体12を太陽電池セル16側に配置することにより、単層の透光性基体を備える場合に比べて太陽電池セル16への光Lの入射角度を小さくすることができる。この結果、積層透光性基体11に入射した光Lにおいて太陽電池セル16の発電に寄与できる光の成分が増加し、太陽電池セル16に入射する光量が増大し、太陽電池セル16における光電変換効率を向上させることができ、太陽電池パネル10の出力を増加させることができる。 In this way, with respect to the configuration of the solar cell panel including the single-layer translucent substrate shown in FIG. 6, the second translucent substrate 12 having a higher refractive index is disposed on the solar cell 16 side, so that The incident angle of the light L to the solar battery cell 16 can be reduced as compared with the case where the transparent substrate of the layer is provided. As a result, the light component that can contribute to the power generation of the solar cell 16 in the light L incident on the laminated translucent substrate 11 increases, the amount of light incident on the solar cell 16 increases, and photoelectric conversion in the solar cell 16 occurs. Efficiency can be improved and the output of the solar cell panel 10 can be increased.
 なお、上記においては、積層透光性基体11が2層の透光性基体から構成される場合について説明したが、屈折率の異なる3層以上の平板状の透光性基体を大気側から太陽電池セル16側に進むにつれて屈折率が順に高くなるように重ね合わせた透光性基体を構成してもよい。これにより、各透光性基体の屈折率にもよるが、太陽電池セル16への光の入射角度をより小さくすることが可能である。 In the above description, the case where the laminated light-transmitting substrate 11 is composed of two layers of light-transmitting substrates has been described. You may comprise the translucent base | substrate superimposed so that a refractive index may become high in order as it progresses to the battery cell 16 side. Thereby, although it depends also on the refractive index of each translucent base | substrate, it is possible to make the incident angle of the light to the photovoltaic cell 16 smaller.
 特許文献3においても、より垂直に近い角度でパネル内の太陽電池に光を到達させる方法を用いている。しかし、本実施の形態にかかる太陽電池パネル10においては、相対的に屈折率が低い第1透光性基体12と相対的に屈折率が高い第2透光性基体13との屈折率の異なる2つの平板状の透光性基体を、大気側から太陽電池セル16側に進むにつれて屈折率が順に高くなるように重ね合わせた積層透光性基体11を用いて、太陽電池セル16への光の入射角度を小さくすることを実現している。 Patent Document 3 also uses a method of causing light to reach the solar cell in the panel at an angle closer to vertical. However, in the solar cell panel 10 according to the present embodiment, the first light-transmitting substrate 12 having a relatively low refractive index and the second light-transmitting substrate 13 having a relatively high refractive index are different in refractive index. Using the laminated translucent substrate 11 in which two flat translucent substrates are superposed so that the refractive index increases in order from the air side toward the solar cell 16 side, light to the solar cell 16 is obtained. The incident angle is reduced.
 特許文献3では、内部に他の部分とは屈折率が異なる帯状部分を設けたガラス基板を、ガラス基板に対してイオンビームを走査することにより作製している。しかしながら、ガラスの屈折率はイオンビームの走査速度に依存し、走査速度を遅くするにつれて、屈折率が高くなる。屈折率の差が大きいほど、ガラス-ガラス界面で光を反射しやすくなると考えられるため、発電量を上げるためには遅い走査速度を選択することが好ましい。しかし、この場合にはガラス基板の量産性が低くなる。 In Patent Document 3, a glass substrate provided with a band-like portion having a refractive index different from that of other portions is manufactured by scanning an ion beam on the glass substrate. However, the refractive index of glass depends on the scanning speed of the ion beam, and the refractive index increases as the scanning speed decreases. It is considered that the larger the difference in refractive index, the easier it is to reflect light at the glass-glass interface. Therefore, it is preferable to select a slow scanning speed in order to increase the amount of power generation. However, in this case, the mass productivity of the glass substrate is lowered.
 これに対して、本実施の形態にかかる太陽電池パネル10においては、相対的に屈折率が低い第1透光性基体12と相対的に屈折率が高い第2透光性基体13とを接着剤により貼り合わせることにより、積層透光性基体11を作製することができる。これにより、本実施の形態にかかる太陽電池パネル10においては、容易に且つ生産性良く積層透光性基体11および太陽電池パネル10を作製することができる。 On the other hand, in the solar cell panel 10 according to the present embodiment, the first translucent substrate 12 having a relatively low refractive index and the second translucent substrate 13 having a relatively high refractive index are bonded. By laminating with an agent, the laminated translucent substrate 11 can be produced. Thereby, in the solar cell panel 10 concerning this Embodiment, the laminated translucent base | substrate 11 and the solar cell panel 10 can be produced easily and with sufficient productivity.
 なお、太陽の高度は、季節、時間によって変わる。このため、太陽電池パネルの受光面に対して斜めに光が照射される状況は、水平方向(地面)に対して垂直設置された太陽電池パネルに限らず、屋根の上へ設置された太陽電池パネルのように、設置後に設置角度を変えることができない太陽電池パネルにも当てはまる。すなわち、水平方向(地面)に対して傾斜した状態で屋根の上等に設置された太陽電池パネルについても、朝、夕では太陽電池パネルの受光面に対して斜めに光が照射され、発電量が少なくなる。 The altitude of the sun varies depending on the season and time. For this reason, the situation where light is irradiated obliquely with respect to the light receiving surface of the solar cell panel is not limited to the solar cell panel installed vertically to the horizontal direction (ground), but the solar cell installed on the roof This also applies to solar panels that cannot change the installation angle after installation, such as panels. That is, even for solar cell panels installed on the roof in a state inclined with respect to the horizontal direction (ground), light is irradiated obliquely to the light receiving surface of the solar cell panel in the morning and evening, and the power generation amount Less.
 これに対して、実施の形態1にかかる太陽電池パネル10は、太陽電池パネルの受光面に対して斜めに光が照射される場合において高い発電量が得られる。このため、実施の形態1にかかる太陽電池パネル10は、壁面設置のように水平方向(地面)に対して垂直設置された場合に限らず、垂直方向に対してある程度の角度で太陽電池セル16側に傾斜した状態で設置された場合においても、朝、夕の発電量が増加し、1日の発電量の向上に寄与できる。 On the other hand, the solar cell panel 10 according to the first embodiment can obtain a high power generation amount when light is irradiated obliquely with respect to the light receiving surface of the solar cell panel. Therefore, the solar battery panel 10 according to the first embodiment is not limited to the case where the solar battery panel 10 is installed vertically with respect to the horizontal direction (ground) as in the case of wall surface installation, but the solar battery cells 16 at a certain angle with respect to the vertical direction. Even when installed in a state inclined to the side, the power generation amount in the morning and evening increases, which can contribute to the improvement of the power generation amount of the day.
 上述したように実施の形態1にかかる太陽電池パネル10は、大気側から相対的に屈折率が低い第1透光性基体12と相対的に屈折率が高い第2透光性基体13とが積層されて大気側から太陽電池セル16側に向かって屈折率が順に高くなる構成を有する積層透光性基体11を太陽電池セル16の受光面側(光入射側)に備える。これにより太陽電池パネル10においては、太陽電池パネル10に入射して該太陽電池パネル10内を進む光を屈折させ、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。これにより、積層透光性基体11に入射した光における太陽電池セル16の発電に寄与できる光の成分を増加させ、太陽電池セル16に入射する光量を増大させて該太陽電池セル16の光電変換効率を向上させることができ、太陽電池パネル10の出力(発電量)を増大させることができる。 As described above, the solar cell panel 10 according to the first embodiment includes the first light-transmitting substrate 12 having a relatively low refractive index from the atmosphere side and the second light-transmitting substrate 13 having a relatively high refractive index. A laminated translucent substrate 11 having a configuration in which the refractive index is increased in order from the atmosphere side toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16. Thereby, in the solar battery panel 10, the light entering the solar battery panel 10 and refracting the light traveling through the solar battery panel 10 is refracted, and the solar battery cell is incident at an angle closer to perpendicular to the light receiving surface of the solar battery cell 16. 16 can be reached. Thereby, the component of the light which can contribute to the electric power generation of the photovoltaic cell 16 in the light incident on the laminated translucent substrate 11 is increased, the amount of light incident on the photovoltaic cell 16 is increased, and the photoelectric conversion of the photovoltaic cell 16 is performed. Efficiency can be improved and the output (power generation amount) of the solar cell panel 10 can be increased.
 このような実施の形態1は、太陽電池パネル10内の太陽電池セル16の受光面に対して、より垂直に近い入射角度で光を到達させることにより太陽電池パネル10の出力向上を図るものである。すなわち、太陽電池パネル10の受光面に対して斜めに光が照射される場合において高い発電量が得られる。したがって、特許文献1および特許文献2のように太陽電池パネルの反射率を抑えることによって出力向上を図るものではなく、対立するものでもない。したがって、実施の形態1と特許文献1(または特許文献2)の技術を併用することも可能である。 Such Embodiment 1 aims at improving the output of the solar cell panel 10 by allowing light to reach the light receiving surface of the solar cell 16 in the solar cell panel 10 at an incident angle closer to the vertical. is there. That is, a high power generation amount is obtained when light is irradiated obliquely with respect to the light receiving surface of the solar cell panel 10. Therefore, as in Patent Document 1 and Patent Document 2, output is not improved by suppressing the reflectance of the solar cell panel, and there is no conflict. Therefore, it is also possible to use Embodiment 1 and the technique of Patent Document 1 (or Patent Document 2) in combination.
実施の形態2.
 実施の形態1では、2枚の平板状の透光性基体を重ね合わせて積層透光性基体11を構成したが、実施の形態2では、2枚の透光性基体の合わせ面に角度を持たせる。これにより、積層透光性基体11に入射した入射光をより屈折させることができ、より垂直に近い角度で太陽電池セルに光を入射させることができる。
Embodiment 2. FIG.
In the first embodiment, the laminated light-transmitting substrate 11 is configured by superimposing two flat light-transmitting substrates. However, in the second embodiment, an angle is set to the mating surface of the two light-transmitting substrates. Give it. Thereby, the incident light incident on the laminated translucent substrate 11 can be refracted more, and the light can be incident on the solar battery cell at an angle closer to the vertical.
 図7は、本発明の実施の形態2にかかる太陽電池パネル40が水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。太陽電池パネル40においては、積層透光性基体41が、封止材15を介して太陽電池セル16の受光面側に取り付けられている。実施の形態2にかかる太陽電池パネル40は、積層透光性基体41の構造以外は実施の形態1にかかる太陽電池パネル10と同じ構造を有する。したがって、太陽電池パネル10と同じ部材については、実施の形態1の場合と同じ符号を付すことで詳細な説明を省略する。また、積層透光性基体41は、該積層透光性基体41を構成する2枚の透光性基体の合わせ面に角度を持たせたこと以外は、実施の形態1における積層透光性基体11と同じ構成を有する。 FIG. 7 is a schematic cross-sectional view showing a state in which the solar cell panel 40 according to the second embodiment of the present invention is installed perpendicular to the horizontal direction (ground). In the solar battery panel 40, the laminated translucent base 41 is attached to the light receiving surface side of the solar battery cell 16 through the sealing material 15. The solar cell panel 40 according to the second embodiment has the same structure as the solar cell panel 10 according to the first embodiment except for the structure of the laminated translucent substrate 41. Therefore, about the same member as the solar cell panel 10, detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol as the case of Embodiment 1. FIG. The laminated translucent substrate 41 is the same as the laminated translucent substrate according to Embodiment 1 except that an angle is given to the mating surface of the two translucent substrates constituting the laminated translucent substrate 41. 11 has the same configuration.
 積層透光性基体41は、大気側から太陽電池セル16側に進むにつれて屈折率が順に高くなるように、2枚の透光性基体が積層して配置された複層構造体とされている。すなわち、積層透光性基体41は、太陽電池パネル40の受光面側から、相対的に屈折率が低い第1透光性基体42と相対的に屈折率が高い第2透光性基体43とが積層されている。ここで、第1透光性基体42の屈折率は、大気の屈折率(=1)よりも大きく、第2透光性基体43の屈折率よりも小さい。第2透光性基体43の屈折率は、第1透光性基体42の屈折率よりも大きい。第1透光性基体42は、たとえば屈折率が1.5のガラス基板である。第2透光性基体43は、たとえば屈折率が1.8のガラス基板である。 The laminated translucent substrate 41 is a multi-layer structure in which two translucent substrates are laminated and arranged so that the refractive index sequentially increases from the atmosphere side toward the solar cell 16 side. . That is, the laminated translucent substrate 41 includes a first translucent substrate 42 having a relatively low refractive index and a second translucent substrate 43 having a relatively high refractive index from the light receiving surface side of the solar cell panel 40. Are stacked. Here, the refractive index of the first translucent substrate 42 is larger than the refractive index of the atmosphere (= 1) and smaller than the refractive index of the second translucent substrate 43. The refractive index of the second light transmissive substrate 43 is larger than the refractive index of the first light transmissive substrate 42. The first translucent substrate 42 is a glass substrate having a refractive index of 1.5, for example. The second translucent substrate 43 is a glass substrate having a refractive index of 1.8, for example.
 第1透光性基体42および第2透光性基体43は、面方向において同形状および同寸法で形成されている。第1透光性基体42と第2透光性基体43との合わせ面44には透光性を有する接着剤が塗布され、該接着剤により第1透光性基体42と第2透光性基体43とが接着されている。なお、この接着剤は光学的に無視できる程度の厚みで設けられ、図7においては図示を省略している。 The first translucent substrate 42 and the second translucent substrate 43 are formed with the same shape and the same dimensions in the surface direction. A translucent adhesive is applied to the mating surface 44 of the first translucent base 42 and the second translucent base 43, and the first translucent base 42 and the second translucent are applied by the adhesive. The substrate 43 is bonded. This adhesive is provided with a thickness that can be ignored optically, and is not shown in FIG.
 積層透光性基体41の表裏面は、太陽電池セル16の受光面の面内方向と平行な面とされている。すなわち第1透光性基体42における大気側の面と第2透光性基体43における太陽電池セル16側の面は、太陽電池セル16の受光面の面内方向と平行な面とされている。 The front and back surfaces of the laminated translucent substrate 41 are parallel to the in-plane direction of the light receiving surface of the solar battery cell 16. That is, the surface on the atmosphere side of the first translucent substrate 42 and the surface on the solar cell 16 side of the second translucent substrate 43 are parallel to the in-plane direction of the light receiving surface of the solar cell 16. .
 一方、第1透光性基体42と第2透光性基体43との合わせ面44には、太陽電池パネル40の受光面に対して特定の傾斜角度を有した傾斜面44aが複数設けられている。傾斜面44aは、積層透光性基体41の面方向における特定の第1方向に沿って、一定の長さDおよび一定のピッチで設けられている。図7においては、特定の第1方向は、正方形状を有する積層透光性基体41の面方向において対向する1対の辺方向(図7における上下方向、図2におけるY方向)である。 On the other hand, a plurality of inclined surfaces 44 a having a specific inclination angle with respect to the light receiving surface of the solar cell panel 40 are provided on the mating surface 44 of the first light transmitting substrate 42 and the second light transmitting substrate 43. Yes. The inclined surfaces 44 a are provided at a certain length D and a certain pitch along a specific first direction in the surface direction of the laminated translucent substrate 41. In FIG. 7, the specific first direction is a pair of side directions (vertical direction in FIG. 7, Y direction in FIG. 2) that face each other in the surface direction of the laminated translucent substrate 41 having a square shape.
 また、傾斜面44aは、積層透光性基体41の面方向における特定の第2方向に沿って積層透光性基体41の全幅に連続して延在している。図7においては、特定の第2方向は、図7における紙面奥行き方向(積層透光性基体41の面方向における対向する他の1対の辺方向、図2におけるX方向)である。長さDは、1つの傾斜面44aの第1方向に沿った長さである。 In addition, the inclined surface 44 a extends continuously over the entire width of the laminated translucent substrate 41 along a specific second direction in the surface direction of the laminated translucent substrate 41. In FIG. 7, the specific second direction is the depth direction in FIG. 7 (the other pair of opposite side directions in the surface direction of the laminated translucent substrate 41, the X direction in FIG. 2). The length D is a length along the first direction of one inclined surface 44a.
 なお、複数の傾斜面44aにおいて、特定の傾斜角度は必ずしも全てが同一でなくてもよい。また、傾斜面44aは、図2におけるX方向に延在する場合に、全幅において必ずしも図2におけるX方向に沿っていなくてもよい。 Note that, in the plurality of inclined surfaces 44a, all of the specific inclination angles are not necessarily the same. Further, when the inclined surface 44a extends in the X direction in FIG. 2, the entire width does not necessarily have to follow the X direction in FIG.
 傾斜面44aの太陽電池パネル40の受光面に対する傾斜角度である角度θは、たとえば15°である。傾斜面44aは、太陽電池パネル40が水平方向(地面)に対して垂直または垂直方向に対してある程度の角度で太陽電池セル16側に傾斜して設置された場合に、積層透光性基体41の面方向において上部から下部に向かうにつれて太陽電池セル16側に向かって傾斜する面とされている。すなわち、傾斜面44aは、特定の第1方向に向かうにつれて太陽電池セル16側に向かって傾斜する面とされている。 The angle θ that is an inclination angle of the inclined surface 44a with respect to the light receiving surface of the solar cell panel 40 is, for example, 15 °. The inclined surface 44a is laminated laminated translucent substrate 41 when the solar cell panel 40 is installed in a direction perpendicular to the horizontal direction (ground) or inclined to a solar cell 16 side at a certain angle with respect to the vertical direction. In the surface direction, the surface is inclined toward the solar cell 16 side from the upper part toward the lower part. That is, the inclined surface 44a is a surface that is inclined toward the solar battery cell 16 as it goes in the specific first direction.
 このような太陽電池パネル40は、第1透光性基体42と第2透光性基体43との合わせ面44に傾斜面44aが設けられていること以外は、太陽電池パネル10の場合と同様の工程で作製される。 Such a solar cell panel 40 is the same as the case of the solar cell panel 10 except that an inclined surface 44 a is provided on the mating surface 44 of the first light-transmissive substrate 42 and the second light-transmissive substrate 43. It is produced by the process.
 つぎに、実施の形態2にかかる太陽電池パネル40の積層透光性基体41における入射光の屈折について説明する。積層透光性基体41において、屈折率は、大気<第1透光性基体42<第2透光性基体43となる。この場合、大気中から積層透光性基体41(第1透光性基体42)への光Lの入射角度を角度α、大気と第1透光性基体42との界面での光Lの屈折角度を角度β、第1透光性基体42から第2透光性基体43への光Lの入射角度を角度(β+θ)、第1透光性基体42と第2透光性基体43との界面での光Lの屈折角度を角度γ1、第2透光性基体43から太陽電池セル16への光Lの入射角度を角度γとする。 Next, refraction of incident light in the laminated translucent substrate 41 of the solar cell panel 40 according to the second embodiment will be described. In the laminated translucent substrate 41, the refractive index is such that the air <the first translucent substrate 42 <the second translucent substrate 43. In this case, the incident angle of the light L from the atmosphere to the laminated translucent substrate 41 (first translucent substrate 42) is the angle α, and the light L is refracted at the interface between the atmosphere and the first translucent substrate 42. The angle β is the angle, the incident angle of the light L from the first translucent substrate 42 to the second translucent substrate 43 is the angle (β + θ), and the first translucent substrate 42 and the second translucent substrate 43 are The refraction angle of the light L at the interface is an angle γ1, and the incident angle of the light L from the second translucent substrate 43 to the solar battery cell 16 is an angle γ.
 この場合、角度α=60°で光Lが照射されたとすると、図7に示すように太陽電池セル16への光の入射角度である角度γは以下のようにして求められる。すなわち、スネルの法則により、
sin(β+θ)/sinγ1=1.8/1.5
sinα/sinβ=1.5
の式が成り立つ。角度α=60°なので、実施の形態1での計算同様に計算すると、β≒35°となる。透光性基体の合わせ面における傾斜面44aの傾斜角度θは15°なので、
sin(35°+15°)/sinγ1=1.8/1.5
sinγ=0.6383
となり、角度γ1≒39.5°となる。この角度γ1は、積層透光性基体41の合わせ面44における傾斜面44aに対しての角度である。したがって、太陽電池セル16の受光面への光Lの入射角度はγ1-θ:(39.5°-15°)で約24.5°となる。これにより、実施の形態2にかかる太陽電池パネル40では、実施の形態1での入射角度の解析例と比較して、より垂直に近い角度で太陽電池セル16に光Lが入射することがわかる。
In this case, assuming that the light L is irradiated at an angle α = 60 °, an angle γ that is an incident angle of light to the solar battery cell 16 is obtained as follows as shown in FIG. That is, according to Snell's law,
sin (β + θ) /sinγ1=1.8/1.5
sin α / sin β = 1.5
The following equation holds. Since the angle α is 60 °, β≈35 ° when calculated in the same manner as in the first embodiment. Since the inclination angle θ of the inclined surface 44a in the mating surface of the translucent substrate is 15 °,
sin (35 ° + 15 °) /sinγ1=1.8/1.5
sin γ = 0.6383
Thus, the angle γ1≈39.5 °. The angle γ1 is an angle with respect to the inclined surface 44a in the mating surface 44 of the laminated translucent substrate 41. Therefore, the incident angle of the light L on the light receiving surface of the solar battery cell 16 is about 24.5 ° as γ1-θ: (39.5 ° -15 °). Thereby, in the solar cell panel 40 concerning Embodiment 2, compared with the example of an incident angle analysis in Embodiment 1, it turns out that the light L injects into the photovoltaic cell 16 at an angle nearer perpendicular | vertical. .
 すなわち、太陽電池パネル40は、合わせ面44が積層透光性基体41の表裏面と平行な場合よりも、太陽電池パネル40に入射して該太陽電池パネル40内を進む光Lをより大きく屈折させ、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。したがって、太陽電池パネル40では、積層透光性基体41に入射した光Lにおいて太陽電池セル16の発電に寄与できる光の成分をより増加させ、太陽電池セル16に入射する光量を増大させて該太陽電池セル16の光電変換効率を向上させることができ、太陽電池パネル40の出力(発電量)を増大させることができる。 That is, the solar cell panel 40 refracts the light L incident on the solar cell panel 40 and traveling through the solar cell panel 40 more greatly than when the mating surface 44 is parallel to the front and back surfaces of the laminated translucent substrate 41. Thus, the solar cell 16 can be reached at an incident angle that is more perpendicular to the light receiving surface of the solar cell 16. Therefore, in the solar cell panel 40, the light component that can contribute to the power generation of the solar cell 16 in the light L incident on the laminated translucent substrate 41 is further increased, and the amount of light incident on the solar cell 16 is increased. The photoelectric conversion efficiency of the solar battery cell 16 can be improved, and the output (power generation amount) of the solar battery panel 40 can be increased.
 積層透光性基体41の合わせ面44に角度を設ける場合、合わせ面44を一つの傾斜面44a面で構成しようとした場合には、積層透光性基体41が厚くなる。すなわち、長さDが長くなるに従って、積層透光性基体41の厚さも増加する。このため、合わせ面44を一つの傾斜面44a面で構成することは実用的ではなく、合わせ面44は図7に示すよう複数の傾斜面44a面を有して構成されることが好ましい。 When an angle is provided on the mating surface 44 of the laminated translucent substrate 41, the laminated translucent substrate 41 becomes thicker when the mating surface 44 is configured with one inclined surface 44 a. That is, as the length D increases, the thickness of the laminated translucent substrate 41 also increases. For this reason, it is not practical to configure the mating surface 44 with one inclined surface 44a, and the mating surface 44 preferably includes a plurality of inclined surfaces 44a as shown in FIG.
 また、図7に示すように積層透光性基体41の面方向に垂直な面(図7の紙面に平行な面)において隣接する傾斜面44a面同士を接続する面を接続面44bとし、傾斜面44aと接続面44bとのなす角度を角度εとする。ここで、θ=45°と仮定した場合、γは約10°となり、より垂直に近い角度で太陽電池セル16に光Lが入射する。しかし、この場合の傾斜面44aの長さは、角度εが直角の場合でも最大で接続面44bの長さと同じにしかならず、光Lのうち半分の光は接続面44bに入射することになり、却って太陽電池パネル40の出力を落としてしまう可能性が高い。さらに、角度εが鈍角の場合は、傾斜面44aの長さは接続面44bよりも短くなる。対応電池セル16における発電量を上げるためには、できるだけ多くの入射光を傾斜面44aに入射させることが必要である。角度εが直角の場合、傾斜面44aの長さはLcosθ、接続面44bの長さはLsinθと表すことができ、θは最大で26.5°程度が妥当であると考える。θ=26.5°であれば、少なくとも傾斜面44a>(2×接続面44b)の関係が成り立ち、接続面44bに入射する光の2倍の光を傾斜面44aに入射させることができる。 Further, as shown in FIG. 7, a surface connecting adjacent inclined surfaces 44a on a surface perpendicular to the surface direction of the laminated translucent substrate 41 (a surface parallel to the paper surface of FIG. 7) is defined as a connection surface 44b. An angle formed between the surface 44a and the connection surface 44b is defined as an angle ε. Here, assuming that θ = 45 °, γ is about 10 °, and the light L enters the solar battery cell 16 at an angle closer to the vertical. However, the length of the inclined surface 44a in this case is only the same as the length of the connection surface 44b even when the angle ε is a right angle, and half of the light L is incident on the connection surface 44b. On the contrary, there is a high possibility that the output of the solar cell panel 40 will be reduced. Furthermore, when the angle ε is an obtuse angle, the length of the inclined surface 44a is shorter than the connecting surface 44b. In order to increase the amount of power generation in the corresponding battery cell 16, it is necessary to make as much incident light as possible incident on the inclined surface 44a. When the angle ε is a right angle, the length of the inclined surface 44a can be expressed as Lcosθ, and the length of the connection surface 44b can be expressed as Lsinθ. If θ = 26.5 °, the relationship of at least the inclined surface 44a> (2 × connecting surface 44b) is established, and twice the light incident on the connecting surface 44b can be incident on the inclined surface 44a.
 また、図8に示すように、傾斜面44aと接続面44bとのなす角度である角度εは鋭角、直角、鈍角の3つの仕様が考えられる。角度εが鋭角の場合は、積層透光性基体41が欠け易くなる。したがって、角度εは、直角または鈍角であることが好ましい。図8は、角度εが異なる実施の形態2にかかる他の太陽電池パネルが水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。図8(a)は角度εが鋭角の場合の太陽電池パネル40a、図8(b)は角度εが直角の場合の太陽電池パネル40b、図8(c)は角度εが鈍角の場合の太陽電池パネル40cを示している。 Also, as shown in FIG. 8, there are three possible specifications for the angle ε, which is the angle formed between the inclined surface 44a and the connecting surface 44b: an acute angle, a right angle, and an obtuse angle. When the angle ε is an acute angle, the laminated translucent substrate 41 is likely to be chipped. Therefore, the angle ε is preferably a right angle or an obtuse angle. FIG. 8 is a schematic cross-sectional view showing a state in which another solar cell panel according to the second embodiment having a different angle ε is installed perpendicular to the horizontal direction (ground). 8A shows a solar cell panel 40a when the angle ε is an acute angle, FIG. 8B shows a solar cell panel 40b when the angle ε is a right angle, and FIG. 8C shows the sun when the angle ε is an obtuse angle. The battery panel 40c is shown.
 なお、太陽電池パネル40では、上述した効果を得るためには、図7に示すように斜め上方向から光Lが照射されることが必要である。すなわち、斜め下方向から光Lが照射される場合には、上述した効果は得られない。そこで、傾斜面44aを特定の第1方向に向かうにつれて太陽電池セル16側に向かって傾斜する面とするために、太陽電池パネル40の受光面側の表面、または太陽電池パネル40を設置する際に該太陽電池パネル40に取り付けられる設置用フレームに、特定の第1方向を認識するための方向認識用マーカーをつけることが好ましい。認識用マーカーは、任意の規則に従って配置されていればよい。このような方向認識用マーカーを備えることにより、太陽電池パネル40を設置する際に、配置方向の間違いを防止して、傾斜面44aを特定の第1方向に向かうにつれて太陽電池セル16側に向かって傾斜する面として設置することができる。設置用フレームに方向認識用マーカーを備える場合には、予め方向認識用マーカーが形成された設置用フレームを太陽電池パネル40に取り付けてもよく、設置用フレームを太陽電池パネル40に取り付けた後に方向認識用マーカーを該設置用フレームの表面に形成してもよい。 In addition, in the solar cell panel 40, in order to acquire the effect mentioned above, as shown in FIG. 7, it is necessary to irradiate the light L from diagonally upward direction. That is, when the light L is irradiated from obliquely below, the above-described effect cannot be obtained. Therefore, when the surface on the light receiving surface side of the solar cell panel 40 or the solar cell panel 40 is installed in order to make the inclined surface 44a a surface that inclines toward the solar cell 16 side in the specific first direction. It is preferable to attach a direction recognition marker for recognizing a specific first direction to the installation frame attached to the solar cell panel 40. The recognition marker should just be arrange | positioned according to arbitrary rules. By providing such a direction recognition marker, when the solar battery panel 40 is installed, an error in the arrangement direction is prevented, and the inclined surface 44a is directed toward the solar battery cell 16 side toward the specific first direction. It can be installed as an inclined surface. When the installation frame is provided with a direction recognition marker, the installation frame on which the direction recognition marker is formed in advance may be attached to the solar cell panel 40, and the direction after the installation frame is attached to the solar cell panel 40. A recognition marker may be formed on the surface of the installation frame.
 上述したように実施の形態2においては、太陽電池パネル40は、大気側から相対的に屈折率が低い第1透光性基体42と相対的に屈折率が高い第2透光性基体43とが積層されて、大気側から太陽電池セル16側に向かって屈折率が順に高くなる構成を有する積層透光性基体41を太陽電池セル16の受光面側(光入射側)に備える。これにより実施の形態2においては、実施の形態1と同様に太陽電池パネル40に入射して該太陽電池パネル40内を進む光を屈折させ、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。これにより、実施の形態2にかかる太陽電池パネル40では、積層透光性基体41に入射した光における太陽電池セル16の発電に寄与できる光の成分を増加させ、太陽電池セル16に入射する光量を増大させて該太陽電池セル16の光電変換効率を向上させることができ、太陽電池パネル40の出力(発電量)を増大させることができる。 As described above, in Embodiment 2, the solar cell panel 40 includes the first light-transmitting substrate 42 having a relatively low refractive index from the atmosphere side and the second light-transmitting substrate 43 having a relatively high refractive index. Are laminated, and a laminated translucent substrate 41 having a configuration in which the refractive index increases in order from the atmosphere side toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16. As a result, in the second embodiment, similarly to the first embodiment, the light entering the solar cell panel 40 and refracting the light traveling through the solar cell panel 40 is refracted, and is more perpendicular to the light receiving surface of the solar cell 16. The solar cells 16 can be reached at a close incident angle. Thereby, in the solar cell panel 40 according to the second embodiment, the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 41 is increased, and the amount of light incident on the solar cell 16 is increased. Can be increased to improve the photoelectric conversion efficiency of the solar battery cell 16, and the output (power generation amount) of the solar battery panel 40 can be increased.
 また、実施の形態2では、積層透光性基体41における第1透光性基体42と第2透光性基体43との合わせ面44が、太陽電池パネル40の受光面に対して特定の傾斜角度を有している。このような太陽電池パネル40では、合わせ面44が積層透光性基体41の表裏面と平行な場合よりも、積層透光性基体41に入射した光がより屈折され、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。これにより、実施の形態2にかかる太陽電池パネル40では、積層透光性基体41に入射した光において太陽電池セル16の発電に寄与できる光の成分をより増加させ、太陽電池セル16に入射する光量をより増大させて該太陽電池セル16の光電変換効率をより向上させることができ、太陽電池パネル40の出力(発電量)をより増大させることができる。 In the second embodiment, the mating surface 44 of the first translucent substrate 42 and the second translucent substrate 43 in the laminated translucent substrate 41 has a specific inclination with respect to the light receiving surface of the solar cell panel 40. Have an angle. In such a solar cell panel 40, the light incident on the laminated translucent substrate 41 is refracted more than the case where the mating surface 44 is parallel to the front and back surfaces of the laminated translucent substrate 41, and the solar cell 16 receives light. The solar battery cell 16 can be reached at an incident angle that is more perpendicular to the surface. Thereby, in the solar cell panel 40 according to the second exemplary embodiment, the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 41 is further increased and is incident on the solar cell 16. The photoelectric conversion efficiency of the solar battery cell 16 can be further improved by increasing the amount of light, and the output (power generation amount) of the solar battery panel 40 can be further increased.
 また、合わせ面が積層透光性基体41の表裏面と平行な構成と、合わせ面が積層透光性基体41の表裏面に対して特定の傾斜角度を有している構成とを組み合わせた3層以上の構成の透光性基体を用いてもよい。 Further, 3 is a combination of a configuration in which the mating surface is parallel to the front and back surfaces of the laminated translucent substrate 41 and a configuration in which the mating surface has a specific inclination angle with respect to the front and back surfaces of the laminated translucent substrate 41. You may use the translucent base | substrate of the structure more than a layer.
 なお、実施の形態2にかかる太陽電池パネル40は、実施の形態1にかかる太陽電池パネル10と同様に太陽電池パネルの受光面に対して斜めに光が照射される場合において高い発電量が得られる。このため、実施の形態2にかかる太陽電池パネル40も、壁面設置のように水平方向(地面)に対して垂直設置された場合に限らず、水平方向(地面)に対してある程度の角度で太陽電池セル16側に傾斜した状態で設置された場合においても、朝、夕の発電量が増加し、1日の発電量の向上に寄与できる。 In addition, the solar cell panel 40 concerning Embodiment 2 obtains high electric power generation amount, when light is irradiated diagonally with respect to the light-receiving surface of a solar cell panel similarly to the solar cell panel 10 concerning Embodiment 1. It is done. For this reason, the solar cell panel 40 according to the second embodiment is not limited to the case where the solar battery panel 40 is installed vertically with respect to the horizontal direction (ground) as in the case of wall surface installation, but the sun is at a certain angle relative to the horizontal direction (ground). Even when installed in a state of being inclined toward the battery cell 16, the power generation amount in the morning and evening increases, which can contribute to the improvement of the power generation amount of the day.
実施の形態3.
 図9は、本発明の実施の形態3にかかる太陽電池パネル50が水平方向(地面)に対して垂直に設置された状態を示す模式断面図である。太陽電池パネル50においては、積層透光性基体51が、封止材54を介して太陽電池セル16の受光面側に取り付けられている。太陽電池パネル50において太陽電池パネル10と同じ部材については、実施の形態1の場合と同じ符号を付すことで詳細な説明を省略する。
Embodiment 3 FIG.
FIG. 9 is a schematic cross-sectional view showing a state in which the solar cell panel 50 according to the third embodiment of the present invention is installed perpendicular to the horizontal direction (ground). In the solar battery panel 50, the laminated translucent substrate 51 is attached to the light receiving surface side of the solar battery cell 16 through the sealing material 54. About the same member as the solar cell panel 10 in the solar cell panel 50, detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol as the case of Embodiment 1. FIG.
 上述した実施の形態1および実施の形態2では、2つの透光性基体を重ね合わせて積層透光性基体を構成している。積層透光性基体を構成する透光性基体のうち太陽電池セル16に最も近い透光性基体(最も屈折率の高い透光性基体)の太陽電池セル16側に、さらに高屈折率且つ光透過性を有する封止材を入射光の光屈折を目的として用いた場合においても、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させる効果が得られる。このような封止材としては、たとえばEVA、シリコーン、ウレタンなどの透光性を有する樹脂が挙げられる。また、積層透光性基体を構成する透光性基体の合わせ面は、積層透光性基体の表裏面(太陽電池パネルの受光面)と平行な面とされてもよく、積層透光性基体の表裏面(太陽電池パネルの受光面)に対して特定の傾斜角度を有した傾斜面を有していてもよい。 In the first embodiment and the second embodiment described above, a laminated translucent substrate is configured by superimposing two translucent substrates. Among the light-transmitting substrates constituting the laminated light-transmitting substrate, the light-transmitting substrate closest to the solar cells 16 (the light-transmitting substrate having the highest refractive index) has a higher refractive index and light on the solar cell 16 side. Even when a sealing material having transparency is used for the purpose of light refraction of incident light, it is possible to obtain an effect of reaching the solar cell 16 at an incident angle that is closer to the vertical with respect to the light receiving surface of the solar cell 16. . Examples of such a sealing material include translucent resins such as EVA, silicone, and urethane. In addition, the mating surface of the translucent substrate constituting the laminated translucent substrate may be a surface parallel to the front and back surfaces of the laminated translucent substrate (light receiving surface of the solar cell panel). It may have an inclined surface having a specific inclination angle with respect to the front and back surfaces (light receiving surface of the solar cell panel).
 このような封止材も透光性を有する物質であるが、ここではラミネート工程で相変化するものを封止材、相変化しないものを透光性基体とする。ラミネート工程では、たとえば150℃程度の加熱が行われる。たとえば、代表的な封止材であるEVAはシート状の固体であるが、熱を加えると溶け、冷却すると固まる。シリコーン樹脂も封止材に成り得るが、これも液体から固体へと変化する。 Such a sealing material is also a light-transmitting substance. Here, a material that changes phase in the laminating process is a sealing material, and a material that does not change phase is a light-transmitting substrate. In the laminating process, for example, heating at about 150 ° C. is performed. For example, EVA, which is a typical sealing material, is a sheet-like solid, but melts when heat is applied and hardens when cooled. Silicone resin can also be a sealing material, but this also changes from liquid to solid.
 しかしながら、封止材と透光性基体とを比べると、長期信頼性は封止材の方が劣る。このため、太陽電池セル16に最も近い透光性基体(最も屈折率の高い透光性基体)の太陽電池セル16側に、さらに高屈折率且つ光透過性を有する封止材を入射光の光屈折を目的として用いた場合には、入射光角度調整機能の信頼性が実施の形態1および実施の形態2の場合より劣る可能性が考えられる。また、さらに太陽電池セル16に最も近い透光性基体とこの封止材との合わせ面に角度を設けた場合は、透光性基体における太陽電池セル16側の表面の凹凸が大きくなり太陽電池パネル10内に気泡が残りやすくなるので、作製には注意を要する。 However, when the sealing material and the translucent substrate are compared, the long-term reliability is inferior to the sealing material. For this reason, a sealing material having a higher refractive index and light transmittance is further applied to the solar cell 16 side of the light-transmitting substrate closest to the solar cell 16 (the light-transmitting substrate having the highest refractive index). When it is used for the purpose of light refraction, there is a possibility that the reliability of the incident light angle adjustment function is inferior to that of the first and second embodiments. Further, when an angle is provided on the mating surface between the light-transmitting substrate closest to the solar battery cell 16 and the sealing material, the unevenness on the surface of the light-transmitting substrate on the side of the solar battery cell 16 increases. Since bubbles tend to remain in the panel 10, care must be taken in the production.
 積層透光性基体51は、大気側から太陽電池セル16側に進むにつれて屈折率が順に高くなるように、2枚の透光性基体が積層して配置された複層構造体とされている。すなわち、積層透光性基体51は、太陽電池パネル50の受光面側から、相対的に屈折率が低い第1透光性基体52と相対的に屈折率が高い第2透光性基体53とが積層されている。ここで、第1透光性基体52の屈折率は、大気の屈折率(=1)よりも大きく、第2透光性基体53の屈折率よりも小さい。第2透光性基体53の屈折率は、第1透光性基体52の屈折率よりも大きい。第1透光性基体52は、たとえば屈折率が1.5のガラス基板である。第2透光性基体53は、たとえば屈折率が1.8のガラス基板である。 The laminated translucent substrate 51 is a multi-layer structure in which two translucent substrates are laminated and arranged so that the refractive index sequentially increases from the atmosphere side toward the solar cell 16 side. . That is, the laminated translucent substrate 51 includes a first translucent substrate 52 having a relatively low refractive index and a second translucent substrate 53 having a relatively high refractive index from the light receiving surface side of the solar cell panel 50. Are stacked. Here, the refractive index of the first translucent substrate 52 is larger than the refractive index of the atmosphere (= 1) and smaller than the refractive index of the second translucent substrate 53. The refractive index of the second translucent substrate 53 is larger than the refractive index of the first translucent substrate 52. The first translucent substrate 52 is, for example, a glass substrate having a refractive index of 1.5. The second translucent substrate 53 is a glass substrate having a refractive index of 1.8, for example.
 第1透光性基体52および第2透光性基体53は、面方向において同形状および同寸法で形成されている。第1透光性基体52と第2透光性基体53との合わせ面55には透光性を有する接着剤が塗布され、該接着剤により第1透光性基体52と第2透光性基体53とが接着されている。第1透光性基体52と第2透光性基体53との合わせ面55は、積層透光性基体の表裏面(太陽電池パネル10の受光面)と平行な面とされている。なお、この接着剤は光学的に無視できる程度の厚みで設けられ、図9においては図示を省略している。そして、積層透光性基体51の表面、すなわち積層透光性基体51の受光面は、太陽電池セル16の受光面の面内方向と平行な面とされている。 The first translucent substrate 52 and the second translucent substrate 53 are formed in the same shape and the same dimension in the surface direction. A translucent adhesive is applied to the mating surface 55 of the first translucent base 52 and the second translucent base 53, and the first translucent base 52 and the second translucent are applied by the adhesive. The base 53 is bonded. A mating surface 55 between the first light transmissive substrate 52 and the second light transmissive substrate 53 is a surface parallel to the front and back surfaces of the laminated light transmissive substrate (light receiving surface of the solar cell panel 10). This adhesive is provided with a thickness that can be optically ignored, and is not shown in FIG. The surface of the laminated translucent substrate 51, that is, the light receiving surface of the laminated translucent substrate 51 is a plane parallel to the in-plane direction of the light receiving surface of the solar battery cell 16.
 一方、第2透光性基体53の太陽電池セル16側の面には、封止材54が配置されている。封止材54は、面方向において第2透光性基体53と同寸法で形成されている。封止材54は、面方向において太陽電池セル16を包含する寸法で形成されることが好ましい。そして、封止材54の裏面、すなわち積層透光性基体51の太陽電池セル16側の面は、太陽電池セル16の受光面の面内方向と平行な面とされ、太陽電池セル16を封止している。 On the other hand, a sealing material 54 is disposed on the surface of the second translucent substrate 53 on the solar cell 16 side. The sealing material 54 is formed with the same dimensions as the second light-transmitting substrate 53 in the surface direction. It is preferable that the sealing material 54 is formed in the dimension which includes the photovoltaic cell 16 in a surface direction. The back surface of the sealing material 54, that is, the surface on the solar cell 16 side of the laminated translucent substrate 51 is a surface parallel to the in-plane direction of the light receiving surface of the solar cell 16 and seals the solar cell 16. It has stopped.
 第2透光性基体53における封止材54との合わせ面56には、太陽電池パネル50の受光面に対して特定の傾斜角度を有した傾斜面56aが複数設けられている。傾斜面56aは、積層透光性基体51の面方向における特定の第1方向に沿って、一定の長さおよび一定のピッチで設けられている。図9においては、特定の第1方向は、面内方向において正方形状を有する積層透光性基体51の面方向における対向する1対の辺方向(図9における上下方向)である。また、傾斜面56aは、積層透光性基体51の面方向における特定の第2方向に沿って積層透光性基体51の全幅に連続して延在している。図9においては、特定の第2方向は、図9における紙面奥行き方向(積層透光性基体51の面方向における対向する他の1対の辺方向)である。 A plurality of inclined surfaces 56 a having a specific inclination angle with respect to the light receiving surface of the solar cell panel 50 are provided on the mating surface 56 of the second translucent substrate 53 with the sealing material 54. The inclined surfaces 56 a are provided at a certain length and a certain pitch along a specific first direction in the surface direction of the laminated translucent substrate 51. In FIG. 9, the specific first direction is a pair of opposing side directions (vertical direction in FIG. 9) in the plane direction of the laminated translucent substrate 51 having a square shape in the in-plane direction. Further, the inclined surface 56 a extends continuously over the entire width of the laminated translucent substrate 51 along a specific second direction in the surface direction of the laminated translucent substrate 51. In FIG. 9, the specific second direction is the depth direction in FIG. 9 (the other pair of side directions facing each other in the surface direction of the laminated translucent substrate 51).
 また、図9に示すように積層透光性基体51の面方向に垂直な面において隣接する傾斜面56a面同士を接続する接続面56bと傾斜面56aとのなす角度は、直角もしくは鈍角とされている。 In addition, as shown in FIG. 9, the angle formed between the connecting surface 56b and the inclined surface 56a connecting the adjacent inclined surfaces 56a in the plane perpendicular to the surface direction of the laminated translucent substrate 51 is a right angle or an obtuse angle. ing.
 このような太陽電池パネル50は、第2透光性基体53の傾斜面56aに封止材54を介して太陽電池セル16を接着すること以外は、基本的に太陽電池パネル10の場合と同様の工程で作製される。 Such a solar cell panel 50 is basically the same as the case of the solar cell panel 10 except that the solar cell 16 is bonded to the inclined surface 56a of the second light-transmitting substrate 53 via the sealing material 54. It is produced by the process.
 このような太陽電池パネル50は、大気側から相対的に屈折率が低い第1透光性基体52と相対的に屈折率が高い第2透光性基体53とが積層されて、大気側から太陽電池セル16側に向かって屈折率が順に高くなる構成を有する積層透光性基体51を太陽電池セル16の受光面側(光入射側)に備える。これにより太陽電池パネル50に入射して該太陽電池パネル50内を進む光を屈折させ、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。 Such a solar cell panel 50 is formed by laminating a first light-transmitting substrate 52 having a relatively low refractive index from the atmosphere side and a second light-transmitting substrate 53 having a relatively high refractive index from the atmosphere side. A laminated translucent substrate 51 having a configuration in which the refractive index increases in order toward the solar cell 16 side is provided on the light receiving surface side (light incident side) of the solar cell 16. As a result, light entering the solar battery panel 50 and refracting through the solar battery panel 50 can be refracted and can reach the solar battery cell 16 at an incident angle closer to the perpendicular to the light receiving surface of the solar battery cell 16. .
 したがって、太陽電池パネル50では、積層透光性基体51に入射した光における太陽電池セル16の発電に寄与できる光の成分を増加させ、太陽電池セル16に入射する光量を増大させて該太陽電池セル16の光電変換効率を向上させることができ、太陽電池パネル40の出力(発電量)を増大させることができる。 Therefore, in the solar battery panel 50, the light component that can contribute to the power generation of the solar battery cell 16 in the light incident on the laminated translucent substrate 51 is increased, and the amount of light incident on the solar battery cell 16 is increased to increase the amount of light incident on the solar battery cell 16. The photoelectric conversion efficiency of the cell 16 can be improved, and the output (power generation amount) of the solar cell panel 40 can be increased.
 また、太陽電池パネル50では、積層透光性基体51における第2透光性基体53と封止材54との合わせ面56が、太陽電池パネル50の受光面に対して特定の傾斜角度を有している傾斜面56aを有する。このような太陽電池パネル50では、積層透光性基体51に入射した光を傾斜面56aでさらに屈折させ、太陽電池セル16の受光面に対してより垂直に近い入射角度で太陽電池セル16に到達させることができる。なお、積層透光性基体51と封止材54との全体を透光性基体として見た場合、この透光性基体は、平板状とされている。 In the solar cell panel 50, the mating surface 56 of the second light transmissive substrate 53 and the sealing material 54 in the laminated light transmissive substrate 51 has a specific inclination angle with respect to the light receiving surface of the solar cell panel 50. And has an inclined surface 56a. In such a solar cell panel 50, the light incident on the laminated translucent substrate 51 is further refracted by the inclined surface 56 a, and is incident on the solar cell 16 at an incident angle that is closer to the light receiving surface of the solar cell 16. Can be reached. In addition, when the whole laminated translucent base | substrate 51 and the sealing material 54 are seen as a translucent base | substrate, this translucent base | substrate is made into flat form.
 これにより、太陽電池パネル50では、積層透光性基体51に入射した光における太陽電池セル16の発電に寄与できる光の成分をより増加させ、太陽電池セル16に入射する光量をより増大させて該太陽電池セル16の光電変換効率をより向上させることができ、太陽電池パネル50の出力(発電量)をより増大させることができる。 Thereby, in the solar cell panel 50, the light component that can contribute to the power generation of the solar cell 16 in the light incident on the laminated translucent substrate 51 is further increased, and the amount of light incident on the solar cell 16 is further increased. The photoelectric conversion efficiency of the solar battery cell 16 can be further improved, and the output (power generation amount) of the solar battery panel 50 can be further increased.
 また、封止材54は、太陽電池セル16を封止して太陽電池セル16と透光性基体とを接着するとともに、透光性基体の一部としての機能を有する。したがって、3枚の透光性基体を接着して透光性基体を構成する場合に比べて、透光性基体一枚分の接着工程を省略でき、作業を簡略化できる。 Further, the sealing material 54 seals the solar battery cell 16 to adhere the solar battery cell 16 and the translucent substrate, and has a function as a part of the translucent substrate. Therefore, compared with the case where three light-transmitting substrates are bonded to form a light-transmitting substrate, the bonding process for one light-transmitting substrate can be omitted, and the operation can be simplified.
実施の形態4.
 実施の形態1において示したように、半導体基板21(n型不純物拡散層23)の受光面側の表面には、テクスチャー構造としてピラミッド状の微小凹凸(テクスチャー)22aからなるテクスチャー構造が形成されている。すなわち、太陽電池セル16の表面での反射率を低減させるために、太陽電池セルの表面にはミクロンオーダー、小さいものの場合にはサブミクロンオーダーの微小凹凸(テクスチャー)が形成されている。
Embodiment 4 FIG.
As shown in the first embodiment, the surface of the semiconductor substrate 21 (n-type impurity diffusion layer 23) on the light-receiving surface side is formed with a texture structure made of pyramidal fine irregularities (texture) 22a as a texture structure. Yes. That is, in order to reduce the reflectance on the surface of the solar battery cell 16, micro-orders (textures) of micron order are formed on the surface of the solar battery cell, and in the case of a small one, submicron order textures are formed.
 実施の形態1~3では、透光性基体の合わせ面について言及していないが、この合わせ面に微小凹凸を形成して合わせ面を微小凹凸形状とすることにより、合わせ面での光の反射を低減することができる。たとえば、図7においてθ=15°、積層透光性基体41の最大厚さを2mmとした場合、長さDは約7.5mmとなり、ミクロンオーダーの微小凹凸を形成するのに十分なスペースがある。微小凹凸の大きさは、凸型である場合には底面部のサイズと凸部の高さ、凹型である場合には底面部のサイズと凹部の深さで定義すると、透光性基体の作製の観点から、数μm~数百μm程度の高さおよび底面サイズが好ましい。 In Embodiments 1 to 3, the mating surface of the translucent substrate is not mentioned. However, by forming minute irregularities on the mating surface and making the mating surface into a minute irregular shape, light reflection on the mating surface is performed. Can be reduced. For example, when θ = 15 ° in FIG. 7 and the maximum thickness of the laminated translucent substrate 41 is 2 mm, the length D is about 7.5 mm, and there is enough space to form microscopic irregularities. is there. When the size of the micro unevenness is defined by the size of the bottom surface portion and the height of the convex portion in the case of a convex type, and the size of the bottom surface portion and the depth of the concave portion in the case of a concave shape, the production of a translucent substrate is made. In view of the above, a height of about several μm to several hundred μm and a bottom size are preferable.
 そして、透光性基体の合わせ面での光の反射を低減するとともに、太陽電池セル16の表面での反射率を低減させることにより、太陽電池セル16に入射する光量をより増大させて該太陽電池セル16の光電変換効率をより向上させることができる。これにより、太陽電池パネルの出力(発電量)をより増大させることができる。 And while reducing reflection of the light in the mating surface of a translucent base | substrate and reducing the reflectance in the surface of the photovoltaic cell 16, the light quantity which injects into the photovoltaic cell 16 is increased more and this solar cell is increased. The photoelectric conversion efficiency of the battery cell 16 can be further improved. Thereby, the output (power generation amount) of the solar cell panel can be further increased.
 また、太陽電池セル16の表面に形成された微小凹凸22aの表面には、光が太陽電池に対して垂直に入射した時に反射を最小とするような膜厚で反射防止膜24が形成されている。反射防止膜24は、光が太陽電池に対して垂直に入射した時に反射を最小とするような膜厚で形成されているので、太陽電池セル16への光の入射角度を垂直に近づけることにより、太陽電池セル16の表面での反射を小さくするという効果も得られる。 Further, an antireflection film 24 is formed on the surface of the minute irregularities 22a formed on the surface of the solar battery cell 16 so as to minimize the reflection when light is incident on the solar battery vertically. Yes. Since the antireflection film 24 is formed with a film thickness that minimizes reflection when light enters the solar cell vertically, by making the incident angle of the light to the solar cell 16 close to vertical. The effect of reducing the reflection on the surface of the solar battery cell 16 is also obtained.
 なお、上述した実施の形態においては、1つの太陽電池セルを備える太陽電池パネルを例に説明したが、太陽電池パネルにおいては複数の太陽電池セルが電気的に直列または並列に接続されて用いられるのが一般的である。このような場合においても、上述した効果が得られることは言うまでもない。 In the above-described embodiment, the solar battery panel including one solar battery cell has been described as an example. However, in the solar battery panel, a plurality of solar battery cells are electrically connected in series or in parallel. It is common. It goes without saying that the above-described effects can be obtained even in such a case.
 なお、上述した実施の形態においては、バルク型の太陽電池セルを例に説明したが、上述した太陽電池パネルに用いられる太陽電池はバルク型に限定されない。すなわち、種々の形態の太陽電池を適用することができる。また、上述した技術は、任意に組み合わせて用いることができる。 In the above-described embodiment, the bulk type solar battery cell has been described as an example. However, the solar battery used in the above-described solar battery panel is not limited to the bulk type. That is, various forms of solar cells can be applied. Further, the above-described techniques can be used in any combination.
 以上のように、本発明にかかる太陽電池パネルは、太陽電池パネルの受光面に対して斜めに照射された太陽光を有効に太陽電池パネル内部に取り込んで、発電量が高く且つ量産性の高い太陽電池パネルの実現に有用である。 As described above, the solar cell panel according to the present invention effectively takes sunlight irradiated obliquely with respect to the light receiving surface of the solar cell panel into the solar cell panel, and has a high power generation amount and high mass productivity. This is useful for realizing a solar cell panel.
 10 太陽電池パネル、11 積層透光性基体、12 第1透光性基体、13 第2透光性基体、14 合わせ面、15 封止材、16 太陽電池セル、21 半導体基板、22 p型多結晶シリコン基板、22a 微小凹凸、23 n型不純物拡散層、24 反射防止膜、25 受光面側電極、26 裏面側電極、27 表銀グリッド電極、28 表銀バス電極、29 裏アルミニウム電極、30 裏銀電極、40,40a,40b,40c 太陽電池パネル、41 積層透光性基体、42 第1透光性基体、43 第2透光性基体、44 あわせ面、44a 傾斜面、44b 接続面、50 太陽電池パネル、51 透光性基体、52 第1透光性基体、53 第2透光性基体、54 封止材、55 合わせ面、56 あわせ面、56a 傾斜面、56b 接続面、100 太陽電池パネル、111 透光性基体、115 封止材、116 太陽電池セル。 10 solar cell panel, 11 laminated translucent substrate, 12 first translucent substrate, 13 second translucent substrate, 14 mating surface, 15 sealing material, 16 solar cell, 21 semiconductor substrate, 22 p-type multi Crystal silicon substrate, 22a micro unevenness, 23 n-type impurity diffusion layer, 24 antireflection film, 25 light receiving surface side electrode, 26 back surface side electrode, 27 surface silver grid electrode, 28 surface silver bus electrode, 29 back aluminum electrode, 30 back Silver electrode, 40, 40a, 40b, 40c solar cell panel, 41 laminated translucent substrate, 42 first translucent substrate, 43 second translucent substrate, 44 mating surface, 44a inclined surface, 44b connecting surface, 50 Solar cell panel, 51 translucent substrate, 52 first translucent substrate, 53 second translucent substrate, 54 sealing material, 55 mating surface, 56 mating surface, 56 Inclined surfaces, 56b connecting surface, 100 solar panel, 111 light-transparent substrate, 115 sealing material, 116 a solar cell.

Claims (14)

  1.  太陽電池の受光面側に積層透光性基体が配置されて前記積層透光性基体側が光入射側とされ、
     前記積層透光性基体は、大気の屈折率よりも高く異なる屈折率を有する複数の透光性基体が前記光入射側から前記太陽電池側に向かって屈折率が高くなるように積層された積層構造体であり、前記光入射側および前記太陽電池側の面が前記太陽電池の受光面と平行な面であること、
     を特徴とする太陽電池パネル。
    A laminated translucent substrate is disposed on the light receiving surface side of the solar cell, and the laminated translucent substrate side is a light incident side,
    The laminated translucent substrate is a laminate in which a plurality of translucent substrates having different refractive indexes higher than the refractive index of the atmosphere are laminated so that the refractive index increases from the light incident side toward the solar cell side. A structure, wherein the light incident side and the solar cell side surface are parallel to the light receiving surface of the solar cell,
    A solar panel characterized by.
  2.  前記透光性基体同士の合わせ面が、前記積層構造体における前記光入射側の表面と平行な面であること、
     を特徴とする請求項1に記載の太陽電池パネル。
    The mating surface between the translucent substrates is a surface parallel to the surface on the light incident side in the laminated structure,
    The solar cell panel according to claim 1.
  3.  前記透光性基体同士の合わせ面が、前記積層構造体における前記光入射側の表面に対して特定の角度を有した傾斜面を有すること、
     を特徴とする請求項1に記載の太陽電池パネル。
    The mating surfaces of the translucent substrates have an inclined surface having a specific angle with respect to the surface on the light incident side in the laminated structure,
    The solar cell panel according to claim 1.
  4.  前記傾斜面は、前記積層透光性基体の面方向における特定の方向に向かうにつれて前記太陽電池側に向かって傾斜し、
     前記特定の方向を認識するための方向認識用マーカーを前記積層透光性基体の表面に有すること、
     を特徴とする請求項3に記載の太陽電池パネル。
    The inclined surface is inclined toward the solar cell side toward a specific direction in the surface direction of the laminated translucent substrate,
    Having a direction recognition marker for recognizing the specific direction on the surface of the laminated translucent substrate;
    The solar cell panel according to claim 3.
  5.  前記太陽電池パネルを設置するための設置用フレームを備え、
     前記傾斜面は、前記積層透光性基体の面方向における特定の方向に向かうにつれて前記太陽電池側に向かって傾斜し、
     前記特定の方向を認識するための認識用マーカーを前記設置用フレームの表面に有すること、
     を特徴とする請求項3に記載の太陽電池パネル。
    An installation frame for installing the solar cell panel;
    The inclined surface is inclined toward the solar cell side toward a specific direction in the surface direction of the laminated translucent substrate,
    Having a recognition marker on the surface of the installation frame for recognizing the specific direction;
    The solar cell panel according to claim 3.
  6.  前記太陽電池と前記積層構造体とが充填材を介して接着され、
     前記充填材は、前記積層構造体のうち最も前記太陽電池に近い前記透光性基体よりも高い屈折率を有すること、
     を特徴とする請求項1から5のいずれか1つに記載の太陽電池パネル。
    The solar cell and the laminated structure are bonded via a filler,
    The filler has a higher refractive index than the translucent substrate closest to the solar cell in the laminated structure;
    The solar cell panel according to claim 1, wherein:
  7.  前記透光性基体同士の合わせ面が、凹凸形状を有すること、
     を特徴とする請求項1から6のいずれか1つに記載の太陽電池パネル。
    The mating surfaces of the translucent substrates have an uneven shape;
    The solar cell panel according to any one of claims 1 to 6, wherein:
  8.  太陽電池を形成する第1工程と、
     積層透光性基体を形成する第2工程と、
     前記太陽電池の受光面側に充填材を介して前記積層透光性基体を接着する第3工程と、
     を含み、
     前記第2工程では、大気の屈折率よりも高く異なる屈折率を有する複数の透光性基体を、屈折率が順に高くなるように積層して貼り合わせて、表裏面が平行な前記積層透光性基体を形成し、
     前記第3工程では、前記積層透光性基体において屈折率の高い側の面を前記太陽電池の受光面に対向させて配置し、前記積層透光性基体の表裏面を前記太陽電池の受光面が平行になるように前記積層透光性基体と前記太陽電池を接着すること、
     を特徴とする太陽電池パネルの製造方法。
    A first step of forming a solar cell;
    A second step of forming a laminated translucent substrate;
    A third step of bonding the laminated translucent substrate to the light receiving surface side of the solar cell via a filler;
    Including
    In the second step, the plurality of light-transmitting substrates having different refractive indexes higher than the refractive index of the atmosphere are laminated and bonded so that the refractive index becomes higher in order, and the laminated light-transmitting surfaces whose front and back surfaces are parallel are stacked. Forming a conductive substrate,
    In the third step, a surface having a higher refractive index in the laminated translucent substrate is disposed so as to face the light receiving surface of the solar cell, and the front and back surfaces of the laminated translucent substrate are arranged as the light receiving surface of the solar cell. Adhering the laminated translucent substrate and the solar cell so that
    The manufacturing method of the solar cell panel characterized by these.
  9.  前記透光性基体同士の合わせ面が、前記積層透光性基体における表裏面と平行な面であること、
     を特徴とする請求項8に記載の太陽電池パネルの製造方法。
    The mating surfaces of the translucent substrates are parallel to the front and back surfaces of the laminated translucent substrate,
    The manufacturing method of the solar cell panel of Claim 8 characterized by these.
  10.  前記透光性基体同士の合わせ面が、前記積層透光性基体における表裏面に対して特定の角度を有した傾斜面を有すること、
     を特徴とする請求項8に記載の太陽電池パネルの製造方法。
    The mating surfaces of the translucent substrates have an inclined surface having a specific angle with respect to the front and back surfaces of the laminated translucent substrate;
    The manufacturing method of the solar cell panel of Claim 8 characterized by these.
  11.  前記傾斜面は、前記積層透光性基体の面方向における特定の方向に向かうにつれて前記太陽電池側に向かって傾斜し、
     前記特定の方向を認識するための方向認識用マーカーを前記積層透光性基体の表面に形成すること、
     を特徴とする請求項10に記載の太陽電池パネルの製造方法。
    The inclined surface is inclined toward the solar cell side toward a specific direction in the surface direction of the laminated translucent substrate,
    Forming a direction recognition marker for recognizing the specific direction on the surface of the laminated translucent substrate;
    The method for manufacturing a solar cell panel according to claim 10.
  12.  前記太陽電池パネルを設置するための設置用フレームを前記太陽電池パネルに取り付ける第4工程を有し、
     前記傾斜面は、前記積層透光性基体の面方向における特定の方向に向かうにつれて前記太陽電池側に向かって傾斜し、
     前記第4工程では、前記設置用フレームを前記太陽電池パネルに取り付ける前または取り付けた後のいずれかのタイミングで、前記特定の方向を認識するための認識用マーカーを前記設置用フレームの表面に形成すること、
     を特徴とする請求項10に記載の太陽電池パネルの製造方法。
    A fourth step of attaching an installation frame for installing the solar cell panel to the solar cell panel;
    The inclined surface is inclined toward the solar cell side toward a specific direction in the surface direction of the laminated translucent substrate,
    In the fourth step, a recognition marker for recognizing the specific direction is formed on the surface of the installation frame at any timing before or after the installation frame is attached to the solar cell panel. To do,
    The method for manufacturing a solar cell panel according to claim 10.
  13.  前記充填材は、前記積層透光性基体における最も前記太陽電池に近い前記透光性基体よりも高い屈折率を有すること、
     を特徴とする請求項8から12のいずれか1つに記載の太陽電池パネルの製造方法。
    The filler has a higher refractive index than the translucent substrate closest to the solar cell in the laminated translucent substrate;
    The method for manufacturing a solar cell panel according to any one of claims 8 to 12, wherein:
  14.  前記透光性基体同士の合わせ面が、凹凸形状を有すること、
     を特徴とする請求項8から13のいずれか1つに記載の太陽電池パネルの製造方法。
    The mating surfaces of the translucent substrates have an uneven shape;
    The method for manufacturing a solar cell panel according to claim 8, wherein:
PCT/JP2013/083394 2013-12-12 2013-12-12 Solar cell panel and manufacturing method thereof WO2015087434A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015552262A JP6045718B2 (en) 2013-12-12 2013-12-12 Solar cell panel and manufacturing method thereof
PCT/JP2013/083394 WO2015087434A1 (en) 2013-12-12 2013-12-12 Solar cell panel and manufacturing method thereof
TW103116036A TWI556463B (en) 2013-12-12 2014-05-06 Solar cell panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083394 WO2015087434A1 (en) 2013-12-12 2013-12-12 Solar cell panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2015087434A1 true WO2015087434A1 (en) 2015-06-18

Family

ID=53370775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083394 WO2015087434A1 (en) 2013-12-12 2013-12-12 Solar cell panel and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6045718B2 (en)
TW (1) TWI556463B (en)
WO (1) WO2015087434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336044B1 (en) 2023-03-23 2023-08-30 東京瓦斯株式会社 Solar panel unit and solar panel installation structure
JP7416994B1 (en) 2023-03-23 2024-01-17 東京瓦斯株式会社 Solar panel unit and solar panel installation structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247738A (en) * 1997-03-04 1998-09-14 Sanyo Electric Co Ltd Solar cell device
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000261022A (en) * 1999-03-05 2000-09-22 Misawa Homes Co Ltd Solar battery module and roof panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI378264B (en) * 2008-05-19 2012-12-01 Visera Technologies Co Ltd Microlens
JP5493150B2 (en) * 2009-09-30 2014-05-14 独立行政法人産業技術総合研究所 Light control transparent window material
JP5683172B2 (en) * 2010-08-30 2015-03-11 キヤノン株式会社 Diffractive optical element and optical system
JP5415396B2 (en) * 2010-12-22 2014-02-12 デクセリアルズ株式会社 Solar cell module manufacturing method and solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247738A (en) * 1997-03-04 1998-09-14 Sanyo Electric Co Ltd Solar cell device
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000261022A (en) * 1999-03-05 2000-09-22 Misawa Homes Co Ltd Solar battery module and roof panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336044B1 (en) 2023-03-23 2023-08-30 東京瓦斯株式会社 Solar panel unit and solar panel installation structure
JP7416994B1 (en) 2023-03-23 2024-01-17 東京瓦斯株式会社 Solar panel unit and solar panel installation structure

Also Published As

Publication number Publication date
JPWO2015087434A1 (en) 2017-03-16
JP6045718B2 (en) 2016-12-14
TWI556463B (en) 2016-11-01
TW201523911A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
CN202930413U (en) Solar module device
AU2008305083B2 (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit and solar cell manufacturing method
JP2013098496A (en) Solar battery module and manufacturing method thereof
EP1732141A1 (en) Optical concentrator for solar cells
JP5414516B2 (en) Photovoltaic element module and manufacturing method thereof
US9477033B2 (en) Multi-layered waveguide for capturing solar energy
JP2010287688A (en) Solar cell module
US20130319505A1 (en) Photovoltaic power generating window
US20130319504A1 (en) Method of manufacturing a photovoltaic power generating window
US9105784B2 (en) Solar module
KR101920495B1 (en) Solar cell module and preparing thereof
KR101762795B1 (en) High efficiency Solar system having reflection board and solar panel device using Bifacial transparent solar cell
KR20150138923A (en) Apparatus for solar power generation
JP5734382B2 (en) Photovoltaic element module and manufacturing method thereof
JP2006073707A (en) Solar cell module
JP2011029273A (en) Solar cell module
JP6045718B2 (en) Solar cell panel and manufacturing method thereof
JP2017010965A (en) Solar battery module
JP2012089577A (en) Solar cell module
JP5340312B2 (en) Photoelectric conversion module
JP2016025119A (en) Solar battery module and manufacturing method for solar battery module
JP6397703B2 (en) Solar cell module and wall surface forming member
KR20180025589A (en) Solar cell panel and the window having thereof
JP6086778B2 (en) Solar cell prism member and solar cell module
JP2006041168A (en) Solar battery module and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898995

Country of ref document: EP

Kind code of ref document: A1