WO2015085936A1 - 压敏型显示屏触控单元、触摸屏及其制造方法 - Google Patents

压敏型显示屏触控单元、触摸屏及其制造方法 Download PDF

Info

Publication number
WO2015085936A1
WO2015085936A1 PCT/CN2014/093571 CN2014093571W WO2015085936A1 WO 2015085936 A1 WO2015085936 A1 WO 2015085936A1 CN 2014093571 W CN2014093571 W CN 2014093571W WO 2015085936 A1 WO2015085936 A1 WO 2015085936A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sensitive display
pressure sensitive
lower electrode
touch screen
Prior art date
Application number
PCT/CN2014/093571
Other languages
English (en)
French (fr)
Inventor
朱少鹏
邱勇
陈红
黄秀颀
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to US15/103,862 priority Critical patent/US10558287B2/en
Priority to JP2016537482A priority patent/JP2017503256A/ja
Priority to KR1020167018197A priority patent/KR20160096156A/ko
Priority to EP14869005.0A priority patent/EP3082022A4/en
Publication of WO2015085936A1 publication Critical patent/WO2015085936A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to touch and display technologies, and more particularly to a pressure sensitive display touch unit, a touch screen and a method of manufacturing the same, and a basic sensing unit for a touch screen.
  • the existing touch screen mainly uses capacitive, resistive, surface acoustic wave and optical methods to sense the touch action.
  • the surface acoustic wave touch screen (surface acoustic wave technology) is the only technology in the existing touch screen technology that can sense the touch pressure, but the technology cannot be applied to large size, is too sensitive to surface contamination, is easily disturbed by sound, and is difficult to achieve multiple points. Touches and the difficulty of perceiving static pressures, etc., are currently unable to enter mainstream applications, such as mobile phones and tablets, making it difficult to become mainstream.
  • the capacitive touch screen is capable of multi-touch and high position sensitivity, and is currently the mainstream touch screen technology.
  • touch screen is still based on two-dimensional, that is, it can sense the action of the toucher on the x-y plane parallel to the screen.
  • electronic devices become more intelligent and even more user-friendly, more human-computer interaction needs to be developed, such as allowing the machine to perceive people's emotions and respond appropriately.
  • Applying pressure to an object or person is a way for people to convey information or emotions, such as the weight of the instrument, the weight of the brush while painting, and the explicit or suggestive way of touching the body with others.
  • pressure sensing a new way of human-computer interaction, which will have broad application prospects.
  • the main object of the present invention is to provide a pressure sensitive display panel touch unit, a touch screen and a manufacturing method thereof, which use the touch unit to convert external pressure into a current signal, so that the pressure becomes an information input mode. It can also be combined with the existing capacitive touch screen or resistive touch screen, so that the touch unit can be compatible with the existing multi-touch function, sensitively sense the pressure change, and enhance the function of the existing touch screen. Provides a richer operating application for touch screens.
  • a pressure sensitive display touch unit includes a driving electrode, a lower electrode, and a dielectric layer between the driving electrode and the lower electrode, and has a thickness of 0.5 nm to 5 nm.
  • I T CV T exp(-AU 0 d);
  • C and A are proportional constants
  • U 0 is the arithmetic mean of the escape barrier of the drive and lower electrodes
  • d is the thickness of the dielectric layer.
  • the driving electrode and the lower electrode are transparent or translucent conductors, and the material thereof is any one of the following: indium tin oxide ITO, aluminum-doped zinc oxide AZO, fluorine-doped tin oxide FTO, gallium-doped zinc oxide GZO, graphene or Metal nanowire array.
  • the material of the dielectric layer is polyamide, polyimide, polyparaphenylene terephthalamide, polyurea, alumina, zirconia, cerium oxide, silicon dioxide, aluminum alkoxide or Zincone.
  • the dielectric layer is prepared by atomic layer deposition or molecular layer deposition.
  • a capacitive touch screen comprising the pressure sensitive display panel touch unit, the array of the pressure sensitive display touch unit being fabricated on a glass or polymer front panel.
  • a resistive touch screen comprising the touch sensitive display screen unit, an array of the pressure sensitive display touch unit is fabricated on a flexible substrate of the resistive touch screen, and the array is covered with an insulating film.
  • a method for manufacturing a pressure sensitive display panel touch unit comprising: disposing a dielectric layer between a driving electrode and a lower electrode, and preparing the dielectric layer by atomic layer deposition or molecular layer deposition, the dielectric layer The thickness is between 0.5 nm and 5 nm.
  • a method of manufacturing a capacitive touch screen comprising the manufacturing method of the pressure sensitive display panel touch unit, wherein the array of the pressure sensitive display panel touch unit is fabricated on a front panel of a glass or polymer.
  • a method for manufacturing a resistive touch screen comprising the manufacturing method of the touch sensitive display panel, wherein the method comprises: fabricating an array of the pressure sensitive display touch unit on a flexible substrate of the resistive touch screen And covering the array with an insulating film.
  • the pressure sensitive display touch panel, the touch screen and the manufacturing method thereof have the following advantages: 1) the display touch unit can convert external pressure into a current signal, and can detect the change of the current signal by detecting The magnitude of the touch pressure is sensed, so that by receiving the touch pressure signal, the magnitude of the touch force can be sensitively sensed, thereby realizing the use of pressure as an information input method.
  • the display touch unit is also compatible with the existing capacitive touch screen and the resistive touch screen, and is compatible with multi-touch, and the touch unit is combined with the capacitive touch screen or the resistive touch screen to realize multi-touch function.
  • feel sensitive Pressure is good for designing and implementing high-sensitivity multi-function (eg, force feedback) touch/touch display.
  • FIG. 1 is a schematic structural view of a touch sensitive display unit of the present invention
  • FIG. 2 is a schematic diagram of a touch pressure sensor compatible with a capacitive touch screen according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a touch pressure sensor compatible with a resistive touch screen according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a touch sensitive display unit of the present invention. As shown in FIG. 1, it describes one of the most basic units of the touch pressure sensor, mainly composed of an upper electrode (drive electrode) 101, a lower electrode 102, and an intermediate ultra-thin dielectric layer 103. among them:
  • the upper electrode 101 and the lower electrode 102 are transparent or translucent conductors, and the material thereof may be, but not limited to, indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO), and doped.
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • FTO fluorine-doped tin oxide
  • GZO Gallium zinc oxide
  • graphene graphene
  • metal nanowire arrays and the like. Typical film thicknesses and methods of preparation are well known in the art.
  • the intermediate ultra-thin dielectric layer 103 has a thickness ranging from 0.5 nm to 5 nm and is excellent in compactness.
  • the dielectric layer 103 (which is a thin film) is prepared by atomic layer deposition (ALD) or molecular layer deposition (MLD).
  • the material may be, but not limited to, polyamide, polyimide, poly(p-phenylene terephthalamide) (PPTA), polyurea, alumina, zirconia, cerium oxide, silicon dioxide, aluminum alkoxide (Alucone) ) or Zincone et al.
  • the dielectric layer 103 acts as a barrier for free electrons in the electrode. Since the thickness of the barrier is extremely thin, when a pressure is applied between the upper electrode 101 and the lower electrode 102, according to the principle of quantum mechanics, electrons have a chance to pass through.
  • the barrier forms a tunneling current I T .
  • the relationship between the tunnel current I T and the voltage V T between the upper and lower electrodes is:
  • I T CV T exp(-AU 0 d);
  • C and A are proportional constants
  • U 0 is the arithmetic mean of the escape barriers of the two electrodes
  • d is the thickness of the dielectric layer 103.
  • FIG. 2 is a schematic diagram of a touch pressure sensor compatible with a capacitive touch screen according to an embodiment of the present invention. As shown in FIG. 2, on the front panel 205 of the glass or polymer, the drive electrode 201 and the receiving electrode 202 of the conventional capacitive screen are formed.
  • the material of the driving electrode 201 and the receiving electrode 202 may be, but not limited to, ITO, AZO, or the like. ITO is preferred in this embodiment, the method of manufacture and parameters of which are well known in the capacitive touch screen industry.
  • the drive pulse signal 207 is applied to the drive electrode 201 through the drive buffer 206, and then the charge is collected by the receive electrode 202 by the receive circuit 209 to sense the touch action and position of the x-y plane.
  • An ultra-thin dielectric layer 203 is disposed under the drive electrode 201 to form an array of pressure sensitive display touch units together with the lower electrode 204.
  • the dielectric layer 203 can be prepared by atomic layer deposition (ALD) or molecular layer deposition (MLD), and the material thereof can be, but not limited to, polyamide, polyimide, poly(p-phenylene terephthalamide) (PPTA), polyurea. , alumina, zirconia, cerium oxide, silica, etc., aluminum alkoxide (Alucone), Zincone, and the like.
  • a polyurea deposited by MLD is preferred, which has a film thickness of 0.5 to 3 nm, preferably 1 nm.
  • the lower electrode 204 is touched by applying pressure on the dielectric layer 203.
  • the lower electrode 204 extends a section to be connected to the pressure sensing circuit 208 for sensing the current generated by the driving pulse signal 207 on the lower electrode 204, thereby sensing the magnitude of the pressure.
  • the material of the lower electrode 204 may be, but not limited to, ITO, AZO, etc., preferably ITO, and has a film thickness of 50 to 1000 nm, preferably 100 nm.
  • FIG. 3 is a schematic diagram of a touch pressure sensor compatible with a resistive touch screen according to another embodiment of the present invention.
  • the basic unit of the touch sensor of the present invention is combined with a conventional resistive touch screen to form a first resistive film 304 on the touch screen rigid substrate 301, and the insulating fulcrum 303 is combined with another flexible substrate 302 of the touch screen.
  • a second resistive film 305 is formed at the lowermost end of the flexible substrate 302.
  • the hard substrate 301, the flexible substrate 302, the insulating fulcrum 303, the first resistive film 304, and the second resistive film 305 are each formed by a known method of manufacturing a resistive touch panel.
  • an array of the second electrode (ie, the driving electrode) 308 and the ultra-thin dielectric layer 309 is formed on the flexible substrate 302 to form the first electrode. (ie, the lower electrode) 307, and finally the array is covered with an insulating film 306.
  • the second electrode 308 and the ultra-thin dielectric layer 309 and the first electrode 307 together form an array of the pressure sensitive display touch unit.
  • the material of the second electrode 308 and the first electrode 307 may be, but not limited to, ITO, a silver nanowire array, poly 3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS), etc., preferably PEDOT: PSS, which may be manufactured by, but not limited to, ink jet printing, plasma polymerization, spin coating, vapor phase vacuum deposition, etc., and ink jet printing is preferred herein, and the film thickness thereof is preferably 500 nm.
  • the material for manufacturing the insulating film 306 may be, but not limited to, polyurea, polyimide, aluminum alkoxide, etc., and polyurea is preferred herein, and the film thickness thereof is preferably 0.8 nm, and the deposition method is MLD.
  • a voltage is applied through the first electrode 307 to sense the current at each of the detection points on the array of second electrodes 308, thereby sensing the pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种压敏型显示屏触控单元、触摸屏及其制造方法,该触控单元主要包括驱动电极、下电极以及所述驱动电极和下电极之间的电介质层;当在所述驱动电极和下电极之间施加压力时会形成隧道电流IT,所述驱动电极、下电极之间存在电压VT。利用本发明的触控单元,可将外部压力转换成电流信号,使压力成为一种信息输入方式;还将其与现有电容触摸屏或电阻触摸屏相结合,使该触控单元既能兼容现有的多点触控功能,又能灵敏地感测压力大小变化,还可增强现有触摸屏的功能,为触摸屏提供更丰富的操作应用。

Description

压敏型显示屏触控单元、触摸屏及其制造方法 技术领域
本发明涉及触控和显示屏技术,尤其涉及一种压敏型显示屏触控单元、触摸屏及其制造方法,用于触摸屏的基本传感单元。
背景技术
现有触摸屏主要采用电容、电阻、表面声波和光学等方式进行触摸动作的传感。其中,表面声波触摸屏(表面声波技术)是现有触摸屏技术中唯一能够传感触摸压力的技术,但由于该技术无法应用于大尺寸、对表面玷污过于敏感、容易被声音干扰、难以实现多点触控以及难以感知静态压力等诸多缺陷,目前还无法进入主流应用,如手机和平板电脑等,因而难以成为主流。电容触摸屏能够实现多点触控并且位置灵敏度高,是目前主流的触摸屏技术。
触摸屏作为一种人机交互的重要而直接的输入输出工具,目前绝大多数还是基于二维的,即能够感受触摸者在平行于屏体的x-y平面上的动作。随着电子设备更加智能化乃至人性化,需要开发更多人机交互的方式,譬如能够让机器感知人的情绪,并作出适当的响应。对物体或人施加触压,是人传递信息或情绪的一种方式,譬如对乐器弹奏的轻重,绘画时笔触的轻重,以及对他人以身体触压方式进行的明示或暗示等。基于此考虑,研究一种将压力作为人机交互的另一个维度的技术,使压力传感成为一种全新的人机交互方式,将具有广阔的应用前景。
发明内容
有鉴于此,本发明的主要目的在于提供一种压敏型显示屏触控单元、触摸屏及其制造方法,利用该触控单元将外部压力转换成电流信号,使压力成为一种信息输入方式。还可与现有的电容触摸屏或电阻触摸屏相结合,使该触控单元既能兼容现有的多点触控功能,又能灵敏地感测压力大小变化,还可增强现有触摸屏的功能,为触摸屏提供更丰富的操作应用。
为达到上述目的,本发明的技术方案是这样实现的:
一种压敏型显示屏触控单元,包括驱动电极、下电极以及所述驱动电极和下电极之间的电介质层,其厚度为0.5nm~5nm。
其中:当在所述驱动电极和下电极之间施加压力时会形成隧道电流IT,所述驱动电极、 下电极之间存在电压VT,所述隧道电流IT与驱动电极、下电极之间的电压VT的关系为:
IT=CVTexp(-AU0d);
其中:C和A为比例常数,U0为驱动电极和下电极的逸出势垒的算术平均值,d为电介质层的厚度。
所述驱动电极和下电极为透明或半透明的导体,其材料为下列任一种:铟锡氧化物ITO、掺铝氧化锌AZO、掺氟氧化锡FTO、掺镓氧化锌GZO、石墨烯或金属纳米线阵列。
所述电介质层的材料为聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺、聚脲、氧化铝、氧化锆、氧化铪、二氧化硅、烷醇铝或Zincone。
所述电介质层采用原子层沉积或分子层沉积方法制备。
一种包含所述压敏型显示屏触控单元的电容触摸屏,在玻璃或聚合物的前面板上制作所述压敏型显示屏触控单元的阵列。
一种包含所述压敏型显示屏触控单元的电阻触摸屏,在所述电阻触摸屏的软质基板上制作所述压敏型显示屏触控单元的阵列,并用绝缘膜遮盖所述阵列。
一种压敏型显示屏触控单元的制造方法,该方法包括:在驱动电极和下电极之间设置一电介质层,通过原子层沉积或分子层沉积法制备所述电介质层,该电介质层的厚度为0.5nm~5nm之间。
一种包含所述压敏型显示屏触控单元的制造方法的电容触摸屏的制造方法,该方法为:在玻璃或聚合物的前面板上制作所述压敏型显示屏触控单元的阵列。
一种包含所述压敏型显示屏触控单元的制造方法的电阻触摸屏的制造方法,该方法为:在所述电阻触摸屏的软质基板上制作所述压敏型显示屏触控单元的阵列,并用绝缘膜遮盖所述阵列。
本发明所提供的压敏型显示屏触控单元、触摸屏及其制造方法,具有以下优点:1)该显示屏触控单元能够将外部压力转换成电流信号,通过探测该电流信号的变化即可感知触摸压力的大小,这样,只需通过接收触摸压力信号,就可灵敏地感测到触摸力度的大小,从而实现利用压力作为信息输入方式。
2)该显示屏触控单元还能够兼容现有的电容触摸屏和电阻触摸屏,并且兼容多点触控,将所述触控单元与电容触摸屏或电阻触摸屏相结合,既能实现多点触控功能,又可灵敏的感受 压力,有利于设计和实现高灵敏度的多功能(如,带力反馈功能)的触控/触摸显示屏。
附图说明
图1为本发明的压敏型显示屏触控单元的结构示意图;
图2为本发明的一个实施例描述的与电容触控屏兼容的触摸压力传感器示意图;
图3为本发明的另一实施例所描述的与电阻触摸屏兼容的触摸压力传感器示意图。
具体实施方式
下面结合附图及本发明的实施例对本发明的显示屏触控单元及其制造方法作进一步详细的说明。
图1为本发明的压敏型显示屏触控单元的结构示意图。如图1所示,其描述的是触摸压力传感器的一个最基本单元,主要由上电极(驱动电极)101、下电极102和中间超薄的电介质层103组成。其中:
所述上电极101和下电极102均为透明或半透明的导体,其材料可以为但不限于铟锡氧化物(ITO)、掺铝氧化锌(AZO)、掺氟氧化锡(FTO)、掺镓氧化锌(GZO)、石墨烯、金属纳米线阵列等。其一般膜厚和制备方法为行业内公知。
所述中间超薄的电介质层103,厚度范围为0.5nm~5nm,且致密性极佳。为了实现其致密性及无缺陷的特性,该电介质层103(为薄膜)采用原子层沉积(ALD)或分子层沉积(MLD)方式制备。其材料可以为但不限于聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺(PPTA)、聚脲、氧化铝、氧化锆、氧化铪、二氧化硅、烷醇铝(Alucone)或Zincone等。
其工作原理如下:所述电介质层103作为电极中自由电子的势垒,由于势垒厚度极薄,当上电极101、下电极102之间施加压力后,根据量子力学原理,电子有几率穿过势垒,形成隧道电流IT。所述隧道电流IT和上、下电极间电压VT之间的关系为:
IT=CVTexp(-AU0d);
其中:C和A为比例常数,U0为两边电极的逸出势垒的算术平均值,d为电介质层103的厚度。从表达式可知,手指触摸使超薄的电介质层103产生的形变,即厚度d的微小变化将指数地影响隧道电流IT。通过探测隧道电流IT的改变,即可探知触摸压力大小的变化。
图2为本发明的一个实施例描述的与电容触控屏兼容的触摸压力传感器示意图。如图2所示,在玻璃或聚合物的前面板205上,形成传统电容屏的驱动电极201和接收电极202。
其中,所述驱动电极201和接收电极202的材料可以是但不限于ITO、AZO等。在该实施例中优选ITO,其制造方法和参数为电容触摸屏行业所公知。
如图2所示,驱动脉冲信号207通过驱动缓冲器206加在驱动电极201上,然后利用接收电路209通过接收电极202收集电荷,感知x-y平面的触摸动作和位置。
在驱动电极201下方加以超薄的电介质层203,与下电极204共同构成压敏型显示屏触控单元的阵列。该电介质层203可用原子层沉积(ALD)或分子层沉积(MLD)制备,其材料可以但不限于聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺(PPTA)、聚脲、氧化铝、氧化锆、氧化铪、二氧化硅等、烷醇铝(Alucone)、Zincone等。在该实施例中优选为MLD沉积的聚脲,其膜厚为0.5~3nm,优选为1nm。
在电介质层203上施加压力触控所述下电极204。所述下电极204伸出一段,使其与压力感测电路208相连,用以感测驱动脉冲信号207在下电极204上的产生的电流,从而感测压力大小。所述下电极204的材料可以但不限于ITO、AZO等,优选为ITO,膜厚为50~1000nm,优选为100nm。
图3为本发明的另一实施例所描述的与电阻触摸屏兼容的触摸压力传感器示意图。如图3所示,本发明触摸传感器基本单元与传统的电阻式触摸屏相结合,在触摸屏硬质基板301上形成第一电阻膜304,以绝缘支点303与触摸屏的另一软质基板302相结合。所述软质基板302的最下端形成第二电阻膜305。上述硬质基板301、软质基板302、绝缘支点303、第一电阻膜304和第二电阻膜305均由公知的电阻触摸屏的制造方法形成。与传统电阻触摸屏不同的是:在形成第二电阻膜305之前,先于软质基板302上先形成第二电极(即驱动电极)308和超薄的电介质层309的阵列,再形成第一电极(即下电极)307,最后用一绝缘膜306遮盖该阵列。
这里,所述第二电极308和超薄的电介质层309和第一电极307共同构成所述压敏型显示屏触控单元的阵列。
第二电极308和第一电极307的材料可以是但不限于ITO、银纳米线阵列、聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)等,在这里优选PEDOT:PSS,其制造方法可以是但不限于喷墨打印、等离子体聚合、旋涂、气相真空沉积等,在这里优选喷墨打印,其膜厚优选为500nm。制造所述绝缘膜306材料可以是但不限于聚脲、聚酰亚胺、烷醇铝等,在这里优选聚脲,其膜厚优选为0.8nm,沉积方法为MLD。
应用时,通过第一电极307施加电压,感测第二电极308阵列上每一个检测点的电流,从而感测压力。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

  1. 一种压敏型显示屏触控单元,其特征在于,包括驱动电极、下电极以及所述驱动电极和下电极之间的电介质层,其厚度为0.5nm~5nm。
  2. 根据权利要求1所述的压敏型显示屏触控单元,其特征在于,当在所述驱动电极和下电极之间施加压力时会形成隧道电流IT,所述驱动电极、下电极之间存在电压VT,所述隧道电流IT与驱动电极、下电极之间的电压VT的关系为:
    IT=CVTexp(-AU0d):
    其中:C和A为比例常数,U0为驱动电极和下电极的逸出势垒的算术平均值,d为电介质层的厚度。
  3. 根据权利要求1或2所述的压敏型显示屏触控单元,其特征在于,所述驱动电极和下电极为透明或半透明的导体,其材料为下列任一种:铟锡氧化物ITO、掺铝氧化锌AZO、掺氟氧化锡FTO、掺镓氧化锌GZO、石墨烯或金属纳米线阵列。
  4. 根据权利要求2所述的压敏型显示屏触控单元,其特征在于,所述电介质层的材料为聚酰胺、聚酰亚胺、聚对苯二甲酰对苯二胺、聚脲、氧化铝、氧化锆、氧化铪、二氧化硅、烷醇铝或Zincone。
  5. 根据权利要求2或4所述的压敏型显示屏触控单元,其特征在于,所述电介质层采用原子层沉积或分子层沉积方法制备。
  6. 一种包含权利要求1至5项中任一项所述压敏型显示屏触控单元的电容触摸屏,其特征在于,在玻璃或聚合物的前面板上制作所述压敏型显示屏触控单元的阵列。
  7. 一种包含权利要求1至5项中任一项所述压敏型显示屏触控单元的电阻触摸屏,其特征在于,在电阻触摸屏的软质基板上制作所述压敏型显示屏触控单元的阵列,并用绝缘膜遮盖所述阵列。
  8. 一种压敏型显示屏触控单元的制造方法,其特征在于,该方法包括:在驱动电极和下电极之间设置一电介质层,通过原子层沉积或分子层沉积法制备所述电介质层,该电介质层的厚度为0.5nm~5nm之间。
  9. 一种包含权利要求8所述压敏型显示屏触控单元的制造方法的电容触摸屏的制造方法,其特征在于,该方法为:在玻璃或聚合物的前面板上制作所述压敏型显示屏触控单元的阵列。
  10. 一种包含权利要求8所述压敏型显示屏触控单元的制造方法的电阻触摸屏的制造方法,其特征在于,该方法为:在所述电阻触摸屏的软质基板上制作所述压敏型显示屏触控单元的阵列,并用绝缘膜遮盖所述阵列。
PCT/CN2014/093571 2013-12-11 2014-12-11 压敏型显示屏触控单元、触摸屏及其制造方法 WO2015085936A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/103,862 US10558287B2 (en) 2013-12-11 2014-12-11 Pressure-sensitive display touch unit, touch screen, and manufacturing method thereof
JP2016537482A JP2017503256A (ja) 2013-12-11 2014-12-11 感圧式ディスプレイタッチユニット、タッチスクリーン及びその製造方法
KR1020167018197A KR20160096156A (ko) 2013-12-11 2014-12-11 압력 감지형의 디스플레이 터치 컨트롤 유닛, 터치스크린 및 그의 제조방법
EP14869005.0A EP3082022A4 (en) 2013-12-11 2014-12-11 PRESSURE SENSITIVE TOUCH PANEL DISPLAY, TOUCH SCREEN, AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310668839.8 2013-12-11
CN201310668839.8A CN104714672B (zh) 2013-12-11 2013-12-11 压敏型显示屏触控单元、触摸屏及其制造方法

Publications (1)

Publication Number Publication Date
WO2015085936A1 true WO2015085936A1 (zh) 2015-06-18

Family

ID=53370631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093571 WO2015085936A1 (zh) 2013-12-11 2014-12-11 压敏型显示屏触控单元、触摸屏及其制造方法

Country Status (6)

Country Link
US (1) US10558287B2 (zh)
EP (1) EP3082022A4 (zh)
JP (1) JP2017503256A (zh)
KR (1) KR20160096156A (zh)
CN (1) CN104714672B (zh)
WO (1) WO2015085936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781273B1 (ko) * 2015-12-15 2017-09-25 연세대학교 산학협력단 고감도 압력 센서를 이용한 입력 장치

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016113162A1 (de) * 2015-07-28 2017-02-02 Schott Ag Bedienblende für ein Haushaltsgerät mit zumindest einer Benutzerschnittstelle, Haushaltsgerät und Verfahren zur Herstellung der Bedienblende mit Benutzerschnittstelle
CN106502481A (zh) * 2015-09-08 2017-03-15 深圳莱宝高科技股份有限公司 一种触控显示装置及其制作方法
CN105183230B (zh) 2015-09-18 2017-09-19 京东方科技集团股份有限公司 一种显示装置、压力检测方法及压力检测装置
DE102015120168A1 (de) 2015-11-09 2017-05-11 Schott Ag Zweidimensionale Sensoranordnung
CN105930001B (zh) * 2016-04-19 2019-03-01 京东方科技集团股份有限公司 触控面板及其制作方法和显示装置
CN105784254A (zh) * 2016-04-20 2016-07-20 南方科技大学 一种柔性压力传感器及触摸屏
TWI607362B (zh) * 2016-08-15 2017-12-01 友達光電股份有限公司 感測裝置及偵測方法
US10649595B2 (en) * 2017-03-03 2020-05-12 Atmel Corporation Touch sensor with force sensor response normalization, and related method and apparatus
WO2019004752A1 (ko) * 2017-06-30 2019-01-03 동우 화인켐 주식회사 포스 터치 센서
CN108052220B (zh) * 2017-12-06 2021-11-26 京东方科技集团股份有限公司 显示模组及其制造方法、显示装置及可穿戴装置
EP3714772A1 (en) 2019-03-29 2020-09-30 Picosun Oy Sensor and its manufacturing method
WO2020209452A1 (ko) * 2019-04-09 2020-10-15 (주)에프티씨 정전용량방식 및 감압방식 터치필름
CN111411346A (zh) * 2020-04-14 2020-07-14 西安近代化学研究所 一种柔性无机-有机复合水汽氧气阻隔薄膜及其低温制备方法
US11507240B2 (en) * 2020-04-20 2022-11-22 Higgstec Inc. Touch sensor
CN114027797A (zh) * 2021-11-19 2022-02-11 惠州Tcl移动通信有限公司 基于触摸屏的皮肤检测处理方法、装置、移动终端及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846562A (zh) * 2009-03-27 2010-09-29 罗伯特.博世有限公司 压力传感器
US20130047747A1 (en) * 2011-08-25 2013-02-28 Samsung Electro-Mechanics Co., Ltd. Capacitive pressure sensor and input device including the same
CN103210457A (zh) * 2010-09-10 2013-07-17 小利兰·斯坦福大学托管委员会 压电传感装置和方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767057B2 (ja) * 1989-03-28 1998-06-18 セイコーインスツルメンツ株式会社 圧力センサー
US7368014B2 (en) * 2001-08-09 2008-05-06 Micron Technology, Inc. Variable temperature deposition methods
DE10214946B4 (de) * 2002-04-04 2006-01-19 "Stiftung Caesar" (Center Of Advanced European Studies And Research) TMR-Sensor
ATE434212T1 (de) * 2003-07-21 2009-07-15 Polymer Vision Ltd Berührungsempfindliche anzeige für eine tragbare einrichtung
WO2005015373A2 (en) * 2003-08-11 2005-02-17 Koninklijke Philips Electronics N.V. A touch sensitive display
JP4150013B2 (ja) * 2005-03-31 2008-09-17 Tdk株式会社 トンネル効果素子
JP2006294864A (ja) * 2005-04-11 2006-10-26 Seiko Epson Corp 不揮発性半導体記憶装置及びその製造方法
JP5373607B2 (ja) * 2006-08-01 2013-12-18 ワシントン ユニヴァーシティー 細胞をイメージングするための多機能ナノスコピー
KR100779263B1 (ko) * 2007-02-06 2007-11-27 오영주 무극성 금속 전해 커패시터 및 그의 제조방법
TWI353304B (en) 2007-10-23 2011-12-01 Sino American Silicon Prod Inc Transparent conductive component utilized in touch
US9018030B2 (en) * 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
JP2009244206A (ja) * 2008-03-31 2009-10-22 Nissha Printing Co Ltd 感圧センサ
JP4966924B2 (ja) 2008-07-16 2012-07-04 日東電工株式会社 透明導電性フィルム、透明導電性積層体及びタッチパネル、並びに透明導電性フィルムの製造方法
KR100975868B1 (ko) * 2008-07-23 2010-08-13 삼성모바일디스플레이주식회사 평판 표시장치
US20100045630A1 (en) * 2008-08-19 2010-02-25 Qualcomm Incorporated Capacitive MEMS-Based Display with Touch Position Sensing
GB2468870B (en) * 2009-03-25 2016-08-03 Peratech Holdco Ltd Sensor
EP2239651B1 (en) * 2009-03-27 2017-08-30 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Smart Label
US8669952B2 (en) * 2011-06-09 2014-03-11 Sharp Laboratories Of America, Inc. Metallic nanoparticle pressure sensor
JP4943565B2 (ja) * 2009-12-11 2012-05-30 日本写真印刷株式会社 薄型ディスプレイと抵抗膜式タッチパネルの実装構造、表面突起付き抵抗膜式タッチパネルユニット、及び、裏面突起付き薄型ディスプレイユニット
EP2573660B1 (en) * 2009-12-22 2014-06-25 Nissha Printing Co., Ltd. Touch panel and portable device using the same
US9904393B2 (en) * 2010-06-11 2018-02-27 3M Innovative Properties Company Positional touch sensor with force measurement
CN102004573B (zh) * 2010-07-28 2014-01-01 深圳市汇顶科技股份有限公司 一种触摸检测***及其检测方法
DE102010043277A1 (de) * 2010-11-03 2012-05-03 Robert Bosch Gmbh Mikroelektromechanischer Sensor zur Messung einer Kraft sowie entsprechendes Verfahren
JP5554227B2 (ja) * 2010-12-27 2014-07-23 京セラ株式会社 電子機器
US8710611B2 (en) * 2011-01-20 2014-04-29 West Virginia University High sensitivity stress sensor based on hybrid materials
JP5174294B1 (ja) * 2011-04-29 2013-04-03 日本写真印刷株式会社 スペーサーレス入力デバイス
WO2013037425A1 (en) * 2011-09-13 2013-03-21 Albert-Ludwigs-Universität Freiburg Apparatus for detecting a position of a force
US20130293482A1 (en) 2012-05-04 2013-11-07 Qualcomm Mems Technologies, Inc. Transparent through-glass via
US8921178B2 (en) * 2012-05-16 2014-12-30 Renesas Electronics Corporation Semiconductor devices with self-aligned source drain contacts and methods for making the same
TWI629459B (zh) * 2013-02-06 2018-07-11 藤倉股份有限公司 Method for manufacturing pressure detecting device, pressure detecting device, pressure detecting device and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846562A (zh) * 2009-03-27 2010-09-29 罗伯特.博世有限公司 压力传感器
CN103210457A (zh) * 2010-09-10 2013-07-17 小利兰·斯坦福大学托管委员会 压电传感装置和方法
CN103250218A (zh) * 2010-09-10 2013-08-14 小利兰·斯坦福大学托管委员会 界面装置及方法
US20130047747A1 (en) * 2011-08-25 2013-02-28 Samsung Electro-Mechanics Co., Ltd. Capacitive pressure sensor and input device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101781273B1 (ko) * 2015-12-15 2017-09-25 연세대학교 산학협력단 고감도 압력 센서를 이용한 입력 장치

Also Published As

Publication number Publication date
JP2017503256A (ja) 2017-01-26
US20160334919A1 (en) 2016-11-17
US10558287B2 (en) 2020-02-11
EP3082022A1 (en) 2016-10-19
KR20160096156A (ko) 2016-08-12
CN104714672B (zh) 2019-04-09
EP3082022A4 (en) 2016-12-21
CN104714672A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2015085936A1 (zh) 压敏型显示屏触控单元、触摸屏及其制造方法
TWI526885B (zh) Touch panel and electronic machine with push detection function
US8680876B2 (en) Dynamic quantity detecting member and dynamic quantity detecting apparatus
WO2016065800A1 (zh) 触摸屏及其制造方法和显示面板
KR101152554B1 (ko) 터치 스크린 패널 및 이를 구비한 영상표시장치
US10884557B2 (en) Touch input device
TWI506502B (zh) 觸摸點及觸摸壓力的檢測方法
Walia et al. Patterned Cu-mesh-based transparent and wearable touch panel for tactile, proximity, pressure, and temperature sensing
CN104536613B (zh) 聚偏氟乙烯压电纳米纤维触摸屏敏感元件的制备方法
WO2013189232A1 (zh) 触控装置及其检测方法
KR101230400B1 (ko) 혼합식 멀티 터치 패널
KR20130109288A (ko) 터치 패널 및 이의 제조 방법
US20190278399A1 (en) Input sensor and display device including the same
TW200923744A (en) Sensing device for capacitive touch screen
KR101349703B1 (ko) 멀티터치와 단일힘을 감지하는 터치입력구조 및 그 제조방법
JP3178844U (ja) タッチ制御ユニット
TWI571778B (zh) 觸摸和懸停感測裝置
US10261636B2 (en) Touch and hover sensing device
KR20130022946A (ko) 정전용량 터치패널 및 그 제조 방법
TWI417771B (zh) 觸摸屏
Shim et al. 43.2: Mutual Capacitance Touch Screen Integrated into Thin Film Encapsulated Active‐Matrix OLED
TWI607359B (zh) 三維觸控總成
US10386982B2 (en) Electrostatic sensing device
CN209690890U (zh) 输入传感器及包括该输入传感器的显示装置
JP3177933U (ja) 静電容量式タッチパネルユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869005

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014869005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869005

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016537482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15103862

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167018197

Country of ref document: KR

Kind code of ref document: A