WO2015083853A1 - 이성질 항체의 함량 조절을 통한 항체 제조 방법 - Google Patents

이성질 항체의 함량 조절을 통한 항체 제조 방법 Download PDF

Info

Publication number
WO2015083853A1
WO2015083853A1 PCT/KR2013/011236 KR2013011236W WO2015083853A1 WO 2015083853 A1 WO2015083853 A1 WO 2015083853A1 KR 2013011236 W KR2013011236 W KR 2013011236W WO 2015083853 A1 WO2015083853 A1 WO 2015083853A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
settling
time
rate
maturation
Prior art date
Application number
PCT/KR2013/011236
Other languages
English (en)
French (fr)
Inventor
윤지용
김세연
김원겸
박상경
안용호
이정우
장재영
황은호
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to PCT/KR2013/011236 priority Critical patent/WO2015083853A1/ko
Publication of WO2015083853A1 publication Critical patent/WO2015083853A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature

Definitions

  • the present invention provides a method for producing an antibody, the method for producing a high purity and high quality antibody population by adjusting the content of the isomeric antibody in the population of antibodies (population of antibodies) to the target content, the antibody population prepared by the above method, the antibody population
  • the present invention relates to a method for controlling the content of isomeric antibodies in a body and a method for determining the pH settling time for controlling the content of isomeric antibodies.
  • the antibody has a structure in which two heavy chains and two light chains are disulfide bonds, and glycosylation is performed near the Fc of the heavy chain.
  • Antibodies produced using CHO cells as a host include various isomeric antibodies (Hongcheng Liu, Georgeen Stahl-Bulseco, Journal of Chromatography B, 837 (2006) 35-43), and isomeric antibodies are deamidation.
  • isparagine is an amino acid deamined as an aspatate (Boxu Yan, Sean Steen, Journal of Pharmaceutical Sciences, Vol. 98, No. 10, October 2009), Isomers in which amino acid methionine is oxidized to become methionine sulfate (Chris Chumsae, Georgeen Stahl-Bulseco, Journal of Chromatography B, 850 (2007) 285-294).
  • glutamate when glutamate is present at the N-terminus of the heavy chain, the glutamate may form a pentagonal ring structure to be transformed into pyruglutamate (William E. Werner, Sylvia Wu, Analytical Biochemistry 342 (2005) 120-125). Since these isomeric antibodies affect the biological activity of the antibody, it is necessary to control the amount of the isomeric antibody to a certain limit in the production of the antibody.
  • Isomer antibodies vary in rate of deamination depending on pH and temperature, and are generally studied for conditions under which deamination can be minimized in terms of stability.
  • the quality may be different in terms of efficacy, and thus may be a problem in terms of equivalence evaluation. Therefore, the development of a method of maintaining a constant content of isomeric antibodies in the final purification product is greatly demanded in the biosimilar antibody pharmaceutical market.
  • One object of the present invention is to (a) selecting a pH and time to prepare an isomeric antibody of a desired content; And (b) allowing the sample containing the mixed solution of the antibody to stand for a predetermined time within the pH selected in step (a), wherein the antibody population comprises a desired amount of isoform. It is to provide a method for producing.
  • Another object of the present invention is to provide an antibody population comprising the desired amount of isomeric antibodies prepared by the above method.
  • Another object of the present invention is to select a pH and time to prepare a desired amount of isomeric antibody; And (b) allowing the sample containing the mixed solution of the antibody to stand for a predetermined time within the pH selected in step (a). To provide.
  • Another object of the present invention is to select a pH at which (a) to prepare isomeric antibodies of a desired content; And (b) allowing the sample containing the mixed solution of the antibody to remain within the pH selected in step (a), to control the content of the isoform in the antibody population or to a desired content.
  • the manufacturing method of the antibody population containing an isomeric antibody it provides the method of determining pH settling time using the hourly rate of increase of specific main acidic peak%.
  • the content of isomeric antibodies can be controlled to consistently produce a high quality antibody population of interest.
  • the antibody according to the present invention can be manufactured by controlling the content of the isomeric antibody to improve the equivalence with the reference drug, and can shorten the existing process time. This can be high.
  • FIG. 1 is a diagram showing a pattern change of the isomeric antibody over time by the pH rise.
  • 1A is a diagram showing a pattern change of isomeric antibodies after 4 hours of pH maturation, and
  • FIG. 1B is 24 hours of pH maturation.
  • Figure 2 is a view showing the range of a typical acidic, main, basic portion on CEX HPLC.
  • Figure 3 is a diagram showing the pattern change of the isomeric antibody at 12 hours pH maturation.
  • 3A shows CEX HPLC Full and
  • 3B shows CEX HPLC expansion, respectively.
  • FIG. 4 is a diagram showing the pattern change of the isomeric antibody at 24 hours pH maturation.
  • 4A shows CEX HPLC Full
  • FIG. 4B shows CEX HPLC expansion.
  • 5 is a diagram comparing the content of each portion during pH maturation (12hr vs 24hr).
  • 5A shows a main acidic peak (AM)%
  • FIG. 5B shows an acidic portion%
  • FIG. 5C shows a main portion%
  • FIG. 5D shows a basic portion%.
  • FIG. 6 is a diagram showing the change in AM (main acidic peak) and acidic portion content at pH 7.5 maturation in the culture supernatant (3, 6, 9, 24hr).
  • 6A shows main acidic peaks (AMs)
  • FIG. 6B shows acidic portion%.
  • Figure 7 is a diagram showing the pattern change of the isomeric antibody during pH maturation in the culture supernatant (temperature: 25 °C, 30 °C, 37 °C, time: 24hr).
  • 7A shows CEX HPLC Full
  • FIG. 7B shows CEX HPLC expansion, respectively.
  • Figure 8 is a schematic diagram of the process flow and pH maturation insertion step of the present inventors Trastuzumab purification process.
  • 9 is a view showing a comparison of the content of each portion during pH maturation in CEX and VI step (time: 6, 11, 24hr, temperature: 4 °C, 25 °C).
  • 9A shows main acidic peak%
  • FIG. 9B shows acidic portion%
  • FIG. 9C shows main portion%
  • FIG. 9D shows Basic Portion%.
  • 10 is a diagram showing the pattern change of the isomeric antibody during pH maturation in CEX and VI (temperature: 25 °C, time: 11hr, 24hr).
  • 11 is a diagram comparing the content of each portion during pH maturation in the HIC step (time: 6, 9, 24hr, temperature: 4 °C, 25 °C).
  • 11A shows the main acidic peak (AM)%
  • FIG. 11B shows the acidic portion%
  • FIG. 11C shows the main portion%
  • FIG. 11D shows the Basic Portion%.
  • FIG. 12 is a view showing a pattern change of the isomeric antibody during pH maturation in the HIC step (temperature: 4 °C, 25 °C, time: 24hr).
  • FIG. 13 is a diagram showing the content comparison for each portion during pH maturation in UF / DF1 step (time: 6, 24hr, temperature: 4 °C, 25 °C).
  • FIG. 13A shows the main acidic peak (AM)%
  • FIG. 13B shows the acidic portion%
  • FIG. 13C shows the main portion%
  • FIG. 13D shows the Basic Portion%.
  • FIG. 14 is a view showing a pattern change of the isomeric antibody during pH maturation in UF / DF1 step (temperature: 25 °C, 4 °C, time: 24hr).
  • 15 is a diagram showing the peak containing AM in CEX HPLC.
  • 16 is a diagram showing AM growth rate verification by Plot between AM% and maturation time.
  • Figure 17 is a graph confirming the content control of isomeric antibodies in the production of Trastuzumab 1000l.
  • 17a shows CEX, UF / DF2, and reference overlap (No overlap)
  • FIG. 17B shows CEX, UF / DF2, and reference comparison (overlap).
  • the present invention provides a method for consistently producing a high-quality or equivalence antibody population, by adjusting the pH, temperature, time, etc. in the culture or purified solution to the desired content of the isomeric antibody
  • methods for producing an antibody population comprising.
  • the present invention comprises the steps of (a) selecting the pH and time to prepare the isomeric antibody of the desired content; And (b) allowing the sample containing the mixed solution of the antibody to stand for a predetermined time within the pH selected in step (a), wherein the antibody population comprises a desired amount of isoform. It is possible to provide a method for producing.
  • the term "pH settling" may be used interchangeably with pH maturation.
  • Antibody products prepared through host cells include several isomeric antibodies in addition to the main active antibody.
  • the isomeric antibody is an antibody in which some amino acids in the antibody are modified by deamine or oxidation, and the isomeric antibodies differ in biological activity.
  • Antibody products expressed through host cells may produce inconsistent amounts of such isomeric antibodies.
  • preparation of a quality similar to that of a reference drug is important. Therefore, a process for producing an antibody from host cells and then controlling the content of the isomeric antibody is required.
  • the present invention has been developed a method for controlling the content of isomeric antibodies, which surprisingly only raises a specific peak of the isomeric antibodies when the culture or purified liquid used for the production of the antibody is left at a certain pH for a certain time. Based on this, there is provided a method capable of effectively producing a high quality or equivalency antibody population comprising a desired ratio of isomeric antibodies.
  • a population of antibodies refers to an antibody group comprising a main active antibody and an isomeric antibody.
  • the antibody population is intended for a main active antibody and an isomeric antibody. It means the antibody group included in the ratio to do.
  • the antibody population includes only one type of antibody, or includes a group of antibodies containing both main active and isomeric antibodies.
  • said antibody population preferably means an antibody population comprising a desired amount of isomeric antibodies.
  • the antibody population has a difference in quality such as efficacy when the content of the isomeric antibody, which is considered to be important in the biosimilar antibody medicine for the purpose of the present invention, is different from the reference drug, thereby causing problems in evaluating equivalence.
  • it can mean an antibody population comprising a content of isomeric antibodies within the same or similar range as the biosimilar counterpart.
  • control means a drug that is a subject of replication of the biosimilar drug, but is not limited thereto and may mean a drug of a target that is intended to ensure equivalence.
  • antibody populations comprising the main active antibody and the isomeric antibody can be prepared in the same or corresponding composition as the reference drug.
  • the term “antibody” refers to a substance produced by stimulation of an antigen in the immune system, and specifically binds to a specific antigen, causing a substance to float on lymph and blood to generate an antigen-antibody reaction.
  • the antibody is one of proteins for high quality purification, and can be efficiently prepared and purified by the method according to the present invention.
  • the antibody to be purified in the present invention is not limited thereto, but may preferably be an antibody having an isoelectric point of 7 to 11, more preferably 8 to 10.
  • the antibody of the present invention is not limited thereto, but may preferably include all therapeutic antibodies commonly used in the art, and more preferably targets Human Epidermal Growth Factor Receptor 2 (HER-2).
  • the antibody may be trastuzumab or pertuzumab, and most preferably trastuzumab.
  • trastuzumab also known as Herceptin, is a humanized antibody against HER2 developed by Genentech in the United States, which is known as an antibody therapeutic against HER2 / neu mainly expressed in breast cancer cells.
  • the term "mainly active antibody” is a major component included in the antibody population of the present invention, wherein some amino acids in the antibody are modified by deamine or oxidation, so that the biological activity is not lowered, That is, it means an antibody that is not an acidic or basic isomeric antibody.
  • the main active antibody is the most important component for controlling the quality of the desired antibody population, the antibody with the highest biological activity among the components of the antibody.
  • the term “isomer antibody” refers to an antibody in which some amino acids of the main active antibody are modified by deamine or oxidation, and include acidic isomers and basic isomeric antibodies. Examples include isomers in which asparagine is deamined in amino acids to form aspatate, and isomers in which methionine is oxidized to become methionine sulfate.
  • glutamate when glutamate is present at the N-terminus of the heavy chain, the glutamate forms an pentagonal ring structure and includes an isomeric antibody modified with pyruglutamate.
  • the isomeric antibody When isomeric antibodies are included in the host cell culture at a high rate when the antibody is produced in host cells, such as CHO cells, some of the isomeric antibodies must be removed through a process such as chromatography to be included in the antibody population at the desired rate.
  • the isomeric antibody may be an acidic isomeric antibody, but is not limited thereto. Since there are many isomeric antibodies in the antibody product expressed through the host cell, it is important to demonstrate homogeneity to make the quality most similar to the reference drug to prepare the antibody biosimilar.
  • the isomeric antibodies are a modified form of several amino acids of the main active antibody, with slight differences in charge between the main active antibody and the acidic isomeric antibody.
  • isomeric antibodies are modified by deamine or oxidation of some amino acids in the antibody, it is known that there is a difference in biological activity for each isomeric antibody, it is consistent quality to bring a constant content distribution of the isomeric antibodies Is important to maintain.
  • the present invention has been developed a method for producing an antibody population, which can adjust the content of the isomeric antibody according to the desired content. For example, when preparing an antibody drug such as trastuzumab, the content of the isomeric antibodies may be relatively lower than that of the control drug depending on the culture conditions.
  • the mixed solution of the antibody of step (a) may be a culture solution for producing an antibody or a purification solution obtained in various purification steps, and the culture solution may be a culture solution containing cells or a culture supernatant from which cells have been removed.
  • the cell removal method may be a method commonly used in the art, but is not limited thereto.
  • a filter more preferably a filtration filter or an ultrafiltration may be used.
  • the term “desired content of isomeric antibody” means a desired amount of isomeric antibody, depending on the antibody applied to the method of the invention.
  • this may mean an antibody that is the same or similar to the reference in the manufacture of the biosimilar antibody drug product, for example, within the range of ⁇ 15% of the content of isomeric antibody in the reference drug, ⁇ 10% It may be in the range, and based on the AM (main acidic peak)%, it may be in the range of ⁇ 17%, within the range of ⁇ 20% and AM of the reference drug, but is not limited thereto, and the desired content It can be variously changed according to the isomeric antibody.
  • the pH used in the stationary may be pH 6.0 or more pH 9.0 or less, or may be pH 7.0 or more pH 9.0 or less, preferably pH 7.5 or more pH 9.0 or less, or pH 7.0 or more pH 7.5 or less, or pH 8.0 or more.
  • the pH may be 8.2 or less, but is not limited thereto, and the pH used for standing may be selected according to the content of the desired isomeric antibody.
  • the temperature used for standing within the selected pH may be 4 ° C to which the culture or purified liquid is exposed in various purification steps, preferably 4 ° C or more and 40 ° C or less, more preferably 15 ° C at room temperature.
  • the temperature may be 30 ° C. or lower, but is not limited thereto. If the pH is left at room temperature, there is no need to raise or lower the temperature, which may be advantageous in terms of process.
  • AM% increases with each increase in temperature, and furthermore, it was confirmed that AM% increased specifically during pH standing at room temperature (FIGS. 6A and 6B, 7A and 7b).
  • the pH settling time may be 1 hour or more and 48 hours or less, preferably 24 hours or less, but is not limited thereto and may be performed by a time selected according to conditions.
  • the pH and time selection step of step (a) may be performed by the following method.
  • AM% in the desired AM% range is selected as AM% after the pH stationary, Selecting a pH and AM rise rate to be used in the process;
  • Rate of AM rise (% after pH settling-AM% before pH settling) ⁇ Settling time (hr)
  • pH Settling Time (hr) (Target AM%-AM% Before pH Settling) ⁇ AM Ascent Rate Selected in Step (i) above.
  • Increasing the pH at the same time may be variously determined according to experimental conditions.
  • the pH may be increased to 0.01, 0.05, 0.1, 0.5, etc., but is not limited thereto.
  • the rate of AM rise of each sample is obtained, and then the AM% within the desired AM% range is selected as AM% after pH settling.
  • the rate of increase can be selected.
  • the “desired AM%” may be used interchangeably with the “purpose AM%” in the present invention.
  • the isomeric antibody content pattern of the initial sample it was confirmed that by selecting the appropriate pH and the appropriate time can adjust the content of the isomeric antibody, moreover, based on the AM% content It was confirmed that the settling time and pH can be determined when setting.
  • the pH settling step is to adjust the content of the isomeric antibody in the antibody mixture to the desired content, (i) the mixture of the antibody is purified using cation exchange chromatography (Cation Exchange Chromatography, CEX); (ii) the mixed solution of the antibody was purified by the Virus Inactivation (VI) step; (iii) the mixture of antibodies was purified using Hydrophobic Interaction Chromatography (HIC); (iv) the mixed solution of the antibody was purified by ultrafiltration (Ultrafiltation and Diafiltration, UF / DF); Or (v) a mixture of antibodies can be applied to a variety of antibody purification or preparation steps, such as those purified using Anion Exchange Chromatography, and can be carried out in one or more of each of the above steps.
  • each step is not a sequential step and a combination of each step depending on the type of antibody population to be produced. Can be selected.
  • the pH settling step can be performed on the eluate purified in each step.
  • the pH settling step may be performed after the mixed solution of the antibody is purified by the virus inactivation step.
  • cationic exchange chromatography refers to a column filled with a cation exchange resin, and may be subjected to cation exchange chromatography to remove isomeric antibodies and impurities, preferably host cell proteins.
  • the cation exchange chromatography is a synthetic resin that serves to exchange cations in an aqueous solution with its own cation. Since antibodies have high isoelectric point, they have a cation in a pH buffer below the isoelectric point value. Therefore, the quality of the antibody population can be improved by using cation exchange chromatography capable of adsorbing the cationized antibody.
  • the cation exchange chromatography may be used that is commonly used in the art, but is not limited to this may be preferably a column having a functional group of COO - or SO 3 , more preferably carboxymethyl (CM ), Fructogel, sulfoethyl (SE), sulfopropyl (SP), phosphate (P) or sulfonate (S) and the like, and more preferably carboxymethyl sepharose (CM sepharose).
  • CM sepharose carboxymethyl sepharose
  • fructogel COO ⁇ may be used.
  • virus inactivation includes making a virus contained in a culture or purified liquid non-functional or removing the virus from the culture or purified liquid.
  • Methods for making the virus nonfunctional or removing the virus include a thermal inactivation, pH inactivation, or chemical inactivation method, and the like, but preferably, a pH inactivation method is not limited thereto.
  • the pH inactivation method is a method in which the virus is treated at a pH such that the non-functionality is sufficient, and the method of pH inactivation includes a low pH virus inactivation method.
  • the antibody eluate eluted in the previous chromatography step may be carried out by titration at a pH in the range of 3.0 to 4.0, preferably at pH 3.8, but is not limited thereto.
  • hydrophobic reaction chromatography means a column filled with a hydrophobic interaction resin, and in this step, a column capable of removing impurities, preferably a host cell protein, may be subjected to hydrophobic interaction chromatography. it means. Proteins are hydrophilic in general but have hydrophobic regions with hydrophilicity, and the hydrophobic nature of these regions is not expressed under strong electrostatic interaction conditions, but the relative weakness of the electrostatic interactions is increased by increasing the ionic strength or dielectric constant of the solvent. It is characterized by strong expression.
  • hydrophobic ligands long hydrocarbon chains or aromatic rings
  • hydrophilic chromatography substrates agarose gel-pies, organic polymer supports, etc.
  • a strong salt concentration to adsorb various proteins.
  • the host cell protein using the hydrophobic interaction column can be removed. have.
  • the hydrophobic interaction resin may be used that is commonly used in the art, but is not limited thereto, and preferably, phenyl column, butyl column, phenyl sepharose or fructogel EMD phenyl column may be used. More preferably, phenyl sepharose may be used.
  • Ultrafiltration in the present invention may be a step for buffer replacement or concentration in the antibody mixture.
  • anion exchange chromatography refers to a column filled with an anion exchange resin, and in this step, a column capable of removing an impurity, preferably a host cell protein, is performed by performing anion exchange chromatography.
  • the anion exchange resin is a synthetic resin that serves to exchange its own anion with a specific anion in an aqueous solution, the anion exchange column may adsorb a protein having an anion above the isoelectric point.
  • the antibody since the isoelectric point is high, when the neutral pH buffer is used, the antibody does not adhere to the anion exchange resin, but the impurities including the host cell protein may be adsorbed and removed by the anion exchange resin because the isoelectric point is low. Can be used for the preparation of high purity antibody populations.
  • the anion exchange resin may be used that is commonly used in the art, but is not limited thereto, preferably Q sepharose, quaternary aminoethyl or quaternary amine (Q) and the like. More preferably, Q Fast Flow may be used.
  • the anion exchange column is an efficient column for removing endotoxin as well as the host cell protein, the desired antibody population with high purity can be purified by removing endotoxin along with the host cell protein in the final purification step.
  • the method for producing an antibody population comprising the desired content of isomeric antibodies comprises the steps of: (a) subjecting a sample comprising a mixture of antibodies to Cation Exchange Chromatography (CEX) for purification; (b) virus inactivation (VI) of the mixed solution of the antibody purified in step (a) to an acidic pH; (c) purifying the mixed solution of the virus-inactivated antibody of step (b) by applying hydrophobic reaction chromatography (HIC); (d) purifying the antibody mixture purified in step (c) by primary ultrafiltration (1st Ultrafiltation and Diafiltration, UF / DF I); And (e) subjecting the antibody mixture of step (d) to purification by applying anion exchange chromatography, wherein the pH setting is at least one of steps (a) to (e).
  • step (c) may be carried out, preferably, at least two, at least three, at least four, or all five, and most preferably, the mixed solution of the purified antibody of step (b) at an acidic pH
  • step (c) may be performed before step (c), but is not limited thereto.
  • the antibody mixture solution from each purification step was left at a constant pH to compare the effect of adjusting the content of the isomeric antibody, It was confirmed that the content of the acidic isomeric antibody, which was lower than the control drug, was increased by the pH standing over the entire process, thereby having a content similar to that of the control drug (Example 3).
  • the antibody mixture after virus inactivation it was determined that it was advantageous in terms of control and process efficiency of isomeric antibodies than in other processes.
  • the invention provides an antibody population comprising the desired amount of isomeric antibodies prepared by the above method.
  • the method, antibody population and desired amount of isomeric antibodies are as described above.
  • the present invention provides a method for preparing an antibody, the method comprising the steps of (a) selecting a pH and a time at which a desired amount of isomeric antibody is prepared; And (b) allowing the sample containing the mixed solution of the antibody to stand for a predetermined time within the pH selected in step (a). To provide.
  • step of selecting the pH and time of step (a) raises the pH used in the stationary reaction for the same time to obtain the rate of AM increase according to the following formula at each pH, and then the AM within the desired AM% range. Selecting% as AM% after pH settling, and then selecting pH and AM rise rates to be used for settling; And
  • Rate of AM rise (% after pH settling-AM% before pH settling) ⁇ Settling time (hr)
  • pH settling time (hr) (target AM%-AM% before pH settling) ⁇ The AM rise rate selected in step (i), wherein the method, antibody population, isomer antibody, AM rise rate, settling time, etc. As described above.
  • the present invention provides a method for preparing an antibody, the method comprising the steps of (a) selecting a pH at which a desired amount of isomeric antibody can be prepared; And (b) allowing the sample containing the mixed solution of the antibody to remain within the pH selected in step (a), to control the content of the isoform in the antibody population or to a desired content.
  • a method for producing an antibody population comprising isomeric antibodies a method is provided for determining pH settling time using an hourly rate of increase of a certain main acidic peak (AM).
  • the pH selection and settling time determination is performed by (i) raising the pH used for the stationary reaction for the same time to obtain an AM rising rate according to the following formula at each pH, and then adjusting the AM% within the desired AM% range to pH Selecting the percentage of AM after standing, and then selecting the pH and AM rising rate to be used for standing; And
  • Rate of AM rise (% after pH settling-AM% before pH settling) ⁇ Settling time (hr)
  • pH Settling Time (hr) (Target AM%-AM% Before pH Settling) ⁇ AM Ascent Rate Selected in Step (i) above.
  • the method, antibody population and isomeric antibody, AM rise rate, settling time and the like are as described above.
  • the AM growth rate (% / hr), that is, the AM increase rate, was calculated using the increase rate of the main acidic isomer (Main Acidic peak, AM) increased by pH standing. Even if the content of specific isomer antibody in the culture or purified liquid was produced low by using the AM rise rate, a method was developed to determine the settling time by substituting the AM rise rate. The process time was simplified to complete the pH settling process. Using the above results, the antibody production process including the actual pH settling was carried out on the 1000 liter production scale, and when the trastuzumab manufacturing process including the pH settling was carried out through the actual applied process, the content of the isomeric antibody was sufficiently controlled on the production scale. It was confirmed that it was possible (Examples 4 and 5).
  • the change in the isoform of the antibody is confirmed in the antibody mixture from pH 6.0 to sequentially 8.0.
  • a sample having a lower acidic isoform (charge isoform) of 2% compared to the reference drug was used.
  • charge isoform charge isoform
  • Table 1 to raise the pH to more than 7.0, using 25mM TrisHCl buffer was diluted with buffer to pH 7.0, 7.2, 7.5, 7.7, 8.0.
  • the initial antibody mixture was 25mg / ml, and diluted 5 times with dilution buffer for each pH to 5mg / ml.
  • the target pH was raised to 2M Tris, and pH 6.0 diluted with 5 mM histidine buffer pH 6.0 was compared as a control.
  • the temperature was allowed to stand at 25 ° C., and 0.5 ml of 0hr, 4hr, 8hr, and 24hr, respectively, were stored at ⁇ 20 ° C. or lower until just before analysis.
  • Changes of the isomeric antibodies, including acidic isomers, were confirmed using CEX HPLC (Cation Exchange High Performance Liquid Chromatography) analysis, and the conditions are shown in Table 2 below.
  • Table 1 Increase confirming acid isomer antibody (pH 7.0 ⁇ 8.0 condition) pH influence experiment pH Buffer Vol (ml) Conc. (Mg / mL) Temp °C Remarks PC pH 6.0 5 mM HistidineHCl pH 6.0 5 5 25 Sampling Time0 hr4 hr8 hr24 hr P-1 pH 7.0 25 mM TrisHCl pH 7.0 5 5 25 P-2 pH 7.2 25 mM TrisHCl pH 7.2 5 5 25 P-3 pH 7.5 25 mM TrisHCl pH 7.5 5 5 25 P-4 pH 7.7 25 mM TrisHCl pH 7.7 5 5 25 P-5 pH 8.0 25 mM Tris-HCl pH 8.0 5 5 25
  • CEX-HPLC Cation Exchange High Performance Liquid Chromatography
  • the present inventors confirmed that, through Example 1.1, the acidic peak was increased by pH maturation from pH 6.0 to pH 8.0 using the trastuzumab process solution, thereby increasing the equivalence with the reference drug.
  • the AM (main acidic peak) content of the initial 0 hour sample and the total content of the acidic portion were 7.59% and 16.08%, respectively, and the AM and acidic portion contents of the reference drug were 12.45% and 20.25%, respectively.
  • the AM and acidic portion contents of the reference drug were 12.45% and 20.25%, respectively.
  • the AM% which was lower than the reference drug increased over all the pH ranges, and peaks other than the AM peak similar to the reference drug were increased. They could confirm that there is no big change.
  • This experiment was carried out to determine whether the content of the isomeric antibody can be controlled by pH maturation in the culture. As such, when pH maturation is performed in the culture medium, the pH is increased in the incubator or harvest tank, and no additional equipment is required in the process equipment. It has the advantage of being sufficiently removable in the purification process.
  • the experiment proceeded to the procedure shown in Table 5.
  • the culture medium was removed using a depth filter, the pH was raised to 7.5 using 1N NaOH.
  • 200 ml was dispensed into a 250 ml bottle, and the temperature was pH maturated by static reaction in 25 ° C., 30 ° C. and 37 ° C. incubator, respectively.
  • the samples were purified by rProtein A for desalting and analyzed for analysis.
  • FIG. 8 shows a step candidate group that can be applied by inserting the pH maturation in the existing Trastuzumab purification process of the present inventors.
  • pH maturation is applied after each of CEX (Cation Exchange Chromatography), VI (Virus Inactivation), HIC (Hydrophobic Interaction Chromatography), UF / DF (Ultrafiltation and Diafiltration), and AEX (Anion Exchange Chromatography).
  • CEX Cation Exchange Chromatography
  • VI Virus Inactivation
  • HIC Hydrophilic Interaction Chromatography
  • UF / DF Ultrafiltration and Diafiltration
  • AEX Application Exchange Chromatography
  • PH maturation was applied to the purified liquid from the CEX column and VI (virus inactivation) process.
  • the temperature was carried out at 4 °C, 25 °C the temperature encountered in the process (Tables 7 and 8).
  • CEX (Cation Exchange chromatography) Step 1) 1 liter of culture was removed using a Depth filter. 2) The culture supernatant from which the cells were removed was lowered to pH 5.0 using 10% acetic acid and held for 1hr. 3) Using the same Depth filter, precipitation was performed. 4) The conductivity was adjusted to 6mS / cm for loading on the CEX column, and then sterilized and filtered. 5) pH was adjusted to 2M Tris using elute purified using CEX column (Fractogel COO (M)). Raised to 8.0, pH maturation test was performed. Maturation temperature: 4 ° C, 25 ° C.
  • PH maturation was performed in the procedure of Table 10 in the HIC purification step of the purification process.
  • the content was reduced at 25 °C, after 24 hours was confirmed to decrease by about 2% compared to the control.
  • the basic portion was reduced by about 1% compared to the control, and no difference was observed in all conditions.
  • the pH maturation in HIC resulted in lower effect than CEX or VI.
  • the content was similar to that of the reference drug after 24 hours based on AM (main acidic peak), but the pH maturation of HIC samples was 1% less than that of the reference drug.
  • the acidic base line is elevated (Fig. 12). This is because HIC elute contains high salt and 2M Tris is not able to raise pH to 8.0 due to weak buffering when raising the pH, and it may have a negative effect on the product because the pH should be increased by adding 1N NaOH. Because.
  • pH maturation in HIC step is more efficient in pH maturation with longer time and higher temperature, but it has disadvantage of high pH with strong base because it contains high salt. It has been confirmed that there may be disadvantages in terms of aspects.
  • Table 13 Isomer antibody content% with time by pH maturation in UF / DF1 step Step Number AM Acidic Main Basic UF / DF1 UF / DF1 Control 9.22 21.05 72.77 6.18 UF / DF1 4 °C (6h) 9.67 20.72 73.10 6.19 UF / DF1 4 °C (24h) 10.11 21.30 72.72 5.98 UF / DF1 25 °C (6h) 10.45 21.64 72.33 6.03 UF / DF1 25 °C (24h) 11.71 23.37 70.63 6.00 Ref Ref.H0713 12.43 21.11 71.91 6.98
  • HIC is slightly disadvantageous in terms of charge isoform quality control and similar quality control is performed in the remaining steps.
  • AM main acidic peak
  • basic base line were observed to rise together.
  • HIC gave a low score due to the problem of excessive 1M NaOH in raising the pH
  • CEX gave a slightly lower score due to the process unnecessary to increase the pH and lower it again for VI.
  • HIC contains a lot of salt
  • NaOH also contains a lot of high risk of aggregation occurred that gave a low score.
  • UF / DF1 and AEX were penalized as they are after the HIC process where most of the aggregation can be removed.
  • CEX has a conventional pH down process in VI process, and after pH maturation in VI, 2X buffer (pH 6.0) is mixed for HIC Load prep. In order to lower the progression without further processing gave a high score. The final score was therefore assessed as VI> CEX> AEX> UF / DF1 >> HIC (Table 14).
  • the percentage of main acidic peak (AM) was 12.45% on average, 21.8% for acidic portion, 71.7% for main portion, and 6.49% for basic portion (Table 15).
  • the main acidic peak (AM) rises depending on the pH and time as a result of the above embodiments, it can be used as a time determination criterion for pH maturation using AM%.
  • AM growth rate was calculated, which means the amount (%) of the AM rising time.
  • the cultures (7 days) were collected, and the samples purified on CEX column (Fractogel COO (M)) were lowered to pH 3.8 for VI, and then gradually increased to pH 7.8 to 8.6 after 1hr inactivation, respectively.
  • Samples were collected in ml. Samples sampled at 30 ml for each pH were maturated at room temperature (18 ⁇ 23 °C) for 24 hours, and the AM growth rate (% / hr) was divided by the reaction time (24 hours) of the AM difference after maturation and before maturation. ) was calculated (Table 16).
  • the present pH maturation method was introduced on a 1000 L culture scale.
  • Trastuzumab Purification processes for the preparation of Trastuzumab include Cation Exchange Chromatography (CEX), Virus Inactivation (VI) by low pH, Hydrodrophobic Interaction Chromatography (HIC), and Ultrafiltration. Consists of 1st Ultrafiltation and Diafiltration (UF / DF I), Anion Exchange Chromatography, 2nd Ultrafiltration and Diafiltration II (UF / DF II), VF (Virus Filtration), Final Formulation It is.
  • Cation Exchange Chromatography CEX
  • VI Virus Inactivation
  • HIC Hydrodrophobic Interaction Chromatography
  • Ultrafiltration Consists of 1st Ultrafiltation and Diafiltration (UF / DF I), Anion Exchange Chromatography, 2nd Ultrafiltration and Diafiltration II (UF / DF II), VF (Virus Filtration), Final Formulation It is.
  • the maturation time was calculated and maturation proceeded as follows for pH maturation during VI process at 1000l production scale.
  • the initial AM% criterion was based on the CEX elute sample, and the target AM% was applied to 10.5%.
  • the reason why the target AM (main acid form) content% is 10.5% is because the UF / DF1 and AEX processes operate at pH 7.5, which results in an average AM increase of more than 1% due to the high pH. Therefore, we gave a safety margin to reflect the rise of the process after pH maturation, so the target in VI was determined to be 10.5%.
  • AM growth factor This factor calculates the rate of increase of AM (main acidic peak), which is a target peak for pH maturation, per hour. This growth factor was determined through data analysis through the scale down experiment, and the conditions were designed to complete pH maturation within 24hr. This factor is a factor dependent on the maturation pH. At pH 8.1, 0.17% / hr meets Target AM% (10.5%) in 24hr.
  • # Margin ⁇ 2hr is the range set by 2 times considering the time that it takes more than 1hr to add 2X HIC load prep buffer to stop the pH maturation reaction.
  • the pH maturation method of the present invention is sufficiently applicable to the production scale, and that the present method not only can produce high-quality antibodies, but also has the same quality as that of the reference drug in terms of biosimilar production. It supports the production of antibodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 항체 제조 방법에 있어서, 항체 집단 (population of antibodies) 내의 이성질 항체의 함량을 목표하는 함량으로 조절하여 고순도와 고품질의 항체 집단을 제조하는 방법, 상기 방법으로 제조된 항체 집단, 항체 집단 내의 이성질 항체의 함량을 조절하는 방법 및 이성질 항체의 함량을 조절하기 위한 pH 정치시간을 결정하는 방법에 관한 것이다. 본 발명의 방법을 이용하면 항체 집단 내의 이성질 항체의 함량을 원하는 함량으로 조절하여 고품질 또는 동등성이 확보된 항체 집단을 일관성있게 제조할 수 있다.

Description

이성질 항체의 함량 조절을 통한 항체 제조 방법
본 발명은 항체 제조 방법에 있어서, 항체 집단 (population of antibodies) 내의 이성질 항체의 함량을 목표하는 함량으로 조절하여 고순도와 고품질의 항체 집단을 제조하는 방법, 상기 방법으로 제조된 항체 집단, 항체 집단 내의 이성질 항체의 함량을 조절하는 방법 및 이성질 항체의 함량을 조절하기 위한 pH 정치시간을 결정하는 방법에 관한 것이다.
항체 정제에 있어서 불순물 제거와 함께 품질의 일관성을 유지하는 것은 중요한 문제이다. 항체는 중쇄 2개와 경쇄 2개가 이황화 결합으로 이루어져 있는 구조로 되어 있고, 중쇄의 Fc 부근에 당화(glycosylation)가 되어 있다. CHO 세포를 숙주로 하여 생산되는 항체에는 다양한 이성질 항체가 포함되어 있으며(Hongcheng Liu, Georgeen Gaza-Bulseco, Journal of Chromatography B, 837 (2006) 35-43), 이성질 항체들은 탈아민(deamidation), 산화(oxidation) 등으로 몇 개의 아미노산이 변형된 구조가 대부분인데(Isamu Terashima, Akiko Koga, Analytical Biochemistry 368 (2007) 49-60), 특히 항체 항원 결합부위인 CDR(complementarity determining region, 상보성 결정 영역) 부위에 탈아민에 의한 이성질 항체가 생길 경우 항원의 결합력을 떨어뜨려 활성에 영향을 줄 수 있다고 보고 되었다(Reed J. Harrisa, Bruce Kabakoffb Journal of Chromatography B, 752 (2001) 233-245).
이성질 항체 종류로는 아미노산 중 아스파라긴(Asparagine)이 탈아민되어 아스파테이트(Aspatate)가 된 이성질 항체 (Boxu Yan, Sean Steen, Journal of Pharmaceutical Sciences, Vol. 98, No. 10, October 2009), 아미노산 중 메치오닌(methionine)이 산화되어 메치오닌셀페이트(Methionine sulfate)가 된 이성질 항체 등이 있다(Chris Chumsae, Georgeen Gaza-Bulseco, Journal of Chromatography B, 850 (2007) 285-294). 또한, 중쇄의 N 말단에 글루타메이트(glutamate)가 존재하는 경우, 상기 글루타메이트가 오각형 링 구조를 형성하여 파이루글루타메이트(Pyruglutamate)로 변형되기도 한다(William E. Werner, Sylvia Wu, Analytical Biochemistry 342 (2005) 120-125). 이러한 이성질 항체들은 항체의 생물학적 활성에 영향을 미치기 때문에 항체의 생산 시 이성질 항체의 양을 일정한 한도로 조절하여야 할 필요가 있다.
이성질 항체는 pH 및 온도에 따라 탈아민화 반응 속도가 달라지는데, 일반적으로 안정성 측면에서 탈아민이 최소화 될 수 있는 조건에 대해 많이 연구되었다. 그러나 바이오시밀러(biosimilar) 측면에서는 이성질 항체의 함량이 대조약과 차이가 있을 경우 효능(efficacy) 등의 품질 측면에서도 차이가 날 수 있고, 따라서 동등성 평가 측면에서도 문제가 될 수 있다. 이에, 최종 정제 산물에 이성질 항체의 함량이 일정하게 유지되는 방법의 개발이 바이오시밀러 항체 의약품 시장에서는 크게 요구되고 있다.
항체 의약품 제조시, 정제 산물에 이성질 항체의 함량이 일정하게 유지되는 방법의 개발이 크게 요구되고 있는 배경하에 본 발명자들은 바이오시밀러 항체 의약품 내의 이성질 항체 함량을 조절하여 이성질 항체의 함량이 일정하게 유지되는 방법을 개발하기 위해 예의 노력한 결과, 적절한 pH, 일정한 온도 및 시간에서 정치 반응 시키면, 이성질 항체를 원하는 비율로 조절할 수 있음을 확인하였으며, 이를 통해 특정 이성질 항체를 선택적으로 높여 대조약과 유사한 이성질 항체의 패턴, 구체적으로 고품질 또는 동등성을 갖는 것을 확인하여, 본 발명을 완성하였다.
본 발명의 하나의 목적은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 원하는 함량의 이성질 항체(charge isoform)를 포함하는, 항체 집단의 제조 방법을 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 방법에 의해 제조된 원하는 함량의 이성질 항체를 포함하는 항체 집단을 제공하는 것이다.
본 발명의 또 하나의 목적은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법을 제공하는 것이다.
본 발명의 또 하나의 목적은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH를 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법 또는 원하는 함량의 이성질 항체를 포함하는, 항체 집단의 제조 방법에 있어서, 특정 AM(main acidic peak) %의 시간당 상승률을 이용하여, pH 정치 시간을 결정하는 방법을 제공하는 것이다.
본 발명에 따른 항체의 제조 방법을 이용하면, 이성질 항체의 함량을 조절하여 고품질의 목적하는 항체 집단을 일관적으로 제조할 수 있다. 또한 바이오시밀러 개발측면에서도 본 발명에 의한 방법으로 이성질 항체의 함량을 조절함으로써 대조약과 동등성을 높인 품질을 갖는 항체를 제조할 수 있으며, 기존 공정 시간을 단축할 수 있는 이점이 있으므로 경제적으로 효용성이 높을 수 있다.
도 1은 pH 상승에 의한 시간별 이성질 항체의 패턴 변화를 나타낸 도이다. 각각 도 1a는 pH maturation 4시간 후, 도 1b는 pH maturation 24시간 후의 이성질 항체의 패턴 변화를 나타내는 도이다.
도 2는 CEX HPLC 상의 일반적인 acidic, main, basic portion의 범위를 나타낸 도이다.
도 3은 12시간 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다. 각각 도 3a는 CEX HPLC Full을, 도 3b는 CEX HPLC expansion을 나타내는 도이다.
도 4는 24시간 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다. 각각 도 4a는 CEX HPLC Full을, 도 4b는 CEX HPLC expansion을 나타낸 도이다.
도 5는 pH maturation 시 각 portion의 함량을 비교한 도(12hr vs 24hr)이다. 각각 도 5a는 AM(main acidic peak) %를, 도 5b는 acidic portion %를, 도 5c는 main portion %를, 도 5d는 basic portion %를 나타낸 도이다.
도 6은 배양 상등액에서 pH 7.5 maturation 시 AM(main acidic peak)과 Acidic portion 함량 변화를 나타낸 도이다(3, 6, 9, 24hr). 각각 도 6a는 AM(main acidic peak)을, 도 6b는 Acidic portion %를 나타낸 도이다.
도 7은 배양 상등액에서 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다(온도: 25℃, 30℃, 37℃, 시간: 24hr). 각각 도 7a는 CEX HPLC Full을, 도 7b는 CEX HPLC expansion을 나타낸 도이다.
도 8은 본 발명자들의 Trastuzumab 정제 공정의 공정 흐름도와 pH maturation 삽입 단계를 도식화한 도이다.
도 9는 CEX 와 VI step에서 pH maturation 시 각 portion별 함량 비교를 나타낸 도이다(시간: 6, 11, 24hr, 온도: 4℃, 25℃). 각각 도 9a는 AM(main acidic peak) %를, 도 9b는 acidic portion %를, 도 9c는 main portion %를, 도 9d는 Basic Portion %를 나타낸 도이다.
도 10은 CEX와 VI에서 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다(온도: 25℃, 시간: 11hr, 24hr).
도 11은 HIC step에서 pH maturation 시 각 portion별 함량을 비교한 도이다(시간: 6, 9, 24hr, 온도: 4℃, 25℃). 각각 도 11a는 AM(main acidic peak) %를, 도 11b는 acidic portion %를, 도 11c는 main portion %를, 도 11d는 Basic Portion %를 나타낸 도이다.
도 12는 HIC step에서 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다(온도: 4℃, 25℃, 시간: 24hr).
도 13은 UF/DF1 step에서 pH maturation 시 각 portion별 함량 비교를 나타낸 도이다(시간: 6, 24hr, 온도: 4℃, 25℃). 각각 도 13a는 AM(main acidic peak) %를, 도 13b는 acidic portion %를, 도 13c는 main portion %를, 도 13d는 Basic Portion %를 나타낸 도이다.
도 14는 UF/DF1 step에서 pH maturation 시 이성질 항체의 패턴 변화를 나타낸 도이다(온도: 25℃, 4℃, 시간: 24hr).
도 15는 CEX HPLC에서 AM 포함 peak를 확인한 도이다.
도 16은 AM %와 maturation 시간과의 Plot에 의한 AM growth rate 검증을 나타낸 도이다.
도 17은 Trastuzumab 1000ℓ 생산에서의 이성질 항체의 함량 조절을 확인한 그래프이다. 각각 17a는 CEX, UF/DF2, 대조약(reference) 비교(No overlap)를, 도 17b는 CEX, UF/DF2, 대조약(reference) 비교(overlap)를 나타낸 도이다.
하나의 양태로서, 본 발명은 고품질 또는 동등성이 확보된 항체 집단을 일관되게 제조할 수 있는 방법을 제공하는 것으로, 배양액 또는 정제액에서 pH, 온도, 시간 등을 조절하여 원하는 함량의 이성질 항체를 포함하는 항체 집단을 제조하는 방법을 제공한다.
구체적으로, 본 발명은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 원하는 함량의 이성질 항체(charge isoform)를 포함하는, 항체 집단의 제조 방법을 제공할 수 있다. 본 발명에서 용어, " pH 정치"는 pH maturation과 혼용될 수 있다.
숙주세포를 통해 제조되는 항체 생성물에는 주활성 항체 외에도 여러 이성질 항체들을 포함한다. 상기 이성질 항체는 항체에서 일부 아미노산이 탈아민 또는 산화에 의하여 변형된 형태의 항체로서, 이성질 항체마다 생물학적 활성에 차이를 나타낸다. 숙주세포를 통하여 발현된 항체 생성물에는 이러한 이성질체 항체의 함량이 일관되지 않게 생성될 수 있다. 특히 항체 바이오시밀러의 경우에는 대조약과 유사한 품질의 제조가 중요하므로, 숙주세포로부터 항체를 생산한 다음, 이성질 항체의 함량을 조절하는 공정이 필요하다. 이에 본 발명에서는 항체 제조에 사용되는 배양액 또는 정제액을 일정 pH에서 일정시간 정치시킬 경우, 놀랍게도 이성질 항체 중 특정 피크(peak)만이 상승하는 이성질 항체의 함량 조절 방법을 개발하였으며, 본 발명은 이에 기초하여, 목적하는 비율의 이성질 항체를 포함하는 고품질 또는 동등성이 확보된 항체 집단을 효과적으로 제조할 수 있는 방법을 제공한다.
본 발명에서 용어, "항체 집단(a population of antibodies)"은 주활성 항체 및 이성질 항체를 포함하는 항체 군을 의미하며, 본 발명의 목적상 상기 항체 집단은 주활성 항체 및 이성질 항체를 목적하는 비율로 포함하는 항체 군을 의미한다. 상기 항체 집단은 한 종류의 항체만을 포함하거나, 주활성 항체 및 이성질 항체를 모두 포함하는 항체 군을 모두 포함한다. 본 발명의 목적상 상기 항체 집단은 바람직하게는 원하는 함량의 이성질 항체를 포함하는 항체 집단을 의미한다. 바람직하게 상기 항체 집단은 본 발명의 목적상 바이오시밀러 항체 의약품에서 중요하게 생각되는 이성질 항체의 함량이 대조약과 차이가 있을 경우 효능(efficacy) 등의 품질 측면에서 차이가 생겨, 동등성 평가에서 문제될 수 있는 단점을 없앤, 바이오시밀러의 대조약과 동등 또는 유사한 범위 내의 이성질 항체의 함량을 포함하는 항체 집단을 의미할 수 있다.
본 발명에서 용어 "대조약"은 바이오시밀러 의약품의 복제 대상이 되는 의약품을 의미하나, 이에 제한되지 않고 동등성을 확보하고자 하는 대상의 의약품을 의미할 수 있다.
특히, 항체 바이오시밀러의 제조에 본 발명의 방법을 적용하는 경우, 대조약과 동일 또는 대응하는 조성으로 주활성 항체 및 이성질 항체를 포함하는 항체 집단을 제조할 수 있다.
본 발명에서 용어, "항체"는 면역계 내에서 항원의 자극에 의하여 만들어지는 물질로서, 특정한 항원과 특이적으로 결합하여 림프와 혈액을 떠돌며 항원-항체반응을 일으키는 물질을 의미한다. 본 발명의 목적상 상기 항체는 고품질로 정제되기 위한 단백질의 하나로서, 본 발명에 따른 방법에 의하여 효율적으로 제조 및 정제될 수 있다.
상기 항체는 일반적으로 등전점이 다른 단백질에 비하여 높으므로, 초기 양이온 교환 크로마토그래피를 사용하여 배양 상등액을 컬럼에 흡착시킨 후 용출시키면 비교적 고순도로 일차 정제할 수 있다. 상기 등전점(isoelectric point, pI)은 단백질 분자표면의 평균 실효 하전, 즉 단백질분자의 전기 이중 층의 전위가 0이 되는 pH 값으로서, 단백질의 기가 해리하여 양, 음이온기의 수가 동수로 되어 실효 하전이 0이 되는 점을 의미한다. 본 발명에서 정제되기 위한 항체는 이에 제한되지는 않으나, 등전점이 바람직하게는 7 내지 11일 수 있으며, 보다 바람직하게는 8 내지 10인 항체일 수 있다. 또한, 본 발명의 항체는 이에 제한되지는 않으나, 바람직하게는 당해 분야에서 통상적으로 사용되는 치료용 항체를 모두 포함할 수 있으며, 보다 바람직하게는 HER-2(Human Epidermal Growth Factor Receptor 2)를 표적으로 하는 항체인 트라스투주맙(trastuzumab) 또는 퍼투주맙(pertuzumab)일 수 있으며, 가장 바람직하게는 트라스투주맙(trastuzumab)일 수 있다. 상기 트라스투주맙은 허셉틴(Herceptin)이라고도 하며, 유방암 세포에서 주로 발현되는 HER2/neu에 대한 항체치료제로 알려져 있는 미국 Genentech사에서 개발한 HER2에 대한 인간화 항체이다.
본 발명에서 용어, "주활성 항체"는 본 발명의 항체 집단에 포함되는 주요 구성요소로서, 항체 중에서 일부 아미노산이 탈아민이나 산화에 의해 변형(modification)되어 생물학적 활성이 낮아지지 않은 상태의 항체, 즉 산성 또는 염기성 이성질 항체가 아닌 항체를 의미한다. 상기 주활성 항체는 목적하는 항체 집단의 품질을 조절하기 위해 가장 중요한 구성요소로, 항체의 구성요소 중 생물학적 활성이 가장 높은 항체이다.
본 발명에서 용어, "이성질 항체"는 주활성 항체의 일부 아미노산이 탈아민이나 산화에 의해 변형된 항체를 의미하며, 산성 이성질 항체 및 염기성 이성질 항체를 포함한다. 그 예로, 아미노산 중 아스파라긴(Asparagine)이 탈아민되어 아스파테이트(Aspatate)가 된 이성질 항체, 아미노산 중 메치오닌(methionine)이 산화되어 메치오닌셀페이트(Methionine sulfate)가 된 이성질 항체 등이 있다. 또한, 중쇄의 N 말단에 글루타메이트(glutamate)가 존재하는 경우, 상기 글루타메이트가 오각형 링 구조를 형성하여 파이루글루타메이트(Pyruglutamate)로 변형된 이성질 항체를 포함한다. 상기 이성질 항체들은 CHO 세포와 같은 숙주 세포에서 항체를 생성 시에 높은 비율로 숙주세포 배양액에 포함되어 있을 경우, 크로마토그래피와 같은 과정을 통하여 일부가 제거되어 목적하는 비율로 항체 집단에 포함되어야 한다. 바람직하게는 상기 이성질 항체는 산성 이성질 항체일 수 있으나, 이에 제한되지 않는다. 숙주세포를 통해 발현되는 항체 생성물에는 여러 이성질 항체들이 존재하므로, 항체 바이오시밀러를 제조하기 위해서는 대조약과 가장 유사하게 품질을 만드는 것이 동질성 입증 측면에서 중요하다. 상기 이성질 항체들은 주활성 항체의 몇 개의 아미노산의 변형된 형태로, 주활성 항체, 산성 이성질 항체 간에 전하(charge)의 미세한 차이가 있다.
또한, 상기 이성질 항체들은 항체에서 일부 아미노산이 탈아민이나 산화에 의해 변형된 것으로서, 이성질 항체마다 생물학적 활성이 차이가 있다고 알려져 있어, 상기 이성질 항체들의 함량분포를 일정하게 가져가는 것이 일관된 품질을 유지하기 위해 중요하다.
따라서, 항체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 도입된 숙주세포에서, 고품질의 항체 집단을 제조하기 위해서는 상기와 같은 이성질 항체가 적절히 제거되어 주활성 항체 및 이성질 항체가 원하는 함량으로 포함되어야 할 필요성이 있다. 이에 본 발명에서는 상기 이성질 항체의 함량 조절을 원하는 함량에 따라 조절할 수 있는, 항체 집단의 제조 방법을 개발하였다. 예를 들어, 트라스투주맙과 같은 항체 의약품을 제조할 경우 배양조건에 따라 이성질 항체들의 함량이 상대적으로 대조약보다 낮은 분포를 가질 수 있다. 이에 산성 이성질 항체를 상승시켜 대조약과 동등한 품질로 맞추기 위한 pH 정치 공정을 진행한 결과, 높은 pH에서 일정시간 정치 시 이성질 항체 중 특정 피크, 구체적으로 AM (main acidic peak)이 특이적으로 높아지고, 이외의 다른 피크의 상승율은 최소화되는 것을 확인할 수 있었다 (도 1a 및 1b). 이러한 결과는 특정 pH에서 정치 시 원하는 함량의 이성질 항체를 포함하는 항체 집단을 제조할 수 있음을 시사하는 것이다.
상기 (a) 단계의 항체의 혼합액은 항체 제조를 위한 배양액 또는 다양한 정제 단계에서 수득된 정제액일 수 있으며, 상기 배양액은 세포를 포함하는 배양액 또는 세포가 제거된 배양 상등액일 수 있다.
상기 세포의 제거 방법은 당업계에서 통상적으로 사용되는 방법을 사용할 수 있으며, 이에 제한되지는 않으나 바람직하게는 필터, 보다 바람직하게는 여과 필터또는 한외여과 등을 사용할 수 있다.
본 발명에서 용어 "원하는 함량의 이성질 항체"는 본 발명의 방법에 적용되는 항체에 따라, 목적하는 함량의 이성질 항체를 의미한다. 본 발명의 목적상, 이는 바이오시밀러 항체 의약품 제조시에는 대조약과 동등하거나 유사한 항체를 의미할 수 있으며, 그 예로, 대조약 내의 이성질 항체 함량 %의 ± 15 %의 범위 내, ± 10 %의 범위 내 일 수 있으며, AM (main acidic peak) %를 기준으로 할 경우에는 대조약 내의 AM %와 ± 20 %의 범위 내, ± 17 %의 범위 내 일 수 있으나, 이에 제한되지 않으며, 목적하는 함량의 이성질 항체에 따라 다양하게 변경될 수 있다.
상기 정치에 사용되는 pH는 pH 6.0 이상 pH 9.0 이하일 수 있으며, 또는 pH 7.0 이상 pH 9.0 이하일 수 있으며, 바람직하게는 pH 7.5 이상 pH 9.0 이하일 수 있으며, 또는 pH 7.0 이상 pH 7.5 이하, 또는 pH 8.0 이상 pH 8.2 이하일 수 있으나, 이에 제한되지 않으며, 원하는 이성질 항체의 함량에 따라 정치에 사용되는 pH를 선택할 수 있다.
상기 선정된 pH 내에서의 정치에 사용되는 온도는 다양한 정제 단계에서 배양액 또는 정제액이 노출되는 4℃ 일 수 있으며, 바람직하게는 4℃ 이상 40℃ 이하일 수 있으며, 더욱 바람직하게는 상온인 15℃ 이상 30℃ 이하의 온도일 수 있으나, 이에 제한되지 않는다. 상온에서 pH 정치를 시킬 경우 특별히 온도를 올리거나 낮출 필요가 없어 공정 측면에서도 운용에 유리할 수 있다.
본 발명의 일 실시예에 따르면, 온도가 상승할 때마다 AM %가 증가하는 것을 확인하였으며, 더욱이 실온에서의 pH 정치 시 AM %가 특이적으로 증가하는 것을 확인하였다(도 6a 및 6b, 7a 및 7b).
아울러, 상기 pH 정치 시간은 1시간 이상 48시간 이하일 수 있으며, 바람직하게는 24시간 이하일 수 있으나, 이에 제한되지 않으며, 조건에 따라 선정된 시간에 의해 진행될 수 있다.
상기 (a) 단계의 pH 및 시간 선정 단계는 다음과 같은 방법에 의해 수행될 수 있다.
구체적으로, (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
[AM 상승률 계산 식]
AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
(ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
[정치 시간 계산 식]
pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률.
에 의해서 수행될 수 있다.
상기 pH를 동일시간 상승시키는 것은 실험 조건 등에 따라 다양하게 상승율을 결정할 수 있으나, 그 예로 pH를 0.01, 0.05, 0.1, 0.5 등을 상승시킬 수 있으나, 이에 제한되지 않는다.
각 시료에 대한 다양한 간격으로 선정된 pH에서 일정 시간 정치한 후, 각 시료의 AM 상승률을 수득한 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정하면, 정치에 사용될 pH 및 AM 상승률을 선정할 수 있다. 이에 대한 구체적인 방법은 실시예 4.1에 보다 자세히 기술한 바 있으며, 이의 방법은 조건 등에 따라 다양하게 변경될 수 있다.
상기 "원하는 AM %"는 본 발명에서 "목적 AM %"와 혼용될 수 있다.
본 발명의 일 실시예에 따르면, 초기 시료의 이성질 항체 함량 패턴에 따라, 적정 pH와 적정 시간을 선정하면 이성질 항체의 함량을 조절할 수 있음을 확인하였으며, 더욱이, AM % 함량을 기준으로 시간을 설정할 경우 정치 시간과 pH를 결정할 수 있음을 확인하였다.
상기 pH 정치 단계는 항체 혼합액 내의 이성질 항체의 함량을 원하는 함량으로 조절하기 위한 단계로, (i) 항체의 혼합액이 양이온 교환 크로마토그래피(Cation Exchange Chromatography, CEX)를 이용해 정제된 단계; (ii) 항체의 혼합액이 바이러스 불활성화(Virus Inactivation, VI) 단계에 의해 정제된 단계; (iii) 항체의 혼합액이 소수성 반응 크로마토그래 (Hydrophobic Interaction Chromatography, HIC)를 이용해 정제된 단계; (iv) 항체의 혼합액이 한외여과(Ultrafiltation and Diafiltration, UF/DF)를 이용해 정제된 단계; 또는 (v) 항체의 혼합액이 음이온 교환 크로마토그래피(Anion Exchange Chromatography)를 이용해 정제된 단계 등 다양한 항체 정제 또는 제조 방법 중의 단계에 적용될 수 있으며, 상기 각 단계 중 하나 이상의 단계에서 수행될 수 있으며, 그 예로, 2개 이상의 단계, 3개 이상의 단계, 4개 이상의 단계, 또는 5개의 모든 단계에서 수행될 수 있으며, 상기 각 단계는 순차적인 단계가 아니며, 제조되는 항체 집단의 종류에 따라 각 단계의 조합이 선정될 수 있다. 또한, pH 정치 단계는 각 단계에서 정제된 용출물에 대해서 수행될 수 있다.
바람직하게, 상기 pH 정치 단계는 항체의 혼합액이 바이러스 불활성화 단계에 의해 정제된 후에 수행될 수 있다.
본 발명에서 용어 "양이온 교환 크로마토그래피"는 양이온 교환 수지를 충진한 컬럼을 의미하며, 양이온 교환 크로마토그래피를 수행하여 이성질 항체 및 불순물, 바람직하게는 숙주세포 단백질을 제거할 수 있다. 상기 양이온 교환 크로마토그래피는 수용액 속의 양이온과 자신의 양이온을 교환하는 역할을 하는 합성수지로서, 항체의 경우 등전점이 높으므로 등전점 값 이하의 pH 완충액에서는 양이온을 띠게 된다. 따라서, 상기 양이온을 띠는 항체를 흡착할 수 있는 양이온 교환 크로마토그래피를 이용하여 항체 집단의 품질을 높일 수 있다. 상기 양이온 교환 크로마토그래피는 당업계에서 통상적으로 사용되는 것을 사용할 수 있으며, 이에 제한되지는 않으나 바람직하게는 COO- 또는 SO3의 작용기를 가지고 있는 컬럼을 사용할 수 있으며, 보다 바람직하게는 카복시메틸(CM), 프락토젤(fractogel), 설포에틸(SE), 설포프로필(SP), 포스페이트(P) 또는 설포네이트(S) 등을 사용할 수 있으며, 보다 더 바람직하게는 카복시메틸 세파로오스(CM sepharose) 또는 프락토젤(fractogel) COO- 를 사용할 수 있다.
본 발명에서 용어, "바이러스 불활성화"는 배양액 또는 정제액에 함유된 바이러스가 비기능성이 되도록 하거나, 상기 배양액 또는 정제액에서 바이러스를 제거하는 것을 포함한다. 바이러스를 비기능성이 되게 하거나 바이러스를 제거하는 방법에는 열 불활성화, pH 불활성화, 또는 화학적 불활성화 방법 등이 포함되며, 바람직하게는 pH 불활성화 방법을 사용할 수 있으나, 이에 제한되지 않는다. 상기 pH 불활성화 방법은, 바이러스가 비기능성이 충분히 될 수 있을 정도의 pH로 처리하는 방법으로, 이러한 pH 불활성화의 방법은 저-pH(low pH) 바이러스 불활성화 방법을 포함하며, 상기 방법은 그 전 크로마토그래피 단계에서 용출된 항체 용출액을, pH 3.0 내지 4.0의 범위, 바람직하게는 pH 3.8에서 적정함으로써 수행될 수 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "소수성 반응 크로마토그래피"는 소수성 상호작용 수지를 충진한 컬럼을 의미하며, 상기 단계에서는 소수성 상호작용 크로마토그래피를 수행하여 불순물, 바람직하게는 숙주세포 단백질을 제거할 수 있는 컬럼을 의미한다. 단백질은 전체적으로 친수성이지만 친수성과 함께 소수성을 가지고 있는 영역이 있으며, 이들 영역의 소수적 성질은 정전적 상호작용이 강한 조건하에서는 발현되지 않지만 용매의 이온강도 혹은 유전율을 높여 정전적 상호작용을 약하게 하면 상대적으로 강하게 발현되는 특징이 있다. 여기서 소수성 리간드(긴 탄화수소사슬 또는 방향환)를 친수성 크로마토그래피용 기재(아가로오스겔피즈, 유기계 고분자지지체 등)에 도입하여 진한 염농도로 평형화시켜 두면 여러 가지 단백질을 흡착할 수 있으며, 그 후 염농도를 내리면 단백질의 성질에 따라 용출하기 때문에 분리할 수 있다. 즉, 염을 이용하여 소수성 환경이 제공될 경우 단백질 각각의 소수성의 차이에 의해 특정 컬럼에 흡착되는 강도의 차이가 나게 되며, 이러한 원리를 이용하여 소수성 상호작용 컬럼을 이용한 숙주 세포 단백질을 제거할 수 있다.
상기 소수성 상호작용 수지는 당업계에서 통상적으로 사용되는 것을 사용할 수 있으며, 이에 제한되지는 않으나 바람직하게는 페닐 컬럼, 부틸 컬럼, 페닐 세파로오스(phenyl sepharose) 또는 프락토젤 EMD 페닐 컬럼 등을 사용할 수 있으며, 보다 바람직하게는 페닐 세파로오스를 사용할 수 있다.
본 발명에서 "한외여과"는 항체 혼합물 내의 완충액 치환 또는 농축을 위한 단계일 수 있다.
본 발명에서 용어, "음이온 교환 크로마토그래피"는 음이온 교환 수지를 충진한 컬럼을 의미하며, 상기 단계에서는 음이온 교환 크로마토그래피를 수행하여 불순물, 바람직하게는 숙주세포 단백질을 제거할 수 있는 컬럼을 의미하나, 이에 제한되지 않는다. 상기 음이온 교환 수지는 수용액 속의 특정 음이온과 자신의 음이온을 교환하는 역할을 하는 합성수지로서, 음이온 교환 컬럼은 등전점 이상에서 음이온을 띠는 단백질을 흡착시킬 수 있다. 항체의 경우 등전점이 높으므로 중성 pH의 완충액을 사용할 경우 항체가 음이온 교환 수지에는 붙지 않고 빠져 나오게 되나, 숙주세포 단백질을 포함한 불순물들은 등전점이 낮으므로 음이온 교환 수지에 흡착되어 제거될 수 있어, 상기 원리를 이용하여 고순도의 항체 집단의 제조에 이용될 수 있다.
상기 음이온 교환 수지는 당업계에서 통상적으로 사용되는 것을 사용할 수 있으며, 이에 제한되지는 않으나 바람직하게는 큐 세파로오스(Q sepharose), 4급 아미노에틸 또는 4급 아민(Q) 등을 사용할 수 있으며, 보다 바람직하게는 Q Fast Flow를 사용할 수 있다.
또한, 상기 음이온 교환 컬럼은 숙주세포 단백질뿐만 아니라 엔도톡신의 제거에도 효율적인 컬럼이므로, 최종 정제 단계에서 숙주세포 단백질과 함께 엔도톡신을 제거하여 순도가 높은 목적하는 항체 집단을 정제할 수 있다.
바람직하게, 상기 원하는 함량의 이성질 항체를 포함하는, 항체 집단의 제조 방법은 (a) 항체의 혼합액을 포함하는 시료를, 양이온 교환 크로마토그래피(Cation Exchange Chromatography, CEX)에 적용하여 정제하는 단계; (b) 상기 (a) 단계에서 정제된 항체의 혼합액을 산성 pH로 바이러스 불활성화(Virus Inactivation, VI)시키는 단계; (c) 바이러스 불활성화된 (b) 단계의 항체의 혼합액을, 소수성 반응 크로마토그래피(Hydrophobic Interaction Chromatography, HIC)에 적용하여 정제하는 단계; (d) 상기 (c) 단계에서 정제된 항체 혼합물을, 1차 한외여과(1st Ultrafiltation and Diafiltration, UF/DF I)시켜서 정제하는 단계; 및 (e) 상기 (d) 단계의 항체 혼합물을 음이온 교환 크로마토그래피(Anion Exchange Chromatography)에 적용하여 정제하는 단계를 포함하는 방법으로, pH 정치는 (a) 내지 (e) 단계 중 한 단계 이상에서 수행되는 것일 수 있으며, 바람직하게, 2 단계 이상, 3 단계 이상, 4 단계 이상, 또는 5 단계에서 모두 수행될 수 있으며, 가장 바람직하게는 (b) 단계의 정제된 항체의 혼합액을 산성 pH로 바이러스 불활성화(Virus Inactivation, VI)시키는 단계 후, (c) 단계 이전에 수행되는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에 따르면, 각 정제공정에서 나온 항체 혼합액에 대한 pH 정치를 수행한 결과, 각 정제 공정에서 나온 항체 혼합액을 일정 pH에서 정치하여 이성질 항체의 함량 조절 효과를 비교한 결과, 전 공정에 걸쳐 pH 정치에 의해서 대조약보다 낮았던 산성 이성질 항체의 함량이 상승되어 대조약과 유사한 함량을 가짐을 확인하였다 (실시예 3). 아울러 바이러스 불활성화 이후의 항체 혼합물의 경우 pH 정치를 수행하면, 타 공정에서보다 이성질 항체의 조절 측면과 공정 효율 측면에서 유리한 것으로 판단할 수 있었다.
또 하나의 양태로서, 본 발명은 상기 방법에 의해 제조된, 원하는 함량의 이성질 항체를 포함하는 항체 집단을 제공한다.
상기 방법, 항체 집단 및, 원하는 함량의 이성질 항체는 상기에서 설명한 바와 같다.
또 하나의 양태로서, 본 발명은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법을 제공한다.
바람직하게, 상기 (a) 단계의 pH 및 시간 선정 단계는 (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
[AM 상승률 계산 식]
AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
(ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
[정치 시간 계산 식]
pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률에 의한 것으로, 상기 방법, 항체 집단, 이성질 항체, AM 상승률, 정치 시간 등은 상기에서 설명한 바와 같다.
또 하나의 양태로서, 본 발명은 (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH를 선정하는 단계; 및 (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법 또는 원하는 함량의 이성질 항체를 포함하는, 항체 집단의 제조 방법에 있어서, 특정 AM(main acidic peak) %의 시간당 상승률을 이용하여, pH 정치 시간을 결정하는 방법을 제공한다.
바람직하게, 상기 pH 선정 및 정치 시간 결정은, (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
[AM 상승률 계산 식]
AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
(ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
[정치 시간 계산 식]
pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률.
에 의할 수 있다.
상기 방법, 항체 집단 및 이성질 항체, AM 상승률, 정치 시간 등은 상기에서 설명한 바와 같다.
이와 같은 pH 정치 시간 결정은 생산성 측면에서는 생산공정 시간을 고려하여 pH maturation 시간의 산출이 필요하기 때문이다.
본 발명의 일 실시예에 따르면 pH 정치에 의해서 증가되는 주 산성 이성질 항체 (Main Acidic peak, AM)의 증가속도를 이용하여, AM growth rate(%/hr), 즉 AM 상승률을 계산하였다. AM 상승율을 이용하여 배양액 또는 정제액상의 특정 이성질 항체의 함량이 낮게 생성되더라도, AM 상승율을 대입하여 정치 시간을 결정할 수 있는 방법을 개발하였으며, pH에 따른 AM 상승율을 조합하면, 24시간 이내에서 pH 정치 공정이 완료 될 수 있도록 공정시간을 간소화 할 수 있었다. 상기 결과를 이용하여 1000ℓ 생산 scale에서 실제 pH 정치를 포함한 항체 생산공정을 진행하였고, 실제 적용된 공정을 통해서 pH 정치가 포함된 트라스투주맙 제조 공정을 진행할 경우 생산 스케일에서도 이성질 항체의 함량 조절이 충분히 가능함을 확인하였다 (실시예 4 및 5).
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: pH 변화를 통한 이성질 항체 조절 확인
실시예 1.1: 이성질 항체 조절을 위한 pH 효과 실험
트라스투주맙(Trastuzumab) 공정시료의 경우 대조약에 비해 산성 이성질 항체 함량이 낮을 경우, 산성 이성질 항체를 대조약과 유사한 함량을 갖도록 조절하는 방법으로, pH를 높여, 일정 온도에서 정치반응 시키는 실험을 수행하였다.
구체적으로, pH를 높임에 따라 항체 혼합액의 산성 이성질 항체의 함량이 증가되는지를 확인하기 위해, pH 6.0에서부터 순차적으로 8.0까지 각각 높인 항체 혼합액에서 이성질 항체(charge isoform) 변화를 확인하였다. 본 항체 혼합액은 대조약 대비 산성 이성질 항체(charge isoform)가 2% 정도 낮은 시료를 사용하였다. 하기 표 1에서 나타냈듯이 pH 7.0이상으로 올리기 위해 25mM TrisHCl buffer를 이용하여 pH 7.0, 7.2, 7.5, 7.7, 8.0이 되도록 buffer로 희석하였다. 초기 항체 혼합액은 25mg/㎖이었고, 이를 pH 별 희석 buffer로 각각 5배 희석하여 5mg/㎖로 맞추었다. 희석 후 pH 측정 시 목표(Target) pH가 되지 않았을 경우, 2M Tris로 목표 pH까지 올렸고, 5mM histidine buffer pH 6.0으로 희석한 pH 6.0을 대조군(control)으로 하여 비교하였다. 온도는 pH를 목표 수치로 올린 후, 상온 25℃로 정치시켰으며, 0hr, 4hr, 8hr, 24hr로 하여 각각 0.5㎖씩 samling하여 분석 직전까지 -20℃이하에서 보관하였다. 산성 이성질 항체를 비롯한 이성질 항체들의 변화는 CEX HPLC(Cation Exchange High Performance Liquid Chromatography) 분석을 이용하여 확인하였으며, 조건은 하기 표 2와 같다.
표 1 산성 이성질 항체의 증가확인 실험 (pH 7.0~8.0 조건)
pH 영향실험 pH Buffer Vol(㎖) Conc.(mg/mL) Temp℃ 비고
P-C pH 6.0 5mM HistidineHCl pH 6.0 5 5 25 Sampling Time0 hr4 hr8 hr24 hr
P-1 pH 7.0 25mM TrisHCl pH 7.0 5 5 25
P-2 pH 7.2 25mM TrisHCl pH 7.2 5 5 25
P-3 pH 7.5 25mM TrisHCl pH 7.5 5 5 25
P-4 pH 7.7 25mM TrisHCl pH 7.7 5 5 25
P-5 pH 8.0 25mM Tris-HCl pH 8.0 5 5 25
표 2 CEX HPLC column 조건
CEX HPLC
Column ProPac TM WCX-10 column (4*250nm, Dionex)
HPLC Agilent 1200 series(Agilent)
Detector DAD (214nm)
Mobile phase A: Monobasic Na-phosphate, Dihydrate 0.77g/ℓDibasic Na-phosphate, Dihydrate 2.66g/ℓB: Buffer A+ NaCl 5.84g/ℓ
Injection Vol. 50㎕
Flow-rate 0.8㎖/min
CEX-HPLC(Cation Exchange High Performance Liquid Chromatography) 분석을 위한 컬럼은 ProPac TM WCX-10 column (Dionex)을 이용하여 수행하였다. 시료 희석 buffer로 10mM sodium phosphate buffer, pH 6.0을 이용하여 1mg/㎖로 희석 후 50㎕를 주입하여 분석하였다(표 2). 분석에 사용된 완충액은 10mM sodium phosphate, pH 7.5 (완충액 A)과 10mM sodium phosphate, 100mM sodium chloride, pH 7.5(완충액 B)이며, 완충액 A와 완충액 B를 이용해 하기 표 3에 나와있는 조건으로 분석하였다. 분석 파장은 214nm이며 HPLC 기기는 Agilent 1200 series(Agilent 사)를 이용하였다.
표 3 CEX HPLC 분석 조건
시간(분) 완충액 A(%) 완충액 B(%) 유량(㎖/min) Program
0 85 15 0.8 Initial condition and sample injection
30 45 55 0.8 Linear gradient to 55% B
35 45 55 0.8 Hold at 55% for 5minutes
36 0 100 0.8 Step to 100% B
44 0 100 0.8 Hole at 100% B
45 85 15 0.8 Return to initial condition
55 85 15 0.8 Re-equilibrate for 10 minutes
그 결과, pH가 높을수록, 그리고 반응시간이 길어질수록, 산성 이성질 항체의 부분(acidic portion)의 함량이 높아지는 것을 확인하였다. 특히 acidic portion 중 AM(main acidic peak)은 pH 및 시간에 의존적으로 일정한 규칙을 가지고 상승됨을 확인하였다. 즉 pH가 상승할수록 AM(main acidic peak)의 상승도 역시 증가함을 확인하였으며, AM 이외의 peak들은 상승이 거의 없거나 미미하여, pH 조절을 통해, 대조약(Reference)과의 동질성을 높일 수 있음을 확인하였다(도 1a 및 1b).
실시예 1.2: 이성질 항체 조절을 위한 pH maturation 반응을 통한 pH 최적화 분석
본 발명자들은 상기 실시예 1.1을 통해, 1차로 트라스투주맙 공정액을 이용하여 pH 6.0에서 pH 8.0까지 pH maturation에 의해 acidic peak를 상승시켜 대조약과의 동등성을 높일 수 있음을 확인하였다.
이에, 2차로 pH 7.8 이상에서 pH maturation에 의해 QC(quality control)의 향상 유무를 확인하기 위한 실험을 수행하였다. 구체적으로, 2M Tris를 이용하여 공정시료를 각각 pH 7.8, pH 8.0, pH 8.2, pH 8.4, pH 8.6 으로 높였고, 각 pH 별 시료 20㎖을 온도 22~25℃에서 24시간까지 정치시켰다. Sampling은 12시간, 24시간에 한번씩 실시하여, CEX HPLC로 이성질 항체의 변화를 확인하였다. 트라스투주맙의 CEX HPLC 상의 acidic, main, basic portion의 범위를 도 2에 나타냈다.
그 결과, 초기 0시간 시료의 AM(main acidic peak)의 함량과 acidic portion의 전체 함량은 각각 7.59%와 16.08% 였고, 대조약의 AM %와 acidic portion 전체 함량은 12.45%와 20.25%로 공정시료가 대조약에 비해 각각 약 5%와 4%가 낮음을 확인할 수 있었다. pH를 7.8부터 8.6으로 조절하여 12시간과 24시간 pH maturation을 시킨 시료를 분석한 결과, 전 pH 구간에 대해 대조약에 비해 낮았던 AM %가 상승함을 확인하였고, 대조약과 유사한 AM peak 이외의 peak들은 큰 변화가 없음을 확인할 수 있었다. 특히 pH 8.6의 경우 12시간 안에 AM %가 대조약의 peak에 도달함을 확인하였고, pH 8.2 이상도 24시간 안에 AM %가 대조약의 함량에 거의 도달함을 확인하였다(도 3a 및 3b, 4a 및 4b, 및 표 4).
표 4 임상 3상 공정 시료를 이용한 pH maturation 시료의 CEX HPLC 수치변화(함량 %)
Number AM Acidic Main Basic
pH 7.8 (0h) Control 7.59 16.08 79.09 4.83
pH 7.8 (12h) 9.42 18.15 76.61 5.24
pH 8.0 (12h) 9.97 18.86 76.03 5.12
pH 8.2 (12h) 10.82 23.68 71.24 5.08
pH 8.4 (12h) 11.67 21.05 73.95 5.00
pH 8.6 (12h) 12.90 22.73 72.46 4.80
Ref 0713 (대조약) 12.45 20.25 72.77 6.98
pH 7.8 (24h) 10.49 19.60 75.20 5.21
pH 8.0 (24h) 11.17 20.38 74.46 5.15
pH 8.2 (24h) 12.05 21.41 73.59 5.01
pH 8.4 (24h) 13.12 22.83 72.29 4.88
pH 8.6 (24h) 15.00 25.60 69.76 4.63
Ref 0713 (대조약) 12.45 20.25 72.77 6.98
# AM: main acidic peak
또한, AM %가 늘어남에 따라 main portion의 함량이 상대적으로 줄어드는 것을 확인할 수 있었으며, basic portion의 변동은 0.4%이하로 pH에 따라 큰 변동은 보이지 않았다. 따라서, main portion에서 main acidic peak로 전환됨을 유추할 수 있었다(도 5a 내지 도 5d). 본 결과를 통해 초기 시료의 이성질 항체 (charge isoform)의 함량 패턴에 따라 적정 pH와 적정 시간을 선정하면, 대조약과 유사한 함량을 갖은 품질로 맞출 수 있음을 확인하였다. 또한 AM(main acidic) 함량 %를 기준으로 시간을 설정할 경우, 단순하게 maturation 시간과 pH를 결정할 수 있음을 유추할 수 있었다.
실시예2: 배양액에서의 pH maturation에 의한 이성질 항체의 함량 조절
배양액에서의 pH maturation에 의한 이성질 항체의 함량 조절이 가능한지를 확인하기 위해 본 실험을 수행하였다. 이와 같이, 배양액에서 pH maturation을 하게 될 경우에는 배양기(Bioreactor) 또는 회수탱트(harvest Tank)에서 pH를 올리고 maturation하면 되기 때문에, 공정 설비상 추가 설비가 필요 없으며, maturation 시 발생할 수도 있는 aggregation등을 추후 정제공정에서 충분히 제거 가능하다는 장점이 있다.
구체적으로, 실험은 하기 표 5에 나타낸 절차로 진행하였다. 배양액은 depth filter를 이용하여 세포를 제거하였고, pH를 1N NaOH를 이용하여 7.5로 높였다. pH를 7.5로 높인 후 250㎖ 병에 200㎖ 씩 분주 후, 온도를 25℃, 30℃, 37℃ Incubator에서 각각 정치반응으로 pH maturation 시켰다. 이후 3시간, 6시간, 9시간, 24시간 마다 sampling후 분석을 위해 rProtein A로 정제 후 desalting하여 CEX HPLC로 이성질 항체의 함량 변화 패턴을 분석하였다.
표 5 배양액을 이용한 pH maturation 절차
배양액 Trastuzumab 배양액 (8일 배양) Culture Volume: 5ℓ Maturation 조건
실험방법 1) 배양액 1ℓ를 Depth filter 를 이용하여 세포를 제거한다.2) 배양 상등액은 1N NaOH를 이용하여 pH 7.5로 맞춘다.3) 200㎖씩 병에 담아 온도 25℃, 30℃,37℃에서 정치하였으며, 0hr(control), 3hr, 6hr, 9hr, 24hr마다 sampling하였다. 1)Maturation pH: 7.5.2)Maturation온도: 25℃, 30℃, 37℃.3)Maturation 시간: 3, 6, 9, 24hrs.
분석을 위한 정제 Step 4) Sampling한 시료는 분석을 위해 open column으로 Protein A로 정제 하였다.4-1) 배양상등액 10㎖을 Protein A FF 1㎖에 Loading한다.4-2) 25mM TrisHCl pH 7.2, 150mM NaCl로 5CV wash한다.4-3) 25mM TrisHCl pH 7.2, (w/o NaCl)로 5CV wash2한다.4-4) 0.1M glycine HCl pH 3.0 4㎖로 elution한다.4-5) 2M Tris로 Neutralizing한다.4-6) 20mM Na phosphate pH 6.0으로 desalt후 농축하여 1mg/㎖로 맞춘다.4-7) CEX HPLC로 시료를 분석한다.
표 6 배양액에서 pH maturation 시료의 CEX HPLC 수치변화 (함량 %)
Number AM Acidic Main Basic
Control 9.18 19.71 72.48 7.81
25℃ (3h) 9.46 20.18 71.41 8.41
30℃ (3h) 9.66 20.56 71.32 8.12
37℃ (3h) 10.12 21.08 71.63 7.29
25℃ (6h) 9.73 20.87 71.21 7.92
30℃ (6h) 10.37 21.71 71.04 7.25
37℃ (6h) 11.08 23.07 69.46 7.47
25℃ (9h) 10.00 21.44 71.42 7.15
30℃ (9h) 10.99 23.07 69.09 7.84
37℃ (9h) 11.90 25.92 66.26 7.81
25℃ (24h) 11.10 22.59 69.23 8.18
30℃ (24h) 12.87 25.97 66.07 7.96
37℃ (24h) 14.72 32.22 60.26 7.52
Ref. H0713(대조약) 12.45 21.05 72.40 6.55
그 결과, 상기 표 6의 분석결과에서 보듯이 AM(main acidic peak)은 maturation 온도가 상승함에 따라 함께 상승함을 확인할 수 있었다. 또한 시간이 지남에 따라서도 AM %는 일정하게 상승됨을 확인하였다(표 6, 도 6a 및 6b, 및 도 7a 및 7b). 그러나, 단점은 온도 30℃ 이상에서는 AM(main acidic peak)이 상승될 뿐만 아니라, acidic portion의 base line도 동반 상승한다는 점이다(도 7a 및 7b). 특히 25℃에서는 main acidic peak가 다른 acidic peak에 비해 선택적으로 상승하였으나, 30℃ 이상부터는 main acidic peak 뿐만 아니라 acidic portion 전체가 상승되는 결과를 보였다(도 6a 및 6b, 및 도 7a 및 7b). 이와 같은 결과로부터 대조약에 비해 상대적으로 낮은 main acidic peak를 선택적으로 높이는 데 있어서는, 30℃ 이상에서는 선택성이 떨어짐을 확인할 수 있었다.
실시예3: 정제액에서의 pH maturation에 의한 이성질 항체의 함량 조절
pH를 올려 maturation을 할 경우 산성 이성질 항체 (acidic form)가 늘어난다는 사실을 상기 실시예 1 및 2를 통해 확인하였다. 이에 배양액에 이어, 정제액에서의 pH maturation에 의한 이성질 항체의 조절 실험을 수행하였다. 특히 정제 각 step별로 pH maturation 실험을 실시하였고, 어느 단계가 가장 유리한 지에 대한 평가도 진행하였다. 본 발명자들의 기존 트라스투주맙(Trastuzumab) 정제공정 중 pH maturation을 삽입하여 적용할 수 있는 단계 후보 군을 도 8에 나타내었다.
이에 구체적으로, CEX(Cation Exchange Chromatography), VI(Virus Inactivation), HIC(Hydrophobic Interaction Chromatography), UF/DF(Ultrafiltation and Diafiltration), AEX(Anion Exchange Chromatography)공정 각각 후에 pH maturation을 적용하는 실험을 실시하였고, 각 step별로 pH maturation에 의한 이성질 항체의 함량 조절 효과 (charge isoform control effect)를 비교하였다.
실시예 3.1: CEX(Cation Exchange Chromatography) 와 VI(Virus Inactivation) Step에서의 pH maturation 효과 분석
정제단계 중 CEX 컬럼과 VI(virus inactivation)공정에서 나온 정제액에 대해 pH maturation을 적용하였다. 온도는 공정 중 접하게 되는 온도인 4℃, 25℃로 실험을 수행하였다(표 7 및 8).
표 7 CEX와 VI step에서의 pH maturation 절차
정제 단계 순서 Maturation 조건
CEX(Cation Exchange chromatography) Step 1) 배양액 1ℓ를 Depth filter 를 이용하여 cell을 제거 하였다.2) Cell이 제거된 배양 상등액에 10% acetic acid를 이용하여 pH 5.0으로 낮추고, 1hr holding하였다.3) 동일한 Depth filter를 이용하여, 침전된 impurity들을 제거하였다.4) CEX column에 Loading하기 위해 conductivity를 6mS/cm로 맞춘 후 제균 여과하였다.5) CEX column (Fractogel COO(M))을 이용하여 정제된 elute를 이용하여 2M Tris로 pH 8.0으로 올리고, pH maturation 시험을 진행하였다. Maturation온도: 4℃, 25℃.Maturation pH: 8.0.Maturation 시간: 6, 11, 24hrs.
VI(Virus Inactivation) Step 1) 상기 step에서 제조된 CEX elute를 이용하여 1M citric acid으로 pH 3.8로 낮춘 후 1hr holding으로 하였다.2) Holding 완료 후 2M TrisHCl을 이용하여 pH 8.0으로 맞추고 pH maturation 시간 별로 pH maturation을 진행하였다. Maturation온도: 4℃, 25℃.Maturation pH: 8.0.Maturation 시간: 6, 11, 24hrs.
표 8 CEX와 VI step에서의 pH maturation 조건
CEX(Cation Exchange Chromatography) VI(Virus Inactivation)
No. Temp℃ Time(hr) Volume No. Temp ℃ Time(hr) Volume
CEX-control 0 30 VI-Control 0 30
C-1 4℃ 6 30 V-1 4℃ 6 30
C-2 4℃ 11 30 V-2 4℃ 11 30
C-3 4℃ 24 30 V-3 4℃ 24 30
C-4 25℃ 6 30 V-4 25℃ 6 30
C-5 25℃ 11 30 V-5 25℃ 11 30
C-6 25℃ 24 30 V-5 25℃ 24 30
표 9 CEX와 VI step에서의 pH maturation에 의한 시간에 따른 이성질 항체 함량 %
Step Number AM Acidic Main Basic
CEX CEX Control 8.95 19.06 74.10 6.84
CEX 4℃ (6h) 9.98 20.76 72.33 6.91
CEX 4℃ (11h) 10.19 20.87 72.48 6.65
CEX 4℃ (24h) 10.62 21.49 71.90 6.61
CEX 25℃ (6h) 10.79 21.73 71.66 6.61
CEX 25℃ (11h) 11.49 21.87 71.66 6.47
CEX 25℃ (24h) 12.48 24.18 69.42 6.40
VI VI Control 9.48 19.96 73.22 6.81
VI 4℃ (6h) 9.83 19.93 73.39 6.69
VI 4℃ (11h) 10.10 20.19 73.15 6.66
VI 4℃ (24h) 10.71 21.46 71.99 6.55
VI 25℃ (6h) 10.80 21.35 72.13 6.52
VI 25℃ (11h) 11.61 22.71 70.84 6.45
VI 25℃ (24h) 12.78 24.52 69.10 6.38
Ref Ref.H0713 12.66 21.50 71.82 6.69
그 결과, 표 9, 도 9a 내지 9d, 및 도 10에서 보는 것처럼 CEX 공정 후 시료를 이용하여 pH maturation을 실시하면, AM %가 8.95%에서 25℃, 24시간 후 12.48%로 대조약의 12.66%와 거의 유사한 수준을 나타내었다.
VI 후 공정시료의 경우도 25℃, 24시간 후에서 pH maturation을 진행한 경우, AM %가 9.48%에서 12.78%로 대조약의 AM %와 유사한 수준으로 상승함을 확인하였다. 4℃의 조건에서 CEX, VI step 모두에서 초기 0시간 control에 비해 AM이 시간에 따라 상승함을 확인하였고, 24시간 후에는 각각 10.62%, 10.71%로 상승하였으나, 25℃에 비해서는 상대적으로 낮은 상승속도를 나타내었고, 25℃의 6시간 조건과 4℃의 24시간 조건이 AM%가 유사한 함량을 나타내었다. Main portion의 경우 25℃에서 시간이 지남에 따라 CEX, VI 조건 모두에서 함량이 줄어들었고, 24시간 후 초기 control에 비해 4%정도 줄어드는 것을 확인하였으며, 두 step의 차이는 거의 없었다. Basic portion의 경우 확연히 구분될 수 있는 상승 또는 감소는 관찰되지 않았다.
따라서, 두 공정에서의 pH maturation을 시도할 경우 결과적으로 effect는 유사하였다. 특히 VI step에서는 pH down후 다시 neutralization을 위해 자연스럽게 pH를 높여주어야 하는 기존 공정이 있으므로, VI 공정에서 pH를 8.0으로 맞출 경우, 공정 추가 없이 pH maturation을 할 수 있는 장점이 있다.
상기와 같은 결과들로부터, 공정의 간소화 측면에서는 VI step에서 pH maturation을 적용하는 것이 유리하다고 할 수 있음을 확인하였다.
실시예 3.2: HIC(Hydrophobic Interaction Chromatography)에서의 pH maturation 효과 분석
정제공정 중 HIC 정제 step에서 pH maturation을 하기 표 10의 절차로 수행하였다.
표 10 HIC step에서의 pH maturation 절차
정제단계 순서 Maturation 조건
Sample information 1) Trastuzumab배양액 (7day) Culture Volume: 5ℓ2) Fractogel COO(M) column을 이용해 정제된 시료 기타조건
HIC(Hydrophobic Interaction) Step 1) Fractogel COO(M) elute를 60mM Na Acetate + 1.2M Nacitrate pH 6.0을 동량 혼합하여 salt를 맞추었다.2) Phenyl sepharose FF에 loading을 하였다.3) Elution은 30mM Na acetate pH 6.0을 5CV linear gradient로 흘려주어 elution되는 시료를 collection하였다.4) 상기 HIC elute를 1M NaOH로 pH 8.0까지 올렸다5) Maturation온도는 4℃, 25℃로 진행하였고, 6시간~24시간 동안 샘플링하여 pH maturation pattern을 CEX HPLC로 분석하였다. Maturation온도: 4℃, 25℃.Maturation pH: 8.0.Maturation 시간: 6,9,24hrs.
표 11 HIC step에서의 pH maturation에 의한 시간에 따른 이성질 항체 함량 %
Step Number AM Acidic Main Basic
HIC HIC Control 8.51 20.46 71.94 7.60
HIC 4℃ (6h) 9.53 21.16 72.17 6.67
HIC 4℃ (9h) 9.85 21.75 71.86 6.39
HIC 4℃ (24h) 10.60 22.48 71.31 6.21
HIC 25℃ (6h) 10.09 20.89 72.54 6.57
HIC 25℃ (9h) 10.71 22.56 71.07 6.37
HIC 25℃ (24h) 11.58 23.88 69.90 6.23
Ref Ref.H0713 12.30 20.28 72.36 7.37
그 결과, 표 11, 도 11a 내지 11d 및, 도 12에서 보는 것처럼 HIC elute에서 pH maturation을 진행한 경우, AM(Main acidic peak)이 시간 의존적으로 상승하는 것을 확인하였다. control 8.51%에 비교해서 6시간 후 25℃에서의 10.09%, 24시간 후 25℃에서의 11.58%까지 상승하였다. 그러나 4℃의 경우는 25℃조건보다 AM 상승 속도가 현저히 낮았으며, 24시간 후에도 10.60%로 25℃의 6시간 정도와 유사한 함량으로 상승되어 상대적으로 매우 낮은 상승속도를 나타내었다.
Main portion의 경우 25℃에서 함량이 줄어들었고, 24시간 후 control에 비해 약 2% 정도 줄어드는 것을 확인하였다. Basic portion의 경우 control에 비해 약 1% 정도 감소하였고, 전 조건에 대한 차이는 관찰되지 않았다. 그러나 HIC에서 pH maturation을 시도할 경우 결과적으로는 CEX 나 VI 보다는 effect가 낮은 것을 알 수 있었다. AM(Main acidic peak) 기준으로 CEX 나 VI step에서는 24 시간 후 대조약과 유사한 함량을 보였으나, HIC에서 pH maturation한 시료는 대조약에 비해 1%정도 부족하였다. 특히 24시간 후 시료의 CEX HPLC 패턴을 보면, acidic base line이 상승한 것을 볼 수 있었다 (도 12). 이것은 HIC elute는 salt가 높게 함유되어 있고, 또한 2M Tris로는 pH를 상승시킬 경우 buffering이 약해 pH 8.0까지 올릴 수 없었고, 1N NaOH를 과량 투입하여 pH를 상승시켜야 하기 때문에 product에 부정적인 영향을 미칠 수 있기 때문이다.
따라서 HIC step 에서의 pH maturation은 시간이 길수록, 온도가 높을수록 pH maturation에서 효율적인 결과를 얻었으나, high salt가 포함되어 있어서 강염기로 pH를 높여야 하는 단점이 있어, 다른 공정과 비교했을 때 pH maturation 적용 측면에서 불리한 점이 있을 수 있음을 확인하였다.
실시예 3.3: UF/DF1 에서의 pH maturation 효과 분석
pH maturation을 UF/DF1에서 진행하는 경우에 대한 실험을 표 12의 절차로 수행하였다.
표 12 HIC step에서의 pH maturation에 의한 시간에 따른 이성질 항체 함량 %
Sample information 1) 배양액(7day) Culture Volume: 5ℓ 2) CEX column을 이용해 정제된 시료 3) HIC column을 이용해 정제된 시료 Maturation조건
pH maturation Step at UF/DF1(Ultrafiltration & Diafiltration I) 1) 25mM TrisHCl 7.5로 UF/DF1 를 진행함.2) 2M Tris로 pH 8.0을 맞추고 pH maturation을 진행함. Maturation온도: 4℃, 25℃.Maturation 시간: 6,24hrs.
표 13 UF/DF1 step에서의 pH maturation에 의한 시간에 따른 이성질 항체 함량 %
Step Number AM Acidic Main Basic
UF/DF1 UF/DF1 Control 9.22 21.05 72.77 6.18
UF/DF1 4℃ (6h) 9.67 20.72 73.10 6.19
UF/DF1 4℃ (24h) 10.11 21.30 72.72 5.98
UF/DF1 25℃ (6h) 10.45 21.64 72.33 6.03
UF/DF1 25℃ (24h) 11.71 23.37 70.63 6.00
Ref Ref.H0713 12.43 21.11 71.91 6.98
그 결과, 표 13, 도 13a 내지 13d, 및 도 14에서 보는 것처럼 UF/DF1에서 pH maturation을 진행한 경우, AM(main acidic peak)의 경우 시간 의존적으로 상승하는 것을 확인할 수 있었다. Control 9.22%와 비교하여 6시간 후 25℃에서 10.45%, 24시간 후 25℃에서 11.71%까지 상승하여, 대조약 12.43%에 근접하였다. 4℃의 경우는 25℃ 조건보다 AM 상승 속도가 현저히 낮았으며, 24시간 후에도 10.11%로 25℃의 6시간 정도와 유사한 함량으로 상승되어 상대적으로 낮은 상승 속도를 나타내었다. Main portion의 경우 25℃에서, 24시간 후 control에 비해 2% 정도 줄어드는 것을 확인하였다. Basic portion의 경우 control과 비교했을 때 유의적인 차이는 없었다.
즉, UF/DF1에서 pH maturation을 진행할 경우 AM의 경우 24시간 기준 CEX 또는 VI에 비해 1% 낮은 상승을 보여 CEX 또는 VI 보다는 다소 불리한 것을 확인하였다. acidic 및 basic base line의 상승은 HIC 에서 보다는 매우 적은 상승을 나타내었다. 따라서 HIC 보다는 본 step에서 pH maturation을 하는 것이 유리할 수 있다. 그러나 Final 컬럼의 전 단계에서 높은 pH에 접촉되기 때문에 본 조건에서의 fragment 또는 aggregation의 발생시 제거할 수 있는 step이 그만큼 한정되기 때문에 risk를 그만큼 안고 진행해야 하는 단점이 있을 수 있다.
실시예 3.4: 정제 공정에서의 pH maturation 단계 최종 평가 분석
정제 step에서의 실험결과를 바탕으로 pH maturation을 적용하기 위해 가장 유리한 step은 어느 step인지에 대해 적용 평가점수로 비교해 보았다. 평가 항목은 이성질 항체의 QC(quality control), 기존 공정에 적용 난이도(Process adaptation), 적용 시 aggregation 발생 위험도, pH maturation 반응의 stop 용이도를 채점하여 최종 총점으로 평가하였다.
그 결과, Charge Isoform quality control 측면에서는 HIC가 조금 불리하고 나머지 step에서는 유사한 quality control을 할 것으로 평가되었다. HIC는 AM(main acidic peak) 뿐만 아니라, acidic과 basic base line이 함께 올라가는 현상이 관찰되어 다른 step 보다 낮은 점수를 적용하였다. Process adaptation 측면에서 HIC의 경우 pH를 높이는데 1M NaOH가 과량 들어가는 문제가 있어 낮은 점수를 주었고, CEX의 경우 pH를 높이고, VI를 위해 다시 낮추어야 하는 공정상 불필요함이 있어 다소 낮은 점수를 주었다. aggregation 측면에서는 HIC의 경우 salt가 많이 함유되어 있고, NaOH 또한 많이 들어가 aggregation 발생 위험이 그만큼 높아 낮은 점수를 주었다. UF/DF1과 AEX는 aggregation이 대부분 제거될 수 있는 HIC 공정 이후의 공정이므로 감점을 주었다. pH maturation 후 quenching을 위해 pH를 down시키는 데 있어서, CEX는 이후 VI 공정에서 기존 pH down 공정이 있고, VI에서 pH maturation후에는 HIC Load prep을 위해 2X buffer(pH 6.0)를 섞는 공정이 있어 pH를 낮추기 위해 추가 공정이 없이 진행되므로 높은 점수를 주었다. 따라서 최종 score는 VI > CEX > AEX > UF/DF1 >> HIC로 평가되었다 (표 14).
표 14 각 정제 step pH maturation 적용 평가표
Process Quality Control Process Adaptation Aggregation Risk(Risk 적을수록높은 점수) pHQuenching Total
CEX ***** *** **** **** 16
VI ***** **** **** **** 18
HIC *** *** ** *** 11
UF/DF1 ***** **** *** ** 14
AEX ***** **** *** *** 15
실시예 4: 공정 중 pH maturation 시간 결정 방법 수립
pH maturation으로 유리한 것으로 평가된 VI step에서 pH maturation 시간을 결정하기 위한 실험을 수행하였다. 일차적으로 pH maturation의 시간을 계산하기 위하여 먼저 대조약을 분석하였다. 총 5종의 대조약을 CEX HPLC로 분석하였다.
표 15 대조약의 이성질 항체 함량 분석
Reference Drug Area content (%) at CEX HPLC
Acidic portion Main portion Basic Portion
Label Reference Lot AM A2 Acidic sum M1 Main sum B1 B2 Basic sum
R1 H0666B01 11.96 3.67 21.71 7.69 71.70 4.89 1.70 6.59
R2 H0750B01 12.81 3.70 22.63 8.01 70.48 4.82 1.57 6.90
R3 H0717B01 12.91 3.71 22.56 7.87 70.93 4.89 1.32 6.51
R4 B1600B01 12.14 3.82 21.49 8.05 72.51 4.70 1.23 6.00
R5 H0713B01 12.46 3.31 20.68 7.04 72.86 4.83 1.37 6.46
STDV 0.41 0.20 0.81 0.41 1.01 0.08 0.19 0.32
Average 12.45 3.64 21.81 7.73 71.70 4.83 1.44 6.49
분석 결과, AM(Main acidic peak) 함량 %는 평균 12.45% 였고, acidic portion은 21.8%, main portion은 71.7%, basic portion은 6.49% 였다 (표 15). 특히 AM(main acidic peak)은 상기 실시 예들의 결과 pH 및 시간에 의존적으로 상승하기 때문에 AM %를 이용하여 pH maturation의 Time 결정 기준으로 활용할 수 있다.
실시예 4.1: pH별 maturation factor (AM growth rate) 결정
AM(Main acidic peak) 함량을 이용하여 VI step에서 pH maturation time을 계산하기 위해 AM의 시간 별로 상승하는 함량(%)을 의미하는 AM growth rate를 산출하였다. 본 수치를 구하기 위해 배양액 (7 day)을 회수를 거쳐 CEX 컬럼(Fractogel COO(M))으로 정제된 시료를 VI를 위해 pH 3.8로 내리고, 1hr inactivation 후 pH 7.8~8.6까지 단계적으로 올리면서 각각 30㎖ 씩 sampling하였다. 각 pH 별로 30㎖ 씩 sampling된 시료는 상온 (18~23℃)에서 24시간 maturation시켰고, maturation시킨 후와 maturation이전의 AM함량 % 차이를 반응시간(24시간)으로 나누어 AM growth rate (%/hr)를 계산하였다 (표 16).
표 16 VI step에서의 pH maturation을 위한 AM growth rate 산출
Label(pH) AM (%) before pH maturation AM (%) after pH maturation Maturation Time (hr) AMgrowth rate (%/hr)
pH 7.8 7.587 10.487 24 0.12
pH 8.0 7.587 11.17 24 0.15
pH 8.1 7.587 11.68 24 0.17
pH 8.2 7.587 12.05 24 0.19
pH 8.4 7.587 13.116 24 0.23
pH 8.6 7.587 15.003 24 0.31
Reference 12.45 N/A N/A N/A
그 결과, 표 16에서 나타난 것과 같이 pH가 상승할수록 AM growth rate는 상승하였고, 특히 대조약의 AM 함량인 12.45% 이내에 들면서, 11% 이상이 되는 AM 범주를 기준으로 삼을 때 적정 pH는 8.0~8.2의 범위가 적절할 것으로 판단되었다. pH 8.0~8.2의 AM growth rate는 0.15~0.19%/hr였으며, 중간 값 pH 8.1에서 0.17%/hr가 산출되었다.
상기 pH 8.0~8.2사이의 범위에서 AM growth rate가 실제적으로 적절한지를 실험적으로 평가 하기 위하여 small scale에서 2 batch에 대해 검증실험을 진행하였다. AM 초기 %는 각각 6.81%과 6.65%이었고, pH 8.0에서 상온에서 pH maturation을 진행하여, 3, 6, 9, 13, 24 시간 마다 sampling 하여, CEX HPLC 분석을 실시 AM % 뿐 만 아니라 acidic form, main form, basic form들을 monitoring 하였다(표 17). 2 batch의 각각 평균을 낸 AM %를 기준으로 시간에 대해 plot 하였다. Plot을 하고 spot에 대해 회귀곡선을 구한 결과 기울기가 0.167로 상기 계산한 pH 8.0~8.1의 AM growth factor인 0.15~0.17의 범주에 들었음을 확인할 수 있었다(도 16).
표 17 2 batch에서의 VI step에서의 pH maturation 적용에 의한 이성질 항체 함량(%) 변화
Label Time AM A2 Acidic sum M1 Main sum B1 B2 Basic sum
Batch 1 0 6.81 3.89 15.27 6.65 78.92 3.99 1.62 5.81
3 7.42 3.98 16.21 6.73 76.93 4.26 2.23 6.86
6 8.08 3.97 16.76 6.70 77.30 4.22 1.72 5.94
9 8.52 3.93 17.11 6.72 77.14 4.19 1.56 5.75
13 9.13 3.99 17.98 6.80 75.98 4.29 1.74 6.04
24 10.72 3.95 18.91 6.78 75.37 4.25 1.48 5.73
Batch 2 0 6.65 3.57 12.28 7.32 81.68 4.56 1.93 6.04
3 7.37 3.59 12.81 7.37 80.62 4.67 1.90 6.57
6 8.18 3.69 14.11 7.37 79.29 4.74 1.86 6.60
9 8.84 3.73 15.00 7.53 77.93 4.87 2.20 7.07
13 9.33 3.71 15.52 7.48 77.98 4.73 1.77 6.50
24 10.92 3.81 17.41 7.67 75.65 4.84 2.10 6.94
Average (Batch1 & Batch2) 0 6.73 3.73 13.78 6.98 80.30 4.27 1.77 5.92
3 7.39 3.79 14.51 7.05 78.78 4.46 2.06 6.72
6 8.13 3.83 15.44 7.04 78.29 4.48 1.79 6.27
9 8.68 3.83 16.05 7.12 77.54 4.53 1.88 6.41
13 9.23 3.85 16.75 7.14 76.98 4.51 1.76 6.27
24 10.82 3.88 18.16 7.23 75.51 4.55 1.79 6.34
따라서 본 AM growth rate를 이용하면 pH maturation전의 이성질 항체의 함량에서 Target 이성질 항체의 함량으로 조절하기 위한 pH와 maturation 시간을 결정할 수 있음을 확인하였다.
실시예 5: 생산 scale 에서의 pH maturation 검증
Trastuzumab이 적용된 생산 scale의 정제공정에서 상기 실시예들에서 확정된 이성질 항체의 함량 조절을 위한 pH maturation방법이 적용가능한지를 확인하기 위해 1000ℓ 배양 scale에 본 pH maturation 방법을 도입하였다.
본 Trastuzumab의 제조를 위한 정제공정은 양이온 교환 크로마토그래피 (Cation Exchange Chromatography, CEX), low pH에 의한 바이러스 불활성화 (Virus Inactivation, VI), 소수성 반응 크로마토그래피 (Hydrophobic Interaction Chromatography, HIC), 1차 한외여과 (1st Ultrafiltation and Diafiltration, UF/DF I), 음이온 교환 크로마토그래피 (Anion Exchange Chromatography), 2차 한외여과 (2nd Ultrafiltration and Diafiltration II, UF/DF II), VF(Virus Filtration), Final Formulation로 구성되어 있다.
이중 상기 공정들 중 가장 pH maturation 실시 시 유리한 것으로 판정된 VI(Virus Inactivation)후 pH maturation을 진행하였다. 간략한 공정의 정리는 하기 표 18에 나타내었다.
표 18 pH maturation이 포함된 트라스투주맙(HD201) 1000ℓ생산 scale에서의 공정 진행표
Process Specification
Batch Number HD201-TRS13001
Culture Size 1000ℓ
Clarification Depth 1 Cell Removal
Depth2 pH down (pH 5)→Depth filteration
CEX Column Fractogel COO(M)
Pall Φ700
Vol:58L (14.5cm)
Protein load (mg/㎖) 28
Flow rate (cm/hr) 150
CEX Pool A2+A3+main
VI Low pH 3.8 (pH down)
pH maturation High pH 8.1 (18~24℃)
HIC Column Phenyl Sepharose FF
Pall Φ700
Height: 13cm
Protein load 29
Flow rate (cm/hr) 150
UF/DF1 Membrane Pellicone 3 * 8 EA
Dilution Factor 2^5
AEX Column Q FF
Vol: 14ℓ
BPG Φ300
Protein load 115
Flow rate (cm/hr) 150
pH maturation pH 8.0 (24hr)
UF/DF2 Membrane Pellicone 3 * 8 EA
실시예 5.1: 생산 scale에서 pH maturation Time 계산
1000ℓ 생산 scale에서 VI 공정 중에 pH maturation을 진행하기 위해 maturation Time을 아래와 같이 계산하고 maturation을 진행하였다. 초기 AM % 기준은 CEX elute sample을 기준으로 하였고, 목표 (Target) AM %는 10.5%를 적용하였다.
(1) CEX elute의 AM(main acidic form) 의 함량 %:7.11%
(2) Target AM(main acid form) 함량% :10.5%
Target AM(main acid form) 함량 % 를 10.5%로 한 이유는 UF/DF1, 및 AEX 공정이 pH 7.5로 operation하기 때문에 높은 pH로 인해 평균 AM이 1%이상 상승되게 된다. 따라서 pH maturation 이후 공정의 상승 분을 반영하여 safety margin을 주어 VI에서의 Target은 10.5%로 결정하였다.
(3) AM growth Factor : 본 Factor는 pH maturation을 위한 Target peak인 AM(main acidic peak)이 시간당 증가하는 비율을 계산한 것이다. 본 growth factor는 상기 scale down 실험을 통한 data 분석을 통해서 결정된 것이며, 조건은 24hr내에 pH maturation이 완료될 수 있도록 디자인하였다. 본 Factor는 maturation pH 에 의존적인 factor로서 pH 8.1의 경우는 0.17%/hr이면 24hr안에 Target AM % (10.5%)와 meet하게 된다.
1000ℓ scale Batch
# pH maturation 공정 시간(hr)= (Target AM % - VI 전 AM %)÷0.17(Factor: %/hr)
=(10.5 - 7.11 )÷0.17(Factor: %/hr)
= 20hr (±2hr)
# Margin ±2hr은 pH maturation 반응을 stop하기 위해 2X HIC load prep buffer를 넣고 충분히 섞는데 걸리는 시간 1hr 이상을 고려하고, 2 배수로 하여 설정한 range임.
상기 조건으로 VI step에서 pH maturation을 실시한 결과 pH maturation 직전 AM %인 7.11%에서 pH maturation 포함 UF/DF2공정 후의 AM %가 11.53%였다. 대조약의 AM %인 12.5%에 ±1.3에 유지됨을 확인하였다(표 19 및 도 17a 및 17b). pH maturation의 종결은 buffer (1.2M Na citrate + 60mM acetate pH 6.0)를 1:1 비율의 volume으로 섞음으로써 반응을 종결시켰고, 종결 pH는 6.2였다.
표 19 1000ℓ 생산 scale에서의 pH maturation 조건과 결과
Batch Number HD201-TRS13001
USP Scale 1000ℓ
DSP Process Step After VI
pH Maturation Condition Aging Time (hr) 20
Temp (℃) 21~25 (23)
Maturation pH 8.1
Target AM(%) 10.5
AM growth Factor(%/hr) 0.17
Before pH maturation (VI) AM (%) 7.11
Acidic (%) 15.24
Main (%) 78.81
Basic (%) 5.95
After pH maturatiom (UF/DFⅡ) AM (%) 11.53
Acidic (%) 20.61
Main (%) 73.22
Basic (%) 6.16
따라서, 상기와 같은 결과들은 본 발명의 pH maturation 방법은 생산 scale에서도 충분히 적용가능하며, 본 방법을 이용하면 고품질의 항체생산을 할 수 있을 뿐 아니라, 바이오시밀러 생산 측면에서도 대조약과 유사한 품질을 같는 항체를 생산할 수 있음을 뒷받침하는 것이다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (21)

  1. (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및
    (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 원하는 함량의 이성질 항체(charge isoform)를 포함하는, 항체 집단의 제조 방법.
  2. 제1항에 있어서, 상기 항체의 혼합액은 항체 제조를 위한 배양액 또는 정제액인 것인 방법.
  3. 제2항에 있어서, 상기 배양액은 세포를 포함하는 배양액 또는 세포가 제거된 배양 상등액인 것인 방법.
  4. 제1항에 있어서, 상기 원하는 함량의 이성질 항체는 대조약 내의 이성질 항체 함량 %의 ± 15 %의 범위 내인 것인 방법.
  5. 제1항에 있어서, 상기 방법은 AM(main acidic peak) %를 대조약 내의 AM %와 ± 20 %의 범위 내인 것인 방법.
  6. 제1항에 있어서, 상기 pH는 pH 7.0 이상 pH 9.0 이하인 것인 방법.
  7. 제1항에 있어서, 상기 선정된 pH 내에서의 정치는 4℃ 이상 40℃ 이하의 온도에서 수행되는 것인 방법.
  8. 제7항에 있어서, 상기 선정된 pH 내에서의 정치는 15℃ 이상 30℃ 이하의 온도에서 수행되는 것인 방법.
  9. 제1항에 있어서, 상기 pH 정치 시간은 1시간 이상 48시간 이하인 것인 방법.
  10. 제1항에 있어서, (a) 단계의 pH 및 시간 선정 단계는
    (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
    [AM 상승률 계산 식]
    AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
    (ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
    [정치 시간 계산 식]
    pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률.
  11. 제1항에 있어서, 상기 항체는 트라스투주맙(Trastuzumab)인 것인 방법.
  12. 제1항에 있어서, 상기 이성질 항체는 산성 이성질 항체인 것인 방법.
  13. 제1항에 있어서, 상기 pH 정치 단계는 다음 중 하나 이상의 단계에서 수행되는 것인 방법:
    (i) 항체의 혼합액이 양이온 교환 크로마토그래피(Cation Exchange Chromatography, CEX)를 이용해 정제된 단계;
    (ii) 항체의 혼합액이 바이러스 불활성화(Virus Inactivation, VI) 단계에 의해 정제된 단계;
    (iii) 항체의 혼합액이 소수성 반응 크로마토그래 (Hydrophobic Interaction Chromatography, HIC)를 이용해 정제된 단계;
    (iv) 항체의 혼합액이 한외여과(Ultrafiltation and Diafiltration, UF/DF)를 이용해 정제된 단계; 또는
    (v) 항체의 혼합액이 음이온 교환 크로마토그래피(Anion Exchange Chromatography)를 이용해 정제된 단계.
  14. 제12항에 있어서, 상기 pH 정치 단계는 항체의 혼합액이 바이러스 불활성화(Virus Inactivation, VI) 단계에 의해 정제된 후에 수행되는 것인 방법.
  15. 제1항에 있어서, 상기 원하는 함량의 이성질 항체(charge isoform)를 포함하는, 항체 집단의 제조 방법은 다음의 단계를 포함하는 것인 방법:
    (a) 항체의 혼합액을 포함하는 시료를, 양이온 교환 크로마토그래피(Cation Exchange Chromatography, CEX)에 적용하여 정제하는 단계;
    (b) 상기 (a) 단계에서 정제된 항체의 혼합액을 산성 pH로 바이러스 불활성화(Virus Inactivation, VI)시키는 단계;
    (c) 바이러스 불활성화된 (b) 단계의 항체의 혼합액을, 소수성 반응 크로마토그래피(Hydrophobic Interaction Chromatography, HIC)에 적용하여 정제하는 단계;
    (d) 상기 (c) 단계에서 정제된 항체 혼합물을, 1차 한외여과(1st Ultrafiltation and Diafiltration, UF/DF I)시켜서 정제하는 단계; 및
    (e) 상기 (d) 단계의 항체 혼합물을 음이온 교환 크로마토그래피(Anion Exchange Chromatography)에 적용하여 정제하는 단계를 포함하는 방법으로, pH 정치는 (a) 내지 (e) 단계 중 한 단계 이상에서 수행되는 것인 방법.
  16. 제15항에 있어서, pH 정치는 (b) 단계 후 (c) 단계 이전에 수행되는 것인 방법.
  17. 제1항 내지 제16항 중 어느 한 항의 방법에 의해 제조된, 원하는 함량의 이성질 항체를 포함하는 항체 집단.
  18. (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH 및 시간을 선정하는 단계; 및
    (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 선정된 시간 동안 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법.
  19. 제18항에 있어서, (a) 단계의 pH 및 시간 선정 단계는
    (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
    [AM 상승률 계산 식]
    AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
    (ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
    [정치 시간 계산 식]
    pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률.
  20. (a) 원하는 함량의 이성질 항체를 제조할 수 있는 pH를 선정하는 단계; 및
    (b) 항체의 혼합액을 포함하는 시료를 상기 (a) 단계에서 선정된 pH 내에서 정치시키는 단계를 포함하는, 항체 집단 내의 이성질 항체(charge isoform)의 함량을 조절하는 방법 또는 원하는 함량의 이성질 항체를 포함하는, 항체 집단의 제조 방법에 있어서, 특정 AM(main acidic peak) %의 시간당 상승률을 이용하여, pH 정치 시간을 결정하는 방법.
  21. 제20항에 있어서, pH 선정 및 정치 시간 결정은,
    (i) 정치 반응에 사용되는 pH를 동일 시간 동안 상승시켜서 각각의 pH에서 하기 식에 의한 AM 상승률을 수득 후, 원하는 AM % 범위 내의 AM %를 pH 정치 후의 AM %로 선정한 후, 정치에 사용될 pH 및 AM 상승률을 선정하는 단계; 및
    [AM 상승률 계산 식]
    AM 상승률 (%/hr) = (pH 정치 후 AM % - pH 정치 전 AM %) ÷ 정치 시간 (hr)
    (ii) AM 상승률을 이용하여 하기 식에 의한 정치 시간을 결정하는 단계를 포함하는 것인 방법:
    [정치 시간 계산 식]
    pH 정치 시간 (hr) = (목표 AM % - pH 정치 전 AM %) ÷ 상기 (i) 단계에서 선정한 AM 상승률.
PCT/KR2013/011236 2013-12-05 2013-12-05 이성질 항체의 함량 조절을 통한 항체 제조 방법 WO2015083853A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/011236 WO2015083853A1 (ko) 2013-12-05 2013-12-05 이성질 항체의 함량 조절을 통한 항체 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/011236 WO2015083853A1 (ko) 2013-12-05 2013-12-05 이성질 항체의 함량 조절을 통한 항체 제조 방법

Publications (1)

Publication Number Publication Date
WO2015083853A1 true WO2015083853A1 (ko) 2015-06-11

Family

ID=53273594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011236 WO2015083853A1 (ko) 2013-12-05 2013-12-05 이성질 항체의 함량 조절을 통한 항체 제조 방법

Country Status (1)

Country Link
WO (1) WO2015083853A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249892A1 (en) * 2022-06-20 2023-12-28 Amgen Inc. Clearance of aggregates from uf/df pools in downstream antibody purification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009623A1 (en) * 2009-07-24 2011-01-27 F. Hoffmann-La Roche Ag Optimizing the production of antibodies
WO2012084829A1 (en) * 2010-12-21 2012-06-28 F. Hoffmann-La Roche Ag Isoform enriched antibody preparation and method for obtaining it
US20120178910A1 (en) * 2009-09-23 2012-07-12 Medarex, Inc. Cation exchange chromatography (methods)
KR20130069515A (ko) * 2011-12-15 2013-06-26 한화케미칼 주식회사 항체의 정제 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009623A1 (en) * 2009-07-24 2011-01-27 F. Hoffmann-La Roche Ag Optimizing the production of antibodies
US20120178910A1 (en) * 2009-09-23 2012-07-12 Medarex, Inc. Cation exchange chromatography (methods)
WO2012084829A1 (en) * 2010-12-21 2012-06-28 F. Hoffmann-La Roche Ag Isoform enriched antibody preparation and method for obtaining it
KR20130069515A (ko) * 2011-12-15 2013-06-26 한화케미칼 주식회사 항체의 정제 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEERT, CHARLIE D. ET AL.: "Characterization of Antibody Charge Heterogeneity Resolved by Preparative Immobilized pH Gradients", ANALYTICAL CHEMISTRY, vol. 82, no. 9, 2010, pages 3510 - 3518 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249892A1 (en) * 2022-06-20 2023-12-28 Amgen Inc. Clearance of aggregates from uf/df pools in downstream antibody purification

Similar Documents

Publication Publication Date Title
WO2013089477A1 (en) A method of antibody purification
WO2020197230A1 (ko) 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물
AU2016346864B2 (en) Long-acting FGF21 fusion proteins and pharmaceutical composition comprising same
WO2013025079A1 (en) Method for preparing active form of tnfr-fc fusion protein
KR20120046274A (ko) 항체 생성의 최적화 방법
KR102619866B1 (ko) 항-vegf 단백질 조성물 및 이를 생산하는 방법
KR102613595B1 (ko) 폴리솔베이트를 사용한 폴리펩티드의 정제 방법
Jiang et al. Evaluation of heavy-chain C-terminal deletion on product quality and pharmacokinetics of monoclonal antibodies
Tang et al. Removal of half antibody, hole-hole homodimer and aggregates during bispecific antibody purification using MMC ImpRes mixed-mode chromatography
WO2021167275A1 (ko) 아달리무맙의 non-protein a 정제방법
WO2018190677A2 (en) Method for purifying analogous antibody using cation-exchange chromatography
WO2015083853A1 (ko) 이성질 항체의 함량 조절을 통한 항체 제조 방법
CN106380519B (zh) 一种单克隆抗体的纯化方法
WO2015064971A1 (ko) 양이온 교환 크로마토그래피를 이용한 항체의 아형 분리 방법
WO2021006419A1 (en) Refining method of ophthalmic protein pharmaceutical
WO2013183948A1 (ko) 고당화된 지속형 인간 성장호르몬 단백질 및 이의 제조방법
WO2018203613A1 (ko) 톨-유사 수용체(tlr) 억제를 위한 펩타이드 및 이를 포함하는 약학적 조성물
WO2021167276A1 (ko) 베바시주맙 정제의 최적화된 방법
JP6093345B2 (ja) ヒトgdnfの変異体
KR20170031145A (ko) 미스폴딩된 TNFR2:Fc의 정량
WO2018212556A1 (en) A method for purifying an antibody or an antibody fragment thereof using affinity chromatography
WO2023068740A1 (ko) Igg fc 도메인을 가지는 융합 단백질의 정제방법
WO2024096378A1 (ko) TGF-β3 단백질의 정제방법
WO2021010638A1 (ko) 2당화된 인터페론-베타 단백질의 정제 방법
WO2024058648A1 (ko) 신규한 히알루로니다제 ph-20 변이체 및 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898817

Country of ref document: EP

Kind code of ref document: A1