WO2015083767A1 - Chip for analyzing biomolecular characteristics and method for producing same - Google Patents

Chip for analyzing biomolecular characteristics and method for producing same Download PDF

Info

Publication number
WO2015083767A1
WO2015083767A1 PCT/JP2014/082066 JP2014082066W WO2015083767A1 WO 2015083767 A1 WO2015083767 A1 WO 2015083767A1 JP 2014082066 W JP2014082066 W JP 2014082066W WO 2015083767 A1 WO2015083767 A1 WO 2015083767A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biomolecule
characteristic analysis
nanopore
manufacturing
Prior art date
Application number
PCT/JP2014/082066
Other languages
French (fr)
Japanese (ja)
Inventor
玲奈 赤堀
至 柳
剛 大浦
板橋 直志
穴沢 隆
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015083767A1 publication Critical patent/WO2015083767A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores

Definitions

  • the present invention relates to a biomolecule characterization chip structure and a manufacturing method thereof, and more particularly, to a biomolecule characterization chip structure having a nanopore having the same size as or close to that of a biomolecule to be measured and a technique for producing the nanopore.
  • next-generation DNA sequencer As a next-generation DNA sequencer, a method of directly measuring DNA base sequence electrically without performing an extension reaction or a fluorescent label is attracting attention.
  • Several methods have been proposed for the direct measurement method, one of which is a blocking current method.
  • a few nm pore (nanopore) is prepared on the thin film by a transmission electron microscope or the like, and a liquid tank filled with the electrolyte solution is provided on both sides of the thin film.
  • an electrode is provided in each liquid tank and a voltage is applied between these electrodes, an ionic current flows through the nanopore.
  • the ion current is proportional to the volume of the nanopore as a first order approximation.
  • the DNA blocks the nanopore, reducing the effective volume through which ions can pass, thus reducing the ionic current. This amount of decrease is called the blocking current. Based on the magnitude of the blocking current, the difference between the single strand and double strand of DNA and the type of base are determined.
  • a nanopore formed to have a diameter of about a DNA molecule and a thin film having a single base film thickness are required.
  • the physical properties are detected by the amount of ions that pass through the nanopore blocked by the measurement target. Therefore, in the case of DNA base identification, the difference between base species appears as a current difference of about several pA to 10 pA. Therefore, it is necessary to keep the SN ratio high.
  • the region of the molecule that contributes to the blocking amount needs to be a single base size.
  • the pore diameter is DNA size also plays a role in controlling DNA movement. This is because when the nanopore is about the diameter of DNA, the interaction between the DNA and the inner wall of the nanopore increases. In addition, in order to sense single-base information in DNA, DNA needs to be in a state in which higher-order structure is loosened and further stretched, and nanopores formed in the DNA diameter size realize them. .
  • One nanopore formation method that achieves single-base resolution is a method in which a Graphene film is prepared and attached to the top of a large pore, and the pore is formed by TEM (non-patented). Reference 1).
  • a method for forming pore-like defects using selective growth of Graphene and other materials has been proposed, although the applications are different.
  • a film is formed with a bead on the base, using a material that causes selective growth so that the film grows on the base material but does not grow on the bead surface. At this time, since no film growth occurs on the substrate in contact with the beads, a method for forming a bead-type pore in the film has been proposed (Non-patent Document 2).
  • Non-Patent Document 1 is not only suitable for mass production in that pore formation is performed by TEM, but also because Graphene is vulnerable to damage by reactive ion etching, it is put into a mass production process. Is difficult.
  • Non-Patent Document 2 aims to fabricate a storage or graphene transistor by densely integrating or randomly patterning a portion shaped by a bead. Therefore, in the first place, it is not in a form that can be applied to a direct-measurement-type DNA sequencer that requires measurement with a sensor provided with one pore.
  • An object of the present invention is to provide a biomolecule characteristic analysis chip that can be applied to a direct-measurement-type DNA sequencer, in which an arbitrary number of pores are created for a target film, and a method for manufacturing the same. There is.
  • the substrate has an opening, a first film formed on the substrate, and the first film on the substrate.
  • a biomolecular property analysis chip comprising: a second film formed above the first film; and a third film disposed at the position of the opening and having a pore, wherein the second film Forms a bank portion surrounding the third membrane, and the pore of the third membrane has a crater structure in which the lowest diameter of the pore is smaller than the largest diameter of the pore.
  • At least a first film and a second film are formed on a substrate, and thereafter, a recess surrounded by the second film is formed.
  • a method for manufacturing a biomolecule characterization chip comprising: That.
  • FIG. 6B is a top view of FIG. 6A. It is a figure which shows the correlation of a pore diameter and bead diameter, and is sectional drawing of the nanopore thin film which removed the spherical body.
  • FIG. 6C is a top view of FIG. 6C. It is a figure which shows the whole image of the biopolymer characteristic analysis chip
  • the “nanopore” described in each example is a nano-sized hole provided in the thin film and penetrates the front and back of the thin film.
  • the thin film is mainly formed from an inorganic material. Examples of the thin film material include SiN, SiO 2 , Graphene, Graphite, and Si. In addition, the thin film material may include an organic substance, a polymer material, and the like.
  • a thin film having nanopores does not have a support film above and below, and has a structure floating in the air (free-standing membrane).
  • FIG. 1 is a diagram showing an example of the configuration of a biological polymer characteristic analysis device, and shows a base sequence reading mechanism using a biological polymer characteristic analysis chip.
  • a biological polymer characteristic analyzer for example, DNA analyzer
  • the partition body 101 is provided with a biopolymer characteristic analysis chip (hereinafter referred to as a nanopore device) 200 having nanopores.
  • the two tanks 107A and 107B are filled with the electrolyte solution 102.
  • the two tanks 107A and 107B are electrically connected by an Ag / AgCl electrode 103 and a power source 104.
  • the DNA 106 in the solution migrates from one tank 107A to the opposite tank 107B through the nanopore of the nanopore device 200.
  • the base sequence is read from the current value that changes when the DNA 106 passes through the nanopore of the nanopore device 200.
  • the current value is amplified by the amplifier 108 and recorded in a PC (Personal Computer) 109 via an ADC (not shown).
  • FIG. 2A and 2B are enlarged views of the nanopore device 200.
  • the nanopore device 200 includes a nanopore 201, a thin film (nanopore thin film) 202 on which nanopores are formed, a second film (bank portion) 203 formed above the nanopore thin film, and a substrate 204 that supports the nanopore thin film 202. Is provided.
  • the upper and lower tanks 107A and 107B of the nanopore device 200 are filled with the electrolyte solution 102 (see FIG. 1) and a voltage is applied vertically through the nanopore device 200, the pore diameter of the nanopore 201 derived from ions in the electrolyte solution 102 is obtained. A corresponding current is detected.
  • FIG. 2A shows an example where the DNA 106 passes through the nanopore 201.
  • the flow of ions is hindered, so that the current value decreases by the volume of the DNA 106 in the nanopore 201.
  • FIG. 2B is a schematic diagram showing the structure of the nanopore 201.
  • the nanopore 201 is formed using a sphere (bead) described below.
  • the shape of the nanopore 201 takes a crater structure as indicated by a bead locus 205.
  • FIG. 3 is an example of a current change for each base species read by applying a voltage at the electrode 103. As shown in the sequence reading example 300, different current values are detected for each of the four types of bases.
  • 4A to 4C show an example of a nanopore thin film formation process.
  • the nanopore in this example is manufactured by preventing film formation by an obstacle.
  • 4A to 4C show extracted processes around the thin film when the pore is formed.
  • the obstacle is, for example, a sphere (bead).
  • the obstacle may have another shape.
  • the nanopore is made of a sphere, as shown in FIG. 2B, the nanopore 201 formed in the nanopore thin film 202 has a crater structure as indicated by a bead locus 205.
  • the nanopore thin film 202 is formed of two or more atomic layers.
  • the crater structure means a structure in which the lowest diameter in the pore is smaller than the largest diameter of the pore.
  • FIG. 4A to 4C show a process in the case where the film thickness of the nanopore thin film 202 is equal to or less than the bead radius.
  • a sphere (bead) 401 is disposed on the first film 402 (FIG. 4A).
  • the thin film 202 is formed on the first film 402.
  • the film thickness of the thin film 202 is equal to or less than the bead radius (FIG. 4B).
  • the sphere 401 is removed by list-off (FIG. 4C).
  • 4B indicates the diameter d of the sphere 401.
  • the nanopore has a structure in which the lowest diameter r1 in the pore is smaller than the maximum pore diameter r2.
  • FIG. 5A to FIG. 5C show the process when the thickness of the nanopore thin film is not less than the bead radius and not more than the bead diameter.
  • the sphere 401 is disposed on the first film 402 (FIG. 5A).
  • the thin film 202 is formed on the first film 402.
  • the film thickness of the thin film 202 is not less than the bead radius and not more than the bead diameter (FIG. 5B).
  • the sphere 401 is removed by list-off (FIG. 5C).
  • FIGS. 6A to 6D are diagrams showing the correlation between the pore diameter and the bead diameter. Note that in FIGS. 6A to 6D, the thin film has a structure manufactured using graphene.
  • FIG. 6A of FIG. 6A is a cross-sectional view of a thin film immediately after film formation with beads arranged.
  • Reference numeral 501 in FIG. 6B is a top view of 500.
  • 502 of FIG. 6C is sectional drawing of the thin film after removing the bead used for film-forming.
  • Reference numeral 503 in FIG. 6D is a top view of 502.
  • reference numeral 505 denotes a thin film on which nanopores are formed (that is, corresponding to the thin film 202 in FIG. 4), and reference numeral 506 denotes a first film.
  • Reference numeral 504 denotes beads arranged before the thin film 505 is formed.
  • the nanopores produced in this example are not formed into a thin film only at a site where an obstacle (bead 504) is present, but are formed in a state of following the bead 504. Therefore, there is a correlation between the target pore diameter r, the diameter d of the beads 504, and the interatomic distance ⁇ between the base (first film 506) and the film forming material (thin film 505). Can be described.
  • the bond distance between Cu and carbon is 0.3 nm, it is only necessary to use 1.98 nm beads when forming a pore of 1.4 nm.
  • the nanopore is formed with a size of 1.4 to 1.41 nm including the case where the size of the spherical obstacle is 0.3 nm or less and the contact with Cu fluctuates.
  • the bead diameter is about 2 to 4 nm.
  • the bead diameter is about 4 nm to 25 nm.
  • the bead diameter is about 25 to 100 nm.
  • FIG. 7 shows an overall image of a nanopore device having pores formed by the above film forming method and pore diameter creation method.
  • a pore having the crater structure described above or an inverted conical pore is formed.
  • the nanopore device 200 includes a substrate 204, a first film 402, a second film 203, and a nanopore thin film (third film) 202 having nanopores 201.
  • An opening 209 is formed in the substrate 204, and the first film 402 and the second film 203 are stacked on the substrate 204.
  • the nanopore thin film 202 is disposed in a state where there is nothing up and down at the position of the opening 209 of the substrate 204.
  • the nanopore thin film 202 is supported by the first film 402 in this example.
  • a film made of the same material as the nanopore thin film may be disposed between the first film and the second film, and the film and the nanopore thin film may be connected.
  • the second film 203 forms a bank part surrounding the nanopore thin film 202, and the upper surface of the second film 203 is higher than the upper surface of the nanopore thin film 202.
  • the upper and lower surfaces of the nanopore thin film 202 are filled with the electrolyte solution, and a voltage is applied in this state, and the characteristics are analyzed from a current change that occurs when the biomolecule passes through the nanopore 201.
  • One embodiment of the present invention is to control the number of nanopores 201 formed in the nanopore thin film 202 by controlling the number of spheres arranged according to the size of the structure formed in the second film 203. .
  • the size D of the recess formed in the second film 203 is indicated by 601.
  • the pore diameter r has the following relationship with the width D (601) of the recess surrounded by the bank portion.
  • is the interatomic distance between the nanopore thin film and the base used to form the thin film.
  • the width D 1 of the recess surrounded by the bank (D in FIG. 7). (Corresponding to 2) is preferably formed to be 1.2 d or less with respect to the diameter d of the sphere regardless of the height (D 1 ⁇ 1.2 d).
  • the structure of the recess surrounded by the bank is a shape other than a square, for example, the shape of the recess surrounded by the bank is
  • the maximum width D 2 (diameter in the case of a circle) in plan view is preferably smaller than 2d with respect to the diameter d of the sphere (D 2 ⁇ 2d).
  • the size of the nanopore 201 is adjusted to the effective diameter of the molecule to be measured.
  • the size of the nanopore 201 may be 1.4 nm.
  • the nanopore thin film 202 is applied when the nanopore 201 is formed, and needs to be formed with a film thickness equal to or less than the diameter of the beads 401 used when the nanopore 201 is produced.
  • the pore diameter r is the width D of the recess surrounded by the bank, the height L of the bank (for example, the height from the upper surface of the first film 402 to the upper surface of the second film 203), the nanopore thin film
  • D in FIG. 7 is defined according to the pore diameter as described above.
  • the first film 402 is a base material for forming a uniform thin film, and the material is defined according to the nanopore thin film 202.
  • a film made of the same material as the nanopore thin film 202 may be formed between the second film 203 and the first film 402. This increases the strength of the nanopore thin film 202.
  • the second film 203 and the nanopore thin film 202 may be made of the same material.
  • a first embodiment of a process for producing the nanopore structure will be described with reference to FIGS. 8A to 8F.
  • the first film 402 and the second film 203 are formed on the substrate 204, and the first process of patterning the second film 203 with a size in which only one bead is fixed is performed (810).
  • the second film 203 is patterned to form a recess 206 surrounded by the second film 203. In this recess 206, a part of the first film 402 is exposed.
  • a second step of placing the spherical body 401 such as a bead in the recess 206 is performed (811). At this time, the film material used in the next process is formed on the first film 402 which is a base material, but is not formed on the sphere 401. Material is selected.
  • a third step of forming a thin film (third film) 202 in the recess 206 is performed (812). At this time, since the thin film 202 is not formed on the sphere 401, the thin film 202 is not formed on the first film 402 at a site blocked by the sphere 401.
  • a fourth step of removing the sphere 401 is performed (813). At this time, since the thin film 202 is not formed on the sphere 401, the sphere 401 can be removed by wrist-off. After the ball 401 is lifted off, a fifth step of etching a part of the substrate 204 corresponding to the position of the recess 206 (a portion of the substrate 204 on the same vertical axis as the recess 206) is performed (814). At this time, the portion of the first film 402 corresponding to the position of the recess 206 is exposed. At this time, the surface pattern is protected by a resin material 207 such as Protech.
  • a sixth step of etching the first film 402 immediately below the resin material 207 and the thin film (third film) 202 is performed (815).
  • a pore is formed at the contact point between the sphere 401 and the first film 402 in the thin film 202.
  • a thin film having a concave structure having nanopores is completed.
  • ⁇ First step (810)> Prior to the process of forming the bank portion made of the second film 203, the first film 402 is formed on the substrate 204.
  • the first film 402 becomes the base of the thin film 202 in the third step (812).
  • graphene growth is performed on a single crystal with low surface roughness.
  • a substrate with a small surface roughness can be obtained by previously forming a thin film by atomic layer deposition, molecular vapor deposition, or epitaxial growth.
  • the second film 203 is formed on the first film 402, a part of the second film 203 is removed by dry etching, and the first film 402 is partially exposed.
  • the size of the concave portion (shaved portion) 206 produced in the second film 203 and the film thickness of the second film 203 are the same as the size of the obstacle (bead 401) spread in the concave portion surrounded by the bank portion in the next step. Design accordingly.
  • a film is also formed on the back surface of the substrate 204 to form an opening (210 in FIG. 8A) that serves as a hard mask for Si etching.
  • the opening position is on the same vertical axis as the cutting position of the second film 203 on the surface.
  • membrane 402 When exposing the 1st film
  • One is to perform hydrogen annealing after dry etching.
  • the surface of a sample support substrate used in a scanning tunneling microscope or an atomic force microscope needs to be flat. Therefore, a flat surface is obtained by hydrogen annealing a single crystal of a material used for the support substrate before fixing the sample.
  • Another method is to use a lift-off method for forming the second film 203.
  • the first film 402 is flattened by hydrogen annealing in advance, and a resin film is formed.
  • patterning is performed so that only the planned opening position remains, and a second film 203 is formed.
  • the resin is melted with a resin film solvent, and formation of the bank portion made of the second film 203 is achieved in a state where the target opening is protected. The flow using this method will be described later.
  • an obstacle (sphere 401) having a size corresponding to the target pore diameter is spread over the structure (hereinafter referred to as a recess) produced in the first step (810).
  • a solution dissolved in a solution is used as a coating agent.
  • concentration of the obstruction contained in a coating agent is a density
  • the bead (sphere 401) is fixed to the recess 206 by pulling it up while tilting or spraying the coating agent on the wafer surface by pulse injection.
  • the blocking current ensures that the acquired signal is derived from one molecule by having one pore for the thin film 202. Therefore, there is no influence on the signal due to the displacement of the pore position in the thin film 202. For this reason, the fixing position of the beads arranged in the concave portion 206 surrounded by the bank portion is not limited as long as the beads are fixed at the bottom portion of the concave portion 206. At this time, the beads are fixed to the bottom of the recess 206 by electrostatic interaction.
  • the sphere 401 is made magnetic and the substrate 204 is arranged on a magnetic member, so that the magnetic force interaction causes There is a method of drawing the sphere 401 to the bottom of the recess 206.
  • the modifying molecule to the bottom of the recess 206 and the surface of the sphere 401, it is possible to fix the molecule by hydrogen bond, covalent bond, ionic bond, or the like.
  • a thin film (third film) 202 is formed in the recess 206 with a material that can be selectively formed on the first film 402 and that is not formed on the obstacle (sphere 401).
  • CVD growth using CH 4 gas is used for the Cu (100) surface.
  • the side surface of the obstacle and the first film 402 are single crystals and have different crystal orientation planes.
  • a third film is formed on the first film 402 while avoiding the obstacle.
  • Examples of a single crystal material on which graphene growth occurs include Ru and Ir.
  • selective growth of graphene by CH 4 with respect to Al 2 O 3 and SiO has been announced, and similar effects can be obtained by using Al 2 O 3 for the first film 402 and SiO for the obstacle.
  • ⁇ Fourth step (813)> when only the obstacle (sphere 401) is lifted off, a thin film (third film) 202 shaped like an obstacle remains.
  • a solution used for lift-off a solution capable of dissolving the obstacle without cutting the third film is used.
  • a solution having selectivity for the third membrane and the obstacle is used.
  • the second film 203 is graphene and the first film 402 is Cu
  • a chromium etching solution may be used.
  • hydrofluoric acid is preferably used.
  • the thin film (third film) 202 on which nanopores are formed is covered with a resin material 207 such as Protech, and the Si layer on the back surface of the substrate 204 is etched. Thereby, the portion of the first film 402 corresponding to the position of the recess 206 is exposed.
  • the etching of Si is achieved by immersing in an etching solution containing KOH heated to 85 ° C. or TMAH or NH 2 OH having a corrosive action on etching of silicon at 85 ° C. for a long time. At this time, since the corrosive action may act on the surface material other than Si, the surface pattern is protected by the resin material 207 such as Protech.
  • the nanopore thin film 202 is obtained by etching the first film 402 from the back side of the substrate 204.
  • a selective solution is used for the nanopore thin film 202 and the first film 402.
  • a chromium etchant may be used as in the fourth step (813).
  • hydrofluoric acid is preferably used.
  • FIGS. 9A to 9I are flowcharts for creating a nanopore structure in the second embodiment, and show a flow for creating a nanopore structure when the method of forming the second film 203 is a lift-off type.
  • 9A to 9I the same steps as those in FIGS. 8A to 8F are denoted by the same reference numerals, and description thereof is omitted.
  • the steps of FIGS. 9A to 9C will be described.
  • the first film 402 is flattened in advance by hydrogen annealing (801).
  • a resin (protective film) 208 is formed on the first film 402 (802).
  • the resin 208 is patterned so that only the planned opening position (the portion where the recess is to be formed) of the second film 203 formed in the next step remains (803).
  • a second film 203 is formed, and the resin 208 is melted with a resin film solvent.
  • membrane 203 is achieved in the state in which the position of the target opening part was protected by the resin 208.
  • the bank portion of the second film 203 is formed on the first film 402, and the first film 402 is partially exposed (FIG. 9D).
  • FIGS. 10A to 10H are flowcharts for creating the nanopore structure in the third embodiment. 10A to 10H, the same steps as those in FIGS. 8A to 8F and FIGS. 9A to 9I are denoted by the same reference numerals, and description thereof is omitted.
  • the steps of FIGS. 10A to 10F are the same as those of FIGS. 9A to 9F, but thereafter, the back surface of the Si layer on the back surface of the substrate 204 is etched without removing the sphere 401 (820). Thereafter, etching is performed with a solution capable of simultaneously dissolving the sphere 401 and the first film 402 (821). Through the above steps, a thin film having a concave structure having nanopores is completed.
  • FIG. 11A to FIG. 11I are flowcharts for creating a nanopore structure in the fourth embodiment.
  • the same steps as those in FIGS. 9A to 9I are denoted by the same reference numerals, and the description thereof is omitted.
  • the same material as that of the thin film 202 is disposed below the bank made of the second film 203.
  • the process of FIGS. 11A to 11C is the same process as FIGS. 9A to 9C, but after that, a film of the same material as the nanopore thin film (third film) (fourth film) is formed on the first film 402. ) 202 is formed. Thereafter, a second film 203 is formed on the thin film 202 (830).
  • the obstacle (sphere 401) is spread over the structure (concave 206) produced in the step 830 (831).
  • a thin film (third film) 202 is formed in the recess 206 surrounded by the bank (832). Thereafter, annealing is performed to connect the thin film 202 below the bank portion made of the second film 203 and the thin film (third film) 202 formed in the concave portion, and these films are rearranged.
  • the sphere 401 is lifted off (833). Thereafter, a part of the back surface of the substrate 204 on the same vertical axis of the recess in the bank is etched to expose a part of the first film 402 (834). Finally, the first film 402 is etched to form a thin film having a concave structure having nanopores (835).
  • the size corresponding to the size and number of beads used in the next step is formed around the thin film so that an arbitrary number of pores are formed in the target thin film.
  • the bank portion (second film 203) is formed. Thereby, it is possible to provide a biomolecule characteristic analysis chip having an arbitrary number of pores for the target thin film.
  • the yield at the etching start site is transferred to the formation yield of the minimum pore diameter.
  • the bead diameters are aligned.
  • the biomolecule characteristic analysis chip manufactured from the above-described embodiment only the portion that achieves the minimum pore diameter effectively becomes a thin film, so that the film strength can be maintained. Furthermore, since the entire thin film does not become a very thin film, it is possible to reduce noise during the measurement of the blocking current.
  • this invention is not limited to the Example mentioned above, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment, and the configuration of another embodiment may be added to the configuration of one embodiment.
  • Biological polymer characteristic analyzer (DNA analyzer) 101: Partition body 102: Electrolyte solution 103: Electrode 104: Power source 105: Injection port 106: Biopolymer (DNA) 107A, 107B: Tank 108: Amplifier 109: PC 200: Biopolymer characteristic analysis chip (nanopore device) 201: Nanopore 202: Thin film (third film, fourth film) 203: Second film (bank portion) 204: Substrate 205: Bead trajectory (mold trace) 206: Recess 207: Resin material 208: Resin (protective film) 209: Opening 210: Opening 300: Example of characteristic analysis 401: Sphere (bead) 402: first film 403: sphere diameter 404: maximum pore diameter 405 formed by the sphere: minimum pore diameter 406 formed by the sphere: thin film thickness 504: sphere (bead) 505: Thin film (nanopore thin film) 506: First film 601: Wi

Abstract

This chip for analyzing biomolecular characteristics comprises a substrate having an opening, a first membrane formed atop the substrate, a second membrane formed atop the substrate higher than the first membrane, and a third membrane disposed at the location of the opening and having a pore. The second membrane forms a bank portion that surrounds the periphery of the third membrane, and the pore of the third membrane has a crater structure in which the diameter at the lowest point of the pore is smaller than the largest diameter of the pore.

Description

生体分子特性解析チップ及びその製造方法Biomolecule characterization chip and manufacturing method thereof
 本発明は、生体分子特性解析チップ構造及びその製造方法に関し、特に、測定対象である生体分子と同一またはそれに近いサイズのナノポアを有する生体分子特性解析チップ構造及びそのナノポアを作製する技術に関する。 The present invention relates to a biomolecule characterization chip structure and a manufacturing method thereof, and more particularly, to a biomolecule characterization chip structure having a nanopore having the same size as or close to that of a biomolecule to be measured and a technique for producing the nanopore.
 次世代DNAシーケンサとして、伸長反応や蛍光ラベルは行わずに、DNAの塩基配列を電気的に直接計測する手法が注目を浴びている。直接計測法にはいくつかの手法が提案されているが、その一つに封鎖電流方式がある。薄膜に透過電子顕微鏡などによって数nmのポア(ナノポア)を作製し、その薄膜の両側に電解質溶液を満たした液槽を設ける。それぞれの液槽に電極を設け、これらの電極間に電圧をかけると、ナノポアを通してイオン電流が流れる。イオン電流は一次近似としてナノポアの体積に比例する。DNAがナノポアを通過する際に、DNAがナノポアを封鎖し、イオンが通過できる有効体積が減少するため、イオン電流が減少する。この減少量を封鎖電流と呼ぶ。封鎖電流の大きさを元に、DNAの1本鎖と2本鎖との差異や、塩基の種類を判別する。 As a next-generation DNA sequencer, a method of directly measuring DNA base sequence electrically without performing an extension reaction or a fluorescent label is attracting attention. Several methods have been proposed for the direct measurement method, one of which is a blocking current method. A few nm pore (nanopore) is prepared on the thin film by a transmission electron microscope or the like, and a liquid tank filled with the electrolyte solution is provided on both sides of the thin film. When an electrode is provided in each liquid tank and a voltage is applied between these electrodes, an ionic current flows through the nanopore. The ion current is proportional to the volume of the nanopore as a first order approximation. As DNA passes through the nanopore, the DNA blocks the nanopore, reducing the effective volume through which ions can pass, thus reducing the ionic current. This amount of decrease is called the blocking current. Based on the magnitude of the blocking current, the difference between the single strand and double strand of DNA and the type of base are determined.
 上記方式を採用したセンサが、DNAシーケンサとして機能するためには、DNA分子直径程度に形成されたナノポアおよび一塩基サイズの膜厚を有する薄膜が必要である。封鎖電流方式ではナノポアを通過するイオンを測定対象物が封鎖した量で物性を検出するため、DNAの塩基識別の場合、塩基種間の違いは、数pAから10pA程度の電流差として現れる。そのため、SN比を高く保つ必要がある。また、封鎖電流として記録される体積変化量から塩基種を識別するため、封鎖量に寄与する分子の領域が一塩基サイズである必要がある。 In order for a sensor employing the above system to function as a DNA sequencer, a nanopore formed to have a diameter of about a DNA molecule and a thin film having a single base film thickness are required. In the blocking current method, the physical properties are detected by the amount of ions that pass through the nanopore blocked by the measurement target. Therefore, in the case of DNA base identification, the difference between base species appears as a current difference of about several pA to 10 pA. Therefore, it is necessary to keep the SN ratio high. In addition, in order to distinguish the base species from the volume change recorded as the blocking current, the region of the molecule that contributes to the blocking amount needs to be a single base size.
 ポア径がDNAサイズであることは、副次的にDNAの運動制御の役割も果たす。ナノポアがDNA直径程度になると、DNAとナノポア内壁との相互作用が大きくなるためである。また、DNA中の一塩基の情報をセンシングするために、DNAは高次構造がほぐれた状態、さらには引き伸ばされた状態となる必要があり、DNA直径サイズに形成されたナノポアはそれらを実現する。 The fact that the pore diameter is DNA size also plays a role in controlling DNA movement. This is because when the nanopore is about the diameter of DNA, the interaction between the DNA and the inner wall of the nanopore increases. In addition, in order to sense single-base information in DNA, DNA needs to be in a state in which higher-order structure is loosened and further stretched, and nanopores formed in the DNA diameter size realize them. .
 現在主流となっている一塩基分解能を達成するナノポア形成法の一つは、Graphene膜を作製し、大きめに形成されたポアの上部に貼り付け、TEMによりポアを形成する手法である(非特許文献1)。一方で、用途は異なるが、Grapheneやその他材料の選択成長性を用いたポア状欠陥の形成法が提案されている。下地材料に対して膜成長するが、ビーズ表面には膜成長しないような選択成長が起きる材料を用いて、下地上にビーズを蒔いた状態で成膜を行う。このときビーズが接触した下地上には膜成長が起きないことから、膜中にビーズ型のポアを形成する手法が提案されている(非特許文献2)。 One nanopore formation method that achieves single-base resolution, which is currently the mainstream, is a method in which a Graphene film is prepared and attached to the top of a large pore, and the pore is formed by TEM (non-patented). Reference 1). On the other hand, a method for forming pore-like defects using selective growth of Graphene and other materials has been proposed, although the applications are different. A film is formed with a bead on the base, using a material that causes selective growth so that the film grows on the base material but does not grow on the bead surface. At this time, since no film growth occurs on the substrate in contact with the beads, a method for forming a bead-type pore in the film has been proposed (Non-patent Document 2).
 しかしながら、非特許文献1の従来技術は、TEMによるポア形成を行っているという点で量産に向かない作製法であるばかりか、Grapheneが反応性イオンエッチングによるダメージに弱いため、量産プロセスに入れ込むことが困難である。 However, the conventional technique of Non-Patent Document 1 is not only suitable for mass production in that pore formation is performed by TEM, but also because Graphene is vulnerable to damage by reactive ion etching, it is put into a mass production process. Is difficult.
 また、非特許文献2の従来技術は、ビーズにかたどられた部分を密に集積加工したり、ランダムにパターニングしたりすることでストレージやグラフェンのトランジスタを作製することを目的としている。したがって、そもそも、一つのセンサに一つのポアを設ける形態で測定する必要のある直接計測方式のDNAシーケンサに適応できる形にはなっていない。 Further, the prior art of Non-Patent Document 2 aims to fabricate a storage or graphene transistor by densely integrating or randomly patterning a portion shaped by a bead. Therefore, in the first place, it is not in a form that can be applied to a direct-measurement-type DNA sequencer that requires measurement with a sensor provided with one pore.
 本発明の目的は、直接計測方式のDNAシーケンサに適応できる生体分子特性解析チップであって、目的の膜に対して任意のポア数が作成された生体分子特性解析チップ及びその製造方法を提供することにある。 An object of the present invention is to provide a biomolecule characteristic analysis chip that can be applied to a direct-measurement-type DNA sequencer, in which an arbitrary number of pores are created for a target film, and a method for manufacturing the same. There is.
 上記課題を解決する為に、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例をあげるならば、開口部を有する基板と、前記基板上に成膜された第一の膜と、前記基板上に前記第一の膜より上側に成膜された第二の膜と、前記開口部の位置に配置され、ポアを有する第三の膜と、を備える生体分子特性解析用チップであって、前記第二の膜は、前記第三の膜の周囲を囲む土手部を形成しており、前記第三の膜の前記ポアは、前記ポアにおける最下の径が前記ポアの最大径よりも小さいようなクレータ構造を有する、生体分子特性解析用チップが提供される。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. To give an example, the substrate has an opening, a first film formed on the substrate, and the first film on the substrate. A biomolecular property analysis chip comprising: a second film formed above the first film; and a third film disposed at the position of the opening and having a pore, wherein the second film Forms a bank portion surrounding the third membrane, and the pore of the third membrane has a crater structure in which the lowest diameter of the pore is smaller than the largest diameter of the pore. A chip for analyzing biomolecule characteristics is provided.
 また、他の例によれば、基板に少なくとも第一の膜及び第二の膜を成膜し、その後、前記第二の膜に周囲が囲まれた凹部を形成し、前記第一の膜の一部を露出させる第一の工程と、障害物を含む溶液を前記基板に浸すまたは吹きつけることにより、前記凹部に前記障害物を配置する第二の工程と、前記障害物が配置された前記凹部内に第三の膜を成膜する第三の工程と、前記障害物を取り除く第四の工程と、前記基板の裏面をエッチングし、前記凹部の位置に対応する前記第一の膜の部分を露出させる第五の工程と、前記第三の膜の直下にある前記第一の膜をエッチングすることにより、前記第三の膜において前記障害物と前記第一の膜の接点の位置にポアが形成される第六の工程と、を含む生体分子特性解析用チップの製造方法が提供される。 According to another example, at least a first film and a second film are formed on a substrate, and thereafter, a recess surrounded by the second film is formed. A first step of exposing a portion; a second step of placing the obstacle in the recess by immersing or spraying a solution containing the obstacle on the substrate; and the obstacle disposed on the substrate. A third step of forming a third film in the recess; a fourth step of removing the obstacle; and etching the back surface of the substrate to correspond to the position of the first film. And etching the first film directly under the third film to position the pores at the contact point between the obstacle and the first film. And a method for manufacturing a biomolecule characterization chip, comprising: That.
 本発明によれば、目的の膜に対して任意のポア数が作成された生体分子特性解析チップ構造を提供することができる。 According to the present invention, it is possible to provide a biomolecule characteristic analysis chip structure in which an arbitrary number of pores is created for a target film.
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。 Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations and effects other than those described above will be clarified by the description of the following examples.
生体ポリマ特性解析装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a biological polymer characteristic analyzer. 生体ポリマ特性解析チップの拡大図の一例を示す図である。It is a figure which shows an example of the enlarged view of a biopolymer characteristic analysis chip | tip. 生体ポリマ特性解析チップの拡大図の一例を示す図である。It is a figure which shows an example of the enlarged view of a biopolymer characteristic analysis chip | tip. 生体ポリマ特性解析チップによって取得される配列読取例である。It is an example of the sequence reading acquired by the biopolymer characteristic analysis chip. ナノポア薄膜の形成プロセスの一例である。It is an example of the formation process of a nanopore thin film. ナノポア薄膜の形成プロセスの一例である。It is an example of the formation process of a nanopore thin film. ナノポア薄膜の形成プロセスの一例である。It is an example of the formation process of a nanopore thin film. ナノポア薄膜の形成プロセスの別の例である。It is another example of the formation process of a nanopore thin film. ナノポア薄膜の形成プロセスの別の例である。It is another example of the formation process of a nanopore thin film. ナノポア薄膜の形成プロセスの別の例である。It is another example of the formation process of a nanopore thin film. ポア径とビーズ径の相関を示す図であり、ナノポア薄膜と球体の断面図である。It is a figure which shows the correlation of a pore diameter and bead diameter, and is sectional drawing of a nanopore thin film and a sphere. 図6Aの上面図である。FIG. 6B is a top view of FIG. 6A. ポア径とビーズ径の相関を示す図であり、球体を取り除いたナノポア薄膜の断面図である。It is a figure which shows the correlation of a pore diameter and bead diameter, and is sectional drawing of the nanopore thin film which removed the spherical body. 図6Cの上面図である。FIG. 6C is a top view of FIG. 6C. 本発明における生体ポリマ特性解析チップの全体像を示す図である。It is a figure which shows the whole image of the biopolymer characteristic analysis chip | tip in this invention. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第1実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 1st Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第2実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 2nd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第3実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 3rd Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example. 第4実施例におけるナノポア構造を作成するフローである。It is a flow which creates the nanopore structure in 4th Example.
 以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The accompanying drawings show specific embodiments in accordance with the principle of the present invention, but these are for the understanding of the present invention, and are never used to interpret the present invention in a limited manner. is not.
 各実施例で述べる「ナノポア」とは、薄膜に設けたナノサイズの孔であり、薄膜の表裏を貫通する。薄膜は主に無機材料から形成される。薄膜材料の例としては、SiN、SiO、Graphene、Graphite、Siなどが挙げられる。薄膜材料は、他に、有機物質、高分子材料などを含むこともできる。ナノポアを有する薄膜(ナノポア薄膜)は、上下に支持膜を持たずに、宙に浮いた構造となっている(free-standing membrane)。 The “nanopore” described in each example is a nano-sized hole provided in the thin film and penetrates the front and back of the thin film. The thin film is mainly formed from an inorganic material. Examples of the thin film material include SiN, SiO 2 , Graphene, Graphite, and Si. In addition, the thin film material may include an organic substance, a polymer material, and the like. A thin film having nanopores (nanopore thin film) does not have a support film above and below, and has a structure floating in the air (free-standing membrane).
 はじめに、本発明のナノポア作製プロセスを用いて作製するナノポアデバイスを用いた生体ポリマ特性解析装置を説明する。図1は、生体ポリマ特性解析装置の構成の一例を示す図であり、生体ポリマ特性解析チップによる塩基配列読取機構を示す。 First, a biopolymer characteristic analysis apparatus using a nanopore device produced using the nanopore production process of the present invention will be described. FIG. 1 is a diagram showing an example of the configuration of a biological polymer characteristic analysis device, and shows a base sequence reading mechanism using a biological polymer characteristic analysis chip.
 図1に示すように、生体ポリマ特性解析装置(例えば、DNA解析装置)100は、仕切り体101により分けられた二つの槽107A、107Bを備える。仕切り体101には、ナノポアを有する生体ポリマ特性解析チップ(以下、ナノポアデバイスの呼ぶ)200が設置されている。二つの槽107A、107Bには、電解質溶液102が満たされている。二つの槽107A、107Bは、Ag/AgCl電極103及び電源104で電気的に接続されている。 As shown in FIG. 1, a biological polymer characteristic analyzer (for example, DNA analyzer) 100 includes two tanks 107A and 107B separated by a partition body 101. The partition body 101 is provided with a biopolymer characteristic analysis chip (hereinafter referred to as a nanopore device) 200 having nanopores. The two tanks 107A and 107B are filled with the electrolyte solution 102. The two tanks 107A and 107B are electrically connected by an Ag / AgCl electrode 103 and a power source 104.
 DNA溶液を注入口105から注入すると、液中のDNA106は、ナノポアデバイス200のナノポアを通して、一方の槽107Aから反対側の槽107Bに泳動する。塩基配列は、DNA106がナノポアデバイス200のナノポアを通過する際に変化する電流値から読み取られる。電流値は、アンプ108で増幅されて、ADC(図示せず)を介してPC(Personal Computer)109に記録される。 When the DNA solution is injected from the injection port 105, the DNA 106 in the solution migrates from one tank 107A to the opposite tank 107B through the nanopore of the nanopore device 200. The base sequence is read from the current value that changes when the DNA 106 passes through the nanopore of the nanopore device 200. The current value is amplified by the amplifier 108 and recorded in a PC (Personal Computer) 109 via an ADC (not shown).
 図2A及び図2Bは、ナノポアデバイス200の拡大図を示す。ナノポアデバイス200は、ナノポア201と、ナノポアが形成された薄膜(ナノポア薄膜)202と、ナノポア薄膜の上側に形成された第二の膜(土手部)203と、ナノポア薄膜202を支持する基板204とを備える。ナノポアデバイス200の上下の槽107A、107Bに電解質溶液102(図1参照)を満たし、ナノポアデバイス200を介して上下に電圧を印加すると、電解質溶液102中のイオン由来の、ナノポア201のポア径に応じた電流が検出される。 2A and 2B are enlarged views of the nanopore device 200. FIG. The nanopore device 200 includes a nanopore 201, a thin film (nanopore thin film) 202 on which nanopores are formed, a second film (bank portion) 203 formed above the nanopore thin film, and a substrate 204 that supports the nanopore thin film 202. Is provided. When the upper and lower tanks 107A and 107B of the nanopore device 200 are filled with the electrolyte solution 102 (see FIG. 1) and a voltage is applied vertically through the nanopore device 200, the pore diameter of the nanopore 201 derived from ions in the electrolyte solution 102 is obtained. A corresponding current is detected.
 図2Aは、DNA106がナノポア201を通過する例を示す。DNA106がナノポア201を通過すると、イオンの流れが妨げられるため、電流値は、ナノポア201中のDNA106の体積分だけ減少する。図2Bは、ナノポア201の構造を示す概略図である。ナノポア201は、以下で説明する球体(ビーズ)を用いて形成される。ナノポア201の形状は、ビーズ軌跡205で示されるようなクレータ構造を取る。 FIG. 2A shows an example where the DNA 106 passes through the nanopore 201. When the DNA 106 passes through the nanopore 201, the flow of ions is hindered, so that the current value decreases by the volume of the DNA 106 in the nanopore 201. FIG. 2B is a schematic diagram showing the structure of the nanopore 201. The nanopore 201 is formed using a sphere (bead) described below. The shape of the nanopore 201 takes a crater structure as indicated by a bead locus 205.
 DNA解析装置100では、塩基種毎の電流値の変化量の違いから塩基識別を行う。図3は、電極103で電圧を印加することにより読み取られる塩基種ごとの電流変化の例である。配列読取例300に示されるように、4種類の塩基ごとに異なる電流値が検出される。 In the DNA analysis apparatus 100, base identification is performed from the difference in the amount of change in the current value for each base type. FIG. 3 is an example of a current change for each base species read by applying a voltage at the electrode 103. As shown in the sequence reading example 300, different current values are detected for each of the four types of bases.
 次に、本実施例におけるナノポアの構造について説明する。図4A~図4Cは、ナノポア薄膜の形成プロセスの一例である。本実施例におけるナノポアは、障害物によって成膜を妨げられることによって作製される。図4A~図4Cは、ポアが形成される際の、薄膜周辺のプロセスを抜き出して示している。 Next, the structure of the nanopore in this example will be described. 4A to 4C show an example of a nanopore thin film formation process. The nanopore in this example is manufactured by preventing film formation by an obstacle. 4A to 4C show extracted processes around the thin film when the pore is formed.
 障害物は、例えば、球体(ビーズ)である。なお、障害物は、他の形状でもよい。ナノポアが球体で作製された場合は、図2Bで示したように、ナノポア薄膜202中に形成されたナノポア201は、ビーズ軌跡205で示されるようなクレータ構造となる。ここで、ナノポア薄膜202は、2層以上の原子層で成膜されている。この場合、クレータ構造とは、ポアにおける最下の径がポアの最大径よりも小さい構造を意味する。 The obstacle is, for example, a sphere (bead). The obstacle may have another shape. When the nanopore is made of a sphere, as shown in FIG. 2B, the nanopore 201 formed in the nanopore thin film 202 has a crater structure as indicated by a bead locus 205. Here, the nanopore thin film 202 is formed of two or more atomic layers. In this case, the crater structure means a structure in which the lowest diameter in the pore is smaller than the largest diameter of the pore.
 図4A~図4Cは、ナノポア薄膜202の膜厚がビーズ半径以下である場合のプロセスを示す。まず、第一の膜402上に球体(ビーズ)401が配置される(図4A)。次に、第一の膜402上に薄膜202が製膜される。このとき、薄膜202の膜厚は、ビーズ半径以下である(図4B)。その後、リストオフによって球体401を取り除く(図4C)。なお、図4Bにおける403は、球体401の直径dを示す。また、図4Cにおける404は、球体401によって形成された最大ポア径r2であり、405は、球体401によって形成された最小ポア径r1であり、406は、薄膜202の膜厚tを示す。このように、ナノポアは、ポアにおける最下の径r1が、最大ポア径r2よりも小さい構造となる。 4A to 4C show a process in the case where the film thickness of the nanopore thin film 202 is equal to or less than the bead radius. First, a sphere (bead) 401 is disposed on the first film 402 (FIG. 4A). Next, the thin film 202 is formed on the first film 402. At this time, the film thickness of the thin film 202 is equal to or less than the bead radius (FIG. 4B). Thereafter, the sphere 401 is removed by list-off (FIG. 4C). 4B indicates the diameter d of the sphere 401. 4C, 404 is the maximum pore diameter r2 formed by the sphere 401, 405 is the minimum pore diameter r1 formed by the sphere 401, and 406 indicates the film thickness t of the thin film 202. Thus, the nanopore has a structure in which the lowest diameter r1 in the pore is smaller than the maximum pore diameter r2.
 図5A~図5Cは、ナノポア薄膜の膜厚がビーズ半径以上であり、かつビーズ直径以下である場合のプロセスを示す。まず、第一の膜402上に球体401が配置される(図5A)。次に、第一の膜402上に薄膜202が製膜される。このとき、薄膜202の膜厚は、ビーズ半径以上であり、かつビーズ直径以下である(図5B)。その後、リストオフによって球体401を取り除く(図5C)。 FIG. 5A to FIG. 5C show the process when the thickness of the nanopore thin film is not less than the bead radius and not more than the bead diameter. First, the sphere 401 is disposed on the first film 402 (FIG. 5A). Next, the thin film 202 is formed on the first film 402. At this time, the film thickness of the thin film 202 is not less than the bead radius and not more than the bead diameter (FIG. 5B). Thereafter, the sphere 401 is removed by list-off (FIG. 5C).
 以上の構成において、ポア形成に利用するビーズ径と、作製されるナノポア径には相関がある。図6A~6Dは、ポア径とビーズ径の相関を示す図である。なお、図6A~図6Dにおいて、薄膜はグラフェンを用いて作製された構造である。 In the above configuration, there is a correlation between the bead diameter used for pore formation and the nanopore diameter to be produced. 6A to 6D are diagrams showing the correlation between the pore diameter and the bead diameter. Note that in FIGS. 6A to 6D, the thin film has a structure manufactured using graphene.
 図6Aの500は、ビーズを配置した状態で成膜した直後の薄膜の断面図である。図6Bの501は、500の上面図である。また、図6Cの502は、成膜に使用したビーズを取り去った後の薄膜の断面図である。図6Dの503は、502の上面図である。 6A of FIG. 6A is a cross-sectional view of a thin film immediately after film formation with beads arranged. Reference numeral 501 in FIG. 6B is a top view of 500. Moreover, 502 of FIG. 6C is sectional drawing of the thin film after removing the bead used for film-forming. Reference numeral 503 in FIG. 6D is a top view of 502.
 図6A及び図6Bにおいて、505はナノポアが形成される薄膜(すなわち、図4の薄膜202に対応する)であり、506は第一の膜である。また、504は、薄膜505の成膜前に配置されるビーズである。図6A~図6Dに示すように、本実施例で作成されるナノポアは、障害物(ビーズ504)が存在する部位にのみ薄膜形成がなされず、ビーズ504をかたどった状態で膜形成される。そのため、目的のポア径rと、ビーズ504の径dと、下地(第一の膜506)と成膜材(薄膜505)との間の原子間距離αには相関があり、以下の式で記述できる。
Figure JPOXMLDOC01-appb-M000003
6A and 6B, reference numeral 505 denotes a thin film on which nanopores are formed (that is, corresponding to the thin film 202 in FIG. 4), and reference numeral 506 denotes a first film. Reference numeral 504 denotes beads arranged before the thin film 505 is formed. As shown in FIGS. 6A to 6D, the nanopores produced in this example are not formed into a thin film only at a site where an obstacle (bead 504) is present, but are formed in a state of following the bead 504. Therefore, there is a correlation between the target pore diameter r, the diameter d of the beads 504, and the interatomic distance α between the base (first film 506) and the film forming material (thin film 505). Can be described.
Figure JPOXMLDOC01-appb-M000003
 ここで、Cu上に形成されたグラフェンの場合、Cu-炭素間の結合距離が、0.3nmであるので、1.4nmのポアを形成したい場合、1.98nmのビーズを用いれば良いということが分かる。球体の障害物のサイズが0.3nm以下でCuとの接触が揺らぐ場合を含めて、ナノポアは、1.4~1.41nmのサイズで形成される。 Here, in the case of graphene formed on Cu, since the bond distance between Cu and carbon is 0.3 nm, it is only necessary to use 1.98 nm beads when forming a pore of 1.4 nm. I understand. The nanopore is formed with a size of 1.4 to 1.41 nm including the case where the size of the spherical obstacle is 0.3 nm or less and the contact with Cu fluctuates.
 求めるポア径が1.4~2nmの場合、ビーズ径は約2nm~4nmである。求めるポア径が2nm~5nmの場合、ビーズ径は約4nm~25nmである。求めるポア径が5~10nmの場合、ビーズ径は約25~100nmである。 When the desired pore diameter is 1.4 to 2 nm, the bead diameter is about 2 to 4 nm. When the desired pore diameter is 2 nm to 5 nm, the bead diameter is about 4 nm to 25 nm. When the required pore diameter is 5 to 10 nm, the bead diameter is about 25 to 100 nm.
 図7は、以上の成膜手法及びポア径の作成方法によって形成されるポアを有するナノポアデバイスの全体像を示す。生体分子特性解析用のナノポアデバイス200には、上述したクレータ構造を有するポアまたは逆円錐型をしたポアが形成されている。ナノポアデバイス200は、基板204と、第一の膜402と、第二の膜203と、ナノポア201を有するナノポア薄膜(第三の膜)202とから構成される。 FIG. 7 shows an overall image of a nanopore device having pores formed by the above film forming method and pore diameter creation method. In the nanopore device 200 for biomolecule characteristic analysis, a pore having the crater structure described above or an inverted conical pore is formed. The nanopore device 200 includes a substrate 204, a first film 402, a second film 203, and a nanopore thin film (third film) 202 having nanopores 201.
 基板204には開口部209が形成されており、基板204上に第一の膜402と第二の膜203とが積層されている。ナノポア薄膜202は、基板204の開口部209の位置で上下に何もない状態で配置されている。ナノポア薄膜202は、この例では、第一の膜402によって支持されている。別の例として後述するように、第一の膜と第二の膜の間にナノポア薄膜と同じ材料の膜を配置し、この膜とナノポア薄膜とを接続するようにしてもよい。第二の膜203は、ナノポア薄膜202の周囲を囲む土手部を形成しており、第二の膜203の上面は、ナノポア薄膜202の上面よりも高い位置にある。生体分子特性解析を行う際には、ナノポア薄膜202の上下が電解質溶液で満たされ、その状態で電圧を印加し、生体分子がナノポア201を通過する際に起こる電流変化から特性を解析する。 An opening 209 is formed in the substrate 204, and the first film 402 and the second film 203 are stacked on the substrate 204. The nanopore thin film 202 is disposed in a state where there is nothing up and down at the position of the opening 209 of the substrate 204. The nanopore thin film 202 is supported by the first film 402 in this example. As will be described later as another example, a film made of the same material as the nanopore thin film may be disposed between the first film and the second film, and the film and the nanopore thin film may be connected. The second film 203 forms a bank part surrounding the nanopore thin film 202, and the upper surface of the second film 203 is higher than the upper surface of the nanopore thin film 202. When performing biomolecule characteristic analysis, the upper and lower surfaces of the nanopore thin film 202 are filled with the electrolyte solution, and a voltage is applied in this state, and the characteristics are analyzed from a current change that occurs when the biomolecule passes through the nanopore 201.
 本発明の実施例の一つに、第二の膜203に形成する構造のサイズにより球体が配置される個数を制御し、ナノポア薄膜202中に形成されるナノポア201の個数を制御することがある。図7に示すように、第二の膜203に形成した凹部のサイズDを601で示す。このとき、ポア径rは、土手部に囲まれた凹部の幅D(601)に対して、以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000004
One embodiment of the present invention is to control the number of nanopores 201 formed in the nanopore thin film 202 by controlling the number of spheres arranged according to the size of the structure formed in the second film 203. . As shown in FIG. 7, the size D of the recess formed in the second film 203 is indicated by 601. At this time, the pore diameter r has the following relationship with the width D (601) of the recess surrounded by the bank portion.
Figure JPOXMLDOC01-appb-M000004
 ここで、αは、ナノポア薄膜と、その薄膜を形成する際に用いた下地との間の原子間距離である。ナノポア薄膜に対してナノポアの数を一つにしたい場合、かつ土手部で囲まれた凹部の平面視の形状が正方形である場合、土手部に囲まれた凹部の幅D(図7のDに対応する)は、高さに寄らず球体の径dに対して、1.2d以下に形成するのがよい(D≦1.2d)。また、ナノポア薄膜に対してナノポアの数を一つにしたい場合、かつ、土手部に囲まれた凹部の構造が正方形以外の形状である場合は、例えば、土手部で囲まれた凹部の形状の平面視における最大幅D(円の場合は直径)は、球体の径dに対して、2dより小さくするのがよい(D<2d)。 Here, α is the interatomic distance between the nanopore thin film and the base used to form the thin film. When the number of nanopores is desired to be one with respect to the nanopore thin film and the shape of the recess surrounded by the bank is a square, the width D 1 of the recess surrounded by the bank (D in FIG. 7). (Corresponding to 2) is preferably formed to be 1.2 d or less with respect to the diameter d of the sphere regardless of the height (D 1 ≦ 1.2 d). In addition, when the number of nanopores is desired to be one for the nanopore thin film, and the structure of the recess surrounded by the bank is a shape other than a square, for example, the shape of the recess surrounded by the bank is The maximum width D 2 (diameter in the case of a circle) in plan view is preferably smaller than 2d with respect to the diameter d of the sphere (D 2 <2d).
 また、ナノポア201のサイズは、測定対象の分子の実効径にあわせる。例えば、一本鎖DNAの場合は、ナノポア201のサイズは、1.4nmにするとよい。ナノポア薄膜202は、ナノポア201を形成する際に塗布されたものであり、ナノポア201を作製する時に用いられたビーズ401の径以下の膜厚で形成される必要がある。 Also, the size of the nanopore 201 is adjusted to the effective diameter of the molecule to be measured. For example, in the case of single-stranded DNA, the size of the nanopore 201 may be 1.4 nm. The nanopore thin film 202 is applied when the nanopore 201 is formed, and needs to be formed with a film thickness equal to or less than the diameter of the beads 401 used when the nanopore 201 is produced.
 そのため、ポア径rは、土手部に囲まれた凹部の幅D、土手部の高さL(例えば、第一の膜402の上面から第二の膜203の上面までの高さ)、ナノポア薄膜202とその薄膜を形成する際に用いた下地材料(第一の膜402)との間の原子間距離αに対して、L/D=α/rの関係が成り立つ。但し、図7中のDは前述の通り、ポア径に応じて規定される。第一の膜402は均一な薄膜を形成するための下地材料であり、ナノポア薄膜202に応じて材料が規定される。 Therefore, the pore diameter r is the width D of the recess surrounded by the bank, the height L of the bank (for example, the height from the upper surface of the first film 402 to the upper surface of the second film 203), the nanopore thin film The relationship of L / D = α / r is established with respect to the interatomic distance α between 202 and the base material (first film 402) used when forming the thin film. However, D in FIG. 7 is defined according to the pore diameter as described above. The first film 402 is a base material for forming a uniform thin film, and the material is defined according to the nanopore thin film 202.
 その他の例として、第二の膜203と第一の膜402との間にナノポア薄膜202と同じ材料の膜が成膜されてもよい。これによってナノポア薄膜202の強度が増す。その他の例として、第二の膜203とナノポア薄膜202が同一材料でもよい。 As another example, a film made of the same material as the nanopore thin film 202 may be formed between the second film 203 and the first film 402. This increases the strength of the nanopore thin film 202. As another example, the second film 203 and the nanopore thin film 202 may be made of the same material.
[第1実施例]
 図8A~図8Fを用いて、上記ナノポア構造が作られるプロセスの第1実施例を説明する。まず、第一の膜402及び第二の膜203を基板204上に成膜し、ビーズが一つのみ固定されるサイズで第二の膜203をパターニング加工する第一の工程を行う(810)。このとき、第二の膜203がパターニングされることにより、第二の膜203に周囲が囲まれた凹部206が形成される。この凹部206において第一の膜402の一部が露出した状態となる。
[First embodiment]
A first embodiment of a process for producing the nanopore structure will be described with reference to FIGS. 8A to 8F. First, the first film 402 and the second film 203 are formed on the substrate 204, and the first process of patterning the second film 203 with a size in which only one bead is fixed is performed (810). . At this time, the second film 203 is patterned to form a recess 206 surrounded by the second film 203. In this recess 206, a part of the first film 402 is exposed.
 次に、ビーズなどの球体401を凹部206に配置する第二の工程を行う(811)。このとき、次のプロセスで使う膜材料が、下地材料である第一の膜402上には成膜されるが、球体401には成膜されないように、第一の膜402及び球体401の構成材料が選定される。次に、凹部206に薄膜(第三の膜)202を成膜する第三の工程を行う(812)。このとき、薄膜202は、球体401に成膜されないため、球体401で阻害された部位の第一の膜402上に薄膜202が成膜されることがない。 Next, a second step of placing the spherical body 401 such as a bead in the recess 206 is performed (811). At this time, the film material used in the next process is formed on the first film 402 which is a base material, but is not formed on the sphere 401. Material is selected. Next, a third step of forming a thin film (third film) 202 in the recess 206 is performed (812). At this time, since the thin film 202 is not formed on the sphere 401, the thin film 202 is not formed on the first film 402 at a site blocked by the sphere 401.
 次に、球体401を取り除く第四の工程を行う(813)。このとき、球体401上に薄膜202が成膜されていないので、リストオフによって球体401を取り除くことが可能である。球体401のリフトオフ後、凹部206の位置に対応する基板204の一部(凹部206の垂直同一軸上の基板204の部分)をエッチングする第五の工程を行う(814)。このとき、凹部206の位置に対応する第一の膜402の部分が露出する。このとき、プロテックなどの樹脂材料207にて表面のパターンを保護する。最後に、樹脂材料207及び薄膜(第三の膜)202の直下にある第一の膜402をエッチングする第六の工程を行う(815)。これにより、薄膜202において球体401と第一の膜402の接点の位置にポアが形成される。以上により、ナノポアを有する凹部構造が形成された薄膜が出来上がる。以下では、上記第一の工程~第六の工程の詳細を説明する。 Next, a fourth step of removing the sphere 401 is performed (813). At this time, since the thin film 202 is not formed on the sphere 401, the sphere 401 can be removed by wrist-off. After the ball 401 is lifted off, a fifth step of etching a part of the substrate 204 corresponding to the position of the recess 206 (a portion of the substrate 204 on the same vertical axis as the recess 206) is performed (814). At this time, the portion of the first film 402 corresponding to the position of the recess 206 is exposed. At this time, the surface pattern is protected by a resin material 207 such as Protech. Finally, a sixth step of etching the first film 402 immediately below the resin material 207 and the thin film (third film) 202 is performed (815). As a result, a pore is formed at the contact point between the sphere 401 and the first film 402 in the thin film 202. As a result, a thin film having a concave structure having nanopores is completed. The details of the first to sixth steps will be described below.
<第一の工程(810)>
 第二の膜203からなる土手部の形成のプロセスに先んじて、基板204上に第一の膜402を形成する。この第一の膜402は、第三の工程(812)における薄膜202の下地になる。例えばグラフェンによって薄膜を形成する場合、表面ラフネスの少ない単結晶上にグラフェン成長を実施する。本実施例のプロセスにおいては、予め原子層成膜法や分子気相成長法、エピタキシャル成長法による薄膜の成膜を行うことで表面ラフネスの少ない下地を得ることが出来る。
<First step (810)>
Prior to the process of forming the bank portion made of the second film 203, the first film 402 is formed on the substrate 204. The first film 402 becomes the base of the thin film 202 in the third step (812). For example, when forming a thin film with graphene, graphene growth is performed on a single crystal with low surface roughness. In the process of this embodiment, a substrate with a small surface roughness can be obtained by previously forming a thin film by atomic layer deposition, molecular vapor deposition, or epitaxial growth.
 次に、第一の膜402の上に第二の膜203を形成し、ドライエッチングにより第二の膜203の一部を削り取り、第一の膜402を部分的に露出させる工程を行う。第二の膜203中に作製する凹部(削り部分)206のサイズ及び第二の膜203の膜厚は、次の工程において土手部で囲まれた凹部に敷き詰める障害物(ビーズ401)のサイズに応じて設計する。なお、第一の工程では、基板204の裏面にも成膜を行い、Siエッチングのハードマスクとなる開口部(図8Aの210)を形成しておく。開口位置は、表面の第二の膜203の削り位置と垂直同一軸上である。 Next, the second film 203 is formed on the first film 402, a part of the second film 203 is removed by dry etching, and the first film 402 is partially exposed. The size of the concave portion (shaved portion) 206 produced in the second film 203 and the film thickness of the second film 203 are the same as the size of the obstacle (bead 401) spread in the concave portion surrounded by the bank portion in the next step. Design accordingly. In the first step, a film is also formed on the back surface of the substrate 204 to form an opening (210 in FIG. 8A) that serves as a hard mask for Si etching. The opening position is on the same vertical axis as the cutting position of the second film 203 on the surface.
 ドライエッチングにより第一の膜402を露出させる際、第一の膜402がダメージを受けて、平坦性が損なわれる可能性がある。これは、第三の膜の膜成長の阻害要因となるため、二つの手法により平坦性を回復させる。一つは、ドライエッチング後に水素アニールを実施する。一般に走査トンネル顕微鏡や原子間力顕微鏡で使用される試料支持基板の表面は平坦である必要がある。そこでサンプル固定前に支持基板に用いられる材料の単結晶を水素アニールすることで平坦面を出すことが行われている。 When exposing the 1st film | membrane 402 by dry etching, the 1st film | membrane 402 may receive a damage and flatness may be impaired. Since this becomes a hindrance to the film growth of the third film, the flatness is restored by two methods. One is to perform hydrogen annealing after dry etching. In general, the surface of a sample support substrate used in a scanning tunneling microscope or an atomic force microscope needs to be flat. Therefore, a flat surface is obtained by hydrogen annealing a single crystal of a material used for the support substrate before fixing the sample.
 その他の手法は、第二の膜203の成膜の仕方をリフトオフ型にすることである。予め水素アニールによって第一の膜402を平坦にし、樹脂成膜する。次に、開口予定位置のみが残るようにパターニングを行い、第二の膜203を成膜する。最後に、樹脂膜溶剤にて樹脂を溶かし出し、目的の開口部が保護された状態で、第二の膜203からなる土手部の形成が達成される。この手法を用いたフローは後述する。 Another method is to use a lift-off method for forming the second film 203. The first film 402 is flattened by hydrogen annealing in advance, and a resin film is formed. Next, patterning is performed so that only the planned opening position remains, and a second film 203 is formed. Finally, the resin is melted with a resin film solvent, and formation of the bank portion made of the second film 203 is achieved in a state where the target opening is protected. The flow using this method will be described later.
<第二の工程(811)>
 次に、目的のポア径に応じたサイズを有する障害物(球体401)を第一の工程(810)で作製した構造(以降、凹部と呼ぶ)に敷き詰める。障害物は、塗布剤として溶液中に溶かしたものを使用する。塗布剤に含まれている障害物の濃度は、基板(ウエハ)の面積に対する凹部の面積率以上の濃度であることが好ましい。この場合、基板上の複数の凹部に対してより確実に1つの障害物が配置され易くなるためである。この工程では、塗布剤にウエハを浸した後に、傾けつつ引き上げることや、パルス噴射によって塗布剤をウエハ表面に吹きつけることで凹部206にビーズ(球体401)が固定される。
<Second step (811)>
Next, an obstacle (sphere 401) having a size corresponding to the target pore diameter is spread over the structure (hereinafter referred to as a recess) produced in the first step (810). As the obstacle, a solution dissolved in a solution is used as a coating agent. It is preferable that the density | concentration of the obstruction contained in a coating agent is a density | concentration more than the area ratio of a recessed part with respect to the area of a board | substrate (wafer). In this case, it is because it becomes easy to arrange | position one obstruction more reliably with respect to several recessed part on a board | substrate. In this step, after immersing the wafer in the coating agent, the bead (sphere 401) is fixed to the recess 206 by pulling it up while tilting or spraying the coating agent on the wafer surface by pulse injection.
 封鎖電流は、薄膜202に対してポアが一つであることにより、取得されるシグナルが一分子由来であることを保証する。したがって、薄膜202内のポア位置がずれていることによるシグナルへの影響はない。そのため、土手部に囲まれた凹部206に配置されるビーズは、凹部206の底部で固定されれば固定位置は問わない。このとき、ビーズは、凹部206の底部と静電相互作用で固定される。 The blocking current ensures that the acquired signal is derived from one molecule by having one pore for the thin film 202. Therefore, there is no influence on the signal due to the displacement of the pore position in the thin film 202. For this reason, the fixing position of the beads arranged in the concave portion 206 surrounded by the bank portion is not limited as long as the beads are fixed at the bottom portion of the concave portion 206. At this time, the beads are fixed to the bottom of the recess 206 by electrostatic interaction.
 ここで土手部内の凹部の底への球体401の配置の仕方の他の形態として、球体401を磁気性のものにし、かつ基板204を磁気性の部材に配置することで、磁気力相互作用によって球体401を凹部206の底部に引き寄せる手法がある。その他の形態として、凹部206の底部、球体401の表面に修飾分子を固定することで、水素結合や、共有結合、イオン結合などで固定することも可能となる。 Here, as another form of the arrangement of the sphere 401 on the bottom of the recess in the bank portion, the sphere 401 is made magnetic and the substrate 204 is arranged on a magnetic member, so that the magnetic force interaction causes There is a method of drawing the sphere 401 to the bottom of the recess 206. As another form, by fixing the modifying molecule to the bottom of the recess 206 and the surface of the sphere 401, it is possible to fix the molecule by hydrogen bond, covalent bond, ionic bond, or the like.
<第三の工程(812)>
 第一の膜402に選択的に成膜可能で、かつ障害物(球体401)に成膜されない材料によって、凹部206に薄膜(第三の膜)202を成膜する。その組合せとして第一の膜402にCu(100)単結晶、障害物にCu球、第三の成膜ガスにCHとするとよい。一般に、グラフェンの成膜としては、Cu(100)面に対する、CHガスによるCVD成長が用いられている。グラフェンの成長には、単結晶かつ面方位が限定されている必要がある。障害物の側面と第一の膜402は、単結晶であり、かつ結晶方位面が異なるようにする。障害物に面方位の持たないCu球を用いれば、障害物を避けて第一の膜402上に第三の膜が成膜される。グラフェン成長がおきる単結晶の材料として、Ru、Irなども挙げられる。また、AlとSiOに対するCHによるグラフェンの選択成長も発表されており、第一の膜402にAl、障害物にSiOを用いることで同様の効果を得られる。
<Third step (812)>
A thin film (third film) 202 is formed in the recess 206 with a material that can be selectively formed on the first film 402 and that is not formed on the obstacle (sphere 401). As a combination thereof, it is preferable to use Cu (100) single crystal for the first film 402, Cu sphere for the obstacle, and CH 4 for the third film forming gas. In general, for the film formation of graphene, CVD growth using CH 4 gas is used for the Cu (100) surface. For the growth of graphene, it is necessary to have a single crystal and a limited plane orientation. The side surface of the obstacle and the first film 402 are single crystals and have different crystal orientation planes. If a Cu sphere having no plane orientation is used as an obstacle, a third film is formed on the first film 402 while avoiding the obstacle. Examples of a single crystal material on which graphene growth occurs include Ru and Ir. In addition, selective growth of graphene by CH 4 with respect to Al 2 O 3 and SiO has been announced, and similar effects can be obtained by using Al 2 O 3 for the first film 402 and SiO for the obstacle.
<第四の工程(813)>
 次に、障害物(球体401)のみをリフトオフすると、障害物の形にかたどられた薄膜(第三の膜)202が残る。リフトオフに用いる溶液には、第三の膜を削らずに、障害物を溶かし出すことが可能な溶液を用いる。例えば、第三の膜と障害物に選択性のある溶液を用いる。第二の膜203がグラフェン、第一の膜402がCuである場合、クロムのエッチング溶液を用いるとよい。また、第二の膜203が炭素、第一の膜402がSiOである場合、フッ酸を用いるとよい。
<Fourth step (813)>
Next, when only the obstacle (sphere 401) is lifted off, a thin film (third film) 202 shaped like an obstacle remains. As the solution used for lift-off, a solution capable of dissolving the obstacle without cutting the third film is used. For example, a solution having selectivity for the third membrane and the obstacle is used. In the case where the second film 203 is graphene and the first film 402 is Cu, a chromium etching solution may be used. In the case where the second film 203 is carbon and the first film 402 is SiO, hydrofluoric acid is preferably used.
<第五の工程(814)>
 次に、球体401をリフトオフした後に、ナノポアが形成された薄膜(第三の膜)202をプロテックなどの樹脂材料207でカバーし、基板204の裏面のSi層をエッチングする。これにより、凹部206の位置に対応する第一の膜402の部分が露出する。Siのエッチングには85℃に熱したKOHや、同じく85℃下でシリコンのエッチングに腐食作用を有するTMAHやNHOHを含んだエッチング液に長時間浸すことで達成される。このとき、Si以外にも表面の材料に対して腐食作用が働くことがあるため、プロテックなどの樹脂材料207にて表面のパターンを保護する。
<Fifth step (814)>
Next, after the sphere 401 is lifted off, the thin film (third film) 202 on which nanopores are formed is covered with a resin material 207 such as Protech, and the Si layer on the back surface of the substrate 204 is etched. Thereby, the portion of the first film 402 corresponding to the position of the recess 206 is exposed. The etching of Si is achieved by immersing in an etching solution containing KOH heated to 85 ° C. or TMAH or NH 2 OH having a corrosive action on etching of silicon at 85 ° C. for a long time. At this time, since the corrosive action may act on the surface material other than Si, the surface pattern is protected by the resin material 207 such as Protech.
<第六の工程(815)>
 最後に、基板204の裏面側から第一の膜402をエッチングすることで、ナノポア薄膜202を得る。このとき、ナノポア薄膜202と第一の膜402に選択性のある溶液を用いる。第二の膜203がグラフェン、第一の膜402がCuである場合、第四の工程(813)と同じくクロムのエッチャントを用いるとよい。また第二の膜203が炭素、第一の膜402がAlである場合、フッ酸を用いるとよい。
<Sixth Step (815)>
Finally, the nanopore thin film 202 is obtained by etching the first film 402 from the back side of the substrate 204. At this time, a selective solution is used for the nanopore thin film 202 and the first film 402. When the second film 203 is graphene and the first film 402 is Cu, a chromium etchant may be used as in the fourth step (813). Further, when the second film 203 is carbon and the first film 402 is Al 2 O 3 , hydrofluoric acid is preferably used.
[第2実施例]
 図9A~図9Iは、第2実施例におけるナノポア構造を作成するフローであり、第二の膜203の成膜の仕方をリフトオフ型にした場合のナノポア構造を作成するフローを示す。なお、図9A~図9Iにおいて、図8A~図8Fと同一の工程には同一の符号を付し、それらの説明を省略する。ここでは、図9A~図9Cの工程を説明する。
[Second Embodiment]
FIGS. 9A to 9I are flowcharts for creating a nanopore structure in the second embodiment, and show a flow for creating a nanopore structure when the method of forming the second film 203 is a lift-off type. 9A to 9I, the same steps as those in FIGS. 8A to 8F are denoted by the same reference numerals, and description thereof is omitted. Here, the steps of FIGS. 9A to 9C will be described.
 まず、予め水素アニールによって第一の膜402を平坦にする(801)。次に、第一の膜402上に樹脂(保護膜)208を成膜する(802)。次に、次の工程で成膜される第二の膜203の開口予定位置(凹部を形成する予定の部分)のみが残るように樹脂208をパターニングする(803)。その後、第二の膜203を成膜し、樹脂膜溶剤にて樹脂208を溶かし出す。これにより、目的の開口部の位置が樹脂208で保護された状態で、第二の膜203からなる土手部の形成が達成される。801~803の工程により、第一の膜402の上に第二の膜203の土手部が形成され、第一の膜402が部分的に露出した構造となる(図9D)。 First, the first film 402 is flattened in advance by hydrogen annealing (801). Next, a resin (protective film) 208 is formed on the first film 402 (802). Next, the resin 208 is patterned so that only the planned opening position (the portion where the recess is to be formed) of the second film 203 formed in the next step remains (803). Thereafter, a second film 203 is formed, and the resin 208 is melted with a resin film solvent. Thereby, formation of the bank part which consists of the 2nd film | membrane 203 is achieved in the state in which the position of the target opening part was protected by the resin 208. FIG. Through the steps 801 to 803, the bank portion of the second film 203 is formed on the first film 402, and the first film 402 is partially exposed (FIG. 9D).
[第3実施例]
 前述の通り、球体401の材料と第一の膜402の材料が同一である場合、第四の工程(813)及び第六の工程(815)で用いる溶剤が同一になるため、図10A~図10Hに示すような工程によって、ナノポア薄膜を得ることも可能である。なお、材料が異なっていてもエッチング溶液が同一である場合にも適応可能である。
[Third embodiment]
As described above, when the material of the sphere 401 and the material of the first film 402 are the same, the solvents used in the fourth step (813) and the sixth step (815) are the same. It is also possible to obtain a nanopore thin film by a process as shown in 10H. Note that the present invention can also be applied to the case where the etching solution is the same even if the materials are different.
 図10A~図10Hは、第3実施例におけるナノポア構造を作成するフローである。なお、図10A~図10Hにおいて、図8A~図8F及び図9A~図9Iと同一の工程には同一の符号を付し、それらの説明を省略する。図10A~図10Fの工程は、図9A~図9Fと同一工程であるが、その後、球体401を取り去らずに、基板204の裏面のSi層の裏面エッチングを行う(820)。その後、球体401及び第一の膜402を同時に溶かすことが可能な溶液にてエッチングを行う(821)。以上の工程により、ナノポアを有する凹部構造が形成された薄膜が出来上がる。 10A to 10H are flowcharts for creating the nanopore structure in the third embodiment. 10A to 10H, the same steps as those in FIGS. 8A to 8F and FIGS. 9A to 9I are denoted by the same reference numerals, and description thereof is omitted. The steps of FIGS. 10A to 10F are the same as those of FIGS. 9A to 9F, but thereafter, the back surface of the Si layer on the back surface of the substrate 204 is etched without removing the sphere 401 (820). Thereafter, etching is performed with a solution capable of simultaneously dissolving the sphere 401 and the first film 402 (821). Through the above steps, a thin film having a concave structure having nanopores is completed.
[第4実施例]
 図11A~図11Iは、第4実施例におけるナノポア構造を作成するフローである。なお、図11A~図11Iにおいて、図9A~図9Iと同一の工程には同一の符号を付し、それらの説明を省略する。
[Fourth embodiment]
FIG. 11A to FIG. 11I are flowcharts for creating a nanopore structure in the fourth embodiment. In FIGS. 11A to 11I, the same steps as those in FIGS. 9A to 9I are denoted by the same reference numerals, and the description thereof is omitted.
 本実施例では、ナノポア薄膜202の安定性を強化するために、第二の膜203からなる土手の下部に薄膜202と同一の材料を配置する。図11A~図11Cの工程は、図9A~図9Cと同一工程であるが、その後、第一の膜402上に、ナノポア薄膜(第三の膜)と同一の材料の膜(第四の膜)202を成膜する。その後、薄膜202上に、第二の膜203を成膜する(830)。 In the present embodiment, in order to enhance the stability of the nanopore thin film 202, the same material as that of the thin film 202 is disposed below the bank made of the second film 203. The process of FIGS. 11A to 11C is the same process as FIGS. 9A to 9C, but after that, a film of the same material as the nanopore thin film (third film) (fourth film) is formed on the first film 402. ) 202 is formed. Thereafter, a second film 203 is formed on the thin film 202 (830).
 次に、障害物(球体401)を830の工程で作製した構造(凹部206)に敷き詰める(831)。次に、土手部に囲まれた凹部206に薄膜(第三の膜)202を成膜する(832)。その後、第二の膜203からなる土手部の下部の薄膜202と、凹部に成膜された薄膜(第三の膜)202を接続させるためにアニールをし、これらの膜を再配置させる。 Next, the obstacle (sphere 401) is spread over the structure (concave 206) produced in the step 830 (831). Next, a thin film (third film) 202 is formed in the recess 206 surrounded by the bank (832). Thereafter, annealing is performed to connect the thin film 202 below the bank portion made of the second film 203 and the thin film (third film) 202 formed in the concave portion, and these films are rearranged.
 次に、球体401をリフトオフする(833)。その後、土手内の凹部の垂直同一軸上の基板204の一部の裏面をエッチングし、第一の膜402の一部を露出させる(834)。最後に、第一の膜402をエッチングすることにより、ナノポアを有する凹部構造が形成された薄膜が出来上がる(835)。 Next, the sphere 401 is lifted off (833). Thereafter, a part of the back surface of the substrate 204 on the same vertical axis of the recess in the bank is etched to expose a part of the first film 402 (834). Finally, the first film 402 is etched to form a thin film having a concave structure having nanopores (835).
 以上のように、上述した実施例において、任意の個数のポアが目的の薄膜中に形成されるように、その薄膜周辺部に、次の工程で用いられるビーズのサイズ及び数に応じたサイズを有する土手部(第二の膜203)を形成する。これにより、目的の薄膜に対して、任意のポア数の作成された生体分子特性解析チップを提供することができる。 As described above, in the above-described embodiment, the size corresponding to the size and number of beads used in the next step is formed around the thin film so that an arbitrary number of pores are formed in the target thin film. The bank portion (second film 203) is formed. Thereby, it is possible to provide a biomolecule characteristic analysis chip having an arbitrary number of pores for the target thin film.
 Siの結晶方位面エッチングを利用した従来のテーパー型のポアの場合、エッチング開始部位の歩留が最小ポア径の形成歩留に転写されてしまうが、上述の実施例では、ビーズ径をそろえて作製することで、歩留が高くかつ均一なポアを形成することが可能となる。 In the case of the conventional taper type pore using Si crystal orientation surface etching, the yield at the etching start site is transferred to the formation yield of the minimum pore diameter. In the above embodiment, the bead diameters are aligned. By manufacturing, it is possible to form a uniform pore with a high yield.
 また、上述の実施例より製造された生体分子特性解析チップによれば、最小ポア径を達成する部位のみが実効的に薄膜となるため、膜強度を保つことが可能となる。更に、薄膜全域が極薄膜とならないため、封鎖電流測定時のノイズを低減することが可能となる。 In addition, according to the biomolecule characteristic analysis chip manufactured from the above-described embodiment, only the portion that achieves the minimum pore diameter effectively becomes a thin film, so that the film strength can be maintained. Furthermore, since the entire thin film does not become a very thin film, it is possible to reduce noise during the measurement of the blocking current.
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることがあり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of one embodiment may be replaced with the configuration of another embodiment, and the configuration of another embodiment may be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
100  :生体ポリマ特性解析装置(DNA解析装置)
101  :仕切り体
102  :電解質溶液
103  :電極
104  :電源
105  :注入口
106  :生体ポリマ(DNA)
107A、107B :槽
108  :アンプ
109  :PC
200  :生体ポリマ特性解析チップ(ナノポアデバイス)
201  :ナノポア
202  :薄膜(第三の膜、第四の膜)
203  :第二の膜(土手部)
204  :基板
205  :ビーズ軌跡(鋳型痕跡)
206  :凹部
207  :樹脂材料
208  :樹脂(保護膜)
209  :開口部
210  :開口部
300  :特性解析例
401  :球体(ビーズ)
402  :第一の膜
403  :球体の直径
404  :球体によって形成された最大ポア径
405  :球体によって形成された最小ポア径
406  :薄膜の膜厚
504  :球体(ビーズ)
505  :薄膜(ナノポア薄膜)
506  :第一の膜
601  :土手部に囲まれた凹部の幅D
100: Biological polymer characteristic analyzer (DNA analyzer)
101: Partition body 102: Electrolyte solution 103: Electrode 104: Power source 105: Injection port 106: Biopolymer (DNA)
107A, 107B: Tank 108: Amplifier 109: PC
200: Biopolymer characteristic analysis chip (nanopore device)
201: Nanopore 202: Thin film (third film, fourth film)
203: Second film (bank portion)
204: Substrate 205: Bead trajectory (mold trace)
206: Recess 207: Resin material 208: Resin (protective film)
209: Opening 210: Opening 300: Example of characteristic analysis 401: Sphere (bead)
402: first film 403: sphere diameter 404: maximum pore diameter 405 formed by the sphere: minimum pore diameter 406 formed by the sphere: thin film thickness 504: sphere (bead)
505: Thin film (nanopore thin film)
506: First film 601: Width D of the recess surrounded by the bank

Claims (15)

  1.  開口部を有する基板と、
     前記基板上に成膜された第一の膜と、
     前記基板上に前記第一の膜より上側に成膜された第二の膜と、
     前記開口部の位置に配置され、ポアを有する第三の膜と、
    を備え、
     前記第二の膜は、前記第三の膜の周囲を囲む土手部を形成しており、前記第三の膜の前記ポアは、前記ポアにおける最下の径が前記ポアの最大径よりも小さいようなクレータ構造を有することを特徴とする生体分子特性解析用チップ。
    A substrate having an opening;
    A first film formed on the substrate;
    A second film formed on the substrate above the first film;
    A third membrane disposed at the position of the opening and having a pore;
    With
    The second film forms a bank portion surrounding the third film, and the pore of the third film has a lowermost diameter smaller than the maximum diameter of the pore. A biomolecule characteristic analysis chip characterized by having such a crater structure.
  2.  請求項1に記載の生体分子特性解析用チップにおいて、
     前記クレータ構造の底に形成された前記ポアの前記最下の径をrとし、前記土手部に囲まれた凹部の幅のサイズをDとし、前記第一の膜と前記第三の膜との間の原子間距離をαとすると、以下の関係
    Figure JPOXMLDOC01-appb-M000001
    が成り立つことを特徴とする生体分子特性解析用チップ。
    The biomolecule characteristic analysis chip according to claim 1,
    The lowermost diameter of the pore formed at the bottom of the crater structure is r, the width of the recess surrounded by the bank is D, and the first film and the third film If the interatomic distance is α, the following relationship
    Figure JPOXMLDOC01-appb-M000001
    A biomolecule characteristic analysis chip characterized by the fact that
  3.  請求項1に記載の生体分子特性解析用チップにおいて、
     前記クレータ構造の底に形成された前記ポアの前記最下の径をrとし、前記土手部で囲まれた凹部のサイズをDとし、前記第一の膜と前記第三の膜との間の原子間距離をαとし、前記第一の膜の上面から前記第二の膜の上面までの高さをLとすると、L/D=α/rの関係が成り立つことを特徴とする生体分子特性解析用チップ。
    The biomolecule characteristic analysis chip according to claim 1,
    The lowest diameter of the pore formed at the bottom of the crater structure is r, the size of the recess surrounded by the bank is D, and the gap between the first film and the third film is Biomolecule characteristics characterized by the relationship L / D = α / r, where α is the interatomic distance and L is the height from the upper surface of the first film to the upper surface of the second film. Analysis chip.
  4.  請求項1に記載の生体分子特性解析用チップにおいて、
     前記第一の膜と前記第二の膜との間に前記第三の膜と同じ材料の第四の膜を更に備え、前記第三の膜と前記第四の膜とが接続されていることを特徴とする生体分子特性解析用チップ。
    The biomolecule characteristic analysis chip according to claim 1,
    A fourth film made of the same material as the third film is further provided between the first film and the second film, and the third film and the fourth film are connected to each other. Chip for biomolecular property analysis characterized by
  5.  基板に少なくとも第一の膜及び第二の膜を成膜し、その後、前記第二の膜に周囲が囲まれた凹部を形成し、前記第一の膜の一部を露出させる第一の工程と、
     障害物を含む溶液を前記基板に浸すまたは吹きつけることにより、前記凹部に前記障害物を配置する第二の工程と、
     前記障害物が配置された前記凹部内に第三の膜を成膜する第三の工程と、
     前記障害物を取り除く第四の工程と、
     前記基板の裏面をエッチングし、前記凹部の位置に対応する前記第一の膜の部分を露出させる第五の工程と、
     前記第三の膜の直下にある前記第一の膜をエッチングすることにより、前記第三の膜において前記障害物と前記第一の膜の接点の位置にポアが形成される第六の工程と、
    を含むことを特徴とする生体分子特性解析用チップの製造方法。
    A first step of forming at least a first film and a second film on a substrate, then forming a recess surrounded by the second film, and exposing a portion of the first film; When,
    A second step of placing the obstacle in the recess by immersing or spraying a solution containing the obstacle into the substrate;
    A third step of forming a third film in the recess in which the obstacle is disposed;
    A fourth step of removing the obstacle;
    Etching a back surface of the substrate to expose a portion of the first film corresponding to the position of the recess;
    A sixth step in which a pore is formed at the contact point between the obstacle and the first film in the third film by etching the first film immediately below the third film; and ,
    A method for producing a chip for analyzing biomolecule characteristics, comprising:
  6.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記第一の工程は、
     前記基板に前記第一の膜及び前記第二の膜を当該順で成膜する工程と、
     パターニングによって前記第二の膜の一部をエッチングすることにより前記凹部を形成する工程と、
    を含むことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    The first step includes
    Forming the first film and the second film on the substrate in this order;
    Forming the recess by etching a portion of the second film by patterning;
    A method for producing a chip for analyzing biomolecule characteristics, comprising:
  7.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記第一の工程は、
     前記基板に前記第一の膜及び保護膜を成膜する工程と、
     前記凹部を形成する予定の部分を残して前記保護膜をエッチングする工程と、
     前記第一の膜上に前記第二の膜を成膜する工程と、
     前記保護膜をエッチングすることにより前記凹部を形成する工程と、
    を含むことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    The first step includes
    Forming the first film and the protective film on the substrate;
    Etching the protective film leaving a portion where the recess is to be formed;
    Depositing the second film on the first film;
    Forming the recess by etching the protective film;
    A method for producing a chip for analyzing biomolecule characteristics, comprising:
  8.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記第一の工程は、
     前記基板に前記第一の膜及び保護膜を成膜する工程と、
     前記凹部を形成する予定の部分を残して前記保護膜をエッチングする工程と、
     前記第一の膜上に前記第三の膜と同じ材料の第四の膜と前記第二の膜を成膜する工程と、
     前記保護膜をエッチングすることにより前記凹部を形成する工程と、
    を含み、
     前記第三の工程は、前記第三の膜と前記第四の膜とを接続させるためにアニールすることを含むことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    The first step includes
    Forming the first film and the protective film on the substrate;
    Etching the protective film leaving a portion where the recess is to be formed;
    Forming a fourth film and the second film of the same material as the third film on the first film;
    Forming the recess by etching the protective film;
    Including
    The method for manufacturing a biomolecule characteristic analysis chip, wherein the third step includes annealing for connecting the third film and the fourth film.
  9.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記第五の工程の後に、同一のエッチング溶液を用いてエッチングすることにより、前記第四の工程と前記第六の工程を同時に行うことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    After the fifth step, the fourth step and the sixth step are performed at the same time by etching using the same etching solution.
  10.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記第三の工程では、前記第三の膜が、前記障害物には成膜されず、前記第一の膜に選択的成長することを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    In the third step, the third film is not formed on the obstacle, but selectively grows on the first film.
  11.  請求項10に記載の生体分子特性解析用チップの製造方法において、
     前記第一の膜はグラフェン又はAlであり、前記障害物はSiOであることを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 10,
    The method for manufacturing a chip for analyzing biomolecule characteristics, wherein the first film is graphene or Al 2 O 3 and the obstacle is SiO.
  12.  請求項10に記載の生体分子特性解析用チップの製造方法において、
     前記第一の膜と前記障害物とは同じ材料であり、前記障害物の側面と前記第一の膜は、単結晶であり、かつ結晶方位面が異なることを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 10,
    The first film and the obstacle are made of the same material, and the side surface of the obstacle and the first film are single crystals and have different crystal orientation planes. Chip manufacturing method.
  13.  請求項5に記載の生体分子特性解析用チップの製造方法において、
     前記障害物は球体であることを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 5,
    The method for manufacturing a biomolecule characteristic analysis chip, wherein the obstacle is a sphere.
  14.  請求項13に記載の生体分子特性解析用チップの製造方法において、
     前記球体の直径をdとし、前記第一の膜と前記第三の膜との間の原子間距離をαとし、ポア径rとすると、以下の関係
    Figure JPOXMLDOC01-appb-M000002
    が成り立つことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 13,
    When the diameter of the sphere is d, the interatomic distance between the first film and the third film is α, and the pore diameter r is the following relationship:
    Figure JPOXMLDOC01-appb-M000002
    The manufacturing method of the chip | tip for biomolecule characteristic analysis characterized by these.
  15.  請求項13に記載の生体分子特性解析用チップの製造方法において、
     前記第三の膜に形成した前記ポアの数が1つである場合、前記凹部の形状の平面視における最大幅をDとし、前記球体の直径をdとすると、D<2dの関係が成り立つことを特徴とする生体分子特性解析用チップの製造方法。
    In the manufacturing method of the biomolecule characteristic analysis chip according to claim 13,
    When the number of the pores formed in the third film is one, the relationship of D <2d is established, where D is the maximum width of the shape of the recess in plan view and d is the diameter of the sphere. A method for producing a chip for analyzing biomolecule characteristics, characterized by comprising:
PCT/JP2014/082066 2013-12-05 2014-12-04 Chip for analyzing biomolecular characteristics and method for producing same WO2015083767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251993A JP6153856B2 (en) 2013-12-05 2013-12-05 Biomolecule characterization chip and manufacturing method thereof
JP2013-251993 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083767A1 true WO2015083767A1 (en) 2015-06-11

Family

ID=53273527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082066 WO2015083767A1 (en) 2013-12-05 2014-12-04 Chip for analyzing biomolecular characteristics and method for producing same

Country Status (2)

Country Link
JP (1) JP6153856B2 (en)
WO (1) WO2015083767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066597A1 (en) * 2016-10-07 2018-04-12 国立大学法人名古屋大学 Sample analysis method, and sample analysis device
WO2020013235A1 (en) * 2018-07-11 2020-01-16 国立大学法人大阪大学 Flow passage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847500B2 (en) * 2017-01-18 2021-03-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Low noise biomolecular sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502166A (en) * 1999-06-22 2003-01-21 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Control of dimensional features of the solid state
US20050176245A1 (en) * 2004-02-09 2005-08-11 Melechko Anatoli V. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
JP2013013413A (en) * 2000-04-24 2013-01-24 Life Technologies Corp Field effect transistor device for ultra-fast nucleic acid sequencing
JP2013090576A (en) * 2011-10-24 2013-05-16 Hitachi Ltd Nucleic acid analyzing device and nucleic acid analyzer using the same
JP2013520655A (en) * 2010-02-23 2013-06-06 ゴードン アトウッド,クリストファー Biomolecules and methods for detecting their interaction characteristics
JP2013540569A (en) * 2010-08-20 2013-11-07 インダストリ−ユニヴァーシティ コオペレーション ファウンデイション ソガン ユニヴァーシティ Porous thin film having pores and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502166A (en) * 1999-06-22 2003-01-21 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Control of dimensional features of the solid state
JP2013013413A (en) * 2000-04-24 2013-01-24 Life Technologies Corp Field effect transistor device for ultra-fast nucleic acid sequencing
US20050176245A1 (en) * 2004-02-09 2005-08-11 Melechko Anatoli V. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
JP2013520655A (en) * 2010-02-23 2013-06-06 ゴードン アトウッド,クリストファー Biomolecules and methods for detecting their interaction characteristics
JP2013540569A (en) * 2010-08-20 2013-11-07 インダストリ−ユニヴァーシティ コオペレーション ファウンデイション ソガン ユニヴァーシティ Porous thin film having pores and method for producing the same
JP2013090576A (en) * 2011-10-24 2013-05-16 Hitachi Ltd Nucleic acid analyzing device and nucleic acid analyzer using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066597A1 (en) * 2016-10-07 2018-04-12 国立大学法人名古屋大学 Sample analysis method, and sample analysis device
JPWO2018066597A1 (en) * 2016-10-07 2019-08-29 国立大学法人名古屋大学 Sample analysis method and sample analysis device
US11169071B2 (en) 2016-10-07 2021-11-09 National University Corporation Nagoya University Method for analyzing samples and device for analyzing samples
WO2020013235A1 (en) * 2018-07-11 2020-01-16 国立大学法人大阪大学 Flow passage
US11307161B2 (en) 2018-07-11 2022-04-19 Aipore Inc. Flow passage
JP7318951B2 (en) 2018-07-11 2023-08-01 アイポア株式会社 flow path

Also Published As

Publication number Publication date
JP6153856B2 (en) 2017-06-28
JP2015108575A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
US7824620B2 (en) Nano- and micro-scale structures: methods, devices and applications thereof
US6982519B2 (en) Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates
US6919002B2 (en) Nanopore system using nanotubes and C60 molecules
US11015258B2 (en) Feedback control of dimensions in nanopore and nanofluidic devices
CN103958397B (en) For the application of the method and this method that manufacture and be aligned nano wire
CN100554137C (en) Have many scale cantilever structure of holes of nano size and preparation method thereof
Arnault et al. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores
JP2005517537A (en) Highly organized directional assembly of carbon nanotube structure
TWI229050B (en) Microstructures
JP6153856B2 (en) Biomolecule characterization chip and manufacturing method thereof
CN110383055A (en) Low noise bimolecular sensors
CN102874743B (en) Preparation method for embedded micro-nano channel
US10416147B2 (en) Method of manufacturing membrane device, membrane device, and nanopore device
US8652337B1 (en) Self-formed nanometer channel at wafer scale
CN110452817A (en) A kind of DNA sequencing device and sequencing approach
CN112198194A (en) Method for preparing near-zero thickness nanopore by double-sided helium ion beam etching, product and application thereof
JP5062748B2 (en) Surface microstructure manufacturing method, diamond nanoelectrode manufacturing method, and electrode body thereof
JP5334085B2 (en) Substrate seeding method, diamond microstructure and manufacturing method thereof
KR101358989B1 (en) TRANSITION METAL NANO ElECTRODE AND A METHOD OF FABRICATING THEREOF
CN109824012B (en) Accurate manufacturing method of nano-pore
JP5196602B2 (en) Manufacturing method of nanogap electrode
JP2006231432A (en) Method for manufacturing nano-gap electrode
Fanget Towards Tunneling Electrodes for Nanopore-Based DNA Sequencing
KR20130085644A (en) Fabrication method of nanopore, analysis system and method for realtime molecular sequencing using the nanopore
US20230100579A1 (en) Nanopore cell with seamless working electrode and methods of forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868299

Country of ref document: EP

Kind code of ref document: A1