WO2015083248A1 - 封止構造体、複層断熱ガラス、ガラス容器 - Google Patents

封止構造体、複層断熱ガラス、ガラス容器 Download PDF

Info

Publication number
WO2015083248A1
WO2015083248A1 PCT/JP2013/082526 JP2013082526W WO2015083248A1 WO 2015083248 A1 WO2015083248 A1 WO 2015083248A1 JP 2013082526 W JP2013082526 W JP 2013082526W WO 2015083248 A1 WO2015083248 A1 WO 2015083248A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealing structure
sealing
internal space
sealing material
Prior art date
Application number
PCT/JP2013/082526
Other languages
English (en)
French (fr)
Inventor
一宗 児玉
雅徳 宮城
拓也 青柳
内藤 孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/082526 priority Critical patent/WO2015083248A1/ja
Priority to US15/033,167 priority patent/US10392296B2/en
Priority to JP2015551326A priority patent/JP6342426B2/ja
Priority to CN201380080467.5A priority patent/CN105683111B/zh
Priority to EP13898801.9A priority patent/EP3078643A4/en
Publication of WO2015083248A1 publication Critical patent/WO2015083248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/218V2O5, Nb2O5, Ta2O5
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66342Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes
    • E06B3/66357Soldered connections or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a sealing structure, a multilayer heat insulating glass, and a glass container.
  • Glass is optically transparent, hardly transmits gas and moisture, and is excellent in air tightness. Therefore, glass is used for multi-layered heat insulating glass such as window glass and display case, and a package for covering a light emitting element incorporated in an electronic device.
  • a plurality of glass members are joined together with a space enclosed inside. Since the heat insulating property and airtightness are also required for the bonding portion, low melting point glass having excellent gas barrier properties may be used as a bonding material (sealing material).
  • heating and melting are performed by irradiating a laser to the sealing material of low melting glass, and glass members are joined.
  • a laser is used, only the laser irradiation site can be selectively heated, and therefore the thermal influence on the part other than the bonding site can be reduced.
  • laser heating is local heating, low-melting glass rises in temperature unevenly and thermal stress is generated, and bonding failure with the glass member is likely to occur, but a filler with a low thermal expansion coefficient is added to low-melting glass In this way, joint defects are avoided.
  • the above-mentioned patent document has a structure in which a very thin organic element of about 0.01 to 0.02 mm is disposed between two flat glass plates, and the thickness of the sealing material is thin.
  • the bonding material layer becomes thick in the case where a thick component is arranged between the bonding materials, or in the case of bonding a complicated bonding material.
  • the energy absorbed by the bonding material of glass decreases exponentially as it gets deeper from the laser irradiation surface.
  • glass has low thermal conductivity, if there is spatial nonuniformity in energy absorption, the temperature distribution of glass tends to be spatially nonuniform. For this reason, when the bonding material layer is thick, the temperature distribution of the bonding material becomes extremely uneven, and the bonding material and the material to be bonded are likely to be damaged, and bonding defects such as interfacial peeling easily occur.
  • An object of the present invention is to reduce breakage and joint failure of a bonding material and a bonding material even when the bonding material layer is thick.
  • An example of a sealing structure is a perspective view, (b) is a sectional view.
  • (A) is a perspective view, (b) and (c) are sectional views.
  • One example of differential thermal analysis results and how to determine each characteristic temperature. How to consider bonding. Wavelength dependence of light transmittance in developed glass.
  • Sectional drawing of a sealing structure (A) When a low melting point metal filler is used.
  • (A) When a sealing material is arrange
  • the sealing structure is, as shown in FIGS. 1 to 3, a glass structure having an inner space separated from the outside by glass.
  • the internal space is formed by bonding a plurality of glass members with a sealing material (bonding material) or by closing a hole of a single glass member with the sealing material.
  • FIG. 1 the outer peripheries of two glass plates 1 are bonded with a sealing material 2, and an internal space 3 is formed between the two glass plates.
  • 1 (a) is a perspective view of the sealing structure
  • FIG. 1 (b) is a cross-sectional view taken along the line AA passing through the glass plate 1 and the sealing material 2.
  • Such structures are used for insulating glazing, OLED displays, etc.
  • soda lime glass is generally used for the glass plate 1
  • the internal space 3 is filled with argon gas, which is more excellent in heat insulation than the atmosphere, or in a vacuum state.
  • non-alkali glass is used for the glass plate 1 and an organic light emitting diode is sealed in the internal space 3.
  • Other members may be disposed in the inner space 3 or the inner space 3 may be filled with another atmosphere.
  • the sealing material 2 may not only join only the facing surface 15 of the glass plates 1 to each other as shown in FIG. 1, but may protrude outside the sealing structure (it adheres to the outer surface 14 of the glass sheet 1 Also good). Moreover, you may join not the edge part of the opposing surface 15, but a little inner side from an edge part. That is, the internal space 3 and the external space may be partitioned by the two glass plates 1 and the sealing material 2.
  • the volume of the used sealing material 2 also increases and becomes thicker. Since the sealing material 2 is irradiated with the laser from the outside of the glass plate 1, as the sealing material 2 is thicker in the traveling direction of the laser, the laser is less likely to reach the inside of the sealing material 2 and is less likely to be heated. Further, the heat caused by heating the sealing material 2 on the glass plate 1 side also hardly reaches the inside of the sealing material 2.
  • the sealing material containing the glass composition and the metal particles described below even if the sealing material has a thickness in the traveling direction of the laser, it is easy to absorb the energy of the laser spatially uniformly. Since the temperature distribution is also likely to be spatially uniform, the sealing material and the bonding material can be damaged, and bonding defects such as interfacial peeling can be reduced.
  • FIG. 2 (a) is a perspective view of the sealing structure
  • FIG. 2 (b) is a cross-sectional view taken along a cross section passing through the glass plate 4
  • 2 (c) is a cross-sectional view of a structure in which the bowl-shaped glass members 5 are joined together.
  • Such a structure can be used, for example, as a container for insect specimens and dry flowers for appreciation. It is possible to widen the internal space 3 and the visibility of the inside is also good. In addition, if the inside is vacuumed, damage to the inside articles can be delayed.
  • the sealing material 2 not only joins both members by contacting the outer surface 14 of each of the glass plate 4 and the bowl-shaped glass member 5 as shown in FIG. 2B, but also as shown in FIG.
  • the opposing surfaces 15 of both members may be joined.
  • the members to be joined are brought into contact with each other to form an internal space, and airtightness is maintained by joining these members from the outside with a sealing material. it can.
  • the to-be-joined member which has an angle so that internal space may become shapes, such as a cylinder and a rectangular parallelepiped. Also, three or more members may be joined.
  • Starting materials were weighed to give a predetermined weight ratio.
  • oxide powder purity 99.9%
  • Ba (PO 3 ) 2 manufactured by Lasaei Kogyo Co., Ltd. was used as a Ba source and a P source.
  • the starting materials were mixed and placed in a platinum crucible.
  • the ratio of Ag 2 O in the raw material in the case of more than 40 mass% with alumina crucible.
  • the crucible containing the raw material mixed powder was placed in a glass melting furnace, and was heated and melted.
  • the temperature was raised at a temperature rising rate of 10 ° C./min, and the glass melted at the set temperature (700 to 950 ° C.) was held for 1 hour while stirring.
  • the crucible was taken out of the glass melting furnace, and glass was cast into a graphite mold which had been preheated to 150 ° C.
  • the glass cooled to room temperature was roughly crushed to prepare a frit of a glass composition.
  • the frit of the glass composition had an average volume particle size of 20 ⁇ m or less.
  • the characteristic temperature of the produced glass frit was measured by differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the temperature rising rate was 5 ° C./min, and data up to 600 ° C. was acquired.
  • Alumina powder was used as a standard sample and Al was used as a sample container.
  • a representative DTA curve is shown in FIG.
  • the glass transition point (T g ) was the onset temperature of the first endothermic peak.
  • the deformation point (M g ) as the first endothermic peak temperature, the softening point (T s ) as the second endothermic peak temperature, and the onset temperature (T c ) of the exothermic peak as the crystallization temperature are determined.
  • the softening point T s may be considered to be about 50 to 100 ° C. higher than the glass transition temperature T g .
  • the glass contains V and Te, and further contains at least one of P and Ag. More specifically, 17 to 50 mass% of V 2 O 5 , 20 to 33 mass% of TeO 2 , 4.8 to 12 mass% of P 2 O 5 , or 17 to 45 mass of V 2 O 5 in oxide conversion. %, 25 to 40 mass% of TeO 2 , and 20 to 45 mass% of Ag 2 O. According to these, the glass transition temperature can be set to 160 to 340.degree. In particular, when the total of Ag 2 O, V 2 O 5 and TeO 2 in terms of oxides is 85 mass% or more of the glass composition as G11 to G33 in the table, the glass transition temperature is 160 to 270 ° C. It was a low value.
  • An encapsulant paste was prepared using the glass composition.
  • Table 2 shows the specifications of pastes P1 to P14 using glass G4 and G25.
  • the frit of the glass composition was crushed by a jet mill.
  • the particle size of the obtained powder was 1 to 2 ⁇ m by volume weighted average.
  • the glass composition and various fillers were mixed at a predetermined blending ratio.
  • An agate mortar was used for mixing.
  • a solvent was added and mixed with 4% of a resin binder.
  • ethyl cellulose was used as a resin binder
  • butyl carbitol acetate was used as a solvent.
  • Butyl carbitol acetate does not react as well with the G1 to G10 glass compositions.
  • a resin binder was added because the viscosity is low and the coatability is poor if only the solvent is used.
  • Ethyl cellulose can be volatilized by heating to about 300 ° C., and the glass compositions G1 to G10 can be removed without softening and flowing. That is, the paste using the glass composition of G1 to G10 is used after being applied to a bonding substrate and then heated to about 300 ° C. to remove the solvent and the resin binder.
  • the materials of the added filler were three kinds of Sn-3.5Ag, Ag, and zirconium tungstate tungstate (ZWP: Zr 2 (WO 4 ) (PO 4 ) 2 ).
  • ZWP zirconium tungstate tungstate
  • Ag prepared the thing of two large and small particle sizes.
  • the material to be joined 81 was soda lime glass having a thickness of 0.3 mm.
  • the paste was applied onto a soda lime glass plate using a screen printer.
  • the width of the coating film 9 is 2 mm (FIG. 5A).
  • the thickness of the coating film 9 was set to five values of 10, 40, 70, 100, and 200 ⁇ m.
  • the pastes P1 to P7 were heated to a temperature of 150 ° C. to volatilize butyl carbitol acetate, then heated to a temperature of 320 ° C. to remove ethylcellulose, and calcined at 400 ° C. for 10 minutes.
  • the pastes of P8 to P14 were heated to 150 ° C. to volatilize ⁇ -terpineol and then calcined at 300 ° C. for 10 minutes.
  • the other material to be bonded 82 of soda lime glass was placed on the coated film, and the coated film 7 was irradiated with a laser from above the glass plate 82 as shown in FIG. 5 (b).
  • the optimum condition was investigated by fixing the beam diameter to 7 mm and gradually increasing the laser output.
  • pastes P1 and P8 containing no filler were compared, in paste P1 using a glass having a high glass transition temperature, good adhesion was possible even when the film thickness was increased to 40 ⁇ m.
  • the thermal expansion coefficient of the G1 to G10 glass is 8 to 16 ppm / K
  • the thermal expansion coefficient of the G11 to G31 glass is 13 to 18 ppm / K.
  • the former glass which has a high glass transition temperature, tends to have a lower thermal expansion coefficient than the latter glass.
  • the coefficient of thermal expansion of soda lime glass is 7 ppm / K.
  • the film thickness is greater than 70 ⁇ m, good adhesion can not be achieved even if the paste P1 containing glass with a high glass transition temperature is used.
  • the film thickness is thin, it is preferable to include ZWP in the filler.
  • the paste P8 containing no filler and the paste P14 containing ZWP are compared.
  • the film thickness is 40 ⁇ m or less As long as, it is understood that good adhesion is obtained. It is considered that the inclusion of ZWP having a low thermal expansion coefficient in the filler brings the thermal expansion coefficient of the sealing material closer to soda lime glass, and good adhesion can be obtained.
  • the film thickness is greater than 70 ⁇ m, good adhesion can not be achieved even if ZWP is used as a filler.
  • C When the film thickness is thick, it is preferable to add a metal filler.
  • the metal filler of the present invention means a filler containing a metal in a state of not forming an oxide. Below, when film thickness is thick, the reason for containing of a metal filler is considered.
  • FIG. 6 shows the wavelength dependency of the light transmittance in the film of 5 ⁇ m in thickness manufactured by glass number 24.
  • This result shows that, for example, when using a laser with a wavelength of 1000 nm, about 40% of the energy of the laser is absorbed at a depth of 5 ⁇ m from the laser irradiation side, and about 60% reaches a region deeper than that There is. Therefore, when the film thickness is large, the amount of absorption of energy of the laser changes significantly depending on the depth of the film.
  • the thermal conductivity of the glass produced this time is as low as about 0.5 W / mK regardless of the composition, heat is also less likely to diffuse. Therefore, when the laser heating is performed, a large temperature non-uniformity occurs in the coating film.
  • Such non-uniformity in temperature increases residual stress after bonding, and causes defects in bonding such as cracks.
  • the metal filler in addition to one containing Ag and Sn, one containing Cu, Al, Zn, Au, In, Bi, and Pt may be used.
  • D When the film thickness is large, it is preferable to add a metal filler and further use a glass having a low glass transition temperature.
  • pastes P3, 4, 6 and pastes P10, 11, 13 are compared, in pastes P10, 11, 13, good adhesion can be obtained even when the film thickness exceeds 100 ⁇ m.
  • Common to these pastes is the use of a glass with a low glass transition temperature, in addition to the addition of metal fillers.
  • the temperature increase amount at the time of laser irradiation required for bonding can be small, and thus the temperature non-uniformity inside the coating film can be further reduced. For this reason, it is considered that residual stress after bonding is reduced, and adhesion failure does not occur.
  • E When the film thickness is large, it is better to use a metal filler having a low melting point or to use a metal filler having a large particle diameter.
  • the pastes P11, P12 and P13 are compared.
  • only P12 has a narrow range of bondable film thickness (when the film thickness is thick) , Good adhesion not obtained).
  • the addition of a metal filler has the advantage of improving the thermal conductivity of the sealing material and making it easy to make the temperature of the sealing material uniform during laser irradiation, the flowability of the sealing material when the amount of metal filler added is increased.
  • a metal filler having a melting point lower than the softening point at which the glass starts to flow is selected, the flowability is less likely to deteriorate and good adhesion can be achieved.
  • a low melting point metal filler is used, the cross section of the sealing structure is as shown in FIG. 7 (a).
  • the metal filler 12 between the materials to be joined 81 and 82 is melted by laser heating, the metal fillers are combined, and the gap between the metal fillers 12 is filled with the glass 13. Do. However, since the heating time by laser irradiation is short, the original particle shape is maintained.
  • the gap between the metal filler particles becomes large, so that the softened and flowed glass easily penetrates into the gap, and the softened and flowed glass sufficiently penetrates the gap between the metal filler particles, Good adhesion can be obtained.
  • a metal filler in the range of 0.5 to 1 times the thickness of the coating film is used.
  • a metal filler having a size within this range is used, as shown in FIG. 7B, a structure in which the metal fillers 12 are arranged in a line is obtained.
  • the energy input by the laser irradiation spreads to a region far from the laser irradiation surface, and a uniform temperature distribution is achieved.
  • the important point is to match the thermal expansion coefficients of the base material and the sealing material as much as possible.
  • the film thickness is large, good adhesion can not be obtained only by considering the thermal expansion coefficient. This is because the energy density of the laser absorbed by the coating film is attenuated in the film depth direction, and the temperature distribution inside the coating film becomes extremely nonuniform.
  • the inventors have found that it is effective to mix a metal filler in the sealing material to prevent such non-uniformity in temperature distribution. It has also been found that it is effective to use a glass composition having a low glass transition temperature which contains V, Te and Ag as components. Furthermore, it has been found that it is effective to use a metal filler having a low melting point or a large particle size.
  • FIG. 8 shows the cross-sectional structure of the multilayer heat insulating glass.
  • the form of heat transfer between the two glass plates 9 is heat transfer and convection by gas in the space, and radiation transferred as energy of electromagnetic waves.
  • the material excellent in gas-barrier property like low melting glass is used for a sealing material.
  • the sealing material 11 may be interposed between two glass plates as shown in FIG. 8A, or may be disposed at an end of one glass as shown in FIG. 8B. In any case, it is necessary to separate the two glass plates 9 from each other in the multi-layered heat insulating glass, and it is necessary to make the sealing material 11 a thick film.
  • the multilayer insulating glass can be produced, for example, by the following method.
  • the paste P11 is applied to the outer periphery of a soda-lime glass plate with a thickness of 3 mm, and then heated at 150 ° C. to volatilize ⁇ -terpineol, and then calcined at 300 ° C. for 10 minutes.
  • the thickness of the spacer is 0.2 mm
  • the thickness of the coating film is 0.25 mm.
  • a 3 mm thick soda lime glass plate is placed, and a laser with a wavelength of 1030 nm is scanned along the coating film. When the laser is scanned, the coating film melts and spreads due to the weight of the soda lime glass plate, and the distance between the two glass plates is 0.2 mm, which is the same as the height of the spacer.
  • the advantage of using laser heating in the production of multilayer insulation glass is that it is possible to place a heat-sensitive material between two glass plates.
  • a new function can be provided to the window glass by pasting a film having a function of light control, reflection prevention, heat ray reflection and the like on the inside of one glass plate.
  • a film will be installed in a vacuum heat insulation layer, deterioration by water
  • a lighting element, an image display element, or the like may be provided in the vacuum heat insulating layer.
  • a show window such as a store
  • the inside formed between the glass plate 4 serving as the bottom plate and the bowl-shaped glass member 5 Place insect specimens and fresh flowers in the space, and bond the bottom plate and the hemispherical transparent member with a sealant. It is conceivable to seal the interior space 3 with an inert gas such as argon.
  • an inert gas such as argon.
  • the glass plate 4, the bowl-shaped glass member 5, and the sealing material 2 it is preferable to use a glass having excellent gas barrier properties, not an organic material such as a resin.
  • the sealing material for glass requires heating to the melting temperature of the glass in the sealing process. At this time, if laser heating is used, the insect specimens inside, without damaging the fresh flowers. Only the portion of the sealing material can be heated and melted. At this time, as shown in FIG. 8, it is convenient to apply the sealant along the outer edge of the hemispherical transparent member. However, it is very difficult to make the thickness uniform in such a coating film, and it is also difficult to heat the sealing material uniformly at the time of laser heating. Therefore, it is preferable to utilize the findings of (C) to (E) described above.
  • the preservation of insect specimens and fresh flowers can be produced, for example, by the following method.
  • a hemispherical transparent member made of soda lime glass is placed.
  • the paste of P11 is applied to the outer periphery of the bottom plate and the hemispherical transparent member.
  • a laser of wavelength 1030 nm is scanned along the applied paste. While the solvent in the paste is volatilized, the glass particles and the tin particles are melted to bond the bottom plate and the hemispherical transparent member, and the internal space is separated from the outside. After that, even if it is vented to the atmosphere, the state in which the inert gas is sealed is maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)
  • Laser Beam Processing (AREA)

Abstract

 内部空間をもつガラス製の封止構造体において、前記封止構造体の内部空間と外部との境界の少なくとも一部が封止材により隔てられていて、前記封止材は金属材料と無鉛酸化物ガラスを含有し、前記無鉛酸化物ガラスはAg,Pの少なくとも一方の元素と、Te、Vを含有する。

Description

封止構造体、複層断熱ガラス、ガラス容器
 本発明は、封止構造体、複層断熱ガラス、ガラス容器に関する。
 ガラスは光学的に透明であり、ガスや水分を透過し難く気密性に優れる。そのため、窓ガラスや陳列ケースのような複層断熱ガラスや、電子機器に内蔵される発光素子を覆うパッケージ等にガラスが用いられている。
 上記のような用途においては、断熱性や気密性を高めるために、複数のガラス部材同士を、内部に空間を内包した状態で接合する。接合部分にも断熱性や気密性が必要であるため、ガスバリア性に優れる低融点ガラスが接合材(封止材)として用いられることがある。
 例えば特許文献1では、低融点ガラスの封止材にレーザーを照射することで加熱、溶融させてガラス部材同士を接合している。レーザーを用いれば、レーザー照射箇所のみを選択的に加熱することができるため、接合箇所以外の部分への熱影響を小さくすることができる。また、レーザー加熱は局所加熱なので、低融点ガラスが不均一に温度上昇して熱応力が生じ、ガラス部材との接合不良が発生しやすいが、低融点ガラスに熱膨張係数の低いフィラーを添加することで、接合不良を回避している。
特開2010-184852号公報
 しかし、上記特許文献のものは、0.01~0.02mm程度のごく薄い有機素子を、2枚の平面状のガラス板の間に配置した構造であり、封止材の厚みは薄いものである。被接合材間に厚みのある部品を配置する場合や、複雑な形状の被接合材を接合する場合等では接合材層が厚くなる。レーザー加熱では、レーザー照射面から深くなるにしたがって、ガラスの接合材が吸収するエネルギーは指数関数的に減少する。一般に、ガラスは熱伝導率が低いため、エネルギーの吸収に空間的な不均一があれば、ガラスの温度分布も空間的に不均一となりやすい。このため、接合材層が厚いときには、接合材の温度分布が著しく不均一となり、接合材や被接合材が破損したり、界面剥離などの接合不良が生じ易くなる。
 本発明の目的は、接合材層が厚いときでも、接合材や被接合材の破損や接合不良を低減することにある。
 上記目的は、請求項に記載の発明により達成される。
 本発明によれば、接合材層が厚いときでも、接合材や被接合材の破損や接合不良を低減することができる。
封止構造体の一例。(a)は斜視図、(b)は断面図。 封止構造体の一例。(a)は斜視図、(b)(c)は断面図。 封止構造体の一例。 示差熱分析結果の一例と各特性温度の決め方。 接合性の検討方法。 開発ガラスにおける光透過率の波長依存性。 封止構造体の断面図。(a)低融点の金属フィラーを用いた場合。(b)粒径の大きい金属フィラーを用いた場合。 複層断熱ガラスの断面図。(a)封止材を2枚のガラス板の間に配置した場合。(b)封止材を外側に配置した場合。
 以下、本発明の実施形態を説明するが、本発明は以下に示す実施形態に限定されるものではない。封止構造体とは、図1~3に示すように、ガラスにより外部と隔てられた内部空間を有するガラス製の構造体である。内部空間は、複数のガラス部材を封止材(接合材)により接着するか、単一のガラス部材の孔を封止材により塞ぐことで形成される。
 図1は、2枚のガラス板1の外周を、封止材2により接着し、2枚のガラス板の間に内部空間3を形成したものである。図1(a)は封止構造体の斜視図であり、図1(b)はガラス板1と封止材2を通るA-A線で切断した断面図である。このような構造は、断熱窓ガラス、OLEDディスプレイなどに用いられる。断熱窓ガラスでは、通常、ガラス板1にはソーダ石灰ガラスが用いられ、内部空間3を、大気よりも断熱性に優れるアルゴンガスで満たすか、真空状態にする。一方、OLEDディスプレイでは、ガラス板1に無アルカリガラスが用いられ、内部空間3には有機発光ダイオードが封入される。その他の部材を内部空間3に配置してもよいし、内部空間3を他の雰囲気で満たしてもよい。
 封止材2は、図1のようにガラス板1同士の対向面15だけを接合するだけでなく、封止構造体の外側にはみ出していてもよい(板ガラス1の外面14に付着していてもよい)。また、対向面15の端部でなく、端部からやや内側を接合してもよい。つまり、内部空間3と外部空間が、2枚のガラス板1と封止材2とで仕切られていればよい。
 ガラス板1同士の間隔を広げると、用いられる封止材2の体積も増えて分厚くなる。封止材2はガラス板1の外側からレーザーを照射されるので、レーザーの進行方向に封止材2が厚くなるほどレーザーが封止材2内部に到達しにくくなり、加熱されにくくなる。また、ガラス板1側の封止材2が加熱されることによる熱も、封止材2内部に届きにくくなる。しかし、以下に述べるガラス組成物と金属粒子とを含む封止材によれば、レーザーの進行方向に厚みのある封止材であっても、レーザーのエネルギーを空間的に均一に吸収させやすく、温度分布も空間的に均一となりやすいので、封止材や被接合材が破損したり、界面剥離などの接合不良を低減することができる。
 図2は、ガラス板4とお椀型ガラス部材5とを、封止材2により接着し、内部空間3を形成したものである。図2(a)は封止構造体の斜視図であり、図2(b)はガラス板4とお椀型ガラス部材5と封止材2を通る断面で切断したときの断面図であり、図2(c)はお椀型ガラス部材5同士を接合した構造体の断面図である。このような構造は、例えば、昆虫標本や鑑賞用ドライフラワーの容器などに用いることができる。内部空間3を広くとることが可能であり、内部の視認性も良好である。また、内部を真空状態にすれば、内部の物品が傷むのを遅らせることができる。
 封止材2は、図2(b)のようにガラス板4とお椀型ガラス部材5の各々の外面14に接触することで両部材を接合するだけでなく、図2(c)のように両部材の対向面15を接合してもよい。被接合部材のうち、少なくとも1つが湾曲した部材の場合は、被接合部材同士を接触させて内部空間を形成し、これらの部材を外側から封止材で接合することで気密性を保つことができる。
 図2のように湾曲面を有する板を用いると、内部空間を真空にした場合でも耐久性がある。その他、内部空間が円柱や直方体等の形状になるように、角のある被接合部材を用いてもよい。また、3つ以上の部材を接合してもよい。
 内部に封入する物品が小さいものや液体のときには、図3に示すように、孔の空いた単一のガラス部材6を用意して、封止材2によりその孔を塞ぐような構造であってもよい。
(ガラス組成物の作製)
 封止材に用いる低融点ガラス組成物(G1~G31)を作製した。本発明のガラス組成物には鉛を含まない。作製したガラスの組成とガラス転移点を表1に示す。これらのガラスは、以下の手順に従い作製した。
 出発原料を所定の重量比となるように評量した。出発原料として、(株)高純度化学研究所製の酸化物粉末(純度99.9%)を用いた。一部の試料では、Ba源およびP源としてラサエ業(株)製のBa(PO32を用いた。出発原料を混合して白金るつぼに入れた。原料中のAg2Oの比率が40mass%以上の場合にはアルミナるつぼを用いた。原料混合粉末が入ったるつぼをガラス溶融炉内に設置し、加熱・融解した。10℃/minの昇温速度で昇温し、設定温度(700~950℃)で融解しているガラスを撹拌しながら1時間保持した。るつぼをガラス溶融炉から取り出し、あらかじめ150℃に加熱しておいた黒鉛鋳型にガラスを鋳込んだ。室温まで冷却したガラスを粗粉砕し、ガラス組成物のフリットを作製した。ガラス組成物のフリットは平均体積粒径が20μm以下であった。
 作製したガラスフリットの特性温度を示差熱分析(DTA)により測定した。昇温速度を5℃/minとし、600℃までのデータを取得した。標準試料にはアルミナ粉末を、試料容器にはAlを用いた。図4に代表的なDTA曲線を示す。図中に示すように、ガラス転移点(Tg)は第一吸熱ピークの開始温度とした。この他に、第一吸熱ピーク温度として屈伏点(Mg)、第二吸熱ピーク温度として軟化点(Ts)、結晶化温度として発熱ピークの開始温度(Tc)が求められる。接着に適した温度は、ガラスの粒径、接合時の加圧条件と保持時間などに依存するため、一概に規定することはできないが、少なくとも粘度=107.65poiseに相当する軟化点Tsよりは高い温度に加熱する必要がある。軟化点Tsはガラス組成にもよるが、ガラス転移温度Tgよりも50~100℃程度高い温度と考えてよい。
 ガラスはVとTeを含み、更にPとAgの少なくとも一方を含む。より具体的には、酸化物換算でV25が17~50mass%、TeO2が20~33mass%、P25が4.8~12mass%、又は、V25が17~45mass%、TeO2が25~40mass%、Ag2Oが20~45mass%である。これらによれば、ガラス転移温度が160~340℃とすることができる。特に、表中のG11~G33のように酸化物換算でAg2O、V25、TeO2の合計がガラス組成物の85mass%以上とすると、ガラス転移温度は160~270℃の非常に低い値となった。
Figure JPOXMLDOC01-appb-T000001
(封止材ペーストの作製)
 ガラス組成物を用いて封止材ペーストを作製した。作製したペーストのうち、ガラスG4、G25を用いたペーストP1~P14の諸元を表2に示す。ガラス組成物のフリットをジェットミルにより粉砕した。得られた粉末の粒径は、体積加重平均で1~2μmであった。続いて、ガラス組成物と各種フィラーとを所定の配合比で混合した。混合にはメノウ乳鉢を用いた。G1~G10のガラス組成物に対しては、4%の樹脂バインダーを添加した溶剤を混合してペースト化した。ここで、樹脂バインダーにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。ブチルカルビトールアセテートは、G1~G10のガラス組成物とそれ程反応することがない。しかし、溶剤だけでは粘度が低く塗布性が悪いため樹脂バインダーを添加した。なお、エチルセルロースは300℃程度に加熱することで揮発させることが可能であり、G1~G10のガラス組成物を軟化流動させることなく除去可能である。すなわち、G1~G10のガラス組成物を用いたペーストは、接合基材に塗布した後、300℃程度に加熱して溶剤と樹脂バインダーを除去して用いる。
 一方、G11~G31のガラス組成物に対しては、溶剤のみを混合してペースト化した。ここで、溶剤にはαテルピネオールを用いた。αテルピネオールは、G11~G31のガラス組成物とそれ程反応することがない上、比較的高い粘度を有するため、樹脂バインダーを添加しなくても良好な塗布性が得られる。なお、G1~G10のガラス組成物に対してαテルピネオールは反応するため溶剤としては用いることができない。αテルピネオールは100~150℃程度に加熱すれば揮発させることが可能であり、G11~G31のガラス組成物を軟化流動させることなく除去できる。
 ここで、添加したフィラーの材質は、Sn-3.5Ag、Ag、リン酸タングステン酸ジルコニウム(ZWP:Zr2(WO4)(PO42)の3種類とした。また、Agは大小2種類の粒径のものを用意した。
Figure JPOXMLDOC01-appb-T000002
(接合性の検討)
 P1~P14のペーストを用いて、次の手順で接合性を検討した。
 被接合材81は、厚さ0.3mmのソーダ石灰ガラスとした。ソーダ石灰ガラス板上に、スクリーン印刷機を用いてペーストを塗布した。塗布膜9の幅を2mmとした(図5(a))。塗布膜9の厚みを、10、40、70、100、200μmの5通りとした。
 P1~P7のペーストについては、150℃の温度に加熱してブチルカルビトールアセテートを揮発させた後、320℃の温度に加熱してエチルセルロースを除去し、400℃10minの条件で仮焼成した。P8~P14のペーストについては、150℃に加熱してαテルピネオールを揮発させた後、300℃10minの条件で仮焼成した。
 塗布膜の上からもう一方のソーダ石灰ガラスの被接合材82を被せ、図5(b)に示すようにガラス板82の上方から塗布膜7にレーザーを照射した。なお、ビーム径を7mmと固定し、レーザー出力を徐々に高めることで、最適な条件を調べた。
 実験結果を表3に示す。ここで、レーザーの出力を調整し、全長に渡り良好に接着できた場合を「○」、どのようにレーザーの出力を調整しても良好に接着できなかった場合を「×」と表記した。なお、塗布膜の高さがフィラーの粒径より小さいような条件では試料を作製しておらず、その場合を「-」と表記した。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、(A)~(E)の知見を得た。
(A)フィラーなしでは、ガラス転移温度の高いガラスを用いる方がよい。
 フィラーを含有していないペーストP1とP8とを比較すると、ガラス転移温度の高いガラスを用いたペーストP1では、膜厚を40μmまで厚くしても良好に接着することができた。
 G1~G10のガラスの熱膨張係数は8~16ppm/K、G11~G31のガラスの熱膨張係数は13~18ppm/Kである。ガラス転移温度の高い前者のガラスの方が、後者のガラスよりも熱膨張係数が低い傾向にある。一方、ソーダ石灰ガラスの熱膨張係数は7ppm/Kである。このため、ガラス転移温度の高い封止材ではガラス基材との熱膨張係数の差が小さく、接着後の残留応力が低減され、良好な接着が得られたものと考えられる。
 ただし、膜厚が70μmよりも厚い場合は、ガラス転移温度の高いガラスを含有させたペーストP1を用いたとしても、良好な接着はできない。
(B)膜厚が薄い場合には、フィラーにZWPを含有させるとよい。
 ガラス転移温度の低いガラスG25を用いた場合において、フィラーを含有していないペーストP8と、ZWPを含有させたペーストP14とを比較すると、フィラーにZWPを用いることで、膜厚40μm以下の場合に限り,良好な接着を得られていることがわかる。これは、フィラーに熱膨張係数が低いZWPを含有させることで、封止材の熱膨張係数がソーダ石灰ガラスに近づき、良好な接着が得られるようになったものと考えられる。
 ただし、膜厚が70μmよりも厚い場合は、ZWPをフィラーに用いたとしても、良好な接着はできない。
(C)膜厚が厚い場合には、金属フィラーを添加するとよい。
 膜厚が40μm程度の場合には、熱膨張係数の制御によって良好な接着を得ることができた。しかしながら、膜厚が70μmよりも厚い場合には良好な接着はできなかった。一方、ペーストP3、4、11、13においては,膜厚が70μmよりも厚い場合においても良好な接着が得られている。これらのペーストに共通するのは、金属フィラー(金属材料)を含有していることである。本発明の金属フィラーとは、酸化物を形成していない状態の金属を含むフィラーを言う。以下に、膜厚が厚い場合に、金属フィラーの含有が効果的であった理由について考察する。
 図6にガラス番号24で作製した5μmの厚みの膜における光透過率の波長依存性を示す。この結果は、例えば1000nmの波長のレーザーを使用した場合、レーザー照射側から5μmの深さにおいてレーザーのエネルギーの約40%が吸収され、約60%がそれより深い領域に到達することを示している。したがって、膜厚が厚い場合には、レーザーのエネルギーの吸収量は、膜の深さに応じて著しく変化することになる。また、今回作製したガラスの熱伝導率は、組成によらず約0.5W/mKと低いため、熱も拡散しにくい。したがって、レーザーによる加熱の際には、塗布膜の内部で多大な温度の不均一が生じる。このような温度の不均一は、接合後の残留応力を増大させ、クラックなどの接合不良の要因となる。しかしながら、金属フィラーを添加した場合は、封止材の熱伝導率が向上するため、レーザー照射時の不均一な温度分布が抑制され、良好な接着が得られるようになったと考えられる。金属フィラーとしては、Ag、Snを含むもの以外に、Cu、Al、Zn、Au、In、Bi、Ptを含むものを用いてもよい。
(D)膜厚が厚い場合には、金属フィラーを添加し、更にガラス転移温度の低い組成のガラスを用いるとよい。
 ペーストP3、4、6とペーストP10、11、13とを比較すると、ペーストP10、11、13では、膜厚が100μmを超えても、良好な接着を得ることができている。これらのペーストに共通するのは、金属フィラーが添加されていることに加え、ガラス転移温度の低い組成のガラスを用いていることである。ガラス転移温度の低い組成のガラスを用いることで、接着に必要とされるレーザー照射時の温度上昇量が小さくてすむため、塗布膜の内部での温度の不均一がより少なくなる。このため、接着後の残留応力が低減され、接着不良が起きなくなったものと考えられる。
(E)膜厚が厚い場合には、融点の低い金属フィラーを用いるか、粒径の大きい金属フィラーを用いる方がよい。
 ペーストP11、12、13を比較する。これらのペーストでは、ガラスに対する金属フィラーの添加比が同じ(ガラス:金属フィラー=1:0.7)にも関わらず、P12のみ、接合可能な膜厚の範囲が狭い(膜厚の厚い場合に、良好な接着が得られていない)。金属フィラーを添加すると封着材の熱伝導率が向上してレーザー照射時に封着材の温度を均一化しやすくできるという利点がある一方で、金属フィラーの添加量が増加すると封着材の流動性が悪化して空隙や欠陥が多くなるという欠点も生じる。このとき、ガラスの軟化点よりも低い融点をもつ金属フィラーを用いるか、粒径の大きい金属フィラーを用いると、この欠点を回避することができる。
 ガラスが流動し始める軟化点よりも低い融点をもつ金属フィラーを選択すると、流動性が悪化しにくくなり良好に接着できるようになる。低融点の金属フィラーを使用した場合、封止構造体の断面は図7(a)のようになる。被接合材81、82の間の金属フィラー12はレーザー加熱によって溶けて、金属フィラー同士が結合し、金属フィラー12の隙間はガラス13により埋められる。する。ただし、レーザー照射による加熱時間は短いため、もとの粒子の形状が維持される。
 金属フィラーの粒径が大きいと、金属フィラー粒子の隙間が大きくなるため、軟化流動したガラスが隙間に浸透しやすくなり、軟化流動したガラスが金属フィラー粒子の隙間に十分に浸透するようになり、良好な接着が得られるようになる。好ましくは、塗布膜の厚みに対して0.5~1倍の範囲の金属フィラーを用いるのがよい。この範囲の大きさの金属フィラーを用いると、図7(b)に示すように、金属フィラー12が一列に並んだ構造となる。金属フィラーを介して、レーザー照射によって投入されたエネルギーは、レーザー照射面から遠い領域まで広がり、均一な温度分布が達成される。
 以上の封着性の検討結果をまとめる。膜厚が薄い場合における重要な点は、基材と封着材との熱膨張係数をなるべく一致させることである。しかしながら、膜厚が厚い場合には、熱膨張係数について考慮したのみでは、良好な接着は得られない。これは、塗布膜が吸収するレーザーのエネルギー密度が膜の深さ方向に対して減衰し、塗布膜の内部の温度分布が非常に不均一となるためである。発明者らは、このような温度分布の不均一を防止するのに、封着材に金属フィラーを混ぜることが有効であることを見出した。また、V、Te、Agを成分に含有するガラス転移温度の低いガラス組成とすることが有効であることを見出した。さらには、金属フィラーに融点が低いもの、あるいは粒径の大きいものを用いることが有効であることを見出した。
 膜厚を厚くした場合に良好な接合が得られるようになることには、次のような利点がある。第一に、図1に示すような2枚のガラス板同士を接合する構造の場合に、内部の空間の厚みをより厚くできるようになることである。第二に、図2、3に示す封止構造のように、接合材ペーストの厚みを制御するのが困難な構造のときでも接合が可能になることである。これらの利点を生かした実施形態を以下に説明する。
(複層断熱ガラスにおける実施形態)
図8に複層断熱ガラスの断面構造を示す。2枚のガラス板9の間を熱が伝わる形態としては、空間内の気体による熱伝導と対流、電磁波のエネルギーとして伝わる放射である。空間内を真空(大気より減圧された雰囲気)とすれば、気体による熱伝導と対流がなくなるため、断熱性能が高まる。ただし、空間内を真空とすると、外部からの圧力により2枚のガラス板の間隔を維持することが困難となるため、空間にスペーサー10が設置される。このとき、スペーサー10の熱伝導が断熱性の低下要因となる。空間を真空とすることによる断熱性能の向上が、スペーサー10による熱伝導によって相殺されないようにするには、2枚のガラス板9の間に少なくとも0.1mm、好ましくは0.2mmの隙間を設ける必要がある。また、空間内の真空を維持するため、封止材には低融点ガラスのようにガスバリア性に優れた材料が用いられる。封止材11は、図8(a)のように2枚のガラス板の間にはさんでもよいし、図8(b)のように一方のガラスの端部に配置してもよい。いずれにせよ、複層断熱ガラスでは、2枚のガラス板9の間隔を離す必要があり、封止材11を厚膜とする必要があるため、レーザー加熱によって製造する際には、前述した(C)~(E)の知見を活用するのが良い。複層断熱ガラスは、例えば、次のような方法で作製することができる。
 ペーストP11を厚さ3mmのソーダ石灰ガラス板の外周に塗布した後に、150℃で加熱して、αテルピネオールを揮発させた後、300℃10minの条件で仮焼成する。スペーサーの厚みを0.2mm、塗布膜の厚みを0.25mmとする。厚さ3mmのソーダ石灰ガラス板を乗せ、塗布膜に沿って波長1030nmのレーザーを走査させる。ソーダ石灰ガラス板の自重により、レーザーを走査させると塗布膜は融け広がり、2枚のガラス板の間隔はスペーサーの高さと同じ0.2mmとなる。一方のソーダ石灰ガラス板にはあらかじめ真空排気口を設け、ロータリーポンプを用いて内部の空気を排出後、ガスバーナーで真空排気口を溶融させることで、真空封止をすることが可能である。あるいは、レーザーの走査を真空中で行えば、後で排気しなくとも真空封止することが可能である。この場合、真空排気口を設ける必要がなく、外観上好ましい。
 このように、複層断熱ガラスの製造時にレーザー加熱を用いる利点は、2枚のガラス板の間に熱に弱いものを設置できることにある。例えば、一方のガラス板の内側に、調光、反射防止、熱線反射などの機能をもつフィルムを貼り付けることで、窓ガラスに新たな機能を付与することができる。また、このようなフィルムは、真空断熱層に設置されることになるので、水分や埃などによる劣化を防止することができる。あるいは、真空断熱層に、照明素子や画像表示素子などを設置してもよい。商店などのショーウィンドウでは、内部の商品を確認できるようにしつつ、必要に応じて内部の商品を照明素子によって照らしたり、商品に関する情報を画像表示素子に映し出したりすることも可能となり、商業施設に利用するのに好適である。
(昆虫標本・生花の保存容器における実施形態)
 昆虫標本、生花などは、大気中に保持すると、酸化や吸湿により、色合いが劣化したり、形状が崩れたりする。このため、湿度を低くして、不活性雰囲気に保存しておくことが望ましい。
 内部をいつでも観察できるような形で、昆虫標本、生花などの不活性ガス中に封入する方法として、図2に示すように、底板となるガラス板4とお椀型ガラス部材5の間にできる内部空間に、昆虫標本、生花を設置し、底板と半球状の透明部材とを封止材で接着し.内部空間3にアルゴンなどの不活性ガスを封入することが考えられる。ガラス板4、お椀型ガラス部材5、封止材2には、樹脂などの有機材料ではなく、ガスバリア性に優れるガラスを使用するのがよい。しかしながら、昆虫標本、生花は、熱に弱いため、ガラスの封止材では、その封止プロセスにおいて、ガラスの溶融する温度まで加熱する必要が生じる。このとき、レーザー加熱を利用すれば、内部の昆虫標本、生花を損傷させることなく.封止材の部分のみを加熱して融かすことができる。このとき、封止材は図8に示すように、半球状の透明部材の外縁に沿って塗布するのが簡便である。しかしながら、このような形態の塗布膜は、その厚みを均一にすることは非常に困難であり、このため、レーザー加熱時に封止材を均一に加熱するのも困難である。そこで、前述した(C)~(E)の知見を活用するのが良い。昆虫標本・生花の保存は、たとえば、次のような方法で作製することができる。
 ソーダ石灰ガラス製の底板の上に、昆虫標本、または生花を載せる。雰囲気をアルゴンなどの不活性ガスとした後、ソーダ石灰ガラス製の半球状の透明部材を載せる。底板と半球状の透明部材の外周にP11のペーストを塗布する。塗布したペーストに沿って、波長1030nmのレーザーを走査させる。ペースト中の溶媒が揮発するとともに、ガラス粒子、スズ粒子が溶融して、底板と半球状の透明部材が接着するとともに、内部空間が外界と隔てられる。この後、大気中に出しても、不活性ガスが封入された状態が維持される。
1・・・ガラス板
2・・・封止材
3・・・内部空間
4・・・ガラス板
5・・・お椀型ガラス部材
6・・・ガラス部材
7・・・塗布膜
81・・・被接合材
82・・・被接合材
9・・・ガラス板
10・・・スペーサー
11・・・封止材
12・・・金属フィラー
13・・・無鉛ガラス組成
14・・・外面
15・・・対向面

Claims (11)

  1.  内部空間をもつガラス製の封止構造体において、
     前記封止構造体の内部空間と外部との境界の少なくとも一部が封止材により隔てられていて、前記封止材は金属材料と無鉛酸化物ガラスを含有し、前記無鉛酸化物ガラスはAg,Pの少なくとも一方の元素と、Te、Vを含有することを特徴とする封止構造体。
  2.  請求項1において、前記無鉛酸化物ガラスが酸化物換算でV25が17~45mass%、TeO2が25~40mass%、Ag2Oが20~45mass%であることを特徴とする封止構造体。
  3.  請求項1において、前記無鉛酸化物ガラスが酸化物換算でV25+TeO2+Ag2O≧85mass%であることを特徴とする封止構造体。
  4.  請求項1において、前記無鉛酸化物ガラスが酸化物換算でV25が17~50mass%、TeO2が20~33mass%、P25が4.8~12mass%であることを特徴とする封止構造体。
  5.  請求項1において、前記金属材料がAg、Cu、Al、Sn、Zn、Au、In、Bi、Ptの少なくとも一種を含むことを特徴とする封止構造体。
  6.  請求項1において、前記金属材料の融点が前記無鉛酸化物ガラスの軟化点よりも低いことを特徴とする封止構造体。
  7.  請求項1において、前記封止構造体は2枚のガラス板を備え、前記2枚のガラス板の外周部を前記封止材で接合して前記内部空間を形成し、前記内部空間の間隔は70μm以上であることを特徴とする封止構造体。
  8.  請求項7において、前記金属材料の平均粒子径が、前記内部空間の間隔の0.5~1倍であることを特徴とする封止構造体。
  9.  請求項7において、前記内部空間が大気より減圧されていることを特徴とする複層断熱ガラス。
  10.  請求項1において、前記封止構造体は複数のガラス部材を備え、前記複数のガラス部材のうち少なくとも1つが湾曲面を有するガラス部材であり、前記複数のガラス部材同士を前記封止材で接合して前記内部空間を形成することを特徴とする封止構造体。
  11.  請求項10において、前記内部空間が不活性雰囲気であることを特徴とするガラス容器。
PCT/JP2013/082526 2013-12-04 2013-12-04 封止構造体、複層断熱ガラス、ガラス容器 WO2015083248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/082526 WO2015083248A1 (ja) 2013-12-04 2013-12-04 封止構造体、複層断熱ガラス、ガラス容器
US15/033,167 US10392296B2 (en) 2013-12-04 2013-12-04 Sealed structural body and method for manufacturing the same
JP2015551326A JP6342426B2 (ja) 2013-12-04 2013-12-04 封止構造体、複層断熱ガラス、ガラス容器
CN201380080467.5A CN105683111B (zh) 2013-12-04 2013-12-04 密封结构体、及密封结构体的制造方法
EP13898801.9A EP3078643A4 (en) 2013-12-04 2013-12-04 Sealed structure, multi-layer heat-insulating glass and glass container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082526 WO2015083248A1 (ja) 2013-12-04 2013-12-04 封止構造体、複層断熱ガラス、ガラス容器

Publications (1)

Publication Number Publication Date
WO2015083248A1 true WO2015083248A1 (ja) 2015-06-11

Family

ID=53273044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082526 WO2015083248A1 (ja) 2013-12-04 2013-12-04 封止構造体、複層断熱ガラス、ガラス容器

Country Status (5)

Country Link
US (1) US10392296B2 (ja)
EP (1) EP3078643A4 (ja)
JP (1) JP6342426B2 (ja)
CN (1) CN105683111B (ja)
WO (1) WO2015083248A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108799A (ja) * 2014-12-04 2016-06-20 パナソニックIpマネジメント株式会社 ガラスパネルユニット
CN107893611A (zh) * 2016-10-03 2018-04-10 日立化成株式会社 真空绝热部件、密封材料和真空绝热部件的制造方法
JP2018125379A (ja) * 2017-01-31 2018-08-09 信越化学工業株式会社 合成石英ガラスリッド用基材及び合成石英ガラスリッド並びにそれらの製造方法
JP2018203549A (ja) * 2017-05-31 2018-12-27 日立化成株式会社 真空断熱部材及びその製造方法
WO2019093322A1 (ja) * 2017-11-10 2019-05-16 日本板硝子株式会社 ガラスパネル及びガラス窓
JPWO2018155518A1 (ja) * 2017-02-23 2019-12-19 Agc株式会社 ガラス板構成体
JP2021060561A (ja) * 2019-10-09 2021-04-15 大日本印刷株式会社 調光装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560328B2 (en) * 2014-02-13 2023-01-24 Corning Incorporated Ultra low melting glass frit and fibers
JP6690607B2 (ja) * 2016-08-03 2020-04-28 信越化学工業株式会社 合成石英ガラスリッド及び光学素子用パッケージ
CN107352504A (zh) * 2017-06-07 2017-11-17 扬中市华瑞通讯仪器有限公司 一种微流控mems芯片封装方法
US20190074416A1 (en) * 2017-09-06 2019-03-07 Coorstek Kk Silica glass member, process for producing the same, and process for bonding ceramic and silica glass
KR102217221B1 (ko) 2018-11-09 2021-02-18 엘지전자 주식회사 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체
WO2021064255A1 (en) * 2019-10-03 2021-04-08 Orvinum Ag Apparatus for creating a hole in a glass container
US20210235549A1 (en) * 2020-01-27 2021-07-29 Lexmark International, Inc. Thin-walled tube heater for fluid

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327363A (ja) * 1999-05-14 2000-11-28 Nec Kansai Ltd 低融点ガラスおよびガラスセラミック封止構体
JP2006342044A (ja) * 2005-05-09 2006-12-21 Nippon Electric Glass Co Ltd バナジウムリン酸系ガラス
JP2009209032A (ja) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd ガラス組成物
JP2010184852A (ja) 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd 低融点ガラス組成物、それを用いた低温封着材料及び電子部品
US20100331165A1 (en) * 2006-08-28 2010-12-30 Lee Jong-Ho Sealing composite for flat solid oxide fuel cell stack having high fracture resistance and the fabrication method thereof
JP2012012228A (ja) * 2010-06-29 2012-01-19 Asahi Glass Co Ltd ガラスフリット、およびこれを用いた導電性ペースト、電子デバイス
JP2013032255A (ja) * 2011-07-04 2013-02-14 Hitachi Ltd ガラス組成物、それを含むガラスフリット、それを含むガラスペースト、およびそれを利用した電気電子部品
JP2013071862A (ja) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd 低軟化点ガラス粉末
JP2013103840A (ja) * 2011-11-10 2013-05-30 Hitachi Ltd 導電性ガラスペースト及びそれを利用した電気電子部品
JP2013136470A (ja) * 2011-12-28 2013-07-11 Asahi Glass Co Ltd 封着組成物、封着組成物の製造方法、および封着構造体
WO2013172034A1 (ja) * 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798114A (en) * 1971-05-11 1974-03-19 Owens Illinois Inc Glasses with high content of silver oxide
US5188990A (en) 1991-11-21 1993-02-23 Vlsi Packaging Materials Low temperature sealing glass compositions
KR20010066793A (ko) 1999-05-14 2001-07-11 가네꼬 히사시 저융점 글래스, 절연 패키지 및 밀봉 부재
KR100712177B1 (ko) 2006-01-25 2007-04-27 삼성에스디아이 주식회사 유기전계발광표시장치 및 그 제조방법
US8071183B2 (en) * 2006-06-02 2011-12-06 Hitachi Displays, Ltd. Display apparatus
KR100787463B1 (ko) 2007-01-05 2007-12-26 삼성에스디아이 주식회사 글래스 프릿, 실링재 형성용 조성물, 발광 장치 및 발광 장치의 제조방법
KR101464321B1 (ko) 2007-11-26 2014-11-24 주식회사 동진쎄미켐 저융점 프릿 페이스트 조성물 및 이를 이용한 전기소자의밀봉방법
JP2011011925A (ja) * 2009-06-30 2011-01-20 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2011057477A (ja) 2009-09-08 2011-03-24 Nippon Electric Glass Co Ltd 封着材料
JP2011126722A (ja) * 2009-12-15 2011-06-30 Asahi Glass Co Ltd レーザ封着用封着材料、封着材料層付きガラス部材、およびそれを用いた太陽電池とその製造方法
US8802203B2 (en) * 2011-02-22 2014-08-12 Guardian Industries Corp. Vanadium-based frit materials, and/or methods of making the same
JP5732414B2 (ja) 2012-01-26 2015-06-10 株式会社日立製作所 接合体および半導体モジュール

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327363A (ja) * 1999-05-14 2000-11-28 Nec Kansai Ltd 低融点ガラスおよびガラスセラミック封止構体
JP2006342044A (ja) * 2005-05-09 2006-12-21 Nippon Electric Glass Co Ltd バナジウムリン酸系ガラス
US20100331165A1 (en) * 2006-08-28 2010-12-30 Lee Jong-Ho Sealing composite for flat solid oxide fuel cell stack having high fracture resistance and the fabrication method thereof
JP2009209032A (ja) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd ガラス組成物
JP2010184852A (ja) 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd 低融点ガラス組成物、それを用いた低温封着材料及び電子部品
JP2012012228A (ja) * 2010-06-29 2012-01-19 Asahi Glass Co Ltd ガラスフリット、およびこれを用いた導電性ペースト、電子デバイス
JP2013032255A (ja) * 2011-07-04 2013-02-14 Hitachi Ltd ガラス組成物、それを含むガラスフリット、それを含むガラスペースト、およびそれを利用した電気電子部品
JP2013071862A (ja) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd 低軟化点ガラス粉末
JP2013103840A (ja) * 2011-11-10 2013-05-30 Hitachi Ltd 導電性ガラスペースト及びそれを利用した電気電子部品
JP2013136470A (ja) * 2011-12-28 2013-07-11 Asahi Glass Co Ltd 封着組成物、封着組成物の製造方法、および封着構造体
WO2013172034A1 (ja) * 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078643A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108799A (ja) * 2014-12-04 2016-06-20 パナソニックIpマネジメント株式会社 ガラスパネルユニット
CN107893611A (zh) * 2016-10-03 2018-04-10 日立化成株式会社 真空绝热部件、密封材料和真空绝热部件的制造方法
JP2018058709A (ja) * 2016-10-03 2018-04-12 日立化成株式会社 真空断熱部材、それに用いる封止材料、及び真空断熱部材の製造方法
JP2018125379A (ja) * 2017-01-31 2018-08-09 信越化学工業株式会社 合成石英ガラスリッド用基材及び合成石英ガラスリッド並びにそれらの製造方法
JPWO2018155518A1 (ja) * 2017-02-23 2019-12-19 Agc株式会社 ガラス板構成体
US11122370B2 (en) 2017-02-23 2021-09-14 AGC Inc. Glass sheet composite
JP2022050594A (ja) * 2017-02-23 2022-03-30 Agc株式会社 振動板
JP7231071B2 (ja) 2017-02-23 2023-03-01 Agc株式会社 振動板
JP2018203549A (ja) * 2017-05-31 2018-12-27 日立化成株式会社 真空断熱部材及びその製造方法
WO2019093322A1 (ja) * 2017-11-10 2019-05-16 日本板硝子株式会社 ガラスパネル及びガラス窓
JPWO2019093322A1 (ja) * 2017-11-10 2020-11-26 日本板硝子株式会社 ガラスパネル及びガラス窓
JP2021060561A (ja) * 2019-10-09 2021-04-15 大日本印刷株式会社 調光装置
JP7432139B2 (ja) 2019-10-09 2024-02-16 大日本印刷株式会社 調光装置

Also Published As

Publication number Publication date
JPWO2015083248A1 (ja) 2017-03-16
JP6342426B2 (ja) 2018-06-13
EP3078643A4 (en) 2017-07-26
EP3078643A1 (en) 2016-10-12
CN105683111B (zh) 2018-09-14
US20160257610A1 (en) 2016-09-08
US10392296B2 (en) 2019-08-27
CN105683111A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015083248A1 (ja) 封止構造体、複層断熱ガラス、ガラス容器
TWI482745B (zh) A glass member having a sealing material layer, and an electronic device using the same, and a method of manufacturing the same
US8778469B2 (en) Electronic device and method for manufacturing same
TWI651290B (zh) 用於氣密密封應用的低玻璃轉移溫度玻璃墊圈
JP5904604B2 (ja) ガラスシートに焼結フリットパターンを生成するためのフリット含有ペーストを用いて気密シールを形成する方法
JP6310860B2 (ja) バナジウム系フリット材料、結合剤、及び/又は溶媒、並びにその製造方法
EP1897861A1 (en) Boro-silicate glass frits for hermetic sealing of light emitting device displays
WO2012117978A1 (ja) 気密部材とその製造方法
JP6565700B2 (ja) 複層ガラス、及びその製造方法
WO2011158805A1 (ja) 封着材料ペーストとそれを用いた電子デバイスの製造方法
JP2008218393A (ja) 発光ディスプレイ装置のためのシールおよび方法
WO2013008724A1 (ja) 複層ガラスとその製造方法
JP6129873B2 (ja) バナジウム系フリット材料に対する熱膨張係数フィラー及び/又はその製造方法及び/又はその利用方法
US10913677B2 (en) Double glazing and method for manufacturing same
JP5516194B2 (ja) 光加熱封着用ガラス、封着材料層付きガラス部材、及び電子デバイスとその製造方法
US20140342136A1 (en) Member with sealing material layer, electronic device, and method of manufacturing electronic device
TW201237470A (en) Reflective mirror and manufacturing method therefor
TW201943666A (zh) 套組、粒子混合物、糊及方法
JP2021046337A (ja) 接合体及び接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551326

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013898801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE