WO2015081743A1 - 一种基于分布式发电的空调***监控***及应用其的空调*** - Google Patents

一种基于分布式发电的空调***监控***及应用其的空调*** Download PDF

Info

Publication number
WO2015081743A1
WO2015081743A1 PCT/CN2014/086381 CN2014086381W WO2015081743A1 WO 2015081743 A1 WO2015081743 A1 WO 2015081743A1 CN 2014086381 W CN2014086381 W CN 2014086381W WO 2015081743 A1 WO2015081743 A1 WO 2015081743A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
air conditioning
conditioning system
distributed power
distributed
Prior art date
Application number
PCT/CN2014/086381
Other languages
English (en)
French (fr)
Inventor
何玉雪
赵志刚
宋海川
林成霖
姜春苗
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US15/101,333 priority Critical patent/US10088187B2/en
Priority to KR1020167017918A priority patent/KR101940384B1/ko
Priority to JP2016536835A priority patent/JP6357235B2/ja
Priority to EP14868139.8A priority patent/EP3079027A4/en
Publication of WO2015081743A1 publication Critical patent/WO2015081743A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • G05B19/4186Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by protocol, e.g. MAP, TOP
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2638Airconditioning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present application relates to the field of air conditioner control technologies, and in particular, to an air conditioning system monitoring system based on distributed generation and an air conditioning system using the same.
  • An air conditioning system based on distributed generation that is, an inverter air conditioner system equipped with distributed power generation equipment; the distributed power generation includes photovoltaic power generation, wind power generation, wind and solar hybrid power generation, biomass power generation, and the like.
  • the electric energy generated by the distributed power generation equipment is supplied to the air conditioning system, and some or even all of the power supply is replaced by the city network, thereby reducing the power supply burden of the city network, and the power generation equipment adopts natural and clean energy, thereby reducing the operating cost of the air conditioning system;
  • Distributed power generation air conditioning systems have broad application prospects.
  • the air conditioning system based on distributed generation increases the distributed generation equipment; in the prior art, the monitoring of the power generation of the distributed generation equipment and the consumption of the inherent equipment of the air conditioning system such as the system mainframe The monitoring of the electrical conditions is carried out independently, and it is not possible to adjust the power distribution according to the operating conditions of the air conditioning system, which is not conducive to the coordinated control of the entire air conditioning system.
  • the present application aims to provide an air conditioning system monitoring system based on distributed generation and a system using the same to solve the problem that the existing distributed generation power generation air conditioning system is independent of its distributed power generation equipment and other inherent equipment.
  • An air conditioning system monitoring system based on distributed generation is applied to an air conditioning system based on distributed generation, the air conditioning system comprising a distributed generation device and an intrinsic device of an air conditioning system, the air conditioning system passing through the distributed power generation device, or Powering the inherent equipment of the air conditioning system by the distributed power generation device and the commercial power, including:
  • a distributed power generation monitoring subsystem that monitors power generation status information of the distributed power generation device
  • HVAC energy management subsystem that monitors power consumption status information of the inherent equipment of the air conditioning system
  • the distributed generation monitoring subsystem and the HVAC management subsystem respectively perform data interaction with the main monitoring system through a first transmission protocol.
  • the first transmission protocol comprises a BACnet/IP protocol.
  • the distributed power generation device is a photovoltaic power generation device.
  • the main monitoring system comprises:
  • the master control command includes at least one of: first, controlling a power generation state of the distributed power generation device a main control command and a second main control command for controlling a power consumption state of the intrinsic device of the air conditioning system.
  • the distributed power generation-based air conditioning system monitoring system further comprises: a remote control terminal that performs data interaction with the main monitoring system through a TCP/IP protocol, and/or, through an RS485 protocol, a BACnet protocol, a Modbus protocol, or System host man-machine interface for data exchange between the CAN protocol and the main monitoring system.
  • a remote control terminal that performs data interaction with the main monitoring system through a TCP/IP protocol, and/or, through an RS485 protocol, a BACnet protocol, a Modbus protocol, or System host man-machine interface for data exchange between the CAN protocol and the main monitoring system.
  • the distributed power generation device comprises: a combiner box that collects and outputs direct current generated by the photovoltaic component, and an inverter that supplies power to the alternating current load;
  • the power generation state information includes acquiring a combiner box output current that characterizes a power generation amount of the distributed power generation device, and an inverter output current that characterizes a power supply amount of the distributed power generation device;
  • the distributed power generation monitoring subsystem includes:
  • the distributed power generation monitoring subsystem further includes: a power generation monitoring human-machine interface connected to the data collector and displaying the collection result of the data collector.
  • the air conditioning system inherent device comprises at least one of the following: a system host, a chilled water pump, a cooling water pump, and a cooling tower;
  • the HVAC energy management subsystem includes:
  • a main controller that performs data interaction with the main monitoring system through the first transmission protocol
  • One-to-one detection of the intrinsic equipment of the air conditioning system to obtain the power consumption state information and output the power consumption state information to an electric meter of the main controller.
  • the HVAC management subsystem further includes:
  • a field controller that acquires the second control instruction by the main controller and performs linkage control on the air conditioning system inherent device according to the second control instruction.
  • the HVAC management subsystem further includes:
  • An area controller that generates an air parameter control instruction according to a user operation instruction and performs data interaction with the main controller
  • An end controller that controls indoor air parameters according to the air parameter control command includes at least one of the following: a temperature controller, a fresh air controller, and a return air controller.
  • An air conditioning system based on distributed generation comprising a distributed power generation device and an intrinsic device of an air conditioning system, wherein the air conditioning system is inherent to the air conditioning system by the distributed power generation device or by the distributed power generation device and utility power
  • the equipment is powered, and the air conditioning system monitoring system is also included.
  • the air conditioning system inherent equipment comprises a centrifugal chiller and/or a screw chiller.
  • the present application not only realizes the power generation state information and the system inherent equipment of the distributed power generation equipment in the air-conditioning system based on distributed generation, respectively, through the distributed power generation monitoring subsystem and the HVAC energy management subsystem.
  • the monitoring of the power consumption status information also acquires the monitoring data of the two subsystems through the unified first transmission protocol of the main monitoring system, realizes the seamless docking and data sharing of the two subsystems, and improves the distributed generation of the air conditioning system.
  • the coordinated control of the equipment and the inherent equipment solves the problems of the prior art.
  • FIG. 1 is a structural block diagram of a monitoring system for an air conditioning system based on distributed generation according to Embodiment 1 of the present invention
  • FIG. 2 is a structural block diagram of a monitoring system for an air conditioning system based on distributed generation according to Embodiment 2 of the present invention
  • FIG. 3 is a structural block diagram of a system for monitoring an air conditioning system based on distributed generation according to Embodiment 3 of the present invention.
  • the embodiment of the invention discloses an air conditioning system monitoring system based on distributed generation to solve the problem that the existing air conditioning system based on distributed generation separately monitors photovoltaic power generation and equipment power consumption, and has poor overall system coordination control capability.
  • the distributed power generation-based air conditioning system monitoring system includes a distributed power generation monitoring subsystem 100, a HVAC energy management subsystem 200, and a main monitoring system 300.
  • the distributed power generation monitoring subsystem 100 is configured to monitor the power generation state information of the distributed power generation device 001; the HVAC energy management subsystem 200 is configured to monitor the power consumption state information of the air conditioner system inherent device 002; And acquiring the power generation state information and the power consumption state information respectively, and performing comprehensive monitoring on the air conditioning system according to the power generation state information and the power consumption state information.
  • the distributed generation monitoring subsystem 100 and the HVAC management subsystem 200 perform data interaction with the main monitoring system 300 through the first transmission protocol, respectively.
  • the embodiment of the present invention realizes the power generation state information and the inherentity of the air conditioning system of the distributed power generation equipment in the air conditioning system based on distributed generation, not only through the distributed power generation monitoring subsystem and the HVAC energy management subsystem.
  • the monitoring of the power consumption status information of the device also obtains the monitoring data of the two subsystems through the unified first transmission protocol of the main monitoring system, thereby achieving seamless docking and data sharing of the two subsystems;
  • the distributed power generation equipment it is no longer only based on the operating state of the distributed power generation equipment (ie, the power generation state information), but can simultaneously refer to the operating state of the inherent equipment of the air conditioning system (ie, the power consumption state) Information), in order to adjust the power generation of the distributed generation equipment according to the real-time power demand of the inherent equipment of the air-conditioning system, the proportion of the power output to the inherent equipment of different air-conditioning systems, etc.; correspondingly, the HVAC energy management subsystem is inherent to the air-conditioning system When the device monitors, it is no longer based solely on the power consumption status information.
  • the power generation state information can be simultaneously referred to, so as to adjust the working state of the relevant equipment of the relevant air conditioning system according to the real-time power generation amount of the distributed power generation device, reasonably distribute the power output of the distributed power generation device, and reduce unnecessary power loss.
  • the embodiment of the invention improves the coordinated control capability of the distributed power generation equipment and the inherent equipment of the air conditioning system, realizes the energy distribution optimization, improves the performance of the air conditioning system, and solves the problems of the prior art.
  • the first transmission protocol described in the embodiment of the present invention includes a standard BACnet/IP protocol in the HVAC industry.
  • the air conditioning system inherent device includes at least one of the following: a system host, a chilled water pump, a cooling water pump, and a cooling tower.
  • the specific system host is a chiller, more specifically a water-cooled chiller, more specifically a centrifugal water-cooled chilled water.
  • a chiller more specifically a water-cooled chiller, more specifically a centrifugal water-cooled chilled water.
  • Unit or screw type water-cooled chiller
  • Embodiment 2 of the present invention provides another air conditioning system monitoring system based on distributed generation; the air conditioning system based on distributed generation includes distributed power generation equipment 001 and air conditioning system inherent equipment 002; when distributed power generation equipment 001 generates sufficient power When the distributed power generation device 001 generates a small amount of power, the distributed power generation device 001 and the utility power jointly supply power to the air conditioning system inherent device 002.
  • the distributed power generation-based air conditioning system monitoring system includes a distributed power generation monitoring subsystem 100, a HVAC energy management subsystem 200, and a main monitoring system 300.
  • the main monitoring system 300 includes: a first main control subunit 310, a second main control subunit 320, and a third main control subunit 330.
  • the first master sub-unit 310 performs data interaction with the distributed power generation monitoring subsystem 100 through the first transmission protocol
  • the second master sub-unit 320 performs data interaction with the HVAC management subsystem 200 through the first transmission protocol
  • a master sub-unit 310 and a second master sub-unit 320 perform data interaction directly or through the third master sub-unit 330.
  • the working process of the above three master subunits includes:
  • the first master sub-unit 310 acquires and stores the power generation state information of the distributed power generation device 001 collected by the distributed power generation monitoring subsystem 100; the second master control sub-unit 320 acquires and stores the collected by the HVAC energy management subsystem 200. Power consumption status information of the air conditioning system inherent device 002;
  • the third master sub-unit 330 obtains the power generation state information and the power consumption state information by using the first master sub-unit 310 and the second master sub-unit 320, respectively, and according to the power generation state information and/or the power consumption state information.
  • a master control command is generated and sent to the corresponding subsystem (distributed power generation monitoring subsystem 100 or HVAC management subsystem 200).
  • the main control instruction includes at least one of: a first main control instruction and a second main control instruction; wherein the first main control instruction is sent to the distributed generation monitoring subsystem 100 to control the distributed generation device
  • the power generation state, the second main control command is sent to the HVAC energy management subsystem 200 to control the power consumption state of the air conditioning system inherent device 002.
  • the first master sub-unit 310 acquires the power consumption state information stored by the second master sub-unit 320 and sends it to the distributed power generation monitoring subsystem 100; the second master sub-unit 320 acquires the first master controller
  • the power consumption status information stored by the unit 310 is sent to the HVAC management subsystem 200, which enables seamless docking and data sharing of the distributed power generation monitoring subsystem 100 and the HVAC management subsystem 200.
  • the distributed power generation device comprises a photovoltaic component that converts solar energy into electrical energy, and a combiner box that combines and outputs direct current generated by the photovoltaic component; and further includes an inverter that supplies power to the alternating current load.
  • the distributed power generation monitoring subsystem 100 includes a data collector 110 for collecting power generation status information of the distributed power generation equipment 001, and transmitting the power generation status information to the first master subunit 310 through the BACnet/IP protocol.
  • the combiner box collector 120 of the combiner box collects a combiner box output current that characterizes the amount of power generated by the distributed power plant, and an inverter output current that characterizes the amount of power supplied by the distributed power plant.
  • the combiner box output current is collected, and the combiner box collector 120 performs data interaction with the data collector 110 through the field bus.
  • the HVAC management subsystem 200 includes an electricity meter 210 and a main controller 220.
  • the main controller 220 performs data interaction with the main monitoring system 300 through the BACnet/IP protocol, including: acquiring the detection result of the electric meter 210 and transmitting it to the second main control sub-unit 320.
  • the main controller 220 may also have one or more depending on the actual application.
  • the data acquisition device in the distributed power generation monitoring subsystem realizes collection and uploading of the power generation state information of the distributed power generation device to the main monitoring system, and realizes the inherent equipment of the air conditioning system through the electric meter.
  • the power consumption status information is collected, and the power consumption status information is also uploaded to the main monitoring system by the main controller, and then the main monitoring system sends the power generation status information collected by the distributed power generation monitoring subsystem to the HVAC energy through the sending unit.
  • the management subsystem sends the power consumption status information collected by the HVAC energy management subsystem to the distributed power generation monitoring subsystem, thereby achieving seamless connection between the distributed power generation monitoring subsystem and the HVAC energy management subsystem.
  • the data sharing improves the coordinated control capability of the distributed power generation equipment and the inherent equipment of the air conditioning system, and solves the problems of the prior art.
  • the HVAC energy management subsystem performs one-to-one detection on the intrinsic equipment of multiple air-conditioning systems by setting a plurality of electric meters, and then the main controller can obtain an optimal result by comprehensively analyzing the power consumption state information of all the devices or related devices.
  • the control strategy realizes the maximum energy saving of the air conditioning system.
  • the distributed power generation monitoring subsystem further includes a power quality regulator, a converter, etc., for generating power to the distributed power generation device according to the first control command generated by the main monitoring system, and to different air conditioning systems.
  • the power ratio of the output of the intrinsic device is adjusted.
  • the main controller can also send corresponding control commands to the dehumidifier, unit and other devices of the air conditioning system through the Modbus RTU protocol.
  • each main controller is further configured with one or more field controllers, and the field controllers obtain second control commands generated by the main monitoring system through their common main controllers, and Performing linkage control on the intrinsic equipment of the air conditioning system according to the second control instruction to achieve coordinated operation between the intrinsic devices of the respective air conditioning systems.
  • the air conditioning system monitoring system based on distributed generation includes a distributed power generation monitoring subsystem 100, a HVAC energy management subsystem 200, a main monitoring system 300, and a remote control terminal 400.
  • the embodiment of the invention implements three-level control of the air conditioning system based on the multi-agent technology; the so-called “three levels” includes: The power generation level of the power generation monitoring subsystem 100 and the HVAC energy management subsystem 200, the monitoring level formed by the main monitoring system 300, and the management level formed by the remote control terminal 400; wherein the field level and the monitoring level pass the BACnet/ The IP protocol performs data interaction, and the data exchange between the monitoring level and the management level is performed by the TCP/IP protocol.
  • the main monitoring system 300 includes: a first main control subunit 310, a second main control subunit 320, and a third main control subunit 330.
  • the first main control subunit 310, the third main control subunit 330, and the distributed generation monitoring subsystem 100 constitute a distributed generation microgrid control network
  • the first main control subunit 310 and the The three-master sub-unit 330 is equivalent to the upper-layer agent in the micro-network control network (ie, the micro-network monitoring center CCU), realizes monitoring of each component in the power grid, and determines the output of each distributed power generation through an optimization algorithm, and then optimizes the result.
  • the distributed generation monitoring subsystem 100 acts as a lower-level agent, which is equivalent to the local monitoring center, realizes coordinated control of distributed power generation in the power grid, and can accept the control of the CCU, and has the capability of independent operation.
  • the second main control subunit 320, the third main control subunit 330 and the HVAC management subsystem 200 constitute a distributed control system; the second main control subunit 320 and the third main The control unit 330 is equivalent to the upper layer of the distributed control system (specifically, a data management server, that is, a smart building system (BAS), a historical file and a configuration data management platform, a user interface with an intuitive operation process), through BACnet
  • a data management server that is, a smart building system (BAS), a historical file and a configuration data management platform, a user interface with an intuitive operation process
  • BAS smart building system
  • the /IP network communicates with the underlying HVAC management subsystem 200 to achieve unattended automatic operation of the air conditioning system, and to perform image management, data display, alarm and event management functions through the upper layer of the system.
  • the distributed power generation monitoring subsystem 100 includes a power generating device human-machine interface 130 in addition to the above-described data device including the data collector 110 and the combiner box collector 120.
  • the power generation device human-machine interface 130 is connected to the data collector 110 for displaying the collection result of the data collector 110, and providing a graphical distributed power generation device manual management operation interface, so as to facilitate the manual operation of the distributed power generation device when necessary. control.
  • the HVAC management subsystem 200 includes an electric meter 210, a main controller 220, and a field controller 230; the specific functions thereof can be referred to the above embodiments.
  • the HVAC management subsystem 200 further includes an area controller 240 for manually adjusting and controlling air parameters in each control area of the air conditioning system.
  • the area controller 240 generates an air parameter control instruction according to a user operation instruction. And send it to the corresponding end controller, such as temperature controller, fresh air controller and return air controller, to achieve manual adjustment of parameters such as air temperature in the corresponding area.
  • the area controller 240 also performs data interaction with the main controller through the corresponding communication module, and uploads information such as user operation instructions and air parameter control commands to the main controller, and then uploads to the monitoring level and the management level to realize three-level synchronization. monitor.
  • the air conditioning system monitoring system further includes a system host human-machine interface 500, which is located at the monitoring level, and performs data interaction with the main monitoring system 300 through RS485 protocol, BACnet protocol, Modbus protocol or CAN protocol, and displays on one hand Current operating status, data, etc. of the air conditioning system, and on the other hand, a manual operation interface is provided to Manual control of the air conditioning system when necessary.
  • a system host human-machine interface 500 which is located at the monitoring level, and performs data interaction with the main monitoring system 300 through RS485 protocol, BACnet protocol, Modbus protocol or CAN protocol, and displays on one hand Current operating status, data, etc. of the air conditioning system, and on the other hand, a manual operation interface is provided to Manual control of the air conditioning system when necessary.
  • the embodiment of the present invention realizes the power generation state information and the inherentity of the air conditioning system of the distributed power generation equipment in the air conditioning system based on distributed generation, not only through the distributed power generation monitoring subsystem and the HVAC energy management subsystem.
  • the omni-directional monitoring of the power consumption status information of the equipment, and the monitoring data of the above two subsystems are obtained by the main monitoring system using a unified first transmission protocol, thereby achieving seamless docking and data sharing of the two subsystems, and improving the air conditioning system.
  • the coordinated control capability of distributed generation equipment and intrinsic equipment realizes full-time and real-time monitoring, statistics and energy-saving adjustment of electric energy from generation to consumption; at the same time, the main monitoring system provides various communication modules, which respectively realize its and remote clients.
  • the data interaction with the man-machine interface of the air conditioner system centrifuge main unit realizes the three-level monitoring of the air conditioning system, which makes the air conditioning system monitoring mode diversified.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Air Conditioning Control Device (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种基于分布式发电的空调***监控***及应用其的空调***,该空调***监控***包括分布式发电监控子***、暖通能源管理子***和主监控***;不仅通过分布式发电监控子***及暖通能源管理子***分别实现了对基于分布式发电的空调***中分布式发电设备的发电状态信息和***固有设备的耗电状态信息的监控,还通过主监控***采用统一的第一传输协议获取上述两个子***的监控数据,实现了两个子***的无缝对接及数据共享,同时根据发电状态信息和耗电状态信息对分布式发电设备和空调***固有设备进行控制,提高了对空调***分布式发电设备和固有设备的协调控制能力,解决了现有技术的问题。

Description

一种基于分布式发电的空调***监控***及应用其的空调***
相关申请
本专利申请要求2013年12月6日申请的,申请号为201310656840.9,名称为“一种基于分布式发电的空调监控***及应用其的空调***”的中国发明专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调器控制技术领域,尤其涉及一种基于分布式发电的空调***监控***及应用其的空调***。
背景技术
基于分布式发电的空调***,即配备分布式发电设备的变频空调***;所述分布式发电包括光伏发电、风力发电、风光互补发电、生物质发电等。分布式发电设备的产生的电能供给该空调***,部分甚至全部代替市网供电,减小了市网供电负担,且发电设备均采用自然、清洁能源,降低了空调***的运行成本;因此,基于分布式发电的空调***具有广泛的应用前景。
由于与一般的空调***相比,基于分布式发电的空调***增加了分布式发电设备;现有技术中,对该分布式发电设备的发电情况的监控和对***主机等空调***固有设备的耗电情况的监控是分别独立进行的,不能做到根据空调***的运行状况合理调配电能,不利于整个空调***的协调控制。
发明内容
有鉴于此,本申请目的在于提供一种基于分布式发电的空调***监控***及应用其的***,以解决现有基于分布式发电的空调***分别对其分布式发电设备和其他固有设备进行独立监控、***整体协调控制能力差的问题。
为实现上述目的,本申请提供如下技术方案:
一种基于分布式发电的空调***监控***,应用于基于分布式发电的空调***,所述空调***包括分布式发电设备和空调***固有设备,所述空调***通过所述分布式发电设备,或者通过所述分布式发电设备和市电为所述空调***固有设备供电,包括:
监控所述分布式发电设备的发电状态信息的分布式发电监控子***;
监控所述空调***固有设备的耗电状态信息的暖通能源管理子***;
分别获取所述发电状态信息和耗电状态信息,并根据所述发电状态信息和耗电状态信息对所述空调***进行综合监控的主监控***;其中,
所述分布式发电监控子***和暖通能源管理子***分别通过第一传输协议与所述主监控***进行数据交互。
优选的,所述第一传输协议包括BACnet/IP协议。
优选的,所述分布式发电设备为光伏发电设备。
优选的,所述主监控***包括:
获取并存储所述发电状态信息、并向所述分布式发电监控子***发送所述耗电状态信息的第一主控子单元;
获取并存储所述耗电状态信息、并向所述暖通能源管理子***发送所述发电状态信息的第二主控子单元;
根据所述发电状态信息和/或耗电状态信息生成主控制指令的第三主控子单元;其中,所述主控制指令包括以下至少一种:控制所述分布式发电设备发电状态的第一主控制指令,和控制所述空调***固有设备耗电状态的第二主控制指令。
优选的,所述基于分布式发电的空调***监控***还包括:通过TCP/IP协议与所述主监控***进行数据交互的远程控制终端,和/或,通过RS485协议、BACnet协议、Modbus协议或CAN协议与所述主监控***进行数据交互的***主机人机界面。
优选的,所述分布式发电设备包括:汇集并输出光伏组件产生的直流电的汇流箱,和为交流负载供电的逆变器;
所述发电状态信息包括获取表征所述分布式发电设备的发电量大小的汇流箱输出电流,以及表征所述分布式发电设备供电量大小的逆变器输出电流;
所述分布式发电监控子***包括:
分别获取所述汇流箱输出电流和逆变器输出电流、并通过所述第一传输协议与所述主监控***进行数据交互的数据采集器。
优选的,所述分布式发电监控子***还包括:与所述数据采集器连接,显示所述数据采集器的采集结果的发电监控人机接口。
优选的,所述空调***固有设备包括以下至少一种:***主机、冷冻水泵、冷却水泵、冷却塔;
所述暖通能源管理子***包括:
通过所述第一传输协议与所述主监控***进行数据交互的主控制器;
对所述空调***固有设备进行一对一检测、以得到所述耗电状态信息、并将所述耗电状态信息输出至所述主控制器的电表。
优选的,所述暖通能源管理子***还包括:
通过所述主控制器获取所述第二控制指令、并根据所述第二控制指令对所述空调***固有设备进行联动控制的现场控制器。
优选的,所述暖通能源管理子***还包括:
根据用户操作指令生成空气参数控制指令、并与所述主控制器进行数据交互的区域控制器;
根据所述空气参数控制指令控制室内空气参数的末端控制器;所述末端控制器包括以下至少一种:温度控制器、新风控制器和回风控制器。
一种基于分布式发电的空调***,包括分布式发电设备和空调***固有设备,所述空调***通过所述分布式发电设备,或者通过所述分布式发电设备和市电为所述空调***固有设备供电,还包括所述的空调***监控***。
优选的,所述空调***固有设备包括离心式冷水机组和/或螺杆式冷水机组。
从上述的技术方案可以看出,本申请不仅通过分布式发电监控子***及暖通能源管理子***分别实现了对基于分布式发电的空调***中分布式发电设备的发电状态信息和***固有设备的耗电状态信息的监控,还通过主监控***采用统一的第一传输协议获取上述两个子***的监控数据,实现了两个子***的无缝对接及数据共享,提高了对空调***分布式发电设备和固有设备的协调控制能力,解决了现有技术的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的基于分布式发电的空调***监控***的结构框图;
图2为本发明实施例二提供的基于分布式发电的空调***监控***的结构框图;
图3为本发明实施例三提供的基于分布式发电的空调***监控***的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例公开了一种基于分布式发电的空调***监控***,以解决现有基于分布式发电的空调***分别对光伏发电和设备耗电进行监控、***整体协调控制能力差的问题。
本发明实施例一提供了一种基于分布式发电的空调***监控***;其中,所述基于分布式发电的空调***包括分布式发电设备001和空调***固有设备002;当分布式发电设备001发电量充足时,如分布式发电设备001的输出功率大于等于空调***固有设备002的运行功率时,可完全通过分布式发电设备001为空调***固有设备002供电;当分布式发电设备001发电量较小时,如分布式发电设备001的输出功率小于空调***固有设备002的运行功率时,通过分布式发电设备001和市电联合为空调***固有设备002供电或仅使用市电供电。
参照图1,该基于分布式发电的空调***监控***包括:分布式发电监控子***100、暖通能源管理子***200和主监控***300。
其中,分布式发电监控子***100用于监控分布式发电设备001的发电状态信息;暖通能源管理子***200用于监控所述空调***固有设备002的耗电状态信息;主监控***300用于分别获取所述发电状态信息和耗电状态信息,并根据所述发电状态信息和耗电状态信息对所述空调***进行综合监控。分布式发电监控子***100和暖通能源管理子***200分别通过第一传输协议与主监控***300进行数据交互。
由上述结构和功能可知,本发明实施例不仅通过分布式发电监控子***及暖通能源管理子***分别实现了对基于分布式发电的空调***中分布式发电设备的发电状态信息和空调***固有设备的耗电状态信息的监控,还通过主监控***采用统一的第一传输协议获取上述两个子***的监控数据,实现了两个子***的无缝对接及数据共享;使得分布式发电监控子***对分布式发电设备进行监控时,不再仅以分布式发电设备的运行状态(即所述发电状态信息)为依据,而是可以同时参考空调***固有设备的运行状态(即所述耗电状态信息),以便根据空调***固有设备的实时用电需求调整分布式发电设备的发电功率、向不同空调***固有设备输出电量的比例等;相应的,还使得暖通能源管理子***对空调***固有设备进行监控时,不再仅以所述耗电状态信息为依据,而是可以同时参考所述发电状态信息,以便于根据分布式发电设备的实时发电量调整相关空调***固有设备的工作状态,合理分配分布式发电设备输出的电能、减少不必要的电能损耗。可见,本发明实施例提高了对空调***分布式发电设备和固有设备的协调控制能力,实现了能量分配最优化,提高了空调***的性能,解决了现有技术的问题。
具体的,本发明实施例所述的第一传输协议包括暖通空调行业里标准的BACnet/IP协议。所述空调***固有设备包括以下至少一种:***主机、冷冻水泵、冷却水泵、冷却塔。
具体的***主机为冷水机组,更具体的为水冷冷水机组,更具体的为离心式水冷冷水 机组或螺杆式水冷冷水机组
本发明实施例二提供了另一种基于分布式发电的空调***监控***;该基于分布式发电的空调***包括分布式发电设备001和空调***固有设备002;当分布式发电设备001发电量充足时,可完全通过分布式发电设备001为空调***固有设备002供电;当分布式发电设备001发电量较小时,通过分布式发电设备001和市电联合为空调***固有设备002供电。
参见图2,该基于分布式发电的空调***监控***包括:分布式发电监控子***100、暖通能源管理子***200和主监控***300。
优选的,主监控***300包括:第一主控子单元310、第二主控子单元320和第三主控子单元330。
第一主控子单元310通过第一传输协议与分布式发电监控子***100进行数据交互,第二主控子单元320通过第一传输协议与暖通能源管理子***200进行数据交互;同时第一主控子单元310和第二主控子单元320直接或通过第三主控子单元330进行数据交互。
上述3个主控子单元的工作过程包括:
第一主控子单元310获取并存储分布式发电监控子***100采集到的分布式发电设备001的发电状态信息;第二主控子单元320获取并存储暖通能源管理子***200采集到的空调***固有设备002的耗电状态信息;
第三主控子单元330分别通过第一主控子单元310和第二主控子单元320获取所述发电状态信息和耗电状态信息,并根据所述发电状态信息和/或耗电状态信息生成主控制指令,并将所述主控制指令发送至相应的子***(分布式发电监控子***100或暖通能源管理子***200)。具体的,所述主控制指令至少包括以下一种:第一主控制指令和第二主控制指令;其中,第一主控制指令被发送至分布式发电监控子***100,以控制分布式发电设备的发电状态,第二主控制指令被发送至暖通能源管理子***200,以控制空调***固有设备002的耗电状态。
第一主控子单元310获取第二主控子单元320存储的所述耗电状态信息,并将其发送至分布式发电监控子***100;第二主控子单元320获取第一主控子单元310存储的所述耗电状态信息,并将其发送至暖通能源管理子***200,实现了分布式发电监控子***100和暖通能源管理子***200的无缝对接及数据共享。
优选的,分布式发电设备包括将太阳能转化为电能的光伏组件,和将光伏组件产生的直流电进行汇流并输出的汇流箱;还包括为交流负载供电的逆变器。相应的,分布式发电监控子***100包括数据采集器110,用于采集分布式发电设备001的发电状态信息,并通过BACnet/IP协议将所述发电状态信息传输至第一主控子单元310;具体包括:通过与 汇流箱连接的汇流箱采集器120采集表征所述分布式发电设备的发电量大小的汇流箱输出电流,以及表征所述分布式发电设备供电量大小的逆变器输出电流。具体的,采集汇流箱输出电流,汇流箱采集器120通过现场总线与数据采集器110进行数据交互。
优选的,暖通能源管理子***200包括电表210和主控制器220。
电表210有多个,与空调***固有设备002(包括***主机、冷冻水泵、冷却水泵、冷却塔等)对应,用于检测每一种空调***固有设备002的耗电状态信息。
主控制器220通过BACnet/IP协议与主监控***300进行数据交互,包括:获取电表210的检测结果,并将其发送至第二主控子单元320。根据实际应用情况,主控制器220也可有一个或多个。
由上述结构及功能可知,本发明实施例通过分布式发电监控子***中的数据采集器实现对分布式发电设备发电状态信息的采集及上传至主监控***,同时通过电表实现对空调***固有设备的耗电状态信息的采集,并通过主控制器将上述耗电状态信息也上传至主监控***,进而主监控***通过发送单元将分布式发电监控子***采集的发电状态信息发送至暖通能源管理子***,并将暖通能源管理子***采集的耗电状态信息发送至分布式发电监控子***,从而实现了分布式发电监控子***和暖通能源管理子***之间的无缝对接及数据共享,提高了对空调***分布式发电设备和固有设备的协调控制能力,解决了现有技术的问题。另外,暖通能源管理子***通过设置多个电表对多个空调***固有设备进行一对一检测,进而可主控制器等通过综合分析所有设备或相关设备的耗电状态信息,得到一最优控制策略,实现了空调***的节能最大化。
本发明实施例中,分布式发电监控子***还包括电能质量调节器、变流器等,用于根据主监控***生成的第一控制指令等对分布式发电设备的发电功率、向不同空调***固有设备输出的电能配比等进行调节。
另外,主控制器和电表之间通过Modbus RTU协议实现数据交互;同时主控制器还可通过该Modbus RTU协议向空调***的除湿机、机组等设备发送相应的控制指令。
另外,暖通能源管理子***中,每个主控制器还配置有1个或多个现场控制器,这些现场控制器通过其公共的主控制器获取主监控***生成的第二控制指令,并根据所述第二控制指令对所述空调***固有设备进行联动控制,实现各个空调***固有设备之间的协调运行。
如图3所示,在本发明实施例三中,基于分布式发电的空调***监控***包括分布式发电监控子***100、暖通能源管理子***200、主监控***300和远程控制终端400。
本发明实施例基于多代理技术,实现了空调***的三级控制;所谓“三级”包括:分 布式发电监控子***100和暖通能源管理子***200构成的现场级、主监控***300构成的监控级和远程控制终端400构成的管理级;其中,现场级与监控级之间通过BACnet/IP协议进行数据交互,监控级与管理级之间同TCP/IP协议进行数据交互。
具体的,主监控***300包括:第一主控子单元310、第二主控子单元320和第三主控子单元330。
对于分布式发电设备的控制,第一主控子单元310、第三主控子单元330和分布式发电监控子***100构成了分布式发电微网控制网络,第一主控子单元310和第三主控子单元330相当于该微网控制网络中的上层代理(即微网监控中心CCU),实现了电网中各元件的监控并通过优化算法确定各分布式发电的出力,再将优化结果发给下层代理;分布式发电监控子***100作为下层代理,相当于本地监控中心,实现了电网中各分布式发电的协调控制,即可接受CCU的控制,又具有独立运行的能力。
对于空调***固有设备的控制,第二主控子单元320、第三主控子单元330和暖通能源管理子***200构成了一分布式控制***;第二主控子单元320和第三主控子单元330相当于该分布式控制***的上层(具体可以为数据管理服务器,即智能建筑***(BAS)、历史档案及配置数据管理的平台,带有直观操作过程的用户界面),通过BACnet/IP网络与下层的暖通能源管理子***200进行通信,即可实现空调***的无人值守自动运行,又可通过***上层进行图像化管理、数据展示、报警及事件管理等功能。
需要特别指出的是,为便于现场监控,分布式发电监控子***100除包括上文所述的包括数据采集器110、汇流箱采集器120灯设备外,还包括发电设备人机接口130。发电设备人机接口130与数据采集器110连接,用于显示数据采集器110的采集结果、提供图形化的分布式发电设备人工管理操作界面,便于在必要时通过人工操作对分布式发电设备进行控制。
暖通能源管理子***200包括电表210、主控制器220和现场控制器230;其具体功能可参照上文实施例所述。此外,暖通能源管理子***200还包括区域控制器240,用于对空调***每个控制区域内空气参数进行人工调节、控制;具体的,区域控制器240根据用户操作指令生成空气参数控制指令,并将其发送至相应的末端控制器,如温度控制器、新风控制器和回风控制器等,实现对相应区域内的空气温度等参数的人工调节。另外,区域控制器240还通过相应的通讯模块与主控制器进行数据交互,将用户操作指令、空气参数控制指令等信息上传至主控制器,进而上传至监控级、管理级,实现三级同步监控。
本发明实施例提供的空调***监控***还包括***主机人机界面500,位于所述监控级,其通过RS485协议、BACnet协议、Modbus协议或CAN协议与主监控***300进行数据交互,一方面显示当前空调***的运行状态、数据等,另一方面提供人工操作界面,以 在必要时,对空调***进行人工控制。
由上述结构和功能可知,本发明实施例不仅通过分布式发电监控子***及暖通能源管理子***分别实现了对基于分布式发电的空调***中分布式发电设备的发电状态信息和空调***固有设备的耗电状态信息的全方位监控,还通过主监控***采用统一的第一传输协议获取上述两个子***的监控数据,实现了两个子***的无缝对接及数据共享,提高了对空调***分布式发电设备和固有设备的协调控制能力,实现了电能由产生到消耗的全程且实时的监控、统计与节能调节;同时主监控***提供了多种通讯模块,分别实现了其与远程客户端和空调***离心机主机的人机界面之间的数据交互,实现了对空调***的三级监控,使得空调***监控方式的多样化。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种基于分布式发电的空调***监控***,应用于基于分布式发电的空调***,所述空调***包括分布式发电设备和空调***固有设备,所述空调***通过所述分布式发电设备,或者通过所述分布式发电设备和市电为所述空调***固有设备供电,其特征在于,所述空调***监控***包括:
    监控所述分布式发电设备的发电状态信息的分布式发电监控子***;
    监控所述空调***固有设备的耗电状态信息的暖通能源管理子***;和
    分别获取所述发电状态信息和耗电状态信息,并根据所述发电状态信息和耗电状态信息对所述空调***进行综合监控的主监控***;其中,
    所述分布式发电监控子***和暖通能源管理子***分别通过第一传输协议与所述主监控***进行数据交互。
  2. 根据权利要求1所述的基于分布式发电的空调***监控***,其特征在于,所述第一传输协议包括BACnet/IP协议。
  3. 根据权利要求1所述的基于分布式发电的空调***监控***,其特征在于,所述分布式发电设备为光伏发电设备。
  4. 根据权利要求1-3任一项所述的基于分布式发电的空调***监控***,其特征在于,所述主监控***包括:
    获取并存储所述发电状态信息、并向所述分布式发电监控子***发送所述耗电状态信息的第一主控子单元;
    获取并存储所述耗电状态信息、并向所述暖通能源管理子***发送所述发电状态信息的第二主控子单元;和
    根据所述发电状态信息和/或耗电状态信息生成主控制指令的第三主控子单元;
    其中,所述主控制指令包括以下至少一种:控制所述分布式发电设备发电状态的第一主控制指令,和控制所述空调***固有设备耗电状态的第二主控制指令。
  5. 根据权利要求4所述的基于分布式发电的空调***监控***,其特征在于,还包括:通过TCP/IP协议与所述主监控***进行数据交互的远程控制终端,和/或,通过RS485协议、BACnet协议、Modbus协议或CAN协议与所述主监控***进行数据交互的***主机人机界面。
  6. 根据权利要求4所述的基于分布式发电的空调***监控***,其特征在于,所述分布式发电设备包括:汇集并输出光伏组件产生的直流电的汇流箱,和为交流负载供电的逆变器;
    所述发电状态信息包括获取表征所述分布式发电设备的发电量大小的汇流箱输出电流,以及表征所述分布式发电设备供电量大小的逆变器输出电流;
    所述分布式发电监控子***包括:
    分别获取所述汇流箱输出电流和逆变器输出电流、并通过所述第一传输协议与所述主监控***进行数据交互的数据采集器。
  7. 根据权利要求6所述的基于分布式发电的空调***监控***,其特征在于,所述分布式发电监控子***还包括:与所述数据采集器连接,显示所述数据采集器的采集结果的发电监控人机接口。
  8. 根据权利要求4所述的基于分布式发电的空调***监控***,其特征在于,所述空调***固有设备包括以下至少一种:***主机、冷冻水泵、冷却水泵和冷却塔;
    所述暖通能源管理子***包括:
    通过所述第一传输协议与所述主监控***进行数据交互的主控制器;和
    对所述空调***固有设备进行一对一检测、以得到所述耗电状态信息、并将所述耗电状态信息输出至所述主控制器的电表。
  9. 根据权利要求8所述的基于分布式发电的空调***监控***,其特征在于,所述暖通能源管理子***还包括:
    通过所述主控制器获取所述第二控制指令、并根据所述第二控制指令对所述空调***固有设备进行联动控制的现场控制器。
  10. 根据权利要求8所述的基于分布式发电的空调***监控***,其特征在于,所述暖通能源管理子***还包括:
    根据用户操作指令生成空气参数控制指令、并与所述主控制器进行数据交互的区域控制器;和
    根据所述空气参数控制指令控制室内空气参数的末端控制器;
    所述末端控制器包括以下至少一种:温度控制器、新风控制器和回风控制器。
  11. 一种基于分布式发电的空调***,包括分布式发电设备和空调***固有设备,所述空调***通过所述分布式发电设备,或者通过所述分布式发电设备和市电为所述空调***固有设备供电,其特征在于,还包括如权利要求1-10任一项所述的空调***监控***。
  12. 根据权利要求11所述的空调***,其特征在于,所述空调***固有设备包括离心式冷水机组和/或螺杆式冷水机组。
PCT/CN2014/086381 2013-12-06 2014-09-12 一种基于分布式发电的空调***监控***及应用其的空调*** WO2015081743A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/101,333 US10088187B2 (en) 2013-12-06 2014-09-12 Monitoring system for air conditioning systems based on distributed power generation and air conditioning system using same
KR1020167017918A KR101940384B1 (ko) 2013-12-06 2014-09-12 분산 발전에 기초한 공조 시스템의 모니터링 시스템 및 이를 이용하는 공조 시스템
JP2016536835A JP6357235B2 (ja) 2013-12-06 2014-09-12 分散型発電に基づく空調システム用監視システム及びそれを適用する空調システム
EP14868139.8A EP3079027A4 (en) 2013-12-06 2014-09-12 Monitoring system for air conditioning systems based on distributed power generation and air conditioning system using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310656840.9 2013-12-06
CN201310656840.9A CN104699015A (zh) 2013-12-06 2013-12-06 一种基于分布式发电的空调监控***及应用其的空调***

Publications (1)

Publication Number Publication Date
WO2015081743A1 true WO2015081743A1 (zh) 2015-06-11

Family

ID=53272843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086381 WO2015081743A1 (zh) 2013-12-06 2014-09-12 一种基于分布式发电的空调***监控***及应用其的空调***

Country Status (6)

Country Link
US (1) US10088187B2 (zh)
EP (1) EP3079027A4 (zh)
JP (1) JP6357235B2 (zh)
KR (1) KR101940384B1 (zh)
CN (1) CN104699015A (zh)
WO (1) WO2015081743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500305A (zh) * 2022-02-09 2022-05-13 杭州义益钛迪信息技术有限公司 设备监控方法、装置、设备、存储介质及程序产品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210207850A1 (en) * 2016-01-25 2021-07-08 Smardt Chiller Group Inc. Solar integrated chiller method and system
CN106403168B (zh) * 2016-09-05 2019-11-29 重庆美的通用制冷设备有限公司 用于空调***的故障诊断***和方法
CN106790282A (zh) * 2017-02-24 2017-05-31 珠海格力电器股份有限公司 一种协议转换的方法、装置及空调***
DE102017206418A1 (de) * 2017-04-13 2018-10-18 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betrieb einer Wärmepumpe
CN111043715A (zh) * 2018-10-12 2020-04-21 广州松下空调器有限公司 空调器的控制方法及***、空调器
CN109347094B (zh) * 2018-10-24 2020-10-09 珠海格力电器股份有限公司 变流器及其分配电能的方法、装置及电能分配***
CN109240128A (zh) * 2018-11-26 2019-01-18 山东大学 一种新能源冷热电联供实时仿真***及方法
CN109451059A (zh) * 2018-12-22 2019-03-08 广州市赛科自动化控制设备有限公司 一种基于净化设备智能管理云计算移动终端
CN112838606A (zh) * 2020-12-30 2021-05-25 广东电网有限责任公司电力调度控制中心 分布式供能运行***及其的形成方法、装置和终端设备
CN114726081A (zh) * 2021-01-04 2022-07-08 中国石油天然气集团有限公司 阀室监控***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025357A1 (en) * 2006-09-01 2008-03-06 Vestas Wind Systems A/S A priority system for communication in a system of at least two distributed wind turbines
CN201174613Y (zh) * 2008-02-20 2008-12-31 重庆市电力公司超高压局 变电站直流设备网络化监测管理***
CN101674032A (zh) * 2009-10-19 2010-03-17 浙江大学 基于无线网络的自动跟踪式光伏发电站监控***
US20100146087A1 (en) * 2009-11-30 2010-06-10 General Electric Wind Energy & Energy Services Dynamic installation and uninstallation system of renewable energy farm hardware
CN101738975A (zh) * 2008-11-21 2010-06-16 上海电机学院 一种空调温度无线监测***及其方法
CN102005975A (zh) * 2010-11-09 2011-04-06 广东美的电器股份有限公司 太阳能空调装置及由其组成的太阳能空调***
WO2012048012A2 (en) * 2010-10-05 2012-04-12 Alencon Systems, Inc. High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
CN103001225A (zh) * 2012-11-14 2013-03-27 合肥工业大学 基于mas的多微电网能量管理***仿真方法
KR20130110981A (ko) * 2012-03-30 2013-10-10 (주) 파루 하나의 중앙제어장치를 구비한 태양광 발전시스템

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792337B2 (en) * 1994-12-30 2004-09-14 Power Measurement Ltd. Method and system for master slave protocol communication in an intelligent electronic device
TW336271B (en) 1995-06-13 1998-07-11 Sanyo Electric Co Solar generator and an air conditioner with such a solar generator
JPH10267353A (ja) * 1997-03-25 1998-10-09 Sanyo Electric Co Ltd 系統連系発電装置付空気調和機
US20050034023A1 (en) 2002-12-16 2005-02-10 Maturana Francisco P. Energy management system
JP2006331372A (ja) * 2005-05-30 2006-12-07 Ipsquare Inc エージェント装置、管理マネージャ装置および環境エネルギー管理システム
US7274975B2 (en) * 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
GB0816721D0 (en) * 2008-09-13 2008-10-22 Daniel Simon R Systems,devices and methods for electricity provision,usage monitoring,analysis and enabling improvements in efficiency
JP5518419B2 (ja) * 2009-10-05 2014-06-11 パナソニック株式会社 給電管理装置
CN201567809U (zh) * 2009-11-09 2010-09-01 谢逢华 光电互补变频冷却自然送风基站机房
US8838282B1 (en) * 2009-11-16 2014-09-16 Comverge, Inc. Method and system for providing a central controller that can communicate across heterogenous networks for reaching various energy load control devices
CN201673399U (zh) * 2010-05-12 2010-12-15 胡力任 建筑物能源智能化中央控制***
US8682495B2 (en) * 2010-10-21 2014-03-25 The Boeing Company Microgrid control system
JP2012195988A (ja) * 2011-03-14 2012-10-11 Omron Corp 需給電力制御装置およびその制御方法、並びに制御プログラム
US9059604B2 (en) * 2011-06-27 2015-06-16 Sunpower Corporation Methods and apparatus for controlling operation of photovoltaic power plants
CN102509175B (zh) * 2011-11-07 2016-05-18 上海电力学院 分布式供电***可靠性优化方法
JP5787162B2 (ja) * 2011-11-10 2015-09-30 清水建設株式会社 運転管理装置、運転管理方法、プログラム
CN202443306U (zh) * 2012-01-12 2012-09-19 温州电力局 智能楼宇能效综合监控管理***
JP5932419B2 (ja) 2012-03-21 2016-06-08 株式会社東芝 熱回収プラントシステム、熱回収プラント制御装置および熱回収プラント制御方法
CN103388870B (zh) * 2012-05-08 2015-08-26 珠海格力电器股份有限公司 基于BACnet对象ID的中央空调控制方法及装置
CN102868173B (zh) * 2012-08-28 2015-05-13 深圳蓝波绿建集团股份有限公司 一种分布式独立光伏发电***及发电方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025357A1 (en) * 2006-09-01 2008-03-06 Vestas Wind Systems A/S A priority system for communication in a system of at least two distributed wind turbines
CN201174613Y (zh) * 2008-02-20 2008-12-31 重庆市电力公司超高压局 变电站直流设备网络化监测管理***
CN101738975A (zh) * 2008-11-21 2010-06-16 上海电机学院 一种空调温度无线监测***及其方法
CN101674032A (zh) * 2009-10-19 2010-03-17 浙江大学 基于无线网络的自动跟踪式光伏发电站监控***
US20100146087A1 (en) * 2009-11-30 2010-06-10 General Electric Wind Energy & Energy Services Dynamic installation and uninstallation system of renewable energy farm hardware
WO2012048012A2 (en) * 2010-10-05 2012-04-12 Alencon Systems, Inc. High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
CN102005975A (zh) * 2010-11-09 2011-04-06 广东美的电器股份有限公司 太阳能空调装置及由其组成的太阳能空调***
KR20130110981A (ko) * 2012-03-30 2013-10-10 (주) 파루 하나의 중앙제어장치를 구비한 태양광 발전시스템
CN103001225A (zh) * 2012-11-14 2013-03-27 合肥工业大学 基于mas的多微电网能量管理***仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079027A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500305A (zh) * 2022-02-09 2022-05-13 杭州义益钛迪信息技术有限公司 设备监控方法、装置、设备、存储介质及程序产品
CN114500305B (zh) * 2022-02-09 2023-08-15 杭州义益钛迪信息技术有限公司 设备监控方法、装置、设备、存储介质及程序产品

Also Published As

Publication number Publication date
JP2017502240A (ja) 2017-01-19
EP3079027A4 (en) 2017-05-03
US10088187B2 (en) 2018-10-02
US20160282004A1 (en) 2016-09-29
CN104699015A (zh) 2015-06-10
EP3079027A1 (en) 2016-10-12
JP6357235B2 (ja) 2018-07-11
KR20160094436A (ko) 2016-08-09
KR101940384B1 (ko) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2015081743A1 (zh) 一种基于分布式发电的空调***监控***及应用其的空调***
CN104654449B (zh) 一种分布式电热蓄能供暖控制***及方法
CN201265934Y (zh) 分体式空调节能中央控制***
WO2018076554A1 (zh) 一种交直流智能家庭微网协同***及其运行方法
WO2017000104A1 (zh) 一种站点设备的节能控制方法、装置及***
WO2015120729A1 (zh) 一种光伏逆变器电力载波通信***
CN110970998A (zh) 一种基于源网荷储的多能互补智慧能源的能量管理***
CN210839646U (zh) 一种基于bim技术的智能数字化楼宇自控***
CN203824002U (zh) 一种中央空调冷冻站综合电单耗最优控制***
CN205505299U (zh) 一种中央空调智能温控***
CN203800614U (zh) 中央空调控制***
CN104539050B (zh) 能信路由器及用于管理电能网络和信息网络的应用***
CN203930449U (zh) 一种基于分布式发电的空调监控***及应用其的空调***
CN206370697U (zh) 光伏阵列的最大功率点跟踪控制***及光伏空调***
CN201265933Y (zh) 一种分体式空调的远程控制电路
CN208704104U (zh) 一种空调***的无人值守机房控制***
CN206164432U (zh) 一种家用多能源综合互补利用***
CN104734180A (zh) 供电控制方法和***
CN205334275U (zh) 电力需求侧设备智能交互装置
CN207438822U (zh) 一种基于云数据的中央空调有序用电调控装置
CN203732957U (zh) 一种机房节能控制装置
CN116111621B (zh) 一种面向居民家庭的供用储能智慧调节***
CN219016833U (zh) 冷却水泵节能群控控制器
CN105091074A (zh) 电热储能炉监控***
CN204347564U (zh) 一种基于现场总线的智能建筑楼宇控制***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536835

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15101333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014868139

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014868139

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167017918

Country of ref document: KR

Kind code of ref document: A