WO2015081658A1 - 污泥处理***及其方法 - Google Patents

污泥处理***及其方法 Download PDF

Info

Publication number
WO2015081658A1
WO2015081658A1 PCT/CN2014/076433 CN2014076433W WO2015081658A1 WO 2015081658 A1 WO2015081658 A1 WO 2015081658A1 CN 2014076433 W CN2014076433 W CN 2014076433W WO 2015081658 A1 WO2015081658 A1 WO 2015081658A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
ozone
pipeline
reactor
treatment system
Prior art date
Application number
PCT/CN2014/076433
Other languages
English (en)
French (fr)
Inventor
吴浩
Original Assignee
南京德磊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德磊科技有限公司 filed Critical 南京德磊科技有限公司
Priority to EP14867623.2A priority Critical patent/EP3081540A4/en
Priority to US15/101,763 priority patent/US9771293B2/en
Publication of WO2015081658A1 publication Critical patent/WO2015081658A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the invention relates to the technical field of sludge treatment, in particular to a sludge treatment system and a method thereof. Background technique
  • the biological activated sludge method is the most widely used and matured in sludge treatment technology, with low investment and operating costs and stable treatment effect.
  • a problem in the activated sludge process that is, a large amount of excess sludge is generated, and the excess sludge transportation and treatment costs account for a large proportion of the total operating cost, and many conditions are also faced in the treatment.
  • China's urban sludge treatment capacity is about 30 billion m 3 /a
  • the biochemical sludge with a moisture content of 98% is about 200 million m7a
  • the excess sludge production will still increase at an average annual rate of 15%. 10 million t / a and refinery, the annual production of water-based sludge is about 10,000 tons.
  • biochemical residual sludge The main components of biochemical residual sludge include water, microorganisms, microbial metabolites, and inorganic solids.
  • Biochemical residual sludge is very harmful to the environment, and there are a large number of microorganisms, viruses, parasites, organic matter, nitrogen, phosphorus, and malodor.
  • the reason for the large volume of biochemical sludge is the high water content, which is free water, interstitial water, surface water and combined water.
  • the root cause is the presence of high-molecular organic substances with special properties in the sludge, which are caused by interstitial water, surface water and bound water. Free water accounts for about 70% of total water. It does not adhere or combine with sludge. Separation is easier and can be separated by gravity.
  • Water retained by capillary phenomenon is difficult to separate. Centrifugal and vacuum methods are required. Surface water passes hydrogen bonds. It adheres to the surface of the colloid and is difficult to separate. It can be removed mechanically after conditioning. The combined water and chemical sludge bond with the sludge, which accounts for 4% of the total water content. Separation is very difficult. It is difficult to separate by general physical and chemical methods. The main ingredient of the mud. The internal water is the water inside the cell, and the amount of water is small, making it more difficult to remove.
  • the disposal of excess sludge mainly includes landfill, soil improvement and dry incineration, while the excess sludge may contain a large amount of heavy metals, pathogenic microorganisms and persistent biodegradable organic pollutants.
  • the application of soil improvement has been banned in some countries.
  • Landfill and dry incineration methods are also faced with increasingly scarce land resources and strict environmental regulations.
  • the existing biochemical sludge treatment processes include: Dehydration: The water content is generally reduced to 80%-84%, and the residual sludge volume is still very large, and the pollutants are not reduced. Incineration: The reduction effect is good, but the investment and operating costs are high, the operation is complicated, and the fly ash is dangerous, and the flue gas treatment is difficult. The treatment cost is lower when digesting, but only part of the organic matter can be removed, and the sludge reduction is not significant.
  • the main indicators for measuring sludge reduction are: the moisture content of sludge cake and the total discharge of sludge cake, and the moisture content of sludge cake is tested according to national standards.
  • Ozone aeration oxidation is to introduce high-concentration ozone into the sludge reaction tower. Due to the strong oxidizing property of ozone, the cell wall and cell membrane of microorganisms in the sludge are broken, and a large amount of organic matter is released from the cells, which can be used for sludge reduction. Kill the pests in the sludge. 015— The ratio of the amount of ozone to the amount of sludge is 0. 015— 0. 3kg ozone / kg sludge volume.
  • the Japanese literature reports that the ratio of ozone dosage to the amount of 100% sludge is 0. 015kg/kg.
  • the amount of sludge is reported by a university in China.
  • the indicator is 0. 05- 0. 35kg/kg sludge volume, generally Contactors are used to contact ozone with sludge. Such a high proportion of ozone input can only stay in the experimental stage, and industrialization is almost impossible to achieve.
  • the sludge treatment plant of the mud cake with 40 tons of sludge per day is calculated according to the moisture content of the general mud cake 80%, which is equivalent to 100% of the sludge, which is 8000kg per day, and the amount of the 0.05kg ozone/kg sludge is required to be 16.67kg.
  • the ozone generating device of the /h is required to be placed in an amount of 0.15 kg/kg of ozone.
  • the energy required to produce 1kg of ozone is 15-21KWh. Even if industrial oxygen is used instead of air as raw material, 8KWh of electricity consumption is required.
  • a 16kg/h ozone generating device needs to consume 240-336KWh. Equipment investment, power system configuration, and operating costs are factors that must be considered for sludge treatment owners.
  • the sludge treatment system of the prior art has the following disadvantages: the residence time of the ozone entering the reactor is short, the sludge and the ozone are not sufficiently contacted, the ozone utilization rate is low, the ozone is disposed, the energy consumption is high, and the operation cost is high. High, it is difficult to promote the application on a large scale.
  • An object of the present invention is to provide a sludge treatment system and method for allowing ozone to enter a reactor for a long residence time, sufficient contact between sludge and ozone, high ozone utilization rate, low ozone ratio, and low operating cost.
  • the technical solution provided by the present invention is: a sludge treatment system, the sludge treatment system comprising a pump, an ozone generating device, a jet and a pipeline reactor connected in series through a pipeline, wherein the ozone generation occurs The device is used to supply ozone to the pipeline reactor for full contact of ozone and sludge.
  • the ozone generating device is provided with an oxygen generator and an ozone machine connected by a pipeline;
  • the pipeline reactors are two or more, and the pipeline reactors are connected in parallel or in series through a pipeline; the inner surface of the pipeline reactor is coated with a catalyst layer for improving the oxidation capacity of ozone to sludge;
  • a lower portion of the pipeline reactor is provided with a mud inlet, and an upper portion of the pipeline reactor is provided with a sludge discharge port.
  • the pipe reactor has a diameter D of 32 for d 500 mm and a length L of 0.2 m L 10 m. Further, the inside of the pipe reactor is provided with a spiral fin plate which can generate a spiral flow of the fluid, the pipe reactor having a diameter D of 100 mm D 350 mm and a length L of 0.3 m L 3 m.
  • the pipe reactor has a diameter D of 200 mm and a length L of 1. 5 m.
  • the jet is a venturi mixer.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipeline reactor.
  • the inlet end of the pump is provided with a blue filter.
  • the pump, the ozone generating device, the jet and the pipeline reactor are integrally installed in the tank, and the number of the tanks is one or more, which are connected in series through the pipeline.
  • the method for sludge treatment of the sludge treatment system of the present invention comprises the following steps:
  • the jet when the sludge water to be treated is pumped to the jet at a certain speed, the jet generates a negative pressure to inhale ozone generated by the ozone generating device to form a mixture of ozone and sludge;
  • the residence time of the mixture in the pipeline reactor is from 10 seconds to 300 seconds; the amount of inhaled ozone in the jet is regulated by the flow rate of the pump and the valve on the pipe.
  • the system of the invention has stable operation, high reliability and is simple and easy to operate.
  • the invention has the following advantages:
  • the present invention can achieve the purpose of sludge reduction by using a very low proportion of ozone input, and the ozone input amount is 0. 00197 - 0. 00475 kg / kg of sludge, the same for a mud of 40 tons of sludge per day.
  • the sludge treatment plant of the cake is implemented, and the input of 0. 6567kg - 1. 583kg of ozone can realize the sludge reduction.
  • the configuration of one l_2kg / h ozone generator can meet the technical requirements.
  • the internal structure of the pipeline reactor allows the fluid to flow in a spiral so that the sludge is in full contact with ozone, and the inner surface of the pipeline reactor is coated with a catalyst, which further improves the oxidation efficiency of ozone.
  • the invention realizes the modular production of the sludge reduction treatment system, does not need to modify the existing sludge system, can realize the installation operation of the sludge reduction treatment system without stopping the production, and does not treat the original continuous sludge.
  • the effect of concentrated dehydration production is eliminated, the foul smell of the sludge treatment system and the foreign mud cake is eliminated, the moisture content of the mud cake is reduced, the flocculant dosage is reduced, the energy consumption in the production process is reduced, and the total sludge discharge amount is reduced.
  • Figure 1 is a schematic view of a pipeline reactor of the present invention
  • Figure 2 is a process flow diagram of the sludge treatment system of the present invention.
  • Figure 3 is a flow chart of the sewage treatment plant of the present invention.
  • a sludge treatment system is characterized in that: the sludge treatment system comprises a pump having a flow rate of 8 m 3 /h connected in series through a pipeline, and an ozone generating device. And a streamer 2 and a pipe reactor 3 for supplying ozone into the pipe reactor 3 to achieve sufficient contact between the ozone and the sludge.
  • the jet 2 is a venturi mixer.
  • the ozone generating device is provided with a 60L/min oxygen generator 4 and a 240g/h ozone machine 5 connected by a pipeline;
  • pipeline reactors 3 There are four pipeline reactors 3, and the pipeline reactors 3 are connected in parallel or in series through pipelines;
  • the inner surface of the pipe reactor 3 is coated with a catalyst capable of catalyzing ozone to hydroxyl radicals, which further improves the oxidation efficiency of ozone.
  • the lower portion of the pipe reactor 3 is provided with a mud inlet, and the upper portion of the pipe reactor 3 is provided with a mud discharge port.
  • the pipe reactor 3 is internally provided with a spiral fin plate 6 for causing a fluid to flow in a spiral.
  • the structure of the spiral fin plate 6 allows the fluid to flow in a spiral so that the sludge comes into contact with ozone.
  • the pipe reactor 3 has a diameter D of 150 mm and a length L of 1. 2 m.
  • the Venturi Mixer is a specialized device that efficiently mixes ozone with water. Ozone and water are first mixed first through the venturi mixer and then into the interior of the pipeline reactor 3, hitting the special swirling plate against the surface, allowing the gas and water to completely enter the turbulent state.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipe reactor 3, and the inlet end of the pump 1 is provided with a blue filter.
  • the pump 1, the ozone generating device, the jet 2 and the pipe reactor 3 are integrally installed in a tank, and the number of the tanks is one, which is connected in series through a pipe. And with the electrical control components fixed in the steel frame, a modular, standardized sludge treatment system can be made.
  • the model of the sludge treatment system is Deyuqing WR150/4-240P8.
  • the method for sludge treatment of the sludge treatment system of the present invention comprises the following steps:
  • the pipe interface is extended into the bottom of the biochemical sludge concentration tank 7, and when the sludge water to be treated is sent to the venturi mixer through the pump 1 at a certain speed, the jet 2 side generates a negative pressure inhaling ozone to the inlet.
  • Ozone generated by the device is generated and thoroughly mixed to form a mixture of ozone and sludge;
  • the mixture enters the pipe reactor 3 through a pipe, and the mixture is in full contact with the catalyst layer in the pipe reactor 3, and under the catalysis of the catalyst, a redox reaction is performed to improve the ozone oxidation efficiency;
  • the residence time of the mixture in the line reactor 3 is from 10 seconds to 300 seconds; the amount of inhaled ozone in the jet 2 is regulated by the flow rate of the pump 1 and the valve on the pipe.
  • the reaction time is determined by the flow rate of the pump 1 and the size and number of the series or parallel pipeline reactors 3.
  • the effect on the sludge reduction is controlled by the amount of ozone supplied, the number of sludge treatment system units, and the operating time.
  • Fig. 3 it is a flow chart of the sewage treatment plant of the present invention.
  • the waste water from each collection tank or pipeline enters the homogeneous adjustment tank, the middle and the pool, and then enters the anaerobic fermentation tank.
  • the produced sludge enters the sludge concentration tank, and the sludge enters the first-stage aeration tank for aerobic treatment.
  • the aeration enters the secondary settling tank and the sludge generated by the aerobic reaction is precipitated and then enters the sludge concentration tank 7.
  • the second water enters the secondary aeration tank to continue the aerobic biological reaction and enters the final settling tank.
  • the generated sludge settles into the sludge concentration tank 7, and the clean water enters the air floating pool to remove the floating matter from the water into the monitoring pool. If the discharge standard is reached, it can be directly discharged. If the COD and other indicators exceed the standard, measures need to be taken. Return to the aeration tank for re-biochemical treatment or enter the homogenization regulating tank for anaerobic re-oculation.
  • the sludge entering the sludge concentration tank 7 generally has a water content of about 98%.
  • the sludge at the bottom of the sludge concentration tank 7 enters the filter press for pressure filtration and dehydration to form sludge.
  • the mud cake, the moisture content of the mud cake is generally between 75-87%, and the water in the upper part of the sludge concentration tank 7 and the filter water after the filter sludge are returned to the first-stage aeration tank through the pipeline to continue biochemistry. Aerobic treatment.
  • the temperature of the general sludge sedimentation tank is 30-40 ° C.
  • the sludge treatment system of the present invention can be operated as long as the sludge in the sludge concentration tank 7 is 1-50 ° C.
  • the temperature of the sludge reaction product flowing through the pipe reactor 3 rises slightly, but does not affect the operation of the system.
  • the sludge concentration tank 7 of a biochemical wastewater treatment plant that processes 20,000 tons of wastewater per day by a chemical fiber company is applied on site.
  • the volume of the sludge concentration tank is 80 cubic meters.
  • the sludge comes from the anaerobic sludge tank, the second settling tank, and the final sink.
  • the amount of mud in the pool is about 40t/h.
  • the supernatant is returned to the aeration tank through the supernatant reflux tank.
  • the return flow is about 30t/h.
  • the bottom concentrated sludge is sent to the dehydrator for dewatering and then transported.
  • the dewatering amount is about 10t/ h, the heavy metal in the mud cake of the sludge exceeds the standard, which belongs to the environmental monitoring and dangerous waste.
  • the sludge of the sludge thickening tank 7 was continuously treated with the sludge treatment system for 18 shifts, each shift being 8 hours. After the equipment was put into use, the smell of the sludge system was reduced after 1 day. The production and operation conditions before and after the use of the equipment were compared and analyzed. The comparison table before and after the sludge treatment system was put into use was obtained. Table 1 is as follows:
  • the amount of flocculant input per shift was reduced from 19.6 kg to 16. 7 kg, a decrease of 14.8%; the amount of mud cake per shift was reduced from 9.7 tons to 6.7 tons. Reduced by 30.9%; the moisture content of the mud cake decreased slightly.
  • the amount of ozone that was accumulated every 8 hours was 1. 920 kg, and the amount of 100% sludge produced by 8 hours from the mud cake moisture content of Table 1 was 976.86 kg, and the ratio of ozone dosage to sludge volume. It is only 0. 00197kg ozone / kg sludge volume, far lower than the input amount of 0. 015kg ozone / kg sludge reported in the literature.
  • the total power consumption of each sludge treatment system is approximately 20 kW.
  • a sludge treatment system is characterized in that: the sludge treatment system includes a pump having a flow rate of 16 m 3 /h, which is sequentially connected through a pipe, an ozone generating device, and 1
  • the streamer 2 and the pipe reactor 3 are used to supply ozone into the pipe reactor 3 to achieve sufficient contact between the ozone and the sludge while achieving solid-liquid separation.
  • the ozone generating device is provided with a 140L/min oxygen generator 4 and a 480g/h ozone machine 5 connected by a pipeline;
  • the pipeline reactors 3 are eight, and the pipeline reactors 3 are connected in parallel after each of the four groups, and the two groups are connected in parallel; the inner surface of the pipeline reactor 3 is coated with a catalyst capable of catalyzing ozone to hydroxyl radicals, and further Increased oxidation efficiency of ozone.
  • the lower portion of the pipe reactor 3 is provided with a mud inlet, and the upper portion of the pipe reactor 3 is provided with a mud discharge port.
  • the pipe reactor 3 is internally provided with a spiral fin plate 6 for causing a fluid to flow in a spiral.
  • the structure of the spiral fin plate 6 allows the fluid to flow in a spiral so that the sludge comes into contact with ozone.
  • the diameter of the pipe is 1. 2m.
  • the jet 2 is a venturi mixer.
  • the Venturi Mixer is a specialized device that efficiently mixes ozone with water. The ozone and water are firstly mixed through the venturi mixer, and then separately enter the pipeline reactor 3, and the special swirling plate is struck against the surface to completely enter the turbulent state.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipeline reactor 3, and the inlet end of the pump 1 is provided with a blue filter.
  • the pump 1, the ozone generating device, the jet 2 and the pipeline reactor 3 are integrally installed in a tank, and the number of the tanks is two, which are connected in series by pipes. And with the electrical control components fixed in the steel frame, a modular, standardized sludge treatment system can be made.
  • the model of the sludge treatment system is Deyuqing WR150/8-480P16.
  • the pipe interface is extended into the bottom of the biochemical sludge concentration tank 7, and when the sludge water to be treated is sent to the venturi mixer through the pump 1 at a certain speed, the jet 2 side generates a negative pressure inhaling ozone to the inlet. Ozone generated by the device is generated and thoroughly mixed to form a mixture of ozone and sludge;
  • the residence time of the mixture in the line reactor 3 is from 10 seconds to 300 seconds, and the amount of inhaled ozone in the jet 2 is regulated by the flow rate of the pump 1 and the valve on the pipe.
  • the reaction time is determined by the flow rate of the pump 1 and the size and number of the series or parallel pipeline reactors 3.
  • the effect on the sludge reduction is controlled by the amount of ozone supplied, the number of sludge treatment system units, and the operating time.
  • the sludge concentration tank 7 of a biochemical wastewater treatment plant that processes 20,000 tons of wastewater per day by a chemical fiber company is applied on site.
  • the volume of the sludge concentration tank 7 is 80 cubic meters, and the sludge is from the anaerobic sludge tank.
  • the second settling tank, the final settling tank, the amount of mud entering is about 40t/h, and the upper supernatant is returned to the aeration tank through the supernatant reflux tank, the return flow is about 30t/h, and the bottom concentrated sludge is sent to the dehydrator for dehydration.
  • Transportation the amount of dewatering is about 10t/h, and the heavy metal in the mud cake of the sludge exceeds the standard, which belongs to environmental protection monitoring and hazardous waste.
  • the above sludge treatment system is connected to the sludge concentration tank 7 and is continuously operated for 39 days.
  • the company's sewage treatment and sludge treatment production are carried out normally.
  • the sludge is stopped intermittently every week.
  • the pressure sludge of the bottom sludge of the concentration tank 7 is drained,
  • the water quality COD from the secondary settling tank is below 60mg/L, which has met the local requirements for enterprise emissions, but the B/C is only 0. 134, less than 0.3, indicating the biodegradability of organic matter in water.
  • the COD is greatly increased to 132.33mg/L after the muddy sewage enters the sludge concentration tank 7 and treated by the Deyuqing sludge treatment system, indicating that the sludge cells in the sludge are broken, the sludge The internal biological water is released, and the organic matter absorbed by the microbial bacteria enters the water body.
  • the concentrated sludge at the bottom of the sludge tank is filtered by a snail-type sludge dewatering machine, and the COD is raised to 202.38 mg/L, indicating sludge.
  • the internal biological water and organic matter were further released by the action of the pressure.
  • the B0D of the overflow water and the filtrate was analyzed and found that B0D5 increased by 104. 4 mg / L and 116 mg / L, respectively, B / C increased significantly to 0. 789 And 0. 573, indicating that the biodegradability of the system reflux sewage is greatly improved, which is conducive to the digestion of organic matter by the system.
  • the sludge treatment system includes a pump having a flow rate of 2 m 3 /h, a ozone generating device, and a jet 2, which are sequentially connected through a pipe. And a pipe reactor 3 for supplying ozone into the pipe reactor 3 to achieve sufficient contact between the ozone and the sludge while achieving solid-liquid separation.
  • the ozone generating device is provided with a 5L/min oxygen generator 4 and a 30g/h ozone machine 5 connected by a pipeline;
  • pipeline reactors 3 There are four pipeline reactors 3, and the pipeline reactors 3 are connected in parallel or in series through pipelines;
  • the inner surface of the pipe reactor 3 is coated with a catalyst capable of catalyzing ozone to hydroxyl radicals, which further improves the oxidation efficiency of ozone.
  • the lower portion of the pipe reactor 3 is provided with a mud inlet, and the upper portion of the pipe reactor 3 is provided with a mud discharge port.
  • the pipe reactor 3 is internally provided with a spiral fin plate 6 for causing a fluid to flow in a spiral.
  • the structure of the spiral fin plate 6 allows the fluid to flow in a spiral so that the sludge comes into contact with ozone.
  • the pipe reactor 3 has a diameter D of 100 mm and a length L of lm.
  • the jet 2 is a venturi mixer.
  • the Venturi Mixer is a specialized device that efficiently mixes ozone with water. The ozone and water are first mixed first through the venturi mixer, and then enter the inside of the pipeline reactor 3, and the special swirling plate is struck against the surface to completely enter the turbulent state.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipe reactor 3, and the inlet end of the pump 1 is provided with a blue filter.
  • the pump 1, the ozone generating device, the jet 2 and the pipe reactor 3 are integrally installed in a tank, and the number of the tanks is one, which is connected in series through a pipe. And with the electrical control components fixed in the steel frame, a modular, standardized sludge treatment system can be made.
  • the model of the sludge treatment system is Deyuqing WR100/4-30P2.
  • the method for sludge treatment of the sludge treatment system of the present invention comprises the following steps:
  • the pipe interface is extended into the bottom of the biochemical sludge concentration tank 7, and when the sludge water to be treated is sent to the venturi mixer through the pump 1 at a certain speed, the jet 2 side generates a negative pressure inhaling ozone to the inlet. Ozone generated by the device is generated and thoroughly mixed to form a mixture of ozone and sludge;
  • the residence time of the mixture in the pipeline reactor 3 is from 10 seconds to 300 seconds; the amount of ozone in the jet 2 is
  • the flow through pump 1 is adjusted with the valve on the pipe.
  • the reaction time is determined by the flow rate of the pump 1 and the size and number of the series or parallel pipeline reactors 3.
  • the effect on sludge reduction is controlled by the amount of ozone charged, the number of sludge treatment system units, and the operating time.
  • the sludge of the sludge thickening tank 7 of a recycled papermaking company was sampled by 300 liters, and the sludge was treated by the model of Deyuqing WR100/4-30P2 for 12 minutes, and the untreated concentrated sludge had a persistent foul odor.
  • 500 ml of each sample was placed in a graduated cylinder before and after the concentrated sludge treatment, and it was observed after standing for 24 hours.
  • the supernatant of the untreated concentrated sludge was less than 50 ml, and the treated concentrated sludge supernatant was treated. Up to 300 ml or more.
  • the sludge treatment system includes a pump having a flow rate of 5 m 3 /h, which is sequentially connected through a pipe, an ozone generating device, and a jet 2 And a pipe reactor 3 for supplying ozone into the pipe reactor 3 to achieve sufficient contact between the ozone and the sludge.
  • the ozone generating device is provided with a lOL/min oxygen generator 4 and a 60 g/h ozone generator 5 connected by a pipe;
  • pipeline reactors 3 There are two pipeline reactors 3, and the pipeline reactors 3 are connected in parallel or in series through pipelines;
  • the inner surface of the pipe reactor 3 is coated with a catalyst capable of catalyzing ozone to hydroxyl radicals, which further improves the oxidation efficiency of ozone.
  • the lower portion of the pipe reactor 3 is provided with a mud inlet, and the upper portion of the pipe reactor 3 is provided with a mud discharge port.
  • the pipe reactor 3 is internally provided with a spiral fin plate 6 for causing a fluid to flow in a spiral.
  • the structure of the spiral fin plate 6 allows the fluid to flow in a spiral so that the sludge comes into contact with ozone.
  • the pipe reactor 3 has a diameter D of 150 mm and a length L of 1. 2 m.
  • the jet 2 is a venturi mixer.
  • the Venturi Mixer is a specialized device that efficiently mixes ozone with water. The ozone and water are first mixed first through the venturi mixer, and then enter the inside of the pipeline reactor 3, and the special swirling plate is struck against the surface to completely enter the turbulent state.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipe reactor 3, and the inlet end of the pump 1 is provided with a blue filter.
  • the pump 1, the ozone generating device, the jet 2 and the pipeline reactor 3 are integrally installed in a tank, and the number of the tanks is two, which are connected in series by pipes. And with the electrical control components fixed in the steel frame, a modular, standardized sludge treatment system can be made.
  • the model of the sludge treatment system is Deyuqing WR150/2-60P5.
  • the method for sludge treatment of the sludge treatment system of the present invention comprises the following steps:
  • the pipe interface is extended into the bottom of the biochemical sludge concentration tank 7, and when the sludge water to be treated is pumped to the venturi mixer through a pump at a certain speed, the suction device 2 generates a negative pressure inhalation ozone to the inlet.
  • the ozone produced by the device is thoroughly mixed to form a mixture of ozone and sludge;
  • the residence time of the mixture in the line reactor 3 is from 10 seconds to 300 seconds; the amount of inhaled ozone in the jet 2 is regulated by the flow rate of the pump 1 and the valve on the pipe.
  • the reaction time is determined by the flow rate of the pump 1 and the size and number of the series or parallel pipeline reactors 3.
  • the effect on the sludge reduction is controlled by the amount of ozone supplied, the number of sludge treatment system units, and the operating time.
  • the papermaking wastewater sedimentation sludge of a papermaking company is treated.
  • the size of the sludge sedimentation tank of the company is 3. 9 meters long, 2.5 meters wide and 3 meters deep.
  • the sludge is derived from the waste water sediment and part of the papermaking workshop. After the biochemical sludge, 300 cubic meters per day is discharged into the pool, and 3-4 tons of mud cake is discharged through the belt filter press, and there is an unpleasant smell nearby.
  • the model is Deyuqing WR150/2—60P5 placed on the side of the sludge sedimentation tank, and the inlet of the pump 1 is extended into the bottom of the tank.
  • the sludge enters the sludge treatment system and then returns to the pool through the pipeline. After one day of circulation treatment, the foul smell eliminate. After treatment, most of the precipitates are treated as pulp for special treatment.
  • the sludge treatment system includes a pump having a flow rate of 12 m 3 /h, an ozone generating device, and a jet 2, which are sequentially connected by a pipe. And a pipe reactor 3 for supplying ozone into the pipe reactor 3 to achieve sufficient contact between the ozone and the sludge while achieving solid-liquid separation.
  • the ozone generating device is provided with a 120L/min oxygen generator 4 and a 400g/h ozone machine 5 connected by a pipeline;
  • pipeline reactors 3 There are four pipeline reactors 3, and the pipeline reactors 3 are connected in parallel or in series through pipelines;
  • the inner surface of the pipe reactor 3 is coated with a catalyst capable of catalyzing ozone to hydroxyl radicals, which further improves the oxidation efficiency of ozone.
  • the lower portion of the pipe reactor 3 is provided with a mud inlet, and the upper portion of the pipe reactor 3 is provided with a mud discharge port.
  • the pipe reactor 3 is internally provided with a spiral fin plate 6 which can cause a spiral flow of the fluid, and the spiral fin plate 6
  • the structure allows the fluid to flow in a spiral so that the sludge is in contact with ozone.
  • the pipe reactor 3 has a diameter D of 200 mm and a length L of 1.5 m.
  • the jet 2 is a venturi mixer.
  • the Venturi Mixer is a specialized device that efficiently mixes ozone with water. The ozone and water are first mixed first through the venturi mixer, and then enter the inside of the pipeline reactor 3, and the special swirling plate is struck against the surface to completely enter the turbulent state.
  • a gas flow meter is disposed on the connecting pipe of the ozone generating device and the pipe reactor 3, and the inlet end of the pump 1 is provided with a blue filter.
  • the pump 1, the ozone generating device, the jet 2 and the pipeline reactor 3 are integrally installed in a tank, and the number of the tanks is four, which are connected in series by pipes. And with the electrical control components fixed in the steel frame, a modular, standardized sludge treatment system can be made.
  • the model of the sludge treatment system is Deyuqing WR200/4-400P12.
  • the method for sludge treatment of the sludge treatment system of the present invention comprises the following steps:
  • the pipe interface is extended into the bottom of the biochemical sludge concentration tank 7, and when the sludge water to be treated is sent to the venturi mixer through the pump 1 at a certain speed, the jet 2 side generates a negative pressure inhaling ozone to the inlet. Ozone generated by the device is generated and thoroughly mixed to form a mixture of ozone and sludge;
  • the residence time of the mixture in the line reactor 3 is from 10 seconds to 300 seconds; the amount of inhaled ozone in the jet 2 is regulated by the flow rate of the pump 1 and the valve on the pipe.
  • the reaction time is determined by the flow rate of the pump 1 and the size and number of the series or parallel pipeline reactors 3.
  • the effect on the sludge reduction is controlled by the amount of ozone supplied, the number of sludge treatment system units, and the operating time.
  • the system of the invention has stable operation, high reliability and is simple and easy to operate.
  • the use of a very low proportion of ozone input can achieve the purpose of sludge reduction.
  • the ozone input is 0. 00197—0. 00475kg/kg of sludge, and the sludge treatment of a mud cake with 40 tons of sludge per day.
  • the plant is implemented with an input of 0.6567 kg - 1. 583 kg of ozone per hour to achieve sludge reduction, and an l-2 kg / h ozone generator can meet the technical requirements.
  • the internal structure of the pipe reactor 3 of the present invention allows the fluid to flow in a spiral so that the sludge is sufficiently contacted with ozone, and at the same time, the inner surface of the pipe reactor 3 is coated with a catalyst, which further improves the oxidation efficiency of ozone.
  • the invention realizes the modular production of the sludge reduction treatment system, and does not need to modify the existing sludge system, and does not have to
  • the shutdown operation can realize the installation and operation of the sludge reduction treatment system, which does not affect the original continuous sludge concentration and dehydration production, eliminates the foul odor of the sludge treatment system and the external mud cake, reduces the moisture content of the mud cake, and reduces the flocculant dosage. Quantity, reduce energy consumption in the production process, reduce the total amount of sludge discharged from the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种污泥处理***,包括依次通过管道连接的泵(1)、臭氧发生装置、射流器(2)和管道反应器(3),其中臭氧发生装置内设置有通过管道连接的制氧机(4)和臭氧机(5),臭氧发生装置用于向管道反应器(3)内提供臭氧,管道反应器(3)内表面涂敷有用于提高臭氧对污泥氧化能力的催化剂层,且管道反应器(3)内部设置有可使流体产生螺旋流动的螺旋翅片板(6)。还公开了一种利用该污泥处理***进行污泥处理的方法。该***臭氧利用率高,臭氧投入比例低。

Description

污泥处理***及其方法
技术领域
本发明涉及污泥处理技术领域, 特别涉及一种污泥处理***及其方法。 背景技术
生物活性污泥法在污泥处理技术中应用最广泛也最成熟, 投资和运行成本低, 处理效果 稳定。 但活性污泥法存在一个问题, 即会产生大量的剩余污泥, 剩余污泥运输和处理费用占 总运行费用比重大, 处理中还面临诸多条件限制。 当前我国城市污泥处理量约 300亿 m3/a, 产生含水率 98%的生化污泥约 2亿 m7a, 剩余污泥产量仍将以年均 15%增长。 1000万 t/a及 炼油厂, 年产生化含水污泥约 1万吨。
生化剩余污泥主要成分包括水、 微生物、 微生物代谢物、 无机固型物, 生化剩余污泥对 环境危害很大, 有大量的微生物、 病毒、 寄生虫、 有机物、 氮、 磷、 恶臭。 生化污泥体积庞 大的原因是含水率高, 含水形态为自由水、 间隙水、 表面水和结合水。 根本原因是污泥中存 在具有特殊性能的高分子有机物, 是这些高分子有机物导致间隙水、 表面水和结合水存在。 自由水占总含水约 70%, 不与污泥附着或结合, 分离较容易, 可重力分离; 因毛细管现象而 保持的水, 分离较难, 需使用离心、 真空等方法; 表面水通过氢键附着在胶体表面, 分离困 难, 经调理后才能用机械方式脱除; 结合水通过化学键与污泥结合, 约占总含水 4%, 分离十 分困难, 采用一般物理化学方法难以分离, 是构成脱水污泥的主要成分。 内部水是细胞内的 水, 水量很少, 脱除更难。
剩余污泥的处置方式主要包括填埋、 土壤改良和干燥焚烧, 而剩余污泥中可能含有大量 重金属、病原微生物和持久性难生物降解有机污染物, 土壤改良的应用在某些国家已被禁止, 而填埋和干燥焚烧处理方式也要面对日益紧缺的土地资源和严格的环保法规限制。
现有生化污泥处理工艺有: 脱水: 含水率一般降低到 80%-84%, 残留污泥量仍然很庞大, 污染物无减量。 焚烧: 减量效果好, 但投资和运行成本高, 操作复杂, 且产生飞灰危物, 烟 气处理困难。 消化时处理成本较低, 但仅能去除部分有机物, 且污泥减量不显著。
目前, 衡量污泥减量化的主要指标是: 污泥泥饼的含水率以及污泥的泥饼的总排出量, 污泥泥饼的含水率按国家标准进行检测。 臭氧曝气氧化是将高浓度臭氧通入污泥反应塔内, 由于臭氧的强氧化性, 污泥中微生物的细胞壁、 细胞膜破碎, 大量有机质从细胞中释放出来, 可用于污泥减量并可杀死污泥中的有害生物。 通常臭氧投放量与污泥量的比例在 0. 015— 0. 3kg臭氧 /kg污泥量。 日本的文献报道臭氧投放量与折合 100%污泥量的比例为 0. 015kg/kg 污泥量, 国内有高校的研究报道, 该指标为 0. 05— 0. 35kg/kg污泥量, 一般都采用接触器使 臭氧与污泥接触,如此高比例的臭氧投入一般只能停留在实验阶段,工业化几乎难以实现。
日产 40吨污泥的泥饼的污泥处理厂, 按一般泥饼含水率 80%计算, 折合 100%污泥量为每 日 8000kg,按 0. 05kg臭氧 /kg污泥量需要配置 16. 67kg/h的臭氧发生装置, 按 0. 35kg/kg污 泥量的臭氧投入来配置则需要 116. 7kg的臭氧发生装置。目前按国内外的技术指标每生产 1kg 臭氧的需要投入电力 15-21KWh, 即使使用工业化氧气替代空气作为原料也需要 8KWh的电力 消耗, 一个 16kg/h的臭氧发生装置就需要消耗电力 240— 336KWh, 其设备投资、 电力***配 置、 运营成本对于污泥处理业主都是不得不考虑的因素。
因此, 现有技术中污泥处理***处理污泥存在如下缺点: 臭氧进入反应器后停留时间短, 污泥与臭氧不能充分接触, 臭氧利用率低, 臭氧投放比例高, 能耗高, 运行成本高, 难以大 规模推广应用。
发明内容
本发明的目的是提供一种使得臭氧进入反应器后停留时间长, 污泥与臭氧充分接触, 臭 氧利用率高, 臭氧投放比例低, 运行成本低的污泥处理***及其方法。 为了实现上述技术问题, 本发明提供的技术方案为: 一种污泥处理***, 所述污泥处理 ***包括依次通过管道连接的泵、 臭氧发生装置、 射流器和管道反应器, 所述臭氧发生装置 用于向管道反应器内提供臭氧, 实现臭氧和污泥的充分接触。
进一步地, 所述臭氧发生装置内设置有通过管道连接的制氧机和臭氧机;
所述管道反应器为二个或二个以上, 所述管道反应器通过管道并联或串联连接; 所述管道反应器内表面涂敷有用于提高臭氧对污泥氧化能力的催化剂层;
所述管道反应器的下部设置有进泥口, 所述管道反应器的上部设置有排泥口。
进一步地, 所述管道反应器的直径 D为 32讓 d 500mm, 长度 L为 0. 2m L 10m。 更进一步地, 所述管道反应器内部设置有可使流体产生螺旋流动的螺旋翅片板, 所述管 道反应器的直径 D为 100mm D 350mm,长度 L为 0. 3m L 3m。
进一步地, 所述管道反应器的直径 D为 200 mm,长度 L为 1. 5m。
进一步地, 所述射流器为文丘里混合器。
更进一步地, 所述臭氧发生装置与所述管道反应器的连接管道上设置有气体流量计, 所 述泵的进口端设置有蓝式过滤器。
进一步地, 所述泵、 臭氧发生装置、 射流器和管道反应器集成安装在箱体内, 所述箱体 数量为一个或一个以上, 通过管道相串接。
本发明的污泥处理***进行污泥处理的方法,包括以下步骤:
( 1 )所述待处理污泥水以一定的速度通过泵输送至射流器时, 所述射流器产生负压吸入 臭氧发生装置产生的臭氧, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器, 所述混合物与管道反应器中的催化剂层充分 接触, 在催化剂的催化下, 进行氧化还原反应;
( 3 ) 所述氧化还原产物中的污泥经管道反应器的排泥口排出。
进一步地, 所述混合物在管道反应器的停留时间为 10秒至 300秒; 所述射流器内吸入臭 氧量通过泵的流量与管道上的阀门进行调节。
有益效果: 本发明***运行稳定, 可靠性强, 简便易行。 本发明具有如下优点:
( 1 ) 本发明使用极低比例的臭氧投入量就可以实现污泥减量的目的, 臭氧投入量为 0. 00197—0. 00475kg/kg污泥量, 同样对一个日产 40吨污泥的泥饼的污泥处理厂进行实施, 每小时投入 0. 6567kg— 1. 583kg的臭氧就可以实现污泥减量化, 配置 1个 l_2kg/h的臭氧发 生装置就能满足技术要求。
( 2 )管道反应器内部结构可使流体产生螺旋流动以便污泥与臭氧充分接触, 同时在管道 反应器内表面涂有催化剂, 进一步提高了臭氧的氧化效率。
( 3 ) 本发明实现了污泥减量处理***的模块化生产, 不需要对现有污泥***进行改造, 不必停产就可以实现污泥减量处理***的安装运行, 不对原有连续污泥浓缩脱水生产造成影 响, 消除污泥处理***及外运泥饼的恶臭, 降低泥饼含水率, 减少絮凝剂投加量, 降低生产 过程能耗, 减少***污泥排出总量。
附图说明
图 1是本发明管道反应器的示意图;
图 2是本发明污泥处理***工艺流程图;
图 3是本发明的污水处理厂的流程图;
其中: 1泵; 2射流器; 3管道反应器; 4制氧机; 5臭氧机; 6螺旋翅片板; 7污泥浓缩 池; L管道反应器的长度; D管道反应器的直径。 具体实施方式
为了阐明本发明的技术方案及技术目的, 下面结合图及具体实施方式对本发明做进一步 的介绍。
实施例 1
如图 1和图 2所示, 本发明的一种污泥处理***, 其特征在于: 所述污泥处理***包括 依次通过管道连接的 1个流量为 8 m3/h泵 1、 臭氧发生装置、 1个射流器 2和管道反应器 3, 所述臭氧发生装置用于向管道反应器 3内提供臭氧, 实现臭氧和污泥的充分接触。
所述射流器 2为文丘里混合器。所述臭氧发生装置内设置有通过管道连接的 1个 60L/min 的制氧机 4和 1个 240g/h的臭氧机 5;
所述管道反应器 3为 4个, 所述管道反应器 3通过管道并联或串联连接;
管道反应器 3内表面涂有可以将臭氧催化为羟基自由基的催化剂, 进一步提高了臭氧的 氧化效率。
所述管道反应器 3的下部设置有进泥口, 所述管道反应器 3的上部设置有排泥口。
所述管道反应器 3内部设置有可使流体产生螺旋流动的螺旋翅片板 6,所述螺旋翅片板 6 的结构可使流体产生螺旋流动以便污泥与臭氧接触。
所述管道反应器 3的直径 D为 150mm,长度 L为 1. 2m。
文丘里混合器是一种使臭氧与水高效混合的专用设备。 臭氧与水通过文丘里混合器首先 进行初步混合, 然后进入管道反应器 3内部, 迎面撞击特制的漩流板, 使气体和水完全进入 紊流状态。
所述臭氧发生装置与所述管道反应器 3的连接管道上设置有气体流量计, 所述泵 1的进 口端设置有蓝式过滤器。
所述泵 1、 臭氧发生装置、 射流器 2和管道反应器 3集成安装在箱体内, 所述箱体数量 为 1个, 通过管道相串接。 并与电器控制部件固定在钢结构框架内, 就可以制成模块化、 标 准化的污泥处理***, 所述污泥处理***的型号为德宇清 WR150/4-240P8。
本发明的污泥处理***进行污泥处理的方法,包括以下步骤:
( 1 )将管道接口伸入生化污泥浓缩池 7底部, 将待处理污泥水经一定的速度通过泵 1输 送至文丘里混合器时, 所述射流器 2侧向入口产生负压吸入臭氧发生装置产生的臭氧, 并进 行充分混合, 形成臭氧和污泥的混合物; ( 2 )所述混合物通过管道进入管道反应器 3, 所述混合物与管道反应器 3中的催化剂层 充分接触, 在催化剂的催化下, 进行氧化还原反应, 提高了臭氧氧化效率;
( 3 ) 所述氧化还原产物中的污泥经管道反应器 3的排泥口排出, 回到污泥浓缩池 7, 如 此循环往复, 持续运行就可实现污泥减量的目的。
所述混合物在管道反应器 3的停留时间为 10秒至 300秒;所述射流器 2内吸入臭氧量通 过泵 1的流量与管道上的阀门进行调节。 反应时间由泵 1的流量以及串联或并联管道反应器 3 的大小和多少来决定, 对污泥减量的效果由臭氧投放量、 污泥处理***机组的数量以及运 行时间来控制。
如图 3所示, 为本发明的污水处理厂的流程图。 各路废水先从收集池或管道进入匀质调 节池一中和池一然后进入厌氧发酵池发酵后, 产生的污泥进入污泥浓缩池, 污泥则进入一级 曝气池进行好氧曝气 进入二沉池将带出的好氧反应产生的污泥沉淀后进入污泥浓缩池 7, 二水则进入二级曝气池继续进行好氧生物反应 进入终沉池后, 将生化反应产生的污泥沉 淀进入污泥浓缩池 7, 处理干净的水进入气浮池将水中漂浮物去除 进入监护池的水, 如 果达到排放标准则可直接排放, 如果 COD等指标超标, 则需要采取措施, 回到曝气池重新生 化处理或进入匀质调节池进行再次厌氧。
进入污泥浓缩池 7的污泥一般含水率在 98%左右, 经过对污泥浓缩池 7添加絮凝剂后, 污泥浓缩池 7底部的污泥进入压滤机进行压滤脱水, 形成污泥的泥饼, 这种泥饼的含水率一 般在 75-87%之间, 污泥浓缩池 7上部的清水和压滤污泥后的压滤水通过管道回到一级曝气池 继续进行生化好氧处理。
一般污泥沉淀池的温度在 30-40 ° C, 本发明的污泥处理***只要污泥浓缩池 7中的污泥 1-50 ° C就可以工作。 流过管道反应器 3的污泥反应产物温度稍有上升, 但不影响***运行。
对某化纤公司日处理 2万吨废水的生化污水处理装置的污泥浓缩池 7进行现场应用, 污 泥浓缩池容积为 80立方米, 污泥来自厌氧污泥池、 二沉池、 终沉池, 进泥量约 40t/h, 上部 清液经上清液回流池回流至一段曝气池, 回流量约 30t/h, 底部浓缩污泥进脱水机脱水后外 运, 脱水量约 10t/h, 污泥的泥饼中重金属超标, 属于环保监控危废。
使用本污泥处理***对污泥浓缩池 7的污泥进行持续处理 18个班次, 每班次为 8小时。 设备投入使用 1天后污泥***臭味减轻, 对使用该设备前后的生产运行情况进行对比分析, 得出污泥处理***投入使用前后的对比表, 表 1如下:
表 1 进泥量, 脱泥量, 总耗药量, 每班泥饼产
泥饼含水率 m3/班 m3/班 kg/班 量, 吨 /班
实验前 1个月 297. 6 58. 8 19. 6 9. 7 85. 85% 德 宇 清
WR150/4-240P8投入 237. 2 54. 6 16. 7 6. 7 85. 42%
运行
如表 1所示, 每个班次的絮凝剂投入量由 19. 6kg减少至 16. 7kg, 减少了 14. 8%; 每班泥 饼外运量由 9. 7吨减少到 6. 7吨, 减少了 30. 9%; 泥饼含水率略有降低。 每 8小时累计投入 的臭氧量为 1. 920kg, 从表 1 的泥饼含水率 85. 42%换算出 8 小时产生的 100%污泥量为 976. 86kg, 臭氧投放量与污泥量的比例仅为 0. 00197kg臭氧 /kg污泥量, 远低于文献报道的 0. 015kg臭氧 /kg污泥量的投入量。 每套污泥处理***的总用电功率约为 20kW。 实施例 2
如图 1和图 2所示, 本发明的一种污泥处理***, 其特征在于: 所述污泥处理***包括 依次通过管道连接的流量为 16m3/h的泵 1、 臭氧发生装置、 1个射流器 2和管道反应器 3, 所 述臭氧发生装置用于向管道反应器 3内提供臭氧, 实现臭氧和污泥的充分接触, 同时实现了 固液分离。
所述臭氧发生装置内设置有通过管道连接的 1个 140L/min的制氧机 4和 1个 480g/h的 臭氧机 5;
所述管道反应器 3为 8个, 所述管道反应器 3每 4个一组串接后再两组并联连接; 管道反应器 3内表面涂有可以将臭氧催化为羟基自由基的催化剂, 进一步提高了臭氧的 氧化效率。
所述管道反应器 3的下部设置有进泥口, 所述管道反应器 3的上部设置有排泥口。
所述管道反应器 3内部设置有可使流体产生螺旋流动的螺旋翅片板 6,所述螺旋翅片板 6 的结构可使流体产生螺旋流动以便污泥与臭氧接触。
所述管道反应器 3的直径 D为 150mm,长度 L为 1. 2m。 所述射流器 2为文丘里混合器。 文丘里混合器是一种使臭氧与水高效混合的专用设备。 臭氧与水通过文丘里混合器首先进行初步混合, 然后分别进入管道反应器 3, 迎面撞击特制 的漩流板, 使气水完全进入紊流状态。 所述臭氧发生装置与所述管道反应器 3的连接管道上设置有气体流量计, 所述泵 1的进 口端设置有蓝式过滤器。
所述泵 1、 臭氧发生装置、 射流器 2和管道反应器 3集成安装在箱体内, 所述箱体数量 为 2个, 通过管道相串接。 并与电器控制部件固定在钢结构框架内, 就可以制成模块化、 标 准化的污泥处理***, 所述污泥处理***的型号为德宇清 WR150/8— 480P16。
本发明的污泥处理***进行污泥处理的方法,其特征在于包括以下步骤:
( 1 )将管道接口伸入生化污泥浓缩池 7底部, 将待处理污泥水经一定的速度通过泵 1输 送至文丘里混合器时, 所述射流器 2侧向入口产生负压吸入臭氧发生装置产生的臭氧, 并进 行充分混合, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器 3, 所述混合物与管道反应器 3中的催化剂层 充分接触, 在催化剂的催化下, 进行氧化还原反应, 进一步提高了臭氧氧化效率;
( 3 ) 所述氧化还原产物中的污泥经管道反应器 3的排泥口排出, 回到污泥浓缩池 7, 如 此循环往复, 持续运行就可实现污泥减量的目的。
所述混合物在管道反应器 3的停留时间为 10秒至 300秒,所述射流器 2内吸入臭氧量通 过泵 1的流量与管道上的阀门进行调节。 反应时间由泵 1的流量以及串联或并联管道反应器 3 的大小和多少来决定, 对污泥减量的效果由臭氧投放量、 污泥处理***机组的数量以及运 行时间来控制。
如图 3所示, 对某化纤公司日处理 2万吨废水的生化污水处理装置的污泥浓缩池 7进行 现场应用, 污泥浓缩池 7容积为 80立方米, 污泥来自厌氧污泥池、 二沉池、 终沉池, 进泥量 约 40t/h, 上部清液经上清液回流池回流至一段曝气池, 回流量约 30t/h, 底部浓缩污泥进脱 水机脱水后外运, 脱水量约 10t/h, 污泥的泥饼中重金属超标, 属于环保监控危废。
使用上述污泥处理***其与污泥浓缩池 7相连接, 持续运行 39天, 实施过程中, 该公司 污水处理与污泥处理生产正常进行, 投入运行 15天后, 开始每周间歇停止对污泥浓缩池 7的 底部污泥的压滤排泥,
通过管道将部分污泥输送至一级曝气池或匀质调节池进行二次生化。 将实施前一个月的 操作数据与实施期间数据进行统计分析, 得出表 2如下:
表 2
平均进泥量, 平均脱泥 平均总耗药 平均泥饼产 平均泥饼 m3/天 量, m3/天 量, kg/天 量, 吨 /天 含水率 实验前 1个月 892. 8 176. 4 58. 8 29. 1 85. 85% 德 宇 清
WR150/8- 480P16 464. 4 87. 6 37. 2 14. 4 83. 16% 运行 39天
减少率 47. 98% 50. 34% 36. 73% 50. 52% 3. 13%
在实施期间, 同时对污泥浓缩池 7进水管水样、 溢流水样以及压滤机压滤液水样进行分 析, 结果见表 3如下:
表 3
Figure imgf000010_0001
如表 3所示, 来自二沉池的水质 COD在 60mg/L以下, 已满足当地对企业排放的要求, 但 B/C仅为 0. 134, 低于 0. 3, 说明水中有机物的可生化性较差; 含泥污水进入污泥浓缩池 7经 德宇清污泥处理***处理后, COD大幅度升高至 132. 33mg/L, 说明污泥中的微生物细胞被破 壁后, 污泥内部的生物水得到了释放, 且使微生物菌吸收的有机物进入水体, 污泥池底部浓 缩污泥经叠螺式污泥脱水机压滤后, COD升高至 202. 38mg/L, 说明污泥内部的生物水与有机 物经过压力的作用进一步得到释放, 对溢流水及压滤液的 B0D进行分析发现 B0D5分别升高 104. 4mg/L与 116mg/L, B/C大幅度升高至 0. 789与 0. 573, 说明***回流污水的可生化性大 幅度提高, 有利于***对有机物的消解。
从表 2可知, 每天累计投入臭氧 11. 52kg, 平均每天产生的 100%污泥量为 2424. 96kg, 臭氧投入量与污泥量的比例为 0. 00475kg臭氧 /kg污泥量。 污水处理车间每天输送的含泥污 水由 892. 8立方米减少至 464. 4立方米, 减少了 47. 98%, 进入叠螺式污泥脱水机的污泥由 176. 4立方米减至 87. 6立方米, 减少了 50. 34%, 大幅度减少了用于输送的能量消耗。平均每 天用于污泥脱水的絮凝剂消耗由 58. 8kg减少至 37. 2kg, 节省了 36. 73%, 大幅度节省了生产 原料成本。 平均每天排放的污泥的泥饼由 29. 1吨减少至 14. 4吨, 减少了 50. 52%, 大幅度减 少了污泥的泥饼的外运处理量, 节省企业污泥中泥饼的处理费用。
实施例 3 如图 1和图 2所示, 本发明的一种污泥处理***, 所述污泥处理***包括依次通过管道 连接的流量为 2m3/h的泵 1、 臭氧发生装置、 1个射流器 2和管道反应器 3, 所述臭氧发生装 置用于向管道反应器 3内提供臭氧, 实现臭氧和污泥的充分接触, 同时实现固液分离。
所述臭氧发生装置内设置有通过管道连接的 1个 5L/min的制氧机 4和 1个 30g/h的臭氧 机 5;
所述管道反应器 3为 4个, 所述管道反应器 3通过管道并联或串联连接;
管道反应器 3内表面涂有可以将臭氧催化为羟基自由基的催化剂, 进一步提高了臭氧的 氧化效率。
所述管道反应器 3的下部设置有进泥口, 所述管道反应器 3的上部设置有排泥口。
所述管道反应器 3内部设置有可使流体产生螺旋流动的螺旋翅片板 6,所述螺旋翅片板 6 的结构可使流体产生螺旋流动以便污泥与臭氧接触。
所述管道反应器 3的直径 D为 100mm,长度 L为 lm。
所述射流器 2为文丘里混合器。 文丘里混合器是一种使臭氧与水高效混合的专用设备。 臭氧与水通过文丘里混合器首先进行初步混合, 然后进入管道反应器 3内部, 迎面撞击特制 的漩流板, 使气水完全进入紊流状态。
所述臭氧发生装置与所述管道反应器 3的连接管道上设置有气体流量计, 所述泵 1的进 口端设置有蓝式过滤器。
所述泵 1、 臭氧发生装置、 射流器 2和管道反应器 3集成安装在箱体内, 所述箱体数量 为 1个, 通过管道相串接。 并与电器控制部件固定在钢结构框架内, 就可以制成模块化、 标 准化的污泥处理***, 所述污泥处理***的型号为德宇清 WR100/4— 30P2。
本发明的污泥处理***进行污泥处理的方法,包括以下步骤:
( 1 )将管道接口伸入生化污泥浓缩池 7底部, 将待处理污泥水经一定的速度通过泵 1输 送至文丘里混合器时, 所述射流器 2侧向入口产生负压吸入臭氧发生装置产生的臭氧, 并进 行充分混合, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器 3, 所述混合物与管道反应器 3中的催化剂层 充分接触, 在催化剂的催化下, 进行氧化还原反应, 进一步提高了臭氧的氧化效率;
( 3 ) 所述氧化还原产物中的污泥经管道反应器 3的排泥口排出, 回到污泥浓缩池 7, 如 此循环往复, 持续运行就可实现污泥减量的目的。
所述混合物在管道反应器 3的停留时间为 10秒至 300秒;所述射流器 2内吸入臭氧量通 过泵 1的流量与管道上的阀门进行调节。 反应时间由泵 1的流量以及串联或并联管道反应器 3 的大小和多少来决定, 对污泥减量的效果由臭氧投放量、 污泥处理***机组的数量以及运 行时间来控制。
对某再生造纸公司的污泥浓缩池 7的污泥取样 300升, 用型号为德宇清 WR100/4— 30P2 对污泥循环处理 12分钟, 没有经过处理的浓缩污泥存在持续的恶臭, 而经过 12分钟处理后 的浓缩污泥液臭味消失。对浓缩污泥处理前后取样各 500毫升放入量筒静置, 静置 24小时后 观察, 未经处理的浓缩污泥的沉淀上清液不到 50毫升, 而经过处理的浓缩污泥上清液达 300 毫升以上。
实施例 4
如图 1和图 2所示, 本发明的一种污泥处理***, 所述污泥处理***包括依次通过管道 连接的流量为 5m3/h的泵 1、 臭氧发生装置、 1个射流器 2和管道反应器 3, 所述臭氧发生装 置用于向管道反应器 3内提供臭氧, 实现臭氧和污泥的充分接触。
所述臭氧发生装置内设置有通过管道连接的 1个 lOL/min的制氧机 4和 1个 60g/h的臭 氧机 5;
所述管道反应器 3为 2个, 所述管道反应器 3通过管道并联或串联连接;
管道反应器 3内表面涂有可以将臭氧催化为羟基自由基的催化剂, 进一步提高了臭氧的 氧化效率。
所述管道反应器 3的下部设置有进泥口, 所述管道反应器 3的上部设置有排泥口。
所述管道反应器 3内部设置有可使流体产生螺旋流动的螺旋翅片板 6,所述螺旋翅片板 6 的结构可使流体产生螺旋流动以便污泥与臭氧接触。
所述管道反应器 3的直径 D为 150mm,长度 L为 1. 2m。
所述射流器 2为文丘里混合器。 文丘里混合器是一种使臭氧与水高效混合的专用设备。 臭氧与水通过文丘里混合器首先进行初步混合, 然后进入管道反应器 3内部, 迎面撞击特制 的漩流板, 使气水完全进入紊流状态。
所述臭氧发生装置与所述管道反应器 3的连接管道上设置有气体流量计, 所述泵 1的进 口端设置有蓝式过滤器。
所述泵 1、 臭氧发生装置、 射流器 2和管道反应器 3集成安装在箱体内, 所述箱体数量 为 2个, 通过管道相串接。 并与电器控制部件固定在钢结构框架内, 就可以制成模块化、 标 准化的污泥处理***, 所述污泥处理***的型号为德宇清 WR150/2— 60P5。 本发明的污泥处理***进行污泥处理的方法,包括以下步骤:
( 1 )将管道接口伸入生化污泥浓缩池 7底部, 将待处理污泥水经一定的速度通过泵输送 至文丘里混合器时, 所述射流器 2侧向入口产生负压吸入臭氧发生装置产生的臭氧, 并进行 充分混合, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器 3, 所述混合物与管道反应器 3中的催化剂层 充分接触, 在催化剂的催化下, 进行氧化还原反应, 进一步提高了臭氧氧化效率;
( 3 ) 所述氧化还原产物中的污泥经管道反应器 3的排泥口排出, 回到污泥浓缩池 7, 如 此循环往复, 持续运行就可实现污泥减量的目的。
所述混合物在管道反应器 3的停留时间为 10秒至 300秒;所述射流器 2内吸入臭氧量通 过泵 1的流量与管道上的阀门进行调节。 反应时间由泵 1的流量以及串联或并联管道反应器 3 的大小和多少来决定, 对污泥减量的效果由臭氧投放量、 污泥处理***机组的数量以及运 行时间来控制。
对某造纸有限公司的造纸废水沉淀污泥进行处理, 该公司污泥沉淀池尺寸为长 3. 9米、 宽 2. 5米、 深 3米, 污泥来源于造纸车间的废水沉淀物及部分生化后污泥, 每天有 300立方 米的排入池内, 通过带式压滤机压出 3-4吨泥饼外排, 附近存在难闻的恶臭。 用型号为德宇 清 WR150/2— 60P5放置于污泥沉淀池边, 将泵 1的入口伸入池底, 污泥进入污泥处理***后 再通过管道回到池内, 循环处理 1天后, 恶臭消除。 经处理后大部分沉淀物经特殊处理后作 为纸浆回收利用。
实施例 5
如图 1和图 2所示, 本发明的一种污泥处理***, 所述污泥处理***包括依次通过管道 连接的流量为 12m3/h的泵 1、 臭氧发生装置、 1个射流器 2和管道反应器 3, 所述臭氧发生装 置用于向管道反应器 3内提供臭氧, 实现臭氧和污泥的充分接触, 同时实现固液分离。
所述臭氧发生装置内设置有通过管道连接的 1个 120L/min的制氧机 4和 1个 400g/h的 臭氧机 5;
所述管道反应器 3为四个, 所述管道反应器 3通过管道并联或串联连接;
管道反应器 3内表面涂有可以将臭氧催化为羟基自由基的催化剂, 进一步提高了臭氧的 氧化效率。
所述管道反应器 3的下部设置有进泥口, 所述管道反应器 3的上部设置有排泥口。
所述管道反应器 3内部设置有可使流体产生螺旋流动的螺旋翅片板 6,所述螺旋翅片板 6 的结构可使流体产生螺旋流动以便污泥与臭氧接触。
所述管道反应器 3的直径 D为 200mm,长度 L为 1. 5m。
所述射流器 2为文丘里混合器。 文丘里混合器是一种使臭氧与水高效混合的专用设备。 臭氧与水通过文丘里混合器首先进行初步混合, 然后进入管道反应器 3内部, 迎面撞击特制 的漩流板, 使气水完全进入紊流状态。
所述臭氧发生装置与所述管道反应器 3的连接管道上设置有气体流量计, 所述泵 1的进 口端设置有蓝式过滤器。
所述泵 1、 臭氧发生装置、 射流器 2和管道反应器 3集成安装在箱体内, 所述箱体数量 为 4个, 通过管道相串接。 并与电器控制部件固定在钢结构框架内, 就可以制成模块化、 标 准化的污泥处理***, 所述污泥处理***的型号为德宇清 WR200/4— 400P12。
本发明的污泥处理***进行污泥处理的方法,包括以下步骤:
( 1 )将管道接口伸入生化污泥浓缩池 7底部, 将待处理污泥水经一定的速度通过泵 1输 送至文丘里混合器时, 所述射流器 2侧向入口产生负压吸入臭氧发生装置产生的臭氧, 并进 行充分混合, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器 3, 所述混合物与管道反应器 3中的催化剂层 充分接触, 在催化剂的催化下, 进行氧化还原反应, 进一步提高了臭氧氧化效率;
( 3 ) 所述氧化还原产物中的污泥经管道反应器 3的排泥口排出, 回到污泥浓缩池 7, 如 此循环往复, 持续运行就可实现污泥减量的目的。
所述混合物在管道反应器 3的停留时间为 10秒至 300秒;所述射流器 2内吸入臭氧量通 过泵 1的流量与管道上的阀门进行调节。 反应时间由泵 1的流量以及串联或并联管道反应器 3 的大小和多少来决定, 对污泥减量的效果由臭氧投放量、 污泥处理***机组的数量以及运 行时间来控制。
本发明***运行稳定, 可靠性强, 简便易行。 使用极低比例的臭氧投入量就可以实现污 泥减量的目的, 臭氧投入量为 0. 00197—0. 00475kg/kg污泥量, 同样对一个日产 40吨污泥的 泥饼的污泥处理厂进行实施,每小时投入 0. 6567kg— 1. 583kg的臭氧就可以实现污泥减量化, 配置 1个 l-2kg/h的臭氧发生装置就能满足技术要求。
本发明中的管道反应器 3内部结构可使流体产生螺旋流动以便污泥与臭氧充分接触, 同 时在管道反应器 3内表面涂有催化剂, 进一步提高了臭氧的氧化效率。
本发明实现了污泥减量处理***的模块化生产, 不需要对现有污泥***进行改造, 不必 停产就可以实现污泥减量处理***的安装运行, 不对原有连续污泥浓缩脱水生产造成影响, 消除污泥处理***及外运泥饼的恶臭, 降低泥饼含水率, 减少絮凝剂投加量, 降低生产过程 能耗, 减少***污泥排出总量。
以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本行业的技术人员应 该了解, 本发明不受上述实施例的限制, 上述实施例和说明书中描述的只是说明本发明的原 理, 在不脱离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 本发明要求保护 范围由所附的权利要求书、 说明书及其等效物界定。

Claims

WO 2015/081658 权 利 要 求 书 PCT/CN2014/076433
1.一种污泥处理***, 其特征在于: 所述污泥处理***包括依次通过管道连接的泵、 臭 氧发生装置、 射流器和管道反应器, 所述臭氧发生装置用于向管道反应器内提供臭氧, 实现 臭氧和污泥的充分接触。
2.根据权利要求 1所述的污泥处理***,其特征在于:所述臭氧发生装置内设置有通过管 道连接的制氧机和臭氧机;
所述管道反应器为二个或二个以上, 所述管道反应器通过管道并联或串联连接; 所述管道反应器内表面涂敷有用于提高臭氧对污泥氧化能力的催化剂层;
所述管道反应器的下部设置有进泥口, 所述管道反应器的上部设置有排泥口。
3.根据权利要求 1所述的污泥处理***,其特征在于: 所述管道反应器的直径 D为 32mm d 500mm, 长度 L为 0. 2m^L^ 10m。
4.根据权利要求 3所述的污泥处理***,其特征在于:所述管道反应器内部设置有可使流 体产生螺旋流动的螺旋翅片板,所述管道反应器的直径 D为 100mm D 350mm,长度 L为 0. 3m
5.根据权利要求 2所述的污泥处理***,其特征在于:所述管道反应器的直径 D为 200 mm, 长度 L为 1. 5m。
6.根据权利要求 1所述的污泥处理***, 其特征在于: 所述射流器为文丘里混合器。
7.根据权利要求 6所述的污泥处理***,其特征在于:所述臭氧发生装置与所述管道反应 器的连接管道上设置有气体流量计, 所述泵的进口端设置有蓝式过滤器。
8.根据权利要求 1至 7任一项所述的污泥处理***,其特征在于:所述泵、臭氧发生装置、 射流器和管道反应器集成安装在箱体内, 所述箱体数量为一个或一个以上, 通过管道相串接。
9.利用权利要求 1所述的污泥处理***进行污泥处理的方法,其特征在于包括以下步骤:
( 1 )所述待处理污泥水以一定的速度通过泵输送至射流器时, 所述射流器产生负压吸入 臭氧发生装置产生的臭氧, 形成臭氧和污泥的混合物;
( 2 )所述混合物通过管道进入管道反应器, 所述混合物与管道反应器中的催化剂层充分 接触, 在催化剂的催化下, 进行氧化还原反应;
( 3 ) 所述氧化还原产物中的污泥经管道反应器的排泥口排出。
10.根据权利要求 9所述的污泥处理方法,其特征在于: 所述混合物在管道反应器的停留 时间为 10秒至 300秒; 所述射流器内吸入臭氧量通过泵的流量与管道上的阀门进行调节。
PCT/CN2014/076433 2013-12-03 2014-04-29 污泥处理***及其方法 WO2015081658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14867623.2A EP3081540A4 (en) 2013-12-03 2014-04-29 Sludge treatment system and method therefor
US15/101,763 US9771293B2 (en) 2013-12-03 2014-04-29 Sludge treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310645801.9A CN103663895B (zh) 2013-12-03 2013-12-03 污泥处理***及其方法
CN201310645801.9 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015081658A1 true WO2015081658A1 (zh) 2015-06-11

Family

ID=50302798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076433 WO2015081658A1 (zh) 2013-12-03 2014-04-29 污泥处理***及其方法

Country Status (4)

Country Link
US (1) US9771293B2 (zh)
EP (1) EP3081540A4 (zh)
CN (1) CN103663895B (zh)
WO (1) WO2015081658A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053424A1 (en) * 2016-09-19 2018-03-22 Linde Aktiengesellschaft Methods for wastewater treatment
KR20190092372A (ko) * 2016-09-26 2019-08-07 유나이티드 쎄러퓨틱스 코포레이션 트레프로스티닐 프로드럭
CN112979138A (zh) * 2021-02-24 2021-06-18 马驰 多点位自收集式城市管路污泥处理***
CN113024053A (zh) * 2021-02-26 2021-06-25 南京大善环境科技有限公司 一种医疗污泥灭活脱水密闭循环烘干hsdd处理工艺及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663895B (zh) * 2013-12-03 2015-05-13 南京德磊科技有限公司 污泥处理***及其方法
CN106103361A (zh) * 2014-04-29 2016-11-09 三菱电机株式会社 污泥处理装置和污泥处理方法
CN104071955A (zh) * 2014-06-19 2014-10-01 南京德磊科技有限公司 生化污泥处理***及其处理方法
CN107324626A (zh) * 2017-08-11 2017-11-07 江苏浦坤纳米科技有限公司 一种臭氧全利用污泥减量化反应***及污泥处理方法
CN107311422A (zh) * 2017-08-11 2017-11-03 江苏浦坤纳米科技有限公司 一种污泥减量化反应***及处理方法
CN108483852A (zh) * 2018-04-17 2018-09-04 北京石油化工学院 一种高效组合法含油污泥清洗***
CN110723837A (zh) * 2019-09-09 2020-01-24 多路发环境净化技术(福建)有限公司 一种零排放污水处理***
CN111333287A (zh) * 2020-03-27 2020-06-26 张天水 一种中药去除淤泥中重金属的处理方法
CN112028416B (zh) * 2020-08-26 2023-03-31 沈阳理工大学 一种切削混合催化氧化消毒器及化粪池污泥综合利用方法
CN113105085A (zh) * 2021-04-25 2021-07-13 江苏大学 一种底泥就地臭氧氧化处理***及使用方法
CN115215488A (zh) * 2022-09-19 2022-10-21 广州海洋地质调查局三亚南海地质研究所 用于处理海陆交汇关键带的废水与污泥的环保处理***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018309A (ja) * 2006-07-11 2008-01-31 Yaskawa Electric Corp 汚泥処理装置
CN102617004A (zh) * 2012-04-19 2012-08-01 天津凯英科技发展有限公司 一种利用自生污泥进行碳源开发与应用的污水处理***
CN202415337U (zh) * 2012-01-12 2012-09-05 温州欧飞立环保科技有限公司 电解式臭氧用于污泥除臭减量的增压处理装置
CN103058480A (zh) * 2012-12-21 2013-04-24 湖南清和环保技术有限公司 一种处理污泥的设备及方法
CN103663895A (zh) * 2013-12-03 2014-03-26 南京德磊科技有限公司 污泥处理***及其方法
CN203602470U (zh) * 2013-12-03 2014-05-21 南京德磊科技有限公司 污泥处理***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19625985C2 (de) 1996-06-28 2001-01-18 Georg Csontos Verfahren zur Behandlung von Abwässern der Trink- und Abwasseraufbereitung
NO313994B1 (no) 2001-03-12 2003-01-13 Due Miljoe As Våtoksidasjon ved hjelp av en porös katalytisk kontaktor
US6960301B2 (en) * 2002-03-15 2005-11-01 New Earth Systems, Inc. Leachate and wastewater remediation system
JP2004275996A (ja) * 2003-03-19 2004-10-07 Hitachi Plant Eng & Constr Co Ltd 汚泥減容方法
US20080078719A1 (en) 2006-09-29 2008-04-03 Malcolm Ezekiel Fabiyi System and method for treating wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018309A (ja) * 2006-07-11 2008-01-31 Yaskawa Electric Corp 汚泥処理装置
CN202415337U (zh) * 2012-01-12 2012-09-05 温州欧飞立环保科技有限公司 电解式臭氧用于污泥除臭减量的增压处理装置
CN102617004A (zh) * 2012-04-19 2012-08-01 天津凯英科技发展有限公司 一种利用自生污泥进行碳源开发与应用的污水处理***
CN103058480A (zh) * 2012-12-21 2013-04-24 湖南清和环保技术有限公司 一种处理污泥的设备及方法
CN103663895A (zh) * 2013-12-03 2014-03-26 南京德磊科技有限公司 污泥处理***及其方法
CN203602470U (zh) * 2013-12-03 2014-05-21 南京德磊科技有限公司 污泥处理***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053424A1 (en) * 2016-09-19 2018-03-22 Linde Aktiengesellschaft Methods for wastewater treatment
KR20190092372A (ko) * 2016-09-26 2019-08-07 유나이티드 쎄러퓨틱스 코포레이션 트레프로스티닐 프로드럭
KR102541885B1 (ko) 2016-09-26 2023-06-12 유나이티드 쎄러퓨틱스 코포레이션 트레프로스티닐 프로드럭
CN112979138A (zh) * 2021-02-24 2021-06-18 马驰 多点位自收集式城市管路污泥处理***
CN113024053A (zh) * 2021-02-26 2021-06-25 南京大善环境科技有限公司 一种医疗污泥灭活脱水密闭循环烘干hsdd处理工艺及装置

Also Published As

Publication number Publication date
EP3081540A1 (en) 2016-10-19
US20160304380A1 (en) 2016-10-20
CN103663895A (zh) 2014-03-26
CN103663895B (zh) 2015-05-13
US9771293B2 (en) 2017-09-26
EP3081540A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2015081658A1 (zh) 污泥处理***及其方法
CN100390081C (zh) 含硝基苯、苯胺污染物废水的处理方法
CN209872690U (zh) 一种垃圾中转站渗沥液处理工艺装置
CN103359876A (zh) 二甲基乙酰胺废水无害化处理方法
CN203530059U (zh) 一种钻井废弃泥浆滤液处理***
CN110550815A (zh) 一种深度处理老龄垃圾渗滤液的装置及方法
CN106396191A (zh) 一种高cod高nh3‑n废水的应急处理工艺及装置
CN203602470U (zh) 污泥处理***
CN203065303U (zh) 一种肉类加工污水处理***
CN104743749A (zh) 一种偏碱性棉浆粕工业中段废水的处理方法
CN113698049A (zh) 一种水冲粪、水泡粪养猪废水处理及回用工艺
CN109133524A (zh) 高cod高盐医药中间体化工废水的处理***及处理方法
CN111807613A (zh) 一种烟厂薄片废水处理工艺
CN219194742U (zh) 一种低能耗的污水处理***
CN208829505U (zh) 精细化工废水经mvr蒸馏后的后处理***
CN104341083A (zh) 一种制药污泥减量化处理方法
CN208617634U (zh) 一种垃圾中转站渗滤液处理***
CN202808518U (zh) 一种微电解和芬顿联用处理难降解有机废水的装置
CN210505967U (zh) 一种高浓度顺酐废水处理装置
CN210237393U (zh) 一种盐酸青藤碱生产污水处理***
CN208964731U (zh) 一种中水回用装置
CN203256094U (zh) 一种一体式污水处理设备
CN208218511U (zh) 高浓度污水的处理装置
CN202030620U (zh) 草浆造纸中段废水处理***
CN206447727U (zh) 一种茶多酚生产加工废水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15101763

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014867623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867623

Country of ref document: EP