WO2015080211A1 - Method for raising plants - Google Patents

Method for raising plants Download PDF

Info

Publication number
WO2015080211A1
WO2015080211A1 PCT/JP2014/081409 JP2014081409W WO2015080211A1 WO 2015080211 A1 WO2015080211 A1 WO 2015080211A1 JP 2014081409 W JP2014081409 W JP 2014081409W WO 2015080211 A1 WO2015080211 A1 WO 2015080211A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
plant
ship
growth
plants
Prior art date
Application number
PCT/JP2014/081409
Other languages
French (fr)
Japanese (ja)
Inventor
石川 勝之
Original Assignee
Asp株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asp株式会社 filed Critical Asp株式会社
Publication of WO2015080211A1 publication Critical patent/WO2015080211A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a method for growing plants carried on a ship that is sailing.
  • a plant factory is a facility horticulture that performs cultivation by controlling the growth environment of plants such as light, temperature, humidity, carbon dioxide concentration, nutrients, moisture, etc. in the facility. By controlling the environment and predicting growth, it refers to a cultivation facility that can produce anniversary and planned production of plants such as vegetables.
  • a method for stably supplying fresh vegetables has been proposed in order to maintain and promote the health of seafarers in vessels such as ocean fishing boats, tankers, cargo ships, and passenger ships.
  • a marine plant cultivation device has been developed that is resistant to shaking of a vessel so that plants grown in a certain number of days in a narrow space such as a vessel can be harvested continuously and efficiently. (For example, Patent Document 2).
  • Patent Document 1 the method of plant cultivation during container transportation as described in Patent Document 1 is premised on cultivation for several days at most, and is merely trying to maintain the freshness of the plant in a short period of time.
  • the plant cultivation apparatus for ships like patent document 2 is for maintaining and promoting a crew member's health, and is not a method suitable when it is going to export a plant toward the destination.
  • the present invention has been made in view of such circumstances, and provides a method for growing a plant that can grow a plant so that it reaches a destination when it has matured, and can ship fresh plants efficiently. With the goal.
  • a plant growing method is a plant growing method performed on a marine vessel, and a step of placing a plant before growing on a vessel at a departure place; Controlling the growth environment for the plants placed on the ship during navigation, controlling the growth rate so that the ship reaches a predetermined maturity when the ship reaches the destination, and the predetermined maturity Unloading the reached plant at the destination, and arranging a cultivation tray on a path for circulating the liquid in a sealed space provided in the ship during the navigation of the ship, and the liquid circulation As a part that forms a falling path where the liquid naturally falls at an angle close to vertical at at least one point in the path, it projects upward at the position of the liquid inlet and has a constant large diameter in the axial direction.
  • Straight pipe inflow pipe A straight pipe-type outflow pipe projecting downward at a position of the liquid outlet and having a constant small diameter in the axial direction, and the outflow pipe is disposed in the inflow pipe at the upper and lower stages of the cultivation tray.
  • the plant is grown on the cultivation tray using a system in which an overlapping section is provided and an opening for taking in air to be mixed into the liquid is provided in the part.
  • the liquid can be circulated while mixing the air while preventing leakage of the liquid.
  • the pipe is a straight pipe having a constant diameter in the axial direction, liquid leakage can be prevented.
  • the flow rate of the circulated liquid is controlled, and the inflow pipe and the outflow pipe are the largest of the controlled liquid flow rates.
  • Each pipe diameter is designed so that the liquid level in the inflow pipe does not contact the lower end surface of the outflow pipe with respect to the liquid flow rate.
  • the said cultivation tray is arranged in multiple steps at intervals in the perpendicular direction, and makes a liquid fall naturally between the said cultivation trays arranged continuously. It is characterized by mixing air into the liquid. Thereby, it is possible to circulate the liquid mixed with air with power saving during long-term ship navigation.
  • the said air is made to flow in by flowing the said liquid from the top in one end of a longitudinal direction, and letting the said liquid flow out downward in the other end. It is characterized by circulating the mixed liquid. Thereby, the liquid can be spread in the cultivation tray.
  • the plant growth method of the present invention is characterized in that the growth environment is controlled by controlling the intensity of irradiation light to the plant mounted on the ship or selecting a wavelength.
  • FIG. 1 is a schematic diagram showing a method for growing a plant.
  • the sign is changed between the plant P0 in the germination stage, the plant P1 in the growing stage, and the plant P2 in the mature stage.
  • the target plant P0 is cultivated in the plant factory 10 on land until the germination stage.
  • an individual having a good growth state is selected, the selected plant P0 is loaded on the ship, and the plant P1 is grown from the germination to the maturity stage on the ship sailing to the destination.
  • the growth of the plant P1 is performed in the ship 20 that is in navigation.
  • Plants P1 such as vegetables are cultivated in the navigating ship 20, and the plant is efficiently matured by managing the cultivation so that the plant P1 matures when the ship 20 arrives at the destination for navigation.
  • P2 can be shipped to the destination.
  • the growing period on the ship is, for example, 10 to 30 days.
  • the plant P2 grown and matured on the ship 20 is landed and shipped to the market 30.
  • Plants can be supplied efficiently by using the period of vessel navigation or subsequent transportation as the plant growth period. For this reason, it is necessary to grasp the period of vessel navigation or subsequent transportation and also accurately grasp the period of growth of the plant to be grown. Then, from such information, it is possible to deliver the plant to the destination in an optimal state by controlling the loading time of the plant on the route, the growth rate at the time of growing, and the time to stop controlling the growing environment.
  • the types of plants include sunny lettuce, leaf lettuce, parsley, herb, spinach, arugula, Japanese mustard spinach, strawberry, tomato, cucumber, turnip and the like.
  • the following table shows the growth stage and duration for each plant.
  • the growth period refers to the period from the completion of germination to the maturity when harvesting is possible.
  • a plan is set up in which two weeks from sowing and germination to the seedling stage are grown on land, and the remaining two weeks until the maturity stage are grown on the ship. In that case, germination and seedling are carried out on the ground from sowing, and the sowing time is adjusted so that it has grown to the stage where one week has passed since germination at the departure time of the ship.
  • controlling the growth environment includes controlling the flow rate of the circulated liquid.
  • FIG. 2 is a flowchart showing a plant growing method for transporting and growing plants on a ship.
  • a plant to be grown on land is sown (step S101).
  • the sowing is performed by making a hole in a plate-shaped seedbed made of a porous material having water absorption and sowing the seed in the hole.
  • the nursery is preferably made of urethane sponge, for example.
  • the nursery bed is a board material cut out so that it can be grown for each seedling rather than a single large board material.
  • plant growth since it is not known whether the individual is expected to grow healthy in the state of the seed, it is required to grow only the promising individual by thinning out after germination. After determining the prospect of growth by using a nursery carved for each strain, unnecessary individuals can be discarded together with the nursery.
  • step S102 After sowing, the germination of the plant is confirmed (step S102), and the seedling is continued (step S103). Especially until germination, the growth environment is finely controlled according to the type of plant. Of the grown plants, only the seedlings that are judged to be in a good growing state are planted in the cultivation tray (step S104).
  • the plant before planting planted in this way is loaded onto the ship together with the cultivation tray and transferred to the plant factory in the ship (step S105). Since the plant before growing has grown to the stage where germination has been completed, it is expected to grow smoothly in the future, and can be easily grown by mechanically controlling the growth environment for the plant.
  • the growth environment for the plants placed on the ship is controlled, and the growth speed is controlled so as to reach a predetermined maturity when the ship reaches the destination (step S106).
  • the predetermined maturity indicates, for example, the degree of growth that can be harvested.
  • Control of the growth rate is preferably performed during the period from the completion of germination to the maturity. As a result, it is possible to efficiently utilize the transfer period on the ship and to grow the plant until it matures from the seedling during that period.
  • the temperature, humidity, air components and the like can be kept constant, and the plant growth rate can be easily controlled.
  • airtight means closing an internal space to such an extent that the growth environment to a plant can be maintained constant for a long time, and means the extent which can be insulated at least. For example, it is not necessary to have a sealing degree like a clean room in a semiconductor manufacturing process.
  • the sealed space can be formed by an empty tank of a container or a tanker, for example.
  • the growth environment is preferably controlled by adjusting the intensity of the irradiation light to the plant mounted on the ship.
  • the plant growth rate can be easily controlled by controlling the intensity of the irradiation light by, for example, turning on / off the irradiation light while maintaining the temperature, humidity, air components, and the like constant.
  • the plant grown in this way reaches a predetermined maturity at the destination. Then, the mature plant is unloaded at the destination at the destination (step S107). At the time of unloading, it can be unloaded by moving the growth caster 205.
  • step S108 the unpacked plant is harvested (step S108), the harvested plant is packaged (step S109), and the packaged plant is shipped and delivered to the delivery destination (step S110).
  • step S110 a fresh plant can be shipped efficiently.
  • germination confirmation (step S102) to transportation / growth (step S103) is performed in a temperature-controlled plant factory. Next, equipment for performing such a plant growing method will be described.
  • FIG. 3 is a schematic view showing a container 100 for plant growth.
  • the container 100 is used for growing a plant inside a ship that is sailing.
  • the container main body 105, a DC power source 110, a solar cell 115, a DC / DC converter 120, an LED lighting 130, a DC-driven air conditioner 140, a DC pump 150, and CO2 are used.
  • a supply device 160 is provided.
  • the container body 105 is formed in a box shape having an opening by a wall having heat insulation properties, and is configured to accommodate plants.
  • the container main body 105 has a door, and the door closes the opening to seal the inside of the container main body 105 and has a heat insulating property.
  • the DC power supply 110 supplies 140 direct current to the DC drive type air conditioner. With such a configuration, it is possible to move the entire container 100 together with the DC power supply, and the plant 100 can be shipped on a truck or a railroad as it is while controlling the growth environment even after unloading from the ship 20. it can.
  • the solar battery 115 is composed of a panel and a cable composed of a solar battery cell and a junction box, and sunlight can be converted into a DC power source by installing the panel on the upper part of the ship. Thereby, it is possible to grow an efficient plant at a lower cost. Note that the solar battery 115 may be omitted if the DC power source 110 is provided.
  • the DC / DC converter 120 is connected to a DC power source 110 and a solar cell 115. With such a configuration, it is possible to use the power generated by solar power as an independent power source while transferring the entire container 100.
  • the LED lighting 130 irradiates the plant with light from the DC power supply 110.
  • the light emitted from the LED illumination 130 preferably has a wavelength including at least blue light and red light. Thereby, photosynthesis and tissue growth can be advanced.
  • the LED lighting 130 is installed on the ceiling of the container main body 105, but lighting may be provided for each cultivation tray 210 of the growing caster 205.
  • the DC-driven air conditioner 140 is connected to the DC / DC converter 120 and adjusts the temperature inside the container body 105.
  • the DC pump 150 is connected to the DC power source 110 and is provided for circulating water or liquid fertilizer.
  • the DC pump 150 constitutes the liquid circulation system 200 together with the growth caster 205. Details of the liquid circulation system 200 will be described later.
  • the CO2 supply device 160 supplies CO2 into the container body 105 while controlling the supply amount.
  • these devices can be controlled by connecting a computer such as a PC, for example.
  • the control may be performed automatically by executing a program in order to maintain a target value corresponding to the growth, or may be semi-automated so that an operator inputs only certain operations.
  • FIG. 4 is a schematic diagram illustrating the liquid circulation system 200.
  • the flow of the liquid L1 in the cultivation tray is represented by a thick arrow.
  • FIG. 5 is a cross-sectional view showing the structure of the outlet and inlet of the liquid L1 in the cultivation tray 210.
  • the liquid circulation system 200 is a system that supplies the liquid L1 to the plant P2 that is circulated and grown.
  • the liquid circulation system 200 includes a plurality of stages of cultivation trays 210, tanks 220, and a DC pump 150.
  • the multi-stage cultivation tray 210 is formed in a long plate shape, and is continuously arranged with an interval in the vertical direction.
  • the cultivation tray 210 includes a cultivation tray main body 212, a tray lid 211, a urethane sponge 213, an inflow pipe 215, and an outflow pipe 217.
  • the cultivation tray main body 212 is formed in a container shape so as to allow circulation while storing liquid.
  • the tray lid 211 has a function of covering the upper part of the cultivation tray main body 212.
  • the tray lid 211 is provided with a urethane sponge 213 in which plants P2 are planted at an appropriate interval.
  • Each of the cultivation trays 210 includes an inflow pipe 215 for allowing the liquid L1 to flow in and an outflow pipe 217 for allowing the liquid L1 to flow out at one end thereof, and these fall paths as two portions on the liquid outflow side and the liquid arrival side Is forming.
  • the liquid L1 is introduced from above at one end in the longitudinal direction and the liquid L1 is caused to flow out downward at the other end, thereby circulating the liquid L1 mixed with air. Thereby, a liquid can be spread in the cultivation tray 210.
  • the inflow pipe 215 and the outflow pipe 217 form a falling path where the liquid L1 naturally falls at an angle close to vertical at least at one place in the liquid circulation path. Air is mixed in the liquid L1 by naturally dropping the liquid L1 between the cultivation trays 210 provided continuously. This makes it possible to circulate the liquid L1 mixed with air while saving power during long-term ship navigation.
  • the inflow pipe 215 is a straight pipe type having a constant diameter in the axial direction and has a large diameter, and projects upward at the position of the inlet of the liquid L1. The inflow pipe 215 protrudes upward at the position of the liquid inflow port.
  • the outflow pipe 217 is a straight pipe type having a constant diameter in the axial direction and has a small diameter, and protrudes downward at the position of the outlet of the liquid L1.
  • a section where the outflow pipe 217 overlaps is provided in the inflow pipe 215. That is, some pipes are doubled. Therefore, the liquid L1 can be reliably sent from the upper tray to the lower tray to create a smooth flow.
  • a gap generated by the difference in diameter between the inflow pipe 215 and the outflow pipe 217 is an opening for taking in air to be mixed into the liquid.
  • the inflow pipe 215 and the outflow pipe 217 are designed so that the liquid level in the inflow pipe 215 does not contact the lower end surface of the outflow pipe 217 with respect to the maximum liquid flow rate among the controlled liquid flow rates. Has been. As a result, it is possible to induce a natural drop phenomenon of the liquid L1 and to mix sufficient air while preventing the liquid L1 from flowing out to the outside.
  • the liquid L1 flows from above at one end in the longitudinal direction of the cultivation tray 210, and the liquid L1 flows out downward at the other end.
  • the liquid dropped in the cultivation tray 210 of each stage can be received and the liquid mixed with air can be spread over the entire tray, so that the liquid L1 is supplied to the plant P2 and has a positive effect on its growth. it can.
  • the liquid L1 includes water and liquid fertilizer.
  • the site that forms the path An opening for taking in air to be mixed into the liquid L1 can be provided, and the liquid L1 body can be circulated while mixing air.
  • the inflow pipe 215 and the outflow pipe 217 are straight pipes having a constant diameter in the axial direction, the liquid L1 can be prevented from leaking even when the ship shakes.
  • the DC pump 150 allows liquid to flow from the tank 220 to the uppermost cultivation tray 210a.
  • the tank 220 receives and accumulates the liquid L1 from the lowermost cultivation tray 210b.
  • the uppermost cultivation tray 210 a has only the outflow pipe 217, and the lowermost cultivation tray 210 b has only the inflow pipe 215.
  • FIG. 6 is a flowchart showing a method for growing plants when harvesting on a ship.
  • the processes from sowing (step S201) to transportation / growth (step S206) are the same as the sowing (step S101) to transportation / growth (step S106) in the first embodiment.
  • the plant grows to the mature stage, the plant is harvested on the ship (step S207), and the harvested plant is packaged (step S208). Then, the plant is harvested and unpacked in a packaged state (step S209), and shipped and delivered to the destination (step S210). In such a case, since only the plant can be transported without taking the container 100 out of the ship, the cost is reduced. However, such a method is not suitable when it is far from the ship arrival point to the delivery destination.
  • FIG. 7 is a flowchart showing a method for growing a plant when harvesting and packaging in a destination.
  • the steps of sowing (step S301) to transportation / growing (step S306) are the same as the sowing (step S101) to transportation / growing (step S106) in the first embodiment.
  • step S307 when the plant is unloaded at the destination of navigation, the entire container 100 is unloaded (step S307). Therefore, it is possible to maintain the plant growth environment with a DC power source or an air conditioner. Then, the container 100 is shipped and delivered (step S308), and the plant is harvested at the destination (step S309) and packaged (step S310). In this case, it is possible to grow the plant until the plant is delivered to the destination, and it is preferable to control the growth environment so that the plant enters the mature stage when the plant arrives at the destination.
  • FIG. 8 is a flowchart showing a plant growing method in the return path when the germination period cannot be secured.
  • step S401 seeding is performed at the unloading site or a nearby port of call. Then, the plant is loaded on the ship without waiting for germination and moved to the plant factory in the container 100 on the ship (step S402).
  • step S403 the germination of the plant is confirmed on the ship (step S403), and the seedling is continued (step S404). Especially until germination, the growth environment is finely controlled according to the type of plant. About the plant grown in this way, only the seedling judged to be in a good growing state is planted in the cultivation tray (step S405). In this case, seeds or seedlings to be discarded are generated in the ship, but are unavoidable.
  • step S410 The subsequent transport / nurturing (step S406) to shipping / delivery (step S410) processes are the same as the transport / growing (step S106) to shipping / delivery (step S110) in the first embodiment.
  • FIG. 9 is a flowchart showing a method for growing plants on the return path when a germination period can be secured.
  • step S501 seeding is performed in a state where the growth environment in the container 100 can be controlled (S501), and the seedlings are grown until germination.
  • step S502 the subsequent germination confirmation to packaging
  • step S510 can be performed in the same manner as the germination confirmation (step S302) to packaging (step S310) in the third embodiment.
  • the embodiment of the above-mentioned return route is premised on the round trip of the ship, even if the ship calls at a relay point and heads to the next destination, it is possible to grow plants in the same way as the return route become.
  • the period from the port of call to the next destination is not necessarily the same as the period from the original departure point to the port of call. In this case, it is possible to grow a plant grown at the time of departure or another kind of plant by controlling the growth environment according to the period after grasping the navigation period in advance.
  • Plant factory 20 Ship 30 Market 100 Container 105 Container body 110 DC power source 115 Solar cell 120 DC / DC converter 130 LED lighting 140 DC drive type air conditioner 150 DC pump 160 CO2 supply device 200 Liquid circulation system 205 Caster for breeding 210 Cultivation tray 210a Uppermost cultivation tray 210b Lowermost cultivation tray 211 Tray lid 212 Cultivation tray body 213 Urethane sponge (nursery bed) 215 Inflow pipe 217 Outflow pipe 220 Tank

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

This method for raising plants in a ship (20) that is underway contains: a step for loading the pre-raising plants (P0) at a departure location onto the ship (20); a step for controlling the growth environment of the plants (P1) loaded on the ship (20) that is underway, and controlling the raising sped in a manner such that a predetermined level of maturation is achieved when the ship (20) arrives at a destination location; and a step for unloading the plants (P3) that have reached the predetermined level of maturation at the destination location. Plants (P1) on a cultivation tray are raised using a system in which the cultivation tray is disposed on a pathway for circulating a liquid within a sealed space provided to the ship (20) while the ship (20) is underway, and that is provided with a straight inflow pipe having a certain large diameter in the axial direction and a straight outflow pipe having a certain small diameter in the axial direction, the upper- and lower-level linking sections of the cultivation tray being provided to a segment at which the outflow pipe overlaps within the inflow pipe, and an opening section that takes in air to be mixed into the liquid being provided to a site.

Description

植物の育成方法Plant growth method
 本発明は、航行中の船舶に積載して行なう植物の育成方法に関する。 The present invention relates to a method for growing plants carried on a ship that is sailing.
 近年、植物工場ビジネスが活性化している。植物工場とは、施設内で光、温度、湿度、二酸化炭素濃度、養分、水分等の植物の生育環境を制御して栽培を行なう施設園芸のうち、環境および生育のモニタリングを基礎として、高度な環境制御と生育予測を行なうことにより、野菜等の植物の周年・計画生産が可能な栽培施設を指す。 In recent years, the plant factory business has become active. A plant factory is a facility horticulture that performs cultivation by controlling the growth environment of plants such as light, temperature, humidity, carbon dioxide concentration, nutrients, moisture, etc. in the facility. By controlling the environment and predicting growth, it refers to a cultivation facility that can produce anniversary and planned production of plants such as vegetables.
 このような植物工場には、完全人工光型植物工場と太陽光利用型植物工場の2種類ある。そして、特に閉鎖環境で太陽光を使わずに環境を制御して生産を行なう「完全人工光型」の植物工場の閉鎖環境として輸送下にあるコンテナを利用し、その内部で植物を水耕栽培する方法が提案されている(例えば、特許文献1)。 There are two types of such plant factories: fully artificial light plant factories and solar power plant factories. And in the closed environment, the container under transportation is used as the closed environment of the “fully artificial light type” plant factory that controls the production without using sunlight, and the plants are hydroponically cultivated inside. A method has been proposed (for example, Patent Document 1).
 一方、遠洋漁船、タンカー、貨物船、客船等の船舶において、船員の健康を維持・促進するために、新鮮野菜を安定供給する方法が提案されている。例えば、船舶のような狭いスペースでも一定の日数毎に生長した植物を連続して効率よく収穫することができるように船舶の揺れなどに対しても耐振性を有する船舶用植物栽培装置が開発されている(例えば、特許文献2)。 On the other hand, a method for stably supplying fresh vegetables has been proposed in order to maintain and promote the health of seafarers in vessels such as ocean fishing boats, tankers, cargo ships, and passenger ships. For example, a marine plant cultivation device has been developed that is resistant to shaking of a vessel so that plants grown in a certain number of days in a narrow space such as a vessel can be harvested continuously and efficiently. (For example, Patent Document 2).
特開2013-013383号公報JP 2013-013383 A 特開2003-310069号公報JP 2003-310069 A
 しかしながら、特許文献1記載のようなコンテナ輸送中の植物栽培の方法は、せいぜい数日程度の栽培を前提としており、植物の新鮮さを短期間において維持しようとしているに過ぎない。また、特許文献2記載のような船舶用植物栽培装置は、船員の健康を維持・促進するためのものであり、仕向地に向けて植物を輸出しようとするときに適した方法ではない。 However, the method of plant cultivation during container transportation as described in Patent Document 1 is premised on cultivation for several days at most, and is merely trying to maintain the freshness of the plant in a short period of time. Moreover, the plant cultivation apparatus for ships like patent document 2 is for maintaining and promoting a crew member's health, and is not a method suitable when it is going to export a plant toward the destination.
 本発明は、このような事情に鑑みてなされたものであり、成熟が進んだ段階で仕向地に届くように植物を育成し、効率よく新鮮な植物を出荷できる植物の育成方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for growing a plant that can grow a plant so that it reaches a destination when it has matured, and can ship fresh plants efficiently. With the goal.
 (1)上記の目的を達成するため、本発明の植物の育成方法は、航行中の船舶で行なう植物の育成方法であって、出発地で育成前の植物を船舶に載せるステップと、前記船舶の航行中に前記船舶に載せられた植物に対する生育環境を制御し、前記船舶が目的地に達したときに所定の成熟度に達するように育成速度を制御するステップと、前記所定の成熟度に達した植物を前記目的地で荷揚げするステップと、を含み、前記船舶の航行中、前記船舶に設けられた密閉された空間内で液体を循環させる経路上に栽培トレーを配置し、前記液体循環経路中の少なくとも1か所以上に、前記液体が垂直に近い角度で自然落下する落下経路を形成する部位として、前記液体の流入口の位置に上方に突出した、軸方向に一定の大径で直管型の流入パイプと、前記液体の流出口の位置に下方に突出した、軸方向に一定の小径で直管型の流出パイプとを設け、前記栽培トレーの上下段の連係部分では、前記流入パイプ内に前記流出パイプが重複する区間を設け、且つ前記液体に混入させる空気を取り込む開口部を前記部位に設けたシステムを用い、前記栽培トレー上で前記植物を育成することを特徴としている。 (1) In order to achieve the above object, a plant growing method according to the present invention is a plant growing method performed on a marine vessel, and a step of placing a plant before growing on a vessel at a departure place; Controlling the growth environment for the plants placed on the ship during navigation, controlling the growth rate so that the ship reaches a predetermined maturity when the ship reaches the destination, and the predetermined maturity Unloading the reached plant at the destination, and arranging a cultivation tray on a path for circulating the liquid in a sealed space provided in the ship during the navigation of the ship, and the liquid circulation As a part that forms a falling path where the liquid naturally falls at an angle close to vertical at at least one point in the path, it projects upward at the position of the liquid inlet and has a constant large diameter in the axial direction. Straight pipe inflow pipe A straight pipe-type outflow pipe projecting downward at a position of the liquid outlet and having a constant small diameter in the axial direction, and the outflow pipe is disposed in the inflow pipe at the upper and lower stages of the cultivation tray. The plant is grown on the cultivation tray using a system in which an overlapping section is provided and an opening for taking in air to be mixed into the liquid is provided in the part.
 これにより、成熟が進んだ段階で仕向地に届くように植物を育成できるため、効率よく新鮮な植物を出荷できる。また、航行中の船舶で船の揺れがあったときでも液体の漏れを防止しつつ、液体に空気を混ぜながら循環させることができる。また、径が軸方向に一定で直管型のパイプであるため、液体の漏れを防止できる。 This allows plants to be grown so that they reach the destination when they have matured, so that fresh plants can be shipped efficiently. In addition, even when the ship is swaying in a sailing vessel, the liquid can be circulated while mixing the air while preventing leakage of the liquid. In addition, since the pipe is a straight pipe having a constant diameter in the axial direction, liquid leakage can be prevented.
 (2)また、本発明の植物の育成方法は、前記生育環境の制御では、前記循環される液体の流量を制御し、前記流入パイプおよび流出パイプは、前記制御される液体流量のうち最大の液体流量に対して、前記流入パイプ中の液面が、前記流出パイプの下側端面に接しないように各パイプ径が設計されていることを特徴としている。これにより、液体の自然落下現象を誘導し、かつ外部への液体流出を防ぎながら十分な空気を混入させることが可能になる。 (2) Further, in the plant growing method of the present invention, in the control of the growing environment, the flow rate of the circulated liquid is controlled, and the inflow pipe and the outflow pipe are the largest of the controlled liquid flow rates. Each pipe diameter is designed so that the liquid level in the inflow pipe does not contact the lower end surface of the outflow pipe with respect to the liquid flow rate. As a result, it is possible to introduce sufficient air while inducing the phenomenon of spontaneous liquid drop and preventing the liquid from flowing out to the outside.
 (3)また、本発明の植物の育成方法は、前記栽培トレーが、鉛直方向に間隔を空けて複数段連設されており、前記連設された栽培トレー間で液体を自然落下させることで、液体に空気を混入させることを特徴としている。これにより、長期の船舶航行中に省電力で空気を混入させた液体を循環させることができる。 (3) Moreover, as for the cultivation method of the plant of this invention, the said cultivation tray is arranged in multiple steps at intervals in the perpendicular direction, and makes a liquid fall naturally between the said cultivation trays arranged continuously. It is characterized by mixing air into the liquid. Thereby, it is possible to circulate the liquid mixed with air with power saving during long-term ship navigation.
 (4)また、本発明の植物の育成方法は、前記栽培トレーのそれぞれでは、長手方向の一端で上から前記液体を流入させ、他端で下へ前記液体を流出させることで、前記空気が混入された液体を循環させることを特徴としている。これにより、栽培トレー内に液体を行き渡らせることができる。 (4) Moreover, in the growing method of the plant of this invention, in each of the said cultivation trays, the said air is made to flow in by flowing the said liquid from the top in one end of a longitudinal direction, and letting the said liquid flow out downward in the other end. It is characterized by circulating the mixed liquid. Thereby, the liquid can be spread in the cultivation tray.
 (5)また、本発明の植物の育成方法は、前記生育環境の制御が、前記船舶に載せられた植物への照射光の強度の制御または波長の選択で行なうことを特徴としている。これにより、温度、湿度、空気の成分等を一定に維持しつつ、例えば照射光をON/OFFするなどして照射光の強度を調整したり、照射光の波長(赤色660nm付近や青色440nm付近など)を選択することで植物の育成速度を容易に制御できる。 (5) In addition, the plant growth method of the present invention is characterized in that the growth environment is controlled by controlling the intensity of irradiation light to the plant mounted on the ship or selecting a wavelength. This makes it possible to adjust the intensity of the irradiation light by, for example, turning on / off the irradiation light, while maintaining the temperature, humidity, air components, etc., and the wavelength of the irradiation light (red 660 nm or blue 440 nm) Etc.) can be easily controlled.
 本発明によれば、成熟が進んだ段階で仕向地に届くように植物を育成できるため、効率よく新鮮な植物を出荷できる。 According to the present invention, since plants can be grown so that they reach the destination when they have matured, fresh plants can be shipped efficiently.
本発明の植物の育成方法を示す概略図である。It is the schematic which shows the cultivation method of the plant of this invention. 第1の実施形態に係る植物の育成方法を示すフローチャートである。It is a flowchart which shows the cultivation method of the plant which concerns on 1st Embodiment. 本発明のコンテナを示す概略図である。It is the schematic which shows the container of this invention. 本発明の液体循環システムを示す概略図である。It is the schematic which shows the liquid circulation system of this invention. 栽培トレーの液体の流出口および流入口の構造を示す断面図である。It is sectional drawing which shows the structure of the liquid outlet and inlet of a cultivation tray. 第2の実施形態に係る植物の育成方法を示すフローチャートである。It is a flowchart which shows the cultivation method of the plant which concerns on 2nd Embodiment. 第3の実施形態に係る植物の育成方法を示すフローチャートである。It is a flowchart which shows the cultivation method of the plant which concerns on 3rd Embodiment. 第4の実施形態に係る植物の育成方法を示すフローチャートである。It is a flowchart which shows the cultivation method of the plant which concerns on 4th Embodiment. 第5の実施形態に係る植物の育成方法を示すフローチャートである。It is a flowchart which shows the cultivation method of the plant which concerns on 5th Embodiment.
 次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。 Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.
 [第1の実施形態]
 (育成全体の流れ)
 図1は、植物の育成方法を示す概略図である。図1では、発芽段階の植物P0と、育成段階の植物P1と、成熟段階の植物P2とで符号を変えている。まず、陸上の植物工場10で対象の植物P0を発芽段階まで栽培する。そして、発芽後、生育状態が良い個体を選定して、選定された植物P0を船舶上に積載し、目的地へ出航した船舶上で、発芽から成熟段階まで植物P1を育成する。
[First Embodiment]
(Overall flow of training)
FIG. 1 is a schematic diagram showing a method for growing a plant. In FIG. 1, the sign is changed between the plant P0 in the germination stage, the plant P1 in the growing stage, and the plant P2 in the mature stage. First, the target plant P0 is cultivated in the plant factory 10 on land until the germination stage. Then, after germination, an individual having a good growth state is selected, the selected plant P0 is loaded on the ship, and the plant P1 is grown from the germination to the maturity stage on the ship sailing to the destination.
 植物P1の育成は、航行中の船舶20内で行なわれる。航行中の船舶20内で野菜等の植物P1を育成し、船舶20が航行の目的地に到着したときに植物P1が成熟するように育成を管理することで、効率的に成熟した段階の植物P2を仕向地へ出荷することができる。船舶上での育成期間は、例えば10日~30日間である。船舶が航行の目的地に到着したら、船舶20上で育成され熟成した植物P2を陸揚げし、市場30へ出荷する。 The growth of the plant P1 is performed in the ship 20 that is in navigation. Plants P1 such as vegetables are cultivated in the navigating ship 20, and the plant is efficiently matured by managing the cultivation so that the plant P1 matures when the ship 20 arrives at the destination for navigation. P2 can be shipped to the destination. The growing period on the ship is, for example, 10 to 30 days. When the ship arrives at the destination for navigation, the plant P2 grown and matured on the ship 20 is landed and shipped to the market 30.
 (植物の種類と制御期間)
 船舶航行またはそれに続く輸送の期間を植物の育成期間として用いることで効率よく植物を供給できる。そのため、船舶航行またはそれに続く輸送の期間を把握するとともに、育成対象となる植物の生育にかかる期間をも正確に把握する必要がある。そして、それらの情報から、航路に対する植物の積み込み時期、育成時の生育速度、生育環境の制御を止める時期をコントロールして、最適な状態で植物を仕向地に届けることができる。
(Plant type and control period)
Plants can be supplied efficiently by using the period of vessel navigation or subsequent transportation as the plant growth period. For this reason, it is necessary to grasp the period of vessel navigation or subsequent transportation and also accurately grasp the period of growth of the plant to be grown. Then, from such information, it is possible to deliver the plant to the destination in an optimal state by controlling the loading time of the plant on the route, the growth rate at the time of growing, and the time to stop controlling the growing environment.
 例えば、植物の種類には、サニーレタス、リーフレタス、パセリ、ハーブ、ホウレンソウ、ルッコラ、小松菜、イチゴ、トマト、キュウリ、カブなどが挙げられる。次の表は、各植物についての生育段階と期間を示している。生育期間は、発芽完了から収穫可能な成熟期までの期間を指している。
Figure JPOXMLDOC01-appb-T000001
For example, the types of plants include sunny lettuce, leaf lettuce, parsley, herb, spinach, arugula, Japanese mustard spinach, strawberry, tomato, cucumber, turnip and the like. The following table shows the growth stage and duration for each plant. The growth period refers to the period from the completion of germination to the maturity when harvesting is possible.
Figure JPOXMLDOC01-appb-T000001
 (a)船舶の航行期間<生育期間の場合
 この場合には、発芽後も(生育期間)-(航行期間)の間は陸上で育成しておき、船舶の出航に合わせて苗を船舶に積み込む。そうすることで、船舶が目的地に到着する時期に植物が成熟期を迎える。
(A) In case of sailing period of vessel <growing period In this case, it is grown on land during (growth period)-(navigation period) after germination, and seedlings are loaded on the ship as the ship departs . By doing so, plants reach maturity when the ship arrives at its destination.
 2週間の航行期間に小松菜を育成する場合には、播種、発芽期から育苗期までの2週間を陸上で育成し、成熟期までの残りの2週間を船舶内で育成するプランが立てられる。その際には、播種から発芽、育苗を陸上で行ない、船舶の出発時期に発芽から1週間経過した段階まで成長した状態になるように播種の時期を調整する。 In the case of growing komatsuna during the two-week navigation period, a plan is set up in which two weeks from sowing and germination to the seedling stage are grown on land, and the remaining two weeks until the maturity stage are grown on the ship. In that case, germination and seedling are carried out on the ground from sowing, and the sowing time is adjusted so that it has grown to the stage where one week has passed since germination at the departure time of the ship.
 (b)船舶の航行期間>生育期間の場合
 この場合には、発芽した時点で植物を船舶に積み込むように計画を立てる。そして、光の照射量を減らすことで植物の生育速度を遅くし、船舶が目的地に到着する時期に植物が成熟期を迎えるように調整する。例えば、船舶内部で生育環境を制御する際に、(本来の光の照射量)×(生育期間)/(船舶の航行期間)の照射量で光を照射し、生育速度を調整することができる。
(B) In the case where the navigation period of the ship> the growth period In this case, a plan is made so that the plant is loaded on the ship at the time of germination. And the growth rate of a plant is slowed down by reducing the amount of light irradiation, and it adjusts so that a plant may reach a maturity period when a ship arrives at the destination. For example, when the growth environment is controlled inside the ship, the growth rate can be adjusted by irradiating light with an irradiation amount of (original light irradiation amount) × (growth period) / (ship navigation period). .
 1カ月の航行期間にホウレンソウを育成する場合には、出発の1週間前に播種し、発芽後の生育の良好な苗を選定して、船舶に積み込み、船舶内では1カ月の航行期間に通常の15日分だけ成長するように生育環境を制御する。例えば、LEDの照射時間を短くする等して光量を低減することで成長の抑制が可能である。なお、生育環境の制御には、循環される液体の流量を制御することも含まれる。 When growing spinach during the 1-month navigation period, seed seedlings one week before departure, select seedlings with good growth after germination, and load them into the ship. The growth environment is controlled to grow for 15 days. For example, growth can be suppressed by reducing the amount of light by shortening the irradiation time of the LED. In addition, controlling the growth environment includes controlling the flow rate of the circulated liquid.
 (育成の具体例)
 図2は、船舶上で植物の輸送、生育を行なう植物の育成方法を示すフローチャートである。図2では、船上の育成だけでなくその前後の播種から出荷の段階までを表しており、生育環境を管理されているステップを破線で囲んで表している。まず、陸上において育成しようとする植物の播種を行なう(ステップS101)。播種は、吸水性のある多孔性の材料で形成された板状の苗床に穴を開けてその穴に種を播くことで行なう。苗床は、例えばウレタンスポンジ製であることが好ましい。
(Specific examples of training)
FIG. 2 is a flowchart showing a plant growing method for transporting and growing plants on a ship. In FIG. 2, not only the growth on the ship but also the sowing and shipping stages before and after that are shown, and the steps in which the growth environment is managed are surrounded by broken lines. First, a plant to be grown on land is sown (step S101). The sowing is performed by making a hole in a plate-shaped seedbed made of a porous material having water absorption and sowing the seed in the hole. The nursery is preferably made of urethane sponge, for example.
 また、苗床は、一体の大きな板材より、苗ごとに育成できるように切り分けられた板材である方が好ましい。植物の育成においては、種の状態ではその個体が健康に成長する見込みがあるか否かが分からないため、発芽したところで間引いて見込みのある個体のみを育成することが求められる。一株ごとに切り分けた苗床を用いることで成長の見込みを見極めた後、不要な個体は苗床ごと廃棄することができる。 In addition, it is preferable that the nursery bed is a board material cut out so that it can be grown for each seedling rather than a single large board material. In plant growth, since it is not known whether the individual is expected to grow healthy in the state of the seed, it is required to grow only the promising individual by thinning out after germination. After determining the prospect of growth by using a nursery carved for each strain, unnecessary individuals can be discarded together with the nursery.
 このように播種した後、植物の発芽を確認し(ステップS102)、育苗を続ける(ステップS103)。特に発芽までは、植物の種類に応じて生育環境を細かく制御する。育苗された植物のうち、育成状態が良いと判断した苗だけを栽培トレーに定植する(ステップS104)。 After sowing, the germination of the plant is confirmed (step S102), and the seedling is continued (step S103). Especially until germination, the growth environment is finely controlled according to the type of plant. Of the grown plants, only the seedlings that are judged to be in a good growing state are planted in the cultivation tray (step S104).
 船舶航行の出発地において、このように定植された育成前の植物を栽培トレーごと船舶へ積み込み、船舶内の植物工場へ移設する(ステップS105)。育成前の植物は、発芽の完了した段階まで成長しているため、今後順調に成長する見込みが立っており、機械的に植物に対する生育環境を制御することで容易に育成できる。 At the departure point of the ship navigation, the plant before planting planted in this way is loaded onto the ship together with the cultivation tray and transferred to the plant factory in the ship (step S105). Since the plant before growing has grown to the stage where germination has been completed, it is expected to grow smoothly in the future, and can be easily grown by mechanically controlling the growth environment for the plant.
 船舶の航行中に船舶に載せられた植物に対する生育環境を制御し、船舶が目的地に達したときに所定の成熟度に達するように育成速度を制御する(ステップS106)。所定の成熟度とは、例えば収穫可能な成長の程度を指す。育成速度の制御は、発芽の完了した段階から成熟期までの期間について行なうことが好ましい。その結果、船舶での移送期間を有効活用し、その間に植物を苗から成熟するまで育成でき効率化できる。 During the navigation of the ship, the growth environment for the plants placed on the ship is controlled, and the growth speed is controlled so as to reach a predetermined maturity when the ship reaches the destination (step S106). The predetermined maturity indicates, for example, the degree of growth that can be harvested. Control of the growth rate is preferably performed during the period from the completion of germination to the maturity. As a result, it is possible to efficiently utilize the transfer period on the ship and to grow the plant until it matures from the seedling during that period.
 また、生育環境の制御は、船舶に設けられた密閉された空間で行なうことが好ましい。密閉された空間では温度、湿度、空気の成分等を一定に維持することができ、植物の育成速度を容易に制御することができる。なお、密閉とは、植物への生育環境を長時間一定に維持できる程度に内部空間を閉じることをいい、少なくとも断熱が可能な程度をいう。例えば半導体製造工程でのクリーンルームのような密閉度までは不要である。密閉された空間は、例えばコンテナ、タンカーの空のタンクにより形成できる。 Moreover, it is preferable to control the growth environment in a sealed space provided in the ship. In the sealed space, the temperature, humidity, air components and the like can be kept constant, and the plant growth rate can be easily controlled. In addition, airtight means closing an internal space to such an extent that the growth environment to a plant can be maintained constant for a long time, and means the extent which can be insulated at least. For example, it is not necessary to have a sealing degree like a clean room in a semiconductor manufacturing process. The sealed space can be formed by an empty tank of a container or a tanker, for example.
 なお、生育環境の制御は、船舶に載せられた植物への照射光の強度の調整で行なうことが好ましい。温度、湿度、空気の成分等を一定に維持しつつ、例えば照射光をON/OFFするなどして照射光の強度を制御することで植物の育成速度を容易に制御できる。 It should be noted that the growth environment is preferably controlled by adjusting the intensity of the irradiation light to the plant mounted on the ship. The plant growth rate can be easily controlled by controlling the intensity of the irradiation light by, for example, turning on / off the irradiation light while maintaining the temperature, humidity, air components, and the like constant.
 このように育成した植物は、目的地において所定の成熟度に達する。そして成熟した植物を目的地で、陸上に荷揚げする(ステップS107)。荷揚げの際には、育成用キャスター205を移動することで荷揚げできる。 The plant grown in this way reaches a predetermined maturity at the destination. Then, the mature plant is unloaded at the destination at the destination (step S107). At the time of unloading, it can be unloaded by moving the growth caster 205.
 そして、荷揚げされた植物を収穫し(ステップS108)、収穫された植物を包装し(ステップS109)、包装された植物を納品先に出荷、配送する(ステップS110)。これにより、成熟が進んだ段階で仕向地に届くように植物を育成できるため、効率よく新鮮な植物を出荷できる。なお、発芽の確認(ステップS102)から輸送・育成(ステップS103)までは、温度管理された植物工場で行なわれる。次に、このような植物の育成方法を行なうための設備について説明する。 Then, the unpacked plant is harvested (step S108), the harvested plant is packaged (step S109), and the packaged plant is shipped and delivered to the delivery destination (step S110). Thereby, since a plant can be grown so that it may reach a destination when maturity has advanced, a fresh plant can be shipped efficiently. Note that germination confirmation (step S102) to transportation / growth (step S103) is performed in a temperature-controlled plant factory. Next, equipment for performing such a plant growing method will be described.
 (育成用のコンテナ)
 図3は、植物育成用のコンテナ100を示す概略図である。コンテナ100は、航行中の船舶内部で植物の育成に用いられ、コンテナ本体105、DC電源110、太陽電池115、DC/DCコンバータ120、LED照明130、DC駆動型エアコン140、DCポンプ150およびCO2供給装置160を備えている。
(Growth container)
FIG. 3 is a schematic view showing a container 100 for plant growth. The container 100 is used for growing a plant inside a ship that is sailing. The container main body 105, a DC power source 110, a solar cell 115, a DC / DC converter 120, an LED lighting 130, a DC-driven air conditioner 140, a DC pump 150, and CO2 are used. A supply device 160 is provided.
 コンテナ本体105は、断熱性を有する壁により開口部を有する箱形に形成され、植物を収容できるように構成されている。コンテナ本体105は、扉を有しており、扉は、開口部を閉じてコンテナ本体105の内部を密閉でき断熱性を有する。 The container body 105 is formed in a box shape having an opening by a wall having heat insulation properties, and is configured to accommodate plants. The container main body 105 has a door, and the door closes the opening to seal the inside of the container main body 105 and has a heat insulating property.
 DC電源110は、DC駆動型エアコンに140直流電流を供給する。このような構成により、DC電源とともにコンテナ100ごと移動することが可能であり、船舶20から荷揚げした後も生育環境を制御しつつ、そのままコンテナ100をトラックや鉄道に載せて植物を出荷することができる。 The DC power supply 110 supplies 140 direct current to the DC drive type air conditioner. With such a configuration, it is possible to move the entire container 100 together with the DC power supply, and the plant 100 can be shipped on a truck or a railroad as it is while controlling the growth environment even after unloading from the ship 20. it can.
 太陽電池115は、太陽電池セルとジャンクションボックスからなるパネルおよびケーブルにより構成されており、パネルを船舶の上部に設置することで太陽光をDC電源にすることができる。これにより、さらに低コストで効率の良い植物の育成が可能になる。なお、DC電源110があれば太陽電池115は無くてもよい。 The solar battery 115 is composed of a panel and a cable composed of a solar battery cell and a junction box, and sunlight can be converted into a DC power source by installing the panel on the upper part of the ship. Thereby, it is possible to grow an efficient plant at a lower cost. Note that the solar battery 115 may be omitted if the DC power source 110 is provided.
 DC/DCコンバータ120は、DC電源110および太陽電池115に接続されている。このような構成により、コンテナ100ごと移送しつつ、独立した電源として太陽光発電による電力を利用することができる。 The DC / DC converter 120 is connected to a DC power source 110 and a solar cell 115. With such a configuration, it is possible to use the power generated by solar power as an independent power source while transferring the entire container 100.
 LED照明130は、DC電源110からの電圧により光を植物に照射している。LED照明130による照射光は、少なくとも青色光および赤色光を含んだ波長であることが好ましい。これにより、光合成と組織成長を進めることができる。なお、図3記載の構成例では、LED照明130がコンテナ本体105の天井部に設置されているが、育成用キャスター205の各栽培トレー210ごとに照明を設けてもよい。 The LED lighting 130 irradiates the plant with light from the DC power supply 110. The light emitted from the LED illumination 130 preferably has a wavelength including at least blue light and red light. Thereby, photosynthesis and tissue growth can be advanced. In the configuration example shown in FIG. 3, the LED lighting 130 is installed on the ceiling of the container main body 105, but lighting may be provided for each cultivation tray 210 of the growing caster 205.
 DC駆動型エアコン140は、DC/DCコンバータ120に接続され、コンテナ本体105の内部の温度を調節する。DCポンプ150は、DC電源110に接続され、水や液肥の液体を循環させるために設けられている。DCポンプ150は、育成用キャスター205とともに液体循環システム200を構成する。液体循環システム200の詳細は後述する。CO2供給装置160は、供給量を制御しつつコンテナ本体105内にCO2を供給する。 The DC-driven air conditioner 140 is connected to the DC / DC converter 120 and adjusts the temperature inside the container body 105. The DC pump 150 is connected to the DC power source 110 and is provided for circulating water or liquid fertilizer. The DC pump 150 constitutes the liquid circulation system 200 together with the growth caster 205. Details of the liquid circulation system 200 will be described later. The CO2 supply device 160 supplies CO2 into the container body 105 while controlling the supply amount.
 なお、これらの各装置の制御には例えばPC等のコンピュータを接続して行なうことができる。制御は、成長に応じた目標値を維持するためにプログラムを実行することで自動で行なってもよいし、半自動化し、作業者が一定の操作のみを入力するようにしてもよい。 It should be noted that these devices can be controlled by connecting a computer such as a PC, for example. The control may be performed automatically by executing a program in order to maintain a target value corresponding to the growth, or may be semi-automated so that an operator inputs only certain operations.
 (液体循環システム)
 図4は、液体循環システム200を示す概略図である。栽培トレーにおける液体L1の流れを太線の矢印で表している。図5は、栽培トレー210の液体L1の流出口および流入口の構造を示す断面図である。液体循環システム200は、液体L1を循環させて育成する植物P2に供給するシステムである。液体循環システム200は、複数段の栽培トレー210、タンク220およびDCポンプ150を備えている。
(Liquid circulation system)
FIG. 4 is a schematic diagram illustrating the liquid circulation system 200. The flow of the liquid L1 in the cultivation tray is represented by a thick arrow. FIG. 5 is a cross-sectional view showing the structure of the outlet and inlet of the liquid L1 in the cultivation tray 210. The liquid circulation system 200 is a system that supplies the liquid L1 to the plant P2 that is circulated and grown. The liquid circulation system 200 includes a plurality of stages of cultivation trays 210, tanks 220, and a DC pump 150.
 複数段の栽培トレー210は、長板形状に形成され、鉛直方向に間隔を空けて連設されている。栽培トレー210は、栽培トレー本体212、トレー蓋211、ウレタンスポンジ213、流入パイプ215および流出パイプ217を備えている。 The multi-stage cultivation tray 210 is formed in a long plate shape, and is continuously arranged with an interval in the vertical direction. The cultivation tray 210 includes a cultivation tray main body 212, a tray lid 211, a urethane sponge 213, an inflow pipe 215, and an outflow pipe 217.
 栽培トレー本体212は、液体を蓄えつつ、循環可能にするために容器状に形成されている。トレー蓋211は、栽培トレー本体212の上部を蓋する機能を有している。トレー蓋211には適度な間隔をおいて植物P2が定植されたウレタンスポンジ213が設置されている。 The cultivation tray main body 212 is formed in a container shape so as to allow circulation while storing liquid. The tray lid 211 has a function of covering the upper part of the cultivation tray main body 212. The tray lid 211 is provided with a urethane sponge 213 in which plants P2 are planted at an appropriate interval.
 栽培トレー210のそれぞれは、液体L1を流入させるための流入パイプ215および液体L1を流出させるための流出パイプ217をその一端に備え、これらが液体流出側と液体到達側の2つの部位として落下経路を形成している。栽培トレー210のそれぞれでは、長手方向の一端で上から液体L1を流入させ、他端で下へ液体L1を流出させることで、空気が混入された液体L1を循環させる。これにより、栽培トレー210内に液体を行き渡らせることができる。 Each of the cultivation trays 210 includes an inflow pipe 215 for allowing the liquid L1 to flow in and an outflow pipe 217 for allowing the liquid L1 to flow out at one end thereof, and these fall paths as two portions on the liquid outflow side and the liquid arrival side Is forming. In each of the cultivation trays 210, the liquid L1 is introduced from above at one end in the longitudinal direction and the liquid L1 is caused to flow out downward at the other end, thereby circulating the liquid L1 mixed with air. Thereby, a liquid can be spread in the cultivation tray 210.
 流入パイプ215および流出パイプ217は、液体循環経路中の少なくとも1か所以上に、液体L1が垂直に近い角度で自然落下する落下経路を形成している。連設された栽培トレー210間で液体L1を自然落下させることで、液体L1に空気を混入させる。これにより、長期の船舶航行中に省電力で空気を混入させた液体L1を循環させることができる。流入パイプ215は、径が軸方向に一定の直管型で大径に形成され、液体L1の流入口の位置に上方に突出している。流入パイプ215は、液体の流入口の位置で上方に突出している。 The inflow pipe 215 and the outflow pipe 217 form a falling path where the liquid L1 naturally falls at an angle close to vertical at least at one place in the liquid circulation path. Air is mixed in the liquid L1 by naturally dropping the liquid L1 between the cultivation trays 210 provided continuously. This makes it possible to circulate the liquid L1 mixed with air while saving power during long-term ship navigation. The inflow pipe 215 is a straight pipe type having a constant diameter in the axial direction and has a large diameter, and projects upward at the position of the inlet of the liquid L1. The inflow pipe 215 protrudes upward at the position of the liquid inflow port.
 流出パイプ217は、径が軸方向に一定の直管型で小径に形成され、液体L1の流出口の位置に下方に突出している。このように、栽培トレー210の上下段の連係部分では、流入パイプ215内に流出パイプ217が重複する区間が設けられている。すなわち一部でパイプが二重になっている。そのため、液体L1を上段のトレーから下段のトレーに確実に送り出しスムーズな流れを作ることができる。また、流入パイプ215と流出パイプ217との径の差により生じる隙間が、液体に混入させる空気を取り込む開口部となっている。 The outflow pipe 217 is a straight pipe type having a constant diameter in the axial direction and has a small diameter, and protrudes downward at the position of the outlet of the liquid L1. Thus, in the upper and lower linked portions of the cultivation tray 210, a section where the outflow pipe 217 overlaps is provided in the inflow pipe 215. That is, some pipes are doubled. Therefore, the liquid L1 can be reliably sent from the upper tray to the lower tray to create a smooth flow. Further, a gap generated by the difference in diameter between the inflow pipe 215 and the outflow pipe 217 is an opening for taking in air to be mixed into the liquid.
 流入パイプ215および流出パイプ217は、制御される液体流量のうち最大の液体流量に対して、流入パイプ215中の液面が、流出パイプ217の下側端面に接しないように各パイプ径が設計されている。これにより、液体L1の自然落下現象を誘導し、かつ外部への液体L1の流出を防ぎながら十分な空気を混入させることが可能になる。 The inflow pipe 215 and the outflow pipe 217 are designed so that the liquid level in the inflow pipe 215 does not contact the lower end surface of the outflow pipe 217 with respect to the maximum liquid flow rate among the controlled liquid flow rates. Has been. As a result, it is possible to induce a natural drop phenomenon of the liquid L1 and to mix sufficient air while preventing the liquid L1 from flowing out to the outside.
 このようにして、栽培トレー210の長手方向の一端で上から液体L1が流入し、他端で下へ液体L1が流出する。これにより、各段の栽培トレー210で落下した液体を受け、空気が混ざった液体をトレー全体に行き渡らせることができるため、植物P2に液体L1を供給し、その成長に好影響を与えることができる。なお、液体L1には、水、液肥が含まれる。 In this way, the liquid L1 flows from above at one end in the longitudinal direction of the cultivation tray 210, and the liquid L1 flows out downward at the other end. Thereby, the liquid dropped in the cultivation tray 210 of each stage can be received and the liquid mixed with air can be spread over the entire tray, so that the liquid L1 is supplied to the plant P2 and has a positive effect on its growth. it can. The liquid L1 includes water and liquid fertilizer.
 航行中の船舶20内で植物を育成する際には、従来では船舶の揺れにより栽培トレー210間を循環させている液体が漏れるという問題があり。これに対しては、栽培トレーを密閉構造にする方法により対処することも可能である。しかし、例えば、日本と外国との間の長期間の航行において、大規模に植物P2の育成を行なおうとすれば、密閉構造により液体内の空気が不足し、植物P2の十分な育成が困難になる。 When a plant is grown in the ship 20 during navigation, there is a problem that the liquid circulating between the cultivation trays 210 leaks due to the shaking of the ship. It is also possible to cope with this by a method in which the cultivation tray has a sealed structure. However, for example, if the plant P2 is to be grown on a large scale during long-term navigation between Japan and a foreign country, the air in the liquid is insufficient due to the sealed structure, and it is difficult to sufficiently grow the plant P2. become.
 これに対し、航行中の船舶20で栽培トレー210間に液体L1が垂直に近い角度で自然落下する落下経路を形成することで、液体L1の漏れを防止しつつ、その経路を形成する部位に液体L1に混入させる空気を取り込む開口部を設けて液L1体に空気を混ぜながら循環させることができる。また、流入パイプ215および流出パイプ217は、径が軸方向に一定で直管型のパイプであるため、船の揺れがあったときでも液体L1の漏れを防止できる。 On the other hand, by forming a fall path in which the liquid L1 naturally falls at an angle close to vertical between the cultivation trays 210 in the navigating ship 20, while preventing leakage of the liquid L1, the site that forms the path An opening for taking in air to be mixed into the liquid L1 can be provided, and the liquid L1 body can be circulated while mixing air. In addition, since the inflow pipe 215 and the outflow pipe 217 are straight pipes having a constant diameter in the axial direction, the liquid L1 can be prevented from leaking even when the ship shakes.
 DCポンプ150は、タンク220から最上段の栽培トレー210aに液体を流入させる。タンク220は、最下段の栽培トレー210bから液体L1を受け入れて蓄積する。なお、最上段の栽培トレー210aは、流出パイプ217のみ有し、最下段の栽培トレー210bは、流入パイプ215のみを有している。 The DC pump 150 allows liquid to flow from the tank 220 to the uppermost cultivation tray 210a. The tank 220 receives and accumulates the liquid L1 from the lowermost cultivation tray 210b. The uppermost cultivation tray 210 a has only the outflow pipe 217, and the lowermost cultivation tray 210 b has only the inflow pipe 215.
 [第2の実施形態]
 第1の実施形態では、船舶上で植物を輸送しつつ生育し、成熟した植物をそのまま荷揚げしているが、収穫および包装を船舶上で行なってもよい。図6は、船舶で収穫まで行なう場合の植物の育成方法を示すフローチャートである。播種(ステップS201)~輸送・育成(ステップS206)までの工程は、第1の実施形態における播種(ステップS101)~輸送・育成(ステップS106)と同様である。
[Second Embodiment]
In the first embodiment, plants are grown while transporting plants on a ship, and mature plants are unloaded as they are. However, harvesting and packaging may be performed on a ship. FIG. 6 is a flowchart showing a method for growing plants when harvesting on a ship. The processes from sowing (step S201) to transportation / growth (step S206) are the same as the sowing (step S101) to transportation / growth (step S106) in the first embodiment.
 ただし、船舶が目的地に到着する直前に植物を成熟段階まで生育し、船舶上で植物の収穫を行ない(ステップS207)、収穫された植物を包装する(ステップS208)。そして、植物を収穫、包装された状態で荷揚げし(ステップS209)、仕向地に向けて出荷、配送を行なう(ステップS210)。このような場合には、コンテナ100を船外に出すことなく、植物のみを輸送できるため、コストが低減される。ただし、船舶の到着地点から配送先まで遠い場合には、このような方法は適さない。 However, just before the ship arrives at the destination, the plant grows to the mature stage, the plant is harvested on the ship (step S207), and the harvested plant is packaged (step S208). Then, the plant is harvested and unpacked in a packaged state (step S209), and shipped and delivered to the destination (step S210). In such a case, since only the plant can be transported without taking the container 100 out of the ship, the cost is reduced. However, such a method is not suitable when it is far from the ship arrival point to the delivery destination.
 [第3の実施形態]
 第1の実施形態では、荷揚げした植物を収穫、包装しているが、荷揚げをコンテナ100ごと行ない、出荷、配送を行なったのち、仕向地で収穫、包装してもよい。図7は、仕向地で収穫、包装する場合の植物の育成方法を示すフローチャートである。播種(ステップS301)~輸送・育成(ステップS306)の工程は、第1の実施形態における播種(ステップS101)~輸送・育成(ステップS106)と同様である。
[Third Embodiment]
In the first embodiment, a plant that has been unloaded is harvested and packaged. However, unloading may be performed together with the container 100, shipped, delivered, and then harvested and packaged at a destination. FIG. 7 is a flowchart showing a method for growing a plant when harvesting and packaging in a destination. The steps of sowing (step S301) to transportation / growing (step S306) are the same as the sowing (step S101) to transportation / growing (step S106) in the first embodiment.
 ただし、航行の目的地で植物を荷揚げする際に、コンテナ100ごと荷揚げする(ステップS307)。そのため、DC電源やエアコンにより植物の生育環境を維持することが可能である。そして、コンテナ100のまま出荷、配送し(ステップS308)、仕向地において植物を収穫し(ステップS309)、包装する(ステップS310)。この場合には、仕向地に植物を配送するまで植物を育成することが可能であり、仕向地に植物が到着する際に植物が成熟期に入るように生育環境を制御することが好ましい。 However, when the plant is unloaded at the destination of navigation, the entire container 100 is unloaded (step S307). Therefore, it is possible to maintain the plant growth environment with a DC power source or an air conditioner. Then, the container 100 is shipped and delivered (step S308), and the plant is harvested at the destination (step S309) and packaged (step S310). In this case, it is possible to grow the plant until the plant is delivered to the destination, and it is preferable to control the growth environment so that the plant enters the mature stage when the plant arrives at the destination.
 [第4の実施形態]
 第1~第3の実施形態では、船舶の往路における植物の育成を対象にしているが、復路において、さらに植物を育成してもよい。図8は、発芽の期間を確保できない場合の復路における植物の育成方法を示すフローチャートである。
[Fourth Embodiment]
In the first to third embodiments, plants are grown on the outbound route of the ship, but plants may be further grown on the return route. FIG. 8 is a flowchart showing a plant growing method in the return path when the germination period cannot be secured.
 復路においては、期間を十分にとれずに出発時期までに育成しようとする植物を発芽させることができない場合がある。そのような場合には、まず荷揚げ現地または近隣の寄港地で播種する(ステップS401)。そして、発芽を待たずに植物を船舶へ積み込み、船上のコンテナ100内の植物工場へ移設する(ステップS402)。 On the return trip, there may be a case where a plant to be grown by the departure time cannot be germinated without taking sufficient time. In such a case, first, seeding is performed at the unloading site or a nearby port of call (step S401). Then, the plant is loaded on the ship without waiting for germination and moved to the plant factory in the container 100 on the ship (step S402).
 次に、船内において植物の発芽を確認し(ステップS403)、育苗を続ける(ステップS404)。特に発芽までは、植物の種類に応じて生育環境を細かく制御する。このように育苗された植物について、育成状態が良いと判断した苗だけを栽培トレーに定植する(ステップS405)。この場合には船内において廃棄すべき種または苗が生じるがやむを得ない。 Next, the germination of the plant is confirmed on the ship (step S403), and the seedling is continued (step S404). Especially until germination, the growth environment is finely controlled according to the type of plant. About the plant grown in this way, only the seedling judged to be in a good growing state is planted in the cultivation tray (step S405). In this case, seeds or seedlings to be discarded are generated in the ship, but are unavoidable.
 その後の輸送・育成(ステップS406)~出荷・配送(ステップS410)の工程は、第1の実施形態における輸送・育成(ステップS106)~出荷・配送(ステップS110)と同様である。 The subsequent transport / nurturing (step S406) to shipping / delivery (step S410) processes are the same as the transport / growing (step S106) to shipping / delivery (step S110) in the first embodiment.
 [第5の実施形態]
 第4の実施形態では、復路において出発時期までに育成しようとする植物を発芽させることができない場合を対象としているが、発芽の期間を確保できる場合もありうる。図9は、発芽の期間を確保できる場合の復路における植物の育成方法を示すフローチャートである。
[Fifth Embodiment]
In the fourth embodiment, the case where the plant to be grown on the return path cannot be germinated by the start time is targeted, but the germination period may be secured. FIG. 9 is a flowchart showing a method for growing plants on the return path when a germination period can be secured.
 この場合には、まず、コンテナ100内の生育環境を制御できる状況で播種し(S501)、発芽まで生育する。そして、その後の発芽の確認(ステップS502)~包装(ステップS510)は第3の実施形態における発芽の確認(ステップS302)~包装(ステップS310)と同様に行なうことができる。 In this case, first, seeding is performed in a state where the growth environment in the container 100 can be controlled (S501), and the seedlings are grown until germination. The subsequent germination confirmation (step S502) to packaging (step S510) can be performed in the same manner as the germination confirmation (step S302) to packaging (step S310) in the third embodiment.
 なお、上記の復路の実施形態は、船舶の往復を前提としているが、船舶が中継地点に寄港し、次の目的地へ向かう場合であっても、復路と同様の方法で植物の育成が可能になる。ただし、寄港地から次の目的地までの期間は、当初の出発地から寄港地までの期間と同じになるとは限らない。この場合には、予め航行期間を把握した上で期間に応じて生育環境を制御することで出発時に育成した植物や別種の植物を育成することができる。 In addition, although the embodiment of the above-mentioned return route is premised on the round trip of the ship, even if the ship calls at a relay point and heads to the next destination, it is possible to grow plants in the same way as the return route become. However, the period from the port of call to the next destination is not necessarily the same as the period from the original departure point to the port of call. In this case, it is possible to grow a plant grown at the time of departure or another kind of plant by controlling the growth environment according to the period after grasping the navigation period in advance.
P0~P2 植物
10 植物工場
20 船舶
30 市場
100 コンテナ
105 コンテナ本体
110 DC電源
115 太陽電池
120 DC/DCコンバータ
130 LED照明
140 DC駆動型エアコン
150 DCポンプ
160 CO2供給装置
200 液体循環システム
205 育成用キャスター
210 栽培トレー
210a 最上段の栽培トレー
210b 最下段の栽培トレー
211 トレー蓋
212 栽培トレー本体
213 ウレタンスポンジ(苗床)
215 流入パイプ
217 流出パイプ
220 タンク
P0 to P2 Plant 10 Plant factory 20 Ship 30 Market 100 Container 105 Container body 110 DC power source 115 Solar cell 120 DC / DC converter 130 LED lighting 140 DC drive type air conditioner 150 DC pump 160 CO2 supply device 200 Liquid circulation system 205 Caster for breeding 210 Cultivation tray 210a Uppermost cultivation tray 210b Lowermost cultivation tray 211 Tray lid 212 Cultivation tray body 213 Urethane sponge (nursery bed)
215 Inflow pipe 217 Outflow pipe 220 Tank

Claims (5)

  1.  航行中の船舶で行なう植物の育成方法であって、
     出発地で育成前の植物を船舶に載せるステップと、
     前記船舶の航行中に前記船舶に載せられた植物に対する生育環境を制御し、前記船舶が目的地に達したときに所定の成熟度に達するように育成速度を制御するステップと、
     前記所定の成熟度に達した植物を前記目的地で荷揚げするステップと、を含み、
     前記船舶の航行中、前記船舶に設けられた密閉された空間内で液体を循環させる経路上に栽培トレーを配置し、前記液体循環経路中の少なくとも1か所以上に、前記液体が垂直に近い角度で自然落下する落下経路を形成する部位として、前記液体の流入口の位置に上方に突出した、軸方向に一定の大径で直管型の流入パイプと、前記液体の流出口の位置に下方に突出した、軸方向に一定の小径で直管型の流出パイプとを設け、前記栽培トレーの上下段の連係部分では、前記流入パイプ内に前記流出パイプが重複する区間を設け、且つ前記液体に混入させる空気を取り込む開口部を前記部位に設けたシステムを用い、前記栽培トレー上で前記植物を育成することを特徴とする植物の育成方法。
    A method for nurturing plants on a sailing ship,
    Placing the plant before growth on the ship at the departure point,
    Controlling the growth environment for plants placed on the ship during the navigation of the ship, and controlling the growth rate so as to reach a predetermined maturity when the ship reaches a destination;
    Unloading the plant that has reached the predetermined maturity level at the destination,
    During navigation of the ship, a cultivation tray is arranged on a path for circulating the liquid in a sealed space provided in the ship, and the liquid is nearly vertical in at least one place in the liquid circulation path. As a part that forms a fall path that spontaneously falls at an angle, a straight pipe-type inflow pipe that protrudes upward to the position of the liquid inlet and has a constant diameter in the axial direction, and a position of the liquid outlet Protruding downward, a straight pipe-type outflow pipe having a constant small diameter in the axial direction, and at the upper and lower linking portions of the cultivation tray, a section where the outflow pipe overlaps is provided in the inflow pipe, and A method for growing a plant, wherein the plant is grown on the cultivation tray using a system in which an opening for taking in air to be mixed into a liquid is provided in the part.
  2.  前記生育環境の制御では、前記循環される液体の流量を制御し、
     前記流入パイプおよび流出パイプは、前記制御される液体流量のうち最大の液体流量に対して、前記流入パイプ中の液面が、前記流出パイプの下側端面に接しないように各パイプ径が設計されていることを特徴とする請求項1記載の植物の育成方法。
    In the control of the growth environment, the flow rate of the circulated liquid is controlled,
    The inflow pipe and the outflow pipe are designed so that the liquid level in the inflow pipe does not contact the lower end surface of the outflow pipe with respect to the maximum liquid flow rate among the controlled liquid flow rates. The plant growing method according to claim 1, wherein the plant is grown.
  3.  前記栽培トレーは、鉛直方向に間隔を空けて複数段連設されており、前記連設された栽培トレー間で液体を自然落下させることで、液体に空気を混入させることを特徴とする請求項1または請求項2記載の植物の育成方法。 The said cultivation tray is arranged in multiple steps at intervals in the vertical direction, and air is mixed into the liquid by naturally dropping the liquid between the established cultivation trays. A method for growing a plant according to claim 1 or claim 2.
  4.  前記栽培トレーのそれぞれでは、長手方向の一端で上から前記液体を流入させ、他端で下へ前記液体を流出させることで、前記空気が混入された液体を循環させることを特徴とする請求項3記載の植物の育成方法。 In each of the cultivation trays, the liquid mixed with air is circulated by flowing the liquid from above at one end in the longitudinal direction and flowing the liquid downward at the other end. 3. The method for growing a plant according to 3.
  5.  前記生育環境の制御は、前記船舶に載せられた植物への照射光の強度の制御または波長の選択で行なうことを特徴とする請求項1から請求項4のいずれかに記載の植物の育成方法。 The plant growth method according to any one of claims 1 to 4, wherein the growth environment is controlled by controlling the intensity of irradiation light on the plant placed on the ship or selecting a wavelength. .
PCT/JP2014/081409 2013-11-27 2014-11-27 Method for raising plants WO2015080211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013245353 2013-11-27
JP2013-245353 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080211A1 true WO2015080211A1 (en) 2015-06-04

Family

ID=53199148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081409 WO2015080211A1 (en) 2013-11-27 2014-11-27 Method for raising plants

Country Status (1)

Country Link
WO (1) WO2015080211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154358A (en) * 2018-03-15 2019-09-19 フルタ電機株式会社 Planting panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322040A (en) * 1974-03-26 1978-03-01 Kazuo Nomura Multiistage type hydroponic implement having double bottom
JPS5947462U (en) * 1982-09-22 1984-03-29 木村 喜代司 hydroponic cultivation equipment
JPS59179025A (en) * 1983-03-29 1984-10-11 松下電器産業株式会社 Culturing apparatus by nutrient liquid
JPH058643B2 (en) * 1987-05-22 1993-02-02 Nippon Tobacco Sangyo
JP2003310069A (en) * 2002-04-22 2003-11-05 Mitsubishi Electric Corp Plant culture apparatus for ship and method for using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322040A (en) * 1974-03-26 1978-03-01 Kazuo Nomura Multiistage type hydroponic implement having double bottom
JPS5947462U (en) * 1982-09-22 1984-03-29 木村 喜代司 hydroponic cultivation equipment
JPS59179025A (en) * 1983-03-29 1984-10-11 松下電器産業株式会社 Culturing apparatus by nutrient liquid
JPH058643B2 (en) * 1987-05-22 1993-02-02 Nippon Tobacco Sangyo
JP2003310069A (en) * 2002-04-22 2003-11-05 Mitsubishi Electric Corp Plant culture apparatus for ship and method for using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154358A (en) * 2018-03-15 2019-09-19 フルタ電機株式会社 Planting panel
JP7017738B2 (en) 2018-03-15 2022-02-09 フルタ電機株式会社 Planting panel

Similar Documents

Publication Publication Date Title
JP6617376B2 (en) Fully automatic multi-stage seedling raising system
US11849685B2 (en) Method and system for the air conditioning of closed environments, in particular for vertical farms
US9565812B2 (en) LED light timing in a high growth, high density, closed environment system
KR101970026B1 (en) Method and apparatus for growing plants along an undulating path
US9357714B2 (en) Method for cultivating plants as well as a floating carrier
JP3704321B2 (en) Marine plant cultivation apparatus and method of use thereof
US20190133063A1 (en) Systems and methods for hydroponic plant growth
US20170027112A1 (en) Modular indoor farm
WO2018020935A1 (en) Hydroponic apparatus and hydroponic method
KR20110009235U (en) Device for plant cultivator using container
JP2004329130A (en) Plant-culturing system
CN205812995U (en) Movable plant process units
JP2015043711A (en) Carbon dioxide control device in cultivation facility
US20230270065A1 (en) Systems and methods for the hatching, seeding, and/or cultivating of a target product
WO2016200258A1 (en) Floating carrier for crop cultivation on water and method for crop cultivation
US20230105146A1 (en) Technologies for aeroponics
Zabel et al. Future exploration greenhouse design of the EDEN ISS project
WO2015080211A1 (en) Method for raising plants
US20200245567A1 (en) Tray for growing agricultural products
Zelenkov et al. Use of innovative space technology in progressive crop production
JP2000023574A (en) Plant factory
KR102175140B1 (en) Plant cultivating apparatus having multistage shelf
Gómez New technology in Agaricus bisporus cultivation
WO2023003760A1 (en) Apparatus for control and distribution of nutriated water in an automated agricultural facility
US20230073284A1 (en) Automated plant growing system and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP