WO2015079843A1 - Classification device, classification method, classification program, transfer device, transfer method, and transfer program - Google Patents

Classification device, classification method, classification program, transfer device, transfer method, and transfer program Download PDF

Info

Publication number
WO2015079843A1
WO2015079843A1 PCT/JP2014/078449 JP2014078449W WO2015079843A1 WO 2015079843 A1 WO2015079843 A1 WO 2015079843A1 JP 2014078449 W JP2014078449 W JP 2014078449W WO 2015079843 A1 WO2015079843 A1 WO 2015079843A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
unit
wafer
coordinate data
wafer sheet
Prior art date
Application number
PCT/JP2014/078449
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼橋亘
Original Assignee
上野精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上野精機株式会社 filed Critical 上野精機株式会社
Priority to TW103137245A priority Critical patent/TW201535558A/en
Publication of WO2015079843A1 publication Critical patent/WO2015079843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates

Definitions

  • the present invention relates to a classification device, a classification method, a classification program, a transfer device, a transfer method, and a transfer program for selectively picking up individual chips from a wafer attached to a wafer sheet.
  • the wafer sticking step is a step of sticking the wafer before being cut into individual pieces to a wafer sheet having adhesiveness on the surface and sticking it to the ring.
  • the dicing process is a process of dividing the wafer attached to the wafer sheet into individual semiconductor elements (hereinafter referred to as chips) by cutting.
  • Each chip included in the wafer is subjected to a probe inspection in which electrical characteristics are inspected by a stylus in advance, and the control device holds information regarding the non-defective and defective products of each chip and the position thereof. ing. Information obtained by such probe inspection is called map data.
  • an appearance inspection based on an image captured by an imaging unit such as a camera may be performed.
  • an appearance inspection is performed in addition to the probe inspection, a combination of the probe inspection result and the appearance inspection result may be referred to as map data.
  • the pick-up device picks up only non-defective chips and performs the attaching process, mounting process or taping process.
  • the pasting step is a step of pasting non-defective chips picked up by the pick-up device to the stretched wafer sheet by the pasting device in order to manage and ship in units of wafer sheets.
  • the mounting process is a process of picking up individual chips in order and bonding them to a lead frame or a substrate.
  • the taping step is a step of sticking the picked-up chip to the tape.
  • the chips separated after dicing as described above are in close contact with almost no gap. For this reason, after dicing and before picking up, the wafer sheet is stretched (expanded) so as to be easily picked up, and a gap is formed between the separated chips. The expanded wafer sheet is partially distorted. In this case, the displacement of the chip on the wafer sheet is not uniform.
  • the information regarding the position of each chip in the map data is only relative position information indicating the arrangement in the row direction and the column direction of the chip. For this reason, even if an attempt is made to pick up a chip based on the map data, a deviation occurs between the position of the chip and the position of the chip on the expanded wafer sheet.
  • the pick-up device when the pick-up device is moved relative to the wafer sheet, it is considered that the pick-up is performed sequentially while positioning the target chip by analogy according to the map data using the reference chip as a reference. It is done.
  • the displacement of the chip on the expanded wafer sheet is large. For this reason, even if the position of the chip is simply estimated based on the reference chip, it cannot be properly positioned on the target chip. Even if the position is corrected every time the chip is positioned, it cannot be specified whether the chip is the target chip on the map data.
  • Patent Document 1 a plurality of reference points are set on a wafer, an expansion expansion rate is obtained from the positions of the reference points before and after the expansion, and the position of each chip is inferred based on the expansion rate.
  • a technique is disclosed. However, this method also merely estimates the position of the chip from a specific reference position, and the same problem as described above occurs.
  • the chip does not exist at the position where it should exist on the map data due to the chip falling off from the wafer sheet. In this case, even if scanning is performed at a predetermined pitch, the chip cannot be picked up because the chip does not exist. Further, the position cannot be corrected at the time of positioning to the next chip, and the deviation further increases.
  • the attachment / detachment of the ring on which the wafer sheet is attached to the apparatus for picking up is performed as follows. First, the autoloader takes out one of the rings from a cassette containing a plurality of rings and mounts the ring on the apparatus, and expansion is performed.
  • the expansion is released and the autoloader removes the ring and stores it in the cassette. For this reason, when picking up and collecting chips of a specific rank while sequentially exchanging a plurality of wafer sheets, the expansion is repeated for each wafer sheet. As a result, a large amount of chip displacement occurs, making accurate pickup difficult.
  • the present invention has been proposed in order to solve the above-described problems of the prior art.
  • the purpose of the present invention is to obtain the coordinate data of the individual chips in the wafer after the expansion, and thereby to perform the expansion.
  • An object of the present invention is to provide a classification device, a classification method, a classification program, a transfer device, a transfer method, and a transfer program that can perform accurate pick-up even if there is a chip shift or chip drop.
  • the classification apparatus uses a wafer sheet to which a diced wafer is attached to expand a wafer sheet into individual wafer chips based on coordinate data.
  • a reference chip with a specific mark is found among the chips in the wafer, and the image pickup unit moves relatively.
  • Image data obtained by imaging each chip while moving relative to the sheet, and the imaging unit moves relatively.
  • a reference inspection process is performed to inspect whether the reference chip coordinate data by the reference detection process is correct. You may have a reference test
  • the distinction information that distinguishes each chip includes a rank indicating the degree of quality, and may have a pasting unit that pastes the chips picked up for each rank by the pick-up unit in a rank for each rank. Good.
  • a reference chip may be set for each of a plurality of guaranteed areas that divide the wafer, and the scan unit may perform a scanning process based on the reference chip for each guaranteed area of the reference chip.
  • the scanning unit may set a flag indicating that the scanning process has been completed for each chip, regardless of the presence or absence of the chip, and perform the scanning process until there is no more scanned chip.
  • the imaging unit may relatively move in units of a plurality of chips, and the scanning unit may specify coordinate data for each of the plurality of chips included in the image data captured by the imaging unit.
  • the path of relative movement of the imaging unit may be set so that overlap is minimized.
  • the relative movement distance from the imaging position of the reference chip of the imaging unit to the imaging position of another reference chip may be set to be the shortest.
  • a reference chip is set for each of a plurality of guaranteed areas that divide the wafer, and the scan unit performs a scan process based on the reference chip for each guaranteed area of the reference chip. In addition, a reference test may be performed.
  • the scan unit may perform a scan process based on a reference chip for each partial region obtained by dividing the guaranteed region into a plurality of regions, and the reference inspection unit may perform a reference inspection for each partial region.
  • the wafer sheet may be stretched.
  • the transfer device of the present invention is configured to move a chip in which a wafer is divided into pieces into a relative movement with respect to the wafer sheet based on the coordinate data by stretching the wafer sheet to which the diced wafer is attached.
  • a reference chip with a specific mark is found among the chips in the wafer, and the coordinate data for the relative movement of the image pickup unit is found.
  • Image data obtained by imaging each chip while moving, and coordinate data for relative movement of the imaging unit And a pickup that picks up the chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scan unit, and a scan unit that performs coordinate processing to specify the coordinate data of each chip And a portion.
  • a chip may be provided that transports the chip picked up by the pick-up unit to a support that supports the chip.
  • the transfer device may support the chips picked up for each rank by the pick-up unit collectively for each rank on the support.
  • the conveying device may be divided into ranks for each of the plurality of supports.
  • the transport device may be supported by the support according to the order picked up by the pickup unit.
  • the support may be a carrier tape, and may include a taping unit that taps a chip received from the transport device onto a carrier tape.
  • the support may be a wafer sheet, and may include a pasting unit for pasting the chip picked up by the pick-up unit to the wafer sheet.
  • a classification method, a classification program, a transfer device, a transfer method, and a transfer program can be provided.
  • the simplified side view which shows the structure of the classification device used for 1st Embodiment
  • the top view which shows the structure of the ring in 1st Embodiment, and the wafer sheet affixed on this
  • the block diagram which shows the structure of the control apparatus in 1st Embodiment.
  • Explanatory drawing which shows the whole process of 1st Embodiment.
  • the flowchart which shows the scanning process of 1st Embodiment
  • Explanatory drawing which shows the positioning process to the target chip
  • Explanatory drawing which shows the area
  • the top view which shows the structure of 2nd Embodiment.
  • the present embodiment is a classification device that supports chips picked up from a wafer sheet on the wafer sheet.
  • This embodiment can also be regarded as a transfer device for transferring chips from a wafer sheet to a wafer sheet.
  • the chip applied to the present embodiment is a component used for an electrical product, and examples thereof include a semiconductor element and a resistor or capacitor other than the semiconductor element. Examples of the semiconductor element include discrete semiconductors such as transistors, diodes, LEDs, capacitors, and thyristors, and integrated circuits such as ICs and LSIs.
  • the map data includes chip discrimination information and chip position information.
  • the chip distinction information is information that distinguishes the chips according to a predetermined standard.
  • This distinction information includes a rank in which chips are classified according to the degree of good / bad of the chips by quality inspection performed in advance in the previous process. This rank may be information indicating whether the product is a non-defective product or a defective product, or may be information divided into a plurality of grades.
  • the quality inspection includes at least one of a probe inspection and an appearance inspection.
  • the discrimination information includes information for discriminating between a chip to be a product (product chip) and other chips.
  • the distinction information of the present embodiment includes information indicating that it is a reference chip.
  • the reference chip is a chip with a mark (reference mark) that can be identified from the appearance in order to be a reference for the position of the product chip on the wafer.
  • the reference chip should just be provided with the aspect which can be identified from an external appearance.
  • the chip position information is relative position information in the row direction and the column direction of each chip viewed from the reference point on the wafer.
  • the map data includes information indicating which row and column each chip hits, information indicating which rank of A to D, etc. if it is a product chip, and a reference chip. It can be expressed as raster data consisting of the indicated information.
  • each reference chip guarantees the position of the chip on the wafer. That is, the entire area of the wafer is divided into a plurality of guaranteed areas, and a reference chip is set for each guaranteed area.
  • the position of each reference chip can be used as a reference for the position of the chip in the guaranteed area to which each reference chip belongs.
  • the coordinate data is position information of each chip when a wafer sheet is set in the apparatus.
  • an imaging unit, a pickup unit, and the like, which will be described later, are positioned based on this coordinate data.
  • the imaging unit and the pickup unit may be moved relative to the wafer.
  • this relative movement is realized by moving a ring moving mechanism in which a wafer ring to which a wafer sheet is attached is set.
  • the coordinate data can be acquired as coordinate values (x, y, ⁇ ) of encoder information of the ring moving mechanism described later.
  • the classification device 1 includes a first support device 100, a transport device 200, a second support device 300, and a control device 10, as shown in FIGS.
  • the first support device 100 includes a ring moving mechanism 2A, an expanding mechanism 3A, It has a separation mechanism 4A.
  • the ring moving mechanism 2A includes a wafer ring Ra attached to the ring holder 21. Is a device that moves the camera in a predetermined direction.
  • the wafer ring Ra is a plate-like member that holds and holds the wafer sheet Da so that a circular hole formed inside is covered.
  • a wafer W is attached to the wafer sheet Da.
  • the wafer W is cut into a plurality of chips S by dicing.
  • the ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the X-axis direction and the Y-axis direction along a guide rail (not shown).
  • the ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the ⁇ direction by a belt, a pulley, and the like that transmit a driving force of a motor (not shown).
  • the expanding mechanism 3A is a mechanism that creates a gap between the individual chips S by extending the wafer sheet Da.
  • the expanding mechanism 3 ⁇ / b> A has a cylindrical tensile portion 31.
  • the tension portion 31 is configured to stretch the wafer sheet Da as follows. First, one end of the cylinder of the tension portion 31 is pressed against the opposite side of the wafer W on the wafer sheet Da from the back of the wafer ring Ra.
  • the pulling portion 31 moves so as to protrude to the front side of the wafer ring Ra with the wafer sheet Da interposed between the outer periphery thereof and the inner periphery of the circular hole of the wafer ring Ra.
  • the wafer sheet Da is stretched by a force in a direction from the inside to the outside of the circle surrounding the wafer W.
  • the tension portion 31 is provided so as to be able to advance and retract by a cylinder (not shown) or the like.
  • the separation mechanism 4A is a device that separates the chips S from the wafer sheet Da.
  • the separation mechanism 4A has pins 41a facing the chip S with the wafer sheet Da interposed therebetween. This pin 41a is provided so as to be movable in a direction in which the tip S that has come to the opposite position is pressed via the wafer sheet Da by the tip as the ring moving mechanism 2A moves.
  • the autoloader 5A stores a plurality of wafer rings Ra holding the wafer sheet Da to which the wafer W is attached in a cassette, and attaches and removes the wafer ring Ra to and from the ring moving mechanism 2A. It is.
  • the details of the mechanism of this autoloader 5A are well known and will not be described.
  • the transport device 200 is disposed between the first support device 100 and the second support device 300.
  • the transport apparatus 200 includes a pickup unit 50a on the first support device 100 side, an intermediate reversing unit 50b, and a pasting unit 50c on the second support device 300 side.
  • the pickup unit 50a, the reversing unit 50b, and the pasting unit 50c are each configured as a rotary pickup.
  • Each rotary pickup has a rotation surface perpendicular to the installation surface, and conveys the chip S along the outer periphery by intermittent rotation by a drive source (not shown). For this reason, the transport apparatus 200 realizes a transport path of the chip S by a triple rotary pickup.
  • the rotary pickup includes a plurality of holding portions 51 that hold and detach the chip S at the tip.
  • the holding portions 51 are installed at equal circumferential positions on the same circumference, and extend along the radial direction from the circumference center.
  • the holding part 51 is arranged with the tip facing outward.
  • the rotary pickup rotates the holding portion 51 holding the chip S by a predetermined angle by using a motor (not shown) that holds the chip S around the axis perpendicular to the radial direction through the center of the circumference.
  • the holding portion 51 can be advanced and retracted outward along the radial direction of the rotary pickup, in other words, away from the center of the rotary pickup. Further, an advance / retreat driving device (not shown) that gives a propelling force for advancement and retraction to the holding unit 51 is arranged at several stop points of the holding unit 51. Some stop points are a pickup point K, a delivery point L, a delivery point M, and a pasting point N.
  • the holding part 51 is configured as a suction nozzle having an axis along the radial direction of the rotary pickup, for example.
  • the suction nozzle is a hollow cylinder having an opening at the tip of the nozzle, the tip of the nozzle is directed outward in the radial direction of the table, and the inside of the nozzle communicates with a pneumatic circuit of a vacuum generator via a tube.
  • the suction nozzle sucks the chip S by generating a negative pressure by a vacuum generator and releases the chip S by breaking a vacuum or generating a positive pressure.
  • the rotary pickups are arranged adjacent to each other, but are arranged so that the rotation axis for rotating the holding unit 51 is parallel and the arrangement plane of the holding unit 51 is the same. In other words, the triple rotary pickups do not overlap. And the position where the holding
  • the holding unit 51 stopped at the pickup point K faces the surface of the wafer sheet Da of the first support device 100 so that the advancing and retreating directions are orthogonal to each other.
  • maintenance part 51 by the ring moving mechanism 2A becomes the adsorption
  • the holding unit 51 stopped at the pasting point N faces the surface of the wafer sheet Db described later so that the advancing and retreating directions are orthogonal to each other.
  • the pickup unit 50a is a mechanism that receives the chips S separated from the other chips S by the separation mechanism 4A in the first support device 100 and delivers them to the reversing unit 50b. That is, at the pickup point K, the chip S picked up by holding the one surface of the chip S of the wafer sheet Da by the holding unit 51 is transported to the delivery point L by intermittent rotation. Thereby, in the delivery point L, the other surface of the chip S is directed to the holding portion 51 of the opposite reversing portion 50b.
  • the reversing unit 50b is a mechanism that receives the chip S conveyed by the pickup unit 50a and delivers it to the pasting unit 50c. That is, as described above, the other surface of the chip S held by the holding unit 51 of the pickup unit 50a is received at the transfer point L by the holding unit 51 of the opposite reversing unit 50b, and is intermittently rotated. , Transport to the delivery point M. Thereby, in the delivery point M, one surface of the chip
  • the affixing unit 50 c is a mechanism that receives the chip S conveyed by the reversing unit 50 b and affixes it to the wafer sheet Db in the second support device 300. That is, as described above, one surface of the chip S held by the holding unit 51 of the reversing unit 50b is received by holding the holding unit 51 of the pasting unit 50c facing the transfer point M, and is intermittently rotated. Then, it is conveyed to the pasting position N. As a result, at the attaching position N, the other surface of the chip S is attached to the wafer sheet Db toward the wafer sheet Db of the opposing second support device 300.
  • the imaging unit 60a is a mechanism that captures images of the wafer sheet Da and the chip S.
  • the imaging unit 60a includes a camera 61a and an optical system member 62a.
  • the camera 61a is an apparatus that images the chip S on the wafer sheet Da and outputs image data.
  • the camera 61a is disposed in the vicinity of the outer periphery of the pickup unit 50a so that its optical axis is directed toward the center of the pickup unit 50a.
  • the optical system member 62a is a prism that is disposed in the vicinity of the center of the pickup unit 50a and converts the direction of the optical axis so that an image of one surface of the chip S on the wafer sheet Da is guided to the camera 61a.
  • the imaging unit 60b is a mechanism that captures images of the wafer sheet Db and the chip S.
  • the imaging unit 60b includes a camera 61b and an optical system member 62b.
  • the camera 61b is a device that images the chip S on the wafer sheet Db and outputs image data.
  • the camera 61b is disposed in the vicinity of the outer periphery of the pasting portion 50c so that its optical axis is directed toward the center of the pasting portion 50c.
  • the optical system member 62b is a prism that is disposed in the vicinity of the center of the pasting portion 50c and converts the direction of the optical axis so as to guide the image of the wafer sheet Db to the camera 61b.
  • the second support device 300 basically has the same configuration as that of the first support device 100. That is, the second support device 300 also includes a ring moving mechanism 2B, an expanding mechanism 3B, and an autoloader 5B other than the separation mechanism.
  • the ring moving mechanism 2B has a wafer ring Rb that holds and holds the wafer sheet Db. There may be a member that supports the back surface of the wafer sheet Db.
  • control device 10 includes a mechanism control unit 11, a reference detection unit 12, a scanning unit 13, a reference inspection unit 14, and a storage unit 15.
  • the mechanism control unit 11 is a processing unit that controls each mechanism and the operation of each unit. In particular, imaging by the imaging unit 60a and capturing of image data are performed by the relative movement of the optical axis of the camera 61a on the wafer sheet Da according to the scanning of the ring moving mechanism 2A based on the encoder information.
  • the reference detection unit 12 is a processing unit that performs a reference detection process of detecting coordinate data of a reference chip among the dicing chips S attached to the wafer sheet Da of the first support device 100.
  • a reference detection process based on the image data picked up by the image pickup unit 60a, a reference chip by collation with a reference mark registered in advance is found, and encoder information of the ring moving mechanism 2A is acquired as coordinate data thereof. Is done.
  • the scanning unit 13 is a processing unit that performs a scanning process for detecting coordinate data of all the chips S attached to the wafer sheet Da in the first support device 100.
  • the coordinate data of the chip S is detected by the imaging unit 60a positioned on the chip S by the ring moving mechanism 2A obtaining the image data by imaging the chip S and using the encoder information of the ring moving mechanism 2A as the coordinate data. It is done by acquiring.
  • all the chips S here are product chips, and are ranked in advance as described above.
  • the wafer attached to the wafer sheet Da is diced.
  • the expanding mechanism 3A extends the wafer sheet Da so that a gap is formed between the individual chips S so that the pickup unit 50a can easily pick up. Since this extension is performed by the wafer ring Ra and the pulling portion 31 described above, it is performed by a force by which the wafer sheet Da is pulled from the inside of the circle surrounding the wafer W to the outside.
  • the reference inspection unit 14 scans the ring moving mechanism 2A and starts the reference chip as a starting point, and after a predetermined amount of scanning processing of the chip S is performed, the reference inspection unit 14 returns to the reference chip at the starting point, and the coordinate data matches (the difference occurs) It is a processing unit that checks whether or not. As will be described later, various modes are conceivable as to how much the scan amount returns to the reference chip.
  • the storage unit 15 is a processing unit that stores various types of information necessary for the present embodiment.
  • the various types of information include the above map data and the coordinate data of the chip S associated therewith.
  • the information stored in the storage unit 15 also includes various settings such as image data for determining a reference mark by collating with captured image data, and a scanning path reference by the scanning unit.
  • the input unit 30 is a processing unit that inputs information necessary for processing of each unit, selection of processing, and instructions.
  • the input unit 30 includes input devices that can be used now or in the future, such as an operation panel, a touch panel, a switch, a keyboard, and a mouse.
  • the output unit 40 is a processing unit that outputs information such as an interface for operation, various data, images, processing results, and alarms.
  • the output unit 40 includes any output device that can be used now or in the future, such as a display device, a printer, a speaker, a buzzer, and a lamp.
  • All or part of the control device 10 can be realized by controlling the computer with a predetermined program.
  • the program in this case realizes the processing of each unit as described above by physically utilizing computer hardware including a CPU.
  • a method, a program, and a recording medium storing the program for executing the processing of each unit described above are also one aspect of the present invention.
  • any storage medium that can be used now or in the future can be used.
  • a register or the like used for calculation can also be regarded as a storage unit.
  • the mode of storage includes not only a mode in which memory is stored for a long time but also a mode in which data is temporarily stored for processing and deleted or updated in a short time.
  • all or some of the processing units, the storage unit 15, the input unit 30, and the output unit 40 constituting the control device 10 can be configured by a computer connected via a network.
  • various data in the course of the above processing can be appropriately output (displayed, printed out, etc.) to the output unit 40 so that the operator can view the data.
  • map data, coordinate data, captured image data, reference detection processing, scan processing, and reference inspection processing results may be displayed, printed out, and used for processing confirmation.
  • the autoloader 5A on the pickup side accommodates a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached.
  • the autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A.
  • the autoloader 5B on the pasting side accommodates a plurality of wafer rings Rb to which the wafer sheet Db to which the chip S is not pasted is pasted.
  • the autoloader 5B takes out one wafer ring and sets it on the ring moving mechanism 2B.
  • the picked-up information for the picked-up chip S is recorded in the map data.
  • the chip S is positioned at a position where the chip S exists, including when picking up, if the position of the chip S based on the image data captured by the imaging unit 60a is shifted, the result of measuring the shift Is fed back to correct the coordinate data of the next chip S. It is possible to increase the speed by positioning only on the chip S to be picked up based on the coordinate data, or to ensure the accuracy by positioning and correcting each chip S.
  • the autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after selectively picking up the chips S from the ring moving mechanism 2A and stores it again.
  • the wafer sheet Da is in a state (chip missing state) in which chips S of a specific rank are missing and chips S of other ranks remain. In the example of FIG. 4, only the chip S of rank A is missing.
  • the picked-up chip S is transported by the pickup unit 50a, the reversing unit 50b, and the pasting unit 50c as described above.
  • the bonding surface of the chip S to the wafer sheet Da and the bonding surface to the wafer sheet Db are the same.
  • Chip Affixing The transferred chip S is a ring so that the chip S held by the holding part 51 of the sticking part 50c is stuck in order from the start end of the sticking area of the stretched wafer sheet Db.
  • the moving mechanism 2B and the pasting part 50c operate. For example, scanning is performed on a plurality of parallel scanning lines set from the start end of the pasting region to the opposite end thereof, and pasting is performed at the time of reciprocation. Thereby, chips S of a specific rank are collected on one wafer sheet Db. In the example of FIG. 4, the chips S with rank A are collected.
  • the autoloader 5B removes the wafer ring Rb on which the wafer sheet Db on which the chips S of a specific rank are collected is attached from the ring moving mechanism 2A and stores it again.
  • the expanding mechanism 3A opens a gap between the chips S by extending the wafer sheet Da. Then, by repeating reference detection, scanning, and reference inspection described later, each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13. The scanning unit 13 stores the coordinate data of each chip S in the storage unit 15 in association with the map data.
  • the ring moving mechanism 2A Based on the coordinate data of each chip S acquired by the scan process, the ring moving mechanism 2A performs scanning so that the chips S are sequentially positioned with respect to the holding unit 51 of the pickup unit 50a. Pick up.
  • the example of FIG. 4 is a case where the chip S of rank B is picked up after the chip S of rank A is picked up.
  • the holding unit 51 is positioned on the chip S of rank B at the start end. After the holding unit 51 picks up this, the next rank B chip S is moved to the target. At this time, as indicated by ⁇ in the figure, the missing part can be moved without stopping based on the information at the time of scanning. Chips S other than the target rank are not picked up even if moved to the coordinates. However, in the place where the chip S exists, the deviation is fed back and corrected as described above. The subsequent processing is the same as (5) to (8) above.
  • the above processing is the same even when the chips S of a specific rank are picked up from different wafer sheets Da and pasted together on the wafer sheet Db.
  • the chips S of a specific rank are picked up from different wafer sheets Da and pasted together on the wafer sheet Db.
  • the chips S having the same rank are collected for each wafer sheet Db. It is also possible to make it.
  • step S01 the ring moving mechanism 2A scans to a position estimated to be a position where the reference chip exists based on, for example, map data. You may scan exhaustively from the chip
  • the reference detection unit 12 determines whether or not a reference chip exists by comparing image data captured by the imaging unit 60a during scanning with a reference mark registered in advance (in step S02). NO).
  • the reference detection unit 12 finds a reference chip by collation (YES in step S02)
  • the reference detection unit 12 acquires coordinate data of the found reference chip based on the encoder information of the ring moving mechanism 2A, and the reference chip in the map data
  • the information is stored in the storage unit 15 in association with the position information (step S03).
  • the scanning unit 13 starts a scanning process (step S04).
  • the ring moving mechanism 2A can cover all the chips S in the guaranteed area.
  • the target chip S is sequentially imaged (step S05).
  • the predetermined pitch is, for example, a horizontal pitch set in advance for the ring moving mechanism 2A as one row and a vertical pitch set as one row.
  • step S06 processing for specifying the coordinate data will be described with reference to FIG.
  • scanning and imaging are performed while positioning the target chip S so as to be within a predetermined imaging region. That is, when the target chip S is first imaged, as shown in FIG. 6A, a rectangular image set in advance on any of the eight chips S around the target chip S is captured. It is assumed that there is a part that does not fit in the region F. Then, as illustrated in FIG. 6B, the ring moving mechanism 2A performs an alignment operation so that the outer edge side of the eight chips S coincides with the rectangular imaging region.
  • the alignment pitch is, for example, a finer pitch than the pitch set for one column and one row. The alignment is also performed when there is a deviation in the ⁇ direction.
  • the scanning unit 13 After the alignment operation, the scanning unit 13 obtains the center of each of the nine chips S included in the rectangular imaging area by detecting corners or four sides. Then, the scanning unit 13 obtains the coordinate data of the centers of the nine chips S based on the encoder value of the ring moving mechanism 2A, and associates with the positional information of each corresponding chip S of the map data in the storage unit 15. Store (step S07, FIG. 6C). Then, a scanned flag is set for each chip S (step S08). Such a coordinate data specifying method can also be applied when specifying the coordinate data of the reference chip and the surrounding chip S.
  • step S08 If there is no chip S that should exist on the map data due to dropping from the wafer sheet Da (NO in step S06), the coordinate data cannot be acquired. However, the scanned flag is set (step S08).
  • step S09 a part of the guaranteed area of the reference chip (hereinafter referred to as a partial area) is covered (NO in step S09, steps S05 to 08). That is, as shown in FIG. 6D, the third chip is moved as a target chip, and the processes in FIGS. 6A to 6D are repeated.
  • the upper left partial area Ex1 of the reference chip RS1 in the guarantee area E1 is divided into a lower left partial area Ex2, an upper right partial area Ex3, and a lower right partial area Ex4.
  • the partial area can be defined based on the coordinate data of the reference chip, the data indicating the guaranteed area of the map data (which defines the limit of scanning), and the reference setting of the scanning path.
  • the following criteria (a) to (d) may be selectively combined as the scanning path criteria for covering the chips S in such a partial region.
  • FIG. 7B shows an example of the routes (a) to (d) in the partial region Ex1.
  • the method to cover is not limited to this.
  • the reference inspection unit 14 performs the reference inspection (step S10). That is, the ring moving mechanism 2A returns the imaging position by the imaging unit 60a to the reference chip. Then, it is determined whether there is any deviation between the coordinate data of the reference chip stored in the storage unit 15 and the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip.
  • step S11 If the coordinate data are different, an error has occurred (YES in step S11), and the coordinate data of the reference chip is updated with the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip. Then, based on the new coordinate data, the scan result of the partial area is cleared, and the same partial area is scanned again (steps S04 to 09).
  • the operator is notified by causing the output unit 40 to output an alarm sound or displaying a screen notifying the occurrence of the error.
  • the reference chip, the partial area, or the guaranteed area where the error has occurred may be displayed on the screen.
  • step S11 If the coordinate data match, the scan results so far are determined to be correct (NO in step S11). If the scan in the guarantee area is not completed (NO in step S12), the scan of other partial areas in the guarantee area is performed based on the coordinate data of the same reference chip (steps S05 to S11). . For example, the partial areas Ex2, Ex3, and Ex4 in FIG. 7 are sequentially scanned.
  • step S12 If the scanned flag is set for the chip S in the guaranteed area and the scanning is completed (YES in step S12), if the scanning of all areas is not completed (NO in step S13), the next reference chip is set. Based on this, the guaranteed area of the reference chip is scanned (steps S01 to S12).
  • the ring moving mechanism 2A moves the imaging area of the imaging unit 60a based on the coordinate data of the scanned reference chip and the position information of the reference chip of the map data so that the moving distance becomes the shortest, Discovery of the next reference chip, acquisition of coordinate data, and scanning processing are performed.
  • the scan process is performed on the guarantee area E2 of the reference chip RS2, the guarantee area E4 of the reference chip RS3, and the guarantee area E3 of the reference chip RS4 of FIG.
  • step S13 the processing for specifying the coordinate data of the chip S is terminated.
  • High-speed processing can be realized by shortening the moving distance between the reference chips as much as possible.
  • the output unit 40 When there is an error as a result of the reference inspection, the output unit 40 notifies this, so the operator can know the occurrence of an abnormality and can respond quickly. For example, when the frequency of notification is high, it is preferable to stop the device early. Moreover, if an error location can be identified, it can be used for adjustment of the apparatus.
  • This embodiment is a classification device that supports a chip picked up from a wafer sheet on a support.
  • This embodiment can also be understood as a transfer device for transferring the chip S from the wafer sheet to the support.
  • this embodiment uses a carrier tape as a support.
  • the present embodiment includes a first support device 100, a transport device 400, an inspection device 500, a taping unit 600, and a discharge device 700.
  • the first support device 100 basically has the same configuration as that of the above embodiment.
  • the autoloader 5 ⁇ / b> A of the present embodiment includes a storage unit 110 and a ring transport mechanism 120 as illustrated in FIG. 9A, for example.
  • the accommodating part 110 is an apparatus that accommodates a plurality of wafer rings Ra.
  • the accommodating part 110 is arrange
  • the accommodating part 110 has the supply magazine 111 and the raising / lowering apparatus which is not shown in figure.
  • the supply magazine 111 stores a plurality of horizontal wafer rings Ra stacked between a pair of side walls.
  • the plurality of wafer rings Ra are supported at intervals in the vertical direction by guides provided on the side walls.
  • the lifting device is a mechanism that lifts and lowers the supply magazine 111.
  • it can be constituted by a vertical ball screw rotated by a drive source, a vertical guide rail, or the like.
  • the storage position of the wafer ring Ra at a desired level is positioned at the loading / unloading position by the lifting device.
  • the number of wafer rings Ra that can be stored in the supply magazine 111 can be about 10 to 20, but the specific number is not limited.
  • the ring transport mechanism 120 is a device that takes out the wafer ring Ra accommodated in the accommodating portion 110, transfers it to the ring moving mechanism 2A, receives the wafer ring Ra from the ring moving mechanism 2A, and returns it to the accommodating portion 110. As shown in FIG. 9A, the ring transport mechanism 120 moves the wafer ring Ra in and out of the supply magazine 111 at the loading / unloading position of the supply unit 110.
  • the ring transport mechanism 120 slides and removes the wafer ring Ra from the supply magazine 111 and accommodates the wafer ring Ra in the supply magazine 111 by sliding it horizontally. Further, the ring transport mechanism 120 supplies the wafer ring Ra to the link moving mechanism 2A by vertically inserting the wafer ring Ra into the opening from below, and takes out the wafer ring Ra from the ring moving mechanism 2A by vertically sliding the wafer ring Ra.
  • the ring transport mechanism 120 has a clamp 121 and a fork 122.
  • a pair of clamps 121 are provided corresponding to two opposite edges of the wafer ring Ra.
  • the fork 122 is a member provided on each clamp 121 and having two teeth arranged in parallel. The clamp 121 clamps and releases the wafer ring Ra by moving the fork 122 closer to and away from the fork 122.
  • the ring transport mechanism 120 has a rotation mechanism that displaces the clamp 121 between a horizontal direction facing the supply magazine 111 and a vertical position facing the ring moving mechanism 2A.
  • the ring transport mechanism 120 includes an advance / retreat mechanism that advances and retracts the clamp 121 toward the supply magazine 111 and advances and retracts toward the ring moving mechanism 2A.
  • the transfer device 400 is a device that transfers the chip S from the wafer sheet Da of the wafer ring Ra set in the ring moving mechanism 2A to the carrier tape T that is a support. As shown in FIG. 9B, the transport apparatus 400 includes a pickup unit 410 and a transport unit 420.
  • the pickup unit 410 is a device that selectively picks up the chips S while moving relative to the wafer sheet Da based on the coordinate data of each chip S specified by the scanning unit 13.
  • the pickup unit 410 has a holding unit 411.
  • the holding unit 411 is a device that receives the chip S from the wafer sheet Da by passing between the wafer sheet Da and the transfer unit 420 and passes it to the transfer unit 420.
  • the holding part 411 may be plural or singular.
  • FIG. 9B shows an example using a four-way cross arm in which four holding portions 411 are configured in a cross shape.
  • the configuration of the holding unit 411 is basically the same as that of the holding unit 51 of the rotary pickup described above. That is, the holding portion 411 is configured by a suction nozzle provided so as to be able to advance and retract in the radial direction from the center of rotation.
  • the suction nozzle sucks the chip S into the suction hole at the tip by generating a negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by generating a vacuum break or positive pressure.
  • the pickup unit 410 is rotated intermittently by 90 ° about the center of the cross formed by the pickup 410 by a driving source (not shown). Thereby, the tip of each holding part 411 is positioned at the pick-up position of the chip S of the wafer sheet Da and the delivery position of the chip S to the transfer part 420 described later.
  • one holding portion 411 sequentially comes to the pickup position of the chip S of the wafer sheet Da.
  • another one holding unit 411 comes to a position where the chip S is delivered to the holding unit 422 of the transfer unit 420 described later.
  • the single holding unit 411 may reciprocate between the pickup position of the wafer sheet Da and the transfer position of the chip S to the transfer unit 420.
  • one holding portion 411 may be configured to reciprocate by 90 °.
  • the number of the plurality of holding portions 411 is arbitrary. For example, as in the above-described embodiment, it may be configured as eight arms.
  • the transport unit 420 is a device that transports the chip S picked up by the pickup unit 410 to a support that supports the chip S.
  • the transport unit 420 of this embodiment includes a turntable 421 and a holding unit 422.
  • the turntable 421 is a circular table, and the center is supported by a drive shaft of a motor (not shown) arranged below.
  • the turntable 421 rotates intermittently at a predetermined angle as the motor operates.
  • the holding unit 422 is a device that holds the chip S.
  • the holding portions 422 are attached to the lower surface of the turntable 421 at regular intervals along the circumference of the turntable 421.
  • the holding unit 422 receives and holds the chip S from the holding unit 411 of the pickup unit 410 at the delivery position. And the chip
  • FIG. The arrangement interval of the holding portions 422 is equal to the rotation angle of one pitch of the turntable 421.
  • the holding unit 422 is basically the same as the holding unit 51 of the rotary pickup described above. That is, the holding part 422 is configured by a suction nozzle provided on the lower surface of the turntable 421 so as to be able to advance and retract in the vertical direction.
  • the suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
  • the inspection apparatus 500 is an apparatus that inspects each chip S for an abnormality.
  • the inspection apparatus 500 is a plurality of appearance inspection units 510, for example.
  • the plurality of appearance inspection units 510 are devices that detect the presence or absence of an abnormality of the chip S based on image data acquired by imaging the appearance of the chip S.
  • the appearance inspection units 510 are arranged at intervals corresponding to the stop positions of the holding portions 422.
  • the inspection apparatus 500 is not limited to this, and may include other inspection apparatuses such as an electric characteristic inspection unit and an optical characteristic inspection unit.
  • the taping unit 600 is a device that accommodates the chip S received from the transport unit 420 in the carrier tape T.
  • the carrier tape T is a tape having a plurality of pockets for accommodating the chips S at equal intervals in the longitudinal direction.
  • Two taping units 600 are installed corresponding to the two positions of intermittent rotation of the turntable 21.
  • the taping unit 600 includes a main body 610, a feed mechanism 620, a seal portion, and the like.
  • the main body 610 has a delivery reel and a take-up reel (not shown).
  • the delivery reel is a reel on which an empty carrier tape T is wound.
  • the take-up reel is a reel that takes up the carrier tape T containing the chip S.
  • the path of intermittent movement of the carrier tape T has a part that moves horizontally.
  • the main body 610 is disposed at a position where the empty pocket in the horizontally moving portion comes directly below the holding portion 422 at one position of intermittent rotation of the turntable 21.
  • the feeding mechanism 620 is a device that moves the carrier tape T intermittently and sequentially positions the empty pocket in the horizontally moving portion at the receiving position where the chip S from the transport unit 420 is received.
  • the feed mechanism 620 is constituted by, for example, a sprocket 621 that is rotated by a motor.
  • the sprocket 621 intermittently feeds the carrier tape T supplied from the feed reel to the take-up reel by the sprocket wheel being fitted in the feed hole or groove of the carrier tape T and intermittently rotating.
  • the seal portion is a device that seals a pocket of the carrier tape T in which the chip S is accommodated with a cover tape.
  • the discharge device 700 is a device that discharges defective chips S. As shown in FIG. 9B, the discharge device 700 includes an introduction shooter 710 and a discharge bin 720.
  • the introduction shooter 710 is a cylindrical body through which the chip S passes.
  • the upper opening end of the introduction shooter 710 is disposed directly below the holding portion 422 that has reached one position of intermittent rotation of the turntable 421.
  • the discharge bin 720 is a container that stores the discharged chip S.
  • the upper opening of the discharge bin 720 is disposed immediately below the lower opening end of the introduction shooter 710.
  • each chip S affixed to the wafer sheet Da of the wafer ring Ra is probed in advance, and map data as a result of the inspection is stored in the storage unit 15. ing.
  • the map data also includes rank and reference chip data, as in the above embodiment.
  • the autoloader 5A on the pickup side accommodates a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached.
  • the autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A.
  • the elevating device in the storage unit 110 moves the supply magazine 111 so that the desired wafer ring Ra is at the loading / unloading position.
  • the clamp 121 advances toward the supply magazine 111, the end of the wafer ring Ra is sandwiched between the forks 122.
  • the clamp 121 moves backward from the supply magazine 111, the fork 122 pulls out the wafer ring Ra from the supply magazine 111.
  • the ring transport mechanism 120 rotates in the vertical direction. Then, the end portion of the wafer ring Ra held by the fork 122 faces the ring moving mechanism 2A.
  • the clamp 121 advances toward the ring moving mechanism 2A. After the wafer ring Ra is set on the ring moving mechanism 2A, the clamp 121 moves backward from the ring moving mechanism 2A.
  • an empty carrier tape T is set between the feeding reel and the take-up reel.
  • the expanding mechanism 3A opens the gap between the chips S by stretching the wafer sheet Da.
  • each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13.
  • the scanning unit 13 stores the coordinate data of each chip S in the storage unit 15 in association with the map data. Details of such batch scan processing are the same as those in the above-described embodiment, and thus description thereof is omitted.
  • the ring moving mechanism 2A sequentially positions the chips S with respect to the holding unit 411 of the pickup unit 410 based on the coordinate data of each chip S acquired by the scanning process.
  • the holding unit 411 picks up the chip S while scanning.
  • the details of such a pickup are the same as in the above embodiment, and thus the description thereof is omitted. Note that the pickup in the present embodiment may be performed only for a chip S of a specific rank based on the map data, or may be picked up the chip S regardless of the rank.
  • the autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after picking up the chip S from the ring moving mechanism 2A and stores it again.
  • this wafer sheet Da there are a case where a chip S of a specific rank is missing and a chip S of another rank remains, and a case where all the chips S to be picked up are missing.
  • the clamp 121 rotates in a vertical direction from a state in which it waits in the horizontal direction. Then, the end of the fork 122 faces the ring moving mechanism 2A. The clamp 121 advances the wafer sheet Da, which has been released from the expansion by the expanding mechanism 3A, to a position where its end is clamped by the fork 122. The clamp 121 retracts from the ring moving mechanism 2A, thereby pulling out the wafer ring Ra held by the fork 122 from the ring moving mechanism 2A. Thereby, the wafer ring Ra is discharged from the ring moving mechanism 2A.
  • the clamp 121 rotates in the horizontal direction after the wafer ring Ra is pulled out. Then, the end of the wafer ring Ra sandwiched between the forks 122 comes to the loading / unloading position of the storage unit 110.
  • the elevating device 112 in the storage unit 110 moves the supply magazine 111 so that the desired storage position of the supply magazine 111 comes to the loading / unloading position.
  • the clamp 121 proceeds to the supply magazine 111 and moves backward after the wafer ring Ra is accommodated in the accommodation position of the supply magazine 111.
  • the picked up chip S is transferred from the pickup unit 410 to the transport unit 420 and transported by the transport unit 420. That is, it is transferred from the holding unit 411 of the pickup unit 410 that rotates intermittently to the holding unit 422 of the turntable 421.
  • the turntable 421 conveys the chips S held by the holding unit 422 by intermittently rotating.
  • the inspection device 500 performs inspection on the chips S thus transported. Information on the chip S determined to be abnormal by the inspection is stored in the storage unit 15 in the control device 10.
  • the taping unit 600 can accommodate the chip S in the carrier tape T in various modes. For example, when only the chip S having a specific rank is picked up, the chip S having the same rank is accommodated in the carrier tape T of the same taping unit 600. Thereby, chips S of a specific rank are collected on the carrier tape T of one taping unit 600.
  • the chips S of a specific rank are distributed to the two taping units 600 and accommodated in the respective carrier tapes T. Thereby, chips S of a specific rank are collected on the carrier tapes T of all the taping units 600.
  • the chip S when the chip S is picked up regardless of the rank, it may be accommodated in the carrier tape T of one taping unit 600 according to the picked-up order. Furthermore, also in this case, the chips S may be accommodated in the two tape units 600 and the chips S may be accommodated in the respective carrier tapes T. That is, regardless of whether the support is single or plural, when the chips S are picked up regardless of the rank, they are supported by the support according to the picked-up order.
  • the chip S determined to be abnormal by the inspection apparatus 500 is not housed in the carrier tape T, and is passed through the taping unit 600 while being held in the holding portion 422. That is, the abnormal chip S is not supported on the support.
  • the chip S determined to be abnormal in the discharge device 700 is discharged. That is, when the holding unit 422 that holds the abnormal chip S in the transport unit 420 comes immediately above the introduction shooter 710, the suction of the holding unit 422 is released, so that the chip S passes through the introduction shooter 710. Drops into the discharge bin 720. Thereby, the chip S having an abnormality is collected.
  • FIGS. 11 shows a case where a chip S of a specific rank is picked up and accommodated in a common carrier tape T.
  • FIG. 12 shows a case where a chip S is picked up and accommodated in the carrier tape T regardless of the rank. Note that the flowcharts of FIGS. 11 and 12 have a portion that focuses only on the processing flow of one chip S. However, also at this time, the processing is performed on the plurality of other chips S in parallel.
  • the ring transport mechanism 120 takes out the wafer ring Ra from the supply magazine 111 and sets it in the ring moving mechanism 2A (step S101). Then, a batch scan is performed on the chips S of the wafer sheet Da (step 102).
  • the pick-up unit 410 picks up a specific rank instructed by the control of the control device 10, that is, the chip S of the indicated rank, similarly to the above-described embodiment (step S103).
  • the picked-up chip S having the designated rank is inspected by the inspection apparatus 500 in the process of being held and transported by the holding portion 422 of the turntable 421 (step S104).
  • step S105 In the case of the chip S determined as having no abnormality by the inspection apparatus 500 (NO in step S105), it is transferred from the holding unit 422 of the turntable 421 to the carrier tape T of the taping unit 600 and taped (step S106).
  • the ring transport mechanism 120 Returns the wafer ring Ra to the accommodating portion 110 as a processed wafer ring Ra (step S109).
  • step S110 NO
  • the unprocessed wafer ring Ra is a wafer ring Ra in which the chip S to be picked up remains.
  • step S104 in the case of the chip S determined to be abnormal by the inspection apparatus 500 (YES in step S105), the holding unit 422 passes through without passing the taping unit 600 to the carrier tape T (step S111). And the holding
  • step S107 if the designated rank chip S remains (YES in step S107) and the number of tapings designated by the control of the control device 10 has not been achieved (NO in step S113), the designated rank chip. S pickup is repeated (steps S103 to S107).
  • the pickup is interrupted and the carrier tape T of the taping unit 600 is replaced (step S114). Then, the pick-up of the chip S having the instruction rank is continued (steps S103 to S107). At this time, the pickup start position may be determined based on the coordinate data immediately before the interruption.
  • step S107 the chip S of the rank instructed on the wafer sheet Da being processed does not remain (NO in step S107), but the chip S of the rank other than the instruction remains (YES in step S108).
  • the transport mechanism 120 temporarily returns the wafer ring Ra to the housing unit 110 (step S115). Then, the next wafer ring is replaced (step S116), and a batch scan is performed (step S102). Thereafter, the pick-up of the chip S having the designated rank is continued (steps S103 to S107).
  • the wafer ring Ra once returned to the accommodating unit 110 is set again when picking up the remaining chips S of other ranks (step S101), and the subsequent processing is performed. In this case, the collective scan may be performed again, or the pickup start position may be determined based on the coordinate data at the previous pickup.
  • step S103 the chip S having the designated rank is picked up in step S103.
  • step S203 the chips S are picked up sequentially from the upper end or the lower end based on the coordinate data.
  • the taping if the result of the inspection by the inspection apparatus 500 is a normal chip S, the taping is sequentially performed in one taping unit 600 regardless of the rank (steps S205 and S206). In other words, rank information is ignored during taping, and taping is performed in the order in which chips S are arranged except for abnormal chips S.
  • the rank information is stored in the storage unit 15 in association with the taping order. If the chip S is abnormal as a result of the inspection by the inspection apparatus 500, it is taped in the other taping unit 600 (step S211).
  • the storage unit 15 stores the inspection result as rank information in association with the taping order. For this reason, this embodiment can also be regarded as a classification device that classifies the chips S according to the inspection result of the inspection device 500.
  • step 107 the presence / absence of the chip S having the designated rank is determined in step 107, and the presence / absence of the chip S having the rank not instructed is determined in step 108. However, in the processing without ranking, the presence or absence of the remaining chip S is determined regardless of the rank (step S207). If the chip S remains (YES in step S207), processing according to whether or not the taping instruction number has been achieved is performed as in FIG. 11 (steps S213 and S214).
  • step S207 If the chip S does not remain (NO in step S207), the processed wafer ring is returned (step S209), and processing according to the presence or absence of the unprocessed wafer ring is performed (steps S210 and S216).
  • the conveyance unit 420 conveys the chip S picked up by the pickup unit 410 to a support that supports the chip S.
  • the conveyance unit 420 supports the chips S picked up by the pickup unit 410 for each rank in a lump for each rank. Therefore, it is possible to ship a support that accurately supports the chip S of a specific rank.
  • the chips S are supported on a plurality of supports without being divided into ranks, a large number of chips S can be processed efficiently and accurately.
  • the support is the carrier tape T, and has a taping unit 600 that accommodates the chip S received from the transport unit 420 in the carrier tape T.
  • a plurality of taping units 600 are easily arranged along the transport path of the transport unit 420. For this reason, a large number of chips S can be taped efficiently by taping on a plurality of carrier tapes T in parallel. Further, the chips S having different ranks can be taped for each of the plurality of carrier tapes T.
  • Embodiment (1) is not limited to the above embodiment.
  • the reference chip where the error occurred, the partial area or guaranteed area, the frequency of error, etc. are recorded by the storage unit, and this is output by the output unit, which is useful for analyzing the location where the error is likely to occur. Also good.
  • map data chips are not necessarily ranked as described above.
  • the present invention can also be applied to picking up only non-defective products based on the information as good or defective products.
  • the second embodiment can also be regarded as a classification device that classifies non-defective products and defective products.
  • the number and position of reference chips, the number and range of guaranteed areas corresponding thereto, and the number and range of partial areas can be freely set as long as the scanning process can be performed comprehensively. If these numbers are large, there is an advantage that the range of scan processing re-executed due to the occurrence of an error is reduced. Therefore, it is sufficient to make an appropriate setting based on the balance between the two.
  • the number of reference inspections increases, and the range of scan re-execution due to the occurrence of an error decreases, but by setting only a guaranteed area without setting a partial area, there should be fewer errors Therefore, the processing speed can be increased.
  • the processing after the pickup is not limited to the pasting to another wafer sheet. It may be a mounting process or a taping process.
  • the wafer sheet, the imaging unit, and the pickup unit may be in a relative moving relationship.
  • the wafer ring to which the wafer sheet is attached may be fixed by the ring support mechanism, and the relative movement may be realized by the moving mechanism (scanning mechanism) of the imaging unit and the pickup unit.
  • the coordinate data in this case can be acquired as coordinate values (x, y, ⁇ ) of the encoder information of the moving mechanism.
  • the configuration of the transport device is not limited to the above aspect.
  • the conveying device may be configured by one rotary pickup, and the chip S picked up by the holding unit from the wafer sheet on the pickup side may be attached to the wafer sheet on the application side after rotation.
  • the configuration for picking up the chip is not limited to the above-described mode as long as the chip can be selectively detached from the wafer sheet. That is, any known technique can be applied to the transfer device and the pickup unit that move the chip S from the wafer sheet to the support.
  • the storage unit for storing the wafer ring and the ring transport mechanism for setting the wafer ring in the ring moving mechanism are not limited to those exemplified in the above embodiment, and any known technique can be applied. Further, a discharge device for discharging the ring from the ring moving mechanism may be provided.
  • the processed wafer ring Ra is returned to the accommodating portion 110 in steps S109 and S209 in the flowcharts of FIGS.
  • the ring discharge mechanism and the discharge device can pull out the processed wafer ring Ra from the ring moving mechanism 2A and discharge it to the discharge device.
  • such a ring conveyance mechanism 120 and a discharge device can be applied to the autoloader 5B in the first embodiment.
  • the support is not limited to the carrier tape T shown in the second embodiment.
  • the wafer sheet Db shown in the first embodiment can also be used. That is, also in the first embodiment, it is possible to pick up the chip S from the wafer sheet Da without distinguishing the rank of the chip S, and the pasting part 50c can be pasted onto the wafer sheet Db.
  • a tray on which the chip S is placed is also included in the support. That is, as shown in FIG. 13, a tray unit 900 for placing the chip S received from the transport unit 420 on the tray G may be provided.
  • the tray G is scanned so that the placement space for the chips S is directly below the holding unit 422 that holds the chips S in the transport unit 420.
  • the holding unit 422 that holds the chip S in the transport unit 420 comes to this position, the suction of the holding unit 422 is released, so that the chip S is sequentially accommodated in the placement space of the tray G.
  • the tray G only the chips S of a specific rank can be collected and placed, or the chips S can be placed without distinguishing the ranks. Further, the chip S determined to be an error by the inspection apparatus 500 is not placed on the tray G, but is passed through the tray unit 900 while being held in the holding unit 422.
  • the discharge device 700 can be used as follows. (A) When the apparatus is brought to an emergency stop, all the chips S remaining in the transfer apparatus 400 are discharged as a recovery operation. As a result, the remaining chip S that has been damaged is not supported by a support such as taping, so that it is possible to prevent a defective product from flowing out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Accurate coordinate data is obtained for individual chips within a wafer after expansion, allowing accurate pick-up even if said expansion causes chips to shift or drop out. This invention has the following: an imaging unit (60a) that images chips (S) on an expanded wafer sheet (Da); a reference detection unit (12) that uses the captured image data to find a reference chip and identifies the coordinates of said reference chip, yielding coordinate data; a scanning unit (13) that identifies the coordinates of each chip (S), yielding coordinate data, on the basis of image data captured for each chip (S) as the imaging unit (60a) moves relative to the wafer sheet (Da), based on the coordinate data for the reference chip and relative-position information for each chip (S); and a pick-up unit (50a) that selectively picks up chips (S) while moving relative to the wafer sheet (Da) on the basis of the coordinate data for each chip.

Description

分類装置、分類方法、分類プログラム、移載装置、移載方法及び移載プログラムClassification device, classification method, classification program, transfer device, transfer method, and transfer program
 本発明は、ウェハシートに貼り付けられたウェハから、個片のチップを選択的にピックアップする分類装置、分類方法、分類プログラム、移載装置、移載方法及び移載プログラムに関する。 The present invention relates to a classification device, a classification method, a classification program, a transfer device, a transfer method, and a transfer program for selectively picking up individual chips from a wafer attached to a wafer sheet.
 半導体の製造工程では、ウェハ貼付工程、ダイシング工程が実施される。ウェハ貼付工程は、個片に切断される前のウェハを、表面に粘着性を有するウェハシートに貼付して、これをリングに張り付ける工程である。ダイシング工程は、ウェハシートに貼付されたウェハを切断することにより、個片の半導体素子(以下、チップとする)に分割する工程である。 In the semiconductor manufacturing process, a wafer pasting process and a dicing process are performed. The wafer sticking step is a step of sticking the wafer before being cut into individual pieces to a wafer sheet having adhesiveness on the surface and sticking it to the ring. The dicing process is a process of dividing the wafer attached to the wafer sheet into individual semiconductor elements (hereinafter referred to as chips) by cutting.
 ウェハに含まれる各チップに対しては、あらかじめ触針により電気的特性を検査するプローブ検査が行われ、その結果である各チップの良品、不良品及びその位置に関する情報を、制御装置が保持している。このようなプローブ検査によって得られた情報は、マップデータと呼ばれる。 Each chip included in the wafer is subjected to a probe inspection in which electrical characteristics are inspected by a stylus in advance, and the control device holds information regarding the non-defective and defective products of each chip and the position thereof. ing. Information obtained by such probe inspection is called map data.
 また、各チップに対しては、カメラ等の撮像部により撮像された画像に基づく外観検査が行われる場合もある。プローブ検査に加えて、外観検査が行われた場合、プローブ検査の結果と外観検査の結果を合わせたものも、マップデータと呼ぶ場合もある。 In addition, for each chip, an appearance inspection based on an image captured by an imaging unit such as a camera may be performed. When an appearance inspection is performed in addition to the probe inspection, a combination of the probe inspection result and the appearance inspection result may be referred to as map data.
 このようなマップデータに基づいて、ピックアップ装置は、良品のチップのみをピックアップして、貼り付け工程、マウンティング工程又はテーピング工程が行われる。貼り付け工程は、ウェハシート単位で管理、出荷等するために、ピックアップ装置によってピックアップした良品のチップを、貼り付け装置によって、伸張されたウェハシートに貼り付ける工程である。 Based on such map data, the pick-up device picks up only non-defective chips and performs the attaching process, mounting process or taping process. The pasting step is a step of pasting non-defective chips picked up by the pick-up device to the stretched wafer sheet by the pasting device in order to manage and ship in units of wafer sheets.
 マウンティング工程は、個片化されたチップを順次ピックアップし、リードフレームや基板に接着する工程である。テーピング工程は、ピックアップされたチップを、テープに貼付する工程である。 The mounting process is a process of picking up individual chips in order and bonding them to a lead frame or a substrate. The taping step is a step of sticking the picked-up chip to the tape.
特開2006-13012公報JP 2006-13012 A
 上記のようなダイシング後の個片化されたチップ間には、ほとんど隙間がなく密着している。このため、ダイシング後、ピックアップ前には、ピックアップし易いように、ウェハシートを伸張(エキスパンド)させて、個片化されたチップ間に隙間を空けることが実施されている。このようにエキスパンドしたウェハシートには、部分的なゆがみが生じる。この場合のウェハシート上のチップの変位は、均一とならない。 The chips separated after dicing as described above are in close contact with almost no gap. For this reason, after dicing and before picking up, the wafer sheet is stretched (expanded) so as to be easily picked up, and a gap is formed between the separated chips. The expanded wafer sheet is partially distorted. In this case, the displacement of the chip on the wafer sheet is not uniform.
 一方、マップデータにおける各チップの位置に関する情報は、チップの行方向及び列方向の並びを示す相対位置情報に過ぎない。このため、マップデータに基づいて、チップをピックアップしようとしても、チップの位置と、エキスパンドしたウェハシート上のチップの位置との間には、ずれが生じる。 On the other hand, the information regarding the position of each chip in the map data is only relative position information indicating the arrangement in the row direction and the column direction of the chip. For this reason, even if an attempt is made to pick up a chip based on the map data, a deviation occurs between the position of the chip and the position of the chip on the expanded wafer sheet.
 これに対処するため、ウェハシートに対してピックアップ装置を相対移動させる際に、リファレンスチップを基準とし、マップデータに従って目標のチップの位置を類推して位置決めしながら、順次ピックアップしていくことが考えられる。 In order to cope with this, when the pick-up device is moved relative to the wafer sheet, it is considered that the pick-up is performed sequentially while positioning the target chip by analogy according to the map data using the reference chip as a reference. It is done.
 しかし、エキスパンドしたウェハシート上のチップの変位は大きい。このため、単にリファレンスチップを基準としてチップの位置を類推しても、目標とするチップに適切に位置決めできない。チップに位置決めする毎に、ずれがあった場合に位置を補正したとしても、そのチップが、マップデータ上の目標とするチップであるかどうかも特定できないため、正しいピックアップを保証できない。 However, the displacement of the chip on the expanded wafer sheet is large. For this reason, even if the position of the chip is simply estimated based on the reference chip, it cannot be properly positioned on the target chip. Even if the position is corrected every time the chip is positioned, it cannot be specified whether the chip is the target chip on the map data.
 特許文献1には、ウェハ上に複数の基準ポイントを設定し、エキスパンド前とエキスパンド後の基準ポイントの位置から、エキスパンドの拡張率を求め、この拡張率に基づいて、各チップの位置を類推する手法が開示されている。しかし、この手法も、特定の基準位置から、チップの位置を類推しているに過ぎず、上記と同様の問題が生じる。 In Patent Document 1, a plurality of reference points are set on a wafer, an expansion expansion rate is obtained from the positions of the reference points before and after the expansion, and the position of each chip is inferred based on the expansion rate. A technique is disclosed. However, this method also merely estimates the position of the chip from a specific reference position, and the same problem as described above occurs.
 また、チップがウェハシートから剥がれ落ちる等によって、マップデータ上で存在すべき位置にチップが存在しなくなる場合がある。この場合、所定のピッチで走査してもチップが存在しないためにピックアップができない上に、次のチップへ位置決めする際の位置補正もできず、ずれはさらに拡大していく。 Also, there is a case where the chip does not exist at the position where it should exist on the map data due to the chip falling off from the wafer sheet. In this case, even if scanning is performed at a predetermined pitch, the chip cannot be picked up because the chip does not exist. Further, the position cannot be corrected at the time of positioning to the next chip, and the deviation further increases.
 さらに、1つのウェハシートにおけるチップが、品質に応じて複数のランクに分かれている場合、特定のランク毎に選択的にピックアップして収集できることが望ましい。しかし、特定のランクのチップをピックアップした後、他のランクのチップをピックアップする場合には、チップが無くなった箇所が生じているため、上記の剥がれ落ちと同様に、位置決めの困難さが生じる。しかも、ピックアップを行うための装置に対し、ウェハシートを装着したリングの着脱は、以下のように行われる。まず、オートローダが、リングを複数枚収納したカセットから、いずれか1つのリングを取り出して装置に装着し、エキスパンドが行われる。ピックアップ後は、エキスパンドが解除されて、オートローダがリングを取り外してカセットに収納する。このため、複数枚のウェハシートを順次交換しながら、特定のランクのチップをピックアップして収集する場合、各ウェハシートに対してエキスパンドを繰り返すことになる。すると、チップの位置ずれが多く発生し、正確なピックアップが困難となる。 Furthermore, when chips on one wafer sheet are divided into a plurality of ranks according to quality, it is desirable that they can be selectively picked up and collected for each specific rank. However, when picking up a chip of a specific rank after picking up a chip of a specific rank, since there is a portion where the chip is lost, positioning is difficult as in the case of the above-mentioned peeling off. Moreover, the attachment / detachment of the ring on which the wafer sheet is attached to the apparatus for picking up is performed as follows. First, the autoloader takes out one of the rings from a cassette containing a plurality of rings and mounts the ring on the apparatus, and expansion is performed. After the pickup, the expansion is released and the autoloader removes the ring and stores it in the cassette. For this reason, when picking up and collecting chips of a specific rank while sequentially exchanging a plurality of wafer sheets, the expansion is repeated for each wafer sheet. As a result, a large amount of chip displacement occurs, making accurate pickup difficult.
 本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、エキスパンド後のウェハ内の個々のチップの座標データを正確に得ることにより、エキスパンドによるチップのずれ、チップの抜け落ち等があっても、正確なピックアップを行うことができる分類装置、分類方法、分類プログラム、移載装置、移載方法及び移載プログラムを提供することにある。 The present invention has been proposed in order to solve the above-described problems of the prior art. The purpose of the present invention is to obtain the coordinate data of the individual chips in the wafer after the expansion, and thereby to perform the expansion. An object of the present invention is to provide a classification device, a classification method, a classification program, a transfer device, a transfer method, and a transfer program that can perform accurate pick-up even if there is a chip shift or chip drop.
 上記の目的を達成するため、本発明の分類装置は、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、前記スキャン部により特定された各チップの座標データと、各チップを区別した区別情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップするピックアップ部と、を有することを特徴とする。 In order to achieve the above-described object, the classification apparatus according to the present invention uses a wafer sheet to which a diced wafer is attached to expand a wafer sheet into individual wafer chips based on coordinate data. On the basis of the image pickup unit that picks up an image while relatively moving, and the image data picked up by the image pickup unit, a reference chip with a specific mark is found among the chips in the wafer, and the image pickup unit moves relatively. A reference detection unit for performing a reference detection process for specifying the coordinate data of the reference chip based on the coordinate data for the reference chip, and the imaging unit on the wafer based on the reference chip coordinate data and the relative position information of each chip in the wafer. Image data obtained by imaging each chip while moving relative to the sheet, and the imaging unit moves relatively. Based on the coordinate data for the purpose, based on the scanning unit that performs the scanning process that specifies the coordinate data of each chip, the coordinate data of each chip specified by the scan unit, and the discrimination information that distinguishes each chip And a pickup section that selectively picks up a chip while moving relative to the wafer sheet.
 前記撮像部が撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、前記リファレンス検出処理によるリファレンスチップの座標データが、正しいか否かを検査するリファレンス検査処理を行うリファレンス検査部を有していてもよい。 Based on the image data captured by the imaging unit and the coordinate data for the relative movement of the imaging unit, a reference inspection process is performed to inspect whether the reference chip coordinate data by the reference detection process is correct. You may have a reference test | inspection part.
 各チップを区別した区別情報は、品質の程度を示すランクを含み、前記ピックアップ部によりランク毎にピックアップされたチップを、ウェハシートにランク毎にまとめて貼付する貼り付け部を有していてもよい。 The distinction information that distinguishes each chip includes a rank indicating the degree of quality, and may have a pasting unit that pastes the chips picked up for each rank by the pick-up unit in a rank for each rank. Good.
 前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行ってもよい。 A reference chip may be set for each of a plurality of guaranteed areas that divide the wafer, and the scan unit may perform a scanning process based on the reference chip for each guaranteed area of the reference chip.
 前記スキャン部は、チップの有無にかかわらず、各チップについてスキャン処理済みを示すフラグを立て、スキャン処理済みのチップがなくなるまで、スキャン処理を行ってもよい。 The scanning unit may set a flag indicating that the scanning process has been completed for each chip, regardless of the presence or absence of the chip, and perform the scanning process until there is no more scanned chip.
 前記撮像部は、複数のチップ単位で相対移動し、前記スキャン部は、前記撮像部により撮像された画像データに含まれる複数のチップについて、それぞれ座標データを特定してもよい。 The imaging unit may relatively move in units of a plurality of chips, and the scanning unit may specify coordinate data for each of the plurality of chips included in the image data captured by the imaging unit.
 前記撮像部の相対移動の経路は、重複が最小となるように設定されていてもよい。 The path of relative movement of the imaging unit may be set so that overlap is minimized.
 前記撮像部のリファレンスチップの撮像位置から他のリファレンスチップの撮像位置までの相対移動の距離が、最短となるように設定されていてもよい。 The relative movement distance from the imaging position of the reference chip of the imaging unit to the imaging position of another reference chip may be set to be the shortest.
 前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行い、前記リファレンス検査部は、保証領域毎に、リファレンス検査を行ってもよい。 A reference chip is set for each of a plurality of guaranteed areas that divide the wafer, and the scan unit performs a scan process based on the reference chip for each guaranteed area of the reference chip. In addition, a reference test may be performed.
 前記スキャン部は、リファレンスチップを基準とするスキャン処理を、保証領域を複数の領域に区切った部分領域毎に行い、前記リファレンス検査部は、部分領域毎に、リファレンス検査を行ってもよい。 The scan unit may perform a scan process based on a reference chip for each partial region obtained by dividing the guaranteed region into a plurality of regions, and the reference inspection unit may perform a reference inspection for each partial region.
 チップをピックアップするウェハシートを換える毎に、ウェハシートの伸張が行われてもよい。 毎 Each time the wafer sheet for picking up chips is changed, the wafer sheet may be stretched.
 また、本発明の移載装置は、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、前記スキャン部により特定された各チップの座標データに基づいて、ウェハシートに対して相対移動しながら、チップをピックアップするピックアップ部と、を有することを特徴とする。 In addition, the transfer device of the present invention is configured to move a chip in which a wafer is divided into pieces into a relative movement with respect to the wafer sheet based on the coordinate data by stretching the wafer sheet to which the diced wafer is attached. Based on the image pickup unit that picks up the image and the image data picked up by the image pickup unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinate data for the relative movement of the image pickup unit is found. A reference detection unit for performing reference detection processing for identifying coordinate data of the reference chip, and the imaging unit relative to the wafer sheet with reference to the coordinate data of the reference chip and relative position information of each chip in the wafer. Image data obtained by imaging each chip while moving, and coordinate data for relative movement of the imaging unit; And a pickup that picks up the chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scan unit, and a scan unit that performs coordinate processing to specify the coordinate data of each chip And a portion.
 前記ピックアップ部によりピックアップされたチップを、チップを支持する支持体まで搬送する搬送装置を有してもよい。 A chip may be provided that transports the chip picked up by the pick-up unit to a support that supports the chip.
 前記搬送装置は、前記ピックアップ部によりランク毎にピックアップされたチップを、前記支持体にランク毎にまとめて支持させてもよい。 The transfer device may support the chips picked up for each rank by the pick-up unit collectively for each rank on the support.
 前記搬送装置は、複数の前記支持体毎に、ランクに分けて支持させてもよい。 The conveying device may be divided into ranks for each of the plurality of supports.
 前記搬送装置は、前記ピックアップ部によりピックアップされた順序に従って、前記支持体に支持させてもよい。 The transport device may be supported by the support according to the order picked up by the pickup unit.
 前記支持体は、キャリアテープであり、前記搬送装置から受け取ったチップをキャリアテーブにテーピングするテーピングユニットを有してもよい。 The support may be a carrier tape, and may include a taping unit that taps a chip received from the transport device onto a carrier tape.
 前記支持体は、ウェハシートであり、前記ピックアップ部によりピックアップされたチップを、ウェハシートに貼付する貼付部を有してもよい。 The support may be a wafer sheet, and may include a pasting unit for pasting the chip picked up by the pick-up unit to the wafer sheet.
 なお、上記の各部の機能をコンピュータ又は電子回路により実行する方法及びコンピュータに実行させるプログラムも、本発明の一態様である。 Note that a method of executing the functions of the above-described units by a computer or an electronic circuit and a program executed by the computer are also one aspect of the present invention.
 本発明によれば、エキスパンド後のウェハ内の個々のチップの座標データを正確に得ることにより、エキスパンドによるチップのずれ、チップの抜け落ち等があっても、正確なピックアップを行うことができる分類装置、分類方法、分類プログラム、移載装置、移載方法及び移載プログラムを提供できる。 According to the present invention, by accurately obtaining the coordinate data of individual chips in the expanded wafer, it is possible to perform accurate pick-up even if there is chip displacement or chip dropout due to expansion. A classification method, a classification program, a transfer device, a transfer method, and a transfer program can be provided.
第1の実施形態に用いられる分類装置の構成を示す簡略側面図The simplified side view which shows the structure of the classification device used for 1st Embodiment 第1の実施形態におけるリング及びこれに張り付けられたウェハシートの構成を示す平面図The top view which shows the structure of the ring in 1st Embodiment, and the wafer sheet affixed on this 第1の実施形態における制御装置の構成を示すブロック図The block diagram which shows the structure of the control apparatus in 1st Embodiment. 第1の実施形態の全体処理を示す説明図Explanatory drawing which shows the whole process of 1st Embodiment. 第1の実施形態のスキャン処理を示すフローチャートThe flowchart which shows the scanning process of 1st Embodiment 第1の実施形態の目標チップへの位置決め処理を示す説明図Explanatory drawing which shows the positioning process to the target chip | tip of 1st Embodiment. 第1の実施形態のスキャン処理の領域を示す説明図Explanatory drawing which shows the area | region of the scanning process of 1st Embodiment 第2の実施形態の構成を示す平面図The top view which shows the structure of 2nd Embodiment. 第2の実施形態の簡略側面図Simplified side view of the second embodiment ピックアップ部の他の形態を示す簡略側面図Simplified side view showing another form of pickup unit 第2の実施形態の全体処理の一例を示すフローチャートThe flowchart which shows an example of the whole process of 2nd Embodiment 第2の実施形態の全体処理の他の一例を示すフローチャートThe flowchart which shows another example of the whole process of 2nd Embodiment. トレイユニットの一例を示す簡略側面図Simplified side view showing an example of tray unit
 本発明の実施形態を、図面を参照して説明する。
1.第1の実施形態
 本実施形態は、ウェハシートからピックアップしたチップを、ウェハシートに支持させる分類装置である。本実施形態は、ウェハシートからウェハシートまで、チップを移載する移載装置として捉えることもできる。
[A.チップ]
 本実施形態に適用されるチップは、電気製品に使用される部品であり、半導体素子、及び半導体素子以外の抵抗やコンデンサ等を挙げることができる。半導体素子としては、トランジスタ、ダイオード、LED、コンデンサ、及びサイリスタ等のディスクリート半導体、ICやLSI等の集積回路等を挙げることができる。
Embodiments of the present invention will be described with reference to the drawings.
1. First Embodiment The present embodiment is a classification device that supports chips picked up from a wafer sheet on the wafer sheet. This embodiment can also be regarded as a transfer device for transferring chips from a wafer sheet to a wafer sheet.
[A. Chip]
The chip applied to the present embodiment is a component used for an electrical product, and examples thereof include a semiconductor element and a resistor or capacitor other than the semiconductor element. Examples of the semiconductor element include discrete semiconductors such as transistors, diodes, LEDs, capacitors, and thyristors, and integrated circuits such as ICs and LSIs.
[B.データ]
 次に、本実施形態で用いられる各種のデータは、以下の通りである。
[1.マップデータ]
 マップデータは、チップの区別情報及びチップの位置情報を含む。チップ
の区別情報は、チップを所定の基準で区別した情報である。この区別情報に
は、前工程において、あらかじめ行われた品質検査によるチップの良不良の
程度に応じて、チップを分類したランクが含まれる。このランクは、単なる
良品か不良品かの情報でも、複数の等級に分けた情報でもよい。品質検査に
は、プローブ検査及び外観検査の少なくとも一方を含む。
[B. data]
Next, various data used in this embodiment are as follows.
[1. Map data]
The map data includes chip discrimination information and chip position information. The chip distinction information is information that distinguishes the chips according to a predetermined standard. This distinction information includes a rank in which chips are classified according to the degree of good / bad of the chips by quality inspection performed in advance in the previous process. This rank may be information indicating whether the product is a non-defective product or a defective product, or may be information divided into a plurality of grades. The quality inspection includes at least one of a probe inspection and an appearance inspection.
 また、区別情報は、製品となるチップ(製品チップ)とそれ以外のチップとを区別する情報も含む。特に、本実施形態の区別情報は、リファレンスチップであることを示す情報を含む。リファレンスチップは、ウェハ上の製品チップの位置の基準とするために、外観から識別できるマーク(リファレンスマーク)が付されたチップである。なお、リファレンスチップは、外観から識別できる態様を備えていればよい。 Further, the discrimination information includes information for discriminating between a chip to be a product (product chip) and other chips. In particular, the distinction information of the present embodiment includes information indicating that it is a reference chip. The reference chip is a chip with a mark (reference mark) that can be identified from the appearance in order to be a reference for the position of the product chip on the wafer. In addition, the reference chip should just be provided with the aspect which can be identified from an external appearance.
 また、チップの位置情報は、ウェハにおける基準点から見た各チップの行方向、列方向の相対的な位置情報である。 Further, the chip position information is relative position information in the row direction and the column direction of each chip viewed from the reference point on the wafer.
 具体的には、マップデータは、各チップが、何行何列目に当たるかという情報と、それが製品チップであればA~D等のどのランクかを示す情報と、リファレンスチップであることを示す情報からなるラスタデータとして表現できる。 Specifically, the map data includes information indicating which row and column each chip hits, information indicating which rank of A to D, etc. if it is a product chip, and a reference chip. It can be expressed as raster data consisting of the indicated information.
 さらに、マップデータには、各リファレンスチップが、ウェハ上のチップの位置を保証する領域が設定されている。つまり、ウェハ全体の領域が、複数の保証領域に区分され、保証領域毎に、リファレンスチップが設定されている。各リファレンスチップの位置は、各リファレンスチップが属する保証領域におけるチップの位置の基準とすることができる。 Furthermore, in the map data, an area in which each reference chip guarantees the position of the chip on the wafer is set. That is, the entire area of the wafer is divided into a plurality of guaranteed areas, and a reference chip is set for each guaranteed area. The position of each reference chip can be used as a reference for the position of the chip in the guaranteed area to which each reference chip belongs.
[2.座標データ]
 座標データは、装置にウェハシートがセットされた場合の各チップの位置情報である。本実施形態においては、この座標データに基づいて、後述する撮像部、ピックアップ部等の位置決めがなされる。なお、撮像部、ピックアップ部は、ウェハに対して相対的に移動すればよい。本実施形態では、後述するように、ウェハシートを張り付けたウェハリングをセットしたリング移動機構が移動することにより、この相対移動を実現している。座標データは、後述するリング移動機構のエンコーダ情報の座標値(x,y,θ)として取得できる。
[2. Coordinate data]
The coordinate data is position information of each chip when a wafer sheet is set in the apparatus. In the present embodiment, an imaging unit, a pickup unit, and the like, which will be described later, are positioned based on this coordinate data. Note that the imaging unit and the pickup unit may be moved relative to the wafer. In this embodiment, as will be described later, this relative movement is realized by moving a ring moving mechanism in which a wafer ring to which a wafer sheet is attached is set. The coordinate data can be acquired as coordinate values (x, y, θ) of encoder information of the ring moving mechanism described later.
[C.分類装置]
 次に、本実施形態の分類装置1の一例を、図1及び図2を参照して説明する。なお、本実施形態は、種々の態様の機構に適用可能であり、以下に示す機構はその一例に過ぎないため、説明は簡略化する。
[C. Classification device]
Next, an example of the classification device 1 of the present embodiment will be described with reference to FIGS. 1 and 2. Note that the present embodiment can be applied to various aspects of the mechanism, and the following mechanism is merely an example, and thus the description will be simplified.
 本実施形態の分類装置1は、図1~図3に示すように、第1の支持装置100、搬送装置200、第2の支持装置300及び制御装置10を有する。 The classification device 1 according to this embodiment includes a first support device 100, a transport device 200, a second support device 300, and a control device 10, as shown in FIGS.
[1.第1の支持装置]
 第1の支持装置100は、リング移動機構2A、エキスパンド機構3A、
分離機構4Aを有する。
[1. First support device]
The first support device 100 includes a ring moving mechanism 2A, an expanding mechanism 3A,
It has a separation mechanism 4A.
(リング移動機構)
 リング移動機構2Aは、リングホルダ21に装着されたウェハリングRa
を、所定の方向に移動させる装置である。
(Ring moving mechanism)
The ring moving mechanism 2A includes a wafer ring Ra attached to the ring holder 21.
Is a device that moves the camera in a predetermined direction.
 ウェハリングRaは、図2に示すように、内部に形成された円形の穴が覆われるように、ウェハシートDaを張り付け保持するプレート状の部材である。このウェハシートDaには、ウェハWが貼り付けられている。そして、ウェハWは、ダイシングにより、複数のチップSに切断されている。 As shown in FIG. 2, the wafer ring Ra is a plate-like member that holds and holds the wafer sheet Da so that a circular hole formed inside is covered. A wafer W is attached to the wafer sheet Da. The wafer W is cut into a plurality of chips S by dicing.
 リング移動機構2Aは、リングホルダ21を、図示しないガイドレール等に沿って、X軸方向及びY軸方向に位置決め可能に設けられている。また、リング移動機構2Aは、図示しないモータの駆動力を伝達するベルト及びプーリ等によって、リングホルダ21をθ方向に位置決め可能に設けられている。 The ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the X-axis direction and the Y-axis direction along a guide rail (not shown). The ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the θ direction by a belt, a pulley, and the like that transmit a driving force of a motor (not shown).
(エキスパンド機構)
 エキスパンド機構3Aは、ウェハシートDaを伸張することにより、個片のチップS間に隙間を空ける機構である。このエキスパンド機構3Aは、円筒状の引張部31を有する。引張部31は、以下のように、ウェハシートDaを伸張するように構成されている。まず、引張部31の円筒の一端を、ウェハリングRaの背後からウェハシートDaにおけるウェハWの貼付面の反対側に押し当てる。
(Expanding mechanism)
The expanding mechanism 3A is a mechanism that creates a gap between the individual chips S by extending the wafer sheet Da. The expanding mechanism 3 </ b> A has a cylindrical tensile portion 31. The tension portion 31 is configured to stretch the wafer sheet Da as follows. First, one end of the cylinder of the tension portion 31 is pressed against the opposite side of the wafer W on the wafer sheet Da from the back of the wafer ring Ra.
 そして、引張部31が、その外周とウェハリングRaの円形の穴の内周との間にウェハシートDaを挟んで、ウェハリングRaの正面側に突出するように移動する。これにより、ウェハシートDaが、ウェハWを囲む円の内側から外側へ向かう方向の力によって伸張する。引張部31は、このような動作を実現するために、図示しないシリンダ等により進退可能に設けられている。 Then, the pulling portion 31 moves so as to protrude to the front side of the wafer ring Ra with the wafer sheet Da interposed between the outer periphery thereof and the inner periphery of the circular hole of the wafer ring Ra. As a result, the wafer sheet Da is stretched by a force in a direction from the inside to the outside of the circle surrounding the wafer W. In order to realize such an operation, the tension portion 31 is provided so as to be able to advance and retract by a cylinder (not shown) or the like.
(分離機構)
 分離機構4Aは、ウェハシートDaから、個別にチップSを分離する装置である。この分離機構4Aは、ウェハシートDaを挟んでチップSに対向するピン41aを有する。このピン41aは、リング移動機構2Aの移動に従って、対向する位置に来たチップSを、先端によりウェハシートDaを介して押圧する方向に移動可能に設けられている。
(Separation mechanism)
The separation mechanism 4A is a device that separates the chips S from the wafer sheet Da. The separation mechanism 4A has pins 41a facing the chip S with the wafer sheet Da interposed therebetween. This pin 41a is provided so as to be movable in a direction in which the tip S that has come to the opposite position is pressed via the wafer sheet Da by the tip as the ring moving mechanism 2A moves.
(オートローダ)
 オートローダ5Aは、図4に示すように、ウェハWが貼り付けられたウェハシートDaを保持するウェハリングRaを、カセット内に複数枚収納し、リング移動機構2Aに対して装着、取り外しを行う装置である。このオートローダ5Aの機構の詳細は、周知であり、説明を省略する。
(Autoloader)
As shown in FIG. 4, the autoloader 5A stores a plurality of wafer rings Ra holding the wafer sheet Da to which the wafer W is attached in a cassette, and attaches and removes the wafer ring Ra to and from the ring moving mechanism 2A. It is. The details of the mechanism of this autoloader 5A are well known and will not be described.
[2.搬送装置]
 搬送装置200は、第1の支持装置100、第2の支持装置300との間に配設されている。搬送装置200は、第1の支持装置100側のピックアップ部50a、中間の反転部50b、第2の支持装置300側の貼付部50cを有する。
[2. Transport device]
The transport device 200 is disposed between the first support device 100 and the second support device 300. The transport apparatus 200 includes a pickup unit 50a on the first support device 100 side, an intermediate reversing unit 50b, and a pasting unit 50c on the second support device 300 side.
 ピックアップ部50a、反転部50b、貼付部50cは、それぞれが、ロータリーピックアップとして構成されている。各ロータリーピックアップは、設置面に対して垂直な回転面を有し、図示しない駆動源による間欠回転により、チップSを外周に沿って搬送する。このため、搬送装置200は、3連のロータリーピックアップによるチップSの搬送経路を実現している。 The pickup unit 50a, the reversing unit 50b, and the pasting unit 50c are each configured as a rotary pickup. Each rotary pickup has a rotation surface perpendicular to the installation surface, and conveys the chip S along the outer periphery by intermittent rotation by a drive source (not shown). For this reason, the transport apparatus 200 realizes a transport path of the chip S by a triple rotary pickup.
 ロータリーピックアップは、チップSを先端で保持及び離脱させる複数の保持部51を備えている。この保持部51は、同一円周上に円周等配位置で設置され、その円周中心からの半径方向に沿って延びている。保持部51は、先端を外方に向けて配置されている。ロータリーピックアップは、図示しない駆動源であるモータによって、チップSを保持した保持部51を、その円周中心を通って該半径方向と直交する軸を回転中心として所定角度ずつ回転させる。 The rotary pickup includes a plurality of holding portions 51 that hold and detach the chip S at the tip. The holding portions 51 are installed at equal circumferential positions on the same circumference, and extend along the radial direction from the circumference center. The holding part 51 is arranged with the tip facing outward. The rotary pickup rotates the holding portion 51 holding the chip S by a predetermined angle by using a motor (not shown) that holds the chip S around the axis perpendicular to the radial direction through the center of the circumference.
 保持部51は、ロータリーピックアップの半径方向に沿って外方、換言すると、ロータリーピックアップの中心から離れる方向に進出及び退入可能となっている。また、保持部51の幾つかの停止箇所には、保持部51に対して進出及び退入の推進力を与える図示しない進退駆動装置が配置されている。幾つかの停止箇所とは、ピックアップ地点K、受け渡し地点L、受け渡し地点M、貼り付け地点Nである。 The holding portion 51 can be advanced and retracted outward along the radial direction of the rotary pickup, in other words, away from the center of the rotary pickup. Further, an advance / retreat driving device (not shown) that gives a propelling force for advancement and retraction to the holding unit 51 is arranged at several stop points of the holding unit 51. Some stop points are a pickup point K, a delivery point L, a delivery point M, and a pasting point N.
 さらに、保持部51は、例えば、ロータリーピックアップの半径方向に沿った軸を有する吸着ノズルとして構成されている。吸着ノズルは、ノズル先端が開口した中空状の筒であり、ノズル先端をテーブル半径方向外方に向けており、またノズル内部は真空発生装置の空気圧回路とチューブを介して連通している。この吸着ノズルは、真空発生装置による負圧の発生によってチップSを吸着し、真空破壊又は正圧の発生によってチップSを離脱させる。 Furthermore, the holding part 51 is configured as a suction nozzle having an axis along the radial direction of the rotary pickup, for example. The suction nozzle is a hollow cylinder having an opening at the tip of the nozzle, the tip of the nozzle is directed outward in the radial direction of the table, and the inside of the nozzle communicates with a pneumatic circuit of a vacuum generator via a tube. The suction nozzle sucks the chip S by generating a negative pressure by a vacuum generator and releases the chip S by breaking a vacuum or generating a positive pressure.
 各ロータリーピックアップは、隣接配置されるが、保持部51を回転させる回転軸が平行であり、且つ保持部51の配置平面が同一となるように配置されている。換言すると、3連のロータリーピックアップには重なりがない。そして、保持部51が互いに先端を向き合わせた位置がチップSの受け渡し地点L、Mとなり、片方が保持していたチップSを他方に渡すことで、搬送経路が連続する。 The rotary pickups are arranged adjacent to each other, but are arranged so that the rotation axis for rotating the holding unit 51 is parallel and the arrangement plane of the holding unit 51 is the same. In other words, the triple rotary pickups do not overlap. And the position where the holding | maintenance part 51 faced the front-end | tip mutually becomes the delivery points L and M of the chip | tip S, and the conveyance path | route continues by passing the chip | tip S which one side hold | maintained to the other.
 また、ピックアップ地点Kに停止した保持部51は、第1の支持装置100のウェハシートDaの面に対して、進退方向が直交する方向となるように対向する。そして、リング移動機構2Aにより、保持部51の先端に位置決めされたチップSが、吸着ノズルの吸着対象となる。一方、貼り付け地点Nに停止した保持部51は、後述するウェハシートDbの面に対して、進退方向が直交する方向となるように対向する。そして、後述するリング移動機構2Bにより、保持部51の先端に位置決めされたウェハシートDbの箇所が、チップSの貼り付け箇所となる。 Further, the holding unit 51 stopped at the pickup point K faces the surface of the wafer sheet Da of the first support device 100 so that the advancing and retreating directions are orthogonal to each other. And the chip | tip S positioned by the front-end | tip of the holding | maintenance part 51 by the ring moving mechanism 2A becomes the adsorption | suction object of an adsorption nozzle. On the other hand, the holding unit 51 stopped at the pasting point N faces the surface of the wafer sheet Db described later so that the advancing and retreating directions are orthogonal to each other. And the location of the wafer sheet Db positioned at the tip of the holding portion 51 by the ring moving mechanism 2B described later becomes the location where the chip S is attached.
(ピックアップ部)
 ピックアップ部50aは、第1の支持装置100における分離機構4Aにより、他のチップSから分離されたチップSを受け取り、反転部50bに受け渡す機構である。つまり、ピックアップ地点Kにおいて、ウェハシートDaのチップSの一方の面を、保持部51が保持することによりピックアップしたチップSを、間欠回転により、受け渡し地点Lまで搬送する。これにより、受け渡し地点Lにおいて、チップSの他方の面を、対向する反転部50bの保持部51に向ける。
(Pickup part)
The pickup unit 50a is a mechanism that receives the chips S separated from the other chips S by the separation mechanism 4A in the first support device 100 and delivers them to the reversing unit 50b. That is, at the pickup point K, the chip S picked up by holding the one surface of the chip S of the wafer sheet Da by the holding unit 51 is transported to the delivery point L by intermittent rotation. Thereby, in the delivery point L, the other surface of the chip S is directed to the holding portion 51 of the opposite reversing portion 50b.
(反転部)
 反転部50bは、ピックアップ部50aにより搬送されたチップSを受け取り、貼付部50cに受け渡す機構である。つまり、上記のように、ピックアップ部50aの保持部51によって保持されたチップSの他方の面を、受け渡し地点Lにおいて、対向する反転部50bの保持部51が保持することにより受け取り、間欠回転により、受け渡し地点Mまで搬送する。これにより、受け渡し地点Mにおいて、チップSの一方の面を、対向する貼付部50cの保持部51に向ける。このように、反転部50bは、ピックアップ部50aから貼付部50cへのチップSの受け渡す経路となるとともに、チップSの表裏反転機構となっている。
(Reversing part)
The reversing unit 50b is a mechanism that receives the chip S conveyed by the pickup unit 50a and delivers it to the pasting unit 50c. That is, as described above, the other surface of the chip S held by the holding unit 51 of the pickup unit 50a is received at the transfer point L by the holding unit 51 of the opposite reversing unit 50b, and is intermittently rotated. , Transport to the delivery point M. Thereby, in the delivery point M, one surface of the chip | tip S is orient | assigned to the holding | maintenance part 51 of the sticking part 50c which opposes. As described above, the reversing unit 50b serves as a path for transferring the chip S from the pickup unit 50a to the attaching unit 50c, and also serves as a front / back reversing mechanism for the chip S.
(貼付部)
 貼付部50cは、反転部50bにより搬送されたチップSを受け取り、第2の支持装置300におけるウェハシートDbに貼り付ける機構である。つまり、上記のように、反転部50bの保持部51によって保持されたチップSの一方の面を、受け渡し地点Mにおいて、対向する貼付部50cの保持部51によって保持することにより受け取り、間欠回転により、貼り付け位置Nまで搬送する。これにより、貼り付け位置Nにおいて、チップSの他方の面を、対向する第2の支持装置300のウェハシートDbに向けて、ウェハシートDbに貼り付ける。
(Attached part)
The affixing unit 50 c is a mechanism that receives the chip S conveyed by the reversing unit 50 b and affixes it to the wafer sheet Db in the second support device 300. That is, as described above, one surface of the chip S held by the holding unit 51 of the reversing unit 50b is received by holding the holding unit 51 of the pasting unit 50c facing the transfer point M, and is intermittently rotated. Then, it is conveyed to the pasting position N. As a result, at the attaching position N, the other surface of the chip S is attached to the wafer sheet Db toward the wafer sheet Db of the opposing second support device 300.
(撮像部)
 撮像部60aは、ウェハシートDa及びチップSの画像を撮像する機構で
ある。撮像部60aは、カメラ61aと光学系部材62aを有する。カメラ
61aは、ウェハシートDa上のチップSを撮像し、画像データを出力する装置である。カメラ61aは、その光軸が、ピックアップ部50aの中心に向かうように、ピックアップ部50aの外周近傍に配設されている。光学系部材62aは、ピックアップ部50aの中心近傍に配設され、ウェハシートDa上のチップSの1面の像をカメラ61aに導くように、光軸の方向を変換するプリズムである。
(Imaging part)
The imaging unit 60a is a mechanism that captures images of the wafer sheet Da and the chip S. The imaging unit 60a includes a camera 61a and an optical system member 62a. The camera 61a is an apparatus that images the chip S on the wafer sheet Da and outputs image data. The camera 61a is disposed in the vicinity of the outer periphery of the pickup unit 50a so that its optical axis is directed toward the center of the pickup unit 50a. The optical system member 62a is a prism that is disposed in the vicinity of the center of the pickup unit 50a and converts the direction of the optical axis so that an image of one surface of the chip S on the wafer sheet Da is guided to the camera 61a.
 撮像部60bは、ウェハシートDb及びチップSの画像を撮像する機構である。撮像部60bは、カメラ61bと光学系部材62bを有する。カメラ61bは、ウェハシートDb上のチップSを撮像し、画像データを出力する装置である。カメラ61bは、その光軸が、貼付部50cの中心に向かうように、貼付部50cの外周近傍に配設されている。光学系部材62bは、貼付部50cの中心近傍に配設され、ウェハシートDbの像をカメラ61bに導くように、光軸の方向を変換するプリズムである。 The imaging unit 60b is a mechanism that captures images of the wafer sheet Db and the chip S. The imaging unit 60b includes a camera 61b and an optical system member 62b. The camera 61b is a device that images the chip S on the wafer sheet Db and outputs image data. The camera 61b is disposed in the vicinity of the outer periphery of the pasting portion 50c so that its optical axis is directed toward the center of the pasting portion 50c. The optical system member 62b is a prism that is disposed in the vicinity of the center of the pasting portion 50c and converts the direction of the optical axis so as to guide the image of the wafer sheet Db to the camera 61b.
[3.第2の支持装置]
 第2の支持装置300は、基本的には、第1の支持装置100と同様の構成である。つまり、第2の支持装置300も、分離機構以外のリング移動機構2B、エキスパンド機構3B、オートローダ5Bを有している。リング移動機構2Bは、ウェハシートDbを張り付け保持するウェハリングRbを有している。なお、ウェハシートDbの背面を支持する部材があってもよい。
[3. Second support device]
The second support device 300 basically has the same configuration as that of the first support device 100. That is, the second support device 300 also includes a ring moving mechanism 2B, an expanding mechanism 3B, and an autoloader 5B other than the separation mechanism. The ring moving mechanism 2B has a wafer ring Rb that holds and holds the wafer sheet Db. There may be a member that supports the back surface of the wafer sheet Db.
[4.制御装置]
 次に、上記の各部を制御する制御装置10の構成を、図3、図4のブロック図、図5及び図6の説明図を参照して説明する。制御装置10は、機構制御部11、リファレンス検出部12、スキャン部13、リファレンス検査部14、記憶部15を有する。
[4. Control device]
Next, the configuration of the control device 10 that controls each of the above-described units will be described with reference to the block diagrams of FIGS. 3 and 4 and the explanatory diagrams of FIGS. The control device 10 includes a mechanism control unit 11, a reference detection unit 12, a scanning unit 13, a reference inspection unit 14, and a storage unit 15.
 機構制御部11は、上記の各機構及び各部の動作を制御する処理部である。特に、撮像部60aによる撮像と画像データの取り込みは、エンコーダ情報に基づくリング移動機構2Aの走査に従って、カメラ61aの光軸がウェハシートDa上を相対移動することにより行われる。 The mechanism control unit 11 is a processing unit that controls each mechanism and the operation of each unit. In particular, imaging by the imaging unit 60a and capturing of image data are performed by the relative movement of the optical axis of the camera 61a on the wafer sheet Da according to the scanning of the ring moving mechanism 2A based on the encoder information.
 リファレンス検出部12は、第1の支持装置100のウェハシートDaに貼り付けられたダイシング済みのチップSのうち、リファレンスチップの座標データを検出するリファレンス検出処理を行う処理部である。このリファレンス検出処理は、撮像部60aにより撮像された画像データに基づいて、あらかじめ登録されたリファレンスマークとの照合によるリファレンスチップを発見し、その座標データとして、リング移動機構2Aのエンコーダ情報を取得することにより行われる。 The reference detection unit 12 is a processing unit that performs a reference detection process of detecting coordinate data of a reference chip among the dicing chips S attached to the wafer sheet Da of the first support device 100. In this reference detection process, based on the image data picked up by the image pickup unit 60a, a reference chip by collation with a reference mark registered in advance is found, and encoder information of the ring moving mechanism 2A is acquired as coordinate data thereof. Is done.
 スキャン部13は、第1の支持装置100におけるウェハシートDaに貼り付けられた全てのチップSの座標データを検出するスキャン処理を行う処理部である。チップSの座標データの検出は、リング移動機構2AによりチップSに位置決めされた撮像部60aが、チップSを撮像することにより画像データを得て、その座標データとしてリング移動機構2Aのエンコーダ情報を取得することにより行われる。なお、ここでいう全てのチップSとは、製品チップであり、上記のようにあらかじめランク付けされている。 The scanning unit 13 is a processing unit that performs a scanning process for detecting coordinate data of all the chips S attached to the wafer sheet Da in the first support device 100. The coordinate data of the chip S is detected by the imaging unit 60a positioned on the chip S by the ring moving mechanism 2A obtaining the image data by imaging the chip S and using the encoder information of the ring moving mechanism 2A as the coordinate data. It is done by acquiring. Here, all the chips S here are product chips, and are ranked in advance as described above.
 リファレンス検出処理の前に、ウェハシートDaに貼付されたウェハは、ダイシングされている。そして、上記のエキスパンド機構3Aが、ウェハシートDaを伸張することにより、ピックアップ部50aがピックアップし易いように個片のチップSの間に隙間が空いている。この伸張は、上記のウェハリングRaと引張部31により行うので、ウェハシートDaがウェハWを囲む円の内側から外側へ引っ張られる力により行われる。 Before the reference detection process, the wafer attached to the wafer sheet Da is diced. The expanding mechanism 3A extends the wafer sheet Da so that a gap is formed between the individual chips S so that the pickup unit 50a can easily pick up. Since this extension is performed by the wafer ring Ra and the pulling portion 31 described above, it is performed by a force by which the wafer sheet Da is pulled from the inside of the circle surrounding the wafer W to the outside.
 リファレンス検査部14は、リング移動機構2Aの走査により、リファレンスチップを始点として、チップSのスキャン処理が所定量行われた後、始点のリファレンスチップに戻り、座標データが一致するか(ずれが生じていないか)否かを検査する処理部である。どの程度のスキャン量でリファレンスチップに戻るか否かは、後述するように、種々の態様が考えられる。 The reference inspection unit 14 scans the ring moving mechanism 2A and starts the reference chip as a starting point, and after a predetermined amount of scanning processing of the chip S is performed, the reference inspection unit 14 returns to the reference chip at the starting point, and the coordinate data matches (the difference occurs) It is a processing unit that checks whether or not. As will be described later, various modes are conceivable as to how much the scan amount returns to the reference chip.
 記憶部15は、本実施形態に必要な各種の情報を記憶する処理部である。各種の情報としては、上記のマップデータ及びこれに関連付けられたチップSの座標データを含む。また、撮像した画像データとの照合によりリファレンスマークを判定するための画像データ、スキャン部による走査経路の基準等の各種設定も、記憶部15に記憶される情報に含まれる。 The storage unit 15 is a processing unit that stores various types of information necessary for the present embodiment. The various types of information include the above map data and the coordinate data of the chip S associated therewith. The information stored in the storage unit 15 also includes various settings such as image data for determining a reference mark by collating with captured image data, and a scanning path reference by the scanning unit.
 さらに、制御装置10には、入力部30及び出力部40が接続されている。入力部30は、各部の処理に必要な情報の入力、処理の選択や指示を入力する処理部である。入力部30としては、操作パネル、タッチパネル、スイッチ、キーボード、マウス等、現在又は将来において利用可能な入力装置を含む。 Furthermore, an input unit 30 and an output unit 40 are connected to the control device 10. The input unit 30 is a processing unit that inputs information necessary for processing of each unit, selection of processing, and instructions. The input unit 30 includes input devices that can be used now or in the future, such as an operation panel, a touch panel, a switch, a keyboard, and a mouse.
 出力部40は、操作のためのインタフェース、各種のデータ、画像、処理結果、アラーム等の情報を出力する処理部である。出力部40としては、表示装置、プリンタ、スピーカ、ブザー、ランプ等、現在又は将来において利用可能なあらゆる出力装置を含む。 The output unit 40 is a processing unit that outputs information such as an interface for operation, various data, images, processing results, and alarms. The output unit 40 includes any output device that can be used now or in the future, such as a display device, a printer, a speaker, a buzzer, and a lamp.
 上記の制御装置10の全部若しくは一部は、コンピュータを所定のプログラムで制御することによって実現できる。この場合のプログラムは、CPUを含むコンピュータのハードウェアを物理的に活用することで、上記のような各部の処理を実現するものである。上記の各部の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、本発明の一態様である。 All or part of the control device 10 can be realized by controlling the computer with a predetermined program. The program in this case realizes the processing of each unit as described above by physically utilizing computer hardware including a CPU. A method, a program, and a recording medium storing the program for executing the processing of each unit described above are also one aspect of the present invention.
 ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。例えば、上記の各部のいずれかを、それぞれの処理を実現する回路として構成することも可能である。 How to set the range to be processed by hardware and the range to be processed by software including a program is not limited to a specific mode. For example, any of the above-described units can be configured as a circuit that realizes each process.
 また、記憶部15としては、現在又は将来において利用可能なあらゆる記憶媒体を利用可能である。演算に用いるレジスタ等も、記憶部として捉えることができる。記憶の態様も、長時間記憶が保持される態様のみならず、処理のために一時的に記憶され、短時間で消去又は更新される態様も含まれる。さらに、制御装置10を構成する各処理部、記憶部15、入力部30、出力部40の全部又は一部について、ネットワークを介して接続されたコンピュータにより構成することもできる。 Further, as the storage unit 15, any storage medium that can be used now or in the future can be used. A register or the like used for calculation can also be regarded as a storage unit. The mode of storage includes not only a mode in which memory is stored for a long time but also a mode in which data is temporarily stored for processing and deleted or updated in a short time. Furthermore, all or some of the processing units, the storage unit 15, the input unit 30, and the output unit 40 constituting the control device 10 can be configured by a computer connected via a network.
 さらに、上記の処理の過程における各種のデータは、いずれも、適宜、出力部40に出力(表示、プリントアウト等)して、オペレータが視認可能とすることもできる。例えば、マップデータ、座標データ、撮像した画像データ、リファレンス検出処理、スキャン処理及びリファレンス検査処理の結果等を、表示、プリントアウトして、処理の確認に用いてもよい。 Furthermore, various data in the course of the above processing can be appropriately output (displayed, printed out, etc.) to the output unit 40 so that the operator can view the data. For example, map data, coordinate data, captured image data, reference detection processing, scan processing, and reference inspection processing results may be displayed, printed out, and used for processing confirmation.
[D.作用]
 以上のような本実施形態の作用の一例を、図4~図7を参照して説明する。なお、上記の各機構及び各部は、機構制御部11が、以下に説明する動作を行うように制御する。
[D. Action]
An example of the operation of the present embodiment as described above will be described with reference to FIGS. In addition, each said mechanism and each part are controlled so that the mechanism control part 11 may perform the operation | movement demonstrated below.
[1.全体処理]
 まず、分類装置1の全体処理を、図4の説明図を参照して説明する。前提として、オートローダ5Aに収納された複数のウェハリングRaには、ウェハWが貼付されたウェハシートDaが張り付けられている。これらのウェハWは、ダイシングされることによりチップSに分割されている。各チップについては、あらかじめプローブ検査が行われ、記憶部15に、検査の結果としてのマップデータが保存されている。このマップデータにおいては、検査結果の品質のレベルに応じて、各チップSがランクA~Dにレベル分けされている。また、マップデータには、上記のように、リファレンスチップ(Rで示す)のデータも含まれている。
[1. Overall processing]
First, the overall processing of the classification apparatus 1 will be described with reference to the explanatory diagram of FIG. As a premise, a wafer sheet Da to which a wafer W is stuck is attached to a plurality of wafer rings Ra housed in the autoloader 5A. These wafers W are divided into chips S by dicing. Each chip is probed in advance, and map data as a result of the inspection is stored in the storage unit 15. In this map data, each chip S is classified into ranks A to D according to the quality level of the inspection result. The map data also includes reference chip data (indicated by R) as described above.
(1)チップ付ウェハシートのセット
 ピックアップ側のオートローダ5Aは、チップSを貼付したウェハシートDaが張り付けられたウェハリングRaを、複数枚収納している。オートローダ5Aは、ウェハリングRaを1枚取り出し、リング移動機構2Aにセットする。
(1) Set of wafer sheet with chip The autoloader 5A on the pickup side accommodates a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached. The autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A.
(2)空ウェハシートのセット
 一方、貼付側のオートローダ5Bは、チップSが貼り付けられていないウェハシートDbが張り付けられたウェハリングRbを、複数枚収納している。オートローダ5Bは、ウェハリングを1枚取り出し、リング移動機構2Bにセットする。
(2) Setting of Empty Wafer Sheet On the other hand, the autoloader 5B on the pasting side accommodates a plurality of wafer rings Rb to which the wafer sheet Db to which the chip S is not pasted is pasted. The autoloader 5B takes out one wafer ring and sets it on the ring moving mechanism 2B.
(3)一括スキャン
 エキスパンド機構3Aは、ウェハシートDaを伸張することにより、チップSの隙間を開ける。そして、後述するリファレンス検出、スキャン、リファレンス検査を繰り返すことにより、撮像部60aによる各チップSを撮像、スキャン部13による各チップSの座標データの取得を行う。スキャン部13は、各チップSの座標データを、マップデータに関連付けて、記憶部15に記憶する。
(3) Batch Scan The expanding mechanism 3A opens the gap between the chips S by stretching the wafer sheet Da. Then, by repeating reference detection, scanning, and reference inspection described later, each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13. The scanning unit 13 stores the coordinate data of each chip S in the storage unit 15 in association with the map data.
(4)ピックアップ
 スキャン処理で取得した各チップSの座標データに基づいて、リング移動機構2Aが、ピックアップ部50aの保持部51に対してチップSを順次位置決めするように走査しながら、保持部51がチップSをピックアップしていく。このピックアップは、マップデータに基づく特定のランクのチップSに対してのみ行われる。図4の例では、AのランクのチップSのみをピックアップしている。
(4) Pickup The holding unit 51 while scanning the ring moving mechanism 2A so as to sequentially position the chips S with respect to the holding unit 51 of the pickup unit 50a based on the coordinate data of each chip S acquired by the scanning process. Picks up chip S. This pickup is performed only for chips S of a specific rank based on the map data. In the example of FIG. 4, only the chip S with rank A is picked up.
 なお、制御装置10において、マップデータには、ピックアップされたチップSについては、ピックアップ済の情報を記録する。また、ピックアップする時を含めて、チップSが存在する箇所に位置決めされた場合に、撮像部60aが撮像した画像データに基づくチップSの位置にずれがある場合には、そのずれを計測した結果をフィードバックして、次のチップSの座標データを補正する。なお、座標データに基づいて、ピックアップ対象のチップSのみに位置決めして高速化を図ることも、各チップSに位置決めして補正することにより正確さを確保することも可能である。 In the control device 10, the picked-up information for the picked-up chip S is recorded in the map data. In addition, when the chip S is positioned at a position where the chip S exists, including when picking up, if the position of the chip S based on the image data captured by the imaging unit 60a is shifted, the result of measuring the shift Is fed back to correct the coordinate data of the next chip S. It is possible to increase the speed by positioning only on the chip S to be picked up based on the coordinate data, or to ensure the accuracy by positioning and correcting each chip S.
(5)ウェハシートの収納
 オートローダ5Aは、チップSを選択的にピックアップした後のウェハシートDaを張り付けたウェハリングRaを、リング移動機構2Aから取り外して、再度収納する。このウェハシートDaは、特定ランクのチップSが抜けて、他のランクのチップSが残存している状態(歯抜け状態)となっている。図4の例では、AのランクのチップSのみが抜けている。
(5) Storage of Wafer Sheet The autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after selectively picking up the chips S from the ring moving mechanism 2A and stores it again. The wafer sheet Da is in a state (chip missing state) in which chips S of a specific rank are missing and chips S of other ranks remain. In the example of FIG. 4, only the chip S of rank A is missing.
(6)チップの搬送
 ピックアップされたチップSは、上記のように、ピックアップ部50a、反転部50b、貼付部50cによって搬送される。反転部50bが介在することにより、チップSにおけるウェハシートDaに対する貼り付け面と、ウェハシートDbに対する貼り付け面とが同じとなる。
(6) Transport of Chip The picked-up chip S is transported by the pickup unit 50a, the reversing unit 50b, and the pasting unit 50c as described above. By interposing the reversing part 50b, the bonding surface of the chip S to the wafer sheet Da and the bonding surface to the wafer sheet Db are the same.
(7)チップの貼り付け
 搬送されたチップSは、貼付部50cの保持部51が保持したチップSを、伸張されたウェハシートDbの貼付領域の開始端から順次貼り付いていくように、リング移動機構2B及び貼付部50cが動作する。例えば、貼付領域の開始端からその反対端までに設定された複数の平行な走査線上を走査させて、往復時ともに貼り付けを行う。これにより、一枚のウェハシートDbに、特定ランクのチップSが集められる。図4の例では、AのランクのチップSが集められる。
(7) Chip Affixing The transferred chip S is a ring so that the chip S held by the holding part 51 of the sticking part 50c is stuck in order from the start end of the sticking area of the stretched wafer sheet Db. The moving mechanism 2B and the pasting part 50c operate. For example, scanning is performed on a plurality of parallel scanning lines set from the start end of the pasting region to the opposite end thereof, and pasting is performed at the time of reciprocation. Thereby, chips S of a specific rank are collected on one wafer sheet Db. In the example of FIG. 4, the chips S with rank A are collected.
(8)ウェハシートの収納
 オートローダ5Bは、特定のランクのチップSが集められたウェハシートDbが張り付けられたウェハリングRbを、リング移動機構2Aから取り外して、再度収納する。
(8) Storage of Wafer Sheet The autoloader 5B removes the wafer ring Rb on which the wafer sheet Db on which the chips S of a specific rank are collected is attached from the ring moving mechanism 2A and stores it again.
(9)チップSの再ピックアップ
 特定のチップSのピックアップを完了し、歯抜けになったウェハシートDaから、さらに他のランクのチップSのピックアップを行う場合、オートローダ5Aが収納したウェハシートDaを、再び取り出して、リング移動機構2Aにセットする。
(9) Re-Pickup of Chip S When picking up a specific chip S and picking up another rank of chip S from the missing wafer sheet Da, the wafer sheet Da stored in the autoloader 5A is removed. Then, it is taken out again and set in the ring moving mechanism 2A.
 エキスパンド機構3Aは、ウェハシートDaを伸張することにより、チップSの隙間を開ける。そして、後述するリファレンス検出、スキャン、リファレンス検査を繰り返すことにより、撮像部60aによる各チップSを撮像、スキャン部13による各チップSの座標データの取得を行う。スキャン部13は、各チップSの座標データを、マップデータに関連付けて、記憶部15に記憶する。 The expanding mechanism 3A opens a gap between the chips S by extending the wafer sheet Da. Then, by repeating reference detection, scanning, and reference inspection described later, each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13. The scanning unit 13 stores the coordinate data of each chip S in the storage unit 15 in association with the map data.
 スキャン処理で取得した各チップSの座標データに基づいて、リング移動機構2Aが、ピックアップ部50aの保持部51に対してチップSを順次位置決めするように走査しながら、保持部51がチップSをピックアップしていく。 Based on the coordinate data of each chip S acquired by the scan process, the ring moving mechanism 2A performs scanning so that the chips S are sequentially positioned with respect to the holding unit 51 of the pickup unit 50a. Pick up.
 図4の例は、ランクAのチップSをピックアップした後、ランクBのチップSをピックアップする場合である。まず、スキャン時の座標データに基づいて、開始端のランクBのチップSに、保持部51が位置決めされる。これを保持部51がピックアップした後、次のランクBのチップSを目標に移動する。このとき、図中αに示すように、スキャン時の情報に基づいて、歯抜けの箇所については、停止せずに移動することができる。対象ランク以外のチップSについては、その座標に移動しても、ピックアップしない。但し、チップSが存在する箇所では、ずれをフィードバックして補正することは、上記の通りである。その後の処理は、上記の(5)~(8)と同様である。 The example of FIG. 4 is a case where the chip S of rank B is picked up after the chip S of rank A is picked up. First, based on the coordinate data at the time of scanning, the holding unit 51 is positioned on the chip S of rank B at the start end. After the holding unit 51 picks up this, the next rank B chip S is moved to the target. At this time, as indicated by α in the figure, the missing part can be moved without stopping based on the information at the time of scanning. Chips S other than the target rank are not picked up even if moved to the coordinates. However, in the place where the chip S exists, the deviation is fed back and corrected as described above. The subsequent processing is the same as (5) to (8) above.
 なお、上記の処理は、異なるウェハシートDaから、特定のランクのチップSをピックアップして、ウェハシートDbにまとめて貼り付ける場合であっても同様である。例えば、複数枚のウェハシートDaを順次交換していくことにより、ランクAのチップSのみをピックアップして行き、1枚のウェハシートDbにランクAのチップSをまとめて貼り付けることができる。さらに、1枚のウェハシートDaから、異なるランクのチップSをピックアップして行きながら、貼り付けられるウェハシートDb側を交換することにより、ウェハシートDb毎に同じランクのチップSが収集されるようにすることも可能である。 Note that the above processing is the same even when the chips S of a specific rank are picked up from different wafer sheets Da and pasted together on the wafer sheet Db. For example, by sequentially exchanging a plurality of wafer sheets Da, only the rank A chips S can be picked up, and the rank A chips S can be pasted together on one wafer sheet Db. Further, by picking up chips S having different ranks from one wafer sheet Da and exchanging the wafer sheet Db to be attached, the chips S having the same rank are collected for each wafer sheet Db. It is also possible to make it.
[2.一括スキャン]
 次に、本実施形態によるピックアップ前の一括スキャンについて、図5のフローチャート、図6、図7の説明図を参照して説明する。
(リファレンス検出処理)
 リング移動機構2AにセットされたウェハシートDa上のチップに対して、リファレンス検出部12は、リファレンス検出処理を開始する(ステップS01)。まず、リング移動機構2Aは、例えば、マップデータに基づいて、リファレンスチップが存在する位置と推測される位置まで走査する。ウェハWの端部のチップSから、網羅的に走査してもよい。
[2. Batch scan]
Next, batch scanning before pickup according to the present embodiment will be described with reference to the flowchart of FIG. 5 and the explanatory diagrams of FIGS.
(Reference detection processing)
For the chip on the wafer sheet Da set in the ring moving mechanism 2A, the reference detection unit 12 starts a reference detection process (step S01). First, the ring moving mechanism 2A scans to a position estimated to be a position where the reference chip exists based on, for example, map data. You may scan exhaustively from the chip | tip S of the edge part of the wafer W. FIG.
 そして、リファレンス検出部12は、走査中に撮像部60aにより撮像される画像データと、あらかじめ登録されたリファレンスマークとの照合により、リファレンスチップが存在するか否かを判定していく(ステップS02のNO)。 Then, the reference detection unit 12 determines whether or not a reference chip exists by comparing image data captured by the imaging unit 60a during scanning with a reference mark registered in advance (in step S02). NO).
 リファレンス検出部12は、照合によりリファレンスチップを発見した場合(ステップS02のYES)、リング移動機構2Aのエンコーダ情報に基づいて、発見されたリファレンスチップの座標データを取得し、マップデータにおけるリファレンスチップの位置情報に関連付けて、記憶部15に記憶する(ステップS03)。 When the reference detection unit 12 finds a reference chip by collation (YES in step S02), the reference detection unit 12 acquires coordinate data of the found reference chip based on the encoder information of the ring moving mechanism 2A, and the reference chip in the map data The information is stored in the storage unit 15 in association with the position information (step S03).
(スキャン処理)
 次に、スキャン部13は、スキャン処理を開始する(ステップS04)。まず、発見したリファレンスチップの座標データと、マップデータにおける保証領域内のリファレンスチップに対する各チップの位置情報に基づいて、当該保証領域内の全てのチップSが網羅できるように、リング移動機構2Aが所定のピッチで移動するように動作することにより、順次、目標とするチップSを撮像して行く(ステップS05)。所定のピッチは、例えば、あらかじめリング移動機構2Aに一列分として設定された横のピッチ、一行分として設定された縦のピッチである。
(Scan process)
Next, the scanning unit 13 starts a scanning process (step S04). First, based on the coordinate data of the found reference chip and the position information of each chip with respect to the reference chip in the guaranteed area in the map data, the ring moving mechanism 2A can cover all the chips S in the guaranteed area. By operating to move at a predetermined pitch, the target chip S is sequentially imaged (step S05). The predetermined pitch is, for example, a horizontal pitch set in advance for the ring moving mechanism 2A as one row and a vertical pitch set as one row.
 ここで、目標とするチップSが存在する場合(ステップS06のYES)、その座標データを特定する処理を、図6を参照して説明する。この場合の走査と撮像は、目標とするチップSが所定の撮像領域に収まるように位置決めしながら行う。つまり、最初に目標とするチップSを撮像した場合に、図6(A)に示すように、目標とするチップSの周囲の8個のチップSのいずれかに、あらかじめ設定された矩形の撮像領域Fに収まっていない部分があるとする。すると、図6(B)に示すように、リング移動機構2Aは、8個のチップSの外縁側の辺が、矩形の撮像領域に一致するように、アライメント動作を行う。このアライメントのピッチは、例えば、一列分、一行分として設定されたピッチよりも細かいピッチとする。また、θ方向のずれがある場合にも、そのアライメントを行う。 Here, when there is a target chip S (YES in step S06), processing for specifying the coordinate data will be described with reference to FIG. In this case, scanning and imaging are performed while positioning the target chip S so as to be within a predetermined imaging region. That is, when the target chip S is first imaged, as shown in FIG. 6A, a rectangular image set in advance on any of the eight chips S around the target chip S is captured. It is assumed that there is a part that does not fit in the region F. Then, as illustrated in FIG. 6B, the ring moving mechanism 2A performs an alignment operation so that the outer edge side of the eight chips S coincides with the rectangular imaging region. The alignment pitch is, for example, a finer pitch than the pitch set for one column and one row. The alignment is also performed when there is a deviation in the θ direction.
 アライメント動作後、スキャン部13は、矩形の撮像領域に含まれる9個のチップSについて、それぞれコーナー若しくは四辺を検出することにより中心を求める。そして、スキャン部13は、リング移動機構2Aのエンコーダ値に基づいて、9個のチップSの中心の座標データを求め、マップデータの該当する各チップSの位置情報に関連付けて、記憶部15に記憶する(ステップS07、図6(C))。そして、各チップSについて、スキャン済みのフラグを立てる(ステップS08)。なお、このような座標データの特定手法は、リファレンスチップ及びその周囲のチップSの座標データを特定する際にも適用できる。 After the alignment operation, the scanning unit 13 obtains the center of each of the nine chips S included in the rectangular imaging area by detecting corners or four sides. Then, the scanning unit 13 obtains the coordinate data of the centers of the nine chips S based on the encoder value of the ring moving mechanism 2A, and associates with the positional information of each corresponding chip S of the map data in the storage unit 15. Store (step S07, FIG. 6C). Then, a scanned flag is set for each chip S (step S08). Such a coordinate data specifying method can also be applied when specifying the coordinate data of the reference chip and the surrounding chip S.
 なお、ウェハシートDaからの脱落等により、マップデータ上は存在するはずのチップSが存在しない場合(ステップS06のNO)、座標データの取得はできない。但し、スキャン済みのフラグは立てる(ステップS08)。 If there is no chip S that should exist on the map data due to dropping from the wafer sheet Da (NO in step S06), the coordinate data cannot be acquired. However, the scanned flag is set (step S08).
 このようなスキャン処理を、リファレンスチップの保証領域の一部(以下、部分領域という)を網羅するまで継続する(ステップS09のNO、ステップS05~08)。つまり、図6(D)に示すように、3つ先のチップを目標とするチップとして移動して、上記の図6(A)~(D)の処理を繰り返す。 This scanning process is continued until a part of the guaranteed area of the reference chip (hereinafter referred to as a partial area) is covered (NO in step S09, steps S05 to 08). That is, as shown in FIG. 6D, the third chip is moved as a target chip, and the processes in FIGS. 6A to 6D are repeated.
 例えば、図7(A)に示すように、保証領域E1内のリファレンスチップRS1の左上の部分領域Ex1が、左下の部分領域Ex2、右上の部分領域Ex3、右下の部分領域Ex4に分かれているものとする。部分領域は、リファレンスチップの座標データ、マップデータの保証領域(走査の限界を画する)を示すデータと、走査経路の基準設定に基づいて画定できる。 For example, as shown in FIG. 7A, the upper left partial area Ex1 of the reference chip RS1 in the guarantee area E1 is divided into a lower left partial area Ex2, an upper right partial area Ex3, and a lower right partial area Ex4. Shall. The partial area can be defined based on the coordinate data of the reference chip, the data indicating the guaranteed area of the map data (which defines the limit of scanning), and the reference setting of the scanning path.
 このような部分領域内のチップSを網羅するための走査経路の基準として、例えば、以下の(a)~(d)のような基準を選択的に組み合わせることが考えられる。図7(B)に、部分領域Ex1における(a)~(d)の経路の一例を示す。但し、網羅する手法は、これには限定されない。 For example, the following criteria (a) to (d) may be selectively combined as the scanning path criteria for covering the chips S in such a partial region. FIG. 7B shows an example of the routes (a) to (d) in the partial region Ex1. However, the method to cover is not limited to this.
(a)リファレンスチップから見てX軸方向又はY軸方向に製品チップSが存在する場合、その存在する方向に移動する。
(b)移動方向に製品チップSがない場合、移動方向と直交する軸方向に製品チップSが存在するところまで移動する。
(c)リファレンスチップと同じX座標又はY座標まで移動する。
(d)リファレンスチップよりX軸方向且つY軸方向の部分領域内に撮像していないチップSがなくなった場合、リファレンスチップまで戻る。
(A) When the product chip S exists in the X-axis direction or the Y-axis direction as viewed from the reference chip, the product chip S moves in the existing direction.
(B) When there is no product chip S in the moving direction, the product chip S moves to a position where the product chip S exists in the axial direction orthogonal to the moving direction.
(C) Move to the same X coordinate or Y coordinate as the reference chip.
(D) When there is no chip S that has not been imaged in the partial area in the X-axis direction and the Y-axis direction from the reference chip, the process returns to the reference chip.
 さらに、(c)(d)の基準を、以下の(e)(f)のようにすることもできる。この一例を、図7(C)に示す。
(e)リファレンスチップの手前のX座標又はY座標まで移動する。
(f)リファレンスチップよりX軸方向又はY軸方向の部分領域内に撮像していないチップSがなくなった場合、リファレンスチップに戻りながら、残りのチップSを撮像する。この手法をとった場合、既にスキャン済みの経路を通過する(d)のような経路の重複がなくなり、効率のよいスキャンが可能となる。
Furthermore, the criteria of (c) and (d) can be set as shown in (e) and (f) below. An example of this is shown in FIG.
(E) Move to the X or Y coordinate before the reference chip.
(F) When there are no chips S in the partial area in the X-axis direction or the Y-axis direction from the reference chip, the remaining chips S are imaged while returning to the reference chip. When this method is adopted, there is no duplication of the route (d) passing through the already scanned route, and efficient scanning becomes possible.
 部分領域についてスキャンが終了して、リファレンスチップに戻った場合(ステップS09のYES)、リファレンス検査部14が、リファレンス検査を行う(ステップS10)。つまり、リング移動機構2Aは、撮像部60aによる撮像位置を、リファレンスチップまで戻す。そして、記憶部15が記憶したリファレンスチップの座標データと、リファレンスチップまで戻った時のリング移動機構2Aのエンコーダ情報に基づく座標データとに、ずれがないか判定する。 When the scanning of the partial area is completed and the reference chip is returned (YES in step S09), the reference inspection unit 14 performs the reference inspection (step S10). That is, the ring moving mechanism 2A returns the imaging position by the imaging unit 60a to the reference chip. Then, it is determined whether there is any deviation between the coordinate data of the reference chip stored in the storage unit 15 and the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip.
 座標データが相違する場合、エラーが発生したとして(ステップS11のYES)、リファレンスチップまで戻った時のリング移動機構2Aのエンコーダ情報に基づく座標データによって、当該リファレンスチップの座標データを更新する。そして、あらたな座標データを基準として、当該部分領域のスキャン結果をクリアして、再度、同じ部分領域のスキャンを行う(ステップS04~09)。このエラーが発生した場合、出力部40に、アラーム音を出力させる、エラーの発生を知らせる画面を表示させる等により、オペレータに報知する。エラーの発生したリファレンスチップ、部分領域若しくは保証領域を画面表示させてもよい。 If the coordinate data are different, an error has occurred (YES in step S11), and the coordinate data of the reference chip is updated with the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip. Then, based on the new coordinate data, the scan result of the partial area is cleared, and the same partial area is scanned again (steps S04 to 09). When this error occurs, the operator is notified by causing the output unit 40 to output an alarm sound or displaying a screen notifying the occurrence of the error. The reference chip, the partial area, or the guaranteed area where the error has occurred may be displayed on the screen.
 座標データが一致する場合、それまでのスキャン結果は正しいものとして確定する(ステップS11のNO)。そして、当該保証領域内のスキャンが終了していない場合(ステップS12のNO)、同じリファレンスチップの座標データを基準として、当該保証領域内の他の部分領域のスキャンを行う(ステップS05~11)。例えば、図7の部分領域Ex2、Ex3、Ex4のスキャンを順次行う。 If the coordinate data match, the scan results so far are determined to be correct (NO in step S11). If the scan in the guarantee area is not completed (NO in step S12), the scan of other partial areas in the guarantee area is performed based on the coordinate data of the same reference chip (steps S05 to S11). . For example, the partial areas Ex2, Ex3, and Ex4 in FIG. 7 are sequentially scanned.
 当該保証領域内のチップSについてスキャン済みのフラグが立ってスキャンが終了した場合(ステップS12のYES)、全ての領域のスキャンが終了していなければ(ステップS13のNO)、次のリファレンスチップに基づいて、当該リファレンスチップの保証領域についてスキャンを行う(ステップS01~12)。 If the scanned flag is set for the chip S in the guaranteed area and the scanning is completed (YES in step S12), if the scanning of all areas is not completed (NO in step S13), the next reference chip is set. Based on this, the guaranteed area of the reference chip is scanned (steps S01 to S12).
 つまり、リング移動機構2Aは、スキャン済みのリファレンスチップの座標データと、マップデータのリファレンスチップの位置情報に基づいて、移動距離が最短となるように、撮像部60aの撮像領域を移動させて、次のリファレンスチップの発見、座標データの取得、スキャン処理を行う。 That is, the ring moving mechanism 2A moves the imaging area of the imaging unit 60a based on the coordinate data of the scanned reference chip and the position information of the reference chip of the map data so that the moving distance becomes the shortest, Discovery of the next reference chip, acquisition of coordinate data, and scanning processing are performed.
 例えば、図7のリファレンスチップRS2の保証領域E2、リファレンスチップRS3の保証領域E4、リファレンスチップRS4の保証領域E3について、上記のような手法により、スキャン処理を行う。 For example, the scan process is performed on the guarantee area E2 of the reference chip RS2, the guarantee area E4 of the reference chip RS3, and the guarantee area E3 of the reference chip RS4 of FIG.
 全ての領域のスキャンが終了した場合(ステップS13のYES)、チップSの座標データを特定する処理を終了する。 When the scanning of all the areas has been completed (YES in step S13), the processing for specifying the coordinate data of the chip S is terminated.
[E.効果]
 以上のような本実施形態の効果は、以下の通りである。
(1)ピックアップ前に、エキスパンド後のウェハ内のチップに対して、リファレンスチップを基準とする一括スキャンを行うことにより、個々のチップの座標データを正確に得ることができる。このため、エキスパンドによるチップの移動、チップの抜け落ち等があっても、取得した座標データに基づいて、個々のチップを正確なピックアップすることができる。
[E. effect]
The effects of the present embodiment as described above are as follows.
(1) By performing a collective scan based on the reference chip on the chips in the expanded wafer before picking up, the coordinate data of each chip can be obtained accurately. For this reason, even if there is a movement of the chip due to the expansion, a dropout of the chip, etc., it is possible to accurately pick up each chip based on the acquired coordinate data.
(2)一括スキャン中に、リファレンスチップの座標データが正しいかどうかリファレンス検査を行い、エラーの場合には、チップSのスキャン処理をやり直す。このため、微小なチップSが大量に存在するウェハWであっても、全体のスキャンによる座標データを正確に得ることができる。 (2) During the batch scan, a reference inspection is performed to check whether the coordinate data of the reference chip is correct. If there is an error, the chip S scan process is performed again. For this reason, even if the wafer W has a large amount of minute chips S, coordinate data obtained by the entire scan can be obtained accurately.
(3)特定ランクのチップSを正確に集めて貼り替えることができる。これにより、ウェハシート毎にチップSのランクが定まり、製品管理が容易となる。特に、従来は、特定のランクのチップSをピックアップすることにより、歯抜け状態となったウェハシートの場合、単にリファレンスチップから設定されたピッチの送り動作で移動するだけでは、正確なピックアップができなかった。しかし、本実施形態では、各チップSの正確な座標データに基づいて、残存するチップSから別のランクのチップSを正確にピックアップすることができる。チップSをピックアップ済となった歯抜けの箇所は、ピックアップをせずに移動することにより、効率の良い高速な処理を行うことができる。 (3) It is possible to accurately collect and replace the chips S of a specific rank. Thereby, the rank of the chip S is determined for each wafer sheet, and product management becomes easy. In particular, in the past, in the case of a wafer sheet in which a tooth rank has been lost by picking up a chip S of a specific rank, an accurate pick-up can be achieved simply by moving it with a feed operation set at a pitch from the reference chip. There wasn't. However, in the present embodiment, based on the accurate coordinate data of each chip S, it is possible to accurately pick up chips S of different ranks from the remaining chips S. The portion of the tooth missing where the chip S has been picked up can be moved without picking up, whereby efficient and high-speed processing can be performed.
(4)リファレンスチップが複数設定され、各リファレンスチップの保証領域に分けてスキャン処理を行うため、基準となるリファレンスチップからのチップSの距離が短くなり、ずれも小さく抑えることができる。 (4) Since a plurality of reference chips are set and the scan processing is performed separately for each reference chip guaranteed area, the distance of the chip S from the reference chip serving as a reference is shortened, and the deviation can be suppressed small.
(5)マップデータでは存在するはずのチップSが、ウェハシートから脱落していて、座標データが得られない箇所も、スキャン済のフラグを立てることによりスキャン処理を継続し、当該箇所は、チップSがない箇所であると判定できる。このため、当該箇所は、ピックアップをせずに移動することにより、効率の良い高速な処理を行うことができる。 (5) Even if the chip S that should exist in the map data is dropped from the wafer sheet and the coordinate data cannot be obtained, the scanning process is continued by setting a scanned flag. It can be determined that there is no S. For this reason, the said location can perform an efficient high-speed process by moving, without picking up.
(6)複数のチップSについてまとめて座標データを取得できるので、高速なスキャン処理を実現できる。 (6) Since coordinate data can be acquired collectively for a plurality of chips S, high-speed scanning processing can be realized.
(7)スキャンの経路に、重複が生じないようにすれば、余分な移動時間を省き、高速なスキャン処理を実現できる。 (7) By avoiding duplication in the scan path, it is possible to save extra movement time and realize high-speed scan processing.
(8)リファレンスチップ間での移動距離を極力短くすることによって、高速な処理を実現できる。 (8) High-speed processing can be realized by shortening the moving distance between the reference chips as much as possible.
(9)保証領域毎に、リファレンス検査を行うことにより、チップSの位置の正確さを担保することができる。 (9) The accuracy of the position of the chip S can be ensured by performing the reference inspection for each guarantee area.
(10)さらに、部分領域毎にリファレンス検査を行うことにより、より一層、ずれの発生をなくすことができる。 (10) Further, by performing the reference inspection for each partial region, it is possible to further eliminate the occurrence of deviation.
(11)リファレンス検査の結果、エラーがあった場合に、出力部40によりこれを報知するため、オペレータは異常の発生を知ることができ、素早い対応が可能となる。例えば、報知の頻度が多い場合には、早期に装置を停止することが好ましい。また、エラー箇所が特定できれば、装置の調整に役立てることができる。 (11) When there is an error as a result of the reference inspection, the output unit 40 notifies this, so the operator can know the occurrence of an abnormality and can respond quickly. For example, when the frequency of notification is high, it is preferable to stop the device early. Moreover, if an error location can be identified, it can be used for adjustment of the apparatus.
(12)複数のウェハシートDaから、特定のランクのチップSをピックアップする場合、各ウェハシートDaに対してエキスパンドを繰り返すことになり、その都度、チップSの位置ずれが生じる。しかし、本実施形態では、スキャン処理によりチップSの位置を正確に把握できるので、正確なピックアップを行うことができる。このため、従来では困難であった特定ランクのチップSの収集が可能となる。 (12) When a chip S having a specific rank is picked up from a plurality of wafer sheets Da, the expansion is repeated for each wafer sheet Da, and the displacement of the chip S occurs each time. However, in the present embodiment, since the position of the chip S can be accurately grasped by the scanning process, an accurate pickup can be performed. For this reason, it is possible to collect chips S of a specific rank, which has been difficult in the past.
2.第2の実施形態
 本実施形態は、ウェハシートからピックアップしたチップを、支持体に支持させる分類装置である。本実施形態は、ウェハシートから支持体まで、チップSを移載する移載装置として捉えることもできる。特に、本実施形態は、支持体としてキャリアテープを用いる。
2. Second Embodiment This embodiment is a classification device that supports a chip picked up from a wafer sheet on a support. This embodiment can also be understood as a transfer device for transferring the chip S from the wafer sheet to the support. In particular, this embodiment uses a carrier tape as a support.
[構成]
 本実施形態は、図8に示すように、第1の支持装置100、搬送装置400、検査装置500、テーピングユニット600、排出装置700を有する。
[Constitution]
As shown in FIG. 8, the present embodiment includes a first support device 100, a transport device 400, an inspection device 500, a taping unit 600, and a discharge device 700.
[第1の支持装置]
 第1の支持装置100は、基本的には、上記の実施形態と同様の構成である。但し、本実施形態のオートローダ5Aは、例えば、図9(A)に示すように、収容部110、リング搬送機構120を有する。
[First support device]
The first support device 100 basically has the same configuration as that of the above embodiment. However, the autoloader 5 </ b> A of the present embodiment includes a storage unit 110 and a ring transport mechanism 120 as illustrated in FIG. 9A, for example.
[収容部]
 収容部110は、複数のウェハリングRaを収容する装置である。収容部110は、リング移動機構2AにセットされたウェハシートDaにおけるチップSの貼付面と反対側に配置されている。収容部110は、供給マガジン111、図示しない昇降装置を有している。
[Container]
The accommodating part 110 is an apparatus that accommodates a plurality of wafer rings Ra. The accommodating part 110 is arrange | positioned on the opposite side to the sticking surface of the chip | tip S in the wafer sheet Da set to 2 A of ring moving mechanisms. The accommodating part 110 has the supply magazine 111 and the raising / lowering apparatus which is not shown in figure.
 供給マガジン111は、一対の側壁の間に、複数の水平方向のウェハリングRaを積層して収容する。複数のウェハリングRaは、側壁に設けられたガイドによって、上下に間隔を空けて支持されている。 The supply magazine 111 stores a plurality of horizontal wafer rings Ra stacked between a pair of side walls. The plurality of wafer rings Ra are supported at intervals in the vertical direction by guides provided on the side walls.
 昇降装置は、供給マガジン111を昇降させる機構である。例えば、駆動源により回動する垂直方向のボールねじ、垂直方向のガイドレール等により構成できる。 The lifting device is a mechanism that lifts and lowers the supply magazine 111. For example, it can be constituted by a vertical ball screw rotated by a drive source, a vertical guide rail, or the like.
 供給マガジン111は、昇降装置によって、所望の階層のウェハリングRaの収納位置が、搬入搬出位置に位置決めされる。供給マガジン111のウェハリングRaの収納可能枚数は、10~20枚程度が考えられるが、特定の枚数は限定されない。 In the supply magazine 111, the storage position of the wafer ring Ra at a desired level is positioned at the loading / unloading position by the lifting device. The number of wafer rings Ra that can be stored in the supply magazine 111 can be about 10 to 20, but the specific number is not limited.
[リング搬送機構]
 リング搬送機構120は、収容部110に収容されたウェハリングRaを取り出して、リング移動機構2Aへ受け渡し、リング移動機構2AからウェハリングRaを受け取って、収容部110に戻す装置である。図9(A)に示すように、リング搬送機構120は、供給部110の搬入搬出位置において、供給マガジン111との間でウェハリングRaを出し入れする。
[Ring transport mechanism]
The ring transport mechanism 120 is a device that takes out the wafer ring Ra accommodated in the accommodating portion 110, transfers it to the ring moving mechanism 2A, receives the wafer ring Ra from the ring moving mechanism 2A, and returns it to the accommodating portion 110. As shown in FIG. 9A, the ring transport mechanism 120 moves the wafer ring Ra in and out of the supply magazine 111 at the loading / unloading position of the supply unit 110.
 より具体的には、リング搬送機構120は、供給マガジン111からウェハリングRaを水平にスライドさせて取り出し、供給マガジン111へウェハリングRaを水平にスライドさせて収容する。また、リング搬送機構120は、下方から開口にウェハリングRaを垂直に挿入することでリンク移動機構2Aへ供給し、ウェハリングRaを下方へ垂直にスライドさせることでリング移動機構2Aから取り出す。 More specifically, the ring transport mechanism 120 slides and removes the wafer ring Ra from the supply magazine 111 and accommodates the wafer ring Ra in the supply magazine 111 by sliding it horizontally. Further, the ring transport mechanism 120 supplies the wafer ring Ra to the link moving mechanism 2A by vertically inserting the wafer ring Ra into the opening from below, and takes out the wafer ring Ra from the ring moving mechanism 2A by vertically sliding the wafer ring Ra.
 このため、リング搬送機構120は、クランプ121、フォーク122を有する。クランプ121は、ウェハリングRaの相反する2つの縁部に対応して一対設けられている。フォーク122は、各クランプ121に設けられ、それぞれ2本の歯を平行に並べた部材である。クランプ121は、フォーク122を接近及び離反させることでウェハリングRaを挟持及び解放する。 For this reason, the ring transport mechanism 120 has a clamp 121 and a fork 122. A pair of clamps 121 are provided corresponding to two opposite edges of the wafer ring Ra. The fork 122 is a member provided on each clamp 121 and having two teeth arranged in parallel. The clamp 121 clamps and releases the wafer ring Ra by moving the fork 122 closer to and away from the fork 122.
 リング搬送機構120は、図示はしないが、クランプ121を供給マガジン111に対向する水平方向と、リング移動機構2Aに対向する垂直位置との間で変位させる回動機構を有する。また、リング搬送機構120は、図示はしないが、クランプ121を供給マガジン111に向けて進退させ、リング移動機構2Aに向けて進退させる進退機構を有する。 Although not shown, the ring transport mechanism 120 has a rotation mechanism that displaces the clamp 121 between a horizontal direction facing the supply magazine 111 and a vertical position facing the ring moving mechanism 2A. Although not shown, the ring transport mechanism 120 includes an advance / retreat mechanism that advances and retracts the clamp 121 toward the supply magazine 111 and advances and retracts toward the ring moving mechanism 2A.
 クランプ121が水平方向となった場合、クランプ121の一端は、収容部110の搬入搬出位置に対向する。クランプ121が垂直方向となった場合、クランプ121の一端は、リング移動機構2Aに対向する。 When the clamp 121 is in the horizontal direction, one end of the clamp 121 is opposed to the carry-in / carry-out position of the storage unit 110. When the clamp 121 is in the vertical direction, one end of the clamp 121 faces the ring moving mechanism 2A.
[搬送装置]
 搬送装置400は、チップSを、リング移動機構2AにセットされたウェハリングRaのウェハシートDaから支持体であるキャリアテープTまで搬送する装置である。この搬送装置400は、図9(B)に示すように、ピックアップ部410、搬送部420を有する。
[Conveyor]
The transfer device 400 is a device that transfers the chip S from the wafer sheet Da of the wafer ring Ra set in the ring moving mechanism 2A to the carrier tape T that is a support. As shown in FIG. 9B, the transport apparatus 400 includes a pickup unit 410 and a transport unit 420.
 ピックアップ部410は、スキャン部13により特定された各チップSの座標データに基づいて、ウェハシートDaに対して相対移動しながら、チップSを選択的にピックアップする装置である。 The pickup unit 410 is a device that selectively picks up the chips S while moving relative to the wafer sheet Da based on the coordinate data of each chip S specified by the scanning unit 13.
 ピックアップ部410は、保持部411を有する。保持部411は、ウェハシートDaと搬送部420との間で変位することにより、ウェハシートDaからチップSを受け取り、搬送部420に渡す装置である。保持部411は複数であっても、単数であってもよい。図9(B)は、4つの保持部411を十字に構成した4連十字アームを用いた例である。保持部411の構成は、基本的には、上記のロータリーピックアップの保持部51と同様である。つまり、保持部411は、回転の中心から半径方向に進退可能に設けられた吸着ノズルによって構成されている。 The pickup unit 410 has a holding unit 411. The holding unit 411 is a device that receives the chip S from the wafer sheet Da by passing between the wafer sheet Da and the transfer unit 420 and passes it to the transfer unit 420. The holding part 411 may be plural or singular. FIG. 9B shows an example using a four-way cross arm in which four holding portions 411 are configured in a cross shape. The configuration of the holding unit 411 is basically the same as that of the holding unit 51 of the rotary pickup described above. That is, the holding portion 411 is configured by a suction nozzle provided so as to be able to advance and retract in the radial direction from the center of rotation.
 吸着ノズルは、図示しない真空発生装置による負圧の発生によって、先端の吸着孔にチップSを吸着し、真空破壊又は正圧の発生によって、先端の吸着孔からチップSを離脱させる。 The suction nozzle sucks the chip S into the suction hole at the tip by generating a negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by generating a vacuum break or positive pressure.
 ピックアップ部410は、図示しない駆動源によって、ピックアップ410が形成する十字の中心を軸に、90°ずつ間欠回転する。これにより、各保持部411の先端は、ウェハシートDaのチップSのピックアップ位置と、後述する搬送部420へのチップSの受け渡し位置に位置決めされる。4連十字アームの場合、1つの保持部411が、順次、ウェハシートDaのチップSのピックアップ位置に来る。これと同時に、他の1つの保持部411が、後述する搬送部420の保持部422へのチップSの受け渡し位置に来る。 The pickup unit 410 is rotated intermittently by 90 ° about the center of the cross formed by the pickup 410 by a driving source (not shown). Thereby, the tip of each holding part 411 is positioned at the pick-up position of the chip S of the wafer sheet Da and the delivery position of the chip S to the transfer part 420 described later. In the case of the quadruple cross arm, one holding portion 411 sequentially comes to the pickup position of the chip S of the wafer sheet Da. At the same time, another one holding unit 411 comes to a position where the chip S is delivered to the holding unit 422 of the transfer unit 420 described later.
 なお、単一の保持部411がウェハシートDaのピックアップ位置と、搬送部420へのチップSの受け渡し位置との間を往復動する構成としてもよい。例えば、図10に示すように、1つの保持部411が、90°往復回動する構成としてもよい。複数の保持部411とする場合の数は自由である。例えば、上記の実施形態のように、8連のアームとして構成してもよい。 Note that the single holding unit 411 may reciprocate between the pickup position of the wafer sheet Da and the transfer position of the chip S to the transfer unit 420. For example, as shown in FIG. 10, one holding portion 411 may be configured to reciprocate by 90 °. The number of the plurality of holding portions 411 is arbitrary. For example, as in the above-described embodiment, it may be configured as eight arms.
 搬送部420は、ピックアップ部410によりピックアップされたチップSを、チップSを支持する支持体まで搬送する装置である。本実施形態の搬送部420は、ターンテーブル421、保持部422を有する。 The transport unit 420 is a device that transports the chip S picked up by the pickup unit 410 to a support that supports the chip S. The transport unit 420 of this embodiment includes a turntable 421 and a holding unit 422.
 ターンテーブル421は、円形のテーブルであり、下方に配置された図示しないモータの駆動軸により中心が支持されている。このターンテーブル421は、モータの作動に伴って、間欠的に所定角度回転する。 The turntable 421 is a circular table, and the center is supported by a drive shaft of a motor (not shown) arranged below. The turntable 421 rotates intermittently at a predetermined angle as the motor operates.
 保持部422は、チップSを保持する装置である。保持部422は、ターンテーブル421の下面に、ターンテーブル421の円周に沿って、等間隔に離間して取り付けられている。保持部422は、上記の受け渡し位置において、ピックアップ部410の保持部411からチップSを受け取って保持する。そして、ターンテーブル421を回転させることで、円周方向にチップSを搬送する。保持部422の配置間隔は、ターンテーブル421の1ピッチの回転角度と等しい。 The holding unit 422 is a device that holds the chip S. The holding portions 422 are attached to the lower surface of the turntable 421 at regular intervals along the circumference of the turntable 421. The holding unit 422 receives and holds the chip S from the holding unit 411 of the pickup unit 410 at the delivery position. And the chip | tip S is conveyed in the circumferential direction by rotating the turntable 421. FIG. The arrangement interval of the holding portions 422 is equal to the rotation angle of one pitch of the turntable 421.
 保持部422は、基本的には、上記のロータリーピックアップの保持部51と同様である。つまり、保持部422は、ターンテーブル421の下面に垂直方向に進退可能に設けられた吸着ノズルによって構成されている。吸着ノズルは、図示しない真空発生装置による負圧の発生によって、先端の吸着孔にチップSを吸着し、真空破壊又は正圧の発生によって、先端の吸着孔からチップSを離脱させる。 The holding unit 422 is basically the same as the holding unit 51 of the rotary pickup described above. That is, the holding part 422 is configured by a suction nozzle provided on the lower surface of the turntable 421 so as to be able to advance and retract in the vertical direction. The suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
[検査装置]
 検査装置500は、各チップSの異常の有無を検査する装置である。検査装置500は、例えば、複数の外観検査ユニット510である。複数の外観検査ユニット510は、チップSの外観を撮像して取得した画像データに基づいて、チップSの異常の有無を検出する装置である。
[Inspection equipment]
The inspection apparatus 500 is an apparatus that inspects each chip S for an abnormality. The inspection apparatus 500 is a plurality of appearance inspection units 510, for example. The plurality of appearance inspection units 510 are devices that detect the presence or absence of an abnormality of the chip S based on image data acquired by imaging the appearance of the chip S.
 各外観検査ユニット510は、図9(B)に示すように、保持部422の停止位置に対応する間隔で配置されている。なお、検査装置500はこれには限定されず、電気特性検査ユニット、光学特性検査ユニット等、他の検査装置を含めてもよい。 As shown in FIG. 9B, the appearance inspection units 510 are arranged at intervals corresponding to the stop positions of the holding portions 422. The inspection apparatus 500 is not limited to this, and may include other inspection apparatuses such as an electric characteristic inspection unit and an optical characteristic inspection unit.
[テーピングユニット]
 テーピングユニット600は、搬送部420から受け取ったチップSをキャリアテープTに収容する装置である。キャリアテープTは、チップSを収容するポケットを、長手方向に等間隔で複数有するテープである。テーピングユニット600は、ターンテーブル21の間欠回転の2ポジションに対応して、2台設置されている。
[Taping unit]
The taping unit 600 is a device that accommodates the chip S received from the transport unit 420 in the carrier tape T. The carrier tape T is a tape having a plurality of pockets for accommodating the chips S at equal intervals in the longitudinal direction. Two taping units 600 are installed corresponding to the two positions of intermittent rotation of the turntable 21.
 テーピングユニット600は、図9(B)に示すように、本体部610、送り機構620、シール部等を有する。本体部610は、図示しない送り出しリール、巻取りリールを有する。送り出しリールは、空のキャリアテープTが巻回されたリールである。巻取りリールは、チップSを収容したキャリアテープTを巻き取るリールである。キャリアテープTの間欠移動の経路は、水平移動する部分を有する。この水平移動する部分における空ポケットが、ターンテーブル21の間欠回転の一ポジションにおける保持部422の直下に来る位置に、本体部610が配置されている。 As shown in FIG. 9B, the taping unit 600 includes a main body 610, a feed mechanism 620, a seal portion, and the like. The main body 610 has a delivery reel and a take-up reel (not shown). The delivery reel is a reel on which an empty carrier tape T is wound. The take-up reel is a reel that takes up the carrier tape T containing the chip S. The path of intermittent movement of the carrier tape T has a part that moves horizontally. The main body 610 is disposed at a position where the empty pocket in the horizontally moving portion comes directly below the holding portion 422 at one position of intermittent rotation of the turntable 21.
 送り機構620は、キャリアテープTを間欠移動させて、水平移動する部分における空ポケットが、搬送部420からのチップSを受け取る受け取り位置に、順次位置決めする装置である。送り機構620は、例えば、モータにより回動するスプロケット621により構成される。スプロケット621は、スプロケットホイールがキャリアテープTの送り穴又は溝に嵌り、間欠回転することにより、送り出しリールから供給されるキャリアテープTを巻取りリールへと間欠的に送り出す。シール部は、チップSが収容されたキャリアテープTのポケットを、カバーテープにより封止する装置である。 The feeding mechanism 620 is a device that moves the carrier tape T intermittently and sequentially positions the empty pocket in the horizontally moving portion at the receiving position where the chip S from the transport unit 420 is received. The feed mechanism 620 is constituted by, for example, a sprocket 621 that is rotated by a motor. The sprocket 621 intermittently feeds the carrier tape T supplied from the feed reel to the take-up reel by the sprocket wheel being fitted in the feed hole or groove of the carrier tape T and intermittently rotating. The seal portion is a device that seals a pocket of the carrier tape T in which the chip S is accommodated with a cover tape.
[排出装置]
 排出装置700は、不良のチップSを排出する装置である。排出装置700は、図9(B)に示すように、導入シュータ710、排出ビン720を有する。導入シュータ710は、チップSが通過する筒状体である。導入シュータ710の上部開口端は、ターンテーブル421の間欠回転の一ポジションに来た保持部422の直下に配置されている。排出ビン720は、排出されたチップSを収容する容器である。排出ビン720の上部開口は、導入シュータ710の下部開口端の直下に配置されている。
[Discharge device]
The discharge device 700 is a device that discharges defective chips S. As shown in FIG. 9B, the discharge device 700 includes an introduction shooter 710 and a discharge bin 720. The introduction shooter 710 is a cylindrical body through which the chip S passes. The upper opening end of the introduction shooter 710 is disposed directly below the holding portion 422 that has reached one position of intermittent rotation of the turntable 421. The discharge bin 720 is a container that stores the discharged chip S. The upper opening of the discharge bin 720 is disposed immediately below the lower opening end of the introduction shooter 710.
[作用]
 以上のような本実施形態の作用の一例を、図8及び図9に加えて、図10、図11を参照して説明する。なお、上記の各部は、制御装置10の機構制御部11が、以下に説明する動作を行うように制御される。
[Action]
An example of the operation of the present embodiment as described above will be described with reference to FIGS. 10 and 11 in addition to FIGS. 8 and 9. In addition, each said part is controlled so that the mechanism control part 11 of the control apparatus 10 may perform the operation | movement demonstrated below.
[基本動作]
 まず、本実施形態の基本動作を説明する。なお、上記の実施形態と同様に、ウェハリングRaのウェハシートDaに貼り付けられた各チップSについては、あらかじめプローブ検査が行われ、記憶部15に、検査の結果としてのマップデータが保存されている。マップデータにランク、リファレンスチップのデータも含まれることも、上記の実施形態と同様である。
[basic action]
First, the basic operation of this embodiment will be described. As in the above embodiment, each chip S affixed to the wafer sheet Da of the wafer ring Ra is probed in advance, and map data as a result of the inspection is stored in the storage unit 15. ing. The map data also includes rank and reference chip data, as in the above embodiment.
(1)チップ付ウェハシートのセット
 ピックアップ側のオートローダ5Aは、チップSを貼付したウェハシートDaが張り付けられたウェハリングRaを、複数枚収納している。オートローダ5Aは、ウェハリングRaを1枚取り出し、リング移動機構2Aにセットする。
(1) Set of wafer sheet with chip The autoloader 5A on the pickup side accommodates a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached. The autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A.
 本実施形態においては、図9(A)に示すように、収容部110における昇降装置が、所望のウェハリングRaが搬入搬出位置に来るように、供給マガジン111を移動させる。そして、クランプ121が供給マガジン111に向かって進むと、フォーク122にウェハリングRaの端部が挟持される。クランプ121が供給マガジン111から後退すると、フォーク122は、ウェハリングRaを供給マガジン111から引き出す。 In this embodiment, as shown in FIG. 9A, the elevating device in the storage unit 110 moves the supply magazine 111 so that the desired wafer ring Ra is at the loading / unloading position. When the clamp 121 advances toward the supply magazine 111, the end of the wafer ring Ra is sandwiched between the forks 122. When the clamp 121 moves backward from the supply magazine 111, the fork 122 pulls out the wafer ring Ra from the supply magazine 111.
 ウェハリングRの引き出し後、リング搬送機構120は、垂直方向に回動する。すると、フォーク122に保持されたウェハリングのRaの端部が、リング移動機構2Aに対向する。クランプ121は、リング移動機構2Aに向かって進み、リング移動機構2AにウェハリングRaがセットされた後、リング移動機構2Aから後退する。 After the wafer ring R is pulled out, the ring transport mechanism 120 rotates in the vertical direction. Then, the end portion of the wafer ring Ra held by the fork 122 faces the ring moving mechanism 2A. The clamp 121 advances toward the ring moving mechanism 2A. After the wafer ring Ra is set on the ring moving mechanism 2A, the clamp 121 moves backward from the ring moving mechanism 2A.
(2)空キャリアテープのセット
 一方、2台のテーピングユニット600において、送り出しリールと巻取りリールとの間に、空のキャリアテープTをセットする。
(2) Setting of empty carrier tape On the other hand, in the two taping units 600, an empty carrier tape T is set between the feeding reel and the take-up reel.
(3)一括スキャン
 エキスパンド機構3Aは、ウェハシートDaを伸張することにより、チップSの隙間を開ける。そして、上記の実施形態と同様に、リファレンス検出、スキャン、リファレンス検査を繰り返すことにより、撮像部60aによる各チップSを撮像、スキャン部13による各チップSの座標データの取得を行う。スキャン部13は、各チップSの座標データを、マップデータに関連付けて、記憶部15に記憶する。このような一括スキャンの処理の詳細は、上記の実施形態と同様であるため、説明を省略する。
(3) Batch Scan The expanding mechanism 3A opens the gap between the chips S by stretching the wafer sheet Da. Similarly to the above embodiment, by repeating reference detection, scanning, and reference inspection, each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13. The scanning unit 13 stores the coordinate data of each chip S in the storage unit 15 in association with the map data. Details of such batch scan processing are the same as those in the above-described embodiment, and thus description thereof is omitted.
(4)ピックアップ
 上記の実施形態と同様に、スキャン処理で取得した各チップSの座標データに基づいて、リング移動機構2Aが、ピックアップ部410の保持部411に対してチップSを順次位置決めするように走査しながら、保持部411がチップSをピックアップしていく。このようなピックアップの詳細は、上記の実施形態と同様であるため、説明を省略する。なお、本実施形態におけるピックアップは、マップデータに基づく特定のランクのチップSに対してのみ行われる場合と、ランクにかかわらずチップSをピックアップする場合がある。
(4) Pickup Similarly to the above embodiment, the ring moving mechanism 2A sequentially positions the chips S with respect to the holding unit 411 of the pickup unit 410 based on the coordinate data of each chip S acquired by the scanning process. The holding unit 411 picks up the chip S while scanning. The details of such a pickup are the same as in the above embodiment, and thus the description thereof is omitted. Note that the pickup in the present embodiment may be performed only for a chip S of a specific rank based on the map data, or may be picked up the chip S regardless of the rank.
(5)ウェハシートの収納
 オートローダ5Aは、チップSをピックアップした後のウェハシートDaを張り付けたウェハリングRaを、リング移動機構2Aから取り外して、再度収納する。このウェハシートDaは、特定ランクのチップSが抜けて、他のランクのチップSが残存している場合と、ピックアップすべき全てのチップSが抜けている場合とがある。
(5) Storage of Wafer Sheet The autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after picking up the chip S from the ring moving mechanism 2A and stores it again. In this wafer sheet Da, there are a case where a chip S of a specific rank is missing and a chip S of another rank remains, and a case where all the chips S to be picked up are missing.
 本実施形態においては、図9(A)に示すように、クランプ121は、ウェハリングRaの引き出し後、水平方向に待機した状態から、垂直方向に回動する。すると、フォーク122の端部が、リング移動機構2Aに対向する。クランプ121は、エキスパンド機構3Aによる伸張を解除したウェハシートDaを、その端部がフォーク122に挟持される位置に進む。クランプ121は、リング移動機構2Aから後退することにより、フォーク122に挟持されたウェハリングRaをリング移動機構2Aから引き出す。これにより、ウェハリングRaが、リング移動機構2Aから排出される。 In this embodiment, as shown in FIG. 9A, after the wafer ring Ra is pulled out, the clamp 121 rotates in a vertical direction from a state in which it waits in the horizontal direction. Then, the end of the fork 122 faces the ring moving mechanism 2A. The clamp 121 advances the wafer sheet Da, which has been released from the expansion by the expanding mechanism 3A, to a position where its end is clamped by the fork 122. The clamp 121 retracts from the ring moving mechanism 2A, thereby pulling out the wafer ring Ra held by the fork 122 from the ring moving mechanism 2A. Thereby, the wafer ring Ra is discharged from the ring moving mechanism 2A.
 クランプ121は、ウェハリングRaの引き出し後、水平方向に回動する。すると、フォーク122に挟持されたウェハリングRaの端部が、収容部110の搬入搬出位置に来る。収容部110における昇降装置112は、供給マガジン111の所望の収納位置が搬入搬出位置に来るように、供給マガジン111を移動させる。クランプ121は、供給マガジン111に進み、供給マガジン111の収納位置にウェハリングRaが収容された後、後退する。 The clamp 121 rotates in the horizontal direction after the wafer ring Ra is pulled out. Then, the end of the wafer ring Ra sandwiched between the forks 122 comes to the loading / unloading position of the storage unit 110. The elevating device 112 in the storage unit 110 moves the supply magazine 111 so that the desired storage position of the supply magazine 111 comes to the loading / unloading position. The clamp 121 proceeds to the supply magazine 111 and moves backward after the wafer ring Ra is accommodated in the accommodation position of the supply magazine 111.
(6)チップの搬送
 ピックアップされたチップSは、ピックアップ部410から、搬送部420に受け渡されて、搬送部420によって搬送される。つまり、間欠回転するピックアップ部410の保持部411から、ターンテーブル421の保持部422へと受け渡される。ターンテーブル421は、間欠回転することにより、保持部422に保持されたチップSを搬送する。
(6) Transport of Chip The picked up chip S is transferred from the pickup unit 410 to the transport unit 420 and transported by the transport unit 420. That is, it is transferred from the holding unit 411 of the pickup unit 410 that rotates intermittently to the holding unit 422 of the turntable 421. The turntable 421 conveys the chips S held by the holding unit 422 by intermittently rotating.
(7)検査
 このように搬送されるチップSに対して、検査装置500による検査が行われる。検査により異常有りと判定されたチップSの情報については、制御装置10において記憶部15に記憶される。
(7) Inspection The inspection device 500 performs inspection on the chips S thus transported. Information on the chip S determined to be abnormal by the inspection is stored in the storage unit 15 in the control device 10.
(8)テーピング
 テーピングユニット600において、キャリアテープTのポケットの直上に、搬送部420においてチップSを保持した保持部422が来た時に、保持部422の吸着を解除することにより、チップSが空ポケット内に収容される。その後、シール部によって、チップSが収容されたキャリアテープTのポケットが封止される。キャリアテープTは間欠的に移動しているので、順次空ポケットにチップSが収容されて行く。
(8) Taping In the taping unit 600, when the holding unit 422 holding the chip S in the transport unit 420 comes directly above the pocket of the carrier tape T, the suction of the holding unit 422 is released, so that the chip S is empty. Housed in a pocket. Thereafter, the pocket of the carrier tape T in which the chip S is accommodated is sealed by the seal portion. Since the carrier tape T is moved intermittently, the chips S are sequentially accommodated in the empty pockets.
 テーピングユニット600によるキャリアテープTへのチップSの収容は、種々の態様が可能である。例えば、特定のランクのチップSのみピックアップした場合、同じランクのチップSを、同じテーピングユニット600のキャリアテープTに収容する。これにより、一方のテーピングユニット600のキャリアテープTに、特定ランクのチップSを集める。 The taping unit 600 can accommodate the chip S in the carrier tape T in various modes. For example, when only the chip S having a specific rank is picked up, the chip S having the same rank is accommodated in the carrier tape T of the same taping unit 600. Thereby, chips S of a specific rank are collected on the carrier tape T of one taping unit 600.
 また、特定のランクのチップSのみピックアップした場合、同じランクのチップSを、2台のテーピングユニット600に振り分けて、それぞれのキャリアテープTに収容する。これにより、全てのテーピングユニット600のキャリアテープTに、特定ランクのチップSを集める。 Further, when only the chips S of a specific rank are picked up, the chips S of the same rank are distributed to the two taping units 600 and accommodated in the respective carrier tapes T. Thereby, chips S of a specific rank are collected on the carrier tapes T of all the taping units 600.
 また、ランクにかかわらずチップSをピックアップした場合、ピックアップをした順序に従って、1台のテーピングユニット600のキャリアテープTに収容してもよい。さらに、この場合も、2台のテーピングユニット600に振り分けて、それぞれのキャリアテープTにチップSを収容してもよい。つまり、支持体が単数か複数かにかかわらず、ランクを問わずにチップSをピックアップした場合、ピックアップした順序に従って、支持体に支持される。 Further, when the chip S is picked up regardless of the rank, it may be accommodated in the carrier tape T of one taping unit 600 according to the picked-up order. Furthermore, also in this case, the chips S may be accommodated in the two tape units 600 and the chips S may be accommodated in the respective carrier tapes T. That is, regardless of whether the support is single or plural, when the chips S are picked up regardless of the rank, they are supported by the support according to the picked-up order.
 但し、検査装置500によって異常有りと判定されたチップSについては、キャリアテープTへの収容は行わず、保持部422に保持したまま、テーピングユニット600を通過させる。つまり、異常なチップSについては、支持体への支持は行わない。 However, the chip S determined to be abnormal by the inspection apparatus 500 is not housed in the carrier tape T, and is passed through the taping unit 600 while being held in the holding portion 422. That is, the abnormal chip S is not supported on the support.
(9)チップの廃棄
 排出装置700において、異常有りと判定されたチップSが排出される。つまり、導入シュータ710の直上に、搬送部420において異常有りのチップSを保持した保持部422が来た時に、保持部422の吸着を解除することにより、チップSが導入シュータ710を介して、排出ビン720に落下する。これにより、異常有りのチップSが回収される。
(9) Disposal of Chip The chip S determined to be abnormal in the discharge device 700 is discharged. That is, when the holding unit 422 that holds the abnormal chip S in the transport unit 420 comes immediately above the introduction shooter 710, the suction of the holding unit 422 is released, so that the chip S passes through the introduction shooter 710. Drops into the discharge bin 720. Thereby, the chip S having an abnormality is collected.
[処理手順]
 以上のような本実施形態の処理の手順を、図11、図12のフローチャートを参照して説明する。図11は、特定のランクのチップSをピックアップして、共通のキャリアテープTに収容する場合、図12は、ランクにかかわらずチップSをピックアップして、キャリアテープTに収容する場合を示す。なお、図11、図12のフローチャートは、1つのチップSの処理の流れのみに着目している部分がある。しかし、このときも、他の複数のチップSに対して、同時並行に処理が行われている。
[Processing procedure]
The processing procedure of the present embodiment as described above will be described with reference to the flowcharts of FIGS. 11 shows a case where a chip S of a specific rank is picked up and accommodated in a common carrier tape T. FIG. 12 shows a case where a chip S is picked up and accommodated in the carrier tape T regardless of the rank. Note that the flowcharts of FIGS. 11 and 12 have a portion that focuses only on the processing flow of one chip S. However, also at this time, the processing is performed on the plurality of other chips S in parallel.
[ランク分け有り]
 特定ランクのチップSをピックアップする場合の処理を、図11を参照して説明する。まず、リング搬送機構120が、供給マガジン111からウェハリングRaを取り出して、リング移動機構2Aにセットする(ステップS101)。そして、ウェハシートDaのチップSに対して、一括スキャンを行う(ステップ102)。
[With ranks]
A process for picking up a chip S of a specific rank will be described with reference to FIG. First, the ring transport mechanism 120 takes out the wafer ring Ra from the supply magazine 111 and sets it in the ring moving mechanism 2A (step S101). Then, a batch scan is performed on the chips S of the wafer sheet Da (step 102).
 ピックアップ部410は、上記の実施形態と同様に、制御装置10の制御により指示された特定のランク、つまり指示ランクのチップSをピックアップする(ステップS103)。ピックアップされた指示ランクのチップSは、ターンテーブル421の保持部422によって保持されて搬送される過程で、検査装置500によって検査される(ステップS104)。 The pick-up unit 410 picks up a specific rank instructed by the control of the control device 10, that is, the chip S of the indicated rank, similarly to the above-described embodiment (step S103). The picked-up chip S having the designated rank is inspected by the inspection apparatus 500 in the process of being held and transported by the holding portion 422 of the turntable 421 (step S104).
 検査装置500により異常無しと判定されたチップSの場合(ステップS105 NO)、ターンテーブル421の保持部422から、テーピングユニット600のキャリアテープTに受け渡されてテーピングされる(ステップS106)。 In the case of the chip S determined as having no abnormality by the inspection apparatus 500 (NO in step S105), it is transferred from the holding unit 422 of the turntable 421 to the carrier tape T of the taping unit 600 and taped (step S106).
 指示ランクのチップSが、全てピックアップされ、ウェハシートDaに残存しておらず(ステップS107 NO)、指示ランク以外のランクのチップSも残存していない場合(ステップS108 NO)、リング搬送機構120は、当該ウェハリングRaを処理済のウェハリングRaとして収容部110に戻す(ステップS109)。 If all the chips S of the designated rank are picked up and do not remain on the wafer sheet Da (NO in step S107) and no chips S of ranks other than the designated rank remain (NO in step S108), the ring transport mechanism 120 Returns the wafer ring Ra to the accommodating portion 110 as a processed wafer ring Ra (step S109).
 未処理のウェハリングRaが無くなった場合(ステップS110 NO)、処理を終了する。未処理のウェハリングRaは、ピックアップすべきチップSが残存しているウェハリングRaである。 If there is no unprocessed wafer ring Ra (step S110: NO), the process is terminated. The unprocessed wafer ring Ra is a wafer ring Ra in which the chip S to be picked up remains.
 ステップS104で、検査装置500により異常有りと判定されたチップSの場合(ステップS105 YES)、保持部422は、テーピングユニット600のキャリアテープTへの受け渡しを行わず、スルーする(ステップS111)。そして、保持部422が、排出装置700においてチップSを解放することにより排出する(ステップS112)。 In step S104, in the case of the chip S determined to be abnormal by the inspection apparatus 500 (YES in step S105), the holding unit 422 passes through without passing the taping unit 600 to the carrier tape T (step S111). And the holding | maintenance part 422 discharges | emits by releasing the chip | tip S in the discharge apparatus 700 (step S112).
 ステップS107で、指示されたランクのチップSが残存しており(ステップS107 YES)、制御装置10の制御により指示された個数のテーピングを達成していない場合(ステップS113 NO)、指示ランクのチップSのピックアップを繰り返す(ステップS103~S107)。 In step S107, if the designated rank chip S remains (YES in step S107) and the number of tapings designated by the control of the control device 10 has not been achieved (NO in step S113), the designated rank chip. S pickup is repeated (steps S103 to S107).
 指示された個数のテーピングを達成した場合(ステップS113 YES)、ピックアップを中断して、テーピングユニット600のキャリアテープTを交換する(ステップS114)。そして、指示ランクのチップSのピックアップを継続する(ステップS103~S107)。このとき、中断直前の座標データに基づいて、ピックアップ開始位置を決定してもよい。 When the specified number of tapings has been achieved (YES in step S113), the pickup is interrupted and the carrier tape T of the taping unit 600 is replaced (step S114). Then, the pick-up of the chip S having the instruction rank is continued (steps S103 to S107). At this time, the pickup start position may be determined based on the coordinate data immediately before the interruption.
 ステップS107で、処理中のウェハシートDaに指示されたランクのチップSが残存しなくなったが(ステップS107 NO)、指示外のランクのチップSが残存している場合(ステップS108 YES)、リング搬送機構120は、ウェハリングRaを収容部110に一旦戻す(ステップS115)。そして、次のウェハリングに交換し(ステップS116)、一括スキャンを行う(ステップS102)。この後、指示ランクのチップSのピックアップを継続する(ステップS103~S107)。なお、収容部110に一旦戻したウェハリングRaは、残存する他のランクのチップSをピックアップする場合に、再度、セットされ(ステップS101)、その後の処理が行われる。この場合、再度一括スキャンを行ってもよいし、前回のピックアップ時の座標データに基づいて、ピックアップ開始位置を決定してもよい。 In step S107, the chip S of the rank instructed on the wafer sheet Da being processed does not remain (NO in step S107), but the chip S of the rank other than the instruction remains (YES in step S108). The transport mechanism 120 temporarily returns the wafer ring Ra to the housing unit 110 (step S115). Then, the next wafer ring is replaced (step S116), and a batch scan is performed (step S102). Thereafter, the pick-up of the chip S having the designated rank is continued (steps S103 to S107). The wafer ring Ra once returned to the accommodating unit 110 is set again when picking up the remaining chips S of other ranks (step S101), and the subsequent processing is performed. In this case, the collective scan may be performed again, or the pickup start position may be determined based on the coordinate data at the previous pickup.
[ランク分け無し]
 チップSをランクにかかわらずピックアップする場合の処理を、図12を参照して説明する。以下の説明では、図11の処理と同様の処理は、説明を省略する。まず、図11では、ステップS103において、指示ランクのチップSをピックアップしていた。しかし、ランク分け無しの処理では、ランクにかかわらず、チップSをピックアップしていく(ステップS203)。例えば、座標データに基づいて、上端又は下端から順次、チップSをピックアップする。
[No ranking]
Processing when picking up the chip S regardless of the rank will be described with reference to FIG. In the following description, the description of the same processing as that of FIG. 11 is omitted. First, in FIG. 11, the chip S having the designated rank is picked up in step S103. However, in the processing without ranking, the chip S is picked up regardless of the rank (step S203). For example, the chips S are picked up sequentially from the upper end or the lower end based on the coordinate data.
 テーピングについても、検査装置500の検査の結果、正常なチップSであれば、ランクにかかわらず、一方のテーピングユニット600において順次テーピングされる(ステップS205、S206)。つまり、テーピング時にも、ランクの情報は無視され、異常なチップSを除いて、チップSの並び順にテーピングが行われる。ランク情報は、テーピングの順番と関連付けて、記憶部15が記憶する。検査装置500の検査の結果、異常なチップSであれば、他方のテーピングユニット600においてテーピングされる(ステップS211)。検査結果についてもランク情報として、テーピングの順番と関連付けて、記憶部15が記憶する。このため、本実施形態は、検査装置500の検査結果に応じてチップSを分類する分類装置として捉えることもできる。 As for the taping, if the result of the inspection by the inspection apparatus 500 is a normal chip S, the taping is sequentially performed in one taping unit 600 regardless of the rank (steps S205 and S206). In other words, rank information is ignored during taping, and taping is performed in the order in which chips S are arranged except for abnormal chips S. The rank information is stored in the storage unit 15 in association with the taping order. If the chip S is abnormal as a result of the inspection by the inspection apparatus 500, it is taped in the other taping unit 600 (step S211). The storage unit 15 stores the inspection result as rank information in association with the taping order. For this reason, this embodiment can also be regarded as a classification device that classifies the chips S according to the inspection result of the inspection device 500.
 また、図11では、ステップ107において、指示ランクのチップSの有無、ステップ108において、指示外のランクのチップSの有無を判定していた。しかし、ランク分け無しの処理では、ランクにかかわらず、残存するチップSの有無を判定する(ステップS207)。チップSが残存している場合には(ステップS207 YES)、図11と同様に、テーピング指示個数の達成の有無に応じた処理が行われる(ステップS213、S214)。 In FIG. 11, the presence / absence of the chip S having the designated rank is determined in step 107, and the presence / absence of the chip S having the rank not instructed is determined in step 108. However, in the processing without ranking, the presence or absence of the remaining chip S is determined regardless of the rank (step S207). If the chip S remains (YES in step S207), processing according to whether or not the taping instruction number has been achieved is performed as in FIG. 11 (steps S213 and S214).
 チップSが残存していない場合には(ステップS207 NO)、処理済ウェハリングを戻し(ステップS209)、未処理ウェハリングの有無に応じた処理が行われる(ステップS210、S216)。 If the chip S does not remain (NO in step S207), the processed wafer ring is returned (step S209), and processing according to the presence or absence of the unprocessed wafer ring is performed (steps S210 and S216).
[効果]
 以上のような本実施形態によれば、上記の第1の実施形態と同様の一括スキャン及びこれに基づくピックアップ等が行われるため、上記の第1の実施形態と同様の効果が得られる。また、ピックアップ部410によりピックアップされたチップSを、チップSを支持する支持体まで搬送する搬送部420を有する。この搬送部420は、ピックアップ部410によりランク毎にピックアップされたチップSを、支持体にランク毎にまとめて支持させる。従って、正確に特定ランクのチップSを支持した支持体を出荷できる。また、ランク分けせずに、複数の支持体にチップSを支持させる場合には、大量のチップSを効率良く正確に処理できる。
[effect]
According to the present embodiment as described above, since the same collective scanning as in the first embodiment and the pickup based on the same are performed, the same effect as in the first embodiment can be obtained. In addition, the conveyance unit 420 conveys the chip S picked up by the pickup unit 410 to a support that supports the chip S. The conveyance unit 420 supports the chips S picked up by the pickup unit 410 for each rank in a lump for each rank. Therefore, it is possible to ship a support that accurately supports the chip S of a specific rank. In addition, when the chips S are supported on a plurality of supports without being divided into ranks, a large number of chips S can be processed efficiently and accurately.
 特に、本実施形態においては、支持体はキャリアテープTであり、搬送部420から受け取ったチップSをキャリアテープTに収容するテーピングユニット600を有している。テーピングユニット600は、搬送部420の搬送経路に沿って、複数台並べて配置し易い。このため、複数のキャリアテープTに同時並行にテーピングすることにより、効率良く大量のチップSをテーピングできる。また、複数のキャリアテープT毎に、ランクの異なるチップSをテーピングすることができる。 In particular, in the present embodiment, the support is the carrier tape T, and has a taping unit 600 that accommodates the chip S received from the transport unit 420 in the carrier tape T. A plurality of taping units 600 are easily arranged along the transport path of the transport unit 420. For this reason, a large number of chips S can be taped efficiently by taping on a plurality of carrier tapes T in parallel. Further, the chips S having different ranks can be taped for each of the plurality of carrier tapes T.
3.他の実施形態
(1)なお、本発明は上記実施の形態に限定されるものではない。例えば、エラーの発生したリファレンスチップ、部分領域若しくは保証領域、エラーの頻度等を、記憶部が記録しておき、これを出力部が出力することにより、エラーが発生しやすい箇所の分析に役立ててもよい。
3. Other Embodiment (1) The present invention is not limited to the above embodiment. For example, the reference chip where the error occurred, the partial area or guaranteed area, the frequency of error, etc. are recorded by the storage unit, and this is output by the output unit, which is useful for analyzing the location where the error is likely to occur. Also good.
(2)マップデータのチップは、必ずしも上記のようなランク付けがなされていなくてもよい。例えば、良品か不良品かの情報として、これに基づいて、良品のみをピックアップする場合にも、本発明を適用できる。このため、第2の実施形態も、良品と不良品を分類する分類装置として捉えることもできる。 (2) The map data chips are not necessarily ranked as described above. For example, the present invention can also be applied to picking up only non-defective products based on the information as good or defective products. For this reason, the second embodiment can also be regarded as a classification device that classifies non-defective products and defective products.
(3)リファレンスチップの数や位置、これに対応する保証領域の数や範囲、部分領域の数や範囲は、スキャン処理を網羅的に行うことができれば、自由に設定可能である。これらの数が多ければ、エラーの発生によるスキャン処理のやり直しの範囲が小さくなるという利点があり、これらの数が少なければ、リファレンス検査の回数が少なくなり、エラーが少なければ高速化が可能となるという利点が得られるため、両者のバランスから妥当な設定をすればよい。なお、部分領域を設定することにより、リファレンス検査の回数が増え、エラーの発生によるスキャンのやり直しの範囲が小さくなるが、部分領域を設定せず、保証領域のみとすることにより、エラーが少なければ、処理の高速化を図ることができる。 (3) The number and position of reference chips, the number and range of guaranteed areas corresponding thereto, and the number and range of partial areas can be freely set as long as the scanning process can be performed comprehensively. If these numbers are large, there is an advantage that the range of scan processing re-executed due to the occurrence of an error is reduced. Therefore, it is sufficient to make an appropriate setting based on the balance between the two. By setting a partial area, the number of reference inspections increases, and the range of scan re-execution due to the occurrence of an error decreases, but by setting only a guaranteed area without setting a partial area, there should be fewer errors Therefore, the processing speed can be increased.
(4)ピックアップ後の処理は、他のウェハシートへの貼り替えには限定されない。マウンティング工程やテーピング工程であってもよい。 (4) The processing after the pickup is not limited to the pasting to another wafer sheet. It may be a mounting process or a taping process.
(5)ウェハシートと撮像部及びピックアップ部とは、相対移動する関係であればよい。このため、ウェハシートを張り付けたウェハリングが、リング支持機構により固定されていて、撮像部及びピックアップ部の移動機構(走査機構)により、相対移動を実現してもよい。この場合の座標データは、移動機構のエンコーダ情報の座標値(x,y,θ)として取得できる。 (5) The wafer sheet, the imaging unit, and the pickup unit may be in a relative moving relationship. For this reason, the wafer ring to which the wafer sheet is attached may be fixed by the ring support mechanism, and the relative movement may be realized by the moving mechanism (scanning mechanism) of the imaging unit and the pickup unit. The coordinate data in this case can be acquired as coordinate values (x, y, θ) of the encoder information of the moving mechanism.
(6)搬送装置の構成は、上記の態様には限定されない。例えば、搬送装置を1つのロータリーピックアップにより構成し、ピックアップ側のウェハシートから保持部がピックアップしたチップSを、回転後、貼付側のウェハシートに貼り付けてもよい。チップのピックアップのための構成も、チップを選択的にウェハシートから離脱させることができる構成であればよく、上記の態様には限定されない。つまり、ウェハシートから支持体へチップSを移動させる搬送装置、ピックアップ部については、公知のあらゆる技術を適用可能である。 (6) The configuration of the transport device is not limited to the above aspect. For example, the conveying device may be configured by one rotary pickup, and the chip S picked up by the holding unit from the wafer sheet on the pickup side may be attached to the wafer sheet on the application side after rotation. The configuration for picking up the chip is not limited to the above-described mode as long as the chip can be selectively detached from the wafer sheet. That is, any known technique can be applied to the transfer device and the pickup unit that move the chip S from the wafer sheet to the support.
(7)ウェハリングを収容する収容部、リング移動機構にウェハリングをセットするリング搬送機構についても、上記の実施形態で例示したものには限定されず、公知のあらゆる技術を適用可能である。さらに、リング移動機構からリングを排出する排出装置を設けてもよい。 (7) The storage unit for storing the wafer ring and the ring transport mechanism for setting the wafer ring in the ring moving mechanism are not limited to those exemplified in the above embodiment, and any known technique can be applied. Further, a discharge device for discharging the ring from the ring moving mechanism may be provided.
 上記の実施形態では、図11、図12のフローチャートのステップS109、S209で、処理済のウェハリングRaを、収容部110に戻していた。しかし、リング排出機構及び排出装置を有する場合、リング排出機構は、処理済のウェハリングRaをリング移動機構2Aから引き出して、排出装置に排出することができる。 In the above embodiment, the processed wafer ring Ra is returned to the accommodating portion 110 in steps S109 and S209 in the flowcharts of FIGS. However, when the ring discharge mechanism and the discharge device are provided, the ring discharge mechanism can pull out the processed wafer ring Ra from the ring moving mechanism 2A and discharge it to the discharge device.
 なお、このようなリング搬送機構120、排出装置を、第1の実施形態におけるオートローダ5Bに適用することもできる。 In addition, such a ring conveyance mechanism 120 and a discharge device can be applied to the autoloader 5B in the first embodiment.
(8)支持体としては、第2の実施形態で示したキャリアテープTには限定されない。例えば、第1の実施形態で示したウェハシートDbを用いることもできる。つまり、第1の実施形態においても、チップSのランクを区別せずに、ウェハシートDaからチップSをピックアップして、貼付部50cがウェハシートDbに貼り付けることが可能である。さらに、例えば、チップSを載置するトレイも、支持体に含む。つまり、図13に示すように、搬送部420から受け取ったチップSをトレイGに載置するトレイユニット900を設けてもよい。 (8) The support is not limited to the carrier tape T shown in the second embodiment. For example, the wafer sheet Db shown in the first embodiment can also be used. That is, also in the first embodiment, it is possible to pick up the chip S from the wafer sheet Da without distinguishing the rank of the chip S, and the pasting part 50c can be pasted onto the wafer sheet Db. Furthermore, for example, a tray on which the chip S is placed is also included in the support. That is, as shown in FIG. 13, a tray unit 900 for placing the chip S received from the transport unit 420 on the tray G may be provided.
 トレイユニット900においては、トレイGは、チップSの載置スペースが、搬送部420においてチップSを保持した保持部422の直下に来るように走査される。そして、この位置に、搬送部420においてチップSを保持した保持部422が来た時に、保持部422の吸着を解除することにより、チップSがトレイGの載置スペースに順次収容される。 In the tray unit 900, the tray G is scanned so that the placement space for the chips S is directly below the holding unit 422 that holds the chips S in the transport unit 420. When the holding unit 422 that holds the chip S in the transport unit 420 comes to this position, the suction of the holding unit 422 is released, so that the chip S is sequentially accommodated in the placement space of the tray G.
 トレイGについても、特定のランクのチップSのみを集めて載置することもできるし、ランクの区別をせずに、チップSを載置することもできる。また、検査装置500によってエラーと判定されたチップSについては、トレイGへの載置は行わず、保持部422に保持したまま、トレイユニット900を通過させる。 Also for the tray G, only the chips S of a specific rank can be collected and placed, or the chips S can be placed without distinguishing the ranks. Further, the chip S determined to be an error by the inspection apparatus 500 is not placed on the tray G, but is passed through the tray unit 900 while being held in the holding unit 422.
(9)排出装置700は、以下のような使用も可能である。
 (A) 装置が非常停止した場合、復旧作業として、搬送装置400に残っているチップSを、全て排出する。これにより、ダメージを受けている残留チップSについて、テーピング等の支持体への支持が行われないため、不良品が流出することを防止できる。
(9) The discharge device 700 can be used as follows.
(A) When the apparatus is brought to an emergency stop, all the chips S remaining in the transfer apparatus 400 are discharged as a recovery operation. As a result, the remaining chip S that has been damaged is not supported by a support such as taping, so that it is possible to prevent a defective product from flowing out.
 (B) 入力部30又は出力部40に表示された操作画面から指定することで、通常の不良品の排出に使用する。 (B) By specifying from the operation screen displayed on the input unit 30 or the output unit 40, it is used for discharging normal defective products.
(10)上記の実施形態は例示であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 (10) The above embodiment is an exemplification, and various omissions, replacements, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope of the invention described in the claims and equivalents thereof.
2A、2B リング移動機構
3A、3B エキスパンド機構
4A 分離機構
5A、5B オートローダ
10 制御装置
11 機構制御部
12 リファレンス検出部
15 記憶部
21 リングホルダ
30 入力部
31 引張部
40 出力部
41a ピン
50a ピックアップ部
50b 反転部
50c 貼付部
51 保持部
60a、60b 撮像部
62a、62b 光学系部材
100 第1の支持装置
110 収容部
111 供給マガジン
111a 側壁
111b ガイド
112 昇降装置
112a 昇降プレート
112b 駆動機構
112c ボールねじ
112d ガイドレール
120 リング搬送機構
121 クランプ
122 フォーク
200 搬送装置
300 第2の支持装置
400 搬送装置
410 ピックアップ部
411 保持部
420 搬送部
421 ターンテーブル
422 保持部
500 検査装置
510 外観検査ユニット
600 テーピングユニット
610 本体部
620 送り機構
621 スプロケット
700 排出装置
710 導入シュータ
720 排出ビン
900 トレイユニット
Da、Db ウェハシート
Ra、Rb ウェハリング
S チップ
T キャリアテープ
G トレイ
W ウェハ
2A, 2B Ring moving mechanism 3A, 3B Expanding mechanism 4A Separating mechanism 5A, 5B Autoloader 10 Controller 11 Mechanism control unit 12 Reference detection unit 15 Storage unit 21 Ring holder 30 Input unit 31 Pull unit 40 Output unit 41a Pin 50a Pickup unit 50b Inversion unit 50c Affixing unit 51 Holding unit 60a, 60b Imaging unit 62a, 62b Optical system member 100 First support device 110 Housing unit 111 Supply magazine 111a Side wall 111b Guide 112 Lifting device 112a Lifting plate 112b Drive mechanism 112c Ball screw 112d Guide rail 120 Ring transport mechanism 121 Clamp 122 Fork 200 Transport device 300 Second support device 400 Transport device 410 Pickup unit 411 Holding unit 420 Transport unit 421 Turntable 422 Holding unit 500査 device 510 appearance inspection unit 600 Taping unit 610 body portion 620 feeding mechanism 621 sprocket 700 eductor 710 introduced chute 720 receiving bin 900 tray unit Da, Db wafer sheet Ra, Rb wafer ring S chip T carrier tape G tray W wafer

Claims (35)

  1.  ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、
     前記スキャン部により特定された各チップの座標データと、各チップを区別した区別情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップするピックアップ部と、
     を有することを特徴とする分類装置。
    An image pickup unit that picks up an image of a chip in which the wafer is divided into individual pieces while moving relative to the wafer sheet based on the coordinate data by extending the wafer sheet to which the diced wafer is attached;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection unit for performing a reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scanning unit that performs a scanning process that identifies the coordinate data of each chip,
    A pickup unit that selectively picks up a chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scan unit and the discrimination information that distinguishes each chip;
    A classification apparatus comprising:
  2.  前記撮像機構が撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、前記リファレンス検出処理によるリファレンスチップの座標データが、正しいか否かを検査するリファレンス検査処理を行うリファレンス検査部を有することを特徴とする請求項1記載の分類装置。 Based on the image data captured by the imaging mechanism and the coordinate data for the relative movement of the imaging unit, a reference inspection process is performed to inspect whether the reference chip coordinate data by the reference detection process is correct. The classification apparatus according to claim 1, further comprising a reference inspection unit.
  3.  各チップを区別した区別情報は、品質の程度を示すランクを含み、
     前記ピックアップ部によりランク毎にピックアップされたチップを、ウェハシートにランク毎にまとめて貼付する貼付部を有することを特徴とする請求項1又は請求項2記載の分類装置。
    The distinction information that distinguishes each chip includes a rank indicating the degree of quality,
    3. The classification apparatus according to claim 1, further comprising a pasting unit that pastes the chips picked up by the pick-up unit for each rank together on the wafer sheet for each rank.
  4.  前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、
     前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行うことを特徴とする請求項1~3のいずれか1項に記載の分類装置。
    A reference chip is set for each of a plurality of guaranteed areas that divide the wafer,
    4. The classification apparatus according to claim 1, wherein the scanning unit performs a scanning process based on a reference chip for each guaranteed area of the reference chip.
  5.  前記スキャン部は、チップの有無にかかわらず、各チップについてスキャン処理済みを示すフラグを立て、
     スキャン処理済みのチップがなくなるまで、スキャン処理を行うことを特徴とする請求項1~4のいずれか1項に記載の分類装置。
    The scanning unit sets a flag indicating that scanning has been completed for each chip regardless of the presence or absence of the chip,
    5. The classification apparatus according to claim 1, wherein the scanning process is performed until there is no chip subjected to the scanning process.
  6.  前記撮像部は、複数のチップ単位で相対移動し、
     前記スキャン部は、前記撮像部により撮像された画像データに含まれる複数のチップについて、それぞれ座標データを特定することを特徴とする請求項1~5のいずれか1項に記載の分類装置。
    The imaging unit relatively moves in units of a plurality of chips,
    6. The classification apparatus according to claim 1, wherein the scanning unit specifies coordinate data for each of a plurality of chips included in the image data captured by the imaging unit.
  7.  前記撮像部の相対移動の経路は、重複が最小となるように設定されていることを特徴とする請求項1~6のいずれか1項に記載の分類装置。 The classification device according to any one of claims 1 to 6, wherein a path of relative movement of the imaging unit is set so that overlap is minimized.
  8.  前記撮像部のリファレンスチップの撮像位置から他のリファレンスチップの撮像位置までの相対移動の距離が、最短となるように設定されていることを特徴とする請求項1~7のいずれか1項に記載の分類装置。 8. The distance of relative movement from an imaging position of a reference chip of the imaging unit to an imaging position of another reference chip is set to be the shortest. The classification device described.
  9.  前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、
     前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行い、
     前記リファレンス検査部は、保証領域毎に、リファレンス検査を行うことを特徴とする請求項2記載の分類装置。
    A reference chip is set for each of a plurality of guaranteed areas that divide the wafer,
    The scan unit performs a scan process based on a reference chip for each guaranteed area of the reference chip,
    The classification apparatus according to claim 2, wherein the reference inspection unit performs a reference inspection for each guaranteed area.
  10.  前記スキャン部は、リファレンスチップを基準とするスキャン処理を、保証領域を複数の領域に区切った部分領域毎に行い、
     前記リファレンス検査部は、部分領域毎に、リファレンス検査を行うことを特徴とする請求項9記載の分類装置。
    The scanning unit performs a scanning process based on a reference chip for each partial area obtained by dividing the guaranteed area into a plurality of areas,
    The classification apparatus according to claim 9, wherein the reference inspection unit performs a reference inspection for each partial region.
  11.  リファレンス検査処理の結果が正しくない場合には、これを外部に報知する出力部を有することを特徴とする請求項2、請求項9及び請求項10のいずれか1項に記載の分類装置。 11. The classification device according to claim 2, further comprising an output unit for notifying a result of the reference inspection process to the outside when the result is not correct.
  12.  ピックアップするウェハシートを換える毎に、ウェハシートの伸張が行われていることを特徴とする請求項3記載の分類装置。 4. The classification apparatus according to claim 3, wherein the wafer sheet is stretched each time the wafer sheet to be picked up is changed.
  13.  コンピュータ又は電子回路が、
     撮像部に、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像させる処理と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理と、
    ピックアップ部に、前記スキャン部により特定された各チップの座標データと、各チップを区別した区別情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップさせる処理と、
     を実行することを特徴とする分類方法。
    A computer or electronic circuit
    A process in which the wafer sheet with the diced wafer attached to the imaging unit is stretched to image a chip in which the wafer is divided into pieces while moving relative to the wafer sheet based on the coordinate data;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scan process for identifying the coordinate data of each chip,
    A process of selectively picking up the chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scanning unit and the discrimination information that distinguishes each chip, in the pickup unit,
    The classification method characterized by performing.
  14.  コンピュータに、
     撮像部に、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像させる処理と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理と、
    ピックアップ部に、前記スキャン部により特定された各チップの座標データと、各チップを区別した区別情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップさせる処理と、
     を実行させることを特徴とする分類プログラム。
    On the computer,
    A process in which the wafer sheet with the diced wafer attached to the imaging unit is stretched to image a chip in which the wafer is divided into pieces while moving relative to the wafer sheet based on the coordinate data;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scan process for identifying the coordinate data of each chip,
    A process of selectively picking up the chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scanning unit and the discrimination information that distinguishes each chip, in the pickup unit,
    A classification program characterized in that
  15.  ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、
     前記スキャン部により特定された各チップの座標データに基づいて、ウェハシートに対して相対移動しながら、チップをピックアップするピックアップ部と、
     を有することを特徴とする移載装置。
    An image pickup unit that picks up an image of a chip in which the wafer is divided into individual pieces while moving relative to the wafer sheet based on the coordinate data by extending the wafer sheet to which the diced wafer is attached;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection unit for performing a reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scanning unit that performs a scanning process that identifies the coordinate data of each chip,
    Based on the coordinate data of each chip specified by the scanning unit, a pickup unit that picks up a chip while moving relative to the wafer sheet;
    A transfer apparatus comprising:
  16.  前記撮像機構が撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、前記リファレンス検出処理によるリファレンスチップの座標データが、正しいか否かを検査するリファレンス検査処理を行うリファレンス検査部を有することを特徴とする請求項15記載の移載装置。 Based on the image data captured by the imaging mechanism and the coordinate data for the relative movement of the imaging unit, a reference inspection process is performed to inspect whether the reference chip coordinate data by the reference detection process is correct. The transfer apparatus according to claim 15, further comprising a reference inspection unit.
  17.  前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、
     前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行うことを特徴とする請求項15又は請求項16記載の移載装置。
    A reference chip is set for each of a plurality of guaranteed areas that divide the wafer,
    The transfer device according to claim 15 or 16, wherein the scan unit performs a scan process based on a reference chip for each guaranteed area of the reference chip.
  18.  前記スキャン部は、チップの有無にかかわらず、各チップについてスキャン処理済みを示すフラグを立て、
     スキャン処理済みのチップがなくなるまで、スキャン処理を行うことを特徴とする請求項15~17のいずれか1項に記載の移載装置。
    The scanning unit sets a flag indicating that scanning has been completed for each chip regardless of the presence or absence of the chip,
    The transfer apparatus according to any one of claims 15 to 17, wherein the scanning process is performed until no chips have been scanned.
  19.  前記撮像部は、複数のチップ単位で相対移動し、
     前記スキャン部は、前記撮像部により撮像された画像データに含まれる複数のチップについて、それぞれ座標データを特定することを特徴とする請求項15~18のいずれか1項に記載の移載装置。
    The imaging unit relatively moves in units of a plurality of chips,
    The transfer apparatus according to any one of claims 15 to 18, wherein the scanning unit specifies coordinate data for each of a plurality of chips included in image data captured by the imaging unit.
  20.  前記撮像部の相対移動の経路は、重複が最小となるように設定されていることを特徴とする請求項15~19のいずれか1項に記載の移載装置。 The transfer device according to any one of claims 15 to 19, wherein a path of relative movement of the imaging unit is set so that overlap is minimized.
  21.  前記撮像部のリファレンスチップの撮像位置から他のリファレンスチップの撮像位置までの相対移動の距離が、最短となるように設定されていることを特徴とする請求項15~20のいずれか1項に記載の移載装置。 The relative movement distance from the imaging position of the reference chip of the imaging unit to the imaging position of another reference chip is set to be the shortest. The transfer apparatus described.
  22.  前記ウェハを区切る複数の保証領域毎にリファレンスチップが設定され、
     前記スキャン部は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行い、
     前記リファレンス検査部は、保証領域毎に、リファレンス検査を行うことを特徴とする請求項16記載の移載装置。
    A reference chip is set for each of a plurality of guaranteed areas that divide the wafer,
    The scan unit performs a scan process based on a reference chip for each guaranteed area of the reference chip,
    The transfer device according to claim 16, wherein the reference inspection unit performs a reference inspection for each guaranteed area.
  23.  前記スキャン部は、リファレンスチップを基準とするスキャン処理を、保証領域を複数の領域に区切った部分領域毎に行い、
     前記リファレンス検査部は、部分領域毎に、リファレンス検査を行うことを特徴とする請求項22記載の移載装置。
    The scanning unit performs a scanning process based on a reference chip for each partial area obtained by dividing the guaranteed area into a plurality of areas,
    The transfer device according to claim 22, wherein the reference inspection unit performs a reference inspection for each partial region.
  24.  リファレンス検査処理の結果が正しくない場合には、これを外部に報知する出力部を有することを特徴とする請求項16、請求項22及び請求項23のいずれか1項に記載の移載装置。 The transfer device according to any one of claims 16, 22, and 23, further comprising an output unit for informing the outside when the result of the reference inspection process is not correct.
  25.  前記ピックアップ部は、各チップを区別した区別情報に基づいて、チップを選択的にピックアップすることを特徴とする請求項15~24のいずれか1項に記載の移載装置。 The transfer device according to any one of claims 15 to 24, wherein the pickup unit selectively picks up a chip based on the distinction information for distinguishing each chip.
  26.  前記各チップを区別した区別情報は、品質の程度を示すランクを含み、前記ピックアップ部は、前記ランク毎にチップをピックアップすることを特徴とする請求項25記載の移載装置。 26. The transfer apparatus according to claim 25, wherein the distinction information for distinguishing each chip includes a rank indicating a degree of quality, and the pickup unit picks up a chip for each rank.
  27.  前記ピックアップ部によりピックアップされたチップを、チップを支持する支持体まで搬送する搬送装置を有することを特徴とする請求項15~26のいずれか1項に記載の移載装置。 The transfer device according to any one of claims 15 to 26, further comprising: a transport device that transports the chip picked up by the pick-up unit to a support that supports the chip.
  28.  前記搬送装置は、前記ピックアップ部によりランク毎にピックアップされたチップを、前記支持体にランク毎にまとめて支持させることを特徴とする請求項27記載の移載装置。 28. The transfer device according to claim 27, wherein the transfer device supports the chips picked up for each rank by the pick-up unit collectively on the support for each rank.
  29.  前記搬送装置は、複数の前記支持体毎に、ランクに分けて支持させることを特徴とする請求項27記載の移載装置。 28. The transfer device according to claim 27, wherein the transport device supports each of the plurality of supports in a rank.
  30.  前記搬送装置は、前記ピックアップ部によりピックアップされた順序に従って、前記支持体に支持させることを特徴とする請求項27記載の移載装置。 28. The transfer device according to claim 27, wherein the transport device is supported by the support according to the order picked up by the pickup unit.
  31.  前記支持体は、キャリアテープであり、
     前記搬送装置から受け取ったチップをキャリアテーブにテーピングするテーピングユニットを有することを特徴とする請求項27~30のいずれか1項に記載の移載装置。
    The support is a carrier tape;
    The transfer device according to any one of claims 27 to 30, further comprising a taping unit that taps a chip received from the transfer device onto a carrier tape.
  32.  前記支持体は、ウェハシートであり、
     前記ピックアップ部によりピックアップされたチップを、ウェハシートに貼付する貼付部を有することを特徴とする請求項27~30のいずれか1項に記載の移載装置。
    The support is a wafer sheet;
    The transfer apparatus according to any one of claims 27 to 30, further comprising a pasting unit for pasting a chip picked up by the pick-up unit onto a wafer sheet.
  33.  チップがピックアップされる前記ウェハシートは、一部のチップがピックアップされ伸張が解除された後、伸張されたウェハシートを含むことを特徴とする請求項32記載の移載装置。 33. The transfer apparatus according to claim 32, wherein the wafer sheet from which chips are picked up includes a wafer sheet that has been stretched after a portion of the chips has been picked up and released from stretching.
  34.  コンピュータ又は電子回路が、
     撮像部に、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像させる処理と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理と、
    ピックアップ部に、前記スキャン部により特定された各チップの座標データにもとづいて、ウェハシートに対して相対移動しながら、チップをピックアップさせる処理と、
     を実行することを特徴とする移載方法。
    A computer or electronic circuit
    A process in which the wafer sheet with the diced wafer attached to the imaging unit is stretched to image a chip in which the wafer is divided into pieces while moving relative to the wafer sheet based on the coordinate data;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scan process for identifying the coordinate data of each chip,
    A process of causing the pickup unit to pick up the chip while moving relative to the wafer sheet based on the coordinate data of each chip specified by the scanning unit;
    The transfer method characterized by performing.
  35.  コンピュータに、
     撮像部に、ダイシングされたウェハを貼付したウェハシートが伸張されることにより、ウェハが個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像させる処理と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理と、
    ピックアップ部に、前記スキャン部により特定された各チップの座標データに基づいて、ウェハシートに対して相対移動しながら、チップをピックアップさせる処理と、
     を実行させることを特徴とする移載プログラム。
    On the computer,
    A process in which the wafer sheet with the diced wafer attached to the imaging unit is stretched to image a chip in which the wafer is divided into pieces while moving relative to the wafer sheet based on the coordinate data;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scan process for identifying the coordinate data of each chip,
    Based on the coordinate data of each chip specified by the scanning unit, the pickup unit picks up the chip while moving relative to the wafer sheet;
    A transfer program characterized in that it is executed.
PCT/JP2014/078449 2013-11-29 2014-10-27 Classification device, classification method, classification program, transfer device, transfer method, and transfer program WO2015079843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103137245A TW201535558A (en) 2013-11-29 2014-10-28 Classification device, classification method, classification program, transfer device, transfer method, and transfer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/082280 2013-11-29
PCT/JP2013/082280 WO2015079585A1 (en) 2013-11-29 2013-11-29 Classification device, classification method, and classification program

Publications (1)

Publication Number Publication Date
WO2015079843A1 true WO2015079843A1 (en) 2015-06-04

Family

ID=52574713

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082280 WO2015079585A1 (en) 2013-11-29 2013-11-29 Classification device, classification method, and classification program
PCT/JP2014/078449 WO2015079843A1 (en) 2013-11-29 2014-10-27 Classification device, classification method, classification program, transfer device, transfer method, and transfer program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082280 WO2015079585A1 (en) 2013-11-29 2013-11-29 Classification device, classification method, and classification program

Country Status (3)

Country Link
JP (1) JP5614825B1 (en)
TW (1) TW201535558A (en)
WO (2) WO2015079585A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724985A (en) * 2022-04-02 2022-07-08 安徽钜芯半导体科技有限公司 Packaging transmission control system of photovoltaic module chip
EP4052291A4 (en) * 2019-11-08 2023-07-12 Semiconductor Technologies & Instruments Pte Ltd. Component handler

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892669B1 (en) * 2014-11-28 2016-03-23 上野精機株式会社 Classification device
EP3594995B1 (en) * 2017-03-09 2021-04-21 Fuji Corporation Wafer feed device
US11417548B2 (en) 2017-03-09 2022-08-16 Fuji Corporation Component mounting machine
JP6986916B2 (en) * 2017-10-04 2021-12-22 新東エスプレシジョン株式会社 Inspection equipment and inspection method
WO2019163108A1 (en) * 2018-02-23 2019-08-29 ヤマハ発動機株式会社 Die pickup method and device
KR102048747B1 (en) 2018-04-16 2019-11-26 한국기계연구원 Method of transferring micro devices
CN113066917B (en) * 2021-03-22 2022-03-25 先进光电器材(深圳)有限公司 Chip die bonding method and terminal
CN113488402B (en) * 2021-07-02 2024-02-13 先进光电器材(深圳)有限公司 Method for solidifying and finding crystals in different wave bands
CN115831814A (en) * 2022-11-22 2023-03-21 深圳新益昌科技股份有限公司 Wafer searching method, system, device and readable storage medium
CN117457536B (en) * 2023-11-01 2024-03-26 江苏新智达新能源设备有限公司 Image processing-based intelligent chip pickup method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307677A (en) * 1991-04-04 1992-10-29 Hitachi Electron Eng Co Ltd Detection system for pad center point and chip reference point
JPH0468767B2 (en) * 1987-03-20 1992-11-04 Canon Kk
JP2006013012A (en) * 2004-06-24 2006-01-12 Nidec Tosok Corp Bonding device
JP2006332417A (en) * 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd Pickup device and pickup method for chip
JP2012190879A (en) * 2011-03-09 2012-10-04 Fuji Mach Mfg Co Ltd Electronic component mounting device and electronic component mounting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468767B2 (en) * 1987-03-20 1992-11-04 Canon Kk
JPH04307677A (en) * 1991-04-04 1992-10-29 Hitachi Electron Eng Co Ltd Detection system for pad center point and chip reference point
JP2006013012A (en) * 2004-06-24 2006-01-12 Nidec Tosok Corp Bonding device
JP2006332417A (en) * 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd Pickup device and pickup method for chip
JP2012190879A (en) * 2011-03-09 2012-10-04 Fuji Mach Mfg Co Ltd Electronic component mounting device and electronic component mounting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4052291A4 (en) * 2019-11-08 2023-07-12 Semiconductor Technologies & Instruments Pte Ltd. Component handler
US11887876B2 (en) 2019-11-08 2024-01-30 Semiconductor Technologies & Instruments Pte Ltd Component handler
CN114724985A (en) * 2022-04-02 2022-07-08 安徽钜芯半导体科技有限公司 Packaging transmission control system of photovoltaic module chip
CN114724985B (en) * 2022-04-02 2022-12-06 安徽钜芯半导体科技有限公司 Packaging transmission control system of photovoltaic module chip

Also Published As

Publication number Publication date
JPWO2015079585A1 (en) 2017-03-16
JP5614825B1 (en) 2014-10-29
TW201535558A (en) 2015-09-16
WO2015079585A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2015079843A1 (en) Classification device, classification method, classification program, transfer device, transfer method, and transfer program
JP5892669B1 (en) Classification device
US9521793B2 (en) Method and device for filling carrier tapes with electronic components
JP5183220B2 (en) Component classification device and electronic component characteristic inspection and classification device using the device
TWI729397B (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
JP5674060B2 (en) Electronic component transfer device and taping unit
CN108364880B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2010141101A (en) Method and apparatus for separating protective tape from semiconductor wafer
JP2008227402A (en) Method for mounting component
JP2012116528A (en) Taping unit and electronic component inspection device
WO2017119028A1 (en) Defect inspection apparatus
JP5765864B2 (en) Electronic component transfer device and taping unit
WO2007083360A1 (en) Semiconductor fabrication device and fabrication method
JP5812555B1 (en) Electronic component inspection equipment
KR20180109678A (en) Die bonding device and method of manufacturing semiconductor device
WO2023038572A1 (en) System and process for sorting die from wafer using angled wafer table and angled turret
KR102598549B1 (en) Parts management devices and parts management methods
JPH11330103A (en) Part transfer method and device
JP3931121B2 (en) Appearance inspection method for inspected products
CN117012672A (en) Die attach system and method
KR20100073237A (en) Wafer moving system in a wafer mounter
JP2009044061A (en) Work processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP