WO2015079502A1 - 空調装置の制御装置 - Google Patents

空調装置の制御装置 Download PDF

Info

Publication number
WO2015079502A1
WO2015079502A1 PCT/JP2013/081809 JP2013081809W WO2015079502A1 WO 2015079502 A1 WO2015079502 A1 WO 2015079502A1 JP 2013081809 W JP2013081809 W JP 2013081809W WO 2015079502 A1 WO2015079502 A1 WO 2015079502A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
time
specified
allowable range
Prior art date
Application number
PCT/JP2013/081809
Other languages
English (en)
French (fr)
Inventor
恵美 竹田
伊藤 慎一
畝崎 史武
裕信 矢野
吉川 利彰
松本 崇
大輔 杉山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13898338.2A priority Critical patent/EP3076091B1/en
Priority to JP2015550240A priority patent/JP6125039B2/ja
Priority to PCT/JP2013/081809 priority patent/WO2015079502A1/ja
Publication of WO2015079502A1 publication Critical patent/WO2015079502A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states

Definitions

  • the present invention relates to a control device for an air conditioner.
  • JP-A-60-142136 page 163, upper left column, lines 8 to 20
  • Patent Document 1 performs forward operation control for starting an air conditioner before a specified time.
  • the forward operation control is an operation for measuring the time to reach the target temperature, correcting the graph information corresponding to the forward operation time based on the measurement result, and determining the next forward operation time.
  • the prior art determined the operating time ahead of time by learning the time for the room temperature to reach the target temperature.
  • the air conditioning capability is reduced, and the room temperature gradually reaches the target temperature.
  • the forward running time is corrected to be long.
  • the heat load such as the heat load due to opening and closing the door, the heat generated by humans, and the heat generated by household appliances such as cooking equipment and lighting equipment.
  • the time for the room temperature to reach the target temperature varies variously depending on the conditions.
  • the conventional technology excessive forward driving is performed and excessive power consumption is used, or the forward driving is not sufficient and the comfort is impaired.
  • the conventional technology has a problem that it is impossible to balance the reduction in power consumption and the improvement in comfort.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an air conditioner capable of balancing power consumption reduction and comfort improvement. Is.
  • the control device for an air conditioner is a control device for an air conditioner that operates the air conditioner before a specified time and performs a forward operation for adjusting a room temperature, and corrects the operation time of the air conditioner.
  • An operation time correction unit that calculates the operation time of the forward operation of the air conditioner according to a first temperature difference between the room temperature and a target temperature, and the air conditioner Is in the cooling operation, the next operation time is corrected based on a second temperature difference between the room temperature and the first temperature that is higher than the target temperature by a predetermined temperature at the specified time, and the air conditioning When the apparatus is in the heating operation, the next operation time is corrected based on the third temperature difference between the room temperature and the second temperature lower than the target temperature by the predetermined temperature at the specified time. is there.
  • the present invention has an effect that it is possible to balance the reduction of power consumption and the improvement of comfort by controlling the forward driving based on the temperature range allowable by the user.
  • step of describing the program for performing the operation of the embodiment of the present invention is a process performed in time series in the order described, but it is not always necessary to process in time series.
  • the processing executed may be included.
  • each block diagram described in this embodiment may be considered as a hardware block diagram or a software functional block diagram.
  • each block diagram may be realized by hardware such as a circuit device, or may be realized by software executed on an arithmetic device such as a processor (not shown).
  • each block in the block diagram described in the present embodiment only needs to perform its function, and the configuration may not be separated by each block.
  • items not particularly described are the same as those in the first to eighth embodiments, and the same functions and configurations are described using the same reference numerals.
  • each of Embodiments 1 to 8 may be implemented alone or in combination. In either case, the advantageous effects described later can be obtained.
  • various specific setting examples described in this embodiment are merely examples, and are not particularly limited thereto.
  • the system represents the entire apparatus composed of a plurality of apparatuses.
  • a network refers to a mechanism in which at least two devices are connected and information can be transmitted from one device to another.
  • Devices that communicate via a network may be independent devices, or may be internal blocks that constitute one device.
  • the communication may be communication in which wireless communication and wired communication are mixed as well as wireless communication and wired communication. For example, wireless communication may be performed in a certain section, and wired communication may be performed in another space. Further, communication from one device to another device may be performed by wired communication, and communication from another device to one device may be performed by wireless communication.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of an operation time correction unit 1 according to Embodiment 1 of the present invention.
  • the operation time correction unit 1 includes room temperature data, target temperature data, designated time data, allowable range width data, room temperature fluctuation history data, representative time history data, representative time initial value data, and the like.
  • the operation start time data specifically, precooling prewarming start time data is output.
  • the precooling preheating start time is assumed to be a term meaning either the precooling start time or the preheating start time.
  • the operation time correction unit 1 includes, for example, a temperature difference calculation unit 11, a representative time correction unit 13, a time-related calculation unit 15, and the like.
  • the temperature difference calculation unit 11 is supplied with initial room temperature data, designated time data, and room temperature fluctuation history data, thereby calculating a temperature difference between the initial room temperature Ta0 and the room temperature Ta1 at the designated time.
  • the calculation result is supplied to the time-related calculation unit 15 as temperature difference data.
  • a detailed configuration example of the indoor temperature fluctuation history data will be described later.
  • the representative time correction unit 13 is supplied with target temperature data, designated time data, allowable range width data, room temperature fluctuation history data, representative time history data, representative time initial value data, and the like, and outputs representative time data.
  • the representative time included in the representative time data is assumed to be a time required for the indoor temperature Ta to change by a unit temperature, for example, 1 ° C.
  • the representative time correction unit 13 includes, for example, an allowable range calculation unit 21, a room temperature related processing unit 23, a representative time adjustment unit 25, and the like.
  • the allowable range calculation unit 21 obtains minimum value data and maximum value data as the allowable range ⁇ Tm of the target temperature Tm. That is, the range defined by the maximum value included in the maximum value data and the minimum value included in the minimum value data is the allowable range ⁇ Tm of the target temperature Tm.
  • the allowable range calculation unit 21 supplies the allowable range data to the indoor temperature related processing unit 23.
  • the room temperature related processing unit 23 obtains the adjustment ratio data and supplies it to the representative time adjustment unit 25 when the allowable range data, the specified time data, and the room temperature fluctuation history data are supplied.
  • the room temperature related processing unit 23 includes, for example, a designated time corresponding room temperature calculation unit 31 and an adjustment ratio calculation unit 33.
  • the designated time corresponding room temperature calculation unit 31 obtains the room temperature Ta1 corresponding to the designated time included in the designated time data from the room temperature Ta included in the room temperature fluctuation history data.
  • the indoor temperature fluctuation history data is composed of, for example, set data of the indoor temperature Ta and the time corresponding to the indoor temperature Ta, and time series data of the indoor temperature Ta is configured.
  • the indoor temperature fluctuation history data is associated with, for example, whether the fluctuation of the indoor temperature Ta is caused by the cooling operation or the heating operation in addition to the set data described above. In this state, the data structure is configured.
  • the designated time corresponding room temperature calculation unit 31 obtains the room temperature Ta1 corresponding to the specified time and supplies it to the adjustment ratio calculation unit 33.
  • the adjustment ratio calculation unit 33 obtains an adjustment ratio based on the room temperature Ta1 corresponding to the designated time and the maximum value or the minimum value included in the allowable range data, and supplies the adjustment ratio data to the representative time adjustment unit 25. .
  • the adjustment ratio calculation unit 33 adjusts the adjustment ratio based on the room temperature Ta1 corresponding to the specified time and the minimum value included in the allowable range data. Ask for.
  • the adjustment ratio calculating part 33 calculates
  • the representative time adjustment unit 25 is based on the adjustment ratio included in the adjustment ratio data and the past representative time included in the representative time history data or the representative time initial value included in the representative time initial value data 267 (described later).
  • the representative time is obtained and supplied to the time related calculation unit 15 as representative time data. Specifically, when the representative time is first obtained, the representative time adjustment unit 25 obtains the representative time based on the adjustment ratio and the representative time initial value. If the representative time has already been obtained, the representative time adjustment unit 25 obtains the next representative time based on the adjustment ratio and the past representative time.
  • the representative time initial value is, for example, an initial value set at the time of product shipment.
  • the time-related calculation unit 15 obtains an operation start time based on the temperature difference included in the temperature difference data, the specified time included in the specified time data, and the representative time included in the representative time data, and the operation start time data Output as. Since the operation start time is, for example, the precooling prewarming start time, it is actually output as precooling prewarming start time data.
  • the time-related calculation unit 15 includes an operation time calculation unit 27 and an operation start time calculation unit 29.
  • the operation time calculation unit 27 calculates an operation time, for example, a pre-warming time t or a pre-cooling time t, based on the temperature difference included in the temperature difference data and the representative time included in the representative time data, and calculates an operation start time.
  • the operation start time calculation unit 29 obtains the operation start time based on the operation time and the specified time, and outputs the operation start time data.
  • FIG. 2 is a diagram for explaining an example of a result of correcting the next pre-warming start time when the room temperature Ta is within the allowable range ⁇ Tm at the specified time during the heating operation in the first embodiment of the present invention.
  • the first state 51 during the heating operation transitions to the second state 54 during the heating operation through the representative time correction processing 52 and the operation time calculation processing 53.
  • the room temperature Ta1 at the specified time is within the allowable range ⁇ Tm of the target temperature Tm. That is, the indoor temperature Ta1 at the specified time is the initial indoor temperature Ta0 at the operation start time, for example, the pre-warming start time, but converges within the allowable range ⁇ Tm at the specified time.
  • the minimum temperature Tk of the allowable range ⁇ Tm is set as the minimum value of the allowable range ⁇ Tm.
  • the representative time correction process 52 multiplies the representative time t0 of the first state 51 by the ratio of the minimum temperature Tk within the allowable range ⁇ Tm in the first state 51 and the indoor temperature Ta1 at the specified time, thereby This is a process for obtaining the representative time t0 ′. Specifically, as shown in FIG. 2, it is expressed by the following equation (1).
  • Tk is expanded as shown in the following equation (2).
  • the operation time calculation process 53 is a process for obtaining an operation time, for example, a pre-warming time t 'by multiplying the temperature difference between the initial indoor temperature Ta0 and the target temperature Tm by the representative time t0'. Specifically, as shown in FIG. 2, it is expressed by the following equation (3).
  • the forward running time for example, the pre-warming time t ′ is calculated according to the first temperature difference that is the temperature difference between the initial indoor temperature Ta0 and the target temperature Tm. .
  • the forward running time is based on the third temperature difference, which is the temperature difference between the room temperature Ta1 at the specified time and the temperature within the allowable range ⁇ Tm of the target temperature Tm, for example, the minimum temperature Tk of the allowable range ⁇ Tm.
  • Advance operation time is corrected.
  • the representative time t0 ' is used as one corresponding to the third temperature difference.
  • the initial room temperature Ta0 or the room temperature Ta1 at the designated time corresponds to the room temperature.
  • the minimum temperature Tk within the allowable range ⁇ Tm corresponds to the second temperature.
  • the second temperature is the minimum temperature Tk within the allowable range ⁇ Tm
  • the present invention is not particularly limited thereto. Specifically, if the third temperature difference is within the allowable range ⁇ Tm and the third temperature difference is the allowable range ⁇ Tm, the second temperature becomes the minimum temperature Tk of the allowable range ⁇ Tm, so that an energy saving effect is obtained, and the third temperature difference is the target temperature.
  • the second temperature is a predetermined temperature lower than the target temperature Tm, so that an energy saving effect is obtained, and if the third temperature difference is zero, an improvement in comfort is obtained. It is done. That is, the driving
  • the room temperature Ta1 at the designated time exists at the minimum temperature Tk within the allowable range ⁇ Tm. That is, the indoor temperature Ta1 at the specified time was the initial indoor temperature Ta0 at the operation start time, for example, the pre-warming start time, but at the specified time, the room temperature Ta1 converges to the minimum value of the allowable range ⁇ Tm. ing.
  • the pre-warming time t is shortened to the pre-warming time t ′ by recalculating the representative time based on the ratio between the minimum temperature Tk within the allowable range ⁇ Tm and the indoor temperature Ta1 at the specified time. , Power consumption is reduced.
  • FIG. 3 is a diagram for explaining an example of a result of correcting the next precooling start time when the room temperature Ta is within the allowable range ⁇ Tm at the specified time during the cooling operation according to the first embodiment of the present invention.
  • the first state 55 during the cooling operation transits to the second state 58 during the cooling operation through the representative time correction processing 56 and the operation time calculation processing 57.
  • the room temperature Ta1 at the specified time is within the allowable range ⁇ Tm of the target temperature Tm. That is, the indoor temperature Ta1 at the specified time is the initial indoor temperature Ta0 at the operation start time, for example, the precooling start time, but converges within the allowable range ⁇ Tm at the specified time.
  • the maximum temperature Tk within the allowable range ⁇ Tm is set as the maximum value of the allowable range ⁇ Tm.
  • the representative time correction process 56 multiplies the representative time t0 of the first state 55 by the ratio of the maximum temperature Tk within the allowable range ⁇ Tm in the first state 55 and the indoor temperature Ta1 at the specified time, thereby This is a process for obtaining the representative time t0 ′. Specifically, as shown in FIG. 3, it is expressed by the following equation (4).
  • Tk is expanded as shown in the following equation (5).
  • the operation time calculation process 57 is a process for obtaining an operation time, for example, a pre-cooling time t ′ by multiplying the temperature difference between the initial room temperature Ta0 and the target temperature Tm by the representative time t0 ′. Specifically, as shown in FIG. 2, it is expressed by the following equation (6).
  • the forward running time for example, the pre-cooling time t ′ is calculated according to the first temperature difference that is the temperature difference between the initial indoor temperature Ta0 and the target temperature Tm.
  • the forward running time is based on the second temperature difference that is the temperature difference between the room temperature Ta1 at the specified time and the temperature within the allowable range ⁇ Tm of the target temperature Tm, for example, the maximum temperature Tk of the allowable range ⁇ Tm.
  • Advance operation time is corrected.
  • the representative time t0 ' is used as one corresponding to the second temperature difference.
  • the initial room temperature Ta0 or the room temperature Ta1 at the designated time corresponds to the room temperature.
  • the maximum temperature Tk within the allowable range ⁇ Tm corresponds to the first temperature.
  • the first temperature is the maximum temperature Tk within the allowable range ⁇ Tm
  • the present invention is not particularly limited to this. Specifically, if the second temperature difference is within the allowable range ⁇ Tm and the second temperature difference is the allowable range ⁇ Tm, the first temperature becomes the maximum temperature Tk of the allowable range ⁇ Tm, so that an energy saving effect is obtained, and the second temperature difference is the target temperature.
  • the first temperature is higher by a predetermined temperature than the target temperature Tm, so that an energy saving effect is obtained.
  • the second temperature difference is zero, an effect of improving comfort is obtained. It is done. That is, the driving
  • the room temperature Ta1 at the designated time exists at the maximum temperature Tk within the allowable range ⁇ Tm. That is, the indoor temperature Ta1 at the specified time was the initial indoor temperature Ta0 at the operation start time, for example, the precooling start time, but at the specified time, the room temperature Ta1 converges to the maximum value of the allowable range ⁇ Tm. Yes.
  • the precooling time t is shortened to the precooling time t ′ by recalculating the representative time based on the ratio between the maximum temperature Tk within the allowable range ⁇ Tm and the indoor temperature Ta1 at the specified time, consumption The amount of power is reduced.
  • FIG. 4 illustrates an example of the result of correcting the next pre-warming start time when the room temperature Ta is outside the allowable range ⁇ Tm and higher than the allowable range ⁇ Tm at the specified time during the heating operation in the first embodiment of the present invention. It is a figure to do. As shown in FIG. 4, in the first state 61, the room temperature Ta1 at the specified time exceeds the allowable range ⁇ Tm. On the other hand, in the second state 64, the room temperature Ta1 at the designated time has converged to the minimum temperature Tk within the allowable range ⁇ Tm. That is, since the pre-warming time t is shortened to the pre-warming time t ′, the power consumption is reduced.
  • FIG. 5 illustrates an example of a result of correcting the next pre-warming start time when the room temperature Ta is outside the allowable range ⁇ Tm and lower than the allowable range ⁇ Tm at the specified time during the heating operation in the first embodiment of the present invention. It is a figure to do. As shown in FIG. 5, in the first state 65, the room temperature Ta1 at the specified time does not reach the allowable range ⁇ Tm. On the other hand, in the second state 68, the room temperature Ta1 at the designated time has converged to the minimum temperature Tk within the allowable range ⁇ Tm.
  • the representative time is changed to be longer with the lower end of the allowable range ⁇ Tm as a target, and in the second state 68 corresponding to the next timer control, the preheating time t becomes the preheating time t ′. Since the room temperature Ta is extended and reached within the allowable range ⁇ Tm, the comfort is improved as compared with the first state 65.
  • FIG. 6 illustrates an example of a result of correcting the next precooling start time when the room temperature Ta is outside the allowable range ⁇ Tm and lower than the allowable range ⁇ Tm at the specified time during the cooling operation according to Embodiment 1 of the present invention.
  • FIG. 6 in the first state 71, the room temperature Ta1 at the specified time is below the allowable range ⁇ Tm.
  • the second state 74 the room temperature Ta1 at the designated time has converged to the maximum temperature Tk within the allowable range ⁇ Tm. That is, since the precooling time t is shortened to the precooling time t ′, the power consumption is reduced.
  • FIG. 7 illustrates an example of the result of correcting the next precooling start time when the room temperature Ta is outside the allowable range ⁇ Tm and higher than the allowable range ⁇ Tm at the specified time during the cooling operation according to the first embodiment of the present invention.
  • FIG. 7 As shown in FIG. 7, in the first state 75, the room temperature Ta1 at the specified time does not reach the allowable range ⁇ Tm. On the other hand, in the second state 78, the room temperature Ta1 at the designated time has converged to the maximum temperature Tk within the allowable range ⁇ Tm.
  • the representative time is changed to be long with the upper end of the allowable range ⁇ Tm as a target, and in the second state 78 corresponding to the next timer control, the precooling time t is extended to the precooling time t ′. Since the room temperature Ta has reached the allowable range ⁇ Tm, the comfort is improved as compared with the first state 75.
  • the operation time correction unit 1 refers to the history of the heating operation of the air conditioner 101, and when the room temperature Ta corresponding to the specified time is lower than the allowable range ⁇ Tm, or the cooling operation of the air conditioner 101 If the room temperature Ta corresponding to the specified time is higher than the allowable range ⁇ Tm, the next operation start time is advanced.
  • the operation time correction unit 1 refers to the history of the heating operation of the air conditioner 101 and refers to the history of the cooling operation of the air conditioner 101 when the room temperature Ta corresponding to the specified time is higher than the allowable range ⁇ Tm. When the room temperature Ta corresponding to the specified time is lower than the allowable range ⁇ Tm, the next operation start time is delayed.
  • the operation time correction unit 1 next time according to the comparison result between the room temperature Ta1 corresponding to the specified time and the minimum value of the allowable range ⁇ Tm.
  • the operation time correction unit 1 refers to the history of the heating operation of the air conditioner 101, and when the indoor temperature Ta1 corresponding to the specified time is higher than the minimum value in the allowable range ⁇ Tm, or the air conditioner 101 is cooled. If the room temperature Ta1 corresponding to the specified time is lower than the maximum value in the allowable range ⁇ Tm with reference to the operation history, the next operation start time is delayed.
  • the allowable range ⁇ Tm of the target temperature Tm may be a preset fixed value, or may be set by the user with the remote controller 115 described later. Further, as will be described later, if a power saving mode in which a power saving level of a plurality of stages is selected by the user is configured, the allowable range ⁇ Tm may be determined according to the power saving level.
  • the setting means is not limited to the remote controller 115 described later, and may be the measurement control device 151 or the measurement control device 153 described later in FIG. .
  • the HEMS controller 323, the communication apparatus 328, the terminal 329, etc. which control HEMS (Home Energy Management System) 2 mentioned later in FIG. 19 may be sufficient.
  • FIG. 8 is a diagram illustrating an example of the air conditioner 101 according to Embodiment 1 of the present invention.
  • the air conditioner 101 includes an outdoor unit 111 and an indoor unit 113.
  • the outdoor unit 111 is provided outside the house 91, for example.
  • the indoor unit 113 is provided inside the house 91, for example.
  • the air conditioner 101 targets the indoor space 171 for air conditioning. That is, in the air conditioner 101, the indoor space 171 is a space to be controlled by air.
  • the indoor unit 113 is installed in a place where conditioned air can be supplied to the indoor space 171, for example, a wall constituting the indoor space 171.
  • the air conditioner 101 performs cooling by blowing conditioned air, for example, cold air, from the indoor unit 113, and performs heating by blowing hot air.
  • a vapor compression refrigeration cycle is formed in the air conditioner 101.
  • the refrigerant flows through the refrigerant pipe 117 that connects the outdoor unit 111 and the indoor unit 113, and various signals are transferred to the communication line 163 that connects the outdoor unit 111 and the indoor unit 113.
  • the outdoor unit 111 includes a compressor 121, a four-way valve 122, an outdoor heat exchanger 123, and an expansion valve 124.
  • the outdoor unit 111 includes an outdoor fan 131 near the outdoor heat exchanger 123.
  • the outdoor unit 111 includes a measurement control device 151.
  • the indoor unit 113 includes an indoor heat exchanger 125.
  • the indoor unit 113 includes an indoor blower 133 near the indoor heat exchanger 125.
  • the indoor unit 113 includes a measurement control device 153.
  • the indoor unit 113 includes an indoor temperature sensor 141.
  • a remote controller 115 is provided in the indoor space 171. The remote controller 115 transmits and receives various signals to and from the measurement control device 153 included in the indoor unit 113.
  • the compressor 121, the four-way valve 122, the outdoor heat exchanger 123, the expansion valve 124, and the indoor heat exchanger 125 are annularly connected by a refrigerant pipe 117, whereby a refrigerant circuit is configured, and refrigerant flows inside the refrigerant circuit.
  • a refrigeration cycle is formed by circulating while repeating compression and expansion.
  • the outdoor blower 131 generates a negative pressure inside the outdoor unit 111 by being driven, causes the outdoor air in the outdoor space 172 to be sucked into the outdoor unit 111, and supplies the sucked outdoor air to the outdoor heat exchanger 123. Then, the air in the outdoor unit 111 is blown out from the outdoor unit 111 to the outdoor space 172 through the outdoor heat exchanger 123.
  • the indoor blower 133 is driven to generate a negative pressure inside the indoor unit 113, the indoor air in the indoor space 171 is sucked into the indoor unit 113, and the sucked indoor air is supplied to the indoor heat exchanger 125. Then, the air in the indoor unit 113 is blown out from the indoor unit 113 to the indoor space 171 through the indoor heat exchanger 125.
  • the compressor 121 compresses a low-temperature and low-pressure refrigerant into a high-temperature and high-pressure refrigerant.
  • the compressor 121 is driven by an inverter, and the operation capacity is controlled according to the air condition.
  • the four-way valve 122 is connected to the discharge side of the compressor 121 and switches the flow of the refrigerant according to the operation of the air conditioner 101, for example, the cooling operation or the heating operation.
  • the outdoor heat exchanger 123 performs heat exchange between cold or warm heat supplied from the refrigerant flowing through the refrigerant circuit and outdoor air supplied from the outdoor space 172.
  • the expansion valve 124 is connected between the outdoor heat exchanger 123 and the indoor heat exchanger 125, and is configured by a valve that adjusts the opening degree. By adjusting the opening degree, the refrigerant is decompressed and expanded. .
  • the indoor heat exchanger 125 performs heat exchange between cold or warm heat supplied from the refrigerant flowing through the refrigerant circuit and indoor air in the indoor space 171.
  • the air conditioner 101 supplies the indoor air heat-exchanged by the indoor heat exchanger 125 to the indoor space 171 as conditioned air, and cools and heats the indoor space 171.
  • measurement information that is a detection result of the indoor temperature sensor 141 is supplied to the measurement control device 153.
  • the measurement control device 153 supplies measurement information that is a detection result of the indoor temperature sensor 141 to the measurement control device 151 via the communication line 163.
  • the communication line 163 may be either wired or wireless, and is not particularly limited as a communication medium.
  • the measurement control device 151 and the measurement control device 153 include detection information and operation information supplied from various sensors mounted on the air conditioner 101 such as the indoor temperature sensor 141, and setting information set by the user of the air conditioner 101. Based on the above, the operation of the air conditioner 101 is commanded by a control program installed in advance. That is, the measurement control device 151 and the measurement control device 153 collectively control the entire air conditioner 101.
  • the measurement control device 151 and the measurement control device 153 are configured by a microcomputer or the like.
  • the measurement control device 151 controls the drive frequency of the compressor 121, performs switching control of the four-way valve 122, controls the rotational speed of the outdoor blower 131, and controls the opening degree of the expansion valve 124.
  • the measurement control device 153 controls the number of rotations of the indoor blower 133. By performing such an operation, the measurement control device 151 and the measurement control device 153 instruct the air conditioner 101 to perform various operations as a result.
  • the measurement control device 151 may control the rotation speed of the indoor blower 133, and the measurement control device 153 controls the drive frequency of the compressor 121, performs switching control of the four-way valve 122, and the outdoor blower.
  • the number of rotations 131 may be controlled to control the opening degree of the expansion valve 124.
  • the indoor temperature sensor 141 is mounted on the indoor unit 113.
  • the indoor temperature sensor 141 measures the temperature of the indoor air in the indoor space 171 sucked into the indoor unit 113 and supplies the measurement result to the measurement control device 153 and the like.
  • the air conditioner 101 is also equipped with other various sensors.
  • a discharge side pressure sensor is mounted on the discharge side of the compressor 121, and the discharge side pressure sensor measures the pressure of the refrigerant discharged from the compressor 121.
  • a suction side pressure sensor is mounted on the suction side of the compressor 121, and the suction side pressure sensor measures the pressure of the refrigerant sucked into the compressor 121.
  • a discharge side temperature sensor is mounted on the discharge side of the compressor 121, and the discharge side temperature sensor measures the temperature of the refrigerant discharged from the compressor 121.
  • a suction side temperature sensor is mounted on the suction side of the compressor 121, and the suction side temperature sensor measures the temperature of the refrigerant sucked into the compressor 121.
  • the outdoor unit 111 is equipped with an outdoor temperature sensor, and the outdoor temperature sensor measures the temperature of outdoor air in the outdoor space 172.
  • the air conditioner 101 sets the operation mode simultaneously with the operation start command.
  • the operation of the refrigeration cycle is as follows.
  • the refrigerant discharged from the compressor 121 passes through the four-way valve 122 and flows to the outdoor heat exchanger 123.
  • the refrigerant that has flowed into the outdoor heat exchanger 123 is condensed and liquefied by exchanging heat with outdoor air sucked from the outdoor space 172 and flows to the expansion valve 124.
  • the refrigerant that has flowed to the expansion valve 124 is decompressed by the expansion valve 124 and flows to the indoor heat exchanger 125.
  • the refrigerant that has flowed into the indoor heat exchanger 125 exchanges heat with the indoor air sucked from the indoor space 171 to evaporate, passes through the four-way valve 122, and is sucked into the compressor 121 again. As the refrigerant flows in this manner, the indoor air sucked from the indoor space 171 is cooled by the indoor heat exchanger 125.
  • the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 125 is called a cooling capacity Q.
  • the cooling capacity Q is adjusted by changing the rotation speed of the compressor 121.
  • Heating operation For example, when the heating operation is selected as the operation mode, the operation of the refrigeration cycle is as follows.
  • the refrigerant discharged from the compressor 121 passes through the four-way valve 122 and flows to the indoor heat exchanger 125.
  • the refrigerant that has flowed into the indoor heat exchanger 125 exchanges heat with the indoor air sucked from the indoor space 171 to be condensed and liquefied, and then flows into the expansion valve 124.
  • the refrigerant that has flowed to the expansion valve 124 is depressurized by the expansion valve 124 and flows to the outdoor heat exchanger 123.
  • the refrigerant that has flowed to the outdoor heat exchanger 123 exchanges heat with outdoor air sucked from the outdoor space 172 to be evaporated and gas, passes through the four-way valve 122, and is sucked into the compressor 121 again. As the refrigerant flows in this manner, the indoor air sucked from the indoor space 171 is heated by the indoor heat exchanger 125.
  • the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 125 is referred to as a heating capacity Q.
  • the heating capacity Q is adjusted by changing the rotation speed of the compressor 121.
  • one air conditioner 101 has been described, but the number of units is not particularly limited. For example, a plurality of air conditioners 101 may be used. Moreover, although the air conditioning apparatus 101 comprised by the one outdoor unit 111 and the one indoor unit 113 was demonstrated above, the structure of the air conditioning apparatus 101 is not specifically limited. For example, the air conditioner 101 including one outdoor unit 111 and a plurality of indoor units 113 may be used.
  • the air conditioner 101 includes a single outdoor unit 111, a repeater (not shown), a check valve (not shown), and a plurality of indoor units 113, and performs simultaneous cooling and heating operations. May be.
  • the outdoor unit 111 and the indoor unit 113 are disposed at positions close to each other due to the illustrated relationship, the arrangement location of the outdoor unit 111 and the indoor unit 113 is not particularly limited.
  • the outdoor unit 111 may be disposed on the roof of a building (not shown), and the indoor unit 113 may be disposed behind the ceiling.
  • the air conditioner 101 that constitutes the refrigerant circuit may be used, and the detailed configuration and the like are not particularly limited.
  • the functional configuration described later may be mounted on the measurement control device 151, for example, but the mounting location is not particularly limited.
  • a functional configuration to be described later may be implemented in the measurement control device 153.
  • a functional configuration to be described later may be mounted on the HEMS controller 323 to be described later with reference to FIG.
  • a functional configuration described later may be implemented in a server device 411 described later with reference to FIG.
  • the location of the functional configuration described below is not particularly limited.
  • the functional configuration described later is physically distributed to the plurality of terminals 329.
  • a function of a refrigeration cycle control unit 211 described later and a function of a timer control unit 213 described later are mounted in physically separated locations, and are organic as one system via a communication medium such as a public line 327. It may be functional. That is, the air conditioning apparatus 101 may be controlled by a function configuration described later as cloud computing supplying various commands to the air conditioning apparatus 101.
  • the user inputs the specified time described above, for example, the occupancy start time, the operation mode (cooling / heating / dehumidification, etc.), and the target temperature Tm to the remote controller 115 by the user, so that the air conditioner 101
  • the heating operation is performed by starting, for example, before the pre-warming time t ′ so that the room temperature Ta reaches within the allowable range ⁇ Tm from the target temperature Tm at the specified time.
  • the input of various settings to the timer control unit 213, which will be described later, is not particularly limited to the remote controller 115.
  • the measurement control device 151 or the measurement control device 153 may be used.
  • the HEMS controller 323, the communication apparatus 328, or the terminal 329 mentioned later in FIG. In the input of various settings, the input of the operation mode (cooling / heating / dehumidification, etc.) and the target temperature Tm may be omitted. In that case, the input can be simplified by using the existing operation mode and the target temperature Tm. , User convenience is improved.
  • the existing operation mode and the target temperature Tm are the operation mode and the target temperature Tm stored in any of the remote controller 115, the measurement control device 151, the measurement control device 153, the HEMS controller 323, the communication device 328, or the terminal 329. is there.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the air conditioner control module 201 according to Embodiment 1 of the present invention.
  • the air conditioner control module 201 includes a refrigeration cycle control unit 211 and a timer control unit 213.
  • the refrigeration cycle control unit 211 includes, for example, a proportional control unit 221, an integral control unit 222, and a differential control unit 223.
  • the refrigeration cycle control unit 211 determines the operating capacity of the compressor 121 so that the measured value of the indoor temperature sensor 141 that detects the temperature of the indoor space 171 as the indoor temperature Ta becomes the target temperature Tm set by the user. .
  • the proportional control unit 221 performs proportional control. Specifically, the proportional control unit 221 controls the cooling capacity Q of the air conditioner 101 or the air conditioner 101 by controlling the rotational speed of the compressor 121 in proportion to the temperature difference between the room temperature Ta and the target temperature Tm. An operation command is issued so that the room temperature Ta converges to the target temperature Tm by changing the heating capacity Q.
  • the integration control unit 222 performs integration control. Specifically, the integral control unit 222 takes time until the room temperature Ta reaches the target temperature Tm when the time change of the room temperature Ta is smaller than a predetermined set value. By increasing the rotational speed, the cooling capacity Q of the air conditioner 101 or the heating capacity Q of the air conditioner 101 is increased, and an operation command is issued so that the room temperature Ta reaches the target temperature Tm.
  • the differential control unit 223 changes the operating capacity of the compressor 121 according to the time variation of the indoor temperature Ta when the indoor temperature Ta changes suddenly due to opening and closing of a window (not shown).
  • the air conditioner 101 stops the operation of the compressor 121 when the indoor temperature Ta reaches the target temperature Tm, and the temperature difference between the indoor temperature Ta and the target temperature Tm is a preset value. If it becomes above, the compressor 121 will be started again.
  • the timer control unit 213 executes timer control. For example, as illustrated in FIG. 9, the first calculation unit 241, the second calculation unit 242, the third calculation unit 243, the fourth calculation unit 244, and the fifth calculation unit 245 are performed. And a storage unit 246.
  • the 3rd calculating part 243 comprises the driving time correction
  • the first calculation unit 241 obtains occupancy information based on a set value set by the user or an estimated value from past information.
  • the occupancy information includes, for example, the time when the user starts occupying the room, the duration during which the user stays in the occupancy, and the time when the user is absent.
  • the remote controller 115 is used.
  • the device for which the user sets the occupancy information is not limited to the remote controller 115, and may be the measurement control device 151 or the measurement control device 153 described above. Moreover, the HEMS controller 323, the communication apparatus 328, or the terminal 329 mentioned later may be sufficient.
  • the occupancy information is set as an estimated value from past information
  • the occupancy information is estimated by using past information of various devices existing in the indoor space 171 such as the remote controller 115
  • Estimated occupancy information may be set. Specifically, the time when the user first operated the remote controller 115 is stored in the remote controller 115 or the air conditioner 101 for each specific time zone such as morning, noon, evening, and night. Next, the air conditioner control module 201 collects the time when the remote controller 115 stored in this way is used, and based on the collected result, the time when the user starts to stay in the room, that is, the start of staying in the room Estimate time and set the estimated occupancy start time.
  • the air conditioner control module 201 may obtain an average value, for example, and determine the average value as the occupancy start time.
  • the estimated value from the past information may be obtained by using the detection result of the infrared sensor 143 or the human sensor 144 described later with reference to FIG.
  • the estimated value from the past information may be obtained as occupancy information by using open / close information of an indoor door (not shown) attached to the indoor space 171.
  • movement which obtains occupancy information based on the estimated value from the past information becomes effective when the occupancy information is assumed to be different every day.
  • the second calculation unit 242 obtains the occupancy start time from the occupancy information, and supplies the obtained occupancy start time to the third computation unit 243. Based on the occupancy start time, the air conditioning information, and the learning information, the third calculation unit 243 obtains the precooling prewarming start time, that is, the activation time, and the obtained precooling prewarming start time to the fourth computing unit 244. Supply.
  • the air conditioning information includes, for example, model characteristics of the air conditioner 101, operation modes such as operation or stop, cooling, heating, air blowing, and dehumidification, a target temperature Tm, an allowable range ⁇ Tm of the target temperature Tm, an air volume, or a wind direction,
  • This is information related to measurement values of various sensors such as setting information such as a power saving level, indoor temperature Ta, outside air temperature, radiation temperature, refrigerant temperature, refrigerant pressure and the like.
  • the learning information is, for example, a representative time t required for the room temperature Ta to change by a unit temperature, for example, 1 ° C., and a predetermined initial value is stored in the storage unit 246 at the time of product shipment.
  • pre-cooling / pre-heating start time may be downloaded to the HEMS controller 323 or the like via the public line 327 and the communication device 325 described later.
  • the user may directly specify the precooling preheating start time.
  • the 4th calculating part 244 supplies the refrigerating cycle starting command to the refrigerating cycle control part 211, and supplies the learning command to the 5th calculating part 245, when the pre-cooling pre-warming start time comes.
  • the fifth computing unit 245 acquires the air conditioning information at the occupancy start time and sends the learning information to the storage unit 246.
  • the air conditioning information includes, for example, model characteristics of the air conditioner 101, operation modes such as operation or stop, cooling, heating, air blowing, and dehumidification, a target temperature Tm, an allowable range ⁇ Tm of the target temperature Tm, an air volume, or a wind direction,
  • This is information related to measurement values of various sensors such as setting information such as a power saving level, indoor temperature Ta, outside air temperature, radiation temperature, refrigerant temperature, refrigerant pressure and the like.
  • the air conditioner control module 201 may supply a control command to the measurement control device 151.
  • the air conditioner control module 201 may supply a control command to the measurement control device 153.
  • the air conditioner control module 201 passes through the measurement control device 151 and the measurement control device 153, and drives the air conditioner 101 such as the compressor 121, the four-way valve 122, the expansion valve 124, the outdoor blower 131, and the indoor blower. 133 may be supplied with a control command.
  • the air conditioner control module 201 does not pass through the measurement control device 151 and the measurement control device 153, but drives the air conditioner 101 such as the compressor 121, the four-way valve 122, the expansion valve 124, the outdoor blower 131, and the indoor unit.
  • a control command may be supplied to the blower 133.
  • the air conditioner control module 201 executes functions as described above as a schematic software configuration.
  • the air conditioner control module 201 has a schematic hardware configuration in which, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit) are connected via a bus.
  • the storage device, the input device, the output device, the communication device, and the drive may be connected via an input / output interface (none of which are shown).
  • the air conditioner control module 201 corresponds to the air conditioner control apparatus in the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of the storage unit 246 according to Embodiment 1 of the present invention.
  • the storage unit 246 includes a power saving level data table 261, a first mapping table 262, an allowable range width data table 263, a temperature difference data table 264, a second mapping table 265, learning information data 266, and Representative time initial value data 267 is configured.
  • the power saving level data table 261 a plurality of different power saving levels are set.
  • the allowable range width data table 263, a plurality of different allowable range widths are set.
  • the first mapping table 262 a mapping relationship that links the power saving level data table 261 and the allowable range width data table 263 is set.
  • the temperature difference data table 264 includes a temperature difference between the outside air temperature and the indoor temperature Ta to be pre-cooled and pre-warmed, a temperature difference between the outside air temperature and the target temperature T m to be pre-cooled and pre-warmed, and the room temperature Ta and the pre-cooling pre-cooled room.
  • the temperature difference between the room temperature Ta to be warmed and the temperature difference between the room temperature Ta in the room where the room is present and the target temperature Tm to be pre-cooled and pre-warmed are set.
  • a mapping relationship that links the temperature difference data table 264 and the allowable range width data table 263 is set.
  • representative time history data is set.
  • the representative time initial value data 267 is a representative time initial value set at the time of product shipment, and is a default value of the representative time.
  • storage part 246 demonstrated above is an example, Comprising: It does not specifically limit to these.
  • FIG. 11 is a flowchart for explaining a control example of the air conditioner control module 201 according to Embodiment 1 of the present invention.
  • Step S11 The air conditioner control module 201 acquires occupancy information data.
  • Step S12 The air conditioner control module 201 obtains the occupancy start time based on the occupancy information data.
  • Step S13 The air conditioner control module 201 acquires learning information data 266.
  • Step S14 The air conditioner control module 201 acquires air conditioning information data.
  • Step S15 The air conditioner control module 201 executes precooling prewarming time calculation processing.
  • Step S16 The air conditioner control module 201 determines the precooling prewarming start time.
  • Step S17 The air conditioner control module 201 determines whether or not the precooling preheating start time has arrived. When the precooling prewarming start time has arrived, the air conditioner control module 201 proceeds to step S18. On the other hand, if the pre-cooling pre-warming start time has not arrived, the air conditioner control module 201 proceeds to step S14.
  • Step S18 The air conditioner control module 201 executes a refrigeration cycle operation process.
  • Step S19 When the occupancy start time has arrived, the air conditioner control module 201 proceeds to step S20. When the occupancy start time does not arrive, the air conditioner control module 201 returns to step S18.
  • Step S20 The air conditioner control module 201 acquires air conditioning information data.
  • Step S21 The air conditioner control module 201 changes the learning information data 266 based on the air conditioning information data, and ends the process.
  • FIG. 12 is a flowchart for explaining the precooling prewarming time calculation process in the first embodiment of the present invention.
  • Step S31 The air conditioner control module 201 obtains a representative time that is a time required for the room temperature Ta to change by 1 ° C. based on the room temperature Ta at the occupancy start time and the temperature within the allowable range ⁇ Tm.
  • Step S32 The air conditioner control module 201 obtains a temperature difference between the current room temperature Ta and the target temperature Tm to be precooled and preheated.
  • Step S33 The air conditioner control module 201 obtains a precooling prewarming time based on the representative time and the temperature difference, and ends the process.
  • FIG. 13 is a flowchart illustrating the refrigeration cycle operation processing in the first embodiment of the present invention.
  • Step S41 The air conditioner control module 201 executes proportional control.
  • Step S42 The air conditioner control module 201 determines whether or not the time change of the room temperature Ta is smaller than a predetermined set value.
  • the air conditioner control module 201 proceeds to step S43 when the time change of the room temperature Ta is smaller than the predetermined set value.
  • the air conditioner control module 201 proceeds to step S44.
  • Step S43 The air conditioner control module 201 executes integral control.
  • Step S44 The air conditioner control module 201 determines whether or not the room temperature Ta has changed abruptly. When the room temperature Ta changes abruptly, the air conditioner control module 201 proceeds to step S45. On the other hand, if the room temperature Ta does not change abruptly, the air conditioner control module 201 ends the process.
  • Step S45 The air conditioner control module 201 executes differential control and ends the process.
  • the air conditioner control module 201 avoids excessive forward operation by providing the allowable range ⁇ Tm for the target temperature Tm, and therefore can reduce excessive power consumption. Therefore, the air conditioner control module 201 can reduce excessive power consumption while maintaining comfort.
  • the air conditioner control module 201 starts the operation early so that the room temperature Ta falls within the allowable range ⁇ Tm in the next operation. Can be maintained.
  • the air conditioner control module 201 starts the operation late so that the indoor temperature Ta does not exceed the allowable range ⁇ Tm in the next operation. Since excessive forward driving is avoided, excessive power consumption can be reduced.
  • the air conditioner control module 201 avoids excessive forward driving by setting the boundary value of the allowable range ⁇ Tm as a control target while maintaining comfort by controlling the room temperature Ta to the allowable range ⁇ Tm. And extra power consumption can be reduced.
  • the air conditioner control module 201 controls the timing of starting the operation based on the value of the boundary of the allowable range ⁇ Tm, the excessive power consumption is avoided by avoiding excessive forward driving regardless of the usage environment of the house. Can be reduced.
  • the air conditioner control module 201 can adjust the balance between energy saving and comfort by determining the allowable range ⁇ Tm according to the power saving level, thereby improving convenience for the user. be able to.
  • the air conditioner control module 201 assumes that a person enters the indoor space 171 of the house 91 at a specified time, the air conditioner 101 is operated within the allowable range ⁇ Tm while the user is moving forward when the user enters the room. Will be. Therefore, the air conditioner control module 201 avoids excessive forward driving while avoiding excessive forward driving while improving comfort even when a person enters the room subject to forward driving in the house from outside the house. Power consumption can be reduced.
  • the air conditioner control module 201 determines the allowable range ⁇ Tm in consideration of the outside air temperature and the room temperature Ta, so that it is possible to perform the advance operation as much as necessary while ensuring comfort. .
  • the air conditioner control module 201 determines the allowable range ⁇ Tm in consideration of the outside air temperature and the target temperature Tm, so that excessive forward driving can be avoided while improving comfort.
  • the air conditioner control module 201 performs the forward operation when the user enters the room.
  • the air conditioner 101 is operating in the allowable range ⁇ Tm. Therefore, the air conditioner control module 201 avoids excessive forward driving while maintaining comfort even when a person enters a room subject to forward driving in the house from a room in the house. Extra power consumption can be reduced.
  • the air conditioner control module 201 determines the allowable range ⁇ Tm based on the temperature difference between the indoor temperatures Ta experienced by a person, and performs control while concealing the target temperature Tm as a control target item. Extra power consumption can be reduced.
  • the air conditioner control module 201 can reduce excess power consumption while performing control while concealing the room temperature Ta of the room that is the object of the forward operation as the control target item.
  • the air conditioning device control module 201 controls the forward operation only by providing a simple calculation configuration without providing a complicated calculation configuration such as a floating point calculation. be able to.
  • an external control device such as the HEMS controller 323, which will be described later with reference to FIG. 19, regardless of the manufacturer's air conditioner 101, operations such as operation stop, change of operation mode, change of set temperature, etc.
  • There are recommended standard interface standards such as ECHONET Lite (registered trademark).
  • the energy saving control described above is set regardless of the manufacturer of the air conditioner 101 by setting the set temperature of the energy saving control to an integer value. Since control can be applied, versatility can be improved.
  • the air conditioner control module 201 can significantly reduce power consumption while maintaining comfort.
  • the air conditioner control module 201 that operates the air conditioner 101 before the specified time and performs the forward operation for adjusting the room temperature, and corrects the operation time of the air conditioner 101.
  • An operation time correction unit 1 is provided, and the operation time correction unit 1 calculates the operation time of the forward operation of the air conditioner 101 according to the first temperature difference between the room temperature and the target temperature.
  • the next operation time is corrected based on the second temperature difference between the room temperature at the specified time and the first temperature that is higher than the target temperature by a predetermined temperature, and the air conditioner 101 performs the heating operation.
  • the air conditioner control module 201 for correcting the next operation time is configured based on the third temperature difference between the room temperature at the specified time and the second temperature that is lower than the target temperature by a predetermined temperature.
  • the operation time correction unit 1 includes a representative time correction unit 13 that corrects a representative time that is an operation time required for the indoor temperature of the room air-conditioned by the air conditioner 101 to change by unit temperature.
  • a time-related calculation unit 15 that calculates the operation start time of the air conditioner 101 based on the representative time, and the time-related calculation unit 15 includes a period from the previous advance operation stop to the next advance operation. The next operation start time obtained based on the temperature difference between the arbitrary room temperature and the specified temperature at the specified time of the next advance operation and the next representative time is supplied to the air conditioner 101.
  • the operation time correction unit 1 adjusts the adjustment ratio based on the room temperature corresponding to the designated time of the previous forward operation and the allowable range of the designated temperature at the designated time of the next forward operation. And the operation time is obtained based on the adjustment ratio and the past operation time.
  • the air conditioner control module 201 can balance the reduction of power consumption and the improvement of comfort by controlling the forward operation based on the temperature range that the user can tolerate.
  • the operation time correction unit 1 refers to the heating operation history of the air conditioner 101, and when the specified temperature is lower than the allowable range ⁇ Tm, or the cooling operation of the air conditioner 101 is performed. If the specified temperature is higher than the allowable range ⁇ Tm with reference to the history, the next operation start time is advanced.
  • the air conditioner control module 201 starts the operation early so that the room temperature Ta enters the allowable range ⁇ Tm in the next operation. Comfort can be maintained.
  • the operation time correction unit 1 refers to the heating operation history of the air conditioner 101, and when the specified temperature is higher than the allowable range ⁇ Tm, or the cooling operation of the air conditioner 101 is performed. If the specified temperature is lower than the allowable range ⁇ Tm with reference to the history, the next operation start time is delayed.
  • the air conditioner control module 201 starts operation late so that the indoor temperature Ta does not exceed the allowable range ⁇ Tm in the next operation. As a result, excessive forward driving is avoided, so that excessive power consumption can be reduced.
  • amendment part 1 refers to the log
  • the next operation start time is corrected according to the comparison result between the specified temperature and the maximum value in the allowable range ⁇ Tm. To do.
  • the air conditioner control module 201 maintains excessive comfort by controlling the room temperature Ta to the allowable range ⁇ Tm, and performs excessive forward operation by setting the boundary value of the allowable range ⁇ Tm as a control target. It can be avoided to reduce excessive power consumption.
  • the operation time correction unit 1 refers to the history of the heating operation of the air conditioner 101, and when the specified temperature is higher than the minimum value in the allowable range ⁇ Tm, or the air conditioner If the designated temperature is lower than the maximum value in the allowable range ⁇ Tm with reference to the cooling operation history 101, the next operation start time is delayed.
  • the air conditioner control module 201 controls the timing of starting the operation based on the boundary value of the allowable range ⁇ Tm, so that excessive forward operation can be avoided regardless of the usage environment of the house. Power consumption can be reduced.
  • a plurality of power saving levels with different power consumption are provided, and the plurality of power saving levels are associated with the allowable range width for determining the allowable range ⁇ Tm.
  • the allowable range width is determined according to the specific power saving level, and the allowable range ⁇ Tm is determined.
  • the air conditioner control module 201 can adjust the balance between energy saving and comfort by determining the allowable range ⁇ Tm according to the power saving level. Can be improved.
  • the driving time correction unit 1 determines the allowable range ⁇ Tm when it is estimated that a person moves from the outside of the house to the room subject to the forward driving by the designated time.
  • the air conditioner control module 201 With the above configuration, if the air conditioner control module 201 assumes that a person enters the indoor space 171 of the house 91 at a specified time, the air conditioner 101 operates in the allowable range ⁇ Tm while the user is moving forward when entering the room. Will be doing. Therefore, the air conditioner control module 201 avoids excessive forward driving while avoiding excessive forward driving while improving comfort even when a person enters the room subject to forward driving in the house from outside the house. Power consumption can be reduced.
  • the operation time correction unit 1 determines the allowable range ⁇ Tm according to the temperature difference between the outside air temperature and the room temperature Ta of the room subject to the forward operation.
  • the air conditioner control module 201 determines the allowable range ⁇ Tm in consideration of the outside air temperature and the room temperature Ta, and allows the driver to perform forward operation as much as necessary while ensuring comfort. Can do.
  • the operation time correction unit 1 determines the allowable range ⁇ Tm according to the temperature difference between the outside air temperature and the target temperature Tm of the room that is the target of the forward operation.
  • the air conditioner control module 201 determines the allowable range ⁇ Tm in consideration of the outside air temperature and the target temperature Tm, so that it is possible to avoid excessive forward driving while improving comfort.
  • the driving time correction unit 1 determines the allowable range ⁇ Tm when it is estimated that a person moves from the house to the room subject to the forward driving by the designated time.
  • the air conditioner control module 201 assumes that a person enters the indoor space 171 that is the object of forward operation from the indoor space 171 where the house 91 is located at a specified time, the forward operation is performed when the user enters the room. While being implemented, the air conditioner 101 is operating within the allowable range ⁇ Tm. Therefore, the air conditioner control module 201 avoids excessive forward driving while maintaining comfort even when a person enters a room subject to forward driving in the house from a room in the house. Excessive power consumption can be reduced, and actions such as user entry and exit can be reflected in the control. Therefore, the air conditioner control module 201 can balance the reduction in power consumption and the improvement in comfort.
  • the operation time correction unit 1 includes the room temperature Ta of a room where a person was present before the specified time, and the room temperature Ta of a room that is subject to forward operation.
  • the allowable range ⁇ Tm is determined according to the temperature difference.
  • the air conditioner control module 201 performs control in a state in which the target temperature Tm as the control target item is concealed by determining the allowable range ⁇ Tm based on the temperature difference between the indoor temperatures Ta experienced by a person.
  • extra power consumption can be reduced.
  • the operation time correction unit 1 determines the room temperature Ta of the room where the person was present before the specified time, and the target temperature Tm of the room that is subject to the forward operation.
  • the allowable range ⁇ Tm is determined according to the temperature difference.
  • the air conditioner control module 201 can reduce excess power consumption while performing control while concealing the room temperature Ta of the room that is the target of forward operation as a control target item. it can.
  • the operation time correction unit 1 sets the target temperature Tm to an integer value.
  • the air conditioner control module 201 can control the forward operation without performing complicated calculations such as floating point calculations. In addition, regardless of the manufacturer of the air conditioner 101, it is possible to control the operation in a general manner.
  • the air-conditioning device control module 201 can reduce extra power consumption while maintaining comfort particularly remarkably.
  • Embodiment 2 FIG. The difference from Embodiment 1 is that the indoor unit 113 is provided with an infrared sensor 143.
  • FIG. 14 is a diagram illustrating an example of the air conditioner 101 according to Embodiment 2 of the present invention.
  • an infrared sensor 143 is provided in the indoor unit 113, and a human sensor 144 is provided in the indoor space 171.
  • the infrared sensor 143 detects radiant energy of an object such as a radiant temperature. Therefore, the infrared sensor 143 can detect the temperature of the housing existing in the indoor space 171. Therefore, the detection result of the infrared sensor 143 can be used for the room temperature Ta which is one of various parameters used for controlling the air conditioner 101.
  • the human sensor 144 detects the presence or absence of a person in the indoor space 171 that is a control target space by detecting radiant energy of an object such as a radiation temperature.
  • the human sensor 144 may be configured to detect infrared rays, detect ultrasonic waves, or detect visible light according to tuning or its configuration. Therefore, the detection result of the human sensor 144 can be used as one of various parameters used for controlling the air conditioner 101.
  • the air conditioner control module 201 can perform timer control so that the enclosure temperature becomes the target temperature Tm by detecting the enclosure temperature with the infrared sensor 143. Therefore, the air conditioner control module 201 can realize a more comfortable operation.
  • the air conditioner control module 201 determines whether or not the heat amount of the housing can be processed.
  • the air conditioner control module 201 uses the room temperature Ta as a criterion.
  • the room temperature Ta has a smaller heat capacity than the casing, the response result of the air conditioner 101 appears earlier. Therefore, even if the housing is still at a high temperature or low temperature, the air conditioner control module 201 may determine that the indoor space 171 has been sufficiently cooled or heated. Therefore, if the air conditioner control module 201 detects the housing temperature with the infrared sensor 143, sets the temperature calculated from the housing temperature to the indoor temperature Ta, and determines the allowable range ⁇ Tm, the situation described above is avoided. Therefore, driving with higher comfort can be realized.
  • the indoor unit 113 is provided with the infrared sensor 143 that detects the housing temperature of the indoor unit 113, and the operation time correction unit 1 sets the temperature calculated from the housing temperature to the indoor temperature Ta. Set.
  • the air conditioner control module 201 can perform timer control so that the enclosure temperature becomes the target temperature Tm by detecting the enclosure temperature with the infrared sensor 143. Therefore, the air conditioner control module 201 can realize a more comfortable operation.
  • Embodiment 3 The difference from the first embodiment and the second embodiment is that the target temperature Tm is limited.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the air conditioner control module 201 according to Embodiment 3 of the present invention. 15 differs from the air conditioner control module 201 shown in FIG. 9 in that, for example, a first data correction unit 247 is added. Specifically, the first data correction unit 247 includes a target temperature table 268, a third mapping table 269, and a limited target temperature table 270. The third mapping table 269 includes the target temperature table 268 and the limited target temperature. A mapping relationship that links the table 270 is set. For example, when the target temperature restriction command is supplied, the timer control unit 213 uses the first data correction unit 247 to limit the target temperature Tm and supplies it as the limited target temperature data to the third calculation unit 243.
  • the target temperature restriction command is supplied to the timer control unit 213.
  • the upper limit or lower limit of the target temperature Tm can be limited to be narrower than the operable range of the remote controller 115.
  • the target temperature Tm for timer control is limited to 25 ° C. to 28 ° C.
  • the target temperature Tm for timer control is limited to 19 ° C. to 22 ° C.
  • the air conditioner control module 201 restricts the range of the target temperature Tm to prevent overcooling in cooling or overheating in heating, thereby causing a situation in which health is impaired due to heat or cold. While avoiding, energy-saving property can be improved.
  • the air conditioner control module 201 can perform the control within the allowable range ⁇ Tm set based on the limited target temperature Tm by limiting the range of the target temperature Tm. Therefore, the air conditioner control module 201 can improve energy saving without supplying excess conditioned air to the indoor space 171.
  • the third embodiment further includes the first data correction unit 247 that corrects the target temperature Tm.
  • the first data correction unit 247 includes the target temperature table 268 in which the target temperature Tm is set, and the target temperature Tm.
  • a restriction command for the target temperature Tm is supplied, the target temperature Tm is converted into the restriction target temperature based on the target temperature table 268, the restriction target temperature table 270, and the third mapping table 269, and the operation time
  • the correction unit 1 is supplied.
  • the air conditioner control module 201 can improve the energy saving performance while avoiding a state where the indoor space 171 is excessively cooled or heated.
  • Embodiment 4 FIG. The difference from Embodiments 1 to 3 is that the operating current is limited.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the air conditioner control module 201 according to Embodiment 4 of the present invention. 16 is different from the air conditioner control module 201 shown in FIG. 9 in that, for example, a second data correction unit 248 is added and a current limit command is supplied to the timer control unit 213.
  • the second data correction unit 248 includes a use current range table 271, a fourth mapping table 272, and a limited use current range table 273.
  • the fourth mapping table 272 includes a use current range table 271 and a limit use current range table. The mapping relationship that links 273 is set.
  • the timer control unit 213 uses the second data correction unit 248 to limit the use current.
  • the current limit value may be set in several stages. Further, for example, when the power saving mode is set in the air conditioner 101 or the HEMS controller 323 described later, and the current limit command is supplied to the timer control unit 213, the current limit value may be set.
  • the breakdown of the power consumption of the air conditioner 101 is about 80% to 90% for the compressor 121, about 5% to 10% for the indoor blower 133, and about 5% to 10% for the outdoor blower 131. Therefore, when the current of the air conditioner 101 is limited, the air conditioner control module 201 reduces the operating capacity by reducing the rotation speed of the compressor 121 or decreases the rotation speed of the indoor blower 133 or the outdoor blower 131. It is necessary to reduce the air volume.
  • the current limit value may be set as a relative value (%) including a current limit value of 70%, for example, when no current limit is 100%.
  • the limit value may be set as an absolute value (A) such as 3A (ampere).
  • the power saving mode is set in the air conditioner 101 or the HEMS controller 323 described later.
  • the air conditioner control module 201 limits the upper limit rotational speed of the compressor 121 to 70% of the maximum rotational speed, or the rotation of the indoor blower 133 or the outdoor blower 131.
  • the number may be limited to 70% of the maximum rotational speed.
  • the air conditioner control module 201 sets the upper limit rotational speed of the compressor 121 to 3/5 of the maximum rotational speed. What is necessary is just to restrict
  • the restriction may be set based on the compressor rotation speed or the blower rotation speed during normal operation in normal control. For example, in normal control when there is no current limit, if the compressor speed is scheduled to be 50 rps (rotation per second), the current limit value may be set to 35 rps when the current limit value is 70%. Further, in the normal control without current limitation, if the indoor blower 133 is set at a strong wind and the rotation speed is scheduled to be 1000 rpm (rotation per minute), the current limitation value of 70% may be set to 700 rpm.
  • the air conditioner control module 201 may control the room temperature Ta to the allowable range ⁇ Tm at the specified time by advancing the operation start time by the amount that the current is limited. As a result, the air conditioner control module 201 can maintain the comfort because the room temperature Ta can be controlled within the allowable range ⁇ Tm at the specified time while improving the energy saving performance.
  • the fourth embodiment further includes the second data correction unit 248 that determines the limited use current data associated with at least one of the plurality of power saving levels, and the second data correction unit 248 includes the use current.
  • the use current range table 271 in which the range is set, the limit use current range table 273 in which the limit use current range of the use current range is set, and the use current range set in the use current range table 271 are converted into the limit use current range.
  • the air conditioner control module 201 performs forward operation within the allowable range ⁇ Tm while limiting the current to be used, so that it is possible to maintain comfort while improving energy saving.
  • Embodiment 5 FIG. The difference from Embodiments 1 to 4 is that automatic operation is notified.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the air conditioner control module 201 according to Embodiment 5 of the present invention. 17 is different from the air conditioner control module 201 shown in FIG. 9 in that a permission determination request or an operation start notification is supplied from the fourth calculation unit 244 of the timer control unit 213 to the outside.
  • a timer control permission determination request is transmitted to the user, or a timer control operation start notification is transmitted to the user.
  • the air conditioner control module 201 sends a permission determination request to a communication device 328 (described later) such as a mobile phone, a smartphone, a personal computer, or a car navigation system owned by the user via a public line 327 described later and starts operation. Request to press the permission button or send an e-mail to notify the start of operation.
  • the air conditioner control module 201 can make the user confirm the air conditioning information of the air conditioner 101 by performing an operation to confirm with the user before the operation of the refrigeration cycle. Safety can be improved. Even when it is assumed that the user's return time has changed, the air conditioner control module 201 performs an operation to confirm with the user before the operation of the refrigeration cycle, so that unnecessary operation can be avoided. it can. Therefore, since the air conditioner control module 201 can avoid wasting power, the energy saving performance can be improved.
  • the fifth embodiment further includes the fourth calculation unit 244 that supplies a driving start notification or a permission determination request to the outside, and the fourth calculation unit 244 starts driving before reaching the next driving start time.
  • a notification or permission determination request is supplied to the outside.
  • the air conditioner control module 201 performs an operation to confirm with the user before the operation of the refrigeration cycle, so that the safety of the air conditioner 101 is improved and unnecessary operation is avoided to waste power. By avoiding this, energy saving can be improved.
  • Embodiment 6 FIG. The difference from Embodiments 1 to 5 is that an operation when the user does not come home is defined.
  • FIG. 18 is a diagram illustrating an example of a functional configuration of the air conditioner control module 201 according to Embodiment 6 of the present invention.
  • the fifth calculation unit 245 includes, as presence determination data, for example, remote controller operation history data, usage status data of various devices, in-home power consumption data, human sensor detection data, indoor door opening / closing status. At least one of data, communication status data, and position information data of various devices is supplied.
  • FIG. 18 compared with the air conditioner control module 201 shown in FIG. 9, presence / absence determination data that is data relating to the presence / absence of a person is supplied to the fifth calculation unit 245 of the timer control unit 213, or A difference is that an air conditioning stop command or a target temperature change command is supplied from the fifth computing unit 245 to the air conditioner 101 via the refrigeration cycle control unit 211.
  • the air conditioner control module 201 changes the target temperature Tm. Or the air conditioner 101 is stopped.
  • the detection result of the infrared sensor 143 or the human sensor 144 described above may be used to detect the presence of the user in the room. Further, an input operation of the remote controller 115 may be used to detect the presence of the user. Further, as described above, for detecting the user's occupancy, the operation history of various electric devices may be collected by the HEMS controller 323 described later, and the occupancy information may be obtained based on the collection result. For detecting the user's occupancy, the power consumption, the accumulated power consumption, the opening / closing information of the indoor door (not shown), the user's position information, or the imaging result of the camera provided on the intercom (not shown) Etc. may be used.
  • the target temperature Tm when the target temperature Tm is changed, it may be fixed at a specific temperature. Further, when the target temperature Tm is changed, a relative value with respect to the original target temperature Tm is set, for example, a value 2 ° C. higher than the target temperature Tm for cooling, and compared with the target temperature Tm for heating. May be set to a value 2 ° C. lower.
  • the air conditioner control module 201 starts the timer control operation, and when the user's occupancy, that is, the user's return home is not detected even after a preset time has elapsed, The air conditioner 101 is stopped or the target temperature Tm of the air conditioner 101 is changed. As a result, the air conditioner control module 201 can avoid useless operation when the user is absent, even when the user is in a sudden business and the return time is delayed compared to the schedule. The amount of power consumption 101 can be reduced.
  • the fifth calculation unit 245 further supplies an air conditioning stop command or a change command for the target temperature Tm according to the human presence / absence determination result, and the fifth calculation unit 245 performs forward operation. If the presence of a person is not detected before the specified time, an air conditioning stop command or a target temperature Tm change command is supplied.
  • the air conditioner control module 201 can avoid useless operation when the user is absent by supplying an air conditioning stop command or a change command for the target temperature Tm when the user is absent.
  • the amount of power consumption 101 can be reduced.
  • Embodiment 7 FIG. The difference from the first to sixth embodiments is that the indoor unit 113 is controlled using the HEMS 2.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of the HEMS 2 according to the seventh embodiment of the present invention.
  • the HEMS 2 is an electric device that is a home appliance such as the indoor unit 113 of the air conditioner 101, the terminal 329, the IH cooking heater 331, the range grill 333, and the lighting device 335.
  • the HEMS 2 has an electric vehicle 311 equipped with a storage battery 341, a power conditioner 313, a solar cell array 315, a distribution board 319, and an electric instrument such as a power meter 321 outside the house 91 shown in FIG.
  • Various devices are provided. Each electric device is connected by a power line 351.
  • the household electric appliance is driven by electric power supplied from the electric power company 317, electric power supplied from the solar cell array 315, or electric power supplied from the storage battery 341 mounted on the electric vehicle 311.
  • the power consumption is measured by the measuring instrument 321.
  • the HEMS controller 323 can acquire operation information of the home appliances and transmit a control command to the home appliances.
  • the HEMS controller 323 includes an operation instruction for the air conditioner 101, an instruction to stop the air conditioner 101, an instruction to change the operation mode such as cooling, heating, air blowing, and dehumidification of the air conditioner 101, or a target temperature Tm of the air conditioner 101.
  • An instruction obtained by operating the remote controller 115 such as an instruction to change the allowable range ⁇ Tm, the air volume, the wind direction, and the power saving level can be sent to the air conditioner 101.
  • the HEMS controller 323 transmits and receives various signals to and from the air conditioner control module 201 that controls the air conditioner 101.
  • the HEMS controller 323 is connected to the power conditioner 313 and the power measuring instrument 321 via the communication line 353, the power information of the power conditioner 313 and the power measuring instrument 321 can be acquired. Further, since the HEMS controller 323 is connected to the communication device 325 and the communication device 325 is connected to the public line 327, various data can be transmitted / received to / from the outside.
  • the communication device 328 can communicate with the HEMS controller 323 via the public line 327.
  • the communication device 328 is a device operated by a user, and is, for example, a mobile phone, a smartphone, a tablet, a personal computer, or a car navigation system.
  • the various communications within the system in which the HEMS 2 is configured may be wired or wireless, and the communication mode is not particularly limited. Further, the configuration of the HEMS 2 described above is an example, and is not particularly limited thereto.
  • the occupancy information includes, for example, the time when the user starts occupying the room, the duration during which the user stays in the occupancy, and the time when the user is absent.
  • the occupancy information is set for the user, for example, the HEMS controller 323, the communication device 328, or the terminal 329 is used.
  • the HEMS controller 323 When obtaining occupancy information based on the estimated value from the HEMS information, for example, usage information of the terminal 329, the IH cooking heater 331, the range grill 333, the lighting device 335, or the television receiver (not shown), that is, various electric appliances
  • the device operation history may be collected by the HEMS controller 323, and the occupancy information may be obtained based on the collection result.
  • the occupancy information may be obtained by analyzing the power consumption measured by the power meter 321.
  • the user's location information may be obtained using the user's location information.
  • the user's return home may be detected by using the imaging result of the camera.
  • Wi-Fi registered trademark
  • GPS Global Positioning System
  • the operation of obtaining the occupancy information based on the estimated value from the HEMS information is effective when the occupancy information is different every day.
  • the occupancy start time is late, the activation time can be delayed to reduce power consumption, and when the occupancy start time is early, the activation time can be advanced to improve comfort.
  • the allowable range ⁇ Tm of the timer control is changed according to the case where the user moves from the outside to the room and the case where the user moves from the room to the room. For example, when the user returns home from the outside, it feels comfortable if the room temperature Ta is close to the target temperature Tm compared to the outside air temperature, so high accuracy is not required and the allowable range ⁇ Tm is increased. When the user moves from an air-conditioned room to a timer-controlled room, even a slight temperature difference feels uncomfortable, so high accuracy is required and the allowable range ⁇ Tm is reduced.
  • the room temperature Ta to be controlled by the timer may be compared with the temperature at the place where the user is present, and the allowable range ⁇ Tm may be set larger as the temperature difference increases.
  • the outside air temperature is compared with the room temperature Ta to be controlled by the timer.
  • the room temperature Ta of the room is compared with the room temperature Ta to be controlled by the timer.
  • the allowable range ⁇ Tm is determined.
  • the outdoor air temperature is detected by an outdoor temperature sensor provided in the outdoor unit 111, the outdoor air temperature is read from weather information obtained by the HEMS 2, or a general-purpose temperature sensor is installed outside the home.
  • the room temperature Ta is detected by detecting the room temperature Ta with the air conditioner 101 installed in each room or installing a general-purpose temperature sensor in each room.
  • the communication device 325 receives various data transmitted from the communication device 328, and supplies the received various data to the HEMS controller 323. Further, the HEMS controller 323 sends a reply to the communication device 328 via the communication device 325 when replying to various data as necessary.
  • the communication device 328 is a smartphone.
  • an operation instruction for the air conditioner 101 and a stop instruction for the air conditioner 101 can be issued from the screen of the communication device 328.
  • an operation mode such as a cooling operation, a heating operation, a blowing operation, or a dehumidifying operation of the air conditioner 101 can be selected from the screen of the communication device 328.
  • a command such as an operation of the remote controller 115 such as a change of the target temperature Tm, the allowable range ⁇ Tm, the air volume, the wind direction, or the power saving level of the air conditioner 101 can be sent from the screen of the communication device 328.
  • the operation mode such as operation or stop, cooling, heating, air blowing, and dehumidification, and air conditioning of the air conditioner 101 such as the target temperature Tm, the allowable range ⁇ Tm, the air volume, the wind direction, the power saving level, etc.
  • Information can be confirmed.
  • air conditioning information such as the intake air temperature (indoor temperature Ta), indoor humidity, or outside air temperature measured by the air conditioner 101 can be displayed and confirmed from the screen of the communication device 328. For example, if the air conditioner 101 has already been moved as a result of checking the state of the air conditioner 101, it is assumed that another family member is using it, and the remote operation is judged or the air conditioner information is confirmed. Then, if the room temperature Ta exceeds 30 ° C., it can be determined that the cooling is remotely performed.
  • the air conditioner 101 is started immediately from the communication device 328, or the designated time (in-room start time, return time) of the timer is designated from the communication device 328 from the communication device 328. Or a pre-cooling pre-warming start time can be commanded from the communication device 328.
  • the designated time (in-room start time, return time) of the timer is changed after the start of pre-cooling / pre-heating, the learning information change of the fifth calculation unit 245 is avoided or the allowable range ⁇ Tm is changed.
  • the air conditioner control module 201 can determine the presence or absence of a person based on various data, it can accurately determine the presence or absence of a person. Therefore, since the air conditioner control module 201 controls the air conditioner 101 according to an accurate human presence determination result, it is possible to avoid wasteful consumption of power and improve energy saving. .
  • the fifth calculation unit 245 uses the remote controller operation history of the air conditioner 101, usage status data of various devices, home consumption as the result of the presence / absence determination of a person. At least one of power data, detection data of a human sensor 144 that detects the presence or absence of a person, indoor door opening / closing status data, communication status data, and position information data of various devices is used.
  • the air conditioner control module 201 can avoid wasteful consumption of electric power by controlling the air conditioner 101 according to an accurate human presence determination result, thus improving energy saving performance. Can be made.
  • Embodiment 8 FIG. The difference from the first to seventh embodiments is that the mounting mode of the air conditioner control module 201 will be described.
  • FIG. 20 is a diagram illustrating an example of mounting various modules on various devices and the like via the recording medium 401 according to Embodiment 8 of the present invention.
  • the recording medium 401_1 stores the air conditioner control module 201
  • the recording medium 401_1 is mounted on the air conditioner 101
  • the air conditioner control module 201 is installed in the air conditioner 101.
  • Various functions for executing the various operations described in the above are configured.
  • the recording medium 401_2 stores the HEMS control module 510, the recording medium 401_2 is mounted on the HEMS controller 323, and the HEMS control module 510 is installed in the HEMS controller 323, thereby performing various operations described above. Function is configured.
  • the recording medium 401_3 stores the virtual HEMS module 551 and the virtual remote controller module 552, the recording medium 401_3 is mounted on the communication device 328, and the virtual HEMS module 551 and the virtual remote controller module 552 are stored in the storage unit 532_1 of the communication device 328. By being installed, various functions for executing the various operations described above are configured.
  • recording media 401_1 to 401_3 will be referred to as recording media 401 unless otherwise distinguished.
  • the storage unit 532_1 described above and a storage unit 532_2 described later are referred to as a storage unit 532 unless particularly distinguished from each other.
  • the server device 411 includes a storage unit 532_2 such as a disk device, and the air conditioner control module 201, the HEMS control module 510, the virtual HEMS module 551, and the virtual remote controller module 552 are stored in the disk device or the like.
  • the server device 411 superimposes the air conditioner control module 201, the HEMS control module 510, the virtual HEMS module 551, and the virtual remote controller module 552 on the carrier wave, and the air conditioner 101, the HEMS controller 323, and the communication device 328. You may upload to
  • the air conditioner 101, the HEMS controller 323, and the communication device 328 download various types of operations described above by downloading and installing the air conditioner control module 201 and the HEMS control module 510 uploaded from the server device 411. Function is configured.
  • an OS Operating System
  • API Application Interface
  • an air conditioner control module 201 a HEMS control module 510
  • a virtual HEMS module a virtual HEMS module
  • a virtual remote controller module 552 is configured.
  • the various functions described above are realized by sharing the OS 421 or in cooperation with the OS 421 and various applications, as described above, only the part other than the OS 421 is a medium. It is possible to store and distribute it in the form of a download.
  • various modules are installed from the recording medium 401 or the server device 411. That is, when various functions of the control unit are stored in the recording medium 401, various functions of the control unit are implemented via the recording medium 401, and when various functions of the control unit are transferred on the communication medium, the communication medium Various functions of the control unit were implemented via Therefore, various modules are installed from the recording medium 401 or the server device 411.
  • the recording medium 401 is an optical disk such as a magnetic disk (including a flexible disk), a CD-ROM (Compact Disk Read-Only Memory) and a DVD (Digital Versatile Disk), or a magneto-optical disk such as an MO (Magneto-Optical Disk). And a computer-readable recording medium such as a removable medium composed of a semiconductor memory or the like, or a hard disk.
  • the operation time correction unit 1 is configured in various devices such as the air conditioner 101 via the recording medium 401_1 or a communication medium such as the public line 327. Therefore, the operation time correction unit 1 can be configured as a communicable device via the recording medium 401_1 or the communication medium.
  • the operation time correction unit 1 is configured in various devices via the recording medium 401_1 or the communication medium.
  • the air conditioner control module 201 can be configured as a communicable device via the recording medium 401_1 or the communication medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 指定時刻の前に空調装置101を運転させ、部屋の温度を調節する前倒し運転を行わせる空調装置制御モジュール201であって、空調装置101の運転時間を補正する運転時間補正部1を備え、運転時間補正部1は、部屋の温度と、目標温度と、の第1温度差に応じて、空調装置101の前倒し運転の運転時間を算出し、空調装置101が冷房運転の場合、指定時刻における、部屋の温度と、目標温度と比べて所定温度高い第1温度と、の第2温度差に基づいて、次回の運転時間を補正し、空調装置101が暖房運転の場合、指定時刻における、部屋の温度と、目標温度と比べて所定温度低い第2温度と、の第3温度差に基づいて、次回の運転時間を補正する。

Description

空調装置の制御装置
 本発明は、空調装置の制御装置に関する。
 従来、前倒し運転制御を行うことで、指定時刻で室内温度を目標温度に到達させる空調装置の制御装置があった(例えば、特許文献1参照)。
特開昭60-142136号公報(第163頁左上欄第8行~第20行)
 特許文献1に記載の従来技術は、指定時刻前に空調装置を起動させる前倒し運転制御を行う。前倒し運転制御は、目標温度に到達するまでの時間を計測し、計測結果に基づいて前倒し運転時間に対応するグラフ情報を修正し、次回の前倒し運転時間を決定する動作である。
 つまり、従来技術は、室内温度が目標温度に到達する時間を学習することで時間の前倒し運転時間を決定した。ところで、一般的な空調制御を行う従来技術は、室内温度が目標温度に近づくにつれ、空調能力を小さくし、室内温度を緩やかに目標温度へ到達させる動作を行う。例えば、一般的な空調制御を行う従来技術は、室内温度が目標温度の±1℃に近づいてから目標温度に到達するまでに長い時間を要した場合、前倒し運転の時間を長く補正する。また、指定時刻の前後に使用者が入退室したとき、扉開閉による熱負荷、人間の発熱、並びに調理機器及び照明機器等のような家電の発熱等のような熱負荷の変動があるため、室内温度が目標温度に到達する時間は条件に応じて早まったり遅くなったりさまざまに変動する。
 よって、従来技術は、過剰な前倒し運転を行って余分な消費電力が使われたり、前倒し運転が足りずに快適性が損なわれていた。つまり、従来技術は、消費電力量の削減と快適性向上とのバランスをとることができないという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、消費電力量の削減と快適性向上とのバランスをとることができる空調装置の制御装置を提供することを目的とするものである。
 本発明に係る空調装置の制御装置は、指定時刻の前に空調装置を運転させ、部屋の温度を調節する前倒し運転を行わせる空調装置の制御装置であって、前記空調装置の運転時間を補正する運転時間補正部を備え、前記運転時間補正部は、前記部屋の温度と、目標温度と、の第1温度差に応じて、前記空調装置の前倒し運転の運転時間を算出し、前記空調装置が冷房運転の場合、前記指定時刻における、前記部屋の温度と、前記目標温度と比べて所定温度高い第1温度と、の第2温度差に基づいて、次回の運転時間を補正し、前記空調装置が暖房運転の場合、前記指定時刻における、前記部屋の温度と、前記目標温度と比べて所定温度低い第2温度と、の第3温度差に基づいて、次回の運転時間を補正するものである。
 本発明は、使用者が許容できる温度幅に基づいて、前倒し運転を制御することで、消費電力量の削減と快適性向上とのバランスをとることができるという効果を有する。
本発明の実施の形態1における運転時間補正部1の機能構成の一例を示す図である。 本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm内にあった場合に次回の予暖開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm内にあった場合に次回の予冷開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて高い場合に次回の予暖開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて低い場合に次回の予暖開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて低い場合に次回の予冷開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて高い場合に次回の予冷開始時刻を補正した結果例を説明する図である。 本発明の実施の形態1における空調装置101の一例を示す図である。 本発明の実施の形態1における空調装置制御モジュール201の機能構成の一例を示す図である。 本発明の実施の形態1における記憶部246の構成例を示す図である。 本発明の実施の形態1における空調装置制御モジュール201の制御例を説明するフローチャートである。 本発明の実施の形態1における予冷予暖時間演算処理を説明するフローチャートである。 本発明の実施の形態1における冷凍サイクル運転処理を説明するフローチャートである。 本発明の実施の形態2における空調装置101の一例を示す図である。 本発明の実施の形態3における空調装置制御モジュール201の機能構成の一例を示す図である。 本発明の実施の形態4における空調装置制御モジュール201の機能構成の一例を示す図である。 本発明の実施の形態5における空調装置制御モジュール201の機能構成の一例を示す図である。 本発明の実施の形態6における空調装置制御モジュール201の機能構成の一例を示す図である。 本発明の実施の形態7におけるHEMS2の概略構成の一例を示す図である。 本発明の実施の形態8における記録媒体401を介した各種装置等への各種モジュールの実装例を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでもよい。
 また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
 また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックで構成が分離されなくてもよい。なお、本実施の形態1~2のそれぞれにおいて、特に記述しない項目については実施の形態1~8と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。また、本実施の形態1~8のそれぞれは、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、後述する有利な効果を奏することとなる。また、本実施の形態で説明する各種具体的な設定例は一例を示すだけであり、特にこれらに限定されない。
 また、本実施の形態において、システムとは、複数の装置で構成される装置全体を表すものである。また、本実施の形態において、ネットワークとは、少なくとも2つの装置が接続され、ある装置から他の装置へ情報の伝達ができるようにした仕組みをいう。ネットワークを介して通信する装置は、独立した装置同士であってもよく、1つの装置を構成している内部ブロック同士であってもよい。また、本実施の形態において、通信とは、無線通信及び有線通信は勿論、無線通信と有線通信とが混在した通信であってもよい。例えば、ある区間では無線通信が行われ、他の空間では有線通信が行われるようなものであってもよい。また、ある装置から他の装置への通信が有線通信で行われ、他の装置からある装置への通信が無線通信で行われるようなものであってもよい。
実施の形態1.
(実施の形態1の構成)
(発明の原理)
 図1は、本発明の実施の形態1における運転時間補正部1の機能構成の一例を示す図である。図1に示すように、運転時間補正部1は、室内温度データ、目標温度データ、指定時刻データ、許容範囲幅データ、室内温度変動履歴データ、代表時間履歴データ、及び代表時間初期値データ等が入力され、運転開始時刻データ、具体的には、予冷予暖開始時刻データが出力される。ここで、予冷予暖開始時刻とは、予冷開始時刻及び予暖開始時刻の何れかを意味する用語と想定する。
 運転時間補正部1は、例えば、温度差演算部11、代表時間補正部13、及び時間関連演算部15等を備える。温度差演算部11は、例えば、初期室内温度データと、指定時刻データと、室内温度変動履歴データとが供給されることで、初期室内温度Ta0と、指定時刻の室内温度Ta1との温度差を演算し、演算結果を温度差データとして時間関連演算部15に供給する。なお、室内温度変動履歴データの詳細な構成例については後述する。
 代表時間補正部13は、目標温度データ、指定時刻データ、許容範囲幅データ、室内温度変動履歴データ、代表時間履歴データ、及び代表時間初期値データ等が供給され、代表時間データを出力する。ここで、代表時間データに含まれる代表時間とは、室内温度Taが単位温度、例えば、1℃変化するのに要する時間と想定する。
 代表時間補正部13は、例えば、許容範囲演算部21、室内温度関連処理部23、及び代表時間調整部25等を備える。許容範囲演算部21は、例えば、目標温度データと、許容範囲幅データとが供給された場合、目標温度Tmの許容範囲ΔTmとして、最小値データと、最大値データとを求める。つまり、最大値データに含まれる最大値と、最小値データに含まれる最小値とで定義される範囲が目標温度Tmの許容範囲ΔTmとなる。許容範囲演算部21は、許容範囲データとして、最小値データ及び最大値データを求めた場合、許容範囲データを室内温度関連処理部23に供給する。
 室内温度関連処理部23は、許容範囲データと、指定時刻データと、室内温度変動履歴データとが供給された場合、調整比率データを求め、代表時間調整部25に供給する。具体的には、室内温度関連処理部23は、例えば、指定時刻対応室内温度演算部31と、調整比率演算部33とを備える。指定時刻対応室内温度演算部31は、指定時刻データに含まれる指定時刻に対応する室内温度Ta1を、室内温度変動履歴データに含まれる室内温度Taの中から求める。
 つまり、室内温度変動履歴データは、例えば、室内温度Taと、室内温度Taに対応する時刻との組データで構成され、室内温度Taの時系列データが構成されている。なお、室内温度変動履歴データは、例えば、上記で説明した組データに加え、室内温度Taの変動が、冷房運転に起因するものであるか、又は暖房運転に起因するものであるかが紐付けられた状態でデータ構造が構成されている。
 指定時刻対応室内温度演算部31は、指定時刻に対応する室内温度Ta1を求め、調整比率演算部33に供給する。調整比率演算部33は、指定時刻に対応する室内温度Ta1と、許容範囲データに含まれる最大値又は最小値とに基づいて、調整比率を求め、調整比率データとして代表時間調整部25に供給する。具体的には、調整比率演算部33は、室内温度Taの変動が暖房運転に起因する場合、指定時刻に対応する室内温度Ta1と、許容範囲データに含まれる最小値とに基づいて、調整比率を求める。また、調整比率演算部33は、室内温度Taの変動が冷房運転に起因する場合、指定時刻に対応する室内温度Ta1と、許容範囲データに含まれる最大値とに基づいて、調整比率を求める。
 代表時間調整部25は、調整比率データに含まれる調整比率と、代表時間履歴データに含まれる過去の代表時間又は代表時間初期値データ267(後述する)に含まれる代表時間初期値とに基づいて、代表時間を求め、代表時間データとして時間関連演算部15に供給する。具体的には、代表時間調整部25は、最初に代表時間を求める場合、調整比率と、代表時間初期値とに基づいて、代表時間を求める。また、代表時間調整部25は、既に代表時間を求めたことがある場合、調整比率と、過去の代表時間とに基づいて、次回の代表時間を求める。なお、代表時間初期値は、例えば、製品出荷時に設定された初期値である。
 時間関連演算部15は、温度差データに含まれる温度差と、指定時刻データに含まれる指定時刻と、代表時間データに含まれる代表時間とに基づいて、運転開始時刻を求め、運転開始時刻データとして出力する。運転開始時刻は、例えば、予冷予暖開始時刻であるため、実際には、予冷予暖開始時刻データとして出力する。
 具体的には、時間関連演算部15は、運転時間演算部27と、運転開始時刻演算部29とを備える。運転時間演算部27は、温度差データに含まれる温度差と、代表時間データに含まれる代表時間とに基づいて、運転時間、例えば、予暖時間t又は予冷時間tを求め、運転開始時刻演算部29に供給する。運転開始時刻演算部29は、運転時間と、指定時刻とに基づいて、運転開始時刻を求め、運転開始時刻データとして出力する。
 図2は、本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm内にあった場合に次回の予暖開始時刻を補正した結果例を説明する図である。図2に示すように、暖房運転時の第1状態51は、代表時間補正処理52と、運転時間演算処理53とを経て、暖房運転時の第2状態54に遷移する。暖房運転時の第1状態51では、指定時刻の室内温度Ta1は、目標温度Tmの許容範囲ΔTm内に存在する。つまり、指定時刻の室内温度Ta1は、運転開始時刻、例えば、予暖開始時刻に初期室内温度Ta0であったが、指定時刻には、許容範囲ΔTm内に収束している。ここで、許容範囲ΔTmの最小温度Tkが許容範囲ΔTmの最小値として設定されている。
 代表時間補正処理52は、第1状態51の代表時間t0に、第1状態51における許容範囲ΔTmの最小温度Tkと指定時刻の室内温度Ta1との比を乗算することで、第2状態54の代表時間t0’を求める処理である。具体的には、図2に示すように、次式(1)で表される。
  [数1]
t0’=t0×(Tk-Ta0)/(Ta1-Ta0)   (1)
 さらに、Tkは次式(2)で示されるように展開される。
  [数2]
t0’=t0×((Tm-ΔTm)-Ta0)/(Ta1-Ta0)   (2)
 運転時間演算処理53は、初期室内温度Ta0と目標温度Tmとの温度差に、代表時間t0’を乗算することで、運転時間、例えば、予暖時間t’を求める処理である。具合的には、図2に示すように、次式(3)で表される。
 つまり、次式(3)に示すように、前倒し運転時間、例えば、予暖時間t’は、初期室内温度Ta0と、目標温度Tmとの温度差である第1温度差に応じて算出される。そして、前倒し運転時間は、指定時刻の室内温度Ta1と、目標温度Tmの許容範囲ΔTm内の温度、例えば、許容範囲ΔTmの最小温度Tkと、の温度差である第3温度差に基づいて、前倒し運転時間が補正される。例えば、第3温度差に対応するものとして、代表時間t0’が用いられる。
 ここで、初期室内温度Ta0又は指定時刻の室内温度Ta1が、部屋の温度に相当する。また、許容範囲ΔTmの最小温度Tkは、第2温度に相当する。なお、第2温度が許容範囲ΔTmの最小温度Tkである一例について説明したが、特にこれに限定されない。具体的には、許容範囲ΔTm内であり、第3温度差が許容範囲ΔTmであれば第2温度は許容範囲ΔTmの最小温度Tkとなるので省エネ効果が得られ、第3温度差が目標温度Tmと比べて所定温度低い温度であれば第2温度は目標温度Tmと比べて所定温度低い温度となるので省エネ効果が得られ、第3温度差がゼロであれば快適性向上の効果が得られる。つまり、第3温度差に対応する代表時間t0’に応じて、省エネ効果又は快適性向上を目標にした運転が実施される。そこで、省エネ効果の一例について次に説明する。
  [数3]
t’=|Ta0-Tm|×t0’   (3)
 暖房運転時の第2状態54では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最小温度Tkに存在する。つまり、指定時刻の室内温度Ta1は、運転開始時刻、例えば、予暖開始時刻に初期室内温度Ta0であったが、指定時刻には、許容範囲ΔTmのうち、許容範囲ΔTmの最小値に収束している。換言すれば、許容範囲ΔTmの最小温度Tkと、指定時刻の室内温度Ta1との比に基づいて、代表時間を再計算することで、予暖時間tが予暖時間t’に短縮されるため、消費電力量が削減される。
 図3は、本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm内にあった場合に次回の予冷開始時刻を補正した結果例を説明する図である。図3に示すように、冷房運転時の第1状態55は、代表時間補正処理56と、運転時間演算処理57とを経て、冷房運転時の第2状態58に遷移する。冷房運転時の第1状態55では、指定時刻の室内温度Ta1は、目標温度Tmの許容範囲ΔTm内に存在する。つまり、指定時刻の室内温度Ta1は、運転開始時刻、例えば、予冷開始時刻に初期室内温度Ta0であったが、指定時刻には、許容範囲ΔTm内に収束している。ここで、許容範囲ΔTmの最大温度Tkが許容範囲ΔTmの最大値として設定されている。
 代表時間補正処理56は、第1状態55の代表時間t0に、第1状態55における許容範囲ΔTmの最大温度Tkと指定時刻の室内温度Ta1との比を乗算することで、第2状態58の代表時間t0’を求める処理である。具体的には、図3に示すように、次式(4)で表される。
  [数4]
t0’=t0×(Ta0-Tk)/(Ta0-Ta1)   (4)
 さらに、Tkは次式(5)で示されるように展開される。
  [数5]
t0’=t0×(Ta0-(Tm+ΔTm))/(Ta0-Ta1)   (5)
 運転時間演算処理57は、初期室内温度Ta0と目標温度Tmとの温度差に、代表時間t0’を乗算することで、運転時間、例えば、予冷時間t’を求める処理である。具合的には、図2に示すように、次式(6)で表される。
 つまり、次式(6)に示すように、前倒し運転時間、例えば、予冷時間t’は、初期室内温度Ta0と、目標温度Tmとの温度差である第1温度差に応じて算出される。そして、前倒し運転時間は、指定時刻の室内温度Ta1と、目標温度Tmの許容範囲ΔTm内の温度、例えば、許容範囲ΔTmの最大温度Tkと、の温度差である第2温度差に基づいて、前倒し運転時間が補正される。例えば、第2温度差に対応するものとして、代表時間t0’が用いられる。
 ここで、初期室内温度Ta0又は指定時刻の室内温度Ta1が、部屋の温度に相当する。また、許容範囲ΔTmの最大温度Tkは、第1温度に相当する。なお、第1温度が許容範囲ΔTmの最大温度Tkである一例について説明したが、特にこれに限定されない。具体的には、許容範囲ΔTm内であり、第2温度差が許容範囲ΔTmであれば第1温度は許容範囲ΔTmの最大温度Tkとなるので省エネ効果が得られ、第2温度差が目標温度Tmと比べて所定温度高い温度であれば第1温度は目標温度Tmと比べて所定温度高い温度となるので省エネ効果が得られ、第2温度差がゼロであれば快適性向上の効果が得られる。つまり、第2温度差に対応する代表時間t0’に応じて、省エネ効果又は快適性向上を目標にした運転が実施される。そこで、省エネ効果の一例について次に説明する。
  [数6]
t’=|Ta0-Tm|×t0’   (6)
 暖房運転時の第2状態58では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最大温度Tkに存在する。つまり、指定時刻の室内温度Ta1は、運転開始時刻、例えば、予冷開始時刻に初期室内温度Ta0であったが、指定時刻には、許容範囲ΔTmのうち、許容範囲ΔTmの最大値に収束している。換言すれば、許容範囲ΔTmの最大温度Tkと、指定時刻の室内温度Ta1との比に基づいて、代表時間を再計算することで、予冷時間tが予冷時間t’に短縮されるため、消費電力量が削減される。
 図4は、本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて高い場合に次回の予暖開始時刻を補正した結果例を説明する図である。図4に示すように、第1状態61では、指定時刻の室内温度Ta1は、許容範囲ΔTmを超えている。一方、第2状態64では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最小温度Tkに収束している。つまり、予暖時間tが予暖時間t’に短縮されるため、消費電力量が削減される。
 図5は、本発明の実施の形態1における暖房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて低い場合に次回の予暖開始時刻を補正した結果例を説明する図である。図5に示すように、第1状態65では、指定時刻の室内温度Ta1は、許容範囲ΔTmに到達していない。一方、第2状態68では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最小温度Tkに収束している。つまり、第2状態68では、許容範囲ΔTmの下端を目標として代表時間が長く変更されることで、次回のタイマー制御に相当する第2状態68では、予暖時間tが予暖時間t’に延長され、室内温度Taが許容範囲ΔTm内に到達されているため、第1状態65と比べ、快適性が向上している。
 図6は、本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて低い場合に次回の予冷開始時刻を補正した結果例を説明する図である。図6に示すように、第1状態71では、指定時刻の室内温度Ta1は、許容範囲ΔTmを下回っている。一方、第2状態74では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最大温度Tkに収束している。つまり、予冷時間tが予冷時間t’に短縮されるため、消費電力量が削減される。
 図7は、本発明の実施の形態1における冷房運転中で指定時刻に室内温度Taが許容範囲ΔTm外で許容範囲ΔTmと比べて高い場合に次回の予冷開始時刻を補正した結果例を説明する図である。図7に示すように、第1状態75では、指定時刻の室内温度Ta1は、許容範囲ΔTmに到達していない。一方、第2状態78では、指定時刻の室内温度Ta1は、許容範囲ΔTmの最大温度Tkに収束している。つまり、第2状態78では、許容範囲ΔTmの上端を目標として代表時間が長く変更されることで、次回のタイマー制御に相当する第2状態78では、予冷時間tが予冷時間t’に延長され、室内温度Taが許容範囲ΔTm内に到達されているため、第1状態75と比べ、快適性が向上している。
 換言すれば、運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定時刻に対応する室内温度Taが許容範囲ΔTmに比べて低かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定時刻に対応する室内温度Taが許容範囲ΔTmに比べて高かった場合、次回の運転開始時刻を早くする。運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定時刻に対応する室内温度Taが許容範囲ΔTmに比べて高かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定時刻に対応する室内温度Taが許容範囲ΔTmに比べて低かった場合、次回の運転開始時刻を遅くする。
 また、運転時間補正部1は、空調装置101の暖房運転の履歴を参照する場合、指定時刻に対応する室内温度Ta1と、許容範囲ΔTmのうちの最小値と、の比較結果に応じて、次回の運転開始時刻を補正し、空調装置101の冷房運転の履歴を参照する場合、指定時刻に対応する室内温度Ta1と、許容範囲ΔTmのうちの最大値と、の比較結果に応じて、次回の運転開始時刻を補正する。運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定時刻に対応する室内温度Ta1が許容範囲ΔTmのうちの最小値と比べて高かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定時刻に対応する室内温度Ta1が許容範囲ΔTmのうちの最大値と比べて低かった場合、次回の運転開始時刻を遅くする。
 なお、目標温度Tmの許容範囲ΔTmは、予め設定された固定値であってもよく、後述するリモートコントローラー115で使用者から設定されてもよい。また、後述するように、複数の段階の節電レベルが使用者によって選択される節電モードが構成されていれば、節電レベルに応じて許容範囲ΔTmが決定されてもよい。
 また、許容範囲ΔTm又は節電レベルが使用者によって設定される場合、その設定手段は後述するリモートコントローラー115に限定されず、図8で後述する計測制御装置151又は計測制御装置153であってもよい。また、図19で後述されるHEMS(Home Energy Management System)2を制御するHEMSコントローラー323、通信装置328、又は端末329等であってもよい。
(空調装置101の構成)
 図8は、本発明の実施の形態1における空調装置101の一例を示す図である。図8に示すように、空調装置101は、室外機111と、室内機113とを備える。室外機111は、例えば、家屋91の外側に設けられている。室内機113は、例えば、家屋91の内側に設けられている。空調装置101は、室内空間171を空調対象としている。つまり、空調装置101は、室内空間171が空気の制御対象空間である。
 例えば、室内機113は、室内空間171に調和空気を供給できる場所、例えば、室内空間171を構成する壁に設置されている。空調装置101は、室内機113から調和空気、例えば、冷風を吹き出すことで冷房を行い、温風を吹き出すことで暖房を行う。空調装置101は、蒸気圧縮式の冷凍サイクルが形成される。室外機111と、室内機113とを接続する冷媒配管117には、冷媒が流通し、室外機111と、室内機113とを接続する通信線163には、各種信号が転送されている。
 室外機111は、圧縮機121、四方弁122、室外熱交換器123、及び膨張弁124を備える。室外機111は、室外熱交換器123のそばに室外送風機131を備える。室外機111は、計測制御装置151を備える。一方、室内機113は、室内熱交換器125を備える。室内機113は、室内熱交換器125のそばに室内送風機133を備える。室内機113は、計測制御装置153を備える。室内機113は、室内温度センサ141を備える。室内空間171には、リモートコントローラー115が設けられている。リモートコントローラー115は、室内機113が備える計測制御装置153と各種信号を送受信する。
 圧縮機121、四方弁122、室外熱交換器123、膨張弁124、及び室内熱交換器125が環状に冷媒配管117で接続されることで、冷媒回路が構成され、冷媒回路の内部を冷媒が圧縮と膨張を繰り返しながら循環することで、冷凍サイクルが形成される。室外送風機131は、駆動されることで室外機111の内部に負圧を生じさせ、室外空間172の室外空気を室外機111に吸い込ませ、吸い込ませた室外空気を室外熱交換器123に供給し、室外熱交換器123を経由させ、室外機111から室外空間172へ室外機111内の空気を吹き出させる。室内送風機133は、駆動されることで室内機113の内部に負圧を生じさせ、室内空間171の室内空気を室内機113に吸い込ませ、吸い込ませた室内空気を室内熱交換器125に供給し、室内熱交換器125を経由させ、室内機113から室内空間171へ室内機113内の空気を吹き出させる。
 圧縮機121は、低温かつ低圧の冷媒を圧縮して高温かつ高圧の冷媒とするものであり、例えば、インバータで駆動され、空調状況に応じて運転容量が制御される。四方弁122は、圧縮機121の吐出側に接続され、空調装置101の運転、例えば、冷房運転又は暖房運転に応じて冷媒の流れを切り換える。室外熱交換器123は、冷媒回路を流れる冷媒から供給される冷熱又は温熱と、室外空間172から供給される室外空気との間で熱交換を行う。膨張弁124は、室外熱交換器123と、室内熱交換器125との間に接続され、開度を調整する弁で構成され、開度が調整されることで、冷媒を減圧して膨張させる。室内熱交換器125は、冷媒回路を流れる冷媒から供給される冷熱又は温熱と、室内空間171の室内空気との間で熱交換を行う。
 よって、空調装置101は、室内熱交換器125で熱交換された室内空気を調和空気として室内空間171に供給し、室内空間171の冷暖房を行う。ここで、室内温度センサ141の検知結果である計測情報は、計測制御装置153に供給される。計測制御装置153は、室内温度センサ141の検知結果である計測情報を、通信線163を介して、計測制御装置151に供給する。なお、通信線163は、有線又は無線の何れであってもよく、通信媒体としては特に限定されるものではない。
 計測制御装置151及び計測制御装置153は、室内温度センサ141等の空調装置101に搭載される各種センサから供給される検知情報及び運転情報と、空調装置101の使用者で設定された設定情報とに基づいて、予め搭載されている制御プログラムで空調装置101の運転を指令する。つまり、計測制御装置151及び計測制御装置153は、空調装置101の全体を統括制御する。例えば、計測制御装置151及び計測制御装置153は、マイクロコンピュータ等で構成されている。
 例えば、計測制御装置151は、圧縮機121の駆動周波数の制御を行い、四方弁122の切り換え制御を行い、室外送風機131の回転数の制御を行い、膨張弁124の開度の制御を行う。また、例えば、計測制御装置153は、室内送風機133の回転数の制御を行う。このような動作が行われることで、計測制御装置151及び計測制御装置153は、結果として、空調装置101に各種運転を指令する。なお、計測制御装置151が、室内送風機133の回転数の制御を行ってもよく、計測制御装置153が、圧縮機121の駆動周波数の制御を行い、四方弁122の切り換え制御を行い、室外送風機131の回転数の制御を行い、膨張弁124の開度の制御を行ってもよい。
 上記で説明したように、室内温度センサ141は、室内機113に搭載されている。室内温度センサ141は、室内機113に吸い込まれた室内空間171の室内空気の温度を計測し、計測結果を計測制御装置153等に供給する。なお、図示は省略するが、空調装置101にはその他の各種センサも搭載されている。
 例えば、圧縮機121の吐出側には吐出側圧力センサが搭載され、吐出側圧力センサは、圧縮機121から吐出された冷媒の圧力を計測する。また、例えば、圧縮機121の吸入側には吸入側圧力センサが搭載され、吸入側圧力センサは、圧縮機121に吸入された冷媒の圧力を計測する。また、例えば、圧縮機121の吐出側には吐出側温度センサが搭載され、吐出側温度センサは、圧縮機121から吐出された冷媒の温度を計測する。また、例えば、圧縮機121の吸入側には吸入側温度センサが搭載され、吸入側温度センサは、圧縮機121に吸入された冷媒の温度を計測する。また、例えば、室外機111には、室外温度センサが搭載され、室外温度センサは、室外空間172の室外空気の温度を計測する。
 次に、上記で説明した空調装置101を前提として、空調装置101の使用者が、例えば、リモートコントローラー115等を操作することで、空調装置101に運転開始指令が与えられたと想定する。運転開始指令には冷房運転又は暖房運転等の運転モードが含まれているため、空調装置101では運転開始指令と同時に運転モードが設定される。
(冷房動作)
 例えば、運転モードとして、冷房運転が選択された場合、冷凍サイクルの動作は以下のようになる。圧縮機121から吐出された冷媒は、四方弁122を通過して室外熱交換器123に流れる。室外熱交換器123に流れた冷媒は、室外空間172から吸い込まれた室外空気と熱交換して凝縮液化し、膨張弁124に流れる。膨張弁124に流れた冷媒は、膨張弁124で減圧され、室内熱交換器125に流れる。室内熱交換器125に流れた冷媒は、室内空間171から吸い込まれた室内空気と熱交換して蒸発ガス化し、四方弁122を通過して圧縮機121に再び吸入される。このようにして冷媒が流れることで、室内空間171から吸い込まれた室内空気が室内熱交換器125で冷却される。室内熱交換器125における冷媒と室内空気との熱交換量は、冷却能力Qと呼ばれる。冷却能力Qは、圧縮機121の回転数を変えることで調整される。
(暖房運転)
 例えば、運転モードとして、暖房運転が選択された場合、冷凍サイクルの動作は以下のようになる。圧縮機121から吐出された冷媒は、四方弁122を通過して室内熱交換器125に流れる。室内熱交換器125に流れた冷媒は、室内空間171から吸い込まれた室内空気と熱交換して凝縮液化し、膨張弁124に流れる。膨張弁124に流れた冷媒は、膨張弁124で減圧され、室外熱交換器123に流れる。室外熱交換器123に流れた冷媒は、室外空間172から吸い込まれた室外空気と熱交換して蒸発ガス化し、四方弁122を通過して圧縮機121に再び吸入される。このようにして冷媒が流れることで、室内空間171から吸い込まれた室内空気が室内熱交換器125で加熱される。室内熱交換器125における冷媒と室内空気との熱交換量は、加熱能力Qと呼ばれる。加熱能力Qは、圧縮機121の回転数を変えることで調整される。
 なお、上記の説明では、1台の空調装置101の説明をしたが、台数については特に限定されない。例えば、複数台の空調装置101であってもよい。また、上記では、1台の室外機111と、1台の室内機113とで構成される空調装置101について説明したが、空調装置101の構成は特に限定されない。例えば、1台の室外機111と、複数台の室内機113とで構成される空調装置101であってもよい。また、1台の室外機111と、中継機(図示せず)と、逆止弁(図示せず)と、複数台の室内機113とで構成され、冷暖房同時運転を行う空調装置101であってもよい。
 また、図示の関係上、室外機111と、室内機113とは、距離が近い位置に配設されているが、室外機111と、室内機113との配置箇所については特に限定されない。例えば、室外機111が図示しない建物の屋上に配設され、室内機113が天井裏に配設されてもよい。
 要するに、冷媒回路を構成する空調装置101であればよく、その詳細構成等については、特に限定されるものではない。
 また、後述する機能構成は、例えば、計測制御装置151に実装されてもよいが、実装場所については特に限定されない。例えば、後述する機能構成は、計測制御装置153に実装されてもよい。また、例えば、後述する機能構成は、図19で後述するHEMSコントローラー323に実装されてもよい。また、例えば、後述する機能構成は、図20で後述するサーバー装置411に実装されてもよい。
 要するに、後述する機能構成は、実装場所が特に限定されない。例えば、図19で後述する公衆回線327を介して、図19で後述する端末329が複数接続されていると想定すると、その複数の端末329に分散して、後述する機能構成が物理的に分散して実装されてもよい。例えば、後述する冷凍サイクル制御部211の機能と、後述するタイマー制御部213の機能とが、物理的に離れた場所に実装され、公衆回線327等の通信媒体を介して、1つのシステムとして有機的に機能するものであってもよい。つまり、クラウドコンピューティングとして後述する機能構成が各種指令を空調装置101に供給することで、空調装置101が制御されてもよい。
(運転モード)
 使用者によって、リモートコントローラー115に、上記で説明した指定時刻、例えば、在室開始時刻と、運転モード(冷房/暖房/除湿など)と、目標温度Tmとが入力されることで、空調装置101は、上記で説明したように、指定時刻に室内温度Taが目標温度Tmから許容範囲ΔTm以内に到達するように、例えば、予暖時間t’前から起動して暖房運転を行う。なお、後述するタイマー制御部213に対する各種設定の入力は、特に、リモートコントローラー115に限定されない。例えば、計測制御装置151又は計測制御装置153であってもよい。また、図19で後述するHEMSコントローラー323、通信装置328、又は端末329であってもよい。各種設定の入力では、運転モード(冷房/暖房/除湿など)と目標温度Tmの入力は省略してもよく、その場合は既存の運転モードと目標温度Tmとを用いることで入力を簡略化でき、使用者の利便性が向上する。既存の運転モードと目標温度Tmとは、リモートコントローラー115、計測制御装置151、計測制御装置153、HEMSコントローラー323、通信装置328、又は端末329の何れかに記憶された運転モード及び目標温度Tmである。
(空調装置101を制御する機能構成)
 図9は、本発明の実施の形態1における空調装置制御モジュール201の機能構成の一例を示す図である。図9に示すように、空調装置制御モジュール201は、冷凍サイクル制御部211と、タイマー制御部213とを備える。
 冷凍サイクル制御部211は、例えば、比例制御部221、積分制御部222、及び微分制御部223を備える。冷凍サイクル制御部211は、室内温度Taとして室内空間171の温度を検知する室内温度センサ141の計測値が、使用者で設定された目標温度Tmとなるように圧縮機121の運転容量を決定する。
 比例制御部221は、比例制御を行う。具体的には、比例制御部221は、室内温度Taと目標温度Tmとの温度差に比例して圧縮機121の回転数を制御することで、空調装置101の冷却能力Q又は空調装置101の加熱能力Qを変更して室内温度Taが目標温度Tmに収束するように運転指令を出す。
 積分制御部222は、積分制御を行う。具体的には、積分制御部222は、室内温度Taの時間変化が予め定めた設定値と比べて小さい場合、室内温度Taが目標温度Tmに到達するまでの時間がかかるため、圧縮機121の回転数を増加することで、空調装置101の冷却能力Q又は空調装置101の加熱能力Qを増加し、室内温度Taが目標温度Tmに到達するように運転指令を出す。
 微分制御部223は、図示しない窓の開閉等に起因して室内温度Taが急激に変化した場合、室内温度Taの時間変動に応じて圧縮機121の運転容量を変更する。
 以上の制御が実施された結果、空調装置101は、室内温度Taが目標温度Tmに到達すると圧縮機121の運転を停止し、室内温度Taと目標温度Tmとの温度差が予め設定された値以上になると、圧縮機121を再び起動する。
 タイマー制御部213は、タイマー制御を実行し、例えば、図9に示すように、第1演算部241、第2演算部242、第3演算部243、第4演算部244、第5演算部245、及び記憶部246を備えている。なお、第3演算部243は、例えば、上記で説明した運転時間補正部1が構成されている。
 第1演算部241は、使用者に設定された設定値又は過去の情報からの推定値に基づいて、在室情報を求める。在室情報は、例えば、使用者が在室を始める時刻、使用者が在室を続ける時間幅、及び使用者が不在となる時刻を含む。在室情報が使用者に設定される場合、例えば、リモートコントローラー115が利用される。
 なお、使用者が在室情報を設定する機器は、リモートコントローラー115に限定されず、上記で説明した計測制御装置151又は計測制御装置153であってもよい。また、後述するHEMSコントローラー323、通信装置328、又は端末329であってもよい。
 また、在室情報が過去の情報からの推定値で設定される場合、室内空間171に存在する各種機器、例えば、リモートコントローラー115等の過去の情報が用いられることで在室情報が推定され、推定された在室情報が設定されてもよい。具体的には、朝、昼、夕方、及び夜間等の特定の時間帯ごとに、使用者がリモートコントローラー115の操作を初めて行った時間をリモートコントローラー115又は空調装置101に記憶させておく。次に、空調装置制御モジュール201は、そのようにして記憶させたリモートコントローラー115が使用された時間を収集し、収集した結果に基づいて、使用者が在室を始める時刻、すなわち、在室開始時間を推定し、推定した在室開始時間を設定する。
 なお、在室開始時間が複数得られる場合、空調装置制御モジュール201は、例えば、平均値を求め、その平均値を在室開始時間に決定してもよい。また、過去の情報からの推定値は、図14で後述する赤外線センサ143又は人感センサ144の検知結果を利用することで在室情報を求めてもよい。また、過去の情報からの推定値は、室内空間171に取り付けられている室内ドア(図示省略)の開閉情報を利用することで在室情報を求めてもよい。なお、過去の情報からの推定値に基づいて在室情報を得る動作は、その在室情報は日々異なることが想定される場合に有効となる。
 第2演算部242は、在室情報から在室開始時刻を求め、求めた在室開始時刻を第3演算部243に供給する。第3演算部243は、在室開始時刻と、空調情報と、学習情報に基づいて、予冷予暖開始時刻、つまり、起動時刻を求め、求めた予冷予暖開始時刻を第4演算部244に供給する。空調情報は、例えば、空調装置101の機種特性や、運転若しくは停止、冷房、暖房、送風、及び除湿というような運転モード、並びに目標温度Tm、目標温度Tmの許容範囲ΔTm、風量、若しくは風向き、節電レベル等の設定情報や、室内温度Ta、外気温度、放射温度、冷媒温度、冷媒圧力など、各種センサの計測値に関連する情報である。学習情報は、例えば、室内温度Taが単位温度、例えば、1℃変化するのにかかる代表時間tであり、製品出荷時には所定の初期値が記憶部246に記憶されている。
 なお、予冷予暖開始時刻は、後述する公衆回線327及び通信機325を介して、HEMSコントローラー323等にダウンロードされてもよい。また、予冷予暖開始時刻は、使用者が直接指定してもよい。
 第4演算部244は、予冷予暖開始時刻が到来した場合、冷凍サイクル制御部211に冷凍サイクル起動指令を供給し、第5演算部245に学習指令を供給する。第5演算部245は、在室開始時刻での空調情報を取得して、学習情報を記憶部246に送る。空調情報は、例えば、空調装置101の機種特性や、運転若しくは停止、冷房、暖房、送風、及び除湿というような運転モード、並びに目標温度Tm、目標温度Tmの許容範囲ΔTm、風量、若しくは風向き、節電レベル等の設定情報や、室内温度Ta、外気温度、放射温度、冷媒温度、冷媒圧力など、各種センサの計測値に関連する情報である。
 なお、空調装置制御モジュール201は、計測制御装置151に制御指令を供給してもよい。また、空調装置制御モジュール201は、計測制御装置153に制御指令を供給してもよい。また、空調装置制御モジュール201は、計測制御装置151及び計測制御装置153を経由させ、空調装置101の駆動機器、例えば、圧縮機121、四方弁122、膨張弁124、室外送風機131、及び室内送風機133に制御指令を供給してもよい。また、空調装置制御モジュール201は、計測制御装置151及び計測制御装置153を経由せず、空調装置101の駆動機器、例えば、圧縮機121、四方弁122、膨張弁124、室外送風機131、及び室内送風機133に制御指令を供給してもよい。
 空調装置制御モジュール201は、概略的なソフトウェア構成としては上記で説明したような機能が実行される。一方、空調装置制御モジュール201は、概略的なハードウェア構成としては、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、及びCPU(Central Processing Unit)がバスを介して接続され、バスと、記憶装置と、入力装置と、出力装置と、通信装置と、ドライブとが入出力インターフェースを介して接続されていればよい(いずれも図示せず)。
 なお、空調装置制御モジュール201は、本発明における空調装置の制御装置に相当する。
 図10は、本発明の実施の形態1における記憶部246の構成例を示す図である。図10に示すように、記憶部246には、節電レベルデータテーブル261、第1マッピングテーブル262、許容範囲幅データテーブル263、温度差データテーブル264、第2マッピングテーブル265、学習情報データ266、及び代表時間初期値データ267が構成されている。節電レベルデータテーブル261は、複数の異なる節電レベルが設定されている。許容範囲幅データテーブル263は、複数の異なる許容範囲幅が設定されている。第1マッピングテーブル262は、節電レベルデータテーブル261と、許容範囲幅データテーブル263とを紐付ける写像関係が設定されている。
 温度差データテーブル264は、外気温度と予冷予暖対象の室内温度Taとの温度差、外気温度と予冷予暖対象の目標温度Tmとの温度差、在室した部屋の室内温度Taと予冷予暖対象の室内温度Taとの温度差、及び在室した部屋の室内温度Taと予冷予暖対象の目標温度Tmとの温度差が設定されている。第2マッピングテーブル265は、温度差データテーブル264と、許容範囲幅データテーブル263とを紐付ける写像関係が設定されている。
 学習情報データ266は、代表時間履歴データが設定されている。代表時間初期値データ267は、上記で説明したように、製品出荷時の設定され代表時間初期値であって、代表時間のデフォルト値である。なお、上記で説明した記憶部246のデータ構造は一例であって、特にこれらに限定されない。
(実施の形態1の動作)
 図11は、本発明の実施の形態1における空調装置制御モジュール201の制御例を説明するフローチャートである。
(ステップS11)
 空調装置制御モジュール201は、在室情報データを取得する。
(ステップS12)
 空調装置制御モジュール201は、在室情報データに基づいて在室開始時刻を求める。
(ステップS13)
 空調装置制御モジュール201は、学習情報データ266を取得する。
(ステップS14)
 空調装置制御モジュール201は、空調情報データを取得する。
(ステップS15)
 空調装置制御モジュール201は、予冷予暖時間演算処理を実行する。
(ステップS16)
 空調装置制御モジュール201は、予冷予暖開始時刻を決定する。
(ステップS17)
 空調装置制御モジュール201は、予冷予暖開始時刻が到来したか否かを判定する。空調装置制御モジュール201は、予冷予暖開始時刻が到来した場合、ステップS18に進む。一方、空調装置制御モジュール201は、予冷予暖開始時刻が到来しない場合、ステップS14に進む。
(ステップS18)
 空調装置制御モジュール201は、冷凍サイクル運転処理を実行する。
(ステップS19)
 空調装置制御モジュール201は、在室開始時刻が到来した場合、ステップS20に進む。空調装置制御モジュール201は、在室開始時刻が到来しない場合、ステップS18に戻る。
(ステップS20)
 空調装置制御モジュール201は、空調情報データを取得する。
(ステップS21)
 空調装置制御モジュール201は、空調情報データに基づいて学習情報データ266を変更し、処理を終了する。
 図12は、本発明の実施の形態1における予冷予暖時間演算処理を説明するフローチャートである。
(ステップS31)
 空調装置制御モジュール201は、在室開始時刻の室内温度Taと許容範囲ΔTmの温度とに基づいて室内温度Taが1℃変化するのに要する時間である代表時間を求める。
(ステップS32)
 空調装置制御モジュール201は、現在の室内温度Taと予冷予暖対象の目標温度Tmとの温度差を求める。
(ステップS33)
 空調装置制御モジュール201は、代表時間と温度差とに基づいて予冷予暖時間を求め、処理を終了する。
 図13は、本発明の実施の形態1における冷凍サイクル運転処理を説明するフローチャートである。
(ステップS41)
 空調装置制御モジュール201は、比例制御を実行する。
(ステップS42)
 空調装置制御モジュール201は、室内温度Taの時間変化が予め定めた設定値と比べて小さいか否かを判定する。空調装置制御モジュール201は、室内温度Taの時間変化が予め定めた設定値と比べて小さい場合、ステップS43に進む。一方、空調装置制御モジュール201は、室内温度Taの時間変化が予め定めた設定値と比べて小さくない場合、ステップS44に進む。
(ステップS43)
 空調装置制御モジュール201は、積分制御を実行する。
(ステップS44)
 空調装置制御モジュール201は、室内温度Taが急激に変化したか否かを判定する。空調装置制御モジュール201は、室内温度Taが急激に変化した場合、ステップS45に進む。一方、空調装置制御モジュール201は、室内温度Taが急激に変化しない場合、処理を終了する。
(ステップS45)
 空調装置制御モジュール201は、微分制御を実行し、処理を終了する。
 なお、上記で説明した比例制御、積分制御、及び微分制御の実行順序は一例であって、特にこれに限定されない。
(実施の形態1の効果)
 以上の説明から、空調装置制御モジュール201は、目標温度Tmに許容範囲ΔTmを設けることで、過剰な前倒し運転を回避させるので、余分な消費電力を削減させることができる。よって、空調装置制御モジュール201は、快適性を維持させつつ、余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、室内温度Taが許容範囲ΔTmに入っていなかった場合には、次回の運転で室内温度Taが許容範囲ΔTmに入るように早めに運転を開始させるため、快適性を維持させることができる。
 また、空調装置制御モジュール201は、室内温度Taが許容範囲ΔTmを既に超えていた場合には、次回の運転で室内温度Taが許容範囲ΔTmを超えないように遅めに運転を開始させることで、過剰な前倒し運転を回避させるので、余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、室内温度Taを許容範囲ΔTmに制御することで快適性を維持させつつも、許容範囲ΔTmの境目の値を制御目標にすることで過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、許容範囲ΔTmの境目の値を基準にして運転を開始させるタイミングを制御するため、住宅の使用環境にかかわらず、過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、節電レベルに応じて許容範囲ΔTmを決定することで、省エネ性と快適性との両者の均衡を調整することができるため、使用者への利便性を向上させることができる。
 また、空調装置制御モジュール201は、指定時刻に家屋91の室内空間171へ人が入室すると想定すれば、使用者が入室時には前倒し運転が実施されつつ、許容範囲ΔTmで空調装置101が稼働していることとなる。よって、空調装置制御モジュール201は、宅外から宅内の前倒し運転の対象となる部屋へ人が入室する場合であっても、快適性を向上させつつも、過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、外気温度及び室内温度Taを考慮して許容範囲ΔTmを決定することで、快適性を担保させつつも、最低限必要な分だけ前倒し運転を行わせることができる。
 また、空調装置制御モジュール201は、外気温度及び目標温度Tmを考慮して許容範囲ΔTmを決定することで、快適性を向上させつつも、過剰な前倒し運転を回避させることができる。
 また、空調装置制御モジュール201は、指定時刻に家屋91のある室内空間171から前倒し運転の対象となっている室内空間171へ人が入室すると想定すれば、使用者が入室時には前倒し運転が実施されつつ、許容範囲ΔTmで空調装置101が稼働していることとなる。よって、空調装置制御モジュール201は、宅内のある部屋から宅内の前倒し運転の対象となる部屋へ人が入室する場合であっても、快適性を維持させつつも、過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、人が体感する室内温度Ta同士の温度差で許容範囲ΔTmを決定することで、制御対象項目としての目標温度Tmを隠蔽化させた状態で制御を行いつつ、余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、制御対象項目としての前倒し運転の対象となっている部屋の室内温度Taを隠蔽化させた状態で制御を行いつつ、余分な消費電力を削減させることができる。
 また、空調装置制御モジュール201は、目標温度Tmを整数値で制御するため、浮動小数点演算等の複雑な演算構成を設けることなく簡易な演算構成を設けれるだけで、前倒し運転の制御を実施することができる。図19で後述するHEMSコントローラー323等の外部の制御装置から空調装置101を制御する場合、どのメーカーの空調装置101であっても、運転停止、運転モードの変更、及び設定温度の変更等の操作が共通にできるように、ECHONET Lite(登録商標)等の推奨標準インタフェース規格がある。このような標準インタフェースでは、設定温度の変更は、1℃の刻み幅であるため、省エネ制御の設定温度を整数値に設定することで、空調装置101のメーカーを問わずに上記で説明した省エネ制御を適用することができるため、汎用性を向上させることができる。
 換言すれば、空調装置制御モジュール201は、特に顕著に、快適性を維持させつつ、余分な消費電力を削減させることができる。
 以上、本実施の形態1において、指定時刻の前に空調装置101を運転させ、部屋の温度を調節する前倒し運転を行わせる空調装置制御モジュール201であって、空調装置101の運転時間を補正する運転時間補正部1を備え、運転時間補正部1は、部屋の温度と、目標温度と、の第1温度差に応じて、空調装置101の前倒し運転の運転時間を算出し、空調装置101が冷房運転の場合、指定時刻における、部屋の温度と、目標温度と比べて所定温度高い第1温度と、の第2温度差に基づいて、次回の運転時間を補正し、空調装置101が暖房運転の場合、指定時刻における、部屋の温度と、目標温度と比べて所定温度低い第2温度と、の第3温度差に基づいて、次回の運転時間を補正する空調装置制御モジュール201が構成される。
 また、本実施の形態1において、運転時間補正部1は、空調装置101が空調する室内の室内温度が、単位温度変化するのに要する運転時間である代表時間を補正する代表時間補正部13と、代表時間に基づいて、空調装置101の運転開始時刻を演算する時間関連演算部15と、を備え、時間関連演算部15は、過去の前倒し運転停止後から次回の前倒し運転前までの間の任意の室内温度と次回の前倒し運転の指定時刻における指定温度との温度差と、次回の代表時間と、に基づいて求めた次回の運転開始時刻を空調装置101に供給するものである。
 また、本実施の形態1において、運転時間補正部1は、過去の前倒し運転の指定時刻に対応する室内温度と、次回の前倒し運転の指定時刻における指定温度の許容範囲と、に基づいて調整比率を求め、調整比率と、過去の運転時間と、に基づいて、運転時間を求めるものである。
 上記構成で、空調装置制御モジュール201は、使用者が許容できる温度幅に基づいて、前倒し運転を制御することで、消費電力量の削減と快適性向上とのバランスをとることがができる。
 また、本実施の形態1において、運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定温度が許容範囲ΔTmに比べて低かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定温度が許容範囲ΔTmに比べて高かった場合、次回の運転開始時刻を早くする。
 上記構成で、空調装置制御モジュール201は、室内温度Taが許容範囲ΔTmに入っていなかった場合には、次回の運転で室内温度Taが許容範囲ΔTmに入るように早めに運転を開始させるため、快適性を維持させることができる。
 また、本実施の形態1において、運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定温度が許容範囲ΔTmに比べて高かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定温度が許容範囲ΔTmに比べて低かった場合、次回の運転開始時刻を遅くする。
 上記構成で、空調装置制御モジュール201は、室内温度Taが許容範囲ΔTmを既に超えていた場合には、次回の運転で室内温度Taが許容範囲ΔTmを超えないように遅めに運転を開始させることで、過剰な前倒し運転を回避させるので、余分な消費電力を削減させることができる。
 また、本実施の形態1において、運転時間補正部1は、空調装置101の暖房運転の履歴を参照する場合、指定温度と、許容範囲ΔTmのうちの最小値と、の比較結果に応じて、次回の運転開始時刻を補正し、空調装置101の冷房運転の履歴を参照する場合、指定温度と、許容範囲ΔTmのうちの最大値と、の比較結果に応じて、次回の運転開始時刻を補正する。
 上記構成で、空調装置制御モジュール201は、室内温度Taを許容範囲ΔTmに制御することで快適性を維持させつつも、許容範囲ΔTmの境目の値を制御目標にすることで過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、本実施の形態1において、運転時間補正部1は、空調装置101の暖房運転の履歴を参照し、指定温度が許容範囲ΔTmのうちの最小値と比べて高かった場合、又は、空調装置101の冷房運転の履歴を参照し、指定温度が許容範囲ΔTmのうちの最大値と比べて低かった場合、次回の運転開始時刻を遅くする。
 上記構成で、空調装置制御モジュール201は、許容範囲ΔTmの境目の値を基準にして運転を開始させるタイミングを制御するため、住宅の使用環境にかかわらず、過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、本実施の形態1において、消費電力の異なる複数の節電レベルが設けられ、複数の節電レベルと、許容範囲ΔTmを決定する許容範囲幅と、が紐付けされ、運転時間補正部1は、複数の節電レベルのうち、特定の節電レベルが選択された場合、特定の節電レベルに応じて、許容範囲幅を決定し、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、節電レベルに応じて許容範囲ΔTmを決定することで、省エネ性と快適性との両者の均衡を調整することができるため、使用者への利便性を向上させることができる。
 また、本実施の形態1において、運転時間補正部1は、指定時刻までに、宅外から前倒し運転の対象となっている部屋へ人が移動すると推定した場合、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、指定時刻に家屋91の室内空間171へ人が入室すると想定すれば、使用者が入室時には前倒し運転が実施されつつ、許容範囲ΔTmで空調装置101が稼働していることとなる。よって、空調装置制御モジュール201は、宅外から宅内の前倒し運転の対象となる部屋へ人が入室する場合であっても、快適性を向上させつつも、過剰な前倒し運転を回避させて余分な消費電力を削減させることができる。
 また、本実施の形態1において、運転時間補正部1は、外気温度と、前倒し運転の対象となっている部屋の室内温度Taと、の温度差に応じて、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、外気温度及び室内温度Taを考慮して許容範囲ΔTmを決定することで、快適性を担保させつつも、最低限必要な分だけ前倒し運転を行わせることができる。
 また、本実施の形態1において、運転時間補正部1は、外気温度と、前倒し運転の対象となっている部屋の目標温度Tmと、の温度差に応じて、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、外気温度及び目標温度Tmを考慮して許容範囲ΔTmを決定することで、快適性を向上させつつも、過剰な前倒し運転を回避させることができる。
 また、本実施の形態1において、運転時間補正部1は、指定時刻までに、宅内から前倒し運転の対象となっている部屋へ人が移動すると推定した場合、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、指定時刻に家屋91のある室内空間171から前倒し運転の対象となっている室内空間171へ人が入室すると想定すれば、使用者が入室時には前倒し運転が実施されつつ、許容範囲ΔTmで空調装置101が稼働していることとなる。よって、空調装置制御モジュール201は、宅内のある部屋から宅内の前倒し運転の対象となる部屋へ人が入室する場合であっても、快適性を維持させつつも、過剰な前倒し運転を回避させて余分な消費電力を削減させることができると共に、使用者の入退室といったような行動を制御に反映させることができる。よって、空調装置制御モジュール201は、消費電力の削減と、快適性向上と、のバランスをとることができる。
 また、本実施の形態1において、運転時間補正部1は、指定時刻の前までに人が在室していた部屋の室内温度Taと、前倒し運転の対象となっている部屋の室内温度Taと、の温度差に応じて、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、人が体感する室内温度Ta同士の温度差で許容範囲ΔTmを決定することで、制御対象項目としての目標温度Tmを隠蔽化させた状態で制御を行いつつ、余分な消費電力を削減させることができる。
 また、本実施の形態1において、運転時間補正部1は、指定時刻の前までに人が在室していた部屋の室内温度Taと、前倒し運転の対象となっている部屋の目標温度Tmと、の温度差に応じて、許容範囲ΔTmを決定する。
 上記構成で、空調装置制御モジュール201は、制御対象項目としての前倒し運転の対象となっている部屋の室内温度Taを隠蔽化させた状態で制御を行いつつ、余分な消費電力を削減させることができる。
 また、本実施の形態1において、運転時間補正部1は、目標温度Tmを整数値に設定する。
 上記構成で、空調装置制御モジュール201は、浮動小数点演算等の複雑な演算をすることなく、前倒し運転の制御を実施することができる。また、空調装置101のメーカーを問わずに汎用的に前倒し運転の制御を実施することができる。
 以上の説明から、空調装置制御モジュール201は、特に顕著に、快適性を維持させつつ、余分な消費電力を削減させることができる。
実施の形態2.
 実施の形態1との相違点は、室内機113に赤外線センサ143が設けられている点にある。
(実施の形態2の構成)
(赤外線センサ143の利用)
 図14は、本発明の実施の形態2における空調装置101の一例を示す図である。図14に示すように、室内機113に赤外線センサ143が設けられ、室内空間171に人感センサ144が設けられている。赤外線センサ143は、放射温度等のような物体の放射エネルギーを検知する。よって、赤外線センサ143は、室内空間171に存在する躯体の温度を検知することができる。したがって、赤外線センサ143の検知結果を空調装置101の制御に用いる各種パラメータのうちの一つである室内温度Taに利用することができる。
 人感センサ144は、赤外線センサ143と同様に、放射温度等のような物体の放射エネルギーを検知することで制御対象空間である室内空間171における人の存否を検知する。例えば、人感センサ144は、チューニング又はその構成に応じて、赤外線を検知したり、超音波を検知したり、可視光を検知したりできるようにすればよい。よって、人感センサ144の検知結果を空調装置101の制御に用いる各種パラメータのうちの一つに利用することができる。
(実施の形態2の効果)
 以上の説明から、空調装置制御モジュール201は、赤外線センサ143で躯体温度を検知することで、躯体温度が目標温度Tmとなるようにタイマー制御を行うことができる。よって、空調装置制御モジュール201は、さらに快適性の高い運転を実現させることができる。
 具体的には、タイマー制御実施時には、外部からの熱侵入に起因する熱負荷と比べ、室内空間171に設けられている室内機113の躯体を目標温度Tmまで冷却又は加熱するのに要する熱の方が大きいと想定される。よって、空調装置制御モジュール201が、省エネ制御を適切に実施させるためには、空調装置制御モジュール201は、躯体の熱量を処理できているか否かを判定することが重要となる。
 例えば、空調装置制御モジュール201は室内温度Taを判定基準とした場合を想定する。この場合、室内温度Taは、躯体と比べて熱容量が少ないため、空調装置101の応答結果が早く表れる。よって、躯体がまだ高温又は低温であったとしても、空調装置制御モジュール201は、室内空間171が十分に冷却又は加熱されたと判定する虞がある。そこで、空調装置制御モジュール201は、赤外線センサ143で躯体温度を検知させ、躯体温度から演算される温度を室内温度Taに設定し、許容範囲ΔTmを決定すれば、上記で説明した状況を回避することができるため、さらに快適性の高い運転を実現させることができる。
 以上、本実施の形態2において、室内機113には、室内機113の躯体温度を検知する赤外線センサ143が設けられ、運転時間補正部1は、躯体温度から演算される温度を室内温度Taに設定する。
 上記構成で、空調装置制御モジュール201は、赤外線センサ143で躯体温度を検知することで、躯体温度が目標温度Tmとなるようにタイマー制御を行うことができる。よって、空調装置制御モジュール201は、さらに快適性の高い運転を実現させることができる。
実施の形態3.
 実施の形態1及び実施の形態2との相違点は、目標温度Tmに制限をかける点にある。
(実施の形態3の構成)
(目標温度制限)
 図15は、本発明の実施の形態3における空調装置制御モジュール201の機能構成の一例を示す図である。図15においては、図9で示した空調装置制御モジュール201と比べ、例えば、第1データ補正部247が追加されている点が相違する。具体的には、第1データ補正部247は、目標温度テーブル268、第3マッピングテーブル269、及び制限目標温度テーブル270を備え、第3マッピングテーブル269には、目標温度テーブル268と、制限目標温度テーブル270とを紐付ける写像関係が設定されている。例えば、タイマー制御部213は、目標温度制限指令が供給された場合、第1データ補正部247を用いて目標温度Tmに制限をかけ、制限目標温度データとして第3演算部243に供給する。
 例えば、タイマー制御部213に目標温度制限指令が供給されたと想定する。この場合、タイマー制御時に、目標温度Tmの上限又は下限をリモートコントローラー115の操作可能範囲と比べて狭く限定することができる。例えば、リモートコントローラー115で冷房の目標温度Tmの範囲が16℃~30℃で選択できるとしても、タイマー制御の目標温度Tmは25℃~28℃に限定される。また、例えば、リモートコントローラー115で暖房の目標温度Tmの範囲が16℃~30℃で選択できるとしても、タイマー制御の目標温度Tmは19℃~22℃に限定される。
(実施の形態3の効果)
 以上の説明から、空調装置制御モジュール201は、目標温度Tmの範囲を限定することで、冷房での冷やしすぎ又は暖房での暖めすぎを防ぐことで、暑さ又は寒さ等で健康を損ねる事態を回避することができつつ、省エネ性を向上させることができる。
 具体的には、睡眠中の人又は小さい子供等のようにリモートコントローラー115を操作できない状態の人が室内空間171に存在する場合、タイマー制御が自動的に働くと、暑さ又は寒さ等で健康を損ねる虞がある。そこで、空調装置制御モジュール201は、目標温度Tmの範囲を限定することで、限定された目標温度Tmに基づいて設定された許容範囲ΔTmで制御を行うことができる。よって、空調装置制御モジュール201は、過剰な調和空気を室内空間171に供給することなく、省エネ性を向上させることができる。
 以上、本実施の形態3において、目標温度Tmを補正する第1データ補正部247をさらに備え、第1データ補正部247は、目標温度Tmが設定された目標温度テーブル268と、目標温度Tmの制限目標温度が設定された制限目標温度テーブル270と、目標温度テーブル268に設定された目標温度Tmを、制限目標温度テーブル270に設定された制限目標温度に、紐付けする第3マッピングテーブル269と、を備え、目標温度Tmの制限指令が供給された場合、目標温度テーブル268、制限目標温度テーブル270、及び第3マッピングテーブル269に基づいて、目標温度Tmを制限目標温度に変換し、運転時間補正部1に供給する。
 上記構成で、空調装置制御モジュール201は、室内空間171を過剰に冷却又は加熱する状態を回避することができつつも、省エネ性を向上させることができる。
実施の形態4.
 実施の形態1~実施の形態3との相違点は、使用電流に制限がかかる点にある。
(実施の形態4の構成)
(電流制限)
 図16は、本発明の実施の形態4における空調装置制御モジュール201の機能構成の一例を示す図である。 図16において、図9で示した空調装置制御モジュール201と比べ、例えば、第2データ補正部248が追加され、タイマー制御部213に電流制限指令が供給される点が相違する。第2データ補正部248は、使用電流範囲テーブル271、第4マッピングテーブル272、及び制限使用電流範囲テーブル273を備え、第4マッピングテーブル272には、使用電流範囲テーブル271と、制限使用電流範囲テーブル273とを紐付ける写像関係が設定されている。タイマー制御部213は、電流制限指令が供給された場合、第2データ補正部248を用いることで、使用電流に制限をかける。
 例えば、タイマー制御部213に電流制限指令が供給されたと想定する。この場合、省エネ制御をする際には電流制限値が何段階かに分けて設定されてもよい。また、例えば、空調装置101又は後述するHEMSコントローラー323に節電モードの設定がされ、タイマー制御部213に電流制限指令が供給されている場合、電流制限値が設定されてもよい。
 例えば、空調装置101の消費電力の内訳は、圧縮機121が約80%~90%、室内送風機133が約5%~10%、及び室外送風機131が約5%~10%を占める。よって、空調装置101の電流を制限する場合、空調装置制御モジュール201は、圧縮機121の回転数を下げることで運転容量を減少させたり、室内送風機133又は室外送風機131の回転数を下げることで風量を減少させたりする必要がある。
 電流を制限するには、電流制限値は、例えば、電流制限のない場合を100%とした場合、電流制限値70%と入った相対値(%)で設定されてもよく、具体的に電流制限値を3A(アンペア)等のような絶対値(A)で設定されてもよい。
 例えば、空調装置101又は後述するHEMSコントローラー323に節電モードの設定がされていると想定する。この場合、例えば、電流制限値が70%であれば、空調装置制御モジュール201は、圧縮機121の上限回転数を最大回転数の70%に制限したり、室内送風機133又は室外送風機131の回転数を最大回転数の70%に制限したりすればよい。
 また、例えば、電流制限値が3Aであれば、電流制限がないときの運転電流が5Aであれば、空調装置制御モジュール201は、圧縮機121の上限回転数を最大回転数の3/5に制限したり、室内送風機133又は室外送風機131の回転数を最大回転数の3/5に制限したりすればよい。なお、一般的には、電流制限がないときの運転電流は機種ごとに明示されている。
 以上、上記の説明では、電流制限がない基準(100%)が圧縮機回転数の最大値又は送風機回転数の最大値とした場合について説明したが、特にこれらに限定されない。例えば、通常制御で通常運転時の圧縮機回転数又は送風機回転数を基準として制限が設定されてもよい。例えば、電流制限がない場合の通常制御では、圧縮機回転数が50rps(rotation per second)の予定であれば、電流制限値70%の場合、35rpsとすればよい。また、電流制限がない通常制御において、室内送風機133が強風設定で回転数1000rpm(rotation per minute)の予定であれば、電流制限値70%の場合、700rpmとすればよい。
(実施の形態4の効果)
 以上の説明から、空調装置制御モジュール201は、電流制限値を設定するため、使用者の省エネ志向を制御に反映させることができるため、使用者の狙い通りに消費電力を抑制できることで省エネ性を向上させつつも、快適性を維持させることができる。
 例えば、空調装置制御モジュール201は、電流に制限がかけられた分だけ、運転開始時刻を早めることで、指定時刻に室内温度Taを許容範囲ΔTmに制御させればよい。この結果、空調装置制御モジュール201は、省エネ性を向上させつつも、指定時刻には許容範囲ΔTmに室内温度Taを制御できるため、快適性を維持させることができる。
 以上、本実施の形態4において、複数の節電レベルのうちの少なくとも1つと紐付けされる制限使用電流データを決定する第2データ補正部248をさらに備え、第2データ補正部248は、使用電流範囲が設定された使用電流範囲テーブル271と、使用電流範囲の制限使用電流範囲が設定された制限使用電流範囲テーブル273と、使用電流範囲テーブル271に設定された使用電流範囲を、制限使用電流範囲テーブル273に設定された制限使用電流範囲に、紐付けする第4マッピングテーブル272と、を備え、使用電流範囲の制限指令が供給された場合、使用電流範囲テーブル271、制限使用電流範囲テーブル273、及び第4マッピングテーブル272に基づいて、使用電流範囲を制限使用電流範囲に変換し、複数の節電レベルのうちの少なくとも1つと紐付けされる。
 上記構成で、空調装置制御モジュール201は、使用する電流に制限をかけつつも、許容範囲ΔTmで前倒し運転を実施させるため、省エネ性を向上させつつも、快適性を維持させることができる。
実施の形態5.
 実施の形態1~実施の形態4との相違点は、自動運転の通達がなされる点にある。
(実施の形態5の構成)
(自動運転の通達)
 図17は、本発明の実施の形態5における空調装置制御モジュール201の機能構成の一例を示す図である。図17においては、図9で示した空調装置制御モジュール201と比べ、タイマー制御部213の第4演算部244から外部に許可判定要求又は運転開始通知が供給される点が相違する。
 例えば、タイマー制御の許可判定要求が使用者に送信されたり、又はタイマー制御の運転開始通知が使用者に送信されたりした場合を想定する。例えば、空調装置制御モジュール201は、後述する公衆回線327を介して、使用者が所有する携帯電話、スマートフォン、パソコン、又はカーナビ等の通信装置328(後述する)に許可判定要求を送って運転開始の許可ボタンを押すように要求したり、メール等を送って運転開始の通達を行う。
(実施の形態5の効果)
 以上の説明から、空調装置制御モジュール201は、冷凍サイクルの運転前に使用者に確認する動作を行うことで、使用者に空調装置101の空調情報を確認させることができるため、空調装置101の安全性を向上させることができる。また、使用者の帰宅時間が変わったと想定された場合であっても、空調装置制御モジュール201は、冷凍サイクルの運転前に使用者に確認する動作を行うため、不要な運転を回避することもできる。よって、空調装置制御モジュール201は、電力を無駄に消費することを回避することがっできるため、省エネ性を向上させることができる。
 以上、本実施の形態5において、外部に運転開始通知又は許可判定要求を供給する第4演算部244をさらに備え、第4演算部244は、次回の運転開始時刻に到達する前に、運転開始通知又は許可判定要求を外部に供給する。
 上記構成で、空調装置制御モジュール201は、冷凍サイクルの運転前に使用者に確認する動作を行うため、空調装置101の安全性を向上させると共に、不要な運転を回避して電力を無駄に消費することを回避することで、省エネ性を向上させることができる。
実施の形態6.
 実施の形態1~実施の形態5との相違点は、使用者が帰宅しなかった場合の動作が定義されている点にある。
(実施の形態6の構成)
(使用者が帰宅しなかった場合)
 図18は、本発明の実施の形態6における空調装置制御モジュール201の機能構成の一例を示す図である。図18に示すように、第5演算部245には、存否判定データとして、例えば、リモートコントローラー操作履歴データ、各種機器の使用状況データ、宅内消費電力データ、人感センサ検知データ、室内ドア開閉状況データ、通信状況データ、及び各種機器の位置情報データの少なくとも1つが供給される。
 次に、上記の構成を具体的に説明する。タイマー制御をする場合に、人の存否判定結果に応じて、制御内容を変更する一例について図18を用いて説明する。図18においては、図9で示した空調装置制御モジュール201と比べ、タイマー制御部213の第5演算部245に、人の存否に関するデータである存否判定データが供給されたり、タイマー制御部213の第5演算部245から冷凍サイクル制御部211を介して空調装置101に空調停止命令が供給されたり、目標温度変更指令が供給されたりする点が相違する。
 図18に示すように、例えば、タイマー制御を実行中に、存否判定データを受信した場合を想定する。例えば、タイマー制御を運転開始後、予め設定された時間が経過しても使用者の在室、すなわち、使用者の帰宅が検知されなかった場合、空調装置制御モジュール201は、目標温度Tmを変更したり、空調装置101を停止させたりする。
 ここで、使用者の在室の検知には、上記で説明した赤外線センサ143又は人感センサ144の検知結果を用いればよい。また、使用者の在室の検知には、リモートコントローラー115の入力操作が利用されてもよい。また、使用者の在室の検知には、上記で説明したように、各種電気機器の操作履歴を後述するHEMSコントローラー323で収集させ、その収集結果に基づいて在室情報を求めてもよい。また、使用者の在室の検知には、消費電力、積算消費電力量、室内ドア(図示省略)の開閉情報、使用者の位置情報、又はインターホン(図示省略)に設けられたカメラの撮像結果等が用いられてもよい。
 また、目標温度Tmが変更される場合、特定の温度で固定に決めてもよい。また、目標温度Tmが変更される場合、本来の目標温度Tmとの相対値、例えば、冷房であれば目標温度Tmと比べて2℃高い値に設定し、暖房であれば目標温度Tmと比べて2℃低い値に設定してもよい。
(実施の形態6の効果)
 以上の説明から、空調装置制御モジュール201は、タイマー制御の運転を開始した後、予め設定された時間が経過しても使用者の在室、すなわち、使用者の帰宅が検知されなかった場合、空調装置101を停止したり、空調装置101の目標温度Tmを変更したりする。この結果、使用者が急な用事で帰宅時間が予定と比べて遅れた場合であっても、空調装置制御モジュール201は、使用者の不在時に無駄な運転を回避させることができるため、空調装置101の消費電力量を削減させることができる。
 以上、本実施の形態6において、人の存否判定結果に応じて、空調停止指令又は目標温度Tmの変更指令を供給する第5演算部245をさらに備え、第5演算部245は、前倒し運転の実施中であって、指定時刻までに人の存在を検知しない場合、空調停止指令又は目標温度Tmの変更指令を供給する。
 上記構成で、空調装置制御モジュール201は、使用者の不在時に空調停止指令又は目標温度Tmの変更指令を供給することで、使用者の不在時に無駄な運転を回避させることが
できるため、空調装置101の消費電力量を削減させることができる。
実施の形態7.
 実施の形態1~実施の形態6との相違点は、HEMS2を利用して室内機113が制御される点にある。
(実施の形態7の構成)
 図19は、本発明の実施の形態7におけるHEMS2の概略構成の一例を示す図である。HEMS2の情報を用いて空調装置制御モジュール201の制御を行うことで、快適性と省エネ性のバランスを自動調整し、使用者の利便性を向上させる。まず、HEMS2について説明する。
(HEMS2の構成)
 図19に示すように、HEMS2は、図8に示す家屋91に、空調装置101の室内機113、端末329、IHクッキングヒーター331、レンジグリル333、及び照明機器335等の家電機器である電気機器等の各種機器が設けられている。また、HEMS2は、図8に示す家屋91の屋外には、蓄電池341を搭載した電気自動車311、パワーコンディショナー313、太陽電池アレイ315、分電盤319、及び電力計測器321等の電気機器等の各種機器が設けられている。各電気機器は、電源線351で接続されている。また、電気機器のうち、家電機器は、電力会社317から供給される電力、太陽電池アレイ315から供給される電力、又は電気自動車311に搭載された蓄電池341から供給される電力で駆動し、電力計測器321で消費電力が測定される。
 電気機器のうち、家電機器は、HEMSコントローラー323と通信線353で接続されているため、HEMSコントローラー323は、家電機器の運転情報を取得したり、家電機器へ制御指令を送信することができる。例えば、HEMSコントローラー323は、空調装置101の運転指示、空調装置101の停止指示、空調装置101の冷房、暖房、送風、及び除湿等の運転モードの変更指示、又は空調装置101の目標温度Tm、許容範囲ΔTm、風量、及び風向き、節電レベルの変更指示のようなリモートコントローラー115の操作で得られる指示を空調装置101に送ることができる。また、例えば、HEMSコントローラー323は、空調装置101を制御する空調装置制御モジュール201と各種信号を送受信する。
 また、HEMSコントローラー323は、パワーコンディショナー313及び電力計測器321と通信線353で接続されているため、パワーコンディショナー313及び電力計測器321の電力情報を取得することができる。また、HEMSコントローラー323は、通信機325と接続され、通信機325が公衆回線327と接続されているため、外部と各種データの送受信をすることができる。例えば、通信装置328が、公衆回線327を介して、HEMSコントローラー323と通信を行うことができる。通信装置328は、使用者が操作する機器であって、例えば、携帯電話、スマートフォン、タブレット、パソコン、又はカーナビ等である。
 HEMS2が構成されているシステム内での各種通信は、有線であっても無線であってもよく、通信形態は特に限定されない。また、上記で説明したHEMS2の構成は一例を示し、特にこれに限定されない。
(在室情報)
 第1演算部241が、HEMS情報を用いて在室情報を求める例について記す。在室情報は、例えば、使用者が在室を始める時刻、使用者が在室を続ける時間幅、及び使用者が不在となる時刻を含む。在室情報が使用者に設定される場合、例えば、HEMSコントローラー323、通信装置328、又は端末329が利用される。
 HEMS情報からの推定値に基づいて在室情報を得る場合、例えば、端末329、IHクッキングヒーター331、レンジグリル333、照明機器335、又はテレビジョン受像機(図示省略)の使用情報、すなわち、各種電気機器の操作履歴をHEMSコントローラー323で収集させ、その収集結果に基づいて在室情報を求めてもよい。
 電力計測器321で計測した消費電力量を分析することで在室情報を求めてもよい。また、使用者が通信装置328を保有し、通信装置328に現在位置を検出する機能が搭載されていると想定した場合、使用者の位置情報を利用して在室情報を求めてもよい。また、インターホン(図示省略)にカメラが設けられている場合には、そのカメラの撮像結果を用いることで使用者の帰宅が検知されてもよい。なお、使用者の位置情報は、例えば、Wi-Fi(登録商標)(Wireless Fidelity)接続有無又はGPS(Global Positioning System)の位置情報が用いられればよい。
(在室情報に関する効果)
 HEMS情報からの推定値に基づいて在室情報を得る動作は、在室情報が日々異なる場合に有効である。在室開始時刻が遅い日は起動時刻を遅らせて消費電力量を削減でき、在室開始時刻が早い日は起動時刻を早めて快適性を向上できる。
(移動情報)
 HEMS2の在室情報を用いれば、使用者が外から帰宅したのか、部屋から部屋へ移動したのか推定できる。これにより、タイマー制御の許容範囲ΔTmは、使用者が外から部屋に移動した場合と、部屋から部屋へ移動した場合によって変更する。例えば、使用者が外から帰宅した場合、外気温度に比べて室内温度Taが目標温度Tmに近づいていれば快適に感じるため、高い精度は求めらず、許容範囲ΔTmを大きくする。使用者が空調された部屋からタイマー制御の部屋へ移動する場合は、わずかな温度差でも不快に感じるため、高い精度が求められ、許容範囲ΔTmを小さくする。又は、タイマー制御対象の室内温度Taと、使用者がいる場所の温度を比較して、温度差が大きいほど許容範囲ΔTmを大きく設定してもよい。
 例えば、使用者が外にいる場合は外気温度とタイマー制御対象の室内温度Taを比較し、使用者が室内にいる場合はその部屋の室内温度Taとタイマー制御対象の室内温度Taを比較して、許容範囲ΔTmを決定する。外気温度は、室外機111が備える室外温度センサで検知したり、HEMS2が入手した気象情報から外気温度を読み込んだり、汎用温度センサーを宅外に設置して検知する。室内温度Taは、各部屋に設置される空調装置101で室内温度Taを検知したり、汎用温度センサーを各部屋に設置して検知する。
(移動情報に関する効果)
 使用者が移動に伴って感じる温度差を、タイマー制御の許容範囲ΔTmに反映することで、省エネ性と快適性のバランスを自動調整することができ、使用者の利便性が向上する。
(遠隔操作)
 遠隔から通信装置328を用いて、空調装置101のタイマー制御を実行する一例について説明する。使用者は、携帯電話、スマートフォン、タブレット、パソコン、又はカーナビ等の通信装置328を所有していると想定する。また、家屋91の内側である宅内又は家屋91の外側である宅外の何れかに存在する通信装置328が、公衆回線327を介して各種データをHEMSコントローラー323へ向けて送信したと想定する。
 この場合、通信機325は、通信装置328から送信された各種データを受信し、受信した各種データをHEMSコントローラー323に供給する。また、HEMSコントローラー323は、必要に応じて、各種データに対する返信をする場合、通信機325を介して、通信装置328に返信がなされる。
 よって、HEMSコントローラー323を使用者が直接操作する場合と同様に、遠隔からHEMSコントローラー323が保有する各種情報を取得したり、遠隔から各種操作指令をすることができる。したがって、通信装置328から家電機器に操作指令を送信したり、家電機器の運転情報を通信装置328で受信したり、パワーコンディショナー313又は電力計測器321の電力情報を通信装置328で受信したりすることができる。
 例えば、通信装置328がスマートフォンであると想定する。この場合、通信装置328の画面から空調装置101の運転指示、空調装置101の停止指示を行うことができる。また、通信装置328の画面から空調装置101の冷房運転、暖房運転、送風運転、又は除湿運転というような運転モードの選択をすることができる。また、通信装置328の画面から空調装置101の目標温度Tm、許容範囲ΔTm、風量、又は風向、節電レベルの変更というようなリモートコントローラー115の操作のような指令を送ることができる。
 また、通信装置328の画面から、運転若しくは停止、冷房、暖房、送風、及び除湿というような運転モード、並びに目標温度Tm、許容範囲ΔTm、風量、若しくは風向き、節電レベル等の空調装置101の空調情報を確認できる。また、通信装置328の画面から、空調装置101で計測している吸込空気温度(室内温度Ta)、室内湿度、又は外気温度というような空調情報を表示して確認することができる。例えば、空調装置101の状態を確認した結果、既に空調装置101が動いていた場合、他の家族等が使用していると想定し、遠隔からの操作をやめる判断をしたり、空調情報を確認して室内温度Taが30℃を超えていたら遠隔から冷房をつけるといった判断をすることができる。
 上記で説明したHEMS2の構成を前提とすれば、通信装置328から直ちに空調装置101を起動したり、通信装置328からタイマーの指定時刻(在室開始時刻、帰宅時刻)を通信装置328から指定したり、通信装置328から予冷予暖開始時刻を指令したりすることができる。予冷予暖開始後に、タイマーの指定時刻(在室開始時刻、帰宅時刻)が変更された場合は、第5演算部245の学習情報変更を回避するか、又は許容範囲ΔTmを変更する。
(遠隔操作に関する効果)
 外出先から急遽タイマーの指定時刻を早めた場合、予冷予暖時間が予定よりも短くなり、指定時刻に室温が許容範囲ΔTmに収まらないことがある。この場合は第5演算部245の学習情報変更を回避することで、次以降のタイマー制御が適正に行われ、省エネと快適性を維持できる。又は、外出先から急遽タイマーの指定時刻を早めた場合は許容範囲ΔTmを広げることで適正に学習でき、次以降のタイマー制御が適正に行われ、省エネと快適性を維持できる。
 以上の説明から、空調装置制御モジュール201は、さまざまなデータに基づいて、人の存否判定をすることができるため、正確に人の存否判定を行うことができる。よって、空調装置制御モジュール201は、正確な人の存否判定結果に応じて、空調装置101を制御するため、電力を無駄に消費することを回避することができ、省エネ性を向上させることができる。
 以上、本実施の形態7において、宅内には各種機器が設けられ、第5演算部245は、人の存否判定結果として、空調装置101のリモートコントローラー操作履歴、各種機器の使用状況データ、宅内消費電力データ、人の存否を検知する人感センサ144の検知データ、室内ドア開閉状況データ、通信状況データ、及び各種機器の位置情報データの少なくとも1つを用いる。
 上記構成で、空調装置制御モジュール201は、正確な人の存否判定結果に応じて、空調装置101を制御することで、電力を無駄に消費することを回避することができるため、省エネ性を向上させることができる。
実施の形態8.
 実施の形態1~実施の形態7との相違点は、空調装置制御モジュール201の実装形態について説明する点にある。
(実施の形態8の構成)
 図20は、本発明の実施の形態8における記録媒体401を介した各種装置等への各種モジュールの実装例を示す図である。図20に示すように、記録媒体401_1には、空調装置制御モジュール201が記憶され、空調装置101に記録媒体401_1がマウントされ、空調装置制御モジュール201が空調装置101にインストールされることで、上記で説明した各種動作を実行する各種機能が構成される。
 記録媒体401_2には、HEMS制御モジュール510が記憶され、HEMSコントローラー323に記録媒体401_2がマウントされ、HEMS制御モジュール510がHEMSコントローラー323にインストールされることで、上記で説明した各種動作を実行する各種機能が構成される。
 記録媒体401_3には、仮想HEMSモジュール551及び仮想リモートコントローラーモジュール552が記憶され、通信装置328に記録媒体401_3がマウントされ、仮想HEMSモジュール551及び仮想リモートコントローラーモジュール552が通信装置328の記憶部532_1にインストールされることで、上記で説明した各種動作を実行する各種機能が構成される。
 なお、記録媒体401_1~401_3のそれぞれを特に区別しない場合、記録媒体401と称する。また、上記で説明した記憶部532_1及び後述する記憶部532_2のそれぞれを特に区別しない場合、記憶部532と称する。
 サーバー装置411がディスク装置等の記憶部532_2を備え、空調装置制御モジュール201、HEMS制御モジュール510、仮想HEMSモジュール551及び仮想リモートコントローラーモジュール552がディスク装置等に格納されていると想定する。この場合、例えば、サーバー装置411は、搬送波に空調装置制御モジュール201、HEMS制御モジュール510、仮想HEMSモジュール551及び仮想リモートコントローラーモジュール552を重畳させて、空調装置101、HEMSコントローラー323、及び通信装置328にアップロードしてもよい。
 空調装置101、HEMSコントローラー323、及び通信装置328は、サーバー装置411からアップロードされる空調装置制御モジュール201及びHEMS制御モジュール510をダウンロードし、インストールすることで、上記で説明した各種動作を実行する各種機能が構成される。
 また、記憶部532の論理的な記憶階層に着目すると、各種モジュールをインストール後には、OS(Operating System)421、API(Application Interface)422、空調装置制御モジュール201,HEMS制御モジュール510、仮想HEMSモジュール551、仮想リモートコントローラーモジュール552が構成されている。つまり、上記で説明した各種機能を、OS421が分担して実現したり、OS421と、各種アプリケーションとの協働で実現する場合等には、上記で説明したように、OS421以外の部分のみを媒体に格納して配布し、また、ダウンロードしてもよい。
 よって、記録媒体401又はサーバー装置411から各種モジュールをインストールされる。つまり、制御部の各種機能が記録媒体401に記憶された場合、記録媒体401を介して、制御部の各種機能が実装され、制御部の各種機能が通信媒体上で転送される場合、通信媒体を介して、制御部の各種機能が実装された。よって、記録媒体401又はサーバー装置411から各種モジュールをインストールされる。
 なお、記録媒体401は、磁気ディスク(フレキシブルディスクを含む)、CD-ROM(Compact Disk Read-Only Memory)及びDVD(Digital Versatile Disk)を含む光ディスク、MO(Magneto-Optical Disk)等の光磁気ディスク、半導体メモリ等から構成されるリムーバブルメディア、又はハードディスク等のようなコンピュータ読み取り可能な記録媒体である。
(実施の形態8の効果)
 以上の説明から、運転時間補正部1は、記録媒体401_1又は通信媒体、例えば、公衆回線327を介して、各種機器、例えば、空調装置101に構成される。よって、運転時間補正部1は、記録媒体401_1又は通信媒体を介して、通信可能な機器に構成されることができる。
 以上、本実施の形態8において、運転時間補正部1は、記録媒体401_1又は通信媒体を介して、各種機器に構成される。
 上記構成で、空調装置制御モジュール201は、記録媒体401_1又は通信媒体を介して、通信可能な機器に構成されることができる。
 1 運転時間補正部、2 HEMS、11 温度差演算部、13 代表時間補正部、15 時間関連演算部、21 許容範囲演算部、23 室内温度関連処理部、25 代表時間調整部、27 運転時間演算部、29 運転開始時刻演算部、31 指定時刻対応室内温度演算部、33 調整比率演算部、51、55、61、65、71、75 第1状態、52、56、62、66、72、76 代表時間補正処理、53、57、63、67、73、77 運転時間演算処理、54、58、64、68、74、78 第2状態、91 家屋、101 空調装置、111 室外機、113 室内機、115 リモートコントローラー、117 冷媒配管、121 圧縮機、122 四方弁、123 室外熱交換器、124 膨張弁、125 室内熱交換器、131 室外送風機、133 室内送風機、141 室内温度センサ、143 赤外線センサ、144 人感センサ、151、153 計測制御装置、163、353 通信線、171 室内空間、172 室外空間、201 空調装置制御モジュール、211 冷凍サイクル制御部、213 タイマー制御部、221 比例制御部、222 積分制御部、223 微分制御部、241 第1演算部、242 第2演算部、243 第3演算部、244 第4演算部、245 第5演算部、246、532、532_1、532_2 記憶部、247 第1データ補正部、248 第2データ補正部、261 節電レベルデータテーブル、262 第1マッピングテーブル、263 許容範囲幅データテーブル、264 温度差データテーブル、265 第2マッピングテーブル、266 学習情報データ、267 代表時間初期値データ、268 目標温度テーブル、269 第3マッピングテーブル、270 制限目標温度テーブル、271 使用電流範囲テーブル、272 第4マッピングテーブル、273 制限使用電流範囲テーブル、311 電気自動車、313 パワーコンディショナー、315 太陽電池アレイ、317 電力会社、319 分電盤、321 電力計測器、323 HEMSコントローラー、325 通信機、327 公衆回線、328 通信装置、329 端末、331 IHクッキングヒーター、333 レンジグリル、335 照明機器、341 蓄電池、351 電源線、401、401_1~401_3 記録媒体、411 サーバー装置、421 OS、422 API、510 HEMS制御モジュール、551 仮想HEMSモジュール、552 仮想リモートコントローラーモジュール。

Claims (22)

  1.  指定時刻の前に空調装置を運転させ、部屋の温度を調節する前倒し運転を行わせる空調装置の制御装置であって、
     前記空調装置の運転時間を補正する運転時間補正部を備え、
     前記運転時間補正部は、
     前記部屋の温度と、目標温度と、の差である第1温度差に応じて、前記空調装置の前倒し運転の運転時間を算出し、
     前記空調装置が冷房運転の場合、前記指定時刻における、前記部屋の温度と、前記目標温度と比べて所定温度高い第1温度と、の差である第2温度差に基づいて、次回の運転時間を補正し、
     前記空調装置が暖房運転の場合、前記指定時刻における、前記部屋の温度と、前記目標温度と比べて所定温度低い第2温度と、の差である第3温度差に基づいて、次回の運転時間を補正する
    ことを特徴とする空調装置の制御装置。
  2.  前記運転時間補正部は、
     前記空調装置が空調する室内の室内温度が、単位温度変化するのに要する運転時間である代表時間を補正する代表時間補正部と、
     前記代表時間に基づいて、前記空調装置の運転開始時刻を演算する時間関連演算部と、
    を備え、
     前記時間関連演算部は、
     過去の前倒し運転停止後から次回の前倒し運転前までの間の任意の室内温度と次回の前倒し運転の前記指定時刻における指定温度との温度差と、次回の前記代表時間と、に基づいて求めた次回の前記運転開始時刻を前記空調装置に供給する
    ことを特徴とする請求項1に記載の空調装置の制御装置。
  3.  前記運転時間補正部は、
     過去の前倒し運転の前記指定時刻に対応する室内温度と、次回の前倒し運転の前記指定時刻における指定温度の許容範囲と、に基づいて調整比率を求め、
     前記調整比率と、過去の運転時間と、に基づいて、運転時間を求める
    ことを特徴とする請求項1又は2に記載の空調装置の制御装置。
  4.  前記運転時間補正部は、
     前記空調装置の暖房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が次回の前倒し運転の前記指定時刻における指定温度の許容範囲に比べて低かった場合、又は、前記空調装置の冷房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が次回の前倒し運転の前記指定時刻における指定温度の許容範囲に比べて高かった場合、次回の運転開始時刻を早くする
    ことを特徴とする請求項3に記載の空調装置の制御装置。
  5.  前記運転時間補正部は、
     前記空調装置の暖房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が次回の前倒し運転の前記指定時刻における指定温度の許容範囲に比べて高かった場合、又は、前記空調装置の冷房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が次回の前倒し運転の前記指定時刻における指定温度の許容範囲に比べて低かった場合、次回の運転開始時刻を遅くする
    ことを特徴とする請求項3に記載の空調装置の制御装置。
  6.  前記運転時間補正部は、
     前記空調装置の暖房運転の履歴を参照する場合、次回の前倒し運転の前記指定時刻における指定温度と、前記許容範囲のうちの最小値と、の比較結果に応じて、次回の運転開始時刻を補正し、
     前記空調装置の冷房運転の履歴を参照する場合、次回の前倒し運転の前記指定時刻における指定温度と、前記許容範囲のうちの最大値と、の比較結果に応じて、次回の運転開始時刻を補正する
    ことを特徴とする請求項3に記載の空調装置の制御装置。
  7.  前記運転時間補正部は、
     前記空調装置の暖房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が前記許容範囲のうちの最小値と比べて高かった場合、又は、前記空調装置の冷房運転の履歴を参照し、次回の前倒し運転の前記指定時刻における指定温度が前記許容範囲のうちの最大値と比べて低かった場合、次回の運転開始時刻を遅くする
    ことを特徴とする請求項4~6の何れか一項に記載の空調装置の制御装置。
  8.  消費電力の異なる複数の節電レベルが設けられ、
     前記複数の節電レベルと、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する許容範囲幅と、が紐付けされ、
     前記運転時間補正部は、
     前記複数の節電レベルのうち、特定の節電レベルが選択された場合、該特定の節電レベルに応じて、前記許容範囲幅を決定し、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項4~7の何れか一項に記載の空調装置の制御装置。
  9.  前記運転時間補正部は、
     前記指定時刻までに、宅外から前倒し運転の対象となっている前記部屋へ人が移動すると推定した場合、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項4~8の何れか一項に記載の空調装置の制御装置。
  10.  前記運転時間補正部は、
     外気温度と、前倒し運転の対象となっている前記部屋の室内温度と、の温度差に応じて、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項9に記載の空調装置の制御装置。
  11.  前記運転時間補正部は、
     外気温度と、前倒し運転の対象となっている前記部屋の前記目標温度と、の温度差に応じて、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項9に記載の空調装置の制御装置。
  12.  前記運転時間補正部は、
     前記指定時刻までに、宅内から前倒し運転の対象となっている前記部屋へ人が移動すると推定した場合、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項1~8の何れか一項に記載の空調装置の制御装置。
  13.  前記運転時間補正部は、
     前記指定時刻の前までに人が在室していた前記部屋の室内温度と、前倒し運転の対象となっている前記部屋の室内温度と、の温度差に応じて、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項12に記載の空調装置の制御装置。
  14.  前記運転時間補正部は、
     前記指定時刻の前までに人が在室していた前記部屋の室内温度と、前倒し運転の対象となっている前記部屋の前記目標温度と、の温度差に応じて、次回の前倒し運転の前記指定時刻における指定温度の許容範囲を決定する
    ことを特徴とする請求項12に記載の空調装置の制御装置。
  15.  前記運転時間補正部は、
     前記目標温度を整数値に設定する
    ことを特徴とする請求項1~14の何れか一項に記載の空調装置の制御装置。
  16.  前記空調装置は、室内機と、室外機とを備え、
     前記室内機には、当該室内機の躯体温度を検知する躯体温度検知手段が設けられ、
     前記運転時間補正部は、
     前記躯体温度から演算される温度を室内温度に設定する
    ことを特徴とする請求項1~15の何れか一項に記載の空調装置の制御装置。
  17.  前記目標温度を補正する第1データ補正部をさらに備え、
     前記第1データ補正部は、
     前記目標温度が設定された目標温度テーブルと、
     前記目標温度の制限目標温度が設定された制限目標温度テーブルと、
     前記目標温度テーブルに設定された前記目標温度を、前記制限目標温度テーブルに設定された前記制限目標温度に、紐付けするマッピングテーブルと、
    を備え、
     前記目標温度の制限指令が供給された場合、
     前記目標温度テーブル、前記制限目標温度テーブル、及び前記マッピングテーブルに基づいて、前記目標温度を前記制限目標温度に変換し、前記運転時間補正部に供給する
    ことを特徴とする請求項1~16の何れか一項に記載の空調装置の制御装置。
  18.  前記複数の節電レベルのうちの少なくとも1つと紐付けされる制限使用電流データを決定する第2データ補正部をさらに備え、
     前記第2データ補正部は、
     使用電流範囲が設定された使用電流範囲テーブルと、
     前記使用電流範囲の制限使用電流範囲が設定された制限使用電流範囲テーブルと、
     前記使用電流範囲テーブルに設定された前記使用電流範囲を、前記制限使用電流範囲テーブルに設定された前記制限使用電流範囲に、紐付けするマッピングテーブルと、
    を備え、
     前記使用電流範囲の制限指令が供給された場合、
     前記使用電流範囲テーブル、前記制限使用電流範囲テーブル、及び前記マッピングテーブルに基づいて、前記使用電流範囲を前記制限使用電流範囲に変換し、前記複数の節電レベルのうちの少なくとも1つと紐付けされる
    ことを特徴とする請求項8~17の何れか一項に記載の空調装置の制御装置。
  19.  外部に運転開始通知又は許可判定要求を供給する通信関連演算部をさらに備え、
     前記通信関連演算部は、
     次回の運転開始時刻に到達する前に、前記運転開始通知又は前記許可判定要求を外部に供給する
    ことを特徴とする請求項1~18の何れか一項に記載の空調装置の制御装置。
  20.  人の存否判定結果に応じて、空調停止指令又は前記目標温度の変更指令を供給する存否関連演算部をさらに備え、
     前記存否関連演算部は、
     前記前倒し運転の実施中であって、前記指定時刻までに前記人の存在を検知しない場合、前記空調停止指令又は前記目標温度の変更指令を供給する
    ことを特徴とする請求項1~19の何れか一項に記載の空調装置の制御装置。
  21.  宅内には各種機器が設けられ、
     前記存否関連演算部は、
     前記人の存否判定結果として、前記空調装置のリモートコントローラー操作履歴、前記各種機器の使用状況データ、宅内消費電力データ、前記人の存否を検知するセンサの検知データ、室内ドア開閉状況データ、通信状況データ、及び前記各種機器の位置情報データの少なくとも1つを用いる
    ことを特徴とする請求項20に記載の空調装置の制御装置。
  22.  前記運転時間補正部は、
     記録媒体又は通信媒体を介して、各種機器に構成される
    ことを特徴とする請求項1~21の何れか一項に記載の空調装置の制御装置。
PCT/JP2013/081809 2013-11-26 2013-11-26 空調装置の制御装置 WO2015079502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13898338.2A EP3076091B1 (en) 2013-11-26 2013-11-26 Control device for air conditioner
JP2015550240A JP6125039B2 (ja) 2013-11-26 2013-11-26 空調制御装置
PCT/JP2013/081809 WO2015079502A1 (ja) 2013-11-26 2013-11-26 空調装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081809 WO2015079502A1 (ja) 2013-11-26 2013-11-26 空調装置の制御装置

Publications (1)

Publication Number Publication Date
WO2015079502A1 true WO2015079502A1 (ja) 2015-06-04

Family

ID=53198493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081809 WO2015079502A1 (ja) 2013-11-26 2013-11-26 空調装置の制御装置

Country Status (3)

Country Link
EP (1) EP3076091B1 (ja)
JP (1) JP6125039B2 (ja)
WO (1) WO2015079502A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588272A (zh) * 2015-09-29 2016-05-18 海信(广东)空调有限公司 一种空调风机控制方法及装置
CN105650829A (zh) * 2016-03-14 2016-06-08 珠海格力电器股份有限公司 定频空调器的控制方法及装置
JP2017198420A (ja) * 2016-04-28 2017-11-02 シャープ株式会社 電子機器、電子機器制御システムおよび電子機器の制御方法
JP2018506752A (ja) * 2015-12-11 2018-03-08 小米科技有限責任公司Xiaomi Inc. スマートデバイスの制御方法及び装置
JP2020021333A (ja) * 2018-08-02 2020-02-06 ミサワホーム株式会社 指標算出システム
WO2020189544A1 (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件を決定する機械学習装置
CN112945314A (zh) * 2021-05-13 2021-06-11 武汉慧联无限科技有限公司 一种环境温湿度监测方法、装置、终端设备及存储介质
JP2021125044A (ja) * 2020-02-06 2021-08-30 河村電器産業株式会社 宅配ボックスシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089459A (ko) * 2020-01-08 2021-07-16 엘지전자 주식회사 객실 에너지 관리 시스템 및 이의 제어 방법
CN114110917B (zh) * 2021-11-23 2023-03-31 珠海格力电器股份有限公司 一种空调器自适应定时高精度校准方法及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142136A (ja) 1983-12-28 1985-07-27 Fujitsu Ltd 空調機器前倒し運転制御方式
JPS62293039A (ja) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp デ−タ処理装置用空調機の自動運転装置
JPS6329136A (ja) * 1986-07-21 1988-02-06 Mitsubishi Electric Corp 空気調和機前倒し運転制御装置
JPH0261449A (ja) * 1988-08-29 1990-03-01 Hitachi Ltd 空調機の毎日運転予約方法
JPH07107459B2 (ja) * 1987-07-15 1995-11-15 株式会社日立製作所 空気調和機の前倒し運転制御方法
JP2735395B2 (ja) * 1991-02-14 1998-04-02 三菱電機株式会社 空気調和機のスケジュール運転装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061995A (ja) * 1996-08-22 1998-03-06 Daikin Ind Ltd 空気調和機
US20120085831A1 (en) * 2010-10-07 2012-04-12 Energy Eye, Inc. Systems and methods for controlling the temperature of a room based on occupancy
WO2013084449A1 (ja) * 2011-12-09 2013-06-13 パナソニック株式会社 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142136A (ja) 1983-12-28 1985-07-27 Fujitsu Ltd 空調機器前倒し運転制御方式
JPS62293039A (ja) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp デ−タ処理装置用空調機の自動運転装置
JPS6329136A (ja) * 1986-07-21 1988-02-06 Mitsubishi Electric Corp 空気調和機前倒し運転制御装置
JPH07107459B2 (ja) * 1987-07-15 1995-11-15 株式会社日立製作所 空気調和機の前倒し運転制御方法
JPH0261449A (ja) * 1988-08-29 1990-03-01 Hitachi Ltd 空調機の毎日運転予約方法
JP2735395B2 (ja) * 1991-02-14 1998-04-02 三菱電機株式会社 空気調和機のスケジュール運転装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076091A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588272A (zh) * 2015-09-29 2016-05-18 海信(广东)空调有限公司 一种空调风机控制方法及装置
CN105588272B (zh) * 2015-09-29 2018-05-18 海信(广东)空调有限公司 一种空调风机控制方法及装置
JP2018506752A (ja) * 2015-12-11 2018-03-08 小米科技有限責任公司Xiaomi Inc. スマートデバイスの制御方法及び装置
CN105650829A (zh) * 2016-03-14 2016-06-08 珠海格力电器股份有限公司 定频空调器的控制方法及装置
JP2017198420A (ja) * 2016-04-28 2017-11-02 シャープ株式会社 電子機器、電子機器制御システムおよび電子機器の制御方法
JP2020021333A (ja) * 2018-08-02 2020-02-06 ミサワホーム株式会社 指標算出システム
WO2020189544A1 (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件を決定する機械学習装置
JP2020153530A (ja) * 2019-03-18 2020-09-24 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件を決定する機械学習装置
JP7173907B2 (ja) 2019-03-18 2022-11-16 ダイキン工業株式会社 空調機の予冷運転又は予暖運転の運転条件を決定する機械学習装置
US11885520B2 (en) 2019-03-18 2024-01-30 Daikin Industries, Ltd. Machine learning apparatus for determining operation condition of precooling operation or preheating operation of air conditioner
JP2021125044A (ja) * 2020-02-06 2021-08-30 河村電器産業株式会社 宅配ボックスシステム
JP7466322B2 (ja) 2020-02-06 2024-04-12 河村電器産業株式会社 宅配ボックスシステム
CN112945314A (zh) * 2021-05-13 2021-06-11 武汉慧联无限科技有限公司 一种环境温湿度监测方法、装置、终端设备及存储介质

Also Published As

Publication number Publication date
JPWO2015079502A1 (ja) 2017-03-16
EP3076091B1 (en) 2020-07-29
EP3076091A4 (en) 2017-07-05
EP3076091A1 (en) 2016-10-05
JP6125039B2 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6125039B2 (ja) 空調制御装置
JP6025833B2 (ja) 空調装置および空気調和システム
JP6125040B2 (ja) 空調制御装置
JP6091624B2 (ja) 空気調和システム
JP6328049B2 (ja) 空調装置
JP2011112298A (ja) 空気調和機の制御装置
JP5619056B2 (ja) 空調装置
WO2015034079A1 (ja) 空調制御システム
WO2022044325A1 (ja) 換気報知装置および換気報知プログラム
WO2018092357A1 (ja) 空気調和制御装置及び空気調和制御方法
JP2019184154A (ja) 空調装置
JP7050760B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2015190001A1 (ja) 空気調和システム
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2017168511A1 (ja) 制御装置、空調システム、空調方法及びプログラム
WO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2021181486A1 (ja) 空調システム、空調制御装置、空調方法及びプログラム
KR20160116371A (ko) 현열냉방기 제어방법
JP7016601B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2020075219A1 (ja) 冷凍サイクル装置
WO2024116241A1 (ja) 空調装置、空調制御装置、空調システム及び空調制御方法
JP2023147391A (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550240

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013898338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898338

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE