WO2015078347A1 - 钢的宏观组织与缺陷腐蚀试剂及检测方法 - Google Patents

钢的宏观组织与缺陷腐蚀试剂及检测方法 Download PDF

Info

Publication number
WO2015078347A1
WO2015078347A1 PCT/CN2014/092110 CN2014092110W WO2015078347A1 WO 2015078347 A1 WO2015078347 A1 WO 2015078347A1 CN 2014092110 W CN2014092110 W CN 2014092110W WO 2015078347 A1 WO2015078347 A1 WO 2015078347A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
sample
reagent
agent
hno
Prior art date
Application number
PCT/CN2014/092110
Other languages
English (en)
French (fr)
Inventor
盖秀颖
刘金柱
刘艳梅
刘宏伟
王严沿
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to EP14866310.7A priority Critical patent/EP3076152B1/en
Publication of WO2015078347A1 publication Critical patent/WO2015078347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals

Definitions

  • the invention belongs to the technical field of metal structure detection, and particularly relates to a macroscopic structure and defect corrosion reagent of steel and a detection method thereof.
  • the large casting and forging industry is an indispensable strategic industry for China to become an industrial power.
  • the traditional casting and forging manufacturing process relies on experience, the forming of forgings is difficult, the prevention of defects is difficult, and the performance control is difficult.
  • the macroscopic structure and defects of large castings and forgings are the main basis for research and optimization of casting and forging processes, such as Lloyd's and other nine ships.
  • the grade society requires inspection of the marine crankshaft streamlines of large ships.
  • the existing macroscopic organization and defect detection are mainly based on the GB226 standard, which gives two test methods: one is to use hot acid etching method, which needs to immerse the sample in acid to heat to 60 ° C ⁇ 75 °C, etched for 5 to 15 minutes, the surface roughness of the sample is not more than Ra1.6 ⁇ m; the other is cold acid etching method, although this method does not require heating, but the surface finish of the sample is higher, rough The degree is not more than Ra0.8 ⁇ m, and the surface must not have oil stains and processing flaws.
  • the sample size of large castings and forgings is very large, and the general size is 1.0m ⁇ 1.0m ⁇ 0.8m. If the sample with such a large cross section is etched with hot acid, the size of the hot acid tank is required to be 2.0m ⁇ 2.0m. ⁇ 1.6m, the amount of acid is large, sour acid has serious pollution to the environment, and the cost of heating device, lifting equipment and test site is very high. At the same time, due to the large size of the experimental surface of the sample, there is no suitable equipment to process the surface of the sample, which makes the surface finish difficult to meet the requirements of the existing GB226 standard.
  • the surface of the sample can be processed faster: after the surface milling cutter is processed, the roughness is not higher than Ra 3.2 ⁇ m; and such processing roughness, the existing standard cold acid etching method cannot be macroscopically
  • the tissue is etched out; and after the surface of the sample is manually polished, although the surface finish is improved, the uneven surface results in poor surface uniformity and the flatness of the surface is reduced, accompanied by original machining marks; therefore, Large castings and forgings are difficult to make metallographic samples with good finish and flatness, which cannot meet the requirements of existing testing methods.
  • the existing thermal acid etching method has a large amount of acid solution, serious environmental pollution, and the equipment cost and the site cost are very high, and cannot be applied to the macroscopic structure and defect detection of large castings and forgings; and the surface of large castings and forgings. Difficult to process, poor surface finish and poor integrity, can not be applied to the existing cold acid etching method.
  • the present invention provides a macroscopic structure and defect corrosion reagent and a detection method for steel, which can clear the metallurgical defects and microstructure of the steel ingot without hot etching, and the surface smoothness and flatness of the sample. The requirements are lower.
  • the invention discloses a macroscopic structure and defect corrosion reagent of steel.
  • the corrosion reagent is divided into three sub-reagents according to the order of use; the composition and weight percentage of the first sub-reagent are: H 2 SO 4 5% to 10% , HNO 3 20% ⁇ 25%, H 2 O 65% ⁇ 75%; the composition and weight percentage of the second sub-agent: HNO 3 25% ⁇ 35%, H 2 O 65% ⁇ 75%; the third sub The composition and weight percentage of the reagent are: HNO 3 3% to 5%, and H 2 O 95% to 97%.
  • the preferred composition and weight percentage of the first sub-agent are: H 2 SO 4 7%, HNO 3 20%, H 2 O 73%; the preferred composition and weight percentage of the second sub-agent are : HNO 3 30%, H 2 O 70%; the preferred composition and weight percentage of the third sub-agent are: HNO 3 5%, H 2 O 95%.
  • the first sub-reagent acts to etch out the streamline, dendritic solidification structure, etc.; the second sub-reagent acts to etch the morphology of the crystal grains; the third sub-reagent acts to corrode the examined surface Perform homogenization.
  • the invention also discloses a method for detecting macroscopic structure and defects of steel using the corrosion reagent, comprising the following steps:
  • the pretreatment comprises sanding to remove processing marks on the surface of the sample and to remove surface oil.
  • the invention has the beneficial effects that the invention can clearly show the metallurgical defects and the microstructure of the steel ingot by the method of cold acid etching by reasonable etching reagent composition and proportion, so that no hot etching is needed, and the amount of acid is used.
  • the invention is greatly reduced, the environmental pollution is small, and the equipment and the site problem are solved at the same time, and the invention has low requirements on the surface smoothness and flatness of the sample, and solves the difficulty in processing the surface of the large-sized sample and the surface smoothness and flatness after manual processing. Problem; the invention is particularly suitable for macroscopic organization and defect detection of large castings and forgings.
  • Figure 1 is a macroscopic structure and defect photograph I of the 100-ton steel ingot section after the treatment of Example 1;
  • Figure 2 is a photograph of the macroscopic structure and defects of the 100-ton steel ingot section after the treatment of Example 1;
  • Figure 3 is a flow line and low-magnification microstructure of a curved toe forging after the treatment of Example 2;
  • Figure 4 is a flow line and low-magnification microstructure photograph II of the crank forging after the treatment of Example 2;
  • Figure 5 is a flow line and low-magnification microstructure of a curved toe forging after the treatment of Example 2;
  • Fig. 6 is a photograph showing the A segregation morphology and the low-fold microstructure of the 45-gauge steel ingot after the treatment of Example 3; (b) is a partial enlarged view of (a).
  • the macrostructure and defect corrosion reagent of the steel of this embodiment are divided into three sub-reagents according to the order of use; the composition and weight percentage of the first sub-reagent are: H 2 SO 4 7%, HNO 3 20%, H 2 O 73 %; the composition and weight percentage of the second sub-agent are: HNO 3 30%, H 2 O 70%; the composition and weight percentage of the third sub-agent are: HNO 3 5%, H 2 O 95%.
  • the sample of the present embodiment is a 100-ton low-pressure rotor steel ingot (material grade: 30CrNiMoV) having a cross-sectional dimension of 3.6 m ⁇ 2.5 m; pre-treatment of the surface of the machined sample, pre-treatment including grinding removal test The surface of the sample is processed and the surface oil is removed; the portable angle grinder is used for grinding, although the surface of the sample has poor flatness, and the machining marks of some areas are not removed, but the test results are not affected;
  • FIG. 1 and FIG. 2 are photographs of macroscopic structures and defects of a section of a hundred tons of steel ingot after the treatment of Example 1; it can be clearly seen from FIG. 1 that the depth of the columnar crystal is 150 mm, and the crystal grains of the equiaxed area are 5 to 15 mm; The morphology of the equiaxed grains of different orientations can be clearly seen from Figure 2.
  • the macrostructure and defect corrosion reagent of the steel of this embodiment are divided into three sub-reagents according to the order of use; the composition and weight percentage of the first sub-reagent are: H 2 SO 4 5%, HNO 3 25%, H 2 O 70 %; the composition and weight percentage of the second sub-agent are: HNO 3 35%, H 2 O 65%; the composition and weight percentage of the third sub-agent are: HNO 3 3%, H 2 O 97%.
  • the sample of the embodiment is a K90ML-L crank-turn forging; the surface of the sample after machining is pre-treated, the pre-treatment includes grinding to remove the processing marks on the surface of the sample and removing the surface oil; the grinding uses a portable angle grinder Machine, although the surface of the sample has poor flatness, and the machining marks of some areas are not removed, it does not affect the test results;
  • FIG. 4 and FIG. 5 are flow lines and low-magnification microstructure photographs of the crankbone forgings after the treatment of Example 2; it can be clearly seen from the figure that no streamline cuts have been seen on the low-magnification specimens of the forgings. Flow turbulence phenomenon such as reflux, eddy current, etc., and segregation bands in low-magnification samples.
  • the macrostructure and defect corrosion reagent of the steel of this embodiment are divided into three sub-reagents according to the order of use; the composition and weight percentage of the first sub-reagent are: H 2 SO 4 10%, HNO 3 25%, H 2 O 65 %; the composition and weight percentage of the second sub-agent are: HNO 3 25%, H 2 O 75%; the composition and weight percentage of the third sub-agent are: HNO 3 4%, H 2 O 96%.
  • the sample of the present embodiment is a 45-gauge steel-type steel ingot; the surface of the sample after mechanical processing is pre-treated, the pre-treatment includes grinding to remove the processing marks on the surface of the sample and removing the surface oil; the grinding uses a portable angle grinder Although the surface of the sample has poor flatness and the mechanical processing marks of some areas are not removed, the test results are not affected;
  • Fig. 6 is a photograph showing the macroscopic structure and defects of the 45-gauge steel ingot after the treatment of Example 3; it can be seen from the picture that there is a symmetric distribution A segregation in the longitudinal direction of the ingot, and there is also a shrinkage defect in the A segregation region.

Abstract

一种钢的宏观组织与缺陷腐蚀试剂及检测方法:所述腐蚀试剂按使用顺序分为三个子试剂,第一个子试剂为:H 2SO 45%〜10%,HNO 320%〜25%,H 2O 65%〜75%,第二个子试剂为:HNO 3 25%〜35%,H 2O 65%〜75%,第三个子试剂为:HNO 33%〜5%,H 2O 95%〜97%;所述检测方法包括前处理、第一个子试剂浇蚀20〜30分钟、第二个子试剂浇蚀10〜20分钟、第三个子试剂浇蚀3〜5分钟以及扫描成像步骤。该方法无需进行热浸蚀,能够将钢锭的冶金缺陷和显微组织显示清晰,而且对试样表面光洁度和平整度要求较低,特别适用于大型铸锻件的宏观组织与缺陷检测。

Description

钢的宏观组织与缺陷腐蚀试剂及检测方法 技术领域
本发明属于金属组织检测技术领域,具体涉及一种钢的宏观组织与缺陷腐蚀试剂及检测方法。
背景技术
我国当前的能源电力、冶金机械、石油化工、船舶工程等重大技术装备和重大工程建设均迫切需要配套优质大型铸锻件,大型铸锻件行业是我国成为工业强国不可或缺的战略性产业。传统铸锻件制造工艺依赖经验,铸锻件成形难、缺陷预防难、性能控制难,而大型铸锻件宏观组织与缺陷的表征是研究和优化铸、锻工艺的主要依据,如劳氏等九家船级社对大型船舶的船用曲轴流线均要求检验。
现有的宏观组织与缺陷检测主要是依据GB226标准,该标准中给出两种试验方法:一种是用热酸浸蚀法,这需要将试样浸在酸液中加热到60℃~75℃,浸蚀5~15分钟,试样表面的粗糙度不大于Ra1.6μm;另一种是冷酸浸蚀法,这种方法虽然不需要加热,但是对试样表面光洁度要求较高,粗糙度不大于Ra0.8μm,表面不得有油污和加工伤痕。
但是,大型铸锻件的试样尺寸超大,一般尺寸均在1.0m×1.0m×0.8m以上,这么大截面的试样如果用热酸浸蚀,需要热酸槽的尺寸在2.0m×2.0m×1.6m,酸液用量大,酸烟对环境产生严重的污染,并且加热装置、吊装设备和试验场地等成本非常高。同时,由于试样实验面尺寸较大,没有适宜的设备加工试样表面,导致表面光洁度很难达到现有GB226标准要求。目前能较快的对试样表面进行加工的方式是:实验面铣刀加工后,粗糙度不高于Ra3.2μm;而这样的加工粗糙度,现有的标准冷酸浸蚀法无法将宏观组织浸蚀出来;并且试样表面经手工打磨后,虽然局部区域的光洁度提高了,但凸凹不平的表面导致表面均匀性差,而且表面的平整性下降,并伴有原始的机械加工痕迹;因此,大型铸锻件很难做成光洁度和平整度较好的金相样品,无法满足现有检测方法的要求。
综上所述,现有的热酸浸蚀法酸液用量大、环境污染严重,并且设备成本和场地成本非常高,不能适用于大型铸锻件的宏观组织与缺陷检测;而大型铸锻件的表面加工困难,表面光洁度和平整性差,也不能适用现有的冷酸浸蚀法。
发明内容
有鉴于此,本发明提供了一种钢的宏观组织与缺陷腐蚀试剂及检测方法,无需进行热浸蚀,能够将钢锭的冶金缺陷和显微组织显示清晰,而且对试样表面光洁度和平整度要求较低。
本发明公开了一种钢的宏观组织与缺陷腐蚀试剂,所述腐蚀试剂按使用顺序分为三个子试剂;第一个子试剂的组成成分及重量百分比为:H2SO45%~10%,HNO320%~25%,H2O 65%~75%;第二个子试剂的组成成分及重量百分比为:HNO325%~35%,H2O 65%~75%;第三个子试剂的组成成分及重量百分比为:HNO33%~5%,H2O 95%~97%。
进一步,所述第一个子试剂优选的组成成分及重量百分比为:H2SO47%,HNO320%,H2O 73%;所述第二个子试剂优选的组成成分及重量百分比为:HNO330%,H2O 70%;所述第三个子试剂优选的组成成分及重量百分比为:HNO35%,H2O 95%。
本发明中,第一个子试剂的作用是腐蚀出流线、枝晶凝固组织等;第二个子试剂的作用是腐蚀出晶粒的形貌;第三个子试剂的作用是对腐蚀受检面进行均匀化处理。
本发明还公开了使用所述腐蚀试剂进行钢的宏观组织与缺陷的检测方法,包括以下步骤:
1)对经过机械加工后的试样表面进行前处理;
2)将所述第一个子试剂浇蚀在试样表面上腐蚀20~30分钟,然后清洗试样表面;
3)再将所述第二个子试剂浇蚀在试样表面上腐蚀10~20分钟,然后清洗试样表面;
4)再将所述第三个子试剂浇蚀在试样表面上腐蚀3~5分钟,然后依次清洗和吹干试样表面;
5)采用扫描仪对试样表面扫描成像,将经扫描成像获得的图片进行图像处理。
进一步,步骤1)中,所述前处理包括打磨去除试样表面的加工痕迹和清除表面油污。
本发明的有益效果在于:本发明通过合理的腐蚀试剂成分与比例搭配,通过冷酸浇蚀的方法就能将钢锭的冶金缺陷和显微组织显示清晰,从而无需进行热浸蚀,酸液用量大大减小,环境污染小,同时解决了设备和场地问题,并且本发明对试样表面光洁度和平整度要求较低,解决了大尺寸试样表面加工困难以及表面手工加工后光洁度和平整性差的问题;本发明特别适用于大型铸锻件的宏观组织与缺陷检测。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为经实施例1处理后百吨钢锭剖面的宏观组织与缺陷照片Ⅰ;
图2为经实施例1处理后百吨钢锭剖面的宏观组织与缺陷照片Ⅱ;
图3为经实施例2处理后曲拐锻件的流线和低倍组织形貌照片Ⅰ;
图4为经实施例2处理后曲拐锻件的流线和低倍组织形貌照片Ⅱ;
图5为经实施例2处理后曲拐锻件的流线和低倍组织形貌照片Ⅲ;
图6为经实施例3处理后45号钢砂型钢锭的A偏析形貌和低倍组织形貌照片;图中:(b)为(a)的局部放大图。
具体实施方式
以下将参照附图,通过优选实施例对本发明进行详细的描述。以下实施例中,前处理过程中,采用酒精清除试样表面的油污,对试样表面腐蚀后采用水对其清洗。
实施例1
本实施例的钢的宏观组织与缺陷腐蚀试剂按使用顺序分为三个子试剂;第一个子试剂的组成成分及重量百分比为:H2SO47%,HNO320%,H2O 73%;第二个子试剂的组成成分及重量百分比为:HNO330%,H2O 70%;第三个子试剂的组成成分及重量百分比为:HNO35%,H2O 95%。
本实施例的使用所述腐蚀试剂进行钢的宏观组织与缺陷检测的方法,包括以下步骤:
1)本实施例的试样为百吨低压转子钢锭(材料牌号为30CrNiMoV),其剖面尺寸为3.6m×2.5m;对经过机械加工后的试样表面进行前处理,前处理包括打磨去除试样表面的加工痕迹和清除表面油污;打磨采用便携式角磨机,尽管试样表面存在平整度差,而且有些区域的机械加工痕迹没有去除,但不影响检测结果;
2)将所述第一个子试剂浇蚀在试样表面上腐蚀20分钟,然后清洗试样表面;
3)再将所述第二个子试剂浇蚀在试样表面上腐蚀20分钟,然后清洗试样表面;
4)再将所述第三个子试剂浇蚀在试样表面上腐蚀3分钟,然后依次清洗和吹干试样表面;
5)采用扫描仪对试样表面扫描成像,将经扫描成像获得的图片进行图像处理。
图1和图2为经实施例1处理后百吨钢锭剖面的宏观组织与缺陷照片;从图1中可以清晰地看到柱状晶的深度是150mm,等轴区的晶粒在5~15mm;从图2中可以清晰地看到不同取向等轴晶粒的形貌。
实施例2
本实施例的钢的宏观组织与缺陷腐蚀试剂按使用顺序分为三个子试剂;第一个子试剂的组成成分及重量百分比为:H2SO45%,HNO325%,H2O 70%;第二个子试剂的组成成分及重量百分比为:HNO335%,H2O 65%;第三个子试剂的组成成分及重量百分比为:HNO33%,H2O 97%。
本实施例的使用所述腐蚀试剂进行钢的宏观组织与缺陷检测的方法,包括以下步骤:
1)本实施例的试样为K90ML-L曲拐锻件;对经过机械加工后的试样表面进行前处理,前处理包括打磨去除试样表面的加工痕迹和清除表面油污;打磨采用便携式角磨机,尽管试样表面存在平整度差,而且有些区域的机械加工痕迹没有去除,但不影响检测结果;
2)将所述第一个子试剂浇蚀在试样表面上腐蚀30分钟,然后清洗试样表面;
3)再将所述第二个子试剂浇蚀在试样表面上腐蚀15分钟,然后清洗试样表面;
4)再将所述第三个子试剂浇蚀在试样表面上腐蚀4分钟,然后依次清洗和吹干试样表面;
5)采用扫描仪对试样表面扫描成像,将经扫描成像获得的图片进行图像处理。
图3、图4和图5为经实施例2处理后曲拐锻件的流线和低倍组织形貌照片;从图中可以清晰地看到:在锻件低倍试样上尚未见流线切断、回流、涡流等流线紊乱现象,在低倍试样有偏析条带。
实施例3
本实施例的钢的宏观组织与缺陷腐蚀试剂按使用顺序分为三个子试剂;第一个子试剂的组成成分及重量百分比为:H2SO410%,HNO325%,H2O 65%;第二个子试剂的组成成分及重量百分比为:HNO325%,H2O 75%;第三个子试剂的组成成分及重量百分比为:HNO34%,H2O 96%。
本实施例的使用所述腐蚀试剂进行钢的宏观组织与缺陷检测的方法,包括以下步骤:
1)本实施例的试样为45号钢砂型钢锭;对经过机械加工后的试样表面进行前处理,前处理包括打磨去除试样表面的加工痕迹和清除表面油污;打磨采用便携式角磨机,尽管试样表面存在平整度差,而且有些区域的机械加工痕迹没有去除,但不影响检测结果;
2)将所述第一个子试剂浇蚀在试样表面上腐蚀25分钟,然后清洗试样表 面;
3)再将所述第二个子试剂浇蚀在试样表面上腐蚀10分钟,然后清洗试样表面;
4)再将所述第三个子试剂浇蚀在试样表面上腐蚀5分钟,然后依次清洗和吹干试样表面;
5)采用扫描仪对试样表面扫描成像,将扫描成像获得的图片进行图片处理。
图6为经实施例3处理后45号钢砂型钢锭的宏观组织与缺陷照片;从图片上可以看到在钢锭纵向有对称分布A偏析,并在A偏析区域还存在缩孔缺陷。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。

Claims (6)

  1. 一种钢的宏观组织与缺陷腐蚀试剂,其特征在于:所述腐蚀试剂按使用顺序分为三个子试剂;第一个子试剂的组成成分及重量百分比为:H2SO45%~10%,HNO320%~25%,H2O 65%~75%;第二个子试剂的组成成分及重量百分比为:HNO325%~35%,H2O 65%~75%;第三个子试剂的组成成分及重量百分比为:HNO33%~5%,H2O 95%~97%。
  2. 根据权利要求1所述的钢的宏观组织与缺陷腐蚀试剂,其特征在于:所述第一个子试剂的组成成分及重量百分比为:H2SO47%,HNO320%,H2O73%。
  3. 根据权利要求1所述的钢的宏观组织与缺陷腐蚀试剂,其特征在于:所述第二个子试剂的组成成分及重量百分比为:HNO330%,H2O 70%。
  4. 根据权利要求1所述的钢的宏观组织与缺陷腐蚀试剂,其特征在于:所述第三个子试剂的组成成分及重量百分比为:HNO35%,H2O 95%。
  5. 使用权利要求1-4任一所述腐蚀试剂进行钢的宏观组织与缺陷的检测方法,其特征在于:包括以下步骤:
    1)对经过机械加工后的试样表面进行前处理;
    2)将所述第一个子试剂浇蚀在试样表面上腐蚀20~30分钟,然后清洗试样表面;
    3)再将所述第二个子试剂浇蚀在试样表面上腐蚀10~20分钟,然后清洗试样表面;
    4)再将所述第三个子试剂浇蚀在试样表面上腐蚀3~5分钟,然后依次清洗和吹干试样表面;
    5)采用扫描仪对试样表面扫描成像,将经扫描成像获得的图片进行图像处理。
  6. 根据权利要求5所述的钢的宏观组织与缺陷的检测方法,其特征在于:步骤1)中,所述前处理包括打磨去除试样表面的加工痕迹和清除表面油污。
PCT/CN2014/092110 2013-11-30 2014-11-25 钢的宏观组织与缺陷腐蚀试剂及检测方法 WO2015078347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14866310.7A EP3076152B1 (en) 2013-11-30 2014-11-25 Kit of three reagent compositions for detecting steel macrostructure and defect, and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310640094.4A CN104677714B (zh) 2013-11-30 2013-11-30 钢的宏观组织与缺陷腐蚀试剂及检测方法
CN201310640094.4 2013-11-30

Publications (1)

Publication Number Publication Date
WO2015078347A1 true WO2015078347A1 (zh) 2015-06-04

Family

ID=53198362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092110 WO2015078347A1 (zh) 2013-11-30 2014-11-25 钢的宏观组织与缺陷腐蚀试剂及检测方法

Country Status (3)

Country Link
EP (1) EP3076152B1 (zh)
CN (1) CN104677714B (zh)
WO (1) WO2015078347A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289514A (zh) * 2020-03-16 2020-06-16 中国兵器科学研究院宁波分院 一种显示铝合金宏观晶粒及流线的方法
CN112362438A (zh) * 2020-11-17 2021-02-12 陕西龙门钢铁有限责任公司 一种连续铸钢坯低倍组织及缺陷冷蚀显示试剂的使用方法
CN113702379A (zh) * 2021-08-27 2021-11-26 华能国际电力股份有限公司 一种显示高合金化镍基合金均匀化后组织的金相腐蚀方法
CN114280074A (zh) * 2021-12-29 2022-04-05 本钢板材股份有限公司 一种电镀锌if钢表面丝斑缺陷的检测方法
CN114295623A (zh) * 2021-12-28 2022-04-08 江苏隆达超合金股份有限公司 一种小口径薄壁镍基高温合金管材缺陷检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568634A (zh) * 2016-11-03 2017-04-19 中国科学院金属研究所 一种钢的低倍组织及缺陷酸蚀检验方法
CN113337875B (zh) * 2021-04-02 2023-03-28 无锡透平叶片有限公司 一种铁基变形高温合金锻件低倍流线腐蚀液及其腐蚀方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167772A (ja) * 1982-03-29 1983-10-04 Mitsubishi Heavy Ind Ltd 鋼材の組織観察用腐食液
SU1057800A1 (ru) * 1982-01-06 1983-11-30 Предприятие П/Я Г-4807 Реактив дл вы влени макроструктуры алюминиевых сплавов
SU1718005A1 (ru) * 1989-12-05 1992-03-07 Воронежский механический завод Реактив дл вы влени макроструктуры сплавов на основе никел
CN101587040A (zh) * 2009-04-30 2009-11-25 黄楠 低倍缺陷冷蚀显示试剂
CN101706385A (zh) * 2009-09-29 2010-05-12 田陆 显示钢坯内部低倍树枝晶的冷酸腐蚀方法
CN101975742A (zh) * 2010-10-31 2011-02-16 广东省韶铸集团有限公司 一种低倍冷蚀检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU451937A1 (ru) * 1973-05-03 1974-11-30 Украинский научно-исследовательский институт металлов Реактив дл вы влени макроструктуры
SU1275266A1 (ru) * 1985-04-29 1986-12-07 Предприятие П/Я В-2120 Реактив дл вы влени микроструктуры хромовых покрытий на углеродистых стал х
CN1115559C (zh) * 2000-11-27 2003-07-23 宝山钢铁股份有限公司 检验钢坯内部低倍缺陷的冷蚀液浇蚀法
FR2929448B1 (fr) * 2008-03-28 2010-04-09 Eads Aeronautic Defence And Sp Procede de gravure chimique humide
CN101576454B (zh) * 2008-05-08 2011-08-17 比亚迪股份有限公司 一种非晶合金金相腐蚀剂以及金相显示方法
CN102284685B (zh) * 2010-06-18 2013-04-10 中国科学院金属研究所 一种70t级至600t级钢锭质量与组织、性能解剖检验方法
CN102435484B (zh) * 2010-09-29 2014-01-01 沈阳黎明航空发动机(集团)有限责任公司 一种粉末高温合金原始颗粒边界的腐蚀方法
CN102443803B (zh) * 2012-02-23 2013-06-19 中国船舶重工集团公司第七二五研究所 一种马氏体沉淀硬化不锈钢晶界的金相腐蚀方法
CN102890027B (zh) * 2012-09-29 2014-12-03 攀钢集团攀枝花钢铁研究院有限公司 一种含Ti的无间隙原子钢冷轧薄板金相组织显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1057800A1 (ru) * 1982-01-06 1983-11-30 Предприятие П/Я Г-4807 Реактив дл вы влени макроструктуры алюминиевых сплавов
JPS58167772A (ja) * 1982-03-29 1983-10-04 Mitsubishi Heavy Ind Ltd 鋼材の組織観察用腐食液
SU1718005A1 (ru) * 1989-12-05 1992-03-07 Воронежский механический завод Реактив дл вы влени макроструктуры сплавов на основе никел
CN101587040A (zh) * 2009-04-30 2009-11-25 黄楠 低倍缺陷冷蚀显示试剂
CN101706385A (zh) * 2009-09-29 2010-05-12 田陆 显示钢坯内部低倍树枝晶的冷酸腐蚀方法
CN101975742A (zh) * 2010-10-31 2011-02-16 广东省韶铸集团有限公司 一种低倍冷蚀检测方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289514A (zh) * 2020-03-16 2020-06-16 中国兵器科学研究院宁波分院 一种显示铝合金宏观晶粒及流线的方法
CN112362438A (zh) * 2020-11-17 2021-02-12 陕西龙门钢铁有限责任公司 一种连续铸钢坯低倍组织及缺陷冷蚀显示试剂的使用方法
CN113702379A (zh) * 2021-08-27 2021-11-26 华能国际电力股份有限公司 一种显示高合金化镍基合金均匀化后组织的金相腐蚀方法
CN113702379B (zh) * 2021-08-27 2023-09-01 华能国际电力股份有限公司 一种显示高合金化镍基合金均匀化后组织的金相腐蚀方法
CN114295623A (zh) * 2021-12-28 2022-04-08 江苏隆达超合金股份有限公司 一种小口径薄壁镍基高温合金管材缺陷检测方法
CN114280074A (zh) * 2021-12-29 2022-04-05 本钢板材股份有限公司 一种电镀锌if钢表面丝斑缺陷的检测方法

Also Published As

Publication number Publication date
CN104677714A (zh) 2015-06-03
EP3076152B1 (en) 2021-03-24
EP3076152A1 (en) 2016-10-05
EP3076152A4 (en) 2017-07-12
CN104677714B (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2015078347A1 (zh) 钢的宏观组织与缺陷腐蚀试剂及检测方法
CN105352966B (zh) 一种高碳钢连铸坯内部质量的检验方法
CN105158046B (zh) 一种连铸坯低倍样的快速制备方法
CN108318304B (zh) 一种宇航用pcba有效剖面制备及损伤检测方法
CN112048720A (zh) 一种镍基粉末高温合金腐蚀溶液及腐蚀方法
CN111850563B (zh) 一种镍基高温合金锻件表面组织快速检测方法、高倍组织腐蚀液
CN105018931A (zh) 一种gh3030高温合金铸态金相腐蚀液及其配制方法和使用方法
CN104562012A (zh) 一种铁基高温合金试样金相腐蚀液及腐蚀方法
CN101225856B (zh) 大功率低速柴油机高碳钢推力滑动轴承的制造工艺
CN103993319A (zh) 铝和铝铜合金宏观组织的腐蚀剂及显示方法
Jo et al. Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel based superalloy CMSX-2 Part 2-Creep behaviour of surface recrystallised single crystal
Chunlei et al. Failure analysis of lead-free brass valve bodies
He et al. Electrochemical behavior and properties of passive films on 304 stainless steel under high temperature and stress conditions
CN114318341A (zh) 一种铝合金金相腐蚀方法及其金相腐蚀剂
CN106568634A (zh) 一种钢的低倍组织及缺陷酸蚀检验方法
Cai et al. Study on the inhibition of hydrogen embrittlement of 7050 aluminum alloy in humid air by MAO coating
Deng et al. Effect of Sc and Zr on microstructure and chemical milling surface roughness of 2024-T6 alloy sheets
Koyama et al. Hydrogen emission at grain boundaries in tensile-deformed Al-9% Mg alloy by hydrogen microprint technique
CN102747368B (zh) 马氏体时效钢的浸蚀剂及其低倍组织的检验方法
CN109016774A (zh) 一种汽车热交换***用铝合金钎焊复合工艺
Zhang et al. Preparation Method for Metallographic Specimen of Iron-Carbon and Silicon-aluminium Alloy
CN113340903A (zh) 一种轧制钢板分层的快速检测方法
CN105316685B (zh) 一种显示轴承钢铸坯锭型偏析的冷蚀剂及其配制方法
CN107991160B (zh) 一种铁基高温合金盘件表面缺陷宏观检查方法
CN108296886B (zh) 一种大尺寸钢铁铸造试件的抛光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866310

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014866310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866310

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE