WO2015076562A2 - Biofilm water treatment device having non-powered backwashing function - Google Patents

Biofilm water treatment device having non-powered backwashing function Download PDF

Info

Publication number
WO2015076562A2
WO2015076562A2 PCT/KR2014/011138 KR2014011138W WO2015076562A2 WO 2015076562 A2 WO2015076562 A2 WO 2015076562A2 KR 2014011138 W KR2014011138 W KR 2014011138W WO 2015076562 A2 WO2015076562 A2 WO 2015076562A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
drain pipe
biofilm
layer
backwashing
Prior art date
Application number
PCT/KR2014/011138
Other languages
French (fr)
Korean (ko)
Other versions
WO2015076562A3 (en
Inventor
백영석
박변주
Original Assignee
주식회사 이피에스이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130142937A external-priority patent/KR101346604B1/en
Priority claimed from KR1020140028346A external-priority patent/KR101433687B1/en
Application filed by 주식회사 이피에스이앤이 filed Critical 주식회사 이피에스이앤이
Publication of WO2015076562A2 publication Critical patent/WO2015076562A2/en
Publication of WO2015076562A3 publication Critical patent/WO2015076562A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a biofilm water treatment apparatus having a non-power back washing function, and more specifically, to treating influent such as initial rainwater, sewage, heavy water or sewage treatment water, a natural and cost-effective treatment method.
  • the present invention relates to a biofilm water treatment apparatus having a non-powered backwashing function capable of removing nitrogen and phosphorus from influent and decomposing organic substances to contribute to securing stable water quality.
  • the sewage treatment is a method of precipitating the influent sewage in the primary sedimentation basin, after treatment with microorganisms in the microbial reaction tank consisting of anaerobic tank, anoxic tank, aerobic tank, and then discharged again in the secondary sedimentation basin.
  • the precipitate formed is called sludge (or 'sludge'), and the precipitated sludge is released and subjected to a separate treatment process.
  • the effluent finally discharged from the sewage treatment stream has a problem that acts as a major cause to inhibit the ecological environment because the concentration of nitrogen or phosphorus is higher than the flow rate.
  • a method for solving this problem has been studied in various aspects, an example of which is disclosed in Korean Patent Registration No. 10-0783789 (registered on December 03, 2007).
  • the document discloses a sewage treatment apparatus and a sewage treatment method using the same, which improves denitrification efficiency during sewage treatment and prevents nitrogen from being discharged to impair the environment of the water system.
  • the method includes a first settling tank for introducing sewage into the sewage, a microbial reactor including an aerobic tank for nitrifying the effluent of the first settling tank using microorganisms, a second settling tank for precipitating microbial sludge of the microbial reactor,
  • the outflow water of the secondary sedimentation tank is accommodated, and consists of a denitrification reactor for denitrification through an internal carrier and a denitrification filtration tank for removing suspended matter contained in the effluent of the denitrification reactor through an internal filter medium and removing residual nitrate from the effluent.
  • the sewage treatment method of this type is separated into anaerobic tank, anoxic tank, and aerobic tank to remove nitrogen and phosphorus, and is equipped with a secondary sedimentation basin for sedimenting microbial sludge in a microbial reactor, and the treatment process is complicated.
  • the treatment method does not consider vegetation at all.
  • a method for solving the blockage of the media is not disclosed.
  • the problem to be solved by the present invention is to remove nitrogen and phosphorus from the influent through a natural friendly and cost-effective treatment method in the treatment of influent such as initial rainwater, sewage, heavy water, sewage reuse water or sewage treatment water.
  • the present invention is to provide a biofilm water treatment apparatus having a non-powered backwash function that can more effectively decompose organic matter and contribute to securing stable water quality.
  • Biomembrane water treatment device having a non-powered backwashing function according to an embodiment of the present invention for solving the above problems, the settling tank for precipitating the contaminants mixed in the water flowing into; And a media layer for allowing water introduced into the media to be treated with aerobic microorganisms and anaerobic microorganisms through filtration and backwashing, and the bottom end of the media layer is higher than the lower end of the media layer and the top is closed.
  • a first drain pipe having a lower opening, a second drain pipe inserted into the first drain pipe and having an upper and lower portions open and connected to the precipitation tank, a third drain pipe for supplying water to the filter layer, and the filter layer
  • a support net for supporting the filter media layer at the lower portion of the lower layer and discharging the water passing through the filter layer to the lower portion, and the first drain pipe supports the support network between the support network and the bottom and discharges water downward through the support network. It includes; filtration and backwashing portion having a support member for forming a space for supply to the side.
  • the biofilm water treatment apparatus having a non-power backwash function
  • the water level from the lower portion of the filter layer is gradually higher than the upper end of the second drain pipe, it is an inner region of the first drain pipe and of the second drain pipe
  • the water flowing into the outer region flows into the settling tank through the inside of the second drain pipe until the water level in the filter layer becomes equal to the lower end of the first drain pipe, so that the upstream and the downflow are repeated. It will prevent the blockage of the.
  • the settling tank the bottom portion is inclined to form a sludge produced by the contamination of contaminants from the water flowing into the settling tank; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
  • the filtration and back washing portion if the water level continues to increase even while the water flows out into the settling tank through the inside of the second drain pipe, in order to further control the water level by flowing more water into the settling tank, It further includes a backwash drain pipe leading from the position lower than the top end of the second drain pipe to the settling tank.
  • the biofilm water treatment apparatus having a non-powered backwashing function, the final treatment tank for finally settling the contaminants remaining in the excess water after the contaminant precipitates in the settling tank; And a disinfection tank for disinfecting water after precipitation in the final treatment tank.
  • the third drain pipe may include a plurality of outlets formed at predetermined intervals in the direction of the media layer to supply water to the media layer.
  • the biofilm water treatment apparatus having the non-powered backwashing function
  • contaminants introduced with water are filtered in the filtration and backwashing section.
  • the filtration process moves contaminants from the top of the mediator layer to the bottom according to the flow of water from the top of the mediator layer to the bottom.
  • the backwashing process is a process in which contaminants move from the bottom of the mediator layer to the top according to the flow of water from the bottom of the mediator layer to the top.
  • the aerobic microorganisms are treated by treating the contaminants moved from the top to the bottom of the filter bed with aerobic microorganisms in the filter bed during the filtration process.
  • Treated with anaerobic microorganisms present in the lower part of water, and after treatment with the anaerobic microorganisms, contaminants moved in the upward flow during the backwashing process are treated with aerobic microorganisms present on top of the anaerobic microorganisms.
  • the root of the plant planted in the upper layer of the filter media layer nitrogen or phosphorus present with the water flowing into the filter media layer is absorbed into the root of the plant is the plant Used as a nutritional substance.
  • the biofilm water treatment device having a non-powered backwashing function, the sedimentation tank for precipitating contaminants mixed in the water stored therein; Filtration layer which allows the water flowing into the water to be treated with aerobic and anaerobic microorganisms through filtration and backwashing process; A first drain pipe having a lower end (bottom-end) higher than the lower end of the filter layer in the filter layer, and having an upper portion sealed and a lower portion opened; A second drain pipe inserted into the first drain pipe and having an upper and lower parts opened and a lower part connected to the settling tank; A third drain pipe having a plurality of outlets formed at predetermined intervals in the direction of the filter layer to supply water to the filter layer; A support net for supporting the media layer in the lower portion of the media layer and discharging water passing through the media layer down; A support member supporting the support network between the support network and the floor and forming a space for supplying water discharged downward through the support network to the first drain pipe side; And when the water level continues to increase even while
  • the biofilm water treatment device having a non-powered backwashing function, the storage tank for storing the influent; And an inflow tank for pumping water stored in the reservoir or water in the precipitation tank to precipitate contaminants therefrom and supplying water to the third drain pipe.
  • the inlet tank, the bottom portion, the slope is formed so that the contaminants are precipitated from the water flowing from the reservoir or the water flowing from the settling tank to produce the sludge; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
  • Biofilm water treatment device having a non-power backwashing function according to another embodiment of the present invention for solving the above problems, the first water treatment by aerobic microorganism and anaerobic microorganism through the repetitive flow of upstream and downstream by introducing water from the bottom A first biofilm reactor; And a second biofilm reactor that receives water treated primarily from the first biofilm reactor at a lower portion of the first biofilm reactor, and performs second water treatment through a repeated flow of upstream and downstream flows.
  • the first biofilm reactor may include a first carrier layer for treating water introduced into the aerobic and anaerobic microorganisms through filtration and backwashing, and a bottom-bottom in the first carrier layer.
  • a first drain pipe whose end is higher than the lower end of the first carrier layer, the upper part of which is closed and the lower part of the first carrier pipe is inserted into the first drain pipe, the second drain tube inserted into the first drain pipe, the upper and lower parts of which are opened, and the lower part of which is connected to the second biofilm reactor.
  • a support member forming a space, wherein the water level is gradually increased from the lower portion of the first carrier layer to be higher than the upper end of the second drain pipe, and the water flowing into the outer region of the second drain pipe while being an inner region of the first drain pipe; Silver flows out into the second biofilm reactor through the interior of the second drain pipe until the water level in the first carrier layer becomes equal to the lower end of the first drain pipe, so that the upstream and the downflow are repeated. 1 Prevent clogging of the carrier layer.
  • the first biofilm reactor includes a support wall disposed between the first carrier layer and the first drain pipe, the support wall being adjacent to the first carrier layer and spaced apart from the first drain pipe.
  • the first carrier layer includes a plurality of filter nets arranged in a vertical direction at predetermined intervals, and a contact medium interposed between the plurality of filter nets.
  • the second biofilm reactor may be configured to treat contaminants by microbial contact when the water level of the induction pipe leading to the water supplied from the second drain pipe and the water induced through the induction pipe gradually increases.
  • the second carrier layer may comprise a carrier for microbial contact.
  • the biofilm water treatment apparatus includes: an ozone contact tank for oxidizing or decolorizing water flowing after the pollutant precipitates in the second biofilm reactor; And a disinfection tank for disinfecting water after the treatment in the ozone contact tank.
  • contaminants introduced with water are treated through at least two filtration and backwashing processes in the first biofilm reactor. And then discharged to the second biofilm reactor through the second drain pipe, and the filtration process moves from the top to the bottom of the first carrier layer as the water flows from the top to the bottom of the first carrier layer.
  • the backwashing process is a process in which contaminants move from the lower portion of the first carrier layer to the upper portion as water flows from the lower portion of the first carrier layer to the upper portion.
  • the contaminant that has moved from the top to the bottom of the first carrier layer in the filtration process is treated with aerobic microorganisms in the first carrier layer.
  • Treatment with anaerobic microorganisms present in the lower part of the aerobic microorganisms, and after treatment with the anaerobic microorganisms, contaminants that have moved in an upstream flow during the backwashing process are treated with aerobic microorganisms present in the upper part of the anaerobic microorganisms.
  • the pollutant is a process of moving from the top of the second carrier layer to the bottom
  • the backwashing process is the flow of water from the bottom of the second carrier layer to the top according to the inflow of water through the induction pipe from the second drain pipe
  • the contaminants move from the bottom to the top of the second carrier layer.
  • a biofilm water treatment apparatus having a non-powered backwashing function, the storage tank for storing the influent; And an inflow tank for precipitating contaminants in the overflowed or pumped water from the storage tank and supplying water to the inflow path.
  • the inlet tank, the bottom portion is formed to be inclined to precipitate the contaminants in the water flowing from the second biofilm reactor or the water flowing from the reservoir to form the sludge; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center having a low inclination.
  • the present invention provides a biofilm water treatment apparatus having a non-powered backwashing function to treat influent such as initial rainwater, sewage, heavy water, sewage recycled water or sewage treatment water, from the influent water through a natural friendly and cost effective treatment method. It removes nitrogen, phosphorus, etc., and effectively decomposes organic matters, and contributes to securing stable water quality.
  • the biofilm water treatment apparatus having a non-powered backwashing function of the present invention does not need a separate blower or air diffuser for supplying air or backwashing, and thus has an effect of reducing treatment cost and energy.
  • the biofilm water treatment apparatus having a non-powered backwashing function of the present invention can efficiently remove nitrogen and phosphorus through aerobic and anaerobic repetitive contact, and effectively decomposes organic substances by microorganisms attached to and propagated to the roots of plants and plants. It is possible to effectively prevent the blockage of the media by contaminants by the repetition of the downflow and upflow.
  • the biofilm water treatment apparatus having a non-powered backwashing function of the present invention is an integrated treatment apparatus implemented with a relatively simple structure of an upper layer and a lower layer.
  • the present invention can effectively prevent clogging of contaminants caused by contaminants by repetition of downflow and upflow, while removing nitrogen and phosphorus through aerobic and anaerobic repetitive contact through biofilm treatment.
  • the biofilm treatment is additionally treated to further contaminants, thereby effectively preventing the blockage of the media.
  • the secondary sedimentation basin is unnecessary, it can block odors and pests in a closed type, and it can be used as a landscaping space of an indoor space during heavy water treatment discharged from a building. Has the effect of realizing the building.
  • FIG. 1 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of another surface of the biofilm water treatment apparatus corresponding to FIG. 1,
  • FIG. 3 is a perspective view of the upper layer of the biofilm water treatment device of FIG.
  • FIG. 4 is a perspective view of another aspect of the biofilm water treatment apparatus corresponding to FIG. 3;
  • FIG. 5 is a block diagram illustrating a filtration and backwashing process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of another surface of the biofilm water treatment apparatus having the non-powered backwashing function corresponding to FIG. 7;
  • FIG. 9 is a perspective view of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7;
  • FIG. 10 is a block diagram illustrating a cycle of filtration and backwashing of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of another surface of the biofilm water treatment apparatus corresponding to FIG. 1
  • FIG. 3 is a biofilm corresponding to FIG. 1.
  • 4 is a perspective view of the water treatment apparatus, and FIG. 4 is a perspective view of another viewpoint of the biofilm water treatment apparatus corresponding to FIG. 3.
  • the biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention
  • the storage tank 110 for storing the influent
  • the settling tank for precipitating the contaminants mixed in the water flowing into the interior 140
  • the inlet tank 120 for pumping water stored in the storage tank 110 or water in the settling tank 140 (through pumping pipes 114 and 124) to precipitate contaminants therefrom
  • the filtration and reverse Details 130 are included.
  • the filtration and backwashing unit 130 includes, in the filtration layer 131 and the filtration layer 131, the water flowing from the inflow tank 120 to be treated with aerobic and anaerobic microorganisms through filtration and backwashing.
  • the bottom-end 1322 is higher than the lower end of the filter layer 131 and the upper part 1321 is sealed and the lower part 1322 is opened.
  • the second drain pipe 133 is inserted, the upper and lower portions are opened and the lower portion is connected to the settling tank 140, the third drain pipe 134 for supplying water from the inflow tank 120 to the filter medium layer 131, and the filter layer A support net 135 for supporting the media layer 131 at the bottom of the 131 and for discharging water passing through the media layer 131 to the bottom, and the support network 135 between the support network 135 and the bottom 139.
  • a support member for forming a space for supplying the water discharged downward through the support network 135 to the first drain pipe 132 side. Has 136.
  • the first drain pipe 132 is generally vertically introduced into the media layer 131 and fixed by the support wall 138. Here, when the support wall 138 extends to the bottom 139 and is fixed, a passage for supplying water discharged downward through the support network 135 to the first drain pipe 132 is formed in the support wall 138. It should be.
  • the term 'inflow' is used in a generic sense. In other words, it is used to mean the water flowing into any treatment tank or drain pipe.
  • the influent may be initial stormwater, sewage, heavy water (eg, old water flowing out of a building), or sewage treatment for reuse after biological treatment of sewage.
  • the term 'water' or 'influent water' refers to contaminants (coarse material, organic material, particulate contaminants, suspended solids (SS), heavy metals). , Nitrogen, phosphorus, etc.) have been described as meaning water containing or mixed.
  • the storage tank 110 storing the inflow water introduces inflow water such as initial rainwater, sewage water, heavy water, or sewage treatment water (arrow a1) to precipitate contaminants therefrom.
  • the bottom 116 of the reservoir 110 is preferably formed in an inclined structure so that contaminants can be easily aggregated to produce precipitated sludge and easily discharged to the outside.
  • the pollutants precipitated here are, for example, coarse matter or particles of relatively high specific gravity. Therefore, such high specific gravity particles are primarily precipitated in the storage tank 110 in the step before the inlet tank 120.
  • the sludge precipitated on the bottom 116 of the reservoir 110 is discharged to the outside through a suction pump (not shown) installed outside (arrow a2).
  • the reservoir 110 is provided with a reservoir pump 112 so as to pump water into the inlet 120.
  • the inflow tank 120 pumps water from the storage tank 110 or the settling tank 140 to precipitate the contaminants on the bottom 126 to produce sludge. Precipitated sludge is a relatively high specific gravity pollutant.
  • the settling sludge is discharged to the outside through a suction pump (not shown).
  • the inflow tank 120 precipitates contaminants from water (through 114) coming from the reservoir 110 or from water (124) coming from the sedimentation tank 140 to advantageously produce the sludge from the bottom ( 126 is formed to be inclined.
  • the inflow tank 120 includes an inclined plate 128 disposed to be inclined such that the precipitated contaminant or the contaminant in the sedimentation does not return upward. As shown in FIG.
  • the inclined plate 128 is elongated along two sidewalls 1201 and 1202 of the inflow tank 120 facing each other (see reference numeral 128 of FIG. 3). It extends from 1201 and 1202 to the center and is alternately arranged at predetermined intervals, and is installed to be inclined so that the center thereof is lower than the periphery. Through this structure, the swash plate 128 can prevent the contaminants entering the bottom from rising upward again.
  • the sludge deposited on the bottom 126 of the inflow tank 120 may be discharged to the outside through a suction pump (not shown) installed outside (see arrow a3).
  • the settling tank 140 is introduced through the inside of the second drain pipe 133 (see arrow a8 in FIG. 2) to precipitate the contaminants present together with the water flowing into the settling tank 140.
  • the settling tank 140 may be further supplied with the overflow water from the backwash drain pipe (137). That is, as will be described later, in the case of overflowing by the action of the filtration and the backwashing unit 130, the overflowed water flows into the settling tank 140 through the backwashing drainage pipe 137. Therefore, the settling tank 140 is a portion for precipitating contaminants from the water flowing through the inside of the second drain pipe 133 and the overflow water flowing from the backwash drain pipe 137.
  • Precipitation tank 140 because the precipitation reaction is made in the state that there is almost no oxygen, otherwise it may be referred to as an anoxic tank.
  • the sedimentation tank 140 has a bottom portion 146 formed to be inclined so that contaminants are precipitated from the water flowing into the sediment and sludge is produced therefrom. Therefore, due to the structure of the inclined bottom portion 146 of the settling tank 140, aggregation of the settling sludge can be made well.
  • the settling tank 140 includes an inclined plate 148 to prevent the settled contaminants or contaminants in the settling in the upward direction similar to the structure of the inlet 120 described above.
  • the inclined plate 148 is formed along two side walls 1401 and 1402 of the settling tank 140 facing each other, extends from the two side walls 1401 and 1402 to the center, and are alternately arranged at predetermined intervals. It is formed to be inclined so that the center is lower than the surroundings. Through this structure, the inclined plate 148 may prevent the precipitated sludge from rising upward again.
  • the sludge precipitated at the bottom 146 of the settling tank 140 may be discharged to the outside through a suction pump (not shown) installed outside (see arrow a4).
  • a settling tank pump 122 is provided to pump water in the settling tank 140 into the inlet 120.
  • the above-described reservoir pump 112 and the sedimentation tank pump 122 alternately operate with each other. This will be described in detail together in the overall operation description.
  • the filter media layer 131 is a portion for treating water introduced from the inflow tank 120 into aerobic and anaerobic microorganisms through filtration and backwashing.
  • a carrier made of a material such as a saran lock biofilm media or a sponge having a filtration effect can be used, for example, as a kind of non-woven plate member made of masato, zeolite, or fiber.
  • the media layer 131 may be stacked vertically according to the particle size (for example, the lower portion may be composed of large particles and the upper portion may be composed of small particles).
  • Filtration and backwashing process is performed in the filter medium layer 131 as described in more detail below, by the action of aerobic microorganisms and anaerobic microorganisms in accordance with the repetitive flow of downflow and upflow in the filter medium layer 131 , Ammonia nitrogen (NH 3 -N) contained in the contaminant is converted to nitrate nitrogen (NO 3 -N) by nitrification process, and then to nitrite nitrogen (NO 2 -N), and finally N 2 Denitrification process can be made.
  • the nitrogen component in the contaminants is nitrified by aerobic microorganisms and denitrified by anaerobic microorganisms.
  • the first drain pipe 132 and the second drain pipe 133 are introduced into the filter layer 131 in a state where they are coupled to each other, and the upper part 1321 of the first drain pipe 132 is sealed and the lower 1322 is opened.
  • the upper and lower portions of the second drain pipe 133 may be opened to introduce water into the settling tank 140.
  • the first drain pipe 132 has a bottom end 1322 positioned higher than a bottom end of the media layer (see reference numeral 135). In the example shown in FIG. 1, the bottom is provided so that the height is generally similar to the L5 line.
  • the second drain pipe 133 is inserted into the first drain pipe 132, and the height of the upper end thereof is lower than the inside of the upper end 1321 of the first drain pipe 132.
  • this coupling structure of the first drain pipe 132 and the second drain pipe 133 is simply referred to as a drain pipe coupling structure.
  • the inside of the drain pipe coupling structure That is, the water level of the inner region of the first drain pipe 132 and the outer region of the second drain pipe 133 is also increased. If the water level is continuously increased and the water level is higher than the upper end of the second drain pipe 133, the water flowing into the outer region of the second drain pipe 133 while being the inner region of the first drain pipe 132 is the second drain pipe 133.
  • the third drain pipe 134 is a portion for supplying water from the inflow tank 120 to the filter medium layer 131 at the upper portion of the filter medium layer 131.
  • the third drain pipe 134 includes a plurality of discharge ports 1321 formed at predetermined intervals in the direction of the filter medium layer 131 to supply the water overflowed from the inflow tank 120 to the filter medium layer 131. .
  • the water flowing over to the third drain pipe 134 is pumped by either the reservoir pump 112 or the sedimentation tank pump 122 to deposit relatively high specific gravity particles in the inlet tank 120 to the sedimentation. By water after removal.
  • a lower portion of the filter layer 131 is further provided with a support net 135 for supporting the filter layer 131 and discharging water passing through the filter layer 131 downward.
  • water supporting the support network 135 between the support network 135 and the bottom 139 of the filtration and backwashing unit 130 and water flowing between the pores of the support network 135 is discharged to the first drain pipe 132 side, that is, the drain pipe.
  • It has a support member 136 that forms a space for supply to the side of the coupling structure.
  • the size of the pores of the support net 135 is required to be smaller than the size of the particles of the filtration layer 131 supported by the support net 135, and the support member 136 is illustrated, as illustrated in FIGS. 1 and 2.
  • a plurality of rods having a triangular cross section and a narrow triangular column shape are arranged long at predetermined intervals to support the support network 135 from below, and drain water from the air gaps between the pores of the support network 135. It can be configured to feed (see arrows a6 and a7 in FIG. 2) to the coupling structure side. Since the shape of the supporting member 136 of Figs. 1 and 2 is only illustrated, it is not limited to such triangular prism-shaped rods.
  • the filtration and backwashing unit 130 further flows out the water to the settling tank 140 when the water level continues to increase while the water flows out to the settling tank 140 through the inside of the second drain pipe 133.
  • a backwash drain pipe 137 for adjusting the water level in the media layer 131 is further included.
  • the backwash drain pipe 137 is installed to extend from the position lower than the top-end of the second drain pipe 133 to the sedimentation tank 140 to introduce the overflow water into the sedimentation tank 140.
  • the overflow water may contain contaminants or microbial masses released by backwash.
  • L1 is the height of the upper end of the second drain pipe 133
  • L2 is the installation height of the backwash drain pipe 137
  • L2 is positioned lower than L1.
  • the water is discharged only by the drain pipe coupling structures 132 and 133 and the water level continues to increase beyond the discharge capacity of the drain pipe coupling structures 132 and 133.
  • the discharge through the backwash drain pipe 137 is also parallel.
  • the biofilm water treatment apparatus having a non-powered backwashing function may further include a final treatment tank 150 and a disinfection tank 160 for water treatment after the precipitation tank 140.
  • the final treatment tank 150 finally precipitates the contaminants remaining in the overflowed water after the pollutant is precipitated in the sedimentation tank 140, the disinfection tank 160 is the water after the precipitation in the final treatment tank 150 This is for disinfection.
  • a disinfectant injection hole for injecting a disinfectant such as chlorine into the disinfection tank 160 may be separately provided.
  • the disinfection tank 160 may be provided with a disinfection tank pump 162 to discharge the disinfected water to the outside (see arrow a5).
  • the wall height L4 is installed to be lower.
  • the biofilm water treatment apparatus of the present invention as shown in Figures 1 to 4, the upper layer including the reservoir 110, the inflow tank 120, and filtration and backwashing 130, and the settling tank 140 , can be implemented as a simple treatment device that can be divided into a lower layer including the final treatment tank 150 and the disinfection tank 160, and does not require a separate blower, diffuser facilities for air supply or backwashing In addition, it can be advantageous and can save energy.
  • the filtration process proceeds with the downward flow of water from top to bottom. That is, in the filtration process, when water is supplied through the outlet 1321 of the third drain pipe 134 on the upper side of the filter medium layer 131, pollutants mixed with water, for example, organic substances, fine particles, suspended solids and heavy metals.
  • the back is a process of being filtered and adsorbed by the filter media of the filter media layer 131 or decomposed by the biofilm present in the filter media layer (see reference numeral ff in FIG. 1).
  • the process proceeding according to the upward flow from the lower part of the filter layer 131 to the upper part by the influent continuously introduced is a back washing process (see reference numeral bw of FIG. 1). That is, the backwashing process is adsorbed between the contaminants in the media layer 131, that is, the media layer in the media layer 131, as the water flows from the lower part of the media layer 131 to the upper part to block the pores of the media layer Contaminants or microbial lumps are the process of moving back to the upper layer (131). In other words, the water flow is repeated in the upstream and the downstream to prevent the voids between the media from being blocked.
  • the upper part of the filter medium layer 131 is a portion higher than the lower end of the first drain pipe 132 of the filter layer 131 as compared with the aerobic phase in which a relatively large amount of oxygen exists (reference numeral ae in FIG. 1), and the filter layer
  • the lower part of 131 is anaerobic as a lower part of the medial layer 131 than the lower end of the first drain pipe 132 (reference an in FIG. 1).
  • the "height of the first drain pipe 132" is actually referred to the sedimentation tank 140 by the second drain pipe 133 in consideration of the basic properties of water (such as due to surface tension). Since the discharge is not discharged to the water level that exactly matches the lower end of the first drain pipe 132, this point is considered.
  • the filtration and backwashing unit 130 is treated with aerobic microorganisms (aerobe, ae) in the mediator layer 131 after the contaminants moved from the top to the bottom of the mediator layer in the filtration process.
  • aerobic microorganisms aerobe, ae
  • anaerobic microorganisms anaerobe, an
  • aerobic microorganisms present in the lower part of the microorganisms
  • aerobic microorganisms present in the upper part of the anaerobic microorganisms
  • the contaminants moved by upflow (bw) during the backwashing process do.
  • the contaminants are nitrified.
  • the nitrified contaminants then move downward along the downflow (ff) and are placed in the anaerobic phase.
  • the contaminants that have undergone nitrification are denitrified by anaerobic microorganisms (S52).
  • anaerobic microorganisms S52
  • nitrogen is not completely removed from contaminants. Therefore, the contaminants in the state are moved upward in accordance with the upflow in the backwashing process and placed on the exhalation again (S53).
  • the contaminants are subjected to nitrification again, and then moved to the anaerobic phase according to the downflow again and denitrified by the anaerobic microorganisms (S54).
  • the water is discharged to the anoxic tank, that is, the settling tank 140 through the inside of the second drain pipe 133 together with the denitrified pollutant (S55).
  • the process may be repeated by pumping the water in the settling tank 140 to the inlet 120 again.
  • the repetitive treatment by the aerobic and anaerobic microorganisms in the filter layer 131 according to the filtration process and the backwashing process, that is, upstream and downstream, may be repeated several times for effective denitrification.
  • root development plants such as irises and reeds may be further planted on the upper portion of the filter layer 131.
  • the root of the planted root development plant may absorb nitrogen or phosphorus mixed in the water flowing into the medial layer 131 in the medial layer 131, and thus may be used as a nutritional substance of the root development plant.
  • a root development plant it is possible to absorb and absorb nitrogen, phosphorus, heavy metals, etc., among the pollutants in the water, from the roots of the plants, and to decompose pollutants (eg, organic substances) by microorganisms that proliferate in the roots of the plants. have.
  • the roots of the plants grow between the media can further enhance the function of the media and effectively prevent the blockage of media.
  • FIG. 6 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present disclosure in stages. Referring to FIG. 6 together with FIGS. The overall treatment process and effects of are as follows.
  • water pumped by any one of the reservoir pump 112 and the sedimentation tank pump 122 is introduced into the inflow tank 120. That is, when water is not supplied from the storage tank 110 to the inflow tank 120, the water in the settling tank 140 is pumped to the settling tank pump 122 and circulated.
  • the introduced water is subjected to the precipitation process in the inflow tank 120, where a relatively high specific gravity of contaminants are precipitated (S61), where the sediment sludge agglomerated at the bottom is discharged to the outside through a separate suction pump.
  • the water level in the inflow tank 120 is continuously increased so that water containing contaminants is supplied to the filtration and backwashing unit 130 through the third drain pipe 134.
  • nitrification proceeds by an aerobic microorganism (S62), and downwards by downward flow to denitrification by anaerobic microorganisms. (S63).
  • S62 and S63 may be increased when the water level is increased, that is, the S62 process and the S63 process are repeated after the S63 process according to the upstream.
  • the water containing the contaminant is introduced into the settling tank 140 through the second drain pipe 133.
  • the water flowing into the settling tank 140 the water level in the filter medium layer 131 continues to rise, there is also water discharged through the backwash drain pipe (137).
  • the water in the settling tank 140 is subjected to the settling process in the settling tank 140, an anoxic tank (S64).
  • anoxic tank S64
  • the sedimentation tank 140 to operate the sedimentation tank pump 122 to pump the water in the sedimentation tank 140 into the inlet tank 120, including biofilm filtration (S62, S63) and filtration and backwashing process and Through the internal circulation cycle through the pumping from the settling tank 140, it is possible to efficiently remove various contaminants including nitrogen, phosphorus.
  • the influent water from which the contaminants have been removed is discharged through the final treatment tank 150 and the disinfection tank 160 (S65).
  • phosphorus in the water is discharged into the water under anaerobic conditions, but under aerobic conditions, aerobic microorganisms are ingesting phosphorus or microorganisms ingesting phosphorus are sludged and released to the outside.
  • various kinds of organic matter can be decomposed into aerobic microorganisms that adhere to and propagate on the surface of the filter medium while water passes through the filter medium in the filter medium layer 131, and it can capture SS (Suspended Solids) and efficiently nitrogen. It can be removed, and can be effectively discharged to the outside by flocculating the sludge containing phosphorus in the settling tank 140.
  • the root development plant may be planted further on the upper layer 131, and when the root development plant is planted, nitrogen, phosphorus, heavy metals, etc., among water pollutants, may be adsorbed and absorbed at the root of the plant. And contaminants can be degraded by microorganisms that grow in the roots of plants.
  • FIG. 7 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention
  • FIG. 8 is a cross-sectional view of another surface of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7
  • FIG. 9 is a view of FIG. 7 is a perspective view of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7,
  • FIG. 10 is a block diagram illustrating a cycle of filtration and backwashing of the biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present disclosure.
  • a biofilm water treatment apparatus having a non-powered backwashing function may be configured to overflow from a reservoir 1110 and a reservoir 1110 for storing inflow water or to pump 1112.
  • the first biofilm reactor 1130 for firstly treating the aerobic and anaerobic microorganisms through a repetitive flow, and receives the first water-treated water from the first biofilm reactor 1130 at the lower portion of the first biofilm reactor 1130.
  • a second biofilm reactor 1140 for secondary water treatment through repeated flows of upstream and downstream flows. Therefore, when the downflow in the first and second biofilm reactors, the air is introduced, there is no need for a separate blower to maintain the aerobic state.
  • the first biofilm reactor 1130 is a first carrier layer (1131a, 1131b, hereinafter collectively referred to as '1131') for treating water introduced from the inlet tank 1120 with aerobic and anaerobic microorganisms through filtration and backwashing.
  • first drain pipe 1132 formed to be open, a second drain pipe 1133 inserted into the first drain pipe 1132 and having an upper and lower portions open to the second biofilm reactor 1140, and an inlet tank 1120;
  • An inlet path 1134 for supplying water from the lower part to the lower part of the first carrier layer 1131, and positioned between the inlet path 1134 and the first carrier layer 1131 to support the first carrier layer 1131.
  • a first support net 1135 for passing water introduced through the inlet path 1134, and a first support net 1135 between the first support net 1135 and the floor.
  • the space 11341 is formed to be connected to the inflow path 1134.
  • the second drain pipe is an inner region of the first drain pipe 1132.
  • the water flowing into the outer region of the 1113 that is, the water flowing between the first drain pipe 1132 and the second drain pipe 1133, has a water level in the lower end of the first drain pipe 1132. It may be discharged to the second biofilm reactor 1140 through the inside of the second drain pipe 1133 until the height L5 becomes substantially the same, thereby preventing the blocking of the first carrier layer 1131.
  • the first drain pipe 1132 may be generally vertically introduced into the first carrier layer 1131 to be fixed by the support wall 1138. Although not shown, for example, the first drain pipe 1132 may be fixed to the support wall 1138 so as to be spaced apart from the support wall 1138 so as not to move through a screw or other fixing means.
  • the support wall 1138 is formed to have a space in which the first drain pipe 1132 and the like can be inserted between the first carrier layer 1131.
  • the support wall 1138 is formed of the first carrier layer 1131 and the first carrier layer 1131. Between the first drain pipe 1132, the first carrier layer 1131 is disposed to be adjacent to and spaced apart from the first drain pipe 1132. Therefore, a predetermined space 1139 through which external air can flow is provided between the first drain pipe 1132 and the support wall 1138.
  • the space 1139 is the operation process described above, that is, when the water level is gradually increased from the lower portion of the first carrier layer 1131 and becomes higher than the height L1 of the upper end of the second drain pipe 1133, the first drain pipe ( Water flowing into the first drainage pipe 1132 and the second drainpipe 1133, that is, the water flowing into the first drainage pipe 1132 and the second drainpipe 1133, which is an inner region of the first drainage pipe 1333,
  • the operation process flowing out to the second biofilm reactor 1140 through the interior of the second drain pipe 1133 until the height L5 of the lower end of the first drain pipe 1132 becomes substantially the same may be performed smoothly.
  • the first carrier layer 1131 includes a plurality of filter nets 1131a arranged in a substantially vertical direction at predetermined intervals, and a contact medium 1131b interposed between the plurality of filter nets 1131a.
  • the filtering nets 1131a may be disposed at predetermined intervals, and the contact media 1113b may be interposed in the space 1131b1 therebetween.
  • the contact filter 1131b is a kind of nonwoven fabric member made of fiber, and may be a carrier of a material such as a saran lock biofilm media or a sponge having a filtration effect, and a carrier of a material such as saran lock or sponge.
  • the fixed-phase contact media that maximizes the surface area such as the removal of suspended solids by gravity as well as removal by filtration and microorganisms attached to the contact media, can be simultaneously promoted.
  • Carriers of materials such as sarak rock or sponge It is easy to replace and wash.
  • a portion of the bottom of the bottom of the space 11341 for supplying water discharged downward through the first support net 1135 to the side of the first drain pipe 1132 (see FIG. 8).
  • the lower portion of the support wall 1138) is formed to be inclined so that the center portion is low around the portion through which the second drain pipe 1133 penetrates (11261) to collect the settling sludge in the discharged water.
  • the precipitated sludge may be discharged to the outside via a separate sludge discharge means (eg, suction pump) (arrow a11).
  • the reservoir 1110 storing the inflow water introduces inflow water such as initial rainwater, sewage water, heavy water, or sewage treatment water (arrow a1).
  • the storage tank 1110 may be formed in an inclined structure to precipitate the contaminants in the inflow water to facilitate the aggregation of the settling sludge.
  • the pollutants precipitated here are, for example, coarse matter or particles of relatively high specific gravity. Therefore, such high specific gravity particles are primarily precipitated in the reservoir 1110 at the stage prior to the inlet tank 1120.
  • the sludge deposited on the bottom of the reservoir 1110 may be discharged to the outside through, for example, a suction pump (not shown) installed separately.
  • a reservoir pump 1112 is provided to pump water into the inlet 1120.
  • the inlet 1120 overflows the water from the reservoir 1110 or pumps it in using a reservoir pump 1112 (arrow a2) to generate sedimentation sludge by depositing contaminants on the bottom 1126 therefrom.
  • the inflow tank 1120 may introduce water from the second biofilm reactor 1140 through pumping (arrow a12). Inflow of water through the overflow or pumping from the reservoir 1110 and inflow of water from the second biofilm reactor 1140 are independent of each other. That is, in introducing water into the inflow tank 1120, water may be introduced only from the reservoir 1110, or water may be introduced through pumping from only the second biofilm reactor 1140, and both may simultaneously It can also be introduced.
  • the precipitated sludge produced is composed of relatively high specific gravity pollutants.
  • the settling sludge is discharged to the outside via a suction pump (not shown) (arrow a3).
  • the inlet tank 1120 is preferably formed with the bottom portion 1126 inclined so as to advantageously precipitate contaminants from the incoming water (arrows a2 or a12) to produce settling sludge.
  • the inflow tank 1120 includes an inclined plate 1128 disposed to be inclined so that the precipitated contaminants or the contaminants in the sedimentation do not return upward. As shown in FIG. 7, the inclined plate 1128 is elongated along two side walls 1121 and 11202 of the inflow tank 1120 facing each other (see reference numeral 1128 in FIG. 9).
  • the centers 11201 and 11202 Extending from the centers 11201 and 11202, they are alternately arranged at predetermined intervals, and are installed to be inclined so that the center thereof is lower than the periphery. Through this structure, the inclined plate 1128 may prevent the contaminants falling down from rising upward again.
  • the second biofilm reactor 1140 is a conduit through microbial contact when the water level of the induction pipe 1142 for inducing water supplied from the second drain pipe 1133 and the water induced through the induction pipe 1142 is gradually increased.
  • the second support layer (1141) and the second support network for supporting the second carrier layer (1141) in the lower portion of the second carrier layer (1141) for passing the water guided through the guide tube (1142) 1143), sediment filtering net 1144 for allowing the contaminants mixed with water to precipitate through the lower part of the second supporting net 1143, and sediment sludge is generated by the contaminant precipitated through the sediment filtering net 1144.
  • a bottom portion 1146 is formed to be inclined as possible, and a pump 1122 for pumping water into the inlet 1120 is located below the second support net 1143. Pumping in the pump 1122 is necessary to perform the secondary filtration and backwashing process in the second biofilm reactor 1140, further pumping water into the inlet 1120 by pumping in the pump 1122 Precipitate contaminants. As mentioned above, the process of introducing water into the inlet 1120 through pumping at the pump 1122 may proceed regardless of whether or not water is being introduced from the reservoir 1110.
  • the second carrier layer 1141 includes a carrier as a material for contacting microorganisms, and performs biofilm filtration while the introduced water passes upward and downward through the carrier.
  • the carrier may be stacked in the basic form, such as a hexagonal sponge carrier.
  • the sludge precipitated at the bottom 1146 of the second biofilm reactor 1140 may be discharged to the outside through an external suction pump (not shown) (see arrow a4).
  • the treatment step in the biofilm water treatment device having a non-powered backwashing function can be divided into three steps.
  • the first step is to settle and remove coarse material and relatively high specific gravity particles (treatment in inlet tank 1120), and the second step is aerobic and anaerobic microorganisms, with repeated flows of upstream and downstream flows. Decomposing various organic substances in the contaminants and removing nitrogen / phosphorus by the action of (processing in the first biofilm reactor 1130), and the third step is discharged through the second drain pipe 1133.
  • Water may be classified into a step of performing a biofilm treatment using a carrier according to filtration and backwashing (treatment in the second biofilm reactor 1140).
  • the second step that is, the treatment process in the first biofilm reactor 1130
  • the water level of the water introduced through the inlet 1134 in the inlet tank 1120 gradually increases to reach the L1 level
  • the water may be 2 is discharged downward through the drain pipe 1133.
  • the particles trapped in the contact medium 1131b are deposited on the partial region 11261 of the bottom formed obliquely according to the high flow rate.
  • the water level reaches the lower end 1112 of the first drain pipe, that is, L5
  • the discharge of water through the second drain pipe 1133 is stopped and the water level is increased again.
  • the water level rises that is, when the water in the tank rises to the upper portion of the contact medium 1131b
  • back washing is performed to prevent the contact medium 1113b from being blocked.
  • first drain pipe 1132 and the second drain pipe 1133 are introduced into the first carrier layer 1131 at a predetermined interval 1139 in the support wall 1138 while being coupled to each other.
  • the upper part 1131 of the first drain pipe 1132 is sealed and the lower part 1112 is formed to be open, while the upper part and the lower part of the second drain pipe 1133 are opened to guide the induction pipe 1142 of the second biofilm reactor 1140.
  • Water can be introduced into the
  • the bottom of the first drain pipe 1132 is positioned higher than the bottom of the first carrier layer 1131. In the example shown in FIG. 7, the height of the lower end of the first drain pipe 1132 is substantially similar to the L5 line.
  • the second drain pipe 1133 is inserted into the first drain pipe 1132, and the height of the upper end thereof is lower than the inside of the top 11321 of the first drain pipe 1132.
  • this coupling structure of the first drain pipe 1132 and the second drain pipe 1133 is simply referred to as a 'drain pipe coupling structure'.
  • the drain pipe coupling structure is inside. That is, the water level of the inner region of the first drain pipe 1132 and the outer region of the second drain pipe 1133 is equally high.
  • the water flowing into the outer region of the second drain pipe 1133 while being the inner region of the first drain pipe 1132 is not the second drain pipe 1133.
  • Flows into the induction pipe 1142 of the second biofilm reactor 1140, and the outflow from the second drain pipe 1133 to the induction pipe 1142 is increased in the first carrier layer 1131. Is continued to be approximately equal to the lower end of the first drain pipe 1132 (ie, the water level becomes L5).
  • the water level in 1113 continues until substantially equal to the lower end of the first drain pipe 1132 (that is, until the water level becomes L5).
  • the air is removed from the outer region and the inner region, and the pressure in the outer region of the second drain tube 1133 is lowered. Due to the difference between the pressure above the water level in the layer 1131 and the lowered pressure in the outer region of the second drain 1113, the water of the first carrier layer 1131 causes the outer and inner regions of the second drain 1113 to dissipate.
  • a first support net 1135 supporting the first carrier layer 1131 and allowing water to pass freely up and down between the first carrier layer 1131 and the water inflow space 1134.
  • a support member 1136 is provided to form a water inflow space 1134 for supplying water flowing between the pores to the first drain pipe 1132, that is, the drain pipe coupling structure.
  • the support member 1136 may include, for example, a plurality of rods having a triangular cross section and a narrow triangular column shape having a long triangular column shape and being arranged at predetermined intervals so as to have a first support net. It may be configured to supply water coming out between the pores of the first support net 1135 to the drain pipe coupling structure while supporting the 1135 from below (see arrows a6 and a7 in FIG. 8). Since the shape of the support member 1136 of FIGS. 7 and 8 is merely illustrated, the shape of the support member 1136 is not limited to the rods having a triangular prism shape.
  • the lower part of L5 is always filled with water in the inflow and outflow process, so the upper part of L5 is aerobic and the lower part thereof.
  • ammonia nitrogen (NH 3 -N) contained in the contaminants may be removed by nitrification by the action of aerobic and anaerobic microorganisms under repeated flows of upstream and upstream in the contact medium 1131b.
  • the denitrification process can be accomplished by acidic nitrogen (NO 3 -N), then by nitrous nitrogen (NO 2 -N), and finally by N 2 .
  • the nitrogen component in the contaminants is nitrified by aerobic microorganisms and denitrified by anaerobic microorganisms.
  • the second carrier layer 1141 is subjected to contact filtration and oxidation (organic decomposition by microorganism contact). Thereafter, the water level may be increased to flow into the ozone contact tank 1150 to be described later, and may be pumped using the pump 1122 to be introduced into the inflow tank 1120 (see arrow a12). When the pump is pumped using the pump 1122, the water level is lowered. At this time, the biofilm treatment by the second carrier layer 1141 is performed.
  • a second support net 1143 is installed at the bottom of the second carrier layer 1141, and a precipitation filter net 1144 is finally installed at the bottom of the second carrier layer 1141 to allow contaminants to settle on the bottom 1146.
  • the settling sludge is discharged to the outside via the suction pump (arrow a4).
  • the biofilm water treatment apparatus having the non-powered backwashing function may further include an ozone contact tank 1150 and a disinfection tank 1160 for water treatment after the second biofilm reactor 1140.
  • the ozone contact tank 1150 oxidizes or decolorizes the excess water after contaminants are precipitated in the second biofilm reactor 1140, and the disinfection tank 1160 disinfects the water after the treatment in the ozone contact tank 1150.
  • It is a treatment tank for.
  • a disinfectant injection hole for injecting a disinfectant such as chlorine into the disinfection tank 1160 may be separately provided.
  • a sterilization pump 1116 may be provided to discharge the sterilized water to the outside (see arrow a5).
  • the ozone contact tank 1150 and the disinfection tank 1160 are higher than the wall height L3 between the ozone contact tank 1150 and the second biofilm reactor 1140 so that water can flow from the ozone contact tank 1150 to the disinfection tank 1160.
  • Wall height L4 between them is set lower.
  • another embodiment of the biofilm water treatment apparatus having a non-powered backwashing function of the present invention includes an upper layer including a reservoir 1110, an inlet tank 1120, and a first biofilm reactor 1130, and a second biofilm reactor ( 1140, it can be implemented as a simple treatment device that can be divided into a lower layer including the ozone contact tank 1150 and the disinfection tank 1160, there is a convenient advantage in terms of its installation, and separate blower, air diffuser for backwash There is no need for such equipment, so it can be advantageous in terms of cost and save energy.
  • the cycle shown as the primary biofilm treatment in FIG. 10 is a process in the first biofilm reactor 1130.
  • Water is introduced into the lower portion of the first biofilm reactor 1130 through the inflow passage 1134 from the inflow tank 1120 and the water level gradually increases. At this time, contaminants introduced into the first biofilm reactor 1130 together with water penetrate into the first carrier layer 1131 according to the flow of water (upflow).
  • the operation of the above-described drainage pipe coupling structure results in a downward flow in which water flows from the top to the bottom, and contaminants mixed with water in the upstream and downstream flows, for example, organic materials, particulates, suspended solids and Heavy metals and the like are filtered and adsorbed by the contact filter 1131b of the first carrier layer 1131, or the organic material is decomposed by the biofilm present in the first carrier layer 1131 (see reference numeral ff in FIG. 7).
  • the upper portion of the first carrier layer 1131 is generally higher than the lower end of the first drain pipe 1132 of the first carrier layer 1131 as compared with the aerobic phase in which oxygen is present relatively (reference numeral ae in FIG. 7). ),
  • the lower portion of the first carrier layer 1131 is anaerobic as the lower portion of the first carrier layer 1131 is generally lower than the lower end of the first drain pipe 1132 (reference numeral an in FIG. 7).
  • the term 'usually the height of the first drain pipe 1132' refers to a second biofilm reactor by the second drain pipe 1133, considering the basic properties of water (such as due to surface tension). Since the discharge to the 1140 is not discharged to the water level exactly matching the lower end of the first drain pipe 1132, this point is considered.
  • the first biofilm reactor 1130 is aerobic in the first carrier layer 1131 for contaminants moved from the top to the bottom of the first carrier layer in the filtration process.
  • aerobe treated with anaerobic microorganisms (anaerobe, an) present in the lower part of the aerobic microorganisms, treated with anaerobic microorganisms, and then moved by upflow (bw) during backwashing Is treated with an aerobic microorganism present on top of the anaerobic microorganism.
  • the pollutant is nitrified during the treatment of the pollutant by the aerobic microorganism (S151).
  • the nitrified contaminants then move downward along the downflow (ff) and are placed in the anaerobic phase.
  • the contaminants that have undergone nitrification are denitrified by anaerobic microorganisms (S152).
  • anaerobic microorganisms S152
  • nitrogen is not completely removed from contaminants. Therefore, the contaminants in the state are moved upward according to the upstream in the backwashing process and placed on the exhalation again (S153).
  • the pollutant is subjected to nitrification again, and then moved back to the anaerobic phase according to the downflow again and denitrified by the anaerobic microorganism (S154).
  • Biofilm treatment is performed (S155).
  • the repetitive treatment process by the aerobic microorganisms and anaerobic microorganisms in the first carrier layer 1131 according to the filtration process and the backwashing process, that is, upstream and downstream flows may be repeated several times for effective denitrification.
  • Secondary biofilm treatment (S155) process as described above, by the inflow of water through the induction pipe 1142 and the discharge through the pumping by the pump 1122 may be a repetitive flow of downflow and upflow, Accordingly, filtration, microbial contact treatment, and blocking of media may be prevented in the second carrier layer 1141.
  • water pumped by the pump 1112 of the reservoir 1110 and / or the pump 1122 of the second biofilm reactor 1140 is introduced into the inlet 1120.
  • the introduced water is subjected to the precipitation process in the inflow tank 1120, where a relatively high specific gravity of the contaminants is precipitated (S161), the sedimentation sludge aggregated on the bottom is discharged to the outside through a separate suction pump.
  • S161 a relatively high specific gravity of the contaminants
  • the sedimentation sludge aggregated on the bottom is discharged to the outside through a separate suction pump.
  • biofilm filtration is performed in the first carrier layer 1131 as described above.
  • nitrification proceeds by the aerobic microorganism (S162), and is moved downward according to the downflow to denitrification by the anaerobic microorganism (S163).
  • the denitrification efficiency may be further increased.
  • the water containing the contaminant is introduced into the second biofilm reactor 1140 through the second drain pipe 1133. Water introduced into the second biofilm reactor 1140 is subjected to the second biofilm treatment by the second carrier layer 1141 (S164).
  • the treatment in the second carrier layer 1141 according to the upflow and the downflow is as described above.
  • various organic substances can be decomposed into microorganisms that adhere to and propagate on the surface of the media, and SS (Suspended Solids) are captured.
  • SS Small Solids
  • the influent water from which the contaminants have been removed is discharged through the ozone contact tank 1150 and the disinfection tank 1160 (S165 and S166).
  • phosphorus in the water is discharged into the water under anaerobic conditions, but under aerobic conditions, aerobic microorganisms are ingesting phosphorus or microorganisms ingesting phosphorus are sludged and released to the outside.
  • the biofilm water treatment apparatus having the non-powered backwashing function of the present invention it is possible to remove nutrients such as nitrogen and phosphorus from the influent, decompose organic matters, and secure stable water quality by removing turbidity.
  • contaminants can be utilized as nutrients for plants, and contaminants can be decomposed through the biofilm of adherent microorganisms without introducing a separate power, and clogging in the filtration layer due to the repeated action of downflow and upflow. The phenomenon can be prevented, and a contact with the vegetation filtration layer can provide a stable operating system with greatly improved efficiency.
  • Biofilm water treatment apparatus having a non-powered backwashing function of the present invention can be applied to the combined sewage (CSOs) treatment of sewage treatment, reprocessing of sewage treatment, heavy water treatment, small sewage treatment facilities.
  • CSOs combined sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A biofilm water treatment device having a non-powered backwashing function is disclosed. The biofilm water treatment device comprises: a precipitation tub for precipitating contamination material mixed with water flowing therein; and a filtration and backwashing unit. The filtration and backwashing unit comprises: a filter medium layer for performing water treatment, through a filtration and backwashing process, on water flowing therein by using aerobic microorganism and anaerobic microorganism; a first drain pipe of which the bottom end is positioned to be higher than the bottom end of the filter medium layer, the top part thereof is sealed, and the bottom part thereof is formed to be open, inside the filter medium layer; a second drain pipe inserted into the first drain pipe and of which the top and bottom parts are open and the bottom part is connected to the precipitation tub; a third drain pipe for supplying water to the filter medium layer; a support net for supporting the filter medium layer at the bottom part of the filter medium layer and discharging water passing through the filter medium layer to the bottom part of the support net; and a support member for supporting the support net between the support net and ground and forming a space for supplying water discharged downward through the support net to the first drain pipe.

Description

무동력 역세 기능을 갖는 생물막 수처리 장치Biofilm water treatment device with no power backwash
본 발명은 무동력 역세(back washing) 기능을 갖는 생물막 수처리 장치에 관한 것이며, 더 구체적으로는, 초기 우수, 하수, 중수 또는 하수처리수 등의 유입수를 처리함에 있어서, 자연친화적이면서도 비용효과적인 처리 방식을 통해 유입수로부터 질소·인 등을 제거하고, 유기물을 분해하여 안정적인 수질 확보에 기여할 수 있는 무동력 역세 기능을 갖는 생물막 수처리 장치에 관한 것이다.The present invention relates to a biofilm water treatment apparatus having a non-power back washing function, and more specifically, to treating influent such as initial rainwater, sewage, heavy water or sewage treatment water, a natural and cost-effective treatment method. The present invention relates to a biofilm water treatment apparatus having a non-powered backwashing function capable of removing nitrogen and phosphorus from influent and decomposing organic substances to contribute to securing stable water quality.
일반적으로, 하수 처리는 유입하수를 1차 침전지에서 침전시킨 후, 혐기조, 무산소조, 호기조로 구성되는 미생물 반응조에서 미생물을 이용하여 처리한 후, 다시 2차 침전지에서 침전 방류하는 방법이 많이 사용되고 있다. 이러한 처리 과정에서, 생긴 침전물을 슬러지(sludge)(또는 '오니'라고도 함)라고 하며, 침전된 슬러지는 방출되어 별도의 처리 공정을 거치게 된다.In general, the sewage treatment is a method of precipitating the influent sewage in the primary sedimentation basin, after treatment with microorganisms in the microbial reaction tank consisting of anaerobic tank, anoxic tank, aerobic tank, and then discharged again in the secondary sedimentation basin. In this process, the precipitate formed is called sludge (or 'sludge'), and the precipitated sludge is released and subjected to a separate treatment process.
한편, 하수 처리 흐름에서 최종적으로 배출되는 유출수에는 유량에 비해 질소나 인의 농도가 높아서 생태 환경을 저해하는 주요 원인으로 작용하는 문제점이 있었다. 이러한 문제점을 해결하기 위한 방안이 다 방면에서 연구되어 왔으며, 그 일 예가 대한민국 등록특허 제10-0783789호(2007년 12월 03일자 등록)에 개시되어 있다. 상기 문헌은, 하수처리시 탈질 효율을 향상시켜 유출수에 질소가 함유되어 수계의 환경을 저해하는 것을 방지하는 하수처리장치 및 이를 이용한 하수처리방법을 개시하고 있으며, 이 하수처리장치 및 이를 이용한 하수처리방법은, 하수를 유입시켜 침전시키는 1차 침전조와, 상기 1차 침전조의 유출수를 미생물을 이용하여 질산화시키는 호기조를 포함하는 미생물 반응조와, 상기 미생물 반응조의 미생물 슬러지를 침전시키는 2차 침전조와, 상기 2차 침전조의 유출수가 수용되며, 내부의 담체를 통해 탈질하는 탈질 반응조 및 상기 탈질 반응조의 유출수에 포함된 부유물을 내부의 여재를 통해 제거하며 상기 유출수의 잔존 질산염을 제거하는 탈질 여과조로 이루어져, 하수처리시 최종 유출수의 질소함유량을 저감시켜 수계의 생태환경에 악영향을 미치는 것을 예방함으로써 안정적인 유출 수질을 확보하기 위한 것이다.On the other hand, the effluent finally discharged from the sewage treatment stream has a problem that acts as a major cause to inhibit the ecological environment because the concentration of nitrogen or phosphorus is higher than the flow rate. A method for solving this problem has been studied in various aspects, an example of which is disclosed in Korean Patent Registration No. 10-0783789 (registered on December 03, 2007). The document discloses a sewage treatment apparatus and a sewage treatment method using the same, which improves denitrification efficiency during sewage treatment and prevents nitrogen from being discharged to impair the environment of the water system. The method includes a first settling tank for introducing sewage into the sewage, a microbial reactor including an aerobic tank for nitrifying the effluent of the first settling tank using microorganisms, a second settling tank for precipitating microbial sludge of the microbial reactor, The outflow water of the secondary sedimentation tank is accommodated, and consists of a denitrification reactor for denitrification through an internal carrier and a denitrification filtration tank for removing suspended matter contained in the effluent of the denitrification reactor through an internal filter medium and removing residual nitrate from the effluent. Reduces the nitrogen content of the final runoff during treatment, adversely affecting the ecological environment of the water system By preventing that is to secure a stable effluent water quality.
그러나, 이와 같은 방식의 하수처리방법은, 혐기조, 무산소조 및 호기조로 별도로 구별하여 질소, 인을 제거하고 있고, 미생물 반응조의 미생물 슬러지를 침전시키는 2차 침전지를 별도로 구비하고 있어, 그 처리 과정이 복잡하고 처리 비용이 많이 소요될 뿐만 아니라, 식생을 전혀 고려하지 않은 처리 방식이라는 점에서 문제가 있다. 또한, 여재의 폐색을 해결하기 위한 방안이 개시되어있지 않다.However, the sewage treatment method of this type is separated into anaerobic tank, anoxic tank, and aerobic tank to remove nitrogen and phosphorus, and is equipped with a secondary sedimentation basin for sedimenting microbial sludge in a microbial reactor, and the treatment process is complicated. In addition to being expensive and expensive, there is a problem in that the treatment method does not consider vegetation at all. In addition, a method for solving the blockage of the media is not disclosed.
따라서, 이러한 문제를 해결할 수 있도록, 자연친화적이면서도 비용효과적인 처리 방식이 절실하다.Therefore, there is an urgent need for a natural and cost effective treatment method to solve this problem.
따라서, 본 발명이 해결하고자 하는 과제는 초기 우수, 하수, 중수, 하수 재이용수 또는 하수처리수 등의 유입수를 처리함에 있어서, 자연친화적이면서도 비용효과적인 처리 방식을 통해 유입수로부터 질소·인 등을 제거하고, 유기물을 더욱 효과적으로 분해하여 안정적인 수질 확보에 기여할 수 있는 무동력 역세 기능을 갖는 생물막 수처리 장치를 제공하는 것이다.Therefore, the problem to be solved by the present invention is to remove nitrogen and phosphorus from the influent through a natural friendly and cost-effective treatment method in the treatment of influent such as initial rainwater, sewage, heavy water, sewage reuse water or sewage treatment water. In addition, the present invention is to provide a biofilm water treatment apparatus having a non-powered backwash function that can more effectively decompose organic matter and contribute to securing stable water quality.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 내부로 유입되는 물에 혼합된 오염물질을 침전시키는 침전조; 및 내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리되게 하는 여재층과, 상기 여재층 내에서 하단(bottom-end)이 상기 여재층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관과, 상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 침전조로 연결되는 제2 배수관과, 상기 여재층으로 물을 공급하기 위한 제3 배수관과, 상기 여재층의 하부에서 상기 여재층을 지지하고 상기 여재층을 통과하는 물을 하부로 배출하기 위한 지지망과, 상기 지지망과 바닥 사이에서 상기 지지망을 지지하고 상기 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재를 갖는, 여과 및 역세부;를 포함한다.Biomembrane water treatment device having a non-powered backwashing function according to an embodiment of the present invention for solving the above problems, the settling tank for precipitating the contaminants mixed in the water flowing into; And a media layer for allowing water introduced into the media to be treated with aerobic microorganisms and anaerobic microorganisms through filtration and backwashing, and the bottom end of the media layer is higher than the lower end of the media layer and the top is closed. A first drain pipe having a lower opening, a second drain pipe inserted into the first drain pipe and having an upper and lower portions open and connected to the precipitation tank, a third drain pipe for supplying water to the filter layer, and the filter layer A support net for supporting the filter media layer at the lower portion of the lower layer and discharging the water passing through the filter layer to the lower portion, and the first drain pipe supports the support network between the support network and the bottom and discharges water downward through the support network. It includes; filtration and backwashing portion having a support member for forming a space for supply to the side.
일 실시예에 따라, 상기 무동력 역세 기능을 갖는 생물막 수처리 장치에서, 상기 여재층의 하부로부터 수위가 점차 높아져 상기 제2 배수관의 상단보다 높아지는 경우, 상기 제1 배수관의 내부 영역이면서 상기 제2 배수관의 외부 영역으로 유입되는 물은, 상기 여재층 내의 수위가 상기 제1 배수관의 하단과 동일하게 될 때까지 상기 제2 배수관의 내부를 통해 상기 침전조로 유출되어, 이러한 상향류와 하향류가 반복됨으로써 여재의 폐색현상을 방지하게 된다.According to one embodiment, in the biofilm water treatment apparatus having a non-power backwash function, when the water level from the lower portion of the filter layer is gradually higher than the upper end of the second drain pipe, it is an inner region of the first drain pipe and of the second drain pipe The water flowing into the outer region flows into the settling tank through the inside of the second drain pipe until the water level in the filter layer becomes equal to the lower end of the first drain pipe, so that the upstream and the downflow are repeated. It will prevent the blockage of the.
일 실시예에 따라, 상기 침전조는, 상기 침전조 내부로 유입되는 물로부터 오염물질이 침전되어 침전 슬러지가 생산되도록 경사가 형성되는 바닥부; 및 서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는, 경사판을 포함한다.According to one embodiment, the settling tank, the bottom portion is inclined to form a sludge produced by the contamination of contaminants from the water flowing into the settling tank; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
일 실시예에 따라, 상기 여과 및 역세부는, 상기 제2 배수관의 내부를 통해 상기 침전조로 물을 유출하는 동안에도 수위가 계속 높아지는 경우, 상기 침전조로 물을 더 유출시켜 수위를 조절하기 위해, 상기 제2 배수관의 상단(top-end)보다 낮은 위치에서부터 나와 상기 침전조로 이어지는 역세 배수관을 더 포함한다.According to one embodiment, the filtration and back washing portion, if the water level continues to increase even while the water flows out into the settling tank through the inside of the second drain pipe, in order to further control the water level by flowing more water into the settling tank, It further includes a backwash drain pipe leading from the position lower than the top end of the second drain pipe to the settling tank.
일 실시예에 따라, 상기 무동력 역세 기능을 갖는 생물막 수처리 장치는, 상기 침전조 내에서 오염물질이 침전된 후 월류하는 물에 잔존하는 오염물질을 최종적으로 침전시키는 최종 처리수조; 및 상기 최종 처리수조에서의 침전 이후 물을 소독하기 위한 소독조를 더 포함한다.According to one embodiment, the biofilm water treatment apparatus having a non-powered backwashing function, the final treatment tank for finally settling the contaminants remaining in the excess water after the contaminant precipitates in the settling tank; And a disinfection tank for disinfecting water after precipitation in the final treatment tank.
일 실시예에 따라, 상기 제3 배수관은, 상기 여재층 방향으로 소정의 간격으로 형성되어 상기 여재층으로 물을 공급하기 위한 복수 개의 배출구를 포함한다.According to an embodiment, the third drain pipe may include a plurality of outlets formed at predetermined intervals in the direction of the media layer to supply water to the media layer.
일 실시예에 따라, 상기 무동력 역세 기능을 갖는 생물막 수처리 장치에서, 상기 제3 배수관을 통해 상기 여재층의 상측에서 물이 공급되는 경우, 물과 함께 유입되는 오염물질은 상기 여과 및 역세부에서 여과 및 역세 과정을 거쳐 처리된 후 상기 제2 배수관을 통해 상기 침전조로 배출되며, 상기 여과 과정은 상기 여재층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 여재층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 여재층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 여재층의 하부에서 상부로 이동하는 과정이고, 상기 여과 및 역세 과정에서 상기 여과 및 역세부는, 상기 여과 과정에서 상기 여재층의 상부에서 하부로 이동한 오염물질을 상기 여재층 내에서 호기성 미생물로 처리한 후, 상기 호기성 미생물의 하부에 존재하는 혐기성 미생물로 처리하고, 상기 혐기성 미생물로의 처리 후, 상기 역세 과정에서 상향류에 따라 이동한 오염물질을 상기 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리한다.According to an embodiment, in the biofilm water treatment apparatus having the non-powered backwashing function, when water is supplied from the upper side of the media layer through the third drain pipe, contaminants introduced with water are filtered in the filtration and backwashing section. And after being treated through a backwashing process, is discharged to the settling tank through the second drain pipe, and the filtration process moves contaminants from the top of the mediator layer to the bottom according to the flow of water from the top of the mediator layer to the bottom. The backwashing process is a process in which contaminants move from the bottom of the mediator layer to the top according to the flow of water from the bottom of the mediator layer to the top. The aerobic microorganisms are treated by treating the contaminants moved from the top to the bottom of the filter bed with aerobic microorganisms in the filter bed during the filtration process. Treated with anaerobic microorganisms present in the lower part of water, and after treatment with the anaerobic microorganisms, contaminants moved in the upward flow during the backwashing process are treated with aerobic microorganisms present on top of the anaerobic microorganisms.
일 실시예에 따라, 상기 여재층 내에는 상기 여재층의 상부에 식재되는 식물의 뿌리가 존재하며, 상기 여재층으로 유입되는 물과 함께 존재하는 질소 또는 인은 상기 식물의 뿌리로 흡수되어 상기 식물의 영양 물질로 이용된다.According to one embodiment, there is a root of the plant planted in the upper layer of the filter media layer, nitrogen or phosphorus present with the water flowing into the filter media layer is absorbed into the root of the plant is the plant Used as a nutritional substance.
일 실시예에 따라, 무동력 역세 기능을 갖는 생물막 수처리 장치는, 내부에 저장된 물에 혼합된 오염물질을 침전시키는 침전조; 내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리되게 하는 여재층; 상기 여재층 내에서 하단(bottom-end)이 상기 여재층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관; 상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 침전조로 연결되는 제2 배수관; 상기 여재층으로 물을 공급하기 위해 상기 여재층 방향으로 소정의 간격으로 형성된 복수 개의 배출구를 갖는 제3 배수관; 상기 여재층의 하부에서 상기 여재층을 지지하고 상기 여재층을 통과하는 물을 하부로 배출하기 위한 지지망; 상기 지지망과 바닥 사이에서 상기 지지망을 지지하고 상기 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재; 및 상기 제2 배수관의 내부를 통해 상기 침전조로 물을 유출하는 동안에도 수위가 계속 높아지는 경우, 상기 침전조로 물을 더 유출시켜 수위를 조절하기 위해, 상기 제2 배수관의 상단(top-end)보다 낮은 위치에서부터 나와 상기 침전조로 이어지는 역세 배수관;을 포함한다.According to one embodiment, the biofilm water treatment device having a non-powered backwashing function, the sedimentation tank for precipitating contaminants mixed in the water stored therein; Filtration layer which allows the water flowing into the water to be treated with aerobic and anaerobic microorganisms through filtration and backwashing process; A first drain pipe having a lower end (bottom-end) higher than the lower end of the filter layer in the filter layer, and having an upper portion sealed and a lower portion opened; A second drain pipe inserted into the first drain pipe and having an upper and lower parts opened and a lower part connected to the settling tank; A third drain pipe having a plurality of outlets formed at predetermined intervals in the direction of the filter layer to supply water to the filter layer; A support net for supporting the media layer in the lower portion of the media layer and discharging water passing through the media layer down; A support member supporting the support network between the support network and the floor and forming a space for supplying water discharged downward through the support network to the first drain pipe side; And when the water level continues to increase even while the water flows out through the inside of the second drain pipe into the settling tank, in order to further control the water level by flowing more water out of the settling tank, the top-end of the second drain pipe is increased. And a backwash drain pipe leading from the lower position to the settling tank.
일 실시예에 따라, 상기 무동력 역세 기능을 갖는 생물막 수처리 장치는, 유입수를 저장하는 저장조; 및 상기 저장조에 저장된 물 또는 상기 침전조 내의 물을 펌핑하여 유입시켜, 이로부터 오염물질을 침전시키고, 상기 제3 배수관으로 물을 공급하는 유입조;를 더 포함한다.According to one embodiment, the biofilm water treatment device having a non-powered backwashing function, the storage tank for storing the influent; And an inflow tank for pumping water stored in the reservoir or water in the precipitation tank to precipitate contaminants therefrom and supplying water to the third drain pipe.
일 실시예에 따라, 상기 유입조는, 상기 저장조로부터 유입되는 물 또는 상기 침전조로부터 유입되는 물로부터 오염물질이 침전되어 침전 슬러지를 생산하도록 경사가 형성되는, 바닥부; 및 서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는, 경사판을 포함한다.According to one embodiment, the inlet tank, the bottom portion, the slope is formed so that the contaminants are precipitated from the water flowing from the reservoir or the water flowing from the settling tank to produce the sludge; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 하부로부터 물을 유입시켜 상향류 및 하향류의 반복 흐름을 통해 호기성 미생물 및 혐기성 미생물로 1차로 수처리하는 제1 생물막 반응기; 및 상기 제1 생물막 반응기의 하부에서 상기 제1 생물막 반응기로부터 1차로 수처리된 물을 공급받아 상향류 및 하향류의 반복 흐름을 통해 2차로 수처리하는 제2 생물막 반응기를 포함한다.Biofilm water treatment device having a non-power backwashing function according to another embodiment of the present invention for solving the above problems, the first water treatment by aerobic microorganism and anaerobic microorganism through the repetitive flow of upstream and downstream by introducing water from the bottom A first biofilm reactor; And a second biofilm reactor that receives water treated primarily from the first biofilm reactor at a lower portion of the first biofilm reactor, and performs second water treatment through a repeated flow of upstream and downstream flows.
다른 실시예에 따라, 상기 제1 생물막 반응기는, 내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리하는 제1 담체층과, 상기 제1 담체층 내에서 하단(bottom-end)이 상기 제1 담체층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관과, 상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 제2 생물막 반응기로 연결되는 제2 배수관과, 상기 제1 담체층의 하부로 물을 공급하기 위한 유입로와, 상기 유입로와 상기 제1 담체층 사이에 위치하여 상기 제1 담체층을 지지하고 상기 유입로를 통해 유입되는 물을 통과시키는 제1 지지망과, 상기 제1 지지망과 바닥 사이에서 상기 제1 지지망을 지지하고 상기 제1 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재를 갖되, 상기 제1 담체층의 하부로부터 수위가 점차 높아져 상기 제2 배수관의 상단보다 높아지는 경우, 상기 제1 배수관의 내부 영역이면서 상기 제2 배수관의 외부 영역으로 유입되는 물은, 상기 제1 담체층 내의 수위가 상기 제1 배수관의 하단과 동일하게 될 때까지 상기 제2 배수관의 내부를 통해 상기 제2 생물막 반응기로 유출되어, 이러한 상향류와 하향류가 반복됨으로써 상기 제1 담체층의 폐색현상을 방지한다.According to another embodiment, the first biofilm reactor may include a first carrier layer for treating water introduced into the aerobic and anaerobic microorganisms through filtration and backwashing, and a bottom-bottom in the first carrier layer. a first drain pipe whose end is higher than the lower end of the first carrier layer, the upper part of which is closed and the lower part of the first carrier pipe is inserted into the first drain pipe, the second drain tube inserted into the first drain pipe, the upper and lower parts of which are opened, and the lower part of which is connected to the second biofilm reactor. A drain pipe, an inlet for supplying water to the lower portion of the first carrier layer, and positioned between the inlet path and the first carrier layer to support the first carrier layer and provide water introduced through the inlet path. For supporting the first support network between the first support network to pass through and the first support network and the floor and for supplying water discharged downward through the first support network to the first drain pipe side A support member forming a space, wherein the water level is gradually increased from the lower portion of the first carrier layer to be higher than the upper end of the second drain pipe, and the water flowing into the outer region of the second drain pipe while being an inner region of the first drain pipe; Silver flows out into the second biofilm reactor through the interior of the second drain pipe until the water level in the first carrier layer becomes equal to the lower end of the first drain pipe, so that the upstream and the downflow are repeated. 1 Prevent clogging of the carrier layer.
다른 실시예에 따라, 상기 제1 생물막 반응기는, 상기 제1 담체층과 상기 제1 배수관 사이에서 상기 제1 담체층과 인접하고 상기 제1 배수관과는 이격되게 배치되는 지지벽을 포함한다.According to another embodiment, the first biofilm reactor includes a support wall disposed between the first carrier layer and the first drain pipe, the support wall being adjacent to the first carrier layer and spaced apart from the first drain pipe.
다른 실시예에 따라, 상기 제1 담체층은, 소정의 간격으로 수직 방향으로 배열되는 복수 개의 여과망들과, 상기 복수 개의 여과망들 사이에 개재되는 접촉여재를 포함한다.According to another embodiment, the first carrier layer includes a plurality of filter nets arranged in a vertical direction at predetermined intervals, and a contact medium interposed between the plurality of filter nets.
다른 실시예에 따라, 상기 제1 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간의 바닥(bottom) 중 일부 영역은, 상기 제2 배수관이 관통하는 부분을 중심으로 하여 중심부분이 낮도록 경사지게 형성되어 배출되는 물 속의 침전 슬러지가 생성된다.According to another embodiment, a portion of the bottom of the space for supplying the water discharged downward through the first support net to the first drain pipe side, the center around the portion through which the second drain pipe passes The portion is formed to be slanted low to produce settling sludge in the discharged water.
다른 실시예에 따라, 상기 제2 생물막 반응기는, 상기 제2 배수관으로부터 공급되는 물을 유도하는 유도관과, 상기 유도관을 통해 유도된 물의 수위가 점차 높아지는 경우 미생물 접촉으로 오염물질을 처리하기 위한 제2 담체층과, 상기 제2 담체층의 하부에서 상기 제2 담체층을 지지하며 상기 유도관을 통해 유도된 물을 통과시키는 제2 지지망과, 상기 제2 지지망의 하부에서 물에 혼합된 오염물질이 통과하여 침전되도록 하는 침전 여과망과, 상기 침전 여과망을 통과하여 침전된 오염물질에 의해 침전 슬러지가 생성되도록 경사지게 형성된 바닥부를 포함한다.According to another embodiment, the second biofilm reactor may be configured to treat contaminants by microbial contact when the water level of the induction pipe leading to the water supplied from the second drain pipe and the water induced through the induction pipe gradually increases. A second carrier layer, a second support net supporting the second carrier layer at the bottom of the second carrier layer and allowing the water guided through the induction pipe to pass through; and a contamination mixed with water at the bottom of the second support net. And a sediment filter net through which the material is allowed to settle, and a bottom portion formed to be inclined such that sediment sludge is produced by the contaminants settled through the sediment filter net.
다른 실시예에 따라, 상기 제2 담체층은 미생물 접촉을 위한 담체를 포함할 수 있다.According to another embodiment, the second carrier layer may comprise a carrier for microbial contact.
다른 실시예에 따라, 상기 생물막 수처리 장치는, 상기 제2 생물막 반응기 내에서 오염물질이 침전된 후 월류하는 물을 산화 또는 탈색시키는 오존 접촉조; 및 상기 오존 접촉조에서의 처리 이후 물을 소독하기 위한 소독조를 더 포함한다.According to another embodiment, the biofilm water treatment apparatus includes: an ozone contact tank for oxidizing or decolorizing water flowing after the pollutant precipitates in the second biofilm reactor; And a disinfection tank for disinfecting water after the treatment in the ozone contact tank.
다른 실시예에 따라, 상기 유입로를 통해 상기 제1 담체층의 하부로 물이 공급되는 경우, 물과 함께 유입되는 오염물질은 상기 제1 생물막 반응기에서 적어도 두 번의 여과 과정 및 역세 과정을 거쳐 처리된 후 상기 제2 배수관을 통해 상기 제2 생물막 반응기로 배출되며, 상기 여과 과정은 상기 제1 담체층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 제1 담체층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 제1 담체층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 제1 담체층의 하부에서 상부로 이동하는 과정이며, 상기 여과 과정 및 역세 과정에서 상기 제1 생물막 반응기는, 상기 여과 과정에서 상기 제1 담체층의 상부에서 하부로 이동한 오염물질을 상기 제1 담체층 내에서 호기성 미생물로 처리한 후, 상기 호기성 미생물의 하부에 존재하는 혐기성 미생물로 처리하고, 상기 혐기성 미생물로의 처리 후, 상기 역세 과정에서 상향류에 따라 이동한 오염물질을 상기 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리한다.According to another embodiment, when water is supplied to the lower portion of the first carrier layer through the inlet, contaminants introduced with water are treated through at least two filtration and backwashing processes in the first biofilm reactor. And then discharged to the second biofilm reactor through the second drain pipe, and the filtration process moves from the top to the bottom of the first carrier layer as the water flows from the top to the bottom of the first carrier layer. The backwashing process is a process in which contaminants move from the lower portion of the first carrier layer to the upper portion as water flows from the lower portion of the first carrier layer to the upper portion. In the first biofilm reactor, the contaminant that has moved from the top to the bottom of the first carrier layer in the filtration process is treated with aerobic microorganisms in the first carrier layer. Treatment with anaerobic microorganisms present in the lower part of the aerobic microorganisms, and after treatment with the anaerobic microorganisms, contaminants that have moved in an upstream flow during the backwashing process are treated with aerobic microorganisms present in the upper part of the anaerobic microorganisms.
다른 실시예에 따라, 상기 제2 배수관으로부터 상기 유도관을 통해 제2 생물막 반응기로 물이 유입되는 경우, 상기 제2 생물막 반응기의 하부에서부터 점차 수위가 높아지고, 이후 물과 함께 유입되는 오염물질은 상기 제2 생물막 반응기에서 여과 과정 및 역세 과정을 거쳐 처리되어, 미생물 접촉처리가 이뤄지고 상기 제2 담체층의 폐색현상을 방지하며, 상기 여과 과정은 상기 제2 담체층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 제2 담체층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 제2 배수관으로부터 상기 유도관을 통한 물의 유입에 따른 상기 제2 담체층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 제2 담체층의 하부에서 상부로 이동하는 과정이다.According to another embodiment, when water is introduced into the second biofilm reactor through the induction pipe from the second drain pipe, the water level is gradually increased from the bottom of the second biofilm reactor, after which the contaminants introduced with the water are Filtration and backwashing are performed in a second biofilm reactor to achieve microbial contact treatment and to prevent clogging of the second carrier layer, which is applied to the flow of water from the top to the bottom of the second carrier layer. Therefore, the pollutant is a process of moving from the top of the second carrier layer to the bottom, the backwashing process is the flow of water from the bottom of the second carrier layer to the top according to the inflow of water through the induction pipe from the second drain pipe As a result, the contaminants move from the bottom to the top of the second carrier layer.
다른 실시예에 따라, 무동력 역세 기능을 갖는 생물막 수처리 장치는, 유입수를 저장하는 저장조; 및 상기 저장조로부터 월류 또는 펌핑된 물에서 오염물질을 침전시키고, 상기 유입로로 물을 공급하는 유입조;를 더 포함한다.According to another embodiment, a biofilm water treatment apparatus having a non-powered backwashing function, the storage tank for storing the influent; And an inflow tank for precipitating contaminants in the overflowed or pumped water from the storage tank and supplying water to the inflow path.
다른 실시예에 따라, 상기 유입조는, 상기 제2 생물막 반응기로부터 유입되는 물 또는 상기 저장조로부터 유입되는 물에서 오염물질이 침전되어 침전 슬러지를 생성하도록 경사지게 형성되는 바닥부; 및 서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는 경사판을 포함한다.According to another embodiment, the inlet tank, the bottom portion is formed to be inclined to precipitate the contaminants in the water flowing from the second biofilm reactor or the water flowing from the reservoir to form the sludge; And an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center having a low inclination.
그리하여, 본 발명은 무동력 역세 기능을 갖는 생물막 수처리 장치를 제공함으로써, 초기 우수, 하수, 중수, 하수 재이용수 또는 하수처리수 등의 유입수를 처리함에 있어서, 자연친화적이면서도 비용효과적인 처리 방식을 통해 유입수로부터 질소·인 등을 제거하고, 유기물을 효과적으로 분해하여 안정적인 수질 확보에 기여할 수 있는 효과를 갖는다. 뿐만 아니라, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치는, 공기 공급 또는 역세를 위해 별도의 송풍기나 산기시설과 같은 설비가 필요없어 처리 비용 및 에너지를 절감할 수 있는 효과를 갖는다.Thus, the present invention provides a biofilm water treatment apparatus having a non-powered backwashing function to treat influent such as initial rainwater, sewage, heavy water, sewage recycled water or sewage treatment water, from the influent water through a natural friendly and cost effective treatment method. It removes nitrogen, phosphorus, etc., and effectively decomposes organic matters, and contributes to securing stable water quality. In addition, the biofilm water treatment apparatus having a non-powered backwashing function of the present invention does not need a separate blower or air diffuser for supplying air or backwashing, and thus has an effect of reducing treatment cost and energy.
또한, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치는, 호기·혐기 반복 접촉을 통해 질소·인을 효율적으로 제거할 수 있고, 여재와 식물의 뿌리에 부착 증식하는 미생물에 의해 유기물질을 효과적으로 분해할 수 있으며, 하향류와 상향류의 반복에 의해 오염물질에 의한 여재의 폐색을 효과적으로 방지할 수 있다. 뿐만 아니라, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치는 상부층과 하부층의 비교적 간단한 구조로 구현된 일체형 처리 장치이다.In addition, the biofilm water treatment apparatus having a non-powered backwashing function of the present invention can efficiently remove nitrogen and phosphorus through aerobic and anaerobic repetitive contact, and effectively decomposes organic substances by microorganisms attached to and propagated to the roots of plants and plants. It is possible to effectively prevent the blockage of the media by contaminants by the repetition of the downflow and upflow. In addition, the biofilm water treatment apparatus having a non-powered backwashing function of the present invention is an integrated treatment apparatus implemented with a relatively simple structure of an upper layer and a lower layer.
또한, 본 발명은 1차적으로 생물막 처리를 통해 호기·혐기 반복 접촉을 통해 질소·인을 제거하면서, 하향류와 상향류의 반복에 의해 오염물질에 의한 여재의 폐색을 효율적으로 방지할 수 있을 뿐만 아니라, 1차 여과 및 역세 과정 이후, 2차적으로 생물막 처리를 통해 오염물질들을 추가로 처리하면서 여재의 폐색을 효율적으로 방지하는 효과를 갖는다.In addition, the present invention can effectively prevent clogging of contaminants caused by contaminants by repetition of downflow and upflow, while removing nitrogen and phosphorus through aerobic and anaerobic repetitive contact through biofilm treatment. In addition, after the first filtration and backwashing process, the biofilm treatment is additionally treated to further contaminants, thereby effectively preventing the blockage of the media.
또한, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치에 있어서는, 2차 침전지가 불필요하고, 밀폐형으로 냄새나 해충을 차단할 수 있으며, 건축물로 부터 유출되는 중수 처리시 실내 공간의 조경 공간으로 활용하여 친환경 건축물을 구현할 수 있는 효과를 갖는다.In addition, in the biofilm water treatment apparatus having a non-powered backwashing function of the present invention, the secondary sedimentation basin is unnecessary, it can block odors and pests in a closed type, and it can be used as a landscaping space of an indoor space during heavy water treatment discharged from a building. Has the effect of realizing the building.
도 1은 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 단면도이고,1 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention,
도 2는 도 1에 대응하는 생물막 수처리 장치의 다른 일면의 단면도이고,2 is a cross-sectional view of another surface of the biofilm water treatment apparatus corresponding to FIG. 1,
도 3은 도 1의 생물막 수처리 장치의 상부층 사시도이고,3 is a perspective view of the upper layer of the biofilm water treatment device of FIG.
도 4는 도 3에 대응하는 생물막 수처리 장치의 다른 관점의 사시도이고,4 is a perspective view of another aspect of the biofilm water treatment apparatus corresponding to FIG. 3;
도 5는 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 여과 및 역세 과정을 설명하기 위한 블록도이다.5 is a block diagram illustrating a filtration and backwashing process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 전체 과정을 단계로 구분하여 설명하기 위한 블록도이다.FIG. 6 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present disclosure.
도 7은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 단면도이고,7 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention,
도 8은 도 7에 대응하는 무동력 역세 기능을 갖는 생물막 수처리 장치의 다른 일면의 단면도이고,FIG. 8 is a cross-sectional view of another surface of the biofilm water treatment apparatus having the non-powered backwashing function corresponding to FIG. 7;
도 9는 도 7에 대응하는 무동력 역세 기능을 갖는 생물막 수처리 장치의 사시도이고,FIG. 9 is a perspective view of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7;
도 10은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 여과 및 역세 과정의 싸이클을 설명하기 위한 블록도이며,10 is a block diagram illustrating a cycle of filtration and backwashing of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 전체 과정을 단계로 구분하여 설명하기 위한 블록도이다.FIG. 11 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present disclosure.
이하에서는, 본 발명의 바람직한 실시예들을 첨부된 도면들을 참조하여 설명하도록 한다. 첨부된 도면들 및 이에 관한 설명은 당해 기술 분야에서 통상의 기술을 가진 자가 본 발명에 관하여 쉽게 이해할 수 있도록 하기 위해 간략화되고 예시된 것이므로, 도면들 및 이에 관한 설명이 본 발명의 범위를 한정하는 것으로 이해하여서는 아니될 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Since the accompanying drawings and their descriptions are simplified and illustrated in order to enable those skilled in the art to easily understand the present invention, the drawings and their descriptions limit the scope of the present invention. It should not be understood.
도 1은 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 단면도이고, 도 2는 도 1에 대응하는 생물막 수처리 장치의 다른 면의 단면도이고, 도 3은 도 1에 대응하는 생물막 수처리 장치의 사시도이며, 도 4는 도 3에 대응하는 생물막 수처리 장치의 다른 관점의 사시도이다.1 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of another surface of the biofilm water treatment apparatus corresponding to FIG. 1, and FIG. 3 is a biofilm corresponding to FIG. 1. 4 is a perspective view of the water treatment apparatus, and FIG. 4 is a perspective view of another viewpoint of the biofilm water treatment apparatus corresponding to FIG. 3.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 유입수를 저장하는 저장조(110), 내부로 유입되는 물에 혼합된 오염물질을 침전시키는 침전조(140), 저장조(110)에 저장된 물 또는 침전조(140) 내의 물을 펌핑하여 유입시켜(펌핑관 114, 124를 통해), 이로부터 오염물질을 침전시키는 유입조(120), 및 여과 및 역세부(130)를 포함한다.1 to 4, the biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention, the storage tank 110 for storing the influent, the settling tank for precipitating the contaminants mixed in the water flowing into the interior 140, the inlet tank 120 for pumping water stored in the storage tank 110 or water in the settling tank 140 (through pumping pipes 114 and 124) to precipitate contaminants therefrom, and the filtration and reverse Details 130 are included.
여과 및 역세부(130)는 구체적으로, 유입조(120)로부터 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리되게 하는 여재층(131)과, 여재층(131) 내에서 하단(bottom-end)(1322)이 여재층(131)의 하단보다 높게 위치하고 상부(1321)가 밀폐되고 하부(1322)가 개방되게 형성된 제1 배수관(132)과, 제1 배수관(132) 내에 삽입되고 상하부가 개방되고 하부가 침전조(140)로 연결되는 제2 배수관(133)과, 유입조(120)로부터 여재층(131)으로 물을 공급하기 위한 제3 배수관(134)과, 여재층(131)의 하부에서 여재층(131)을 지지하고 여재층(131)을 통과하는 물을 하부로 배출하기 위한 지지망(135)과, 지지망(135)과 바닥(139) 사이에서 지지망(135)을 지지하고 지지망(135)을 통해 하부로 배출되는 물을 제1 배수관(132) 측으로 공급하기 위한 공간을 형성하는 지지부재(136)를 갖는다. 제1 배수관(132)은 여재층(131) 내에 대체로 수직으로 관입되어 지지벽(138)에 의해 고정된다. 여기서, 지지벽(138)이 바닥(139)까지 연장되어 고정되는 경우, 지지벽(138)에는 지지망(135)을 통해 하부로 배출되는 물을 제1 배수관(132) 측으로 공급하기 위한 통로는 형성되어있어야 한다.Specifically, the filtration and backwashing unit 130 includes, in the filtration layer 131 and the filtration layer 131, the water flowing from the inflow tank 120 to be treated with aerobic and anaerobic microorganisms through filtration and backwashing. In the first drain pipe 132 and the first drain pipe 132, the bottom-end 1322 is higher than the lower end of the filter layer 131 and the upper part 1321 is sealed and the lower part 1322 is opened. The second drain pipe 133 is inserted, the upper and lower portions are opened and the lower portion is connected to the settling tank 140, the third drain pipe 134 for supplying water from the inflow tank 120 to the filter medium layer 131, and the filter layer A support net 135 for supporting the media layer 131 at the bottom of the 131 and for discharging water passing through the media layer 131 to the bottom, and the support network 135 between the support network 135 and the bottom 139. And a support member for forming a space for supplying the water discharged downward through the support network 135 to the first drain pipe 132 side. Has 136. The first drain pipe 132 is generally vertically introduced into the media layer 131 and fixed by the support wall 138. Here, when the support wall 138 extends to the bottom 139 and is fixed, a passage for supplying water discharged downward through the support network 135 to the first drain pipe 132 is formed in the support wall 138. It should be.
본 명세서 내에서 '유입수(inflow)' 라는 용어는 포괄적인 의미로 사용된다. 즉, 어떤 처리조나 배수관 내로 유입되는 물을 포괄적으로 의미하는 것으로 사용된다. 예를 들어, 유입수는 초기 우수, 하수, 중수(예컨대, 건물로부터 유출되는 구정물), 또는 하수의 생물학적 처리 후 재이용을 위한 하수처리수 등일 수 있다. 또한, 본 명세서 내에서 단지 '물' 또는 '유입수'라고만 기술되어 있으나, 여기서의 '물' 또는 '유입수'는 오염물질(조대물질, 유기물질, 입자성 오염물질, 부유물질(SS), 중금속, 질소, 인 등)이 함유 또는 혼합된 물을 의미하는 것으로 기술되었다.As used herein, the term 'inflow' is used in a generic sense. In other words, it is used to mean the water flowing into any treatment tank or drain pipe. For example, the influent may be initial stormwater, sewage, heavy water (eg, old water flowing out of a building), or sewage treatment for reuse after biological treatment of sewage. In addition, although only 'water' or 'influent water' is described herein, the term 'water' or 'influent water' refers to contaminants (coarse material, organic material, particulate contaminants, suspended solids (SS), heavy metals). , Nitrogen, phosphorus, etc.) have been described as meaning water containing or mixed.
유입수를 저장하는 저장조(110)는 전술한 바와 같이, 초기 우수, 하수, 중수 또는 하수처리수 등의 유입수를 유입시켜(화살표 a1), 이로부터 오염물질을 침전시킨다. 저장조(110)의 바닥(116)은 오염물질이 용이하게 응집되어 침전 슬러지를 생산하여 용이하게 외부로 배출해 낼 수 있도록 경사진 구조로 형성되는 것이 바람직하다. 여기서 침전되는 오염물질은, 예를 들어, 조대 물질 또는 비교적 고 비중의 입자이다. 따라서, 이와 같은 고 비중의 입자는 1차적으로 유입조(120) 이전 단계에서 저장조(110)에서 1차적으로 침전된다. 저장조(110)의 바닥(116) 상에 침전된 슬러지는 외부에 설치된 석션 펌프(suction pump)(미도시)를 통해 외부로 배출된다(화살표 a2). 저장조(110) 내에는 유입조(120) 내로 물을 펌핑할 수 있도록 저장조 펌프(112)가 마련된다.As described above, the storage tank 110 storing the inflow water introduces inflow water such as initial rainwater, sewage water, heavy water, or sewage treatment water (arrow a1) to precipitate contaminants therefrom. The bottom 116 of the reservoir 110 is preferably formed in an inclined structure so that contaminants can be easily aggregated to produce precipitated sludge and easily discharged to the outside. The pollutants precipitated here are, for example, coarse matter or particles of relatively high specific gravity. Therefore, such high specific gravity particles are primarily precipitated in the storage tank 110 in the step before the inlet tank 120. The sludge precipitated on the bottom 116 of the reservoir 110 is discharged to the outside through a suction pump (not shown) installed outside (arrow a2). The reservoir 110 is provided with a reservoir pump 112 so as to pump water into the inlet 120.
유입조(120)는 저장조(110) 또는 침전조(140)로부터 물을 펌핑하여 유입시켜 이로부터 바닥(126)에 오염물질을 침전시켜 슬러지를 생산해 낸다. 침전 슬러지는 비교적 고 비중의 오염물질이다. 침전 슬러지는 석션 펌프(미도시)를 통해 외부로 배출된다. 유입조(120)는 저장조(110)로부터 유입되는 물(114를 통해) 또는 침전조(140)로부터 유입되는 물(124를 통해)로부터 오염물질을 침전시켜 침전 슬러지가 생산되기에 유리하도록 바닥부(126)가 경사지게 형성된다. 또한, 유입조(120)는 침전된 오염물질 또는 침전 중에 있는 오염물질이 상 방향으로 역행하지 않도록 경사지게 배치된 경사판(128)을 포함한다. 경사판(128)은 도 1에 도시된 바와 같이, 서로 마주하는 유입조(120)의 두 개의 측벽(1201, 1202)을 따라 길게 형성되어 있으며(도 3의 참조부호 128 참조), 이 두 개의 측벽(1201, 1202)에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 배치되며, 그 중앙이 주변보다 낮도록 경사지게 설치된다. 이러한 구조를 통해, 경사판(128)은 아래로 들어간 오염물질이 다시 위로 상승하지 않도록 할 수 있다. 유입조(120)의 바닥부(126)에 침전된 슬러지는 외부에 설치된 석션 펌프(미도시)를 통해 외부로 배출될 수 있다(화살표 a3 참조).The inflow tank 120 pumps water from the storage tank 110 or the settling tank 140 to precipitate the contaminants on the bottom 126 to produce sludge. Precipitated sludge is a relatively high specific gravity pollutant. The settling sludge is discharged to the outside through a suction pump (not shown). The inflow tank 120 precipitates contaminants from water (through 114) coming from the reservoir 110 or from water (124) coming from the sedimentation tank 140 to advantageously produce the sludge from the bottom ( 126 is formed to be inclined. In addition, the inflow tank 120 includes an inclined plate 128 disposed to be inclined such that the precipitated contaminant or the contaminant in the sedimentation does not return upward. As shown in FIG. 1, the inclined plate 128 is elongated along two sidewalls 1201 and 1202 of the inflow tank 120 facing each other (see reference numeral 128 of FIG. 3). It extends from 1201 and 1202 to the center and is alternately arranged at predetermined intervals, and is installed to be inclined so that the center thereof is lower than the periphery. Through this structure, the swash plate 128 can prevent the contaminants entering the bottom from rising upward again. The sludge deposited on the bottom 126 of the inflow tank 120 may be discharged to the outside through a suction pump (not shown) installed outside (see arrow a3).
침전조(140)는 제2 배수관(133)의 내부를 통해 유입(도 2의 화살표 a8 참조)되어 침전조(140) 내부로 유입되는 물과 함께 존재하는 오염물질을 침전시킨다. 그뿐만 아니라, 침전조(140)는 역세 배수관(137)으로부터 월류수를 더 공급받을 수 있다. 즉, 후술하는 바와 같이, 여과 및 역세부(130)의 작용에 의해 월류하는 경우, 그 월류수가 역세 배수관(137)을 통해 침전조(140) 내로 유입된다. 따라서, 침전조(140)는 제2 배수관(133)의 내부를 통해 유입되는 물과 역세 배수관(137)으로부터 유입되는 월류수로부터 오염물질을 침전시키는 부분이다. 침전조(140)는 산소가 거의 없는 상태에서 침전 반응이 이루어지므로, 다르게는 무산소조로 일컬어질 수 있다. 침전조(140)는 그 내부로 유입되는 물로부터 오염물질이 침전되어 그로부터 침전 슬러지가 생산되기에 유리하도록 바닥부(146)가 경사지게 형성된다. 따라서, 침전조(140)의 경사진 바닥부(146)의 구조로 인해, 침전 슬러지의 응집이 잘 이루어질 수 있다. 또한, 침전조(140)는 전술한 유입조(120)의 구조와 유사하게 침전된 오염물질 또는 침전 중에 있는 오염물질이 상 방향으로 역행하지 않도록 경사판(148)을 포함한다. 경사판(148)은, 서로 마주하는 침전조(140)의 두 개의 측벽(1401, 1402)을 따라 길게 형성되어 있으며, 이 두 개의 측벽(1401, 1402)에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로 배치되며, 중앙이 주변보다 낮도록 경사지게 형성된다. 이러한 구조를 통해, 경사판(148)은 침전한 슬러지가 다시 위로 부상하지 않도록 할 수 있다. 침전조(140)의 바닥부(146)에 침전된 슬러지는 외부에 설치된 석션 펌프(미도시)를 통해 외부로 배출될 수 있다(화살표 a4 참조). 또한, 침전조(140) 내에는 유입조(120) 내로 침전조(140) 내의 물을 펌핑할 수 있도록 침전조 펌프(122)가 마련된다. 전술한 저장조 펌프(112)와 이 침전조 펌프(122)는 서로 번갈아가며 동작한다. 이에 관하여는 전체적인 동작 설명에서 함께 구체적으로 기술될 것이다.The settling tank 140 is introduced through the inside of the second drain pipe 133 (see arrow a8 in FIG. 2) to precipitate the contaminants present together with the water flowing into the settling tank 140. In addition, the settling tank 140 may be further supplied with the overflow water from the backwash drain pipe (137). That is, as will be described later, in the case of overflowing by the action of the filtration and the backwashing unit 130, the overflowed water flows into the settling tank 140 through the backwashing drainage pipe 137. Therefore, the settling tank 140 is a portion for precipitating contaminants from the water flowing through the inside of the second drain pipe 133 and the overflow water flowing from the backwash drain pipe 137. Precipitation tank 140, because the precipitation reaction is made in the state that there is almost no oxygen, otherwise it may be referred to as an anoxic tank. The sedimentation tank 140 has a bottom portion 146 formed to be inclined so that contaminants are precipitated from the water flowing into the sediment and sludge is produced therefrom. Therefore, due to the structure of the inclined bottom portion 146 of the settling tank 140, aggregation of the settling sludge can be made well. In addition, the settling tank 140 includes an inclined plate 148 to prevent the settled contaminants or contaminants in the settling in the upward direction similar to the structure of the inlet 120 described above. The inclined plate 148 is formed along two side walls 1401 and 1402 of the settling tank 140 facing each other, extends from the two side walls 1401 and 1402 to the center, and are alternately arranged at predetermined intervals. It is formed to be inclined so that the center is lower than the surroundings. Through this structure, the inclined plate 148 may prevent the precipitated sludge from rising upward again. The sludge precipitated at the bottom 146 of the settling tank 140 may be discharged to the outside through a suction pump (not shown) installed outside (see arrow a4). In addition, in the settling tank 140, a settling tank pump 122 is provided to pump water in the settling tank 140 into the inlet 120. The above-described reservoir pump 112 and the sedimentation tank pump 122 alternately operate with each other. This will be described in detail together in the overall operation description.
여과 및 역세부(130)에서, 여재층(131)은 유입조(120) 측에서 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리하는 부분이다. 여재층(131) 재료로서는, 예를 들어, 마사토, 제올라이트, 섬유로 제작된 부직포 판 부재의 일종으로서 여과 효과를 갖는 사란 락(saran lock) 생물막 여재 또는 스펀지 등 재질의 담체 등이 사용될 수 있다. 또한, 여재층(131)은 입자 크기에 따라 수직으로 적층될 수 있다(예를 들어, 하부는 큰 입자로 구성하고 상부는 작은 입자로 구성할 수 있음). 여재층(131)에서는 이하에서 더 상세히 설명되는 바와 같이 여과 및 역세 과정이 수행되는데, 이 여재층(131) 내에서 하향류와 상향류의 반복적인 흐름에 따라 호기성 미생물 및 혐기성 미생물의 작용에 의해, 오염물질 내에 포함된 암모니아성 질소(NH3-N)가 질산화 과정에 의해 질산성 질소(NO3-N)로 되고, 이후 아질산성 질소(NO2-N)로 된 후, 최종적으로 N2로 되는 탈질화 과정이 이루어질 수 있다. 대체로 오염물질 내의 질소 성분은 호기성 미생물에 의해 질산화되고, 혐기성 미생물에 탈질화된다.In the filtration and backwashing unit 130, the filter media layer 131 is a portion for treating water introduced from the inflow tank 120 into aerobic and anaerobic microorganisms through filtration and backwashing. As the material of the media layer 131, a carrier made of a material such as a saran lock biofilm media or a sponge having a filtration effect can be used, for example, as a kind of non-woven plate member made of masato, zeolite, or fiber. In addition, the media layer 131 may be stacked vertically according to the particle size (for example, the lower portion may be composed of large particles and the upper portion may be composed of small particles). Filtration and backwashing process is performed in the filter medium layer 131 as described in more detail below, by the action of aerobic microorganisms and anaerobic microorganisms in accordance with the repetitive flow of downflow and upflow in the filter medium layer 131 , Ammonia nitrogen (NH 3 -N) contained in the contaminant is converted to nitrate nitrogen (NO 3 -N) by nitrification process, and then to nitrite nitrogen (NO 2 -N), and finally N 2 Denitrification process can be made. As a rule, the nitrogen component in the contaminants is nitrified by aerobic microorganisms and denitrified by anaerobic microorganisms.
제1 배수관(132) 및 제2 배수관(133)은 서로 결합된 상태로 여재층(131) 내에 관입되는데, 제1 배수관(132)의 상부(1321)는 밀폐되고 하부(1322)는 개방되도록 형성되는 반면, 제2 배수관(133)의 상부 및 하부는 개방되어 침전조(140) 내로 물을 유입시킬 수 있다. 제1 배수관(132)은 그 하단(bottom-end)(1322)이 여재층의 하단(참조부호 135 참조)보다 높게 위치한다. 도 1에 도시된 예에서는 하단의 높이가 대체로 L5 라인과 유사하도록 설치되어 있다. 제2 배수관(133)은 제1 배수관(132) 내에 삽입되며, 그 상단의 높이는 제1 배수관(132)의 상단(1321) 내부보다 낮다. 이하에서는, 제1 배수관(132)과 제2 배수관(133)의 이러한 결합 구조를 간단히 배수관 결합구조로 일컫는다.The first drain pipe 132 and the second drain pipe 133 are introduced into the filter layer 131 in a state where they are coupled to each other, and the upper part 1321 of the first drain pipe 132 is sealed and the lower 1322 is opened. On the other hand, the upper and lower portions of the second drain pipe 133 may be opened to introduce water into the settling tank 140. The first drain pipe 132 has a bottom end 1322 positioned higher than a bottom end of the media layer (see reference numeral 135). In the example shown in FIG. 1, the bottom is provided so that the height is generally similar to the L5 line. The second drain pipe 133 is inserted into the first drain pipe 132, and the height of the upper end thereof is lower than the inside of the upper end 1321 of the first drain pipe 132. Hereinafter, this coupling structure of the first drain pipe 132 and the second drain pipe 133 is simply referred to as a drain pipe coupling structure.
제1 배수관(132) 내에 제2 배수관(133)이 삽입되어 있는 구조, 즉 배수관 결합 구조를 통한 처리 과정을 살펴보면, 일단 여재층(131)의 하부에서부터 수위가 점차 높아지는 경우, 배수관 결합구조 내부, 즉 제1 배수관(132)의 내부 영역이면서 제2 배수관(133)의 외부 영역의 수위도 동일하게 높아진다. 계속해서 수위가 높아지다가, 수위가 제2 배수관(133)의 상단보다 높아지는 경우, 제1 배수관(132)의 내부 영역이면서 제2 배수관(133)의 외부 영역으로 유입되는 물은 제2 배수관(133)의 내부를 통해 침전조(140)로 유출되기 시작하고, 이러한 제2 배수관(133)에서부터 침전조(140)로의 유출은 여재층(131) 내의 수위가 제1 배수관(132)의 하단과 대체로 동일하게 될 때까지(즉, 수위가 L5로 될 때까지) 계속된다. 배수관 결합구조의 내부 압력과 관련하여 침전조(140) 측으로 물이 유출되는 과정을 간단히 살펴보면, 먼저 제2 배수관(133)의 상단보다 수위가 높아지는 시점에 제2 배수관(133)의 내부 영역을 통해(도 2의 화살표 a8) 물이 침전조(140) 측으로 일부 유출되고, 이와 동시에 제2 배수관(133)과 제1 배수관(132) 사이의 영역의 압력은 낮아지게 되고, 그 결과 그 낮아진 압력 하의 제2 배수관(133)과 제1 배수관(132) 사이의 영역으로 계속해서 물이 유입되어(도 2의 화살표 a6, a7) 그 영역으로 채워지게 되는데, 이러한 과정은 여재층(131) 내의 수위가 제1 배수관(132)의 하단과 대체로 동일하게 될 때까지(즉, 수위가 L5로 될 때까지) 계속된다.Looking at the structure in which the second drain pipe 133 is inserted into the first drain pipe 132, that is, the process through the drain pipe coupling structure, once the water level is gradually increased from the lower portion of the filter layer 131, the inside of the drain pipe coupling structure, That is, the water level of the inner region of the first drain pipe 132 and the outer region of the second drain pipe 133 is also increased. If the water level is continuously increased and the water level is higher than the upper end of the second drain pipe 133, the water flowing into the outer region of the second drain pipe 133 while being the inner region of the first drain pipe 132 is the second drain pipe 133. The outflow to the settling tank 140 through the inside of the), the discharge from the second drain pipe 133 to the settling tank 140 has the same level as the lower end of the first drain pipe 132 in the filter medium layer 131 Until it reaches (i.e. until the water level reaches L5). Looking at the flow of water to the sedimentation tank 140 in relation to the internal pressure of the drain pipe coupling structure briefly, first through the inner region of the second drain pipe 133 at the time when the water level is higher than the top of the second drain pipe 133 ( Arrow a8) in FIG. 2 partially flows out to the settling tank 140, and at the same time, the pressure in the region between the second drain pipe 133 and the first drain pipe 132 is lowered, and as a result, the second under the lower pressure Water continues to flow into the area between the drain pipe 133 and the first drain pipe 132 (arrows a6 and a7 in FIG. 2), so that the water level in the media layer 131 is filled in the first layer. It continues until it is approximately equal to the bottom of the drain 132 (ie, until the water level is L5).
제3 배수관(134)은 여재층(131)의 상부에서 유입조(120)로부터 여재층(131)으로 물을 공급하는 부분이다. 제3 배수관(134)은 여재층(131) 방향으로 소정의 간격으로 형성되어 유입조(120)로부터 월류된 물을 여재층(131)으로 공급할 수 있도록 하기 위한 복수 개의 배출구(1341)를 포함한다. 앞서 간단히 언급한 바와 같이, 제3 배수관(134)으로 월류하는 물은 저장조 펌프(112) 및 침전조 펌프(122) 중 어느 하나에 의해 펌핑되어 유입조(120) 내에서 비교적 고비중 입자를 침전에 의해 제거한 이후의 물이다.The third drain pipe 134 is a portion for supplying water from the inflow tank 120 to the filter medium layer 131 at the upper portion of the filter medium layer 131. The third drain pipe 134 includes a plurality of discharge ports 1321 formed at predetermined intervals in the direction of the filter medium layer 131 to supply the water overflowed from the inflow tank 120 to the filter medium layer 131. . As briefly mentioned above, the water flowing over to the third drain pipe 134 is pumped by either the reservoir pump 112 or the sedimentation tank pump 122 to deposit relatively high specific gravity particles in the inlet tank 120 to the sedimentation. By water after removal.
여재층(131)의 하부에는, 여재층(131)을 지지하고 여재층(131)을 통과하는 물을 하부로 배출하기 위한 지지망(135)이 더 구비된다. 또한, 지지망(135)과 여과 및 역세부(130)의 바닥(139) 사이에서 지지망(135)을 지지하고 지지망(135)의 공극들 사이로 나오는 물을 제1 배수관(132) 측, 즉, 배수관 결합구조 측으로 공급하기 위한 공간을 형성하는 지지부재(136)를 갖는다. 지지망(135)의 공극들의 크기는 지지망(135)에 의해 지지되는 여과층(131)의 입자의 크기보다 작을 것이 요구되고, 지지부재(136)는 도 1 및 도 2에 예시된 바와 같이, 예를 들어, 단면적이 삼각형이고 폭이 좁으면서 긴 삼각 기둥 형상의 복수 개의 로드(rod)들이 소정 간격으로 길게 배열되어 지지망(135)을 아래에서 지지하면서 지지망(135)의 공극들 사이로 나오는 물을 배수관 결합구조 측으로 공급(도 2의 화살표 a6 및 a7 참조)하도록 구성될 수 있다. 도 1 및 도 2의 지지부재(136)의 형상은 예시된 것에 불과하므로, 이러한 삼각기둥 형상의 로드들로 한정되는 것은 아니다.A lower portion of the filter layer 131 is further provided with a support net 135 for supporting the filter layer 131 and discharging water passing through the filter layer 131 downward. In addition, water supporting the support network 135 between the support network 135 and the bottom 139 of the filtration and backwashing unit 130 and water flowing between the pores of the support network 135 is discharged to the first drain pipe 132 side, that is, the drain pipe. It has a support member 136 that forms a space for supply to the side of the coupling structure. The size of the pores of the support net 135 is required to be smaller than the size of the particles of the filtration layer 131 supported by the support net 135, and the support member 136 is illustrated, as illustrated in FIGS. 1 and 2. For example, a plurality of rods having a triangular cross section and a narrow triangular column shape are arranged long at predetermined intervals to support the support network 135 from below, and drain water from the air gaps between the pores of the support network 135. It can be configured to feed (see arrows a6 and a7 in FIG. 2) to the coupling structure side. Since the shape of the supporting member 136 of Figs. 1 and 2 is only illustrated, it is not limited to such triangular prism-shaped rods.
더 나아가, 상기 여과 및 역세부(130)는 제2 배수관(133)의 내부를 통해 침전조(140)로 물을 유출하는 동안에도 계속해서 수위가 높아지는 경우, 침전조(140)로 물을 더 유출시켜 여재층(131) 내의 수위를 조절하기 위한 역세 배수관(137)을 더 포함한다. 역세 배수관(137)은 제2 배수관(133)의 상단(top-end)보다 낮은 위치에서부터 나와 침전조(140)로 이어지도록 설치되어, 월류수를 침전조(140) 측으로 유입시킨다. 이 때 월류수에는 역세에 의해 유출되는 오염물질이나 미생물 덩어리들이 포함되어 있을 수 있다. 도 1에서 L1은 제2 배수관(133)의 상단의 높이이고, L2는 역세 배수관(137)의 설치 높이로서, L2는 L1보다 낮게 위치하도록 한다. 여과 및 역세부(130) 측으로 유입되는 수량이 적은 경우에는, 배수관 결합구조(132, 133)에 의해서만 배출되고, 배수관 결합구조(132, 133)의 배출 용량을 초과하여 수위가 계속 증가하는 경우, 배수관 결합구조에 의한 배출과 함께 역세 배수관(137)을 통한 배출도 병행된다.Furthermore, the filtration and backwashing unit 130 further flows out the water to the settling tank 140 when the water level continues to increase while the water flows out to the settling tank 140 through the inside of the second drain pipe 133. A backwash drain pipe 137 for adjusting the water level in the media layer 131 is further included. The backwash drain pipe 137 is installed to extend from the position lower than the top-end of the second drain pipe 133 to the sedimentation tank 140 to introduce the overflow water into the sedimentation tank 140. The overflow water may contain contaminants or microbial masses released by backwash. In FIG. 1, L1 is the height of the upper end of the second drain pipe 133, L2 is the installation height of the backwash drain pipe 137, and L2 is positioned lower than L1. When the amount of water flowing into the filtration and backwashing part 130 is small, the water is discharged only by the drain pipe coupling structures 132 and 133 and the water level continues to increase beyond the discharge capacity of the drain pipe coupling structures 132 and 133. Along with the discharge by the drain pipe coupling structure, the discharge through the backwash drain pipe 137 is also parallel.
본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 침전조(140) 이후의 수처리를 위해, 최종 처리수조(150) 및 소독조(160)를 더 포함할 수 있다. 최종 처리수조(150)에서는 침전조(140) 내에서 오염물질이 침전된 후 월류하는 물에 잔존하는 오염물질을 최종적으로 침전시키며, 소독조(160)는 최종 처리수조(150)에서의 침전 이후 물을 소독하기 위한 부분이다. 여기서, 소독조(160)에 염소 같은 소독약품을 주입하기 위한 소독약품 주입구가 별도로 마련될 수 있다. 소독조(160) 내에는 소독 처리된 물을 외부로 배출(화살표 a5 참조)하여 사용할 수 있도록 소독조 펌프(162)가 마련될 수 있다. 최종 처리수조(150)에서 소독조(160)로 물이 월류할 수 있도록 최종 처리수조(150)와 침전조(140) 사이의 벽 높이(L3)보다 최종처리수조(150)와 소독조(160) 사이의 벽 높이(L4)가 더 낮도록 설치된다.The biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present invention may further include a final treatment tank 150 and a disinfection tank 160 for water treatment after the precipitation tank 140. The final treatment tank 150 finally precipitates the contaminants remaining in the overflowed water after the pollutant is precipitated in the sedimentation tank 140, the disinfection tank 160 is the water after the precipitation in the final treatment tank 150 This is for disinfection. In this case, a disinfectant injection hole for injecting a disinfectant such as chlorine into the disinfection tank 160 may be separately provided. The disinfection tank 160 may be provided with a disinfection tank pump 162 to discharge the disinfected water to the outside (see arrow a5). Between the final treatment tank 150 and the disinfection tank 160 than the wall height (L3) between the final treatment tank 150 and the settling tank 140 so that water can flow from the final treatment tank 150 to the disinfection tank 160. The wall height L4 is installed to be lower.
이와 같이, 본 발명의 생물막 수처리 장치는, 도 1 내지 도 4에 도시된 바와 같이 저장조(110), 유입조(120), 그리고 여과 및 역세부(130)를 포함하는 상부층과, 침전조(140), 최종 처리수조(150) 및 소독조(160)를 포함하는 하부층으로 구분될 수 있는 간단한 처리 장치로 구현될 수 있으며, 공기 공급 또는 역세를 위한 별도의 송풍기, 산기시설 등의 설비가 필요없어 비용면에서도 유리하고 에너지 절감 효과를 누릴 수 있다.As such, the biofilm water treatment apparatus of the present invention, as shown in Figures 1 to 4, the upper layer including the reservoir 110, the inflow tank 120, and filtration and backwashing 130, and the settling tank 140 , Can be implemented as a simple treatment device that can be divided into a lower layer including the final treatment tank 150 and the disinfection tank 160, and does not require a separate blower, diffuser facilities for air supply or backwashing In addition, it can be advantageous and can save energy.
이하에서는 도 5를 도 1 내지 도 4와 함께 참조하여, 본 발명에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 여과 및 역세 과정을 설명하도록 한다.Hereinafter, the filtration and backwashing process of the biofilm water treatment apparatus having the non-powered backwashing function according to the present invention will be described with reference to FIGS.
여과 및 역세부(130)로 물과 함께 유입되는 오염물질은 물의 흐름(하향류)에 따라 여재층(131)으로 침투한다. 여과 과정은 물이 위에서 아래로 흐르는 하향류에 따라 진행된다. 즉, 여과 과정은 여재층(131)의 상측에서 제3 배수관(134)의 배출구(1341)를 통해 물이 공급되는 경우, 물에 혼합된 오염물질, 예컨대, 유기물질, 미립자, 부유물질 및 중금속 등이 하향류에 따라 여재층(131)의 여재에 의해 여과·흡착되거나 유기물질이 여재층에 존재하는 생물막에 의해 분해되는 과정이다(도 1의 참조부호 ff 참조).The contaminants introduced into the filtration and backwashing unit 130 with water penetrate into the media layer 131 according to the flow of water (downstream). The filtration process proceeds with the downward flow of water from top to bottom. That is, in the filtration process, when water is supplied through the outlet 1321 of the third drain pipe 134 on the upper side of the filter medium layer 131, pollutants mixed with water, for example, organic substances, fine particles, suspended solids and heavy metals. The back is a process of being filtered and adsorbed by the filter media of the filter media layer 131 or decomposed by the biofilm present in the filter media layer (see reference numeral ff in FIG. 1).
이와는 반대로, 계속해서 유입되는 유입수에 의해 여재층(131)의 하부에서부터 상부로의 상향류에 따라 진행되는 과정은 역세(back washing) 과정이다(도 1의 참조부호 bw 참조). 즉, 역세 과정은 여재층(131)의 하부에서 상부로의 물의 흐름에 따라 여재층(131) 내의 오염물질, 즉, 여재층(131) 내에서 여재층 사이에 흡착되어 여재층의 공극을 폐색하는 오염물질 또는 미생물 덩어리가 다시 여재층(131)의 상부로 이동하는 과정이다. 다시 말해, 이렇게 물의 흐름이 상향류와 하향류를 반복하여 흐름으로써 여재 사이의 공극이 폐색되는 것을 방지한다. 여기서, 여재층(131)의 상부는 여재층(131) 중 대체로 제1 배수관(132)의 하단보다 높은 부분으로서 비교적 산소가 많이 존재하는 호기상임에 비해(도 1의 참조부호 ae), 여재층(131)의 하부는 여재층(131) 중 대체로 제1 배수관(132)의 하단보다 낮은 부분으로서 혐기상이다(도 1의 참조부호 an). 본 명세서 내에서 '대체로 제1 배수관(132)의 높이'로 기술한 것은, 실제로 물의 기본적인 성질(표면 장력에서 기인한 성질 등)을 고려할 때, 제2 배수관(133)에 의한 침전조(140)로의 배출시 제1 배수관(132)의 하단과 정확히 일치하는 수위까지 배출되지는 않으므로, 이 점을 고려한 것이다.On the contrary, the process proceeding according to the upward flow from the lower part of the filter layer 131 to the upper part by the influent continuously introduced is a back washing process (see reference numeral bw of FIG. 1). That is, the backwashing process is adsorbed between the contaminants in the media layer 131, that is, the media layer in the media layer 131, as the water flows from the lower part of the media layer 131 to the upper part to block the pores of the media layer Contaminants or microbial lumps are the process of moving back to the upper layer (131). In other words, the water flow is repeated in the upstream and the downstream to prevent the voids between the media from being blocked. Here, the upper part of the filter medium layer 131 is a portion higher than the lower end of the first drain pipe 132 of the filter layer 131 as compared with the aerobic phase in which a relatively large amount of oxygen exists (reference numeral ae in FIG. 1), and the filter layer The lower part of 131 is anaerobic as a lower part of the medial layer 131 than the lower end of the first drain pipe 132 (reference an in FIG. 1). In this specification, what is described as the "height of the first drain pipe 132" is actually referred to the sedimentation tank 140 by the second drain pipe 133 in consideration of the basic properties of water (such as due to surface tension). Since the discharge is not discharged to the water level that exactly matches the lower end of the first drain pipe 132, this point is considered.
여과 및 역세 과정에서 상기 여과 및 역세부(130)는, 여과 과정에서 여재층의 상부에서 하부로 이동한 오염물질을 여재층(131) 내에서 호기성 미생물(aerobe, ae)로 처리한 후, 호기성 미생물의 하부에 존재하는 혐기성 미생물(anaerobe, an)로 처리하고, 혐기성 미생물로 처리한 후, 역세 과정에서 상향류(bw)에 따라 이동한 오염물질을 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리한다. 호기성 미생물에 의한 오염물질의 처리(S51) 과정에서 오염물질은 질산화된다. 그런 다음, 질산화 과정을 거친 오염물질은 하향류(ff)에 따라 아래로 이동하여 혐기상에 놓이게 된다. 여기서, 질산화 과정을 거친 오염물질은 혐기성 미생물에 의해 탈질화된다(S52). 하지만, 질산화 과정 및 탈질화 과정을 거치더라도 오염물질에서 완전히 질소가 제거된 상태는 아니다. 따라서, 그 상태의 오염물질은 역세 과정에서 상향류에 따라 위로 이동하여 다시 호기상에 놓이게 된다(S53). 여기서, 오염물질은 다시 질산화 과정을 거치게 되고, 이후 다시 하향류에 따라 혐기상으로 이동하여 혐기성 미생물에 의해 탈질화된다(S54). 이후, 물은 탈질화된 오염물질과 함께 제2 배수관(133)의 내부를 통해 무산소조 즉, 침전조(140)로 배출된다(S55). 다시 침전조(140) 내의 물을 유입조(120)로 펌핑함으로써 상기 과정이 반복될 수 있다. 여기서, 여과 과정과 역세 과정, 즉 상향류 및 하향류에 따라 여재층(131) 내의 호기성 미생물 및 혐기성 미생물에 의한 반복적인 처리 과정은 효과적인 탈질화를 위해 수차례 반복될 수 있다.In the filtration and backwashing process, the filtration and backwashing unit 130 is treated with aerobic microorganisms (aerobe, ae) in the mediator layer 131 after the contaminants moved from the top to the bottom of the mediator layer in the filtration process. Treated with anaerobic microorganisms (anaerobe, an) present in the lower part of the microorganisms, treated with anaerobic microorganisms, and then treated with aerobic microorganisms present in the upper part of the anaerobic microorganisms, the contaminants moved by upflow (bw) during the backwashing process. do. During the treatment of contaminants by aerobic microorganisms (S51), the contaminants are nitrified. The nitrified contaminants then move downward along the downflow (ff) and are placed in the anaerobic phase. Here, the contaminants that have undergone nitrification are denitrified by anaerobic microorganisms (S52). However, even after nitrification and denitrification, nitrogen is not completely removed from contaminants. Therefore, the contaminants in the state are moved upward in accordance with the upflow in the backwashing process and placed on the exhalation again (S53). Here, the contaminants are subjected to nitrification again, and then moved to the anaerobic phase according to the downflow again and denitrified by the anaerobic microorganisms (S54). Thereafter, the water is discharged to the anoxic tank, that is, the settling tank 140 through the inside of the second drain pipe 133 together with the denitrified pollutant (S55). The process may be repeated by pumping the water in the settling tank 140 to the inlet 120 again. Here, the repetitive treatment by the aerobic and anaerobic microorganisms in the filter layer 131 according to the filtration process and the backwashing process, that is, upstream and downstream, may be repeated several times for effective denitrification.
나아가, 여재층(131)의 상부에는 예를 들어, 꽃창포, 갈대 등과 같은 뿌리 발달 식물이 더 식재될 수 있다. 식재된 뿌리 발달 식물의 뿌리는 여재층(131) 내에서, 여재층(131)으로 유입되는 물에 혼합된 질소 또는 인을 흡수하도록 하여, 뿌리 발달 식물의 영양 물질로 이용될 수 있도록 할 수 있다. 뿌리 발달 식물이 채용되는 경우, 수중 오염물질 중 특히 질소, 인, 중금속 등을 식물의 뿌리에서 흡착 및 흡수하고, 식물의 뿌리에서 증식하는 미생물에 의해 오염물질(예컨대, 유기물질)을 분해할 수 있다. 또한 식물의 뿌리가 여재 사이에 성장하여 여재의 기능을 더욱 강화하고 여재의 폐색을 효과적으로 방지할 수 있다.Furthermore, root development plants such as irises and reeds may be further planted on the upper portion of the filter layer 131. The root of the planted root development plant may absorb nitrogen or phosphorus mixed in the water flowing into the medial layer 131 in the medial layer 131, and thus may be used as a nutritional substance of the root development plant. . When a root development plant is employed, it is possible to absorb and absorb nitrogen, phosphorus, heavy metals, etc., among the pollutants in the water, from the roots of the plants, and to decompose pollutants (eg, organic substances) by microorganisms that proliferate in the roots of the plants. have. In addition, the roots of the plants grow between the media can further enhance the function of the media and effectively prevent the blockage of media.
도 6은 본 발명의 일 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 전체 과정을 단계로 구분하여 설명하기 위한 블록도로서, 도 6을 도 1 내지 도 4와 함께 참조하여, 생물막 수처리 장치의 전체적인 처리 과정 및 효과를 설명하면 이하와 같다.FIG. 6 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to an embodiment of the present disclosure in stages. Referring to FIG. 6 together with FIGS. The overall treatment process and effects of are as follows.
먼저, 저장조 펌프(112) 및 침전조 펌프(122) 중 어느 하나에 의해 펌핑된 물이 유입조(120) 내로 유입된다. 즉, 저장조(110)로부터 유입조(120)로 물을 공급하지 않을 경우 침전조(140) 내의 물을 침전조 펌프(122)로 펌핑하여 순환시킨다. 유입된 물은 유입조(120) 내에서 침전 과정을 거치는데, 여기서 비교적 고 비중의 오염물질이 침전되고(S61), 여기서 바닥에 응집된 침전 슬러지는 별도의 석션 펌프를 통해 외부로 배출된다. 그런 다음, 계속해서 유입조(120) 내의 수위가 높아져서 월류하여 제3 배수관(134)을 통해 여과 및 역세부(130) 측으로 오염물질이 포함된 물이 공급된다. 물이 공급되는 경우, 앞서 설명한 바와 같이 여재층(131)에서 생물막 여과가 이루어지는데, 먼저 호기성 미생물에 의해 질산화가 진행되고(S62), 하향류에 따라 아래로 이동하여 혐기성 미생물에 의해 탈질화가 이루어진다(S63). 앞서 언급한 바와 같이, S62와 S63 과정은 수위가 높아지는 경우, 즉 상향류에 따라 S63 과정 이후 S62 과정 및 S63 과정이 반복되어 탈질 효율이 더욱 높아질 수 있다. 계속해서, 탈질 과정을 거친 이후 오염물질을 함유한 물은 제2 배수관(133)을 통해 침전조(140)로 유입된다. 물론, 전술한 바와 같이, 침전조(140)로 유입되는 물에는, 여재층(131) 내의 수위가 계속 상승하여 역세 배수관(137)을 통해 배출된 물도 있다. 이러한 침전조(140) 내의 물은 무산소조인 침전조(140) 내에서 침전 과정을 거친다(S64). 한편, 침전조(140)에서는 계속해서 침전조 펌프(122)를 작동시켜 유입조(120) 내로 침전조(140) 내의 물을 펌핑할 수 있고, 여과 및 역세 과정을 포함하여 생물막 여과(S62, S63) 및 침전조(140)로부터의 펌핑을 통한 내부 순환 싸이클을 통해, 질소, 인을 포함하는 각종 오염물질을 효율적으로 제거할 수 있다. 최종적으로, 오염물질이 제거된 유입수는 최종 처리수조(150)와 소독조(160)을 거쳐 방류된다(S65). 한편, 물속의 인은 혐기조건하에서는 수중으로 배출되지만, 호기조건하에서는 호기성 미생물이 인을 섭취하고 있거나 인을 섭취한 미생물이 슬러지화되어 외부로 방출되게 된다.First, water pumped by any one of the reservoir pump 112 and the sedimentation tank pump 122 is introduced into the inflow tank 120. That is, when water is not supplied from the storage tank 110 to the inflow tank 120, the water in the settling tank 140 is pumped to the settling tank pump 122 and circulated. The introduced water is subjected to the precipitation process in the inflow tank 120, where a relatively high specific gravity of contaminants are precipitated (S61), where the sediment sludge agglomerated at the bottom is discharged to the outside through a separate suction pump. Then, the water level in the inflow tank 120 is continuously increased so that water containing contaminants is supplied to the filtration and backwashing unit 130 through the third drain pipe 134. When water is supplied, biofilm filtration is performed in the filter medium layer 131 as described above. First, nitrification proceeds by an aerobic microorganism (S62), and downwards by downward flow to denitrification by anaerobic microorganisms. (S63). As mentioned above, the process of S62 and S63 may be increased when the water level is increased, that is, the S62 process and the S63 process are repeated after the S63 process according to the upstream. Subsequently, after the denitrification process, the water containing the contaminant is introduced into the settling tank 140 through the second drain pipe 133. Of course, as described above, the water flowing into the settling tank 140, the water level in the filter medium layer 131 continues to rise, there is also water discharged through the backwash drain pipe (137). The water in the settling tank 140 is subjected to the settling process in the settling tank 140, an anoxic tank (S64). On the other hand, in the sedimentation tank 140 to operate the sedimentation tank pump 122 to pump the water in the sedimentation tank 140 into the inlet tank 120, including biofilm filtration (S62, S63) and filtration and backwashing process and Through the internal circulation cycle through the pumping from the settling tank 140, it is possible to efficiently remove various contaminants including nitrogen, phosphorus. Finally, the influent water from which the contaminants have been removed is discharged through the final treatment tank 150 and the disinfection tank 160 (S65). On the other hand, phosphorus in the water is discharged into the water under anaerobic conditions, but under aerobic conditions, aerobic microorganisms are ingesting phosphorus or microorganisms ingesting phosphorus are sludged and released to the outside.
이와 같이 하여, 물이 여재층(131) 내의 여재를 통과하는 도중에, 여재의 표면에 부착 증식하는 호기성 미생물로 각종 유기물을 분해할 수 있으며, SS(Suspended Solids)를 포착할 수 있고, 질소를 효율적으로 제거할 수 있으며, 침전조(140) 내에서 인을 포함하는 침전 슬러지를 응집시켜 외부로 효과적으로 배출해 낼 수 있다. 더 나아가, 여재층(131)의 상부에 뿌리 발달 식물이 더 식재될 수 있고, 뿌리 발달 식물이 식재되는 경우, 수중 오염물질 중 특히 질소, 인, 중금속 등이 식물의 뿌리에서 흡착 및 흡수될 수 있고, 식물의 뿌리에서 증식하는 미생물에 의해 오염물질이 분해될 수 있다. In this way, various kinds of organic matter can be decomposed into aerobic microorganisms that adhere to and propagate on the surface of the filter medium while water passes through the filter medium in the filter medium layer 131, and it can capture SS (Suspended Solids) and efficiently nitrogen. It can be removed, and can be effectively discharged to the outside by flocculating the sludge containing phosphorus in the settling tank 140. Furthermore, the root development plant may be planted further on the upper layer 131, and when the root development plant is planted, nitrogen, phosphorus, heavy metals, etc., among water pollutants, may be adsorbed and absorbed at the root of the plant. And contaminants can be degraded by microorganisms that grow in the roots of plants.
도 7은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 단면도이고, 도 8은 도 7에 대응하는 무동력 역세 기능을 갖는 생물막 수처리 장치의 다른 일면의 단면도이고, 도 9는 도 7에 대응하는 무동력 역세 기능을 갖는 생물막 수처리 장치의 사시도이고, 도 10은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 여과 및 역세 과정의 싸이클을 설명하기 위한 블록도이며, 도 11은 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 전체 과정을 단계로 구분하여 설명하기 위한 블록도이다.7 is a cross-sectional view of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention, FIG. 8 is a cross-sectional view of another surface of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7, and FIG. 9 is a view of FIG. 7 is a perspective view of a biofilm water treatment apparatus having a non-powered backwashing function corresponding to FIG. 7, and FIG. 10 is a block diagram illustrating a cycle of filtration and backwashing of the biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention. FIG. 11 is a block diagram illustrating the entire process of a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present disclosure.
먼저, 도 7 내지 도 9을 참조하면, 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 유입수를 저장하는 저장조(1110), 저장조(1110)로부터 월류시키거나 펌프(1112)를 통해 펌핑된 물을 유입시켜(펌핑관(1114)을 통해), 이로부터 오염물질을 침전시키는 유입조(1120), 및 유입조(1120)의 하부로부터 물을 유입시켜 상향류 및 하향류의 반복 흐름을 통해 호기성 미생물 및 혐기성 미생물로 1차로 수처리하는 제1 생물막 반응기(1130), 그리고, 제1 생물막 반응기(1130)의 하부에서 제1 생물막 반응기(1130)로부터 1차로 수처리된 물을 공급받아 상향류 및 하향류의 반복 흐름을 통해 2차로 수처리하는 제2 생물막 반응기(1140)를 포함한다. 따라서, 제1,2 생물막 반응기에서 하향류가 되면 공기가 유입되어, 호기상태를 유지하기 위해 별도의 송풍장치가 필요없다.First, referring to FIGS. 7 to 9, a biofilm water treatment apparatus having a non-powered backwashing function according to another embodiment of the present invention may be configured to overflow from a reservoir 1110 and a reservoir 1110 for storing inflow water or to pump 1112. Inflow of the pumped water through (through the pumping pipe 1114), the inflow tank 1120 for precipitating contaminants therefrom, and the inflow of water from the bottom of the inflow tank 1120 to the upstream and downstream of The first biofilm reactor 1130 for firstly treating the aerobic and anaerobic microorganisms through a repetitive flow, and receives the first water-treated water from the first biofilm reactor 1130 at the lower portion of the first biofilm reactor 1130. And a second biofilm reactor 1140 for secondary water treatment through repeated flows of upstream and downstream flows. Therefore, when the downflow in the first and second biofilm reactors, the air is introduced, there is no need for a separate blower to maintain the aerobic state.
제1 생물막 반응기(1130)는, 유입조(1120)로부터 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리하는 제1 담체층(1131a, 1131b, 이하 총괄하여 '1131'라 함)과, 제1 담체층(1131) 내에서 제1 배수관(1132)의 하단(bottom-end)이 제1 담체층(1131)의 하단보다 높게 위치하고 상부(11321)가 밀폐되고 하부(11322)가 개방되게 형성된 제1 배수관(1132)과, 제1 배수관(1132) 내에 삽입되고 상하부가 개방되고 하부가 제2 생물막 반응기(1140)로 연결되는 제2 배수관(1133)과, 유입조(1120)의 하부로부터 제1 담체층(1131)의 하부로 물을 공급하기 위한 유입로(1134)와, 유입로(1134)와 제1 담체층(1131) 사이에 위치하여 제1 담체층(1131)을 지지하고 유입로(1134)를 통해 유입되는 물을 통과시키는 제1 지지망(1135)과, 제1 지지망(1135)과 바닥 사이에서 제1 지지망(1135)을 지지하고 제1 지지망(1135)을 통해 하부로 배출되는 물을 제1 배수관(1132) 측으로 공급하기 위한 공간(11341;도 8 참조)을 형성하는 지지부재(1136)를 갖는다. 상기 공간(11341)은 유입로(1134)와 연결되도록 형성된다. 이와 같은 구성을 통해, 제1 담체층(1131)의 하부로부터 수위가 점차 높아져 제2 배수관(1133)의 상단의 높이(L1)보다 높아지는 경우, 제1 배수관(1132)의 내부 영역이면서 제2 배수관(1133)의 외부 영역으로 유입되는 물, 즉 제1 배수관(1132)과 제2 배수관(1133) 사이로 유입되는 물은, 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단의 높이(L5)와 대체로 동일하게 될 때까지 제2 배수관(1133)의 내부를 통해 제2 생물막 반응기(1140) 측으로 유출되어, 제1 담체층(1131)의 폐색 현상을 방지하도록 할 수 있다.The first biofilm reactor 1130 is a first carrier layer (1131a, 1131b, hereinafter collectively referred to as '1131') for treating water introduced from the inlet tank 1120 with aerobic and anaerobic microorganisms through filtration and backwashing. ) And the bottom-end of the first drain pipe 1132 is higher than the bottom of the first carrier layer 1131 in the first carrier layer 1131, and the upper part 1131 is sealed and the lower part 1122 is A first drain pipe 1132 formed to be open, a second drain pipe 1133 inserted into the first drain pipe 1132 and having an upper and lower portions open to the second biofilm reactor 1140, and an inlet tank 1120; An inlet path 1134 for supplying water from the lower part to the lower part of the first carrier layer 1131, and positioned between the inlet path 1134 and the first carrier layer 1131 to support the first carrier layer 1131. And a first support net 1135 for passing water introduced through the inlet path 1134, and a first support net 1135 between the first support net 1135 and the floor. Has a supporting member 1136 to form a, (see Fig. 8 11 341) and the space for supplying the water discharged from the lower portion on a first support network 1135 toward the first drain pipe 1132. The space 11341 is formed to be connected to the inflow path 1134. Through such a configuration, when the water level is gradually increased from the lower portion of the first carrier layer 1131 to be higher than the height L1 of the upper end of the second drain pipe 1133, the second drain pipe is an inner region of the first drain pipe 1132. The water flowing into the outer region of the 1113, that is, the water flowing between the first drain pipe 1132 and the second drain pipe 1133, has a water level in the lower end of the first drain pipe 1132. It may be discharged to the second biofilm reactor 1140 through the inside of the second drain pipe 1133 until the height L5 becomes substantially the same, thereby preventing the blocking of the first carrier layer 1131.
제1 배수관(1132)은 제1 담체층(1131) 내에 대체로 수직으로 관입되어 지지벽(1138)에 의해 고정될 수 있다. 도시하지는 않았으나, 예를 들어, 제1 배수관(1132)은 지지벽(1138)에 스크류나 기타 고정 수단을 통해 움직이지 않도록 지지벽(1138)과 이격되게 고정될 수 있다.The first drain pipe 1132 may be generally vertically introduced into the first carrier layer 1131 to be fixed by the support wall 1138. Although not shown, for example, the first drain pipe 1132 may be fixed to the support wall 1138 so as to be spaced apart from the support wall 1138 so as not to move through a screw or other fixing means.
지지벽(1138)은 제1 담체층(1131) 사이에서 제1 배수관(1132) 등이 관입될 수 있는 공간을 갖도록 형성되어 있는데, 이 지지벽(1138)은 제1 담체층(1131)과 제1 배수관(1132) 사이에서 제1 담체층(1131)에는 인접하도록 배치되고 제1 배수관(1132)과는 이격되도록 배치된다. 따라서, 제1 배수관(1132)과 지지벽(1138) 사이에는 외기가 유입될 수 있는 소정의 공간(1139)이 마련된다. 이 공간(1139)은, 앞서 설명된 동작 과정, 즉, 제1 담체층(1131)의 하부로부터 수위가 점차 높아져 제2 배수관(1133)의 상단의 높이(L1)보다 높아지는 경우, 제1 배수관(1132)의 내부 영역이면서 제2 배수관(1133)의 외부 영역으로 유입되는 물, 즉 제1 배수관(1132)과 제2 배수관(1133) 사이로 유입되는 물이, 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단의 높이(L5)와 대체로 동일하게 될 때까지 제2 배수관(1133)의 내부를 통해 제2 생물막 반응기(1140) 측으로 유출되는 동작 과정이 원활히 진행될 수 있도록 한다. 즉, 제1 담체층(1131) 내에서부터 공기가 유입될 수도 있지만 상기 공간(1139)을 통해 제2 배수관(1133)의 외부 영역으로 공기가 원활히 유입되면 제1 담체층(1131) 내의 수위 상부의 압력과 제2 배수관(1133)의 외부 영역에서의 압력이 동일하게 되어 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단보다 낮아지게 될 때 물의 유출이 중단된다.The support wall 1138 is formed to have a space in which the first drain pipe 1132 and the like can be inserted between the first carrier layer 1131. The support wall 1138 is formed of the first carrier layer 1131 and the first carrier layer 1131. Between the first drain pipe 1132, the first carrier layer 1131 is disposed to be adjacent to and spaced apart from the first drain pipe 1132. Therefore, a predetermined space 1139 through which external air can flow is provided between the first drain pipe 1132 and the support wall 1138. The space 1139 is the operation process described above, that is, when the water level is gradually increased from the lower portion of the first carrier layer 1131 and becomes higher than the height L1 of the upper end of the second drain pipe 1133, the first drain pipe ( Water flowing into the first drainage pipe 1132 and the second drainpipe 1133, that is, the water flowing into the first drainage pipe 1132 and the second drainpipe 1133, which is an inner region of the first drainage pipe 1333, The operation process flowing out to the second biofilm reactor 1140 through the interior of the second drain pipe 1133 until the height L5 of the lower end of the first drain pipe 1132 becomes substantially the same may be performed smoothly. That is, although air may flow in from the first carrier layer 1131, when air smoothly flows into the outer region of the second drain pipe 1133 through the space 1139, the upper portion of the water level in the first carrier layer 1131 may be increased. When the pressure is equal to the pressure in the outer region of the second drain pipe 1133 and the water level in the first carrier layer 1131 becomes lower than the lower end of the first drain pipe 1132, the outflow of water is stopped.
제1 담체층(1131)은 소정의 간격으로 대체로 수직 방향으로 배열되는 복수 개의 여과망들(1131a)과, 복수 개의 여과망들(1131a) 사이에 개재되는 접촉여재(1131b)를 포함한다. 도 9의 사시도에 도시된 바와 같이, 여과망들(1131a)은 소정의 간격으로 배치되고, 그 사이의 공간(1131b1)에 접촉여재(1131b)를 개재시킬 수 있다. 예를 들어, 접촉여재(1131b)는 섬유로 제작된 부직포 판 부재의 일종으로서 여과 효과를 갖는 사란 락(saran lock) 생물막 여재 또는 스펀지 등 재질의 담체일 수 있는데, 사란 락 또는 스펀지 등 재질의 담체와 같은 표면적을 극대화시킨 고정상 접촉여재를 통하여 중력에 의한 부유물질의 제거는 물론 여과에 의한 제거, 접촉여재에 부착하여 자라는 미생물에 의한 제거를 동시에 도모할 수 있고, 사란 락 또는 스펀지 등 재질의 담체는 교체 및 세척이 용이하다.The first carrier layer 1131 includes a plurality of filter nets 1131a arranged in a substantially vertical direction at predetermined intervals, and a contact medium 1131b interposed between the plurality of filter nets 1131a. As illustrated in the perspective view of FIG. 9, the filtering nets 1131a may be disposed at predetermined intervals, and the contact media 1113b may be interposed in the space 1131b1 therebetween. For example, the contact filter 1131b is a kind of nonwoven fabric member made of fiber, and may be a carrier of a material such as a saran lock biofilm media or a sponge having a filtration effect, and a carrier of a material such as saran lock or sponge. The fixed-phase contact media that maximizes the surface area, such as the removal of suspended solids by gravity as well as removal by filtration and microorganisms attached to the contact media, can be simultaneously promoted. Carriers of materials such as sarak rock or sponge It is easy to replace and wash.
제1 생물막 반응기(1130)에서, 제1 지지망(1135)을 통해 하부로 배출되는 물을 제1 배수관(1132) 측으로 공급하기 위한 공간(11341;도 8 참조)의 바닥(bottom) 중 일부 영역(예를 들어, 지지벽(1138)의 직하부)은, 제2 배수관(1133)이 관통하는 부분을 중심으로 하여 중심부분이 낮도록 경사지게 형성되어(11261) 배출되는 물 속의 침전 슬러지가 모이도록 할 수 있다. 침전된 슬러지는 별도의 슬러지 배출 수단(예컨대, 석션 펌프(suction pump)을 통해 외부로 배출될 수 있다(화살표 a11).In the first biofilm reactor 1130, a portion of the bottom of the bottom of the space 11341 (see FIG. 8) for supplying water discharged downward through the first support net 1135 to the side of the first drain pipe 1132 (see FIG. 8). For example, the lower portion of the support wall 1138) is formed to be inclined so that the center portion is low around the portion through which the second drain pipe 1133 penetrates (11261) to collect the settling sludge in the discharged water. Can be. The precipitated sludge may be discharged to the outside via a separate sludge discharge means (eg, suction pump) (arrow a11).
유입수를 저장하는 저장조(1110)는 전술한 바와 같이, 초기 우수, 하수, 중수 또는 하수 처리수 등의 유입수를 유입시킨다(화살표 a1). 도시되어 있지는 않으나, 저장조(1110) 내에는 유입수에서 오염물질을 침전시켜 침전 슬러지의 응집이 용이할 수 있도록 경사진 구조로 형성될 수 있다. 여기서 침전되는 오염물질은, 예를 들어, 조대 물질 또는 비교적 고 비중의 입자이다. 따라서, 이와 같은 고 비중의 입자는 1차적으로 유입조(1120) 이전 단계에서 저장조(1110)에서 침전된다. 저장조(1110)의 바닥에 침전된 슬러지는, 예를 들어, 별도로 설치된 석션 펌프(suction pump)(미도시)를 통해 외부로 배출될 수 있다. 저장조(1110) 내에는 유입조(1120) 내로 물을 펌핑할 수 있도록 저장조 펌프(1112)가 마련된다.As described above, the reservoir 1110 storing the inflow water introduces inflow water such as initial rainwater, sewage water, heavy water, or sewage treatment water (arrow a1). Although not shown, the storage tank 1110 may be formed in an inclined structure to precipitate the contaminants in the inflow water to facilitate the aggregation of the settling sludge. The pollutants precipitated here are, for example, coarse matter or particles of relatively high specific gravity. Therefore, such high specific gravity particles are primarily precipitated in the reservoir 1110 at the stage prior to the inlet tank 1120. The sludge deposited on the bottom of the reservoir 1110 may be discharged to the outside through, for example, a suction pump (not shown) installed separately. In the reservoir 1110, a reservoir pump 1112 is provided to pump water into the inlet 1120.
유입조(1120)는 저장조(1110)로부터 물을 월류시키거나 저장조 펌프(1112)를 이용하여 펌핑하여 유입시켜(화살표 a2) 이로부터 바닥(1126)에 오염물질을 침전시킴으로써 침전 슬러지를 생성한다. 또한, 유입조(1120)는 제2 생물막 반응기(1140)로부터 펌핑을 통해(화살표 a12) 물을 유입시킬 수 있다. 저장조(1110)로부터의 월류 또는 펌핑을 통한 물의 유입과 제2 생물막 반응기(1140)로부터의 물의 유입 동작은 서로 독립적이다. 즉, 유입조(1120)로 물을 유입함에 있어서, 저장조(1110)만으로부터 물을 유입시킬 수도 있고, 제2 생물막 반응기(1140)만로부터 펌핑을 통해 물을 유입시킬 수도 있으며, 둘 다로부터 동시에 유입시킬 수도 있다. 생성된 침전 슬러지는 비교적 고 비중의 오염물질로 이루어져 있다. 침전 슬러지는 석션 펌프(미도시)를 통해 외부로 배출된다(화살표 a3). 유입조(1120)는 유입되는 물(화살표 a2 또는 a12)로부터 오염물질을 침전시켜 침전 슬러지를 생성하기에 유리하도록 바닥부(1126)가 경사지게 형성되는 것이 바람직하다. 또한, 유입조(1120)는 침전된 오염물질 또는 침전 중에 있는 오염물질이 상 방향으로 역행하지 않도록 경사지게 배치된 경사판(1128)을 포함한다. 경사판(1128)은 도 7에 도시된 바와 같이, 서로 마주하는 유입조(1120)의 두 개의 측벽(11201, 11202)을 따라 길게 형성되어 있으며(도 9의 참조부호 1128 참조), 이 두 개의 측벽(11201, 11202)에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 배치되며, 그 중앙이 주변보다 낮도록 경사지게 설치된다. 이러한 구조를 통해, 경사판(1128)은 아래로 내려간 오염물질이 다시 위로 상승하지 않도록 할 수 있다.The inlet 1120 overflows the water from the reservoir 1110 or pumps it in using a reservoir pump 1112 (arrow a2) to generate sedimentation sludge by depositing contaminants on the bottom 1126 therefrom. In addition, the inflow tank 1120 may introduce water from the second biofilm reactor 1140 through pumping (arrow a12). Inflow of water through the overflow or pumping from the reservoir 1110 and inflow of water from the second biofilm reactor 1140 are independent of each other. That is, in introducing water into the inflow tank 1120, water may be introduced only from the reservoir 1110, or water may be introduced through pumping from only the second biofilm reactor 1140, and both may simultaneously It can also be introduced. The precipitated sludge produced is composed of relatively high specific gravity pollutants. The settling sludge is discharged to the outside via a suction pump (not shown) (arrow a3). The inlet tank 1120 is preferably formed with the bottom portion 1126 inclined so as to advantageously precipitate contaminants from the incoming water (arrows a2 or a12) to produce settling sludge. In addition, the inflow tank 1120 includes an inclined plate 1128 disposed to be inclined so that the precipitated contaminants or the contaminants in the sedimentation do not return upward. As shown in FIG. 7, the inclined plate 1128 is elongated along two side walls 1121 and 11202 of the inflow tank 1120 facing each other (see reference numeral 1128 in FIG. 9). Extending from the centers 11201 and 11202, they are alternately arranged at predetermined intervals, and are installed to be inclined so that the center thereof is lower than the periphery. Through this structure, the inclined plate 1128 may prevent the contaminants falling down from rising upward again.
제2 생물막 반응기(1140)는, 제2 배수관(1133)으로부터 공급되는 물을 유도하는 유도관(1142)과, 유도관(1142)을 통해 유도된 물의 수위가 점차 높아지는 경우 미생물 접촉을 통해 오염물질을 처리하기 위한 제2 담체층(1141)과, 제2 담체층(1141)의 하부에서 제2 담체층(1141)을 지지하며 유도관(1142)을 통해 유도된 물을 통과시키는 제2 지지망(1143)과, 제2 지지망(1143)의 하부에서 물에 혼합된 오염물질이 통과하여 침전되도록 하는 침전 여과망(1144)과, 침전 여과망(1144)을 통과하여 침전된 오염물질에 의해 침전 슬러지가 생성되도록 경사지게 형성된 바닥부(1146)와, 제2 지지망(1143)의 하부에 위치하여 유입조(1120)로 물을 펌핑하기 위한 펌프(1122)를 포함한다. 펌프(1122)에서의 펌핑은, 제2 생물막 반응기(1140)에서 2차적으로 여과 및 역세 과정을 수행하기 위해 필요한 것으로서, 펌프(1122)에서의 펌핑으로 유입조(1120)로 물을 더 유입시켜 오염물질을 침전시킨다. 앞서 언급한 바와 같이, 펌프(1122)에서의 펌핑을 통해 유입조(1120)로 물을 유입시키는 과정은 저장조(1110)로부터의 물 유입 중이든 그렇지 않든 상관없이 진행될 수 있다.The second biofilm reactor 1140 is a conduit through microbial contact when the water level of the induction pipe 1142 for inducing water supplied from the second drain pipe 1133 and the water induced through the induction pipe 1142 is gradually increased. The second support layer (1141) and the second support network for supporting the second carrier layer (1141) in the lower portion of the second carrier layer (1141) for passing the water guided through the guide tube (1142) 1143), sediment filtering net 1144 for allowing the contaminants mixed with water to precipitate through the lower part of the second supporting net 1143, and sediment sludge is generated by the contaminant precipitated through the sediment filtering net 1144. A bottom portion 1146 is formed to be inclined as possible, and a pump 1122 for pumping water into the inlet 1120 is located below the second support net 1143. Pumping in the pump 1122 is necessary to perform the secondary filtration and backwashing process in the second biofilm reactor 1140, further pumping water into the inlet 1120 by pumping in the pump 1122 Precipitate contaminants. As mentioned above, the process of introducing water into the inlet 1120 through pumping at the pump 1122 may proceed regardless of whether or not water is being introduced from the reservoir 1110.
제2 담체층(1141)은 미생물 접촉을 위한 재료로서 담체를 포함하여, 유입된 물이 담체를 상하로 통과하면서 생물막 여과 작용을 한다. 여기서, 담체는 육면체 모양의 스펀지 담체 등의 기본형태가 적층되어 있을 수 있다.The second carrier layer 1141 includes a carrier as a material for contacting microorganisms, and performs biofilm filtration while the introduced water passes upward and downward through the carrier. Here, the carrier may be stacked in the basic form, such as a hexagonal sponge carrier.
제2 생물막 반응기(1140)의 바닥부(1146)에 침전된 슬러지는 외부에 설치된 석션 펌프(미도시)를 통해 외부로 배출될 수 있다(화살표 a4 참조). The sludge precipitated at the bottom 1146 of the second biofilm reactor 1140 may be discharged to the outside through an external suction pump (not shown) (see arrow a4).
본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치에서의 처리 단계를 전체적으로 살펴보면, 세 개의 단계로 구분해 볼 수 있다. 첫 번째 단계는, 조대 물질과 비교적 고비중 입자를 침전시켜서 제거하는 단계(유입조(1120)에서의 처리)이고, 두 번째 단계는, 상향류 및 하향류의 반복 흐름에 따라, 호기성 및 혐기성 미생물의 작용에 의해 오염물질 내의 각종 유기물을 분해하고, 질소/인 등을 제거하는 단계(제1 생물막 반응기(1130)에서의 처리)이며, 세 번째 단계는, 제2 배수관(1133)을 통해 유출되는 물을 여과 및 역세 과정에 따라 담체를 이용한 생물막 처리가 이루어지는 단계(제2 생물막 반응기(1140)에서의 처리)로 구분해 볼 수 있다.Looking at the treatment step in the biofilm water treatment device having a non-powered backwashing function according to another embodiment of the present invention, it can be divided into three steps. The first step is to settle and remove coarse material and relatively high specific gravity particles (treatment in inlet tank 1120), and the second step is aerobic and anaerobic microorganisms, with repeated flows of upstream and downstream flows. Decomposing various organic substances in the contaminants and removing nitrogen / phosphorus by the action of (processing in the first biofilm reactor 1130), and the third step is discharged through the second drain pipe 1133. Water may be classified into a step of performing a biofilm treatment using a carrier according to filtration and backwashing (treatment in the second biofilm reactor 1140).
두 번째 단계와 세 번째 단계를 구체적으로 살펴보도록 한다. 두 번째 단계, 즉 제1 생물막 반응기(1130)에서의 처리 과정을 살펴보면, 유입조(1120)에서 유입로(1134)를 통해 유입된 물의 수위가 점차 높아져서 대체로 L1 수위에 이르게 되는 경우, 물이 제2 배수관(1133)을 통해 하부로 배출된다. 이 때 빠른 유속에 따라 접촉여재(1131b)에 포착된 입자는 경사지게 형성된 바닥 중 일부 영역(11261)에 퇴적된다. 수위가 대체로 제1 배수관의 하단(11322), 즉 L5에 이르게 되면 제2 배수관(1133)을 통한 물의 배출은 중단되고 다시 수위가 높아진다. 수위가 높아지는 경우, 즉, 접촉여재(1131b)의 상부로 수조의 물이 상승하는 경우, 역세(back washing)가 이루어져 접촉여재(1131b)의 폐색을 방지하게 된다.Let's look at the second and third phases in detail. Looking at the second step, that is, the treatment process in the first biofilm reactor 1130, when the water level of the water introduced through the inlet 1134 in the inlet tank 1120 gradually increases to reach the L1 level, the water may be 2 is discharged downward through the drain pipe 1133. At this time, the particles trapped in the contact medium 1131b are deposited on the partial region 11261 of the bottom formed obliquely according to the high flow rate. When the water level reaches the lower end 1112 of the first drain pipe, that is, L5, the discharge of water through the second drain pipe 1133 is stopped and the water level is increased again. When the water level rises, that is, when the water in the tank rises to the upper portion of the contact medium 1131b, back washing is performed to prevent the contact medium 1113b from being blocked.
좀 더 구체적으로 설명하면, 제1 배수관(1132)과 제2 배수관(1133)은 서로 결합된 상태로 지지벽(1138) 내에 일정 간격(1139)을 두고 제1 담체층(1131) 내에 관입되는데, 제1 배수관(1132)의 상부(11321)는 밀폐되고 하부(11322)는 개방되도록 형성되는 반면, 제2 배수관(1133)의 상부와 하부는 개방되어 제2 생물막 반응기(1140)의 유도관(1142) 내로 물을 유입시킬 수 있다. 제1 배수관(1132)은 그 하단(bottom-end)(11322)이 제1 담체층(1131)의 하단보다 높게 위치한다. 도 7에 도시된 예에서 제1 배수관(1132)의 하단의 높이가 대체로 L5 라인과 유사하도록 설치되어 있다. 제2 배수관(1133)은 제1 배수관(1132) 내에 삽입되며, 그 상단의 높이는 제1 배수관(1132)의 상단(11321) 내부보다 낮다. 이하에서는, 제1 배수관(1132)과 제2 배수관(1133)의 이러한 결합 구조를 간단히 '배수관 결합구조'로 일컫는다. 제1 배수관(1132) 내에 제2 배수관(1133)이 삽입되어 있는 구조, 즉 배수관 결합 구조를 통한 처리 과정에서, 일단 제1 담체층(1131)의 하부에서부터 수위가 점차 높아지는 경우, 배수관 결합구조 내부, 즉 제1 배수관(1132)의 내부 영역이면서 제2 배수관(1133)의 외부 영역의 수위도 동일하게 높아진다. 계속해서 수위가 높아지다가, 수위가 제2 배수관(1133)의 상단보다 높아지는 경우, 제1 배수관(1132)의 내부 영역이면서 제2 배수관(1133)의 외부 영역으로 유입되는 물은 제2 배수관(1133)의 내부를 통해 제2 생물막 반응기(1140)의 유도관(1142)으로 유출되기 시작하고, 이러한 제2 배수관(1133)에서부터 유도관(1142)으로의 유출은 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단과 대체로 동일하게 될 때까지(즉, 수위가 L5로 될 때까지) 계속된다. 배수관 결합구조의 내부 압력과 관련하여 제2 생물막 반응기(1140) 측으로 물이 유출되는 과정을 간단히 살펴보면, 먼저 제2 배수관(1133)의 상단보다 수위가 높아지는 시점에 제2 배수관(1133)의 내부 영역을 통해(도 8의 화살표 a8) 물이 제2 생물막 반응기(1140) 측으로 일부 유출되고, 이와 동시에 제2 배수관(1133)과 제1 배수관(1132) 사이의 영역의 압력은 낮아지게 되고, 그 결과 그 낮아진 압력 하의 제2 배수관(1133)과 제1 배수관(1132) 사이의 영역으로 계속해서 물이 유입되어(도 8의 화살표 a6, a7) 그 영역으로 채워지게 되는데, 이러한 과정은 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단과 대체로 동일하게 될 때까지(즉, 수위가 L5로 될 때까지) 계속된다. 다시 말해, 물이 제2 배수관(1133)의 외부 영역과 내부 영역을 통해 유출되면 외부 영역과 내부 영역에서 공기가 제거되면서 제2 배수관(1133)의 외부 영역의 압력은 낮아지게 되고, 제1 담체층(1131) 내의 수위 상부의 압력과 제2 배수관(1133)의 외부 영역에서의 낮아진 압력 간의 차이로 인해 제1 담체층(1131)의 물은 제2 배수관(1133)의 외부 영역과 내부 영역을 통해 계속해서 유출되다가, 제2 배수관(1133)의 외부 영역으로 공기가 유입되기 시작하여 제1 담체층(1131) 내의 수위 상부의 압력과 제2 배수관(1133)의 외부 영역에서의 압력이 동일하게 되는 시점인, 제1 담체층(1131) 내의 수위가 제1 배수관(1132)의 하단보다 낮아지게 될 때 물의 유출이 중단된다.In more detail, the first drain pipe 1132 and the second drain pipe 1133 are introduced into the first carrier layer 1131 at a predetermined interval 1139 in the support wall 1138 while being coupled to each other. The upper part 1131 of the first drain pipe 1132 is sealed and the lower part 1112 is formed to be open, while the upper part and the lower part of the second drain pipe 1133 are opened to guide the induction pipe 1142 of the second biofilm reactor 1140. Water can be introduced into the The bottom of the first drain pipe 1132 is positioned higher than the bottom of the first carrier layer 1131. In the example shown in FIG. 7, the height of the lower end of the first drain pipe 1132 is substantially similar to the L5 line. The second drain pipe 1133 is inserted into the first drain pipe 1132, and the height of the upper end thereof is lower than the inside of the top 11321 of the first drain pipe 1132. Hereinafter, this coupling structure of the first drain pipe 1132 and the second drain pipe 1133 is simply referred to as a 'drain pipe coupling structure'. In the process in which the second drain pipe 1133 is inserted into the first drain pipe 1132, that is, through the drain pipe coupling structure, when the water level gradually increases from the lower portion of the first carrier layer 1131, the drain pipe coupling structure is inside. That is, the water level of the inner region of the first drain pipe 1132 and the outer region of the second drain pipe 1133 is equally high. If the water level is continuously increased and the water level is higher than the upper end of the second drain pipe 1133, the water flowing into the outer region of the second drain pipe 1133 while being the inner region of the first drain pipe 1132 is not the second drain pipe 1133. ) Flows into the induction pipe 1142 of the second biofilm reactor 1140, and the outflow from the second drain pipe 1133 to the induction pipe 1142 is increased in the first carrier layer 1131. Is continued to be approximately equal to the lower end of the first drain pipe 1132 (ie, the water level becomes L5). Briefly referring to the flow of water to the second biofilm reactor 1140 in relation to the internal pressure of the drain pipe coupling structure, first, the inner region of the second drain pipe 1133 when the water level is higher than the top of the second drain pipe 1133. Water (arrow a8 in FIG. 8) partially flows out toward the second biofilm reactor 1140, and at the same time the pressure in the region between the second drain pipe 1133 and the first drain pipe 1132 is lowered, and as a result Water continues to flow into the area between the second drain pipe 1133 and the first drain pipe 1132 under the lowered pressure (arrows a6 and a7 in FIG. 8) to fill the area, which is the first carrier layer. The water level in 1113 continues until substantially equal to the lower end of the first drain pipe 1132 (that is, until the water level becomes L5). In other words, when water flows out through the outer region and the inner region of the second drain pipe 1133, the air is removed from the outer region and the inner region, and the pressure in the outer region of the second drain tube 1133 is lowered. Due to the difference between the pressure above the water level in the layer 1131 and the lowered pressure in the outer region of the second drain 1113, the water of the first carrier layer 1131 causes the outer and inner regions of the second drain 1113 to dissipate. It continues to flow through, and air starts to flow into the outer region of the second drain pipe 1133 so that the pressure in the upper portion of the water level in the first carrier layer 1131 and the pressure in the outer region of the second drain pipe 1133 are the same. When the water level in the first carrier layer 1131 becomes lower than the lower end of the first drain pipe 1132, which is a point in time, the outflow of water is stopped.
제1 담체층(1131)의 하부에는, 제1 담체층(1131)을 지지하고 제1 담체층(1131)과 물 유입 공간(1134) 사이에서 물이 상하로 자유롭게 통과하도록 하는 제1 지지망(1135)이 더 구비되며, 제1 생물막 반응기(1130)의 바닥, 즉 물 유입 공간(1134)의 바닥과 제1 지지망(1135) 사이에서 제1 지지망(1135)을 지지하고 제1 지지망(1135)의 공극들 사이로 나오는 물을 제1 배수관(1132) 측, 즉, 배수관 결합구조 측으로 공급하기 위한 물 유입 공간(1134)이 형성되도록 하는 지지부재(1136)가 구비된다. 지지부재(1136)는 도 7 및 도 8에 예시된 바와 같이, 예를 들어, 단면적이 삼각형이고 폭이 좁으면서 긴 삼각 기둥 형상의 복수 개의 로드(rod)들이 소정 간격으로 길게 배열되어 제1 지지망(1135)을 아래에서 지지하면서 제1 지지망(1135)의 공극들 사이로 나오는 물을 배수관 결합구조 측으로 공급(도 8의 화살표 a6 및 a7 참조)하도록 구성될 수 있다. 도 7 및 도 8의 지지부재(1136)의 형상은 예시된 것에 불과하므로, 이러한 삼각기둥 형상의 로드들로 한정되는 것은 아니다.Under the first carrier layer 1131, a first support net 1135 supporting the first carrier layer 1131 and allowing water to pass freely up and down between the first carrier layer 1131 and the water inflow space 1134. ) Is further provided, supporting the first support net 1135 between the bottom of the first biofilm reactor 1130, that is, the bottom of the water inlet space 1134, and the first support net 1135 and the first support net 1135 of the first support net 1135. A support member 1136 is provided to form a water inflow space 1134 for supplying water flowing between the pores to the first drain pipe 1132, that is, the drain pipe coupling structure. As illustrated in FIGS. 7 and 8, the support member 1136 may include, for example, a plurality of rods having a triangular cross section and a narrow triangular column shape having a long triangular column shape and being arranged at predetermined intervals so as to have a first support net. It may be configured to supply water coming out between the pores of the first support net 1135 to the drain pipe coupling structure while supporting the 1135 from below (see arrows a6 and a7 in FIG. 8). Since the shape of the support member 1136 of FIGS. 7 and 8 is merely illustrated, the shape of the support member 1136 is not limited to the rods having a triangular prism shape.
이와 같이, 물의 유입 및 배출 과정에서 알 수 있는 바와 같이, 유입 및 배출 과정에서 L5를 기준으로 하여 그 아랫부분은 항상 물이 차 있는 상태로 유지되므로, L5의 윗 부분은 호기상이고 그 아랫 부분은 혐기상으로 볼 수 있다. 따라서, 접촉여재(1131b) 내에서 하향류와 상향류의 반복적인 흐름에 따라 호기성 미생물 및 혐기성 미생물의 작용에 의해, 오염물질 내에 포함된 암모니아성 질소(NH3-N)가 질산화 과정에 의해 질산성 질소(NO3-N)로 되고, 이후 아질산성 질소(NO2-N)로 된 후, 최종적으로 N2로 되는 탈질화 과정이 이루어질 수 있다. 대체로 오염물질 내의 질소 성분은 호기성 미생물에 의해 질산화되고, 혐기성 미생물에 탈질화된다.Thus, as can be seen in the inflow and outflow of water, the lower part of L5 is always filled with water in the inflow and outflow process, so the upper part of L5 is aerobic and the lower part thereof. Can be seen anaerobicly. Accordingly, ammonia nitrogen (NH 3 -N) contained in the contaminants may be removed by nitrification by the action of aerobic and anaerobic microorganisms under repeated flows of upstream and upstream in the contact medium 1131b. The denitrification process can be accomplished by acidic nitrogen (NO 3 -N), then by nitrous nitrogen (NO 2 -N), and finally by N 2 . As a rule, the nitrogen component in the contaminants is nitrified by aerobic microorganisms and denitrified by anaerobic microorganisms.
세 번째 단계에서는, 제2 배수관(1133)을 통해 물이 유입되는 경우, 유도관(1142)을 따라 제2 담체층(1141)의 하부로 유입된다. 유입된 물이 하부에서부터 차올라 그 수위가 상승 또는 유입조(1120)로 펌핑을 통해 그 수위가 하강하는 경우, 제2 담체층(1141)과 접촉 여과 및 산화(미생물 접촉에 의한 유기물 분해)된다. 이후, 수위가 높아져 후술할 오존 접촉조(1150)로 월류시킬 수 있고, 펌프(1122)를 이용하여 펌핑하여 유입조(1120) 내로 유입시킬 수 있다(화살표 a12 참조). 펌프(1122)를 이용하여 펌핑하는 경우 그 수위가 낮아지게 되는데, 이 때도 제2 담체층(1141)에 의한 생물막 처리가 이루어진다. 제2 담체층(1141)의 하부에는 제2 지지망(1143)이 설치되고, 최종적으로 그 하부에 침전 여과망(1144)이 설치되어, 오염물질이 바닥부(1146)에 침전되도록 한다. 침전 슬러지는 석션 펌프를 통해 외부로 배출된다(화살표 a4).In the third step, when water is introduced through the second drain pipe 1133, it is introduced into the lower portion of the second carrier layer 1141 along the induction pipe 1142. When the introduced water rises from the bottom and the water level rises or the water level decreases through pumping to the inflow tank 1120, the second carrier layer 1141 is subjected to contact filtration and oxidation (organic decomposition by microorganism contact). Thereafter, the water level may be increased to flow into the ozone contact tank 1150 to be described later, and may be pumped using the pump 1122 to be introduced into the inflow tank 1120 (see arrow a12). When the pump is pumped using the pump 1122, the water level is lowered. At this time, the biofilm treatment by the second carrier layer 1141 is performed. A second support net 1143 is installed at the bottom of the second carrier layer 1141, and a precipitation filter net 1144 is finally installed at the bottom of the second carrier layer 1141 to allow contaminants to settle on the bottom 1146. The settling sludge is discharged to the outside via the suction pump (arrow a4).
따라서, 제1,2 생물막 반응기에서 하향류가 되면 공기가 유입되어, 호기상태를 유지하기 위해 별도의 송풍장치가 필요없다.Therefore, when the downflow in the first and second biofilm reactors, the air is introduced, there is no need for a separate blower to maintain the aerobic state.
본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치는, 제2 생물막 반응기(1140) 이후의 수처리를 위해, 오존 접촉조(1150) 및 소독조(1160)를 더 포함할 수 있다. 오존 접촉조(1150)에서는 제2 생물막 반응기(1140) 내에서 오염물질이 침전된 후 월류하는 물을 산화 또는 탈색시키며, 소독조(1160)는 오존 접촉조(1150)에서의 처리 이후 물을 소독하기 위한 처리조이다. 여기서, 소독조(1160)에 염소 같은 소독약품을 주입하기 위한 소독약품 주입구가 별도로 마련될 수 있다. 소독조(1160) 내에는 소독 처리된 물을 외부로 배출(화살표 a5 참조)하여 사용할 수 있도록 소독조 펌프(1162)가 마련될 수 있다. 오존 접촉조(1150)에서 소독조(1160)로 물이 월류할 수 있도록 오존 접촉조(1150)와 제2 생물막 반응기(1140) 사이의 벽 높이(L3)보다 오존 접촉조(1150)와 소독조(1160) 사이의 벽 높이(L4)가 더 낮도록 설치된다.The biofilm water treatment apparatus having the non-powered backwashing function according to another embodiment of the present invention may further include an ozone contact tank 1150 and a disinfection tank 1160 for water treatment after the second biofilm reactor 1140. The ozone contact tank 1150 oxidizes or decolorizes the excess water after contaminants are precipitated in the second biofilm reactor 1140, and the disinfection tank 1160 disinfects the water after the treatment in the ozone contact tank 1150. It is a treatment tank for. In this case, a disinfectant injection hole for injecting a disinfectant such as chlorine into the disinfection tank 1160 may be separately provided. In the sterilization tank 1160, a sterilization pump 1116 may be provided to discharge the sterilized water to the outside (see arrow a5). The ozone contact tank 1150 and the disinfection tank 1160 are higher than the wall height L3 between the ozone contact tank 1150 and the second biofilm reactor 1140 so that water can flow from the ozone contact tank 1150 to the disinfection tank 1160. Wall height L4 between them is set lower.
이와 같이, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치의 다른 실시예는, 저장조(1110), 유입조(1120), 그리고 제1 생물막 반응기(1130)를 포함하는 상부층과, 제2 생물막 반응기(1140), 오존 접촉조(1150) 및 소독조(1160)를 포함하는 하부층으로 구분될 수 있는 간단한 처리 장치로 구현될 수 있어, 그 설치면에서도 편리한 이점이 있고, 역세를 위한 별도의 송풍기, 산기시설 등의 설비가 필요없어 비용면에서도 유리하고 에너지 절감 효과를 누릴 수 있다.As such, another embodiment of the biofilm water treatment apparatus having a non-powered backwashing function of the present invention includes an upper layer including a reservoir 1110, an inlet tank 1120, and a first biofilm reactor 1130, and a second biofilm reactor ( 1140, it can be implemented as a simple treatment device that can be divided into a lower layer including the ozone contact tank 1150 and the disinfection tank 1160, there is a convenient advantage in terms of its installation, and separate blower, air diffuser for backwash There is no need for such equipment, so it can be advantageous in terms of cost and save energy.
이하에서는 도 10을 도 7 내지 도 9과 함께 참조하여, 본 발명의 다른 실시예에 따른 무동력 역세 기능을 갖는 생물막 수처리 장치의 여과 및 역세 과정을 설명하도록 한다. 도 10에서 1차 생물막 처리로 나타낸 싸이클은 제1 생물막 반응기(1130)에서의 처리 과정이다.Hereinafter, the filtration and backwashing process of the biofilm water treatment apparatus having the non-powered backwashing function according to another embodiment of the present invention will be described with reference to FIGS. 10 to 7. The cycle shown as the primary biofilm treatment in FIG. 10 is a process in the first biofilm reactor 1130.
유입조(1120)로부터 유입로(1134)를 통해 제1 생물막 반응기(1130)의 하부로 물이 유입되고 수위가 점차 증가한다. 이때, 제1 생물막 반응기(1130)로 물과 함께 유입되는 오염물질은 물의 흐름(상향류)에 따라 제1 담체층(1131)으로 침투한다. 이후, 앞서 설명한 배수관 결합 구조의 동작에 의해, 물이 위에서 아래로 흐르는 하향류 흐름이 생기게 되는데, 이러한 상향류와 하향류 과정에서 물에 혼합된 오염물질, 예컨대, 유기물질, 미립자, 부유물질 및 중금속 등이 제1 담체층(1131)의 접촉여재(1131b)에 의해 여과 및 흡착되거나 유기물질이 제1 담체층(1131)에 존재하는 생물막에 의해 분해된다(도 7의 참조부호 ff 참조).Water is introduced into the lower portion of the first biofilm reactor 1130 through the inflow passage 1134 from the inflow tank 1120 and the water level gradually increases. At this time, contaminants introduced into the first biofilm reactor 1130 together with water penetrate into the first carrier layer 1131 according to the flow of water (upflow). Subsequently, the operation of the above-described drainage pipe coupling structure results in a downward flow in which water flows from the top to the bottom, and contaminants mixed with water in the upstream and downstream flows, for example, organic materials, particulates, suspended solids and Heavy metals and the like are filtered and adsorbed by the contact filter 1131b of the first carrier layer 1131, or the organic material is decomposed by the biofilm present in the first carrier layer 1131 (see reference numeral ff in FIG. 7).
이후, 수위가 대체로 L5에 이르게 되면, 더 이상의 배출은 일어나지 않고 유입되는 유입수에 의해 다시 수위가 높아진다. 이 경우, 제1 담체층(1131)을 기준으로 보면, 하부에서 상부로의 상향류 흐름이 생기는 것으로 볼 수 있는데, 제1 담체층(1131)의 하부에서부터 상부로의 상향류에 따라 진행되는 과정은 역세(back washing) 과정이다(도 7의 참조부호 bw 참조). 즉, 역세 과정은 제1 담체층(1131)의 하부에서 상부로의 물의 흐름에 따라 제1 담체층(1131) 내의 오염물질, 즉, 제1 담체층(1131) 내에서 접촉여재(1131b) 사이에 흡착되어 접촉여재(1131b)의 공극을 폐색하는 오염물질 또는 미생물 덩어리가 다시 상부로 이동하는 과정이다. 다시 말해, 이렇게 물의 흐름이 상향류와 하향류를 반복하여 흐름으로써 접촉여재 사이의 공극이 폐색되는 것을 방지한다. 여기서, 제1 담체층(1131)의 상부는 제1 담체층(1131) 중 대체로 제1 배수관(1132)의 하단보다 높은 부분으로서 비교적 산소가 많이 존재하는 호기상임에 비해(도 7의 참조부호 ae), 제1 담체층(1131)의 하부는 제1 담체층(1131) 중 대체로 제1 배수관(1132)의 하단보다 낮은 부분으로서 혐기상이다(도 7의 참조부호 an). 본 명세서 내에서 '대체로 제1 배수관(1132)의 높이'로 기술한 것은, 실제로 물의 기본적인 성질(표면 장력에서 기인한 성질 등)을 고려할 때, 제2 배수관(1133)에 의한 제2 생물막 반응기(1140)로의 배출시 제1 배수관(1132)의 하단과 정확히 일치하는 수위까지 배출되지는 않으므로, 이 점을 고려한 것이다.Thereafter, when the water level reaches approximately L5, no further discharge occurs and the water level is increased again by the incoming influent. In this case, when viewed based on the first carrier layer 1131, it can be seen that the upstream flow from the bottom to the top, the process that proceeds in accordance with the upward flow from the bottom of the first carrier layer 1131 to the top Is a back washing process (see reference numeral bw in FIG. 7). That is, the backwashing process is performed by the contaminants in the first carrier layer 1131, that is, between the contact media 1113b in the first carrier layer 1131 according to the flow of water from the bottom to the top of the first carrier layer 1131. It is a process in which a contaminant or microbial mass that is adsorbed on and occludes the pores of the contact media 1113b moves upwards again. In other words, the water flow is repeated in the upstream and the downstream to prevent the voids between the contact media from being blocked. Here, the upper portion of the first carrier layer 1131 is generally higher than the lower end of the first drain pipe 1132 of the first carrier layer 1131 as compared with the aerobic phase in which oxygen is present relatively (reference numeral ae in FIG. 7). ), The lower portion of the first carrier layer 1131 is anaerobic as the lower portion of the first carrier layer 1131 is generally lower than the lower end of the first drain pipe 1132 (reference numeral an in FIG. 7). In the present specification, the term 'usually the height of the first drain pipe 1132' refers to a second biofilm reactor by the second drain pipe 1133, considering the basic properties of water (such as due to surface tension). Since the discharge to the 1140 is not discharged to the water level exactly matching the lower end of the first drain pipe 1132, this point is considered.
제1 생물막 반응기(1130)에서의 여과 및 역세 과정에서 제1 생물막 반응기(1130)는, 여과 과정에서 제1 담체층의 상부에서 하부로 이동한 오염물질을 제1 담체층(1131) 내에서 호기성 미생물(aerobe, ae)로 처리한 후, 호기성 미생물의 하부에 존재하는 혐기성 미생물(anaerobe, an)로 처리하고, 혐기성 미생물로 처리한 후, 역세 과정에서 상향류(bw)에 따라 이동한 오염물질을 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리한다. 호기성 미생물에 의한 오염물질의 처리(S151) 과정에서 오염물질은 질산화된다. 그런 다음, 질산화 과정을 거친 오염물질은 하향류(ff)에 따라 아래로 이동하여 혐기상에 놓이게 된다. 여기서, 질산화 과정을 거친 오염물질은 혐기성 미생물에 의해 탈질화된다(S152). 하지만, 질산화 과정 및 탈질화 과정을 거치더라도 오염물질에서 완전히 질소가 제거된 상태는 아니다. 따라서, 그 상태의 오염물질은 역세 과정에서 상향류에 따라 위로 이동하여 다시 호기상에 놓이게 된다(S153). 여기서, 오염물질은 다시 질산화 과정을 거치게 되고, 이후 다시 하향류에 따라 혐기상으로 이동하여 혐기성 미생물에 의해 탈질화된다(S154). 이후, 물은 탈질화된 오염물질과 함께 제2 배수관(1133)의 내부를 통해, 제2 생물막 반응기(1140)의 유도관(1142)으로 유입되어, 제2 생물막 반응기(1140)에 의한 2차 생물막 처리가 수행된다(S155). 여기서, 여과 과정과 역세 과정, 즉 상향류 및 하향류에 따라 제1 담체층(1131) 내의 호기성 미생물 및 혐기성 미생물에 의한 반복적인 처리 과정은 효과적인 탈질화를 위해 수차례 반복될 수 있다.During the filtration and backwashing process in the first biofilm reactor 1130, the first biofilm reactor 1130 is aerobic in the first carrier layer 1131 for contaminants moved from the top to the bottom of the first carrier layer in the filtration process. After treatment with aerobe (ae), treated with anaerobic microorganisms (anaerobe, an) present in the lower part of the aerobic microorganisms, treated with anaerobic microorganisms, and then moved by upflow (bw) during backwashing Is treated with an aerobic microorganism present on top of the anaerobic microorganism. The pollutant is nitrified during the treatment of the pollutant by the aerobic microorganism (S151). The nitrified contaminants then move downward along the downflow (ff) and are placed in the anaerobic phase. Here, the contaminants that have undergone nitrification are denitrified by anaerobic microorganisms (S152). However, even after nitrification and denitrification, nitrogen is not completely removed from contaminants. Therefore, the contaminants in the state are moved upward according to the upstream in the backwashing process and placed on the exhalation again (S153). Here, the pollutant is subjected to nitrification again, and then moved back to the anaerobic phase according to the downflow again and denitrified by the anaerobic microorganism (S154). Thereafter, water is introduced into the induction pipe 1142 of the second biofilm reactor 1140 through the inside of the second drain pipe 1133 together with the denitrified contaminant, and the secondary water is discharged by the second biofilm reactor 1140. Biofilm treatment is performed (S155). Here, the repetitive treatment process by the aerobic microorganisms and anaerobic microorganisms in the first carrier layer 1131 according to the filtration process and the backwashing process, that is, upstream and downstream flows may be repeated several times for effective denitrification.
2차 생물막 처리(S155) 과정은 전술한 바와 같이, 유도관(1142)을 통한 물의 유입과 펌프(1122)에 의한 펌핑을 통한 배출에 의해 하향류 및 상향류의 반복적인 흐름이 생길 수 있고, 이에 따라 제2 담체층(1141)에서 여과와 미생물 접촉처리 및 여재폐색 방지가 이뤄질 수 있다.Secondary biofilm treatment (S155) process, as described above, by the inflow of water through the induction pipe 1142 and the discharge through the pumping by the pump 1122 may be a repetitive flow of downflow and upflow, Accordingly, filtration, microbial contact treatment, and blocking of media may be prevented in the second carrier layer 1141.
다음으로, 도 11을 참조하면, 먼저, 저장조(1110)의 펌프(1112) 및/또는 제2 생물막 반응기(1140)의 펌프(1122)에 의해 펌핑된 물이 유입조(1120) 내로 유입된다. 유입된 물은 유입조(1120) 내에서 침전 과정을 거치는데, 여기서 비교적 고 비중의 오염물질이 침전되고(S161), 바닥에 응집된 침전 슬러지는 별도의 석션 펌프를 통해 외부로 배출된다. 유입조(1120) 내로 물이 유입되는 경우, 제1 생물막 반응기(1130)의 아래에서부터 물이 차 올라서 수위가 증가하게 된다. 이후 수위가 계속해서 증가하다가 대체로 L1에 이르게 되는 경우, 제2 배수관(1133)을 통해 유출되는데, 이 때, 앞서 설명한 바와 같이 제1 담체층(1131)에서 생물막 여과가 이루어진다. 먼저 호기성 미생물에 의해 질산화가 진행되고(S162), 하향류에 따라 아래로 이동하여 혐기성 미생물에 의해 탈질화가 이루어진다(S163). 앞서 언급한 바와 같이, S162와 S163 과정은 수위가 높아지는 경우, 즉 상향류 흐름에 따라 S163 과정 이후 S162 과정 및 S163 과정이 반복되어 탈질 효율이 더욱 높아질 수 있다. 계속해서, 탈질 과정을 거친 이후 오염물질을 함유한 물은 제2 배수관(1133)을 통해 제2 생물막 반응기(1140)로 유입된다. 제2 생물막 반응기(1140)로 유입된 물은 제2 담체층(1141)에 의해 2차 생물막 처리가 이뤄진다(S164). 상향류 및 하향류에 따른 제2 담체층(1141) 내의 처리는 앞서 언급한 바와 같다. 이와 같이 하여, 물이 제1 담체층(1131) 및 제2 담체층(1141)을 통과하는 도중에, 여재의 표면에 부착 증식하는 미생물로 각종 유기물을 분해할 수 있으며, SS(Suspended Solids)를 포착할 수 있고, 질소 및 인을 효율적으로 제거할 수 있으며, 제1 여과망(1135), 제2 여과망(1143) 및 침전 여과망(1144) 구성을 통한 침전에 의해 침전 슬러지 형태로 효과적으로 외부로 배출해 낼 수 있다. 최종적으로, 오염물질이 제거된 유입수는 오존 접촉조(1150)와 소독조(1160)를 거쳐 방류된다(S165,S166). 한편, 물속의 인은 혐기조건하에서는 수중으로 배출되지만, 호기조건하에서는 호기성 미생물이 인을 섭취하고 있거나 인을 섭취한 미생물이 슬러지화되어 외부로 방출되게 된다.Next, referring to FIG. 11, first, water pumped by the pump 1112 of the reservoir 1110 and / or the pump 1122 of the second biofilm reactor 1140 is introduced into the inlet 1120. The introduced water is subjected to the precipitation process in the inflow tank 1120, where a relatively high specific gravity of the contaminants is precipitated (S161), the sedimentation sludge aggregated on the bottom is discharged to the outside through a separate suction pump. When water is introduced into the inlet tank 1120, the water rises from the bottom of the first biofilm reactor 1130, thereby increasing the water level. If the water level continues to increase and then reaches approximately L1, it flows out through the second drain pipe 1133. At this time, biofilm filtration is performed in the first carrier layer 1131 as described above. First, nitrification proceeds by the aerobic microorganism (S162), and is moved downward according to the downflow to denitrification by the anaerobic microorganism (S163). As mentioned above, when the water level is increased, that is, the process S162 and S163 are repeated after the process S163 according to the upstream flow, the denitrification efficiency may be further increased. Subsequently, after the denitrification process, the water containing the contaminant is introduced into the second biofilm reactor 1140 through the second drain pipe 1133. Water introduced into the second biofilm reactor 1140 is subjected to the second biofilm treatment by the second carrier layer 1141 (S164). The treatment in the second carrier layer 1141 according to the upflow and the downflow is as described above. In this way, while the water passes through the first carrier layer 1131 and the second carrier layer 1141, various organic substances can be decomposed into microorganisms that adhere to and propagate on the surface of the media, and SS (Suspended Solids) are captured. It is possible to efficiently remove nitrogen and phosphorus, and can be effectively discharged to the outside in the form of sediment sludge by precipitation through the configuration of the first filter net 1135, the second filter net 1143 and the precipitation filter net 1144. have. Finally, the influent water from which the contaminants have been removed is discharged through the ozone contact tank 1150 and the disinfection tank 1160 (S165 and S166). On the other hand, phosphorus in the water is discharged into the water under anaerobic conditions, but under aerobic conditions, aerobic microorganisms are ingesting phosphorus or microorganisms ingesting phosphorus are sludged and released to the outside.
이상에서 설명된, 본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치 구성을 통해, 유입수로부터 질소 ·인 등의 영양염류를 제거하고, 유기물을 분해하고, 탁도 제거를 통해 안정적인 수질을 확보할 수 있다. 또한, 오염물질을 식물의 영양물질로서 활용할 수 있으며, 별도의 동력을 도입하지 않고서 부착 미생물의 생물막을 통해 오염물질을 분해할 수 있으며, 하향류 및 상향류의 반복적인 작용으로 인해 여과층 내의 막힘 현상을 방지할 수 있으며, 식생 여과층 내의 접촉으로 효율이 대폭 향상된 안정적인 운영 시스템을 확보할 수 있다.Through the configuration of the biofilm water treatment apparatus having the non-powered backwashing function of the present invention described above, it is possible to remove nutrients such as nitrogen and phosphorus from the influent, decompose organic matters, and secure stable water quality by removing turbidity. In addition, contaminants can be utilized as nutrients for plants, and contaminants can be decomposed through the biofilm of adherent microorganisms without introducing a separate power, and clogging in the filtration layer due to the repeated action of downflow and upflow. The phenomenon can be prevented, and a contact with the vegetation filtration layer can provide a stable operating system with greatly improved efficiency.
본 발명의 무동력 역세 기능을 갖는 생물막 수처리 장치는, 특히 합류식 하수도의 월류수(CSOs, Combined Sewer Overflows) 처리, 하수처리수의 재처리, 중수 처리, 소규모의 하수 처리 시설에 적용될 수 있다.Biofilm water treatment apparatus having a non-powered backwashing function of the present invention, in particular, can be applied to the combined sewage (CSOs) treatment of sewage treatment, reprocessing of sewage treatment, heavy water treatment, small sewage treatment facilities.

Claims (23)

  1. 내부로 유입되는 물에 혼합된 오염물질을 침전시키는 침전조; 및A settling tank for precipitating contaminants mixed in water introduced into the container; And
    내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리되게 하는 여재층과, 상기 여재층 내에서 하단(bottom-end)이 상기 여재층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관과, 상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 침전조로 연결되는 제2 배수관과, 상기 여재층으로 물을 공급하기 위한 제3 배수관과, 상기 여재층의 하부에서 상기 여재층을 지지하고 상기 여재층을 통과하는 물을 하부로 배출하기 위한 지지망과, 상기 지지망과 바닥 사이에서 상기 지지망을 지지하고 상기 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재를 갖는, 여과 및 역세부;를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.The filter media layer allows the water flowing into the water to be treated with aerobic and anaerobic microorganisms through filtration and backwashing, and the bottom-end is higher than the bottom of the filter media layer and the upper part is sealed and A first drain pipe formed to be opened, a second drain pipe inserted into the first drain pipe and having an upper and lower portions open and connected to the settling tank, a third drain pipe for supplying water to the filter layer, and A support net for supporting the media layer in the lower portion and discharging the water passing through the media layer to the lower side, and the support network between the support network and the floor and the water discharged downward through the support network to the first drain pipe side It has a non-powered backwashing function, including; filtration and backwashing portion having a support member for forming a space for feeding Biofilm treatment device.
  2. 제 1 항에 있어서, 상기 여재층의 하부로부터 수위가 점차 높아져 상기 제2 배수관의 상단보다 높아지는 경우, 상기 제1 배수관의 내부 영역이면서 상기 제2 배수관의 외부 영역으로 유입되는 물은, 상기 여재층 내의 수위가 상기 제1 배수관의 하단과 동일하게 될 때까지 상기 제2 배수관의 내부를 통해 상기 침전조로 유출되어, 이러한 상향류와 하향류가 반복됨으로써 여재의 폐색현상을 방지하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.According to claim 1, If the water level from the lower portion of the filter layer is gradually higher than the upper end of the second drain pipe, the water flowing into the outer region of the second drain pipe while the inner region of the first drain pipe, The inner water level flows into the settling tank through the inside of the second drain pipe until the water level becomes equal to the lower end of the first drain pipe, and the upflow and downflow are repeated, thereby preventing the blockage of the media. Biofilm water treatment device having a backwash function.
  3. 제 1 항에 있어서, 상기 침전조는,The method of claim 1, wherein the settling tank,
    상기 침전조 내부로 유입되는 물로부터 오염물질이 침전되어 침전 슬러지가 생산되도록 경사가 형성되는 바닥부; 및A bottom portion of which a slope is formed such that contaminants are precipitated from water introduced into the settling tank to produce precipitated sludge; And
    서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는, 경사판을 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A biofilm water treatment apparatus having a non-powered backwashing function, comprising an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
  4. 제 3 항에 있어서, 상기 여과 및 역세부는,The method of claim 3, wherein the filtration and backwashing unit,
    상기 제2 배수관의 내부를 통해 상기 침전조로 물을 유출하는 동안에도 수위가 계속 높아지는 경우, 상기 침전조로 물을 더 유출시켜 수위를 조절하기 위해, 상기 제2 배수관의 상단(top-end)보다 낮은 위치에서부터 나와 상기 침전조로 이어지는 역세 배수관을 더 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.If the water level continues to increase even while the water flows out into the settling tank through the inside of the second drain pipe, the water is lower than the top-end of the second drain pipe in order to further control the water level by flowing more water into the settling tank. Biofilm water treatment apparatus having a non-powered backwashing function further comprises a backwash drain pipe from the position leading to the settling tank.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 침전조 내에서 오염물질이 침전된 후 월류하는 물에 잔존하는 오염물질을 최종적으로 침전시키는 최종 처리수조; 및A final treatment tank for finally settling the contaminants remaining in the overflowed water after the contaminants are precipitated in the settling tank; And
    상기 최종 처리수조에서의 침전 이후 물을 소독하기 위한 소독조를 더 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.Biofilm water treatment apparatus having a non-power backwash function, characterized in that it further comprises a disinfection tank for disinfecting water after the precipitation in the final treatment tank.
  6. 제 1 항에 있어서, 상기 제3 배수관은,The method of claim 1, wherein the third drain pipe,
    상기 여재층 방향으로 소정의 간격으로 형성되어 상기 여재층으로 물을 공급하기 위한 복수 개의 배출구를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.Biofilm water treatment device having a non-power backwash function, characterized in that it comprises a plurality of outlets formed at predetermined intervals in the direction of the filter media layer for supplying water to the filter media layer.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제3 배수관을 통해 상기 여재층의 상측에서 물이 공급되는 경우, 물과 함께 유입되는 오염물질은 상기 여과 및 역세부에서 여과 및 역세 과정을 거쳐 처리된 후 상기 제2 배수관을 통해 상기 침전조로 배출되며,When water is supplied from the upper side of the filter medium layer through the third drain pipe, contaminants introduced with water are treated through the filtration and backwashing process in the filtration and backwashing part, and then, through the second drainpipe, into the settling tank. Discharged,
    상기 여과 과정은 상기 여재층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 여재층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 여재층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 여재층의 하부에서 상부로 이동하는 과정이고,The filtration process is a process in which contaminants move from the top of the mediator layer to the bottom according to the flow of water from the top of the mediator layer to the bottom, and the backwashing process is according to the flow of water from the bottom of the mediator layer to the top. Contaminants move from the bottom to the top of the media layer,
    상기 여과 및 역세 과정에서 상기 여과 및 역세부는,In the filtration and backwashing process, the filtration and backwashing unit,
    상기 여과 과정에서 상기 여재층의 상부에서 하부로 이동한 오염물질을 상기 여재층 내에서 호기성 미생물로 처리한 후, 상기 호기성 미생물의 하부에 존재하는 혐기성 미생물로 처리하고, 상기 혐기성 미생물로의 처리 후, 상기 역세 과정에서 상향류에 따라 이동한 오염물질을 상기 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.The contaminants moved from the upper part of the filter medium layer to the lower part in the filtration process are treated with aerobic microorganisms in the filter medium layer, and then treated with anaerobic microorganisms existing under the aerobic microorganisms, and then treated with the anaerobic microorganisms. The biofilm water treatment apparatus having a non-powered backwashing function, characterized in that the pollutants moved in the backwashing process are treated with aerobic microorganisms present in the upper part of the anaerobic microorganisms.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 여재층 내에는 상기 여재층의 상부에 식재되는 식물의 뿌리가 존재하며, 상기 여재층으로 유입되는 물과 함께 존재하는 질소 또는 인은 상기 식물의 뿌리로 흡수되어 상기 식물의 영양 물질로 이용되는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.In the medial layer, there is a root of a plant planted on top of the medial layer, and nitrogen or phosphorus present together with water flowing into the medial layer is absorbed into the root of the plant and used as a nutritional substance of the plant. Biofilm water treatment device having a non-powered backwashing, characterized in that.
  9. 내부에 저장된 물에 혼합된 오염물질을 침전시키는 침전조;A precipitation tank for precipitating contaminants mixed in the water stored therein;
    내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리되게 하는 여재층;Filtration layer which allows the water flowing into the water to be treated with aerobic and anaerobic microorganisms through filtration and backwashing process;
    상기 여재층 내에서 하단(bottom-end)이 상기 여재층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관;A first drain pipe having a lower end (bottom-end) higher than the lower end of the filter layer in the filter layer, and having an upper portion sealed and a lower portion opened;
    상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 침전조로 연결되는 제2 배수관;A second drain pipe inserted into the first drain pipe and having an upper and lower parts opened and a lower part connected to the settling tank;
    상기 여재층으로 물을 공급하기 위해 상기 여재층 방향으로 소정의 간격으로 형성된 복수 개의 배출구를 갖는 제3 배수관;A third drain pipe having a plurality of outlets formed at predetermined intervals in the direction of the filter layer to supply water to the filter layer;
    상기 여재층의 하부에서 상기 여재층을 지지하고 상기 여재층을 통과하는 물을 하부로 배출하기 위한 지지망;A support net for supporting the media layer in the lower portion of the media layer and discharging water passing through the media layer down;
    상기 지지망과 바닥 사이에서 상기 지지망을 지지하고 상기 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재; 및A support member supporting the support network between the support network and the floor and forming a space for supplying water discharged downward through the support network to the first drain pipe side; And
    상기 제2 배수관의 내부를 통해 상기 침전조로 물을 유출하는 동안에도 수위가 계속 높아지는 경우, 상기 침전조로 물을 더 유출시켜 수위를 조절하기 위해, 상기 제2 배수관의 상단(top-end)보다 낮은 위치에서부터 나와 상기 침전조로 이어지는 역세 배수관;을 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.If the water level continues to increase even while the water flows out into the settling tank through the inside of the second drain pipe, the water is lower than the top-end of the second drain pipe in order to further control the water level by flowing more water into the settling tank. Biofilm water treatment apparatus having a non-powered backwashing function comprising a; backwash drain pipe from the position leading to the settling tank.
  10. 제 1 항 또는 제 9 항에 있어서,The method according to claim 1 or 9,
    유입수를 저장하는 저장조; 및A reservoir for storing influent; And
    상기 저장조에 저장된 물 또는 상기 침전조 내의 물을 펌핑하여 유입시켜, 이로부터 오염물질을 침전시키고, 상기 제3 배수관으로 물을 공급하는 유입조;를 더 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A biofilm having a non-powered backwashing function, further comprising: an inflow tank for pumping water stored in the reservoir or water in the settling tank to precipitate contaminants therefrom and supplying water to the third drain pipe Water treatment device.
  11. 제 10 항에 있어서, 상기 유입조는,The method of claim 10, wherein the inflow tank,
    상기 저장조로부터 유입되는 물 또는 상기 침전조로부터 유입되는 물로부터 오염물질이 침전되어 침전 슬러지를 생산하도록 경사가 형성되는, 바닥부; 및A bottom portion having a slope formed to precipitate contaminants from water flowing from the reservoir or water flowing from the precipitation tank to produce precipitation sludge; And
    서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는, 경사판을 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A biofilm water treatment apparatus having a non-powered backwashing function, comprising an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the center being formed to have a low inclination.
  12. 하부로부터 물을 유입시켜 상향류 및 하향류의 반복 흐름을 통해 호기성 미생물 및 혐기성 미생물로 1차로 수처리하는 제1 생물막 반응기; 및A first biofilm reactor for firstly treating the aerobic microorganism and the anaerobic microorganism by introducing water from the bottom and through the repetitive flow of upstream and downstream flows; And
    상기 제1 생물막 반응기의 하부에서 상기 제1 생물막 반응기로부터 1차로 수처리된 물을 공급받아 상향류 및 하향류의 반복 흐름을 통해 2차로 수처리하는 제2 생물막 반응기를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A non-powered backwashing function, characterized in that it comprises a second biofilm reactor which receives water treated primarily from the first biofilm reactor at a lower portion of the first biofilm reactor and performs second water treatment through a repetitive flow of upstream and downstream flows. Biofilm water treatment device having a.
  13. 제 12 항에 있어서, 상기 제1 생물막 반응기는,The method of claim 12, wherein the first biofilm reactor,
    내부로 유입되는 물을 여과 및 역세 과정을 통해 호기성 미생물 및 혐기성 미생물로 수처리하는 제1 담체층과, 상기 제1 담체층 내에서 하단(bottom-end)이 상기 제1 담체층의 하단보다 높게 위치하고 상부가 밀폐되고 하부가 개방되게 형성된 제1 배수관과, 상기 제1 배수관 내에 삽입되고 상하부가 개방되고 하부가 상기 제2 생물막 반응기로 연결되는 제2 배수관과, 상기 제1 담체층의 하부로 물을 공급하기 위한 유입로와, 상기 유입로와 상기 제1 담체층 사이에 위치하여 상기 제1 담체층을 지지하고 상기 유입로를 통해 유입되는 물을 통과시키는 제1 지지망과, 상기 제1 지지망과 바닥 사이에서 상기 제1 지지망을 지지하고 상기 제1 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간을 형성하는 지지부재를 갖되,The first carrier layer for treating the water flowing into the aerobic microorganism and anaerobic microorganisms through filtration and backwashing process, and the bottom (end) in the first carrier layer is higher than the bottom of the first carrier layer A first drain pipe formed to seal the upper part and to open the lower part, a second drain pipe inserted into the first drain pipe, an upper and lower part opened, and a lower part connected to the second biofilm reactor, and water below the first carrier layer. An inlet for supply, a first support net positioned between the inlet path and the first carrier layer to support the first carrier layer and to allow water to flow through the inlet path; It has a support member for supporting the first support network and to form a space for supplying water discharged to the lower through the first support network to the first drain pipe side,
    상기 제1 담체층의 하부로부터 수위가 점차 높아져 상기 제2 배수관의 상단보다 높아지는 경우, 상기 제1 배수관의 내부 영역이면서 상기 제2 배수관의 외부 영역으로 유입되는 물은, 상기 제1 담체층 내의 수위가 상기 제1 배수관의 하단과 동일하게 될 때까지 상기 제2 배수관의 내부를 통해 상기 제2 생물막 반응기로 유출되어, 이러한 상향류와 하향류가 반복됨으로써 상기 제1 담체층의 폐색현상을 방지하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.When the water level is gradually increased from the lower part of the first carrier layer to be higher than the upper end of the second drain pipe, the water flowing into the outer region of the second drain pipe while being an inner region of the first drain pipe is the water level in the first carrier layer. Is discharged to the second biofilm reactor through the interior of the second drain pipe until the same as the lower end of the first drain pipe, thereby preventing the blockage of the first carrier layer by repeating the upstream and the downstream flow. Biofilm water treatment device having a non-powered backwashing, characterized in that.
  14. 제 13 항에 있어서, 상기 제1 생물막 반응기는,The method of claim 13, wherein the first biofilm reactor,
    상기 제1 담체층과 상기 제1 배수관 사이에서 상기 제1 담체층과 인접하고 상기 제1 배수관과는 이격되게 배치되는 지지벽을 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.And a support wall disposed between the first carrier layer and the first drain pipe, the support wall being adjacent to the first carrier layer and spaced apart from the first drain pipe.
  15. 제 14 항에 있어서, 상기 제1 담체층은,The method of claim 14, wherein the first carrier layer,
    소정의 간격으로 수직 방향으로 배열되는 복수 개의 여과망들과, 상기 복수 개의 여과망들 사이에 개재되는 접촉여재를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.And a plurality of filter nets arranged in a vertical direction at predetermined intervals, and a contact medium interposed between the plurality of filter nets.
  16. 제 15 항에 있어서, 상기 제1 지지망을 통해 하부로 배출되는 물을 상기 제1 배수관 측으로 공급하기 위한 공간의 바닥(bottom) 중 일부 영역은, 상기 제2 배수관이 관통하는 부분을 중심으로 하여 중심부분이 낮도록 경사지게 형성되어 배출되는 물 속의 침전 슬러지가 모이도록 하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.The method of claim 15, wherein a portion of the bottom of the space for supplying the water discharged downward through the first support network to the first drain pipe side, the center of the portion through which the second drain pipe passes Biofilm water treatment device having a non-powered backwashing function characterized in that the portion is formed to be inclined so that the sludge is collected in the discharged water.
  17. 제 13 항에 있어서, 상기 제2 생물막 반응기는,The method of claim 13, wherein the second biofilm reactor,
    상기 제2 배수관으로부터 공급되는 물을 유도하는 유도관과, 상기 유도관을 통해 유도된 물의 수위가 점차 높아지는 경우 미생물 접촉으로 오염물질을 처리하기 위한 제2 담체층과, 상기 제2 담체층의 하부에서 상기 제2 담체층을 지지하며 상기 유도관을 통해 유도된 물을 통과시키는 제2 지지망과, 상기 제2 지지망의 하부에서 물에 혼합된 오염물질이 통과하여 침전되도록 하는 침전 여과망과, 상기 침전 여과망을 통과하여 침전된 오염물질에 의해 침전 슬러지가 생성되도록 경사지게 형성된 바닥부를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.An induction pipe leading to water supplied from the second drain pipe, a second carrier layer for treating contaminants by microbial contact when the water level of the water induced through the induction pipe gradually increases, and a lower portion of the second carrier layer A second support network for supporting the second carrier layer and allowing the water guided through the induction pipe to pass through; and a precipitation filter network for allowing contaminants mixed in water to pass through the bottom of the second support network to be precipitated; Biofilm water treatment apparatus having a non-powered backwashing function characterized in that it comprises a bottom portion formed to be inclined so that the sludge is produced by the contaminants precipitated through the filter net.
  18. 제 17 항에 있어서, 상기 제2 담체층은 미생물 접촉을 위한 담체를 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.18. The biofilm water treatment apparatus of claim 17, wherein the second carrier layer comprises a carrier for microbial contact.
  19. 제 17 항에 있어서, 상기 생물막 수처리 장치는,The method of claim 17, wherein the biofilm water treatment apparatus,
    상기 제2 생물막 반응기 내에서 오염물질이 침전된 후 월류하는 물을 산화 또는 탈색시키는 오존 접촉조; 및An ozone contact tank for oxidizing or decolorizing the water flowing after the pollutant is precipitated in the second biofilm reactor; And
    상기 오존 접촉조에서의 처리 이후 물을 소독하기 위한 소독조를 더 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.And a disinfection tank for disinfecting water after treatment in the ozone contact tank.
  20. 제 13 항에 있어서,The method of claim 13,
    상기 유입로를 통해 상기 제1 담체층의 하부로 물이 공급되는 경우, 물과 함께 유입되는 오염물질은 상기 제1 생물막 반응기에서 적어도 두 번의 여과 과정 및 역세 과정을 거쳐 처리된 후 상기 제2 배수관을 통해 상기 제2 생물막 반응기로 배출되며,When water is supplied to the lower portion of the first carrier layer through the inflow passage, contaminants introduced with water are treated through at least two filtration and backwashing processes in the first biofilm reactor and then the second drain pipe. Is discharged to the second biofilm reactor through
    상기 여과 과정은 상기 제1 담체층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 제1 담체층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 제1 담체층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 제1 담체층의 하부에서 상부로 이동하는 과정이며,The filtration process is a process in which contaminants move from the top of the first carrier layer to the bottom according to the flow of water from the top to the bottom of the first carrier layer, and the backwashing process is a top of the bottom of the first carrier layer. As the contaminants move from the bottom of the first carrier layer to the top according to the flow of water to the furnace,
    상기 여과 과정 및 역세 과정에서 상기 제1 생물막 반응기는,The first biofilm reactor in the filtration process and backwashing process,
    상기 여과 과정에서 상기 제1 담체층의 상부에서 하부로 이동한 오염물질을 상기 제1 담체층 내에서 호기성 미생물로 처리한 후, 상기 호기성 미생물의 하부에 존재하는 혐기성 미생물로 처리하고, 상기 혐기성 미생물로의 처리 후, 상기 역세 과정에서 상향류에 따라 이동한 오염물질을 상기 혐기성 미생물의 상부에 존재하는 호기성 미생물로 처리하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.The contaminant moved from the top to the bottom of the first carrier layer in the filtration process is treated with aerobic microorganisms in the first carrier layer, and then treated with anaerobic microorganisms existing under the aerobic microorganisms, and the anaerobic microorganisms. After the treatment of the furnace, the biofilm water treatment apparatus having a non-powered backwashing function, characterized in that the contaminant moved in the backwashing process by the aerobic microorganisms present in the upper portion of the anaerobic microorganisms.
  21. 제 17 항에 있어서,The method of claim 17,
    상기 제2 배수관으로부터 상기 유도관을 통해 제2 생물막 반응기로 물이 유입되는 경우, 상기 제2 생물막 반응기의 하부에서부터 점차 수위가 높아지고, 이후 물과 함께 유입되는 오염물질은 상기 제2 생물막 반응기에서 여과 과정 및 역세 과정을 거쳐 처리되어, 미생물 접촉처리가 이뤄지고 상기 제2 담체층의 폐색현상을 방지하며,When water flows into the second biofilm reactor from the second drain pipe through the induction pipe, the water level is gradually increased from the bottom of the second biofilm reactor, and then the contaminants introduced with the water are filtered in the second biofilm reactor. Process through a backwashing process and a microbial contact treatment to prevent the blockage of the second carrier layer,
    상기 여과 과정은 상기 제2 담체층의 상부에서 하부로의 물의 흐름에 따라 오염물질이 상기 제2 담체층의 상부에서 하부로 이동하는 과정이고, 상기 역세 과정은 상기 제2 배수관으로부터 상기 유도관을 통한 물의 유입에 따른 상기 제2 담체층의 하부에서 상부로의 물의 흐름에 따라 오염 물질이 상기 제2 담체층의 하부에서 상부로 이동하는 과정인 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.The filtration process is a process in which contaminants move from the top to the bottom of the second carrier layer according to the flow of water from the top to the bottom of the second carrier layer, and the backwashing process removes the induction pipe from the second drain pipe. Biofilm water treatment apparatus having a non-power backwash function, characterized in that the contaminant is moved from the bottom of the second carrier layer to the top according to the flow of water from the bottom of the second carrier layer according to the inflow of water.
  22. 제 13 항에 있어서,The method of claim 13,
    유입수를 저장하는 저장조; 및A reservoir for storing influent; And
    상기 저장조로부터 월류 또는 펌핑된 물에서 오염물질을 침전시키고, 상기 유입로로 물을 공급하는 유입조;를 더 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A biofilm water treatment apparatus having a non-powered backwashing function, further comprising an inlet tank for contaminating contaminants in the overflowed or pumped water from the reservoir and supplying water to the inlet.
  23. 제 22 항에 있어서, 상기 유입조는,The method of claim 22, wherein the inflow tank,
    상기 제2 생물막 반응기로부터 유입되는 물 또는 상기 저장조로부터 유입되는 물에서 오염물질이 침전되어 침전 슬러지를 생성하도록 경사지게 형성되는 바닥부; 및A bottom portion formed to be inclined to precipitate contaminants in the water flowing from the second biofilm reactor or the water flowing from the reservoir to generate sedimentation sludge; And
    서로 마주하는 두 개의 측벽에서부터 중앙으로 뻗어나와 소정의 간격으로 교대로(alternately) 위치하되, 중앙이 낮은 경사를 갖도록 형성되는 경사판을 포함하는 것을 특징으로 하는 무동력 역세 기능을 갖는 생물막 수처리 장치.A biofilm water treatment apparatus having a non-powered backwashing function, comprising an inclined plate extending alternately from two sidewalls facing each other and positioned alternately at predetermined intervals, the inclined plate having a low inclination in the center thereof.
PCT/KR2014/011138 2013-11-22 2014-11-19 Biofilm water treatment device having non-powered backwashing function WO2015076562A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130142937A KR101346604B1 (en) 2013-11-22 2013-11-22 Bio-film water treatment apparatus capable of back washing without power
KR10-2013-0142937 2013-11-22
KR10-2014-0028346 2014-03-11
KR1020140028346A KR101433687B1 (en) 2014-03-11 2014-03-11 Double bio-film water treatment apparatus

Publications (2)

Publication Number Publication Date
WO2015076562A2 true WO2015076562A2 (en) 2015-05-28
WO2015076562A3 WO2015076562A3 (en) 2015-08-13

Family

ID=53180355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011138 WO2015076562A2 (en) 2013-11-22 2014-11-19 Biofilm water treatment device having non-powered backwashing function

Country Status (1)

Country Link
WO (1) WO2015076562A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218156A (en) * 2018-04-19 2018-06-29 李欢 A kind of small-sized sanitary sewage disposal station of unpowered building block system
CN108862818A (en) * 2018-05-31 2018-11-23 四川奥恒环保科技有限公司 A kind of domestic sewage treatment device
CN115745179A (en) * 2022-11-29 2023-03-07 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204686A (en) * 1994-01-24 1995-08-08 Ngk Insulators Ltd Method and apparatus for nitration-denitrification using biological membrane
JPH0889989A (en) * 1994-09-19 1996-04-09 Kurita Water Ind Ltd Treatment of organic waste water and device therefor
KR19980072892A (en) * 1997-03-10 1998-11-05 조성옥 Two stage reactor combined anaerobic and biofilm fluidized beds
KR20060034267A (en) * 2006-04-03 2006-04-21 한상배 The water treatment facilities with the function of solid liquid separation and biofilm contact
KR100817610B1 (en) * 2007-10-23 2008-03-31 주식회사 한국종합기술 Apparatus for removal of nonpoint source pollutant using hydrodynamic and filtration
KR101346604B1 (en) * 2013-11-22 2014-01-03 주식회사 이피에스이앤이 Bio-film water treatment apparatus capable of back washing without power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204686A (en) * 1994-01-24 1995-08-08 Ngk Insulators Ltd Method and apparatus for nitration-denitrification using biological membrane
JPH0889989A (en) * 1994-09-19 1996-04-09 Kurita Water Ind Ltd Treatment of organic waste water and device therefor
KR19980072892A (en) * 1997-03-10 1998-11-05 조성옥 Two stage reactor combined anaerobic and biofilm fluidized beds
KR20060034267A (en) * 2006-04-03 2006-04-21 한상배 The water treatment facilities with the function of solid liquid separation and biofilm contact
KR100817610B1 (en) * 2007-10-23 2008-03-31 주식회사 한국종합기술 Apparatus for removal of nonpoint source pollutant using hydrodynamic and filtration
KR101346604B1 (en) * 2013-11-22 2014-01-03 주식회사 이피에스이앤이 Bio-film water treatment apparatus capable of back washing without power

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218156A (en) * 2018-04-19 2018-06-29 李欢 A kind of small-sized sanitary sewage disposal station of unpowered building block system
CN108862818A (en) * 2018-05-31 2018-11-23 四川奥恒环保科技有限公司 A kind of domestic sewage treatment device
CN115745179A (en) * 2022-11-29 2023-03-07 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater
CN115745179B (en) * 2022-11-29 2024-02-20 华夏碧水环保科技股份有限公司 Dynamic hydrolysis acidification device for high-concentration sulfate wastewater

Also Published As

Publication number Publication date
WO2015076562A3 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
US20050126995A1 (en) Aerobic wastewater management system, apparatus, and method
WO2012133957A1 (en) Dissolved-air flotation-type pretreatment apparatus
WO2015076562A2 (en) Biofilm water treatment device having non-powered backwashing function
KR101003162B1 (en) Stock raising onsite wastewater treatment apparatus
KR101346604B1 (en) Bio-film water treatment apparatus capable of back washing without power
KR101402687B1 (en) Odor reduction apparatus and odor reduction method using air-apply and sob media
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
KR101433687B1 (en) Double bio-film water treatment apparatus
US20050161398A1 (en) Aerobic wastewater management system, apparatus, and method
KR200189492Y1 (en) The inclined precipitation tank in waste water disposal plant by microorganism contact
JP2006007033A (en) Biological treatment tank for waste water and biologically treating method
JP2010155184A (en) Support feeding type biological reaction apparatus
CN103819062A (en) MBR (membrane biological reactor) sewage treatment equipment for integrated fluidizing pool
CN211311225U (en) Emergency treatment system for rainwater pipe network intercepting sewage
CN108394996B (en) Activated sludge integrated sewage treatment device
KR100237606B1 (en) Biological treatment device of wastewater with perpendicular and single unit for denitrification, reaction and sedimentation
JP3366562B2 (en) Water collecting device for septic tank
RU156535U1 (en) DEVICE FOR CLEANING WATER WASTE WATER
JP4100873B2 (en) Sewage treatment equipment
CN109502892A (en) A kind of sewage treatment process and its sewage disposal system
WO2022154232A1 (en) Settling tank comprising high-speed filtration and capable of primary treatment of sewage·wastewater, flow-rate control, and primary rainwater treatment
RU155237U1 (en) DEVICE FOR CLEANING WATER WASTE WATER
KR100481821B1 (en) Process and plant for wastewater treatment
KR200279811Y1 (en) Device for purging sewage and wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863910

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863910

Country of ref document: EP

Kind code of ref document: A2