WO2015076539A1 - Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor - Google Patents

Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor Download PDF

Info

Publication number
WO2015076539A1
WO2015076539A1 PCT/KR2014/011028 KR2014011028W WO2015076539A1 WO 2015076539 A1 WO2015076539 A1 WO 2015076539A1 KR 2014011028 W KR2014011028 W KR 2014011028W WO 2015076539 A1 WO2015076539 A1 WO 2015076539A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polymer
membrane
compound
polymer additive
Prior art date
Application number
PCT/KR2014/011028
Other languages
French (fr)
Korean (ko)
Inventor
배수경
박성률
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2015076539A1 publication Critical patent/WO2015076539A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups

Definitions

  • the present invention relates to a polymer additive for producing a microfiltration membrane or an ultrafiltration membrane and a method for producing the same.
  • a polymer additive for producing a microfiltration membrane or an ultrafiltration membrane it is possible to form pores on the surface of the filtration membrane more efficiently, and can easily adjust the shape and size of the pores, and improve the water permeability of the filtration membrane and do not dissolve in water even after long-term use, the contaminants on the surface of the filtration membrane
  • the present invention relates to a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane and a method for producing the polymer additive that can greatly reduce the adsorbing fouling phenomenon.
  • additives are used in the manufacturing process to control the size or shape of the pores present in the microfiltration membrane or the ultrafiltration membrane.
  • additives include polymer additives such as polyvinylpyrrolidone or poly (ethylene glycol); Metal salt compounds such as LiCl or LiC10 4 ; inorganic acids such as acetic acid or phosphoric acid; organic acids such as propionic acid; organic or water-soluble solvents such as ethanol, acetone, glycerol, ethylene glycol or water; It is known that such may be used.
  • Preparation of the separator by adding a hydrophilic additive of these additives not only improves the water permeability of the separator, but also reduces the fouling (fouling) phenomenon that the contaminants are adsorbed on the membrane surface.
  • these hydrophilic additives have high affinity with water and are soluble in water .
  • hydrophilic additives dissolve in water during the actual operation of microfiltration membranes or ultrafiltration membranes, and the water permeability enhancement or anti-fouling effect induced by the use of additives decreases over time. It is adsorbed by the contaminant well, thereby causing a problem that the lifespan is shortened due to the loss of membrane separation.
  • Japanese Patent Application Laid-Open No. 7-185280 discloses a method of insolubilizing a water-soluble polymer material adhered to a surface of a hydrophobic polysulfone polymer membrane using a hydrophilic polyphenol. Although a method has been disclosed, in this method of coating a hydrophilic material on a hydrophobic polysulfone polymer membrane, there is a limit that separation occurs at an interface between the hydrophobic material and the hydrophilic material.
  • Japanese Laid-Open Patent Publication No. 2002-018245 discloses a method of introducing a cationic functional group into or on a surface of a porous organic polymer membrane such as polyolefin by using a radiation graft polymerization method.
  • the amount was not easy to control, and due to the use of radiation graft polymerization, the additional process design resulted in an increase in the cost of producing the final product and not easy to simplify the production process.
  • Korean Patent Publication No. 2009-0034976 discloses a method of contacting a porous polymer membrane with a monopersulfate source and halide silver to improve the permeability of the porous polymer membrane and to clean it. It is not easy to permanently impart hydrophilicity or permeability, and hydrophilicity may be lost or permeability or lowering in the process of heating or repeated drying.
  • Patent Document 0001 Japanese Patent Application Publication No. 185280
  • Patent Document 0002 Japanese Laid-Open Patent No. 2002-018245
  • Patent Document 0003 Korean Laid-Open Patent No. 2009-0034976
  • the present invention relates to a polymer additive that can be used to prepare a microfiltration membrane or an ultrafiltration membrane, which can greatly reduce the fouling phenomenon adsorbed.
  • the present invention relates to a method for producing a polymer additive for producing the microfiltration membrane or ultrafiltration membrane.
  • the present invention provides a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane including a polysulfone polymer including repeating units represented by the following Chemical Formulas 1 to 2.
  • Rl to Rl2 is sulfonic acid or a salt thereof, and the rest are hydrogen or an alkyl group having 1 to 5 carbon atoms,
  • each of R 21 to R 36 is hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the present invention provides a method for preparing a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane, which comprises reacting a compound represented by the following Chemical Formulas 21 to 23: [Formula 21]
  • At least one of 3 ⁇ 4 to R 4 is sulfonic acid or Salt, the remainder are each hydrogen or an alkyl group having 1 to 5 carbon atoms, and 3 ⁇ 4 are each independently a halogen or a hydroxyl group,
  • each of R u to R 18 is hydrogen or an alkyl group having 1 to 5 carbon atoms, 3 ⁇ 4 and are each independently a halogen or a hydroxyl group,
  • each of R 21 to R 28 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and 3 ⁇ 4 and 3 ⁇ 4 each independently represent a halogen or a hydroxyl group.
  • a method of preparing a polymer additive for manufacturing a microfiltration membrane or an ultrafiltration membrane and a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane according to a specific embodiment of the present invention will be described in detail.
  • a microfiltration membrane or ultrafiltration membrane polymer additive for manufacturing a polysulfone-based polymer comprising a repeating unit of Formula 1 to Formula 2 may be provided.
  • the present inventors have conducted a study on additives that can be used in a microfiltration membrane or an ultrafiltration membrane, and have newly synthesized a polysulfone polymer including the repeating units of Formulas 1 and 2, and precisely synthesized polysulfone polymers.
  • a polysulfone polymer including the repeating units of Formulas 1 and 2, and precisely synthesized polysulfone polymers.
  • the polysulfone-based polymer including the repeating units of Formula 1 and Formula 2 has high hydrophilicity and a slight melting rate even when exposed to water for a long time, thereby improving the water permeability of the filtration membrane when applied as an additive to a microfiltration membrane or an ultrafiltration membrane. At the same time, fouling on the surface of the filter membrane can be greatly reduced.
  • the ratio of the number of moles of the repeating unit of Formula 1 to the total number of moles of the repeating unit of Formula 1 and the repeating unit of Formula 2 is 0. 5% to 95%, preferably 2% to 90%, more preferably 5% to 80%.
  • the polysulfone-based polymer has a molar ratio of 0 to 0 repeating units of the repeating unit substituted with sulfonic acid or a salt thereof.
  • the polymer additive is hydrophilic when 5% to 95%, it may have a property of being insoluble in water when applied to a microfiltration membrane or an ultrafiltration membrane. If the molar ratio of the repeating unit substituted with sulfonic acid or its salt is too small, the polymer additive may not have hydrophilicity. If the molar ratio of the repeating unit substituted with the sulfonic acid or its salt is too large, the microfiltration membrane or the ultrafiltration membrane Can be greatly increased in water dissolution after long-term use.
  • At least one of 3 ⁇ 4 to R4 is sulfonic acid or a salt thereof, and the rest may be hydrogen or an alkyl group having 1 to 5 carbon atoms, respectively, wherein the repeating unit of Formula 1 and The ratio of the number of moles of the repeating unit of Formula 1 to the total number of moles of the repeating unit of Formula 2 may be 1% to 70%, preferably 3 to 60%.
  • the sulfonic acid is —SO 3 H
  • the salt of sulfonic acid may be a metal salt or an ammonium salt.
  • the salt of sulfonic acid may be potassium salt, sodium salt, cesium salt, lithium salt or alkyl amine salt having 1 to 10 carbon atoms of sulfonic acid (_S0 3 H).
  • R 21 to R 36 may each be hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the polysulfone polymer may be a block copolymer in which each of the repeating unit of Formula 1 and the repeating unit of Formula 2 is connected by forming a block, or the repeating unit of Formula 1 and the repeating unit of Formula 2 are not in sequence It may be a random copolymer formed by bonding.
  • the polysulfone-based polymer may have a number average molecular weight of 10, 000 to 150, 000, preferably a number average molecular weight of 20, 000 to 100, 000. If the number average molecular weight of the polysulfone-based polymer is too small, the mechanical properties of the filtration membrane produced by tangling or reacting with other components (for example, polymer base resin, etc.) used in the manufacture of the microfiltration membrane or the ultrafiltration membrane is low When the microfiltration membrane or the ultrafiltration membrane is used for a long time, the polysulfone-based polymer may be released or leached out of the filtration membrane, thereby greatly reducing the hydrophilicity of the microfiltration membrane or the ultrafiltration membrane.
  • the polysulfone-based polymer may have an inherent viscosity of 0.7 dL / g to 1.7 dL / g at 60 ° C.
  • a method for producing a polymer additive for manufacturing a microfiltration membrane or a membrane filter comprising the step of reacting the compound of Formula 21 to Formula 23, there can be provided a method for producing a polymer additive for manufacturing a microfiltration membrane or a membrane filter.
  • the present inventors have newly synthesized the polysulfone polymer described above by reacting the monomers of Chemical Formulas 21, 22, and 23.
  • the pores of the polysulfone-based polymer scale microfiltration membrane or ultrafiltration membrane to be synthesized is properly adjusted in shape and size on the surface or inside of the filtration membrane. It can be formed uniformly.
  • the polysulfone-based polymer has a high hydrophilicity and a slight melting rate even when exposed to water for a long time, and when applied as an additive to a microfiltration membrane or an ultrafiltration membrane, while improving the water permeability of the filtration membrane, fouling is adsorbed on the surface of the filtration membrane The fouling can be greatly reduced.
  • the monomer compound of Formula 21 and Formula 23 performs a condensation polymerization reaction
  • the monomer compounds of 22 and 23 may be subjected to condensation polymerization reaction, and the product of the condensation polymerization reaction may be continuously reacted to form a polysulfone polymer including the repeating units of Formulas 1 and 2.
  • the molar ratio of the compound of Chemical Formula 21 to the total number of moles of the Chemical Formula 21 to Chemical Formula 22 may be 0.5% to 95%, preferably 2% to 90%, and more preferably 5% to 80%.
  • the synthesized polysulfone polymer has a ratio of the number of moles of the repeating unit of Formula 1 to 0.5% to 95%, preferably 2 to the total number of moles of the repeating unit of Formula 1 and the repeating unit of Formula 2 90%, more preferably 5% to 8 °.
  • the ratio of the number of moles of the compound of the formula (23) to the total number of moles of the compound of the formula (21) and the compound of the formula (22) is 80% to 150%, preferably 90% to 120%.
  • the step of reacting the compound of Chemical Formula 21 to Chemical Formula 23 is 50 to
  • the polymerization reaction may proceed at a temperature of 300 ° C., preferably 80 to 200 ° C. When the temperature of the reaction of the compounds of Formula 21 to Formula 23 is too low, the polymerization efficiency may be greatly reduced. If the reaction temperature is too high, the reactant may be carbonized.
  • reacting the compound of Formula 21 to Formula 23 may be performed in the presence of an inorganic base or an organic base.
  • the inorganic base may be a hydroxide, carbonate, sulfate of a lanthanum group such as alkali metal, alkaline earth metal or cerium (Ce).
  • the organic base may be a compound of any one of common amines including ammonia.
  • the inorganic base or the organic base may be added in a mole number of 0.5 to 10 times the mole number of the compound of Formula 23 in the step of reacting the compound of Formula 21 to Formula 23.
  • the step of reacting the compound of Formula 21 to Formula 23 may be performed in the presence of at least one solvent selected from the group consisting of aprotic polar solvent, protic polar solvent and co-solvent.
  • Examples of the aprotic polar solvent include N-methylpyridone (NMP), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMS0) or sulfolane (Sul fol ane). Etc. can be mentioned.
  • examples of the protic polar solvent include chloroform (CHC1 3 ), methylene chloride (CH 2 C1 2 ), chloroform (CH 3 C1), carbon tetrachloride (CC1 4 ), tetrahydrofuran (THF), and the like. have. Benzene, toluene, xylene and the like may be used as the non-solvent.
  • a polymer additive that can be used to prepare a microfiltration membrane or an ultrafiltration membrane that can greatly reduce the fouling phenomenon to be adsorbed, and a method of preparing the polymer additive can be provided.
  • FIG. 2 shows an enlarged SEM photograph of the surface of the polyethersulfone polymer film prepared in Example 1 by 500 times.
  • Figure 3 shows a SEM image of a polyether sulfone polymer film prepared in Example 1 magnified 100,000 times the cross section.
  • Example 1 Preparation of Filtration Membrane '13% by weight of polyvinylidene fluoride, 82% by weight of N—methylpyridone (XP) as a solvent, 5% by weight of polysulfone polymer synthesized in Preparation Example 1 To prepare a polymer solution. '
  • the contact angle was measured by using a contact angle measuring instrument (Phoeni x 300 touch).
  • the initial contact angle was 65 ° and the contact angle after contact with water for 7 days was measured to measure the hydrophilic stability of the polymer membrane surface.
  • a polymer solution was prepared using 15% by weight of polyvinylidene fluoride and 85% by weight of N-methylpyridone (NMP) as a solvent.
  • NMP N-methylpyridone
  • the casting knife was adjusted to 200 to cast on a glass plate and then precipitated in non-solvent water (20 ° C) for 12 hours to polyvinylidene fluoride
  • a polymer membrane was prepared.
  • the polymer membrane thus prepared was washed with distilled water at 70 ° C. for 3 hours, and then dried in a dry oven at 70 ° C. for 24 hours.
  • the contact angle was measured by a contact angle measuring instrument (Phoeni x 300 touch).
  • the initial contact angle was found to be 84 ° .
  • a polymer solution was prepared by using 10% by weight of polyvinylidene fluoride, 87% by weight of dimethyl acetate (DMAc) as a solvent, and 3% by weight of polyethylene glycol (PEG 100, 000) as a polymer additive.
  • DMAc dimethyl acetate
  • PEG 100, 000 polyethylene glycol
  • polyvinylidene fluoride 77% by weight of dimethylacetate (DMAc) as a solvent, 7% by weight of polyvinylpyrrolidone (PVP) as a polymer additive and 3% by weight of lithium chloride (LiCl) as an inorganic salt additive
  • DMAc dimethylacetate
  • PVP polyvinylpyrrolidone
  • LiCl lithium chloride
  • the thickness of the casting knife was adjusted to 200 / m, cast on a glass plate, and then precipitated in polyvinylidene for 12 hours in non-solvent water (20 ° C)
  • a fluoride polymer film was prepared.
  • the polymer membrane thus prepared was washed with distilled water at 70 ° C. for 3 hours and then dried at a temperature of 70 ° C. in a dry oven for 24 hours.
  • the contact angle was measured by a contact angle measuring instrument (Phoenix 300 touch).
  • the initial contact angle was found to be 70 ° .

Abstract

The present invention relates to: a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane, containing a polysulfone-based polymer having a specific chemical structure; and a preparation method therefor. The polymer additive allows pores to be more effectively formed on the surface of a filtration membrane, can readily control the shape and size of the pores, and can greatly reduce fouling phenomenon in which contaminants are adsorbed on the surface of a filtration membrane, since the polymer additive hardly dissolves in water even when used for a long time, while improving the water permeability of the filtration membrane.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
정밀여과막 또는 한외여과막 제조용 고분자 첨가제 및 이의 제조 방법 【기술분야】  Polymer Additives for Manufacturing Microfiltration Membranes or Ultrafiltration Membranes and Their Manufacturing Methods
본 발명은 정밀여과막 또는 한외여과막 제조용 고분자 첨가제 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 여과막 표면에 보다 효율적으로 기공을 형성할 수 있게 하며 상기 기공의 형태와 크기를 용이하게 조절할 수 있고, 여과막의 수투과도를 향상시키면서도 장시간 사용에도 물에 녹지 않아 여과막 표면에 오염물질이 흡착되는 파울링 (fouling) 현상을 크게 줄일 수 있는 정밀여과막 또는 한외여과막 제조용 고분자 첨가제와 상기 고분자 첨가제의 제조 방법에 관한 것이다.  The present invention relates to a polymer additive for producing a microfiltration membrane or an ultrafiltration membrane and a method for producing the same. In more detail, it is possible to form pores on the surface of the filtration membrane more efficiently, and can easily adjust the shape and size of the pores, and improve the water permeability of the filtration membrane and do not dissolve in water even after long-term use, the contaminants on the surface of the filtration membrane The present invention relates to a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane and a method for producing the polymer additive that can greatly reduce the adsorbing fouling phenomenon.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
정밀여과막 또는 한외여과막의 존재하는 기공의 크기나 형태를 조절하기 위하여 제조 과정에서 다양한 첨가제가 사용된다. 이러한 첨가제의 예로는, polyvinylpyrrolidone 또는 poly(ethylene glycol ) 등의 고분자 첨가제; LiCl 또는 LiC104등의 금속염 화합물; acetic acid 또는 phosphoric acid 등의 무기산; propionic acid 등의 유기산; ethanol , acetone, glycerol , ethylene glycol 또는 물 등의 유기 또는 수용성 용매; 등이 사용될 수 있는 것으로 알려져 있다. 이러한 첨가제들 중 친수성 첨가제를 넣어 분리막을 제조하게 되면 분리막의 수투과도가 향상 될 뿐 아니라, 분리막 표면에 오염물질이 흡착되는 파울링 (fouling) 현상을 줄여주게 된다. 하지만 이러한 친수성 첨가제는 물과의 친화도가 높아서 물에 녹는.경우가 대부분인데, 정밀여과막 또는 한외여과막의 실제 운전 과정에서도 친수성 첨가제가 물에 녹게 되어, 첨가제 사용에 따라 유도되는 수투과도 향상이나 앤티파울링 (Anti-fouling) 효과가 운전 시간이 지날수록 줄어들어 결국에는 오염원에 의해 흡착이 잘 되고 그로 인해 막의 분리기능을 잃어 수명이 단축되는 문제점이 발생하게 된다. Various additives are used in the manufacturing process to control the size or shape of the pores present in the microfiltration membrane or the ultrafiltration membrane. Examples of such additives include polymer additives such as polyvinylpyrrolidone or poly (ethylene glycol); Metal salt compounds such as LiCl or LiC10 4 ; inorganic acids such as acetic acid or phosphoric acid; organic acids such as propionic acid; organic or water-soluble solvents such as ethanol, acetone, glycerol, ethylene glycol or water; It is known that such may be used. Preparation of the separator by adding a hydrophilic additive of these additives not only improves the water permeability of the separator, but also reduces the fouling (fouling) phenomenon that the contaminants are adsorbed on the membrane surface. However, these hydrophilic additives have high affinity with water and are soluble in water . In most cases, hydrophilic additives dissolve in water during the actual operation of microfiltration membranes or ultrafiltration membranes, and the water permeability enhancement or anti-fouling effect induced by the use of additives decreases over time. It is adsorbed by the contaminant well, thereby causing a problem that the lifespan is shortened due to the loss of membrane separation.
일본공개특허 평 7-185280 호에는, 소수성 폴리술폰계 고분자막 표면에 부착되는 수용성 고분자 물질을 친수성 폴리페놀을 사용하여 불용화시키는 방법이 개시되어 있으나, 소수성 폴리술폰계 고분자막에 친수성 물질을 코팅하는 이러한 방법에서는 소수성 물질과 친수성 물질 사이의 계면에서 분리가 일어나는 한계가 있었다. Japanese Patent Application Laid-Open No. 7-185280 discloses a method of insolubilizing a water-soluble polymer material adhered to a surface of a hydrophobic polysulfone polymer membrane using a hydrophilic polyphenol. Although a method has been disclosed, in this method of coating a hydrophilic material on a hydrophobic polysulfone polymer membrane, there is a limit that separation occurs at an interface between the hydrophobic material and the hydrophilic material.
일본공개특허 제 2002—018245호에는, 방사선 그라프트 중합법을 사용하여 폴리올레핀 등의 다공성 유기 고분자 막의 표면 또는 내부에 양이온 작용기를 도입하는 방법이 개시되어 있으나, 소수성 고분자 막에 도입되는 친수성 양이온 작용기의 양을 조절하기가 용이하지 않았으며, 방사선 그라프트 중합법의 사용에 따라 추가적인 공정 설계 등으로 인하여 최종 제품의 생산이 비용이 증가하고 생산 과정을 단순화하기가 용이하지 않았다.  Japanese Laid-Open Patent Publication No. 2002-018245 discloses a method of introducing a cationic functional group into or on a surface of a porous organic polymer membrane such as polyolefin by using a radiation graft polymerization method. The amount was not easy to control, and due to the use of radiation graft polymerization, the additional process design resulted in an increase in the cost of producing the final product and not easy to simplify the production process.
한국공개특허 제 2009-0034976 호에는, 다공성 중합체 막을 모노퍼술페아트 공급원 및 할라이드 이은과 접촉시켜 다공성 중합체 막의 투수도를 개선시키고 세정하는 방법에 관해서 개시되어 있으나, 이에 따르면 제조된 다공성 중합체 막 자체에 영구적으로 친수성 또는 투수도를 부여하기 용이하지 않으며, 가열 또는 반복 건조 등의 과정에서 친수성이 사라지거나 투수도나 낮아질 수 있다.  Korean Patent Publication No. 2009-0034976 discloses a method of contacting a porous polymer membrane with a monopersulfate source and halide silver to improve the permeability of the porous polymer membrane and to clean it. It is not easy to permanently impart hydrophilicity or permeability, and hydrophilicity may be lost or permeability or lowering in the process of heating or repeated drying.
이에 따라, 높은 투수성과 향상된 안티파울링 성능을 확보하면서도 여과분리막의 장기 운전 가능성과 안정성을 높일 수 있기 위하여, 물에 쉽게 녹지 않으면서도 높은 친수성을 갖는 물질에 대한 개발과 이러한 물질을 정밀여과막 또는 한외여과막 제조용 첨가제로 적용하기 위한 연구가 필요한 실정이다.  Accordingly, in order to increase the long-term operability and stability of the filtration membrane while securing high permeability and improved antifouling performance, development of a material having high hydrophilicity without being easily dissolved in water, and a microfiltration membrane or ultrafiltration There is a need for research to apply as an additive for the production of filtration membranes.
【선행기술문헌】 Prior Art Documents
【특허문헌】  [Patent literature]
(특허문헌 0001) 일본공개특허 평그 185280호  (Patent Document 0001) Japanese Patent Application Publication No. 185280
(특허문헌 0002) 일본공개특허 제 2002-018245호  (Patent Document 0002) Japanese Laid-Open Patent No. 2002-018245
(특허문헌 0003) 한국공개특허 제 2009-0034976호  (Patent Document 0003) Korean Laid-Open Patent No. 2009-0034976
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】 본 발명은, 여과막 표면에 보다 효율적으로 기공을 형성할 수 있게 하며 상기 기공의 형태와 크기를 용이하게 조절할 수 있고, 여과막의 수투과도를 향상시키면서도 장시간 사용에도 물에 녹지 않아 여과막 표면에 오염물질이 흡착되는 파울링 ( foul ing) 현상을 크게 줄일 수 있는 정밀여과막 또는 한외여과막의 제조에 사용될 수 있는 고분자 첨가제에 관한 것이다. Problem to be solved According to the present invention, it is possible to form pores on the surface of the filtration membrane more efficiently and easily control the shape and size of the pores, while improving the water permeability of the filtration membrane and do not dissolve in water even after long-term use, contaminants on the surface of the filtration membrane The present invention relates to a polymer additive that can be used to prepare a microfiltration membrane or an ultrafiltration membrane, which can greatly reduce the fouling phenomenon adsorbed.
또한, 본 발명은 상기 정밀여과막 또는 한외여과막 제조용 고분자 첨가제의 제조 방법에 관한 것이다.  In addition, the present invention relates to a method for producing a polymer additive for producing the microfiltration membrane or ultrafiltration membrane.
【과제의 해결 수단】 [Measures of problem]
본 발명은 하기 화학식 1 내지 화학식 2 의 반복 단위를 포함하 폴리설폰계 고분자 포함하는 정밀여과막 또는 한외여과막 제조용 고분자 첨가제를 제공한다.  The present invention provides a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane including a polysulfone polymer including repeating units represented by the following Chemical Formulas 1 to 2.
[화학식 1]  [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1 에서, Rl 내지 Rl2 중 적어도 하나는 설폰산 또는 이의 염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5의 알킬기이고,  In Formula 1, at least one of Rl to Rl2 is sulfonic acid or a salt thereof, and the rest are hydrogen or an alkyl group having 1 to 5 carbon atoms,
Figure imgf000005_0002
Figure imgf000005_0002
상기 화학식 2 에서, R21내지 R36 각각은 수소 또는 탄소수 1 내지 5 의 알킬기이다. In Formula 2, each of R 21 to R 36 is hydrogen or an alkyl group having 1 to 5 carbon atoms.
또한, 본 발명은, 하기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계를 포함하는, 정밀여과막 또는 한외여과막 제조용 고분자 첨가제의 제조 방법을 제공한다. [화학식 21] In addition, the present invention provides a method for preparing a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane, which comprises reacting a compound represented by the following Chemical Formulas 21 to 23: [Formula 21]
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 21 에서, ¾ 내지 R4 중 적어도 하나는 설폰산 또
Figure imgf000006_0002
염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5 의 알킬기이고, 및 ¾ 각각 독립적으로 할로겐 또는 하이드록시기이며,
In Formula 21, at least one of ¾ to R 4 is sulfonic acid or
Figure imgf000006_0002
Salt, the remainder are each hydrogen or an alkyl group having 1 to 5 carbon atoms, and ¾ are each independently a halogen or a hydroxyl group,
[화학식 22]  [Formula 22]
Figure imgf000006_0003
Figure imgf000006_0003
상기 화학식 22 에서, Ru내지 R18각각은 수소 또는 탄소수 1 내지 5 의 알킬기이고, ¾및 는 각각 독립적으로 할로겐 또는 하이드록시기이며, In Formula 22, each of R u to R 18 is hydrogen or an alkyl group having 1 to 5 carbon atoms, ¾ and are each independently a halogen or a hydroxyl group,
[화학식 23]  [Formula 23]
Figure imgf000006_0004
Figure imgf000006_0004
상기 화학식 23 에서, R21내지 R28각각은 수소 또는 탄소수 1 내지 5 의 알킬기이고, ¾및 ¾는 각각 독립적으로 할로겐 또는 하이드록시기이다. In Formula 23, each of R 21 to R 28 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and ¾ and ¾ each independently represent a halogen or a hydroxyl group.
이하 발명의 구체적인 구현예에 따른 정밀여과막 또는 한외여과막 제조용 고분자 첨가제와, 정밀여과막 또는 한외여과막 제조용 고분자 첨가제의 제조 방법에 관하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 상기 화학식 1 내지 화학식 2의 반복 단위를 포함하는 폴리설폰계 고분자를 포함하는 정밀여과막 또는 한외여과막 제조용 고분자 첨가제가 제공될 수 있다. Hereinafter, a method of preparing a polymer additive for manufacturing a microfiltration membrane or an ultrafiltration membrane and a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane according to a specific embodiment of the present invention will be described in detail. According to one embodiment of the invention, a microfiltration membrane or ultrafiltration membrane polymer additive for manufacturing a polysulfone-based polymer comprising a repeating unit of Formula 1 to Formula 2 may be provided.
본 발명자들은 정밀여과막 또는 한외여과막에 사용될 수 있는 첨가제에 관한 연구를 진행하여, 상기 화학식 1 및 화학식 2 의 반복 단위를 포함하는 폴리설폰계 고분자를 신규하게 합성해냈으며, 이러한 폴리설폰계 고분자를 정밀여과막 또는 한외여과막의 제조에 사용하면 여과막의 표면 또는 내부에 형태와 크기가 적절하게 조절된 기공이 균일하게 형성될 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.  The present inventors have conducted a study on additives that can be used in a microfiltration membrane or an ultrafiltration membrane, and have newly synthesized a polysulfone polymer including the repeating units of Formulas 1 and 2, and precisely synthesized polysulfone polymers. When used in the manufacture of the filtration membrane or ultrafiltration membrane through the experiment to confirm that the pores of the shape and size properly adjusted on the surface or inside of the filtration membrane can be formed uniformly and completed the invention.
특히, 상기 화학식 1 및 화학식 2 의 반복 단위를 포함하는 폴리설폰계 고분자는 높은 친수성을 가지면서도 장시간 물에 노출되어도 녹는 비율이 미미하여 , 정밀여과막 또는 한외여과막에 첨가제로 적용시 여과막의 수투과도를 향상시키면서도 여과막 표면에 오염물질이 흡착되는 파을링 ( foul i ng) 현상을 크게 줄일 수 있다.  In particular, the polysulfone-based polymer including the repeating units of Formula 1 and Formula 2 has high hydrophilicity and a slight melting rate even when exposed to water for a long time, thereby improving the water permeability of the filtration membrane when applied as an additive to a microfiltration membrane or an ultrafiltration membrane. At the same time, fouling on the surface of the filter membrane can be greatly reduced.
상술한 폴리설폰계 고분자는 화학식 1 의 반복 단위 및 상기 화학식 2 의 반복 단위의 몰수 총합에 대하여 상기 화학식 1 의 반복 단위의 몰수의 비율은 0 . 5% 내지 95%, 바람직하게는 2% 내지 90%, 보다 바람직하게는 5% 내지 80%일 수 있다.  In the polysulfone polymer described above, the ratio of the number of moles of the repeating unit of Formula 1 to the total number of moles of the repeating unit of Formula 1 and the repeating unit of Formula 2 is 0. 5% to 95%, preferably 2% to 90%, more preferably 5% to 80%.
상기 폴리설픈계 고분자는 설폰산 또는 이의 염이 치환된 반복 단위인 화학식 1 의 반복 단위의 몰 비율이 0 . 5% 내지 95%일 때 상기 고분자 첨가제가 친수성을 띄면서도 정밀여과막 또는 한외여과막에 적용되었을 때 물에 녹지 않는 특성을 가질 수 있다. 설폰산 또는 이의 염이 치환된 반복 단위의 몰 비율이 너무 작으면 상기 고분자 첨가제가 친수성을 갖지 못할 수 있으며, 상기 설폰산 또는 이의 염이 치환된 반복 단위의 몰 비율이 너무 크면 정밀여과막 또는 한외여과막에 적용되어 장기간 사용시 물에 녹는 양이 크게 증가할 수 있다. 한편, 상기 화학식 1 에서, ¾내지 R4 중 적어도 하나는 설폰산 또는 이의 염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5 의 알킬기일 수 있는데, 이때에는 상기 폴리설폰계 고분자 중 화학식 1 의 반복 단위 및 상기 화학식 2 의 반복 단위의 몰수 총합에 대하여 상기 화학식 1의 반복 단위의 몰수의 비율은 1% 내지 70% , 바람직하게는 3 내지 60%일 수 있다. 상기 화학식 1 에서, 상기 설폰산은 — S03H 이며, 설폰산의 염은 금속염 또는 암모늄염일 수 있다. 구체적으로, 상기 설폰산의 염은 설폰산 (_S03H)의 칼륨염, 나트륨염, 세슘염, 리튬염 또는 탄소수 1 내지 10 의 알킬 아민염일 수 있다. The polysulfone-based polymer has a molar ratio of 0 to 0 repeating units of the repeating unit substituted with sulfonic acid or a salt thereof. When the polymer additive is hydrophilic when 5% to 95%, it may have a property of being insoluble in water when applied to a microfiltration membrane or an ultrafiltration membrane. If the molar ratio of the repeating unit substituted with sulfonic acid or its salt is too small, the polymer additive may not have hydrophilicity. If the molar ratio of the repeating unit substituted with the sulfonic acid or its salt is too large, the microfiltration membrane or the ultrafiltration membrane Can be greatly increased in water dissolution after long-term use. On the other hand, in Formula 1, at least one of ¾ to R4 is sulfonic acid or a salt thereof, and the rest may be hydrogen or an alkyl group having 1 to 5 carbon atoms, respectively, wherein the repeating unit of Formula 1 and The ratio of the number of moles of the repeating unit of Formula 1 to the total number of moles of the repeating unit of Formula 2 may be 1% to 70%, preferably 3 to 60%. In Formula 1, the sulfonic acid is —SO 3 H, and the salt of sulfonic acid may be a metal salt or an ammonium salt. Specifically, the salt of sulfonic acid may be potassium salt, sodium salt, cesium salt, lithium salt or alkyl amine salt having 1 to 10 carbon atoms of sulfonic acid (_S0 3 H).
그리고, 상기 화학식 2 에서, R21 내지 R36 는 각각 수소 또는 탄소수 1 내지 5의 알킬기일 수 있다. In addition, in Chemical Formula 2, R 21 to R 36 may each be hydrogen or an alkyl group having 1 to 5 carbon atoms.
상기 폴리설폰계 고분자는 상기 화학식 1 의 반복 단위 및 상기 화학식 2 의 반복 단위 각각이 블록을 이루어서 연결되는 블록 공중합체 일 수 있으며, 또는 상기 화학식 1 의 반복 단위 및 상기 화학식 2 의 반복 단위가 순서 없이 결합되어 형성되는 랜덤 공중합체일 수 있다.  The polysulfone polymer may be a block copolymer in which each of the repeating unit of Formula 1 and the repeating unit of Formula 2 is connected by forming a block, or the repeating unit of Formula 1 and the repeating unit of Formula 2 are not in sequence It may be a random copolymer formed by bonding.
상기 폴리설폰계 고분자는 10 , 000 내지 150 , 000 의 수평균분자량, 바람직하게는 20 , 000 내지 100 , 000 의 수평균분자량을 가질 수 있다. 상기 폴리설폰계 고분자의 수평균분자량이 너무 작으면, 정밀여과막 또는 한외여과막의 제조에 사용되는 다른 성분 (예를 들어, 고분자 베이스 수지 등)과 엉키거나 반응하는 정도가 낮아져서 제조되는 여과막의 기계적 물성이 저하될 수 있고, 정밀여과막 또는 한외여과막을 장시간 사용하였을 때 상기 폴리설폰계 고분자가 여과막에서 빠져나오거나 침출되어 정밀여과막 또는 한외여과막이 갖는 친수성이 크게 저하될 수 있다. 또한, 상기 폴리설폰계 고분자의 수평균분자량이 너무 크면, 정밀여과막 또는 한외여과막을 제조하는데 사용되는 고분자 용액의 용해도가낮아져서 적절한 물성을 갖는 여과막 제조가 용이하지 않을 수 있다. 상기 폴리설폰계 고분자는 60 °C에서 0.7 dL/g 내지 1.7 dL/g 의 고유 점도를 가질 수 있다. 한편, 발명의 다른 구현예에 따르면, 상기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계를 포함하는, 정밀여과막 또는 한의여과막 제조용 고분자 첨가제의 제조 방법이 제공될 수 있다. The polysulfone-based polymer may have a number average molecular weight of 10, 000 to 150, 000, preferably a number average molecular weight of 20, 000 to 100, 000. If the number average molecular weight of the polysulfone-based polymer is too small, the mechanical properties of the filtration membrane produced by tangling or reacting with other components (for example, polymer base resin, etc.) used in the manufacture of the microfiltration membrane or the ultrafiltration membrane is low When the microfiltration membrane or the ultrafiltration membrane is used for a long time, the polysulfone-based polymer may be released or leached out of the filtration membrane, thereby greatly reducing the hydrophilicity of the microfiltration membrane or the ultrafiltration membrane. In addition, when the number average molecular weight of the polysulfone polymer is too large, the solubility of the polymer solution used to prepare the microfiltration membrane or the ultrafiltration membrane is low, it may not be easy to manufacture a filter membrane having the appropriate physical properties. The polysulfone-based polymer may have an inherent viscosity of 0.7 dL / g to 1.7 dL / g at 60 ° C. On the other hand, according to another embodiment of the present invention, comprising the step of reacting the compound of Formula 21 to Formula 23, there can be provided a method for producing a polymer additive for manufacturing a microfiltration membrane or a membrane filter.
본 발명자들은 상기 화학식 21, 화학식 22 및 화학식 23 의 단량체를 반응시킴으로서, 상술한 폴리설폰계 고분자를 신규하게 합성해냈다. 상술한 바와 같이, 상기 합성되는 폴리설폰계 고분자늠 정밀여과막 또는 한외여과막의 제조에 적용되어 여과막의 표면 또는 내부에 형태와 크기가 적절하게 조절된 기공이 균일하게 형성될 수 있다. 또한, 상기 폴리설폰계 고분자는 높은 친수성을 가지면서도 장시간 물에 노출되어도 녹는 비율이 미미하여, 정밀여과막 또는 한외여과막에 첨가제로 적용시 여과막의 수투과도를 향상시키면서도 여과막 표면쎄 오염물질이 흡착되는 파울링 ( foul ing) 현상을 크게 줄일 수 있다. The present inventors have newly synthesized the polysulfone polymer described above by reacting the monomers of Chemical Formulas 21, 22, and 23. As described above, the pores of the polysulfone-based polymer scale microfiltration membrane or ultrafiltration membrane to be synthesized is properly adjusted in shape and size on the surface or inside of the filtration membrane. It can be formed uniformly. In addition, the polysulfone-based polymer has a high hydrophilicity and a slight melting rate even when exposed to water for a long time, and when applied as an additive to a microfiltration membrane or an ultrafiltration membrane, while improving the water permeability of the filtration membrane, fouling is adsorbed on the surface of the filtration membrane The fouling can be greatly reduced.
상기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계에서는, 상기 화학식 21 및 화학식 23 의 단량체 화합물이 축중합 반응을 하거나, 또는 화학식 In the step of reacting the compound of Formula 21 to Formula 23, the monomer compound of Formula 21 and Formula 23 performs a condensation polymerization reaction, or
22 및 화학식 23 의 단량체 화합물이 축중합 반웅을 하고, 이러한 축중합 반웅의 결과물이 연속적으로 반응을 하면서 상기 화학식 1 및 화학식 2 의 반복 단위를 포함하는 폴리설폰계 고분자를 형성할 수 있다. 상기 화학식 21 내지 화학식 22화합물의 몰수 총합에 대하여 상기 화학식 21의 화합물의 몰수의 비율이 0.5% 내지 95%, 바람직하게는 2% 내지 90%, 보다 바람직하게는 5% 내지 80%일 수 있다. 이에 따라, 상기 합성되는 폴리설폰계 고분자는 화학식 1의 반복 단위 및 상기 화학식 2의 반복 단위의 몰수 총합에 대하여 상기 화학식 1 의 반복 단위의 몰수의 비율이 0.5% 내지 95%, 바람직하게는 2 내지 90% , 보다 바람직하게는 5% 내지 8 。일 수 있다. The monomer compounds of 22 and 23 may be subjected to condensation polymerization reaction, and the product of the condensation polymerization reaction may be continuously reacted to form a polysulfone polymer including the repeating units of Formulas 1 and 2. The molar ratio of the compound of Chemical Formula 21 to the total number of moles of the Chemical Formula 21 to Chemical Formula 22 may be 0.5% to 95%, preferably 2% to 90%, and more preferably 5% to 80%. Accordingly, the synthesized polysulfone polymer has a ratio of the number of moles of the repeating unit of Formula 1 to 0.5% to 95%, preferably 2 to the total number of moles of the repeating unit of Formula 1 and the repeating unit of Formula 2 90%, more preferably 5% to 8 °.
또한, 상기 화학식 21 및 화학식 22 의 단량체 화합물이 상기 화학식 In addition, the monomer compounds of Formula 21 and Formula 22 may be
23 의 화합물과 층분한 효율로 축중합 반응을 진행하기 위해서는, 상기 화학식 21의 화합물 및 상기 화학식 22의 화합물 몰수 총합에 대하여 상기 화학식 23의 화합물의 몰수의 비율이 80% 내지 150%, 바람직하게는 90% 내지 120%일 수 있다. 상기 화학식 21 내지 화학식 23 의 화합물을 반웅시키는 단계는 50 내지In order to proceed with the condensation polymerization reaction with the compound of 23, the ratio of the number of moles of the compound of the formula (23) to the total number of moles of the compound of the formula (21) and the compound of the formula (22) is 80% to 150%, preferably 90% to 120%. The step of reacting the compound of Chemical Formula 21 to Chemical Formula 23 is 50 to
300 °C , 바람직하게는 80 내지 200 °C의 온도에서 중합 반웅이 진행될 수 있다. 상기 상기 화학식 21 내지 화학식 23 의 화합물을 반응하는 온도가 너무 낮으면 중합 효율이 크게 저하될 수 있으며, 상기 반응 온도가 너무 높으면 상기 반응물이 탄화될 수 있다. The polymerization reaction may proceed at a temperature of 300 ° C., preferably 80 to 200 ° C. When the temperature of the reaction of the compounds of Formula 21 to Formula 23 is too low, the polymerization efficiency may be greatly reduced. If the reaction temperature is too high, the reactant may be carbonized.
그리고, 상기 화학식 21 내지 화학식 23 의 화합물을 반웅시키는 단계는 무기 염기 또는 유기 염기의 존재 하에 이루어질 수 있다. 상기 무기 염기는 알칼리 금속, 알칼리토금속 또는 세륨 (Ce) 등의 란타넘족의 수산화물, 탄산염, 황산염 일 수 있다. 그리고, 상기 유기 염기는 암모니아를 비롯한 통상의 아민류 중 어느 하나의 화합물일 수 있다. 상기 무기 염기 또는 유기 염기는 상기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계에서 상기 화학식 23 의 화합물의 몰수 대비 0.5 배 내지 10배의 몰수로 첨가해줄 수 있다. And, reacting the compound of Formula 21 to Formula 23 may be performed in the presence of an inorganic base or an organic base. The inorganic base may be a hydroxide, carbonate, sulfate of a lanthanum group such as alkali metal, alkaline earth metal or cerium (Ce). In addition, the organic base may be a compound of any one of common amines including ammonia. The inorganic base or the organic base may be added in a mole number of 0.5 to 10 times the mole number of the compound of Formula 23 in the step of reacting the compound of Formula 21 to Formula 23.
또한, 상기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계는 비양성자성 극성용매, 양성자성 극성용매 및 공비용매로 이루어진 군에서 선택된 1종 이상의 용매의 존재하에 이루어질 수 았다.  In addition, the step of reacting the compound of Formula 21 to Formula 23 may be performed in the presence of at least one solvent selected from the group consisting of aprotic polar solvent, protic polar solvent and co-solvent.
상기 비양자성 극성용매의 예로는 N-메틸피를리돈 (NMP) , 디메틸포름아마이드 (DMF ), N, N-디메틸아세트아마이드 (DMAc ), 디메틸설폭사이드 (DMS0) 또는 설포란 (Sul fol ane ) 등을 들 수 있다. 또, 상기 양성자성 극성용매의 예로는 클로로포름 (CHC13) , 메틸렌클로라이드 (CH2C12) , 클로로포름 (CH3C1 ) , 카본테트라클로라이드 (CC14) 또는 테트라하이드로퓨란 (THF) 등을 들 수 있다. 상기 공비용매로서 벤젠, 를루엔, 자일렌 등이 사용될 수 있다. Examples of the aprotic polar solvent include N-methylpyridone (NMP), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMS0) or sulfolane (Sul fol ane). Etc. can be mentioned. In addition, examples of the protic polar solvent include chloroform (CHC1 3 ), methylene chloride (CH 2 C1 2 ), chloroform (CH 3 C1), carbon tetrachloride (CC1 4 ), tetrahydrofuran (THF), and the like. have. Benzene, toluene, xylene and the like may be used as the non-solvent.
【발명의 효과】 【Effects of the Invention】
본 발명은, 여과막 표면에 보다 효율적으로 기공을 형성할 수 있게 하며 상기 기공의 형태와 크기를 용이하게 조절할 수 있고, 여과막의 수투과도를 향상시키면서도 장시간 사용에도 물에 녹지 않아 여과막 표면에 오염물질이 흡착되는 파을링 ( foul ing) 현상을 크게 줄일 수 있는 정밀여과막 또는 한외여과막의 제조에 사용될 수 있는 고분자 첨가제와 이러한 고분자 첨가제의 제조 방법이 제공될 수 있다.  According to the present invention, it is possible to form pores on the surface of the filtration membrane more efficiently and easily control the shape and size of the pores, while improving the water permeability of the filtration membrane and do not dissolve in water even after long-term use, contaminants on the surface of the filtration membrane A polymer additive that can be used to prepare a microfiltration membrane or an ultrafiltration membrane that can greatly reduce the fouling phenomenon to be adsorbed, and a method of preparing the polymer additive can be provided.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 실시예 1 내지 2 에서. 얻어진 폴리설폰계 고분자의 1H-NMR 스펙트럼을 타낸 것이다. 1 is in Examples 1 to 2 . The 1H-NMR spectrum of the obtained polysulfone polymer is shown.
도 2 는 실시예 1 에서 제조된 폴리에테르술폰 고분자막 표면의 500 배 확대한 SEM사진을 나타낸 것이다.  FIG. 2 shows an enlarged SEM photograph of the surface of the polyethersulfone polymer film prepared in Example 1 by 500 times.
도 3 은 실시예 1 에서 제조된 폴리에테르술폰 고분자막 단면 10,000 배 확대한 SEM사진을 나타낸 것이다.  Figure 3 shows a SEM image of a polyether sulfone polymer film prepared in Example 1 magnified 100,000 times the cross section.
【발명을 실시하기 위한 구체적인 내용】 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. [제조예 : 폴리설폰계 고분자의 제조] [Specific contents to carry out invention] The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. Production Example Manufacture of Polysulfone Polymer
1. 제조예 1  1. Preparation Example 1
교반장치, 질소도입관, 마그네틱 스터바, 딘 -스탁 (Dean-Stark; azeotropic distillation) 장치가 장착된 300 ml 의 3 구 등근 플라스크에 Potassium 2 , 5-d i hydr oxybenzenesu 1 f onat e (1.0272 g) , Bisphenolᅳ A (19.5188 g)와 K2C03 (15 g), 및 DMAc (180 ml)와 틀루엔 (65 ml)을 첨가하였다. 활성화 단계 (activation step)는 150 내지 160 °C의 온도 범위에서 6 내지 8 시간 진행되었고, 반응 중 부산물로 생산된 물은 반응용매 중 하나인 를루엔과의 azeotropic distillation 방법에 의하여 제거되었고, 활성화 단계 종료 후 를루엔은 반응기로부터 제거되었다. Potassium 2, 5-di hydroxyoxybenzenesu 1 f onat e (1.0272 g) , Bisphenol ᅳ A (19.5188 g) and K 2 CO 3 (15 g), DMAc (180 ml) and toluene (65 ml) were added. Activation step was carried out for 6 to 8 hours in the temperature range of 150 to 160 ° C, water produced as a by-product during the reaction was removed by azeotropic distillation method with one of the reaction solvents, toluene, After termination, toluene was removed from the reactor.
이후에, 4,4'-dichlorodiphenyl sulfone 25.8444g 을 반응기에 첨가한 후, 반응은도를 약 170 내지 180 °C로 유지시켜 30 시간 가량 반웅시켰다. 반웅이 끝난 후, 얻어진 반웅 결과물을 1000 mL 의 물 /이소프로판을 (4:1 vol%)에 침전시키고, 물 /이소프로판올 (4:1 vol%)로 여러번 세척한 후, 120 °C에서 3 일간 진공 건조시켰다. 최종 생성물은 고체로 얻어졌으며, 90 % 이상의 수율을 얻었다. 상기 얻어진 최종 생성물인 폴리설폰계 고분자의 -匪 R는 도 1에 나타낸 바와 같다. Thereafter, after adding 25.8444 g of 4,4'-dichlorodiphenyl sulfone to the reactor, the reaction was reacted for about 30 hours while maintaining the temperature at about 170 to 180 ° C. After the reaction was completed, the resultant reaction product was precipitated in 1000 mL of water / isopropane (4: 1 vol%), washed several times with water / isopropanol (4: 1 vol%), and then washed at 120 ° C. for 3 days. It was dried in vacuo. The final product was obtained as a solid, yielding at least 90%. -匪 R of the polysulfone polymer which is the obtained final product is as shown in FIG.
2. 제조예 2 2. Preparation Example 2
Potassium 2 , 5-d i hydr oxybenzenesu 1 f onat e , Bisphenol -A, 4,4'- dichlorodiphenyl sulfone 의 몰 비를 1:9:10 으로 다르게 한 것을 제외하고는. 상기 실시예 1과 동일한 방법으로 폴리설폰계 고분자를 얻었다.  Except for changing the molar ratio of Potassium 2, 5-d i hydr oxybenzenesu 1 f onat e, Bisphenol -A, 4,4'-dichlorodiphenyl sulfone to 1: 9: 10. Polysulfone polymer was obtained in the same manner as in Example 1.
상기 얻어진 최종 생성물인 폴리설폰계 고분자의 1H-匪 R는 도 1에 나타낸 바와 같다. [실험예 1: 폴리설폰계 고분자의 물성 평가] 상기 제조예에서 얻어진 폴리설픈계 고분자의 이온교환용량 (IEC), 설폰화도 (Mea. DS), 고유점도, 수평균분자량, 유리전이온도를 측정하였으며, 그 결과를 하기 표 1에 나타내었다. [표 1] 실험예 1의 결과 1H- 匪 R of the polysulfone polymer which is the final product obtained is as shown in FIG. Experimental Example 1: Evaluation of Physical Properties of Polysulfone Polymer The ion exchange capacity (IEC), sulfonation degree (Mea. DS), intrinsic viscosity, number average molecular weight, glass transition temperature of the polysulfone-based polymer obtained in the preparation example were measured, and the results are shown in Table 1 below. Table 1 Results of Experimental Example 1
Figure imgf000012_0001
Figure imgf000012_0001
a Calculated from the feed monomer ratio {IEC = (1000 I 應 repeat unit ) x degree of sulfonation x number of -SO3H ,or IEC = 1000/EW}. a Calculated from the feed monomer ratio {IEC = (1000 I 應 repeat unit) x degree of sulfonation x number of -SO 3 H, or IEC = 1000 / EW}.
Calculated from the relative. H NMR integrals of the proton between the aromatic resonances.  Calculated from the relative. H NMR integrals of the proton between the aromatic resonances.
c Measured by GPC at 60 °C in醒 P with 0.05 M LiBr.  c Measured by GPC at 60 ° C in 醒 P with 0.05 M LiBr.
d Determined by DSC with a heating rate of 10 °C/min in nitrogen (2nd scan) . d Determined by DSC with a heating rate of 10 ° C / min in nitrogen (2 nd scan).
[실시예 1: 여과막의 제조] ' 폴리비닐리덴플루오라이드 13 증량 %, 용매인 N—메틸피를리돈 (画 P) 82 중량 %, 상기 제조예 1에서 합성된 폴리설폰계 고분자 5 중량 %을 사용하여 고분자 용액을 제조하였다. ' Example 1 Preparation of Filtration Membrane '13% by weight of polyvinylidene fluoride, 82% by weight of N—methylpyridone (XP) as a solvent, 5% by weight of polysulfone polymer synthesized in Preparation Example 1 To prepare a polymer solution. '
제조된 고분자 용액을 이용하여, 부직포 함침 공정 단계를 실시한 후, 고분자 용액을 30°C로 유지하1 서 ᅳ개스팅 나이프의 두께를 200 로 조절하여 유리판 상에 캐스팅한 후 비용매인 물 (20°C)에 12 시간 침전 시켜서 폴리비닐리덴플루오라이드 고분자막을 제조하였다. 이렇게 제조된 고분자 막을 70 °C 증류수로 3 시간 세척한 후. 드라이오븐에서 70°C의 은도로 24 시간 건조시켰다. After using the polymer solution prepared, subjected to a non-woven fabric impregnation process step, after adjusting the thickness of the first standing eugae casting knife maintain the polymer solution to 30 ° C to 200 was cast on a glass plate a non-solvent of water (20 ° C) It was precipitated in for 12 hours to prepare a polyvinylidene fluoride polymer membrane. After washing the polymer membrane thus prepared with 70 ° C distilled water for 3 hours. Dry in an oven at 70 ° C for 24 hours.
이렇게 제조된 폴리비닐리덴플루오라이드 막의 기공의 모양, 크기 및 분포도 등을 확인하기 위하여 SEM 으로 관찰하였고 이 결과를 도 2 및 도 3 에 나타내었다. 도 2 에 나타낸 바와 같이 상기 제조된 폴리비닐리덴플루오라이드 막은 핑거 구조를 나타내었고ᅳ 도 3 에 나타낸 바와 같이 상기 제조된 고분자 막에는 0. 1 내지 1 크기의 표면 및 단면 기공이 형성되었으며, 약 72%의 기공 형성도로 형성되었다. 상기 생성된 막의 기공 크기와 분포는 버블 포인트법을 이용한 오토 펌-포로미터 (CFP-1200AEL)를 이용하여 측정하였다. In order to confirm the shape, size and distribution of pores of the polyvinylidene fluoride membrane thus prepared, the results were observed by SEM and the results are shown in FIGS. 2 and 3. Polyvinylidene fluoride prepared as shown in Figure 2 The membrane exhibited a finger structure, and as illustrated in FIG. 3, surface and cross-sectional pores of 0.01 to 1 size were formed in the prepared polymer membrane, and a porosity of about 72% was formed. The pore size and distribution of the resulting membrane were measured using an auto-perm-porometer (CFP-1200AEL) using the bubble point method.
그리고, 고분자막 표면의 친수화 정도를 측정하기 위하여 접촉각 측정기 ((주 )에스이오, Phoeni x 300 touch)로 접촉각을 측정하였다. 초기 접촉각은 65° 였으며, 고분자막 표면의 친수화 안정성을 측정하기 위하여 7 일간 물에 접촉한 후의 접촉각을 측정한 결과 67° 로 장기간 안정성이 유지되는 것으로 확인되었다. And, in order to measure the degree of hydrophilization of the surface of the polymer membrane, the contact angle was measured by using a contact angle measuring instrument (Phoeni x 300 touch). The initial contact angle was 65 ° and the contact angle after contact with water for 7 days was measured to measure the hydrophilic stability of the polymer membrane surface.
'  '
[비교예 : 폴리비닐리덴계 분리막의 제조]  Comparative Example: Production of Polyvinylidene Separation Membrane
1. 비교예 1  1. Comparative Example 1
폴리비닐리덴플루오라이드 15 중량 %, 용매인 N—메틸피를리돈 (NMP) 85 중량 %을 사용하여 고분자 용액을 제조하였다.  A polymer solution was prepared using 15% by weight of polyvinylidene fluoride and 85% by weight of N-methylpyridone (NMP) as a solvent.
제조된 고분자 용액을 이용하여, 고분자 용액을 30 °C로 유지하면서 캐스팅 나이프의 두께를 200 로 조절하여 유리판 상에 캐스팅한 후 비용매인 물 (20 °C )에 12 시간 침전 시켜서 폴리비닐리덴플루오라이드 고분자막을 제조하였다. 이렇게 제조된 고분자 막을 70 °C 증류수로 3 시간 세척한 후 드라이오븐에서 70 °C의 은도로 24시간 건조시켰다. Using the prepared polymer solution, while maintaining the polymer solution at 30 ° C, the casting knife was adjusted to 200 to cast on a glass plate and then precipitated in non-solvent water (20 ° C) for 12 hours to polyvinylidene fluoride A polymer membrane was prepared. The polymer membrane thus prepared was washed with distilled water at 70 ° C. for 3 hours, and then dried in a dry oven at 70 ° C. for 24 hours.
이렇게 제조된 폴리비닐리덴플루오라이드 막 표면의 친수화 정도를 측정하기 위하여 접촉각 측정기 ((주 )에스이오, Phoeni x 300 touch)로 접촉각을 측정하였다. 초기 접촉각은 84° 으로 확인되었다. In order to measure the degree of hydrophilization of the polyvinylidene fluoride film surface thus prepared, the contact angle was measured by a contact angle measuring instrument (Phoeni x 300 touch). The initial contact angle was found to be 84 ° .
2. 비교예 2 2. Comparative Example 2
폴리비닐리덴플루오라이드 10 중량 %, 용매인 디메틸아세테이트 (DMAc ) 87 중량 %, 고분자 첨가제인 폴리에틸렌 글리콜 (PEG 100 , 000) 3 중량 %을 사용하여 고분자 용액을 제조하였다.  A polymer solution was prepared by using 10% by weight of polyvinylidene fluoride, 87% by weight of dimethyl acetate (DMAc) as a solvent, and 3% by weight of polyethylene glycol (PEG 100, 000) as a polymer additive.
제조된 고분자 용액을 이용하여, 고분자 용액을 30 °C로 유지하면서 캐스팅 나이프의 두께를 200 로 조절하여 유리판 상에 캐스팅한 후 비용매인 물 (20 °C )에 12 시간 침전 시켜서 폴리비닐리덴플루오라이드 고분자막을 제조하였다. 이렇게 제조된 고분자 막을 7( C 증류수로 3 시간 세척한 후 드라이오븐에서 70 °C의 온도로 24시간 건조시켰다. Using the prepared polymer solution, while maintaining the polymer solution at 30 ° C, the casting knife was adjusted to 200 to cast on a glass plate and then precipitated for 12 hours in non-solvent water (20 ° C) polyvinylidene fluoride Polymer membrane Prepared. Thus prepared polymer membrane was washed with 7 (C distilled water for 3 hours and dried in a dry oven at a temperature of 70 ° C for 24 hours.
이렇게 제조된 폴리비닐리덴플루오라이드 막 표면의 .친수화. 정도를 측정하기 위하여 접촉각 측정기 ((주 )에스이오, Phoenix 300 touch)로 접촉각을 측정하였다. 초기 접촉각은 71° 으로 확인되었다. Hydrophilization of the polyvinylidene fluoride membrane surface thus prepared. In order to measure the degree, the contact angle was measured with a contact angle measuring instrument (Phoenix 300 touch). The initial contact angle was found to be 71 ° .
3. 비교예 3 3. Comparative Example 3
폴리비닐리덴플루오라이드 13 중량 % , 용매인 디메틸아세테이트 (DMAc) 77 중량 %, 고분자 첨가제인 폴리비닐피를리돈 (PVP) 7 중량 %, 무기염 첨가제인 염화리륨 (LiCl ) 3 중량 %을 사용하여 고분자 용액을 제조하였다.  Using 13% by weight of polyvinylidene fluoride, 77% by weight of dimethylacetate (DMAc) as a solvent, 7% by weight of polyvinylpyrrolidone (PVP) as a polymer additive and 3% by weight of lithium chloride (LiCl) as an inorganic salt additive A polymer solution was prepared.
제조된 고분자 용액을 이용하여, 고분자 용액을 30 °C로 유지하면서 캐스팅 나이프의 두께를 200 / m로 조절하여 유리판 상에 캐스팅한 후 비용매인 물 (20 °C )에 12 시간 침전 시켜서 폴리비닐리덴플루오라이드 고분자막을 제조하였다. 이렇게 제조된 고분자 막을 70 °C 증류수로 3 시간 세척한 후 드라이오븐에서 70°C의 온도로 24시간 건조시켰다. Using the prepared polymer solution, while maintaining the polymer solution at 30 ° C, the thickness of the casting knife was adjusted to 200 / m, cast on a glass plate, and then precipitated in polyvinylidene for 12 hours in non-solvent water (20 ° C) A fluoride polymer film was prepared. The polymer membrane thus prepared was washed with distilled water at 70 ° C. for 3 hours and then dried at a temperature of 70 ° C. in a dry oven for 24 hours.
이렇게 제조된 폴리비닐리덴플루오라이드 막 표면의 친수화 정도를 측정하기 위하여 접촉각 측정기 ((주 )에스이오, Phoenix 300 touch)로 접촉각을 측정하였다. 초기 접촉각은 70° 으로 확인되었다. In order to measure the degree of hydrophilization on the surface of the polyvinylidene fluoride film thus prepared, the contact angle was measured by a contact angle measuring instrument (Phoenix 300 touch). The initial contact angle was found to be 70 ° .
상기 실시예 및 비교예 1 내지 3 의 결과를 참고하면, 상기 제조예에서 합성된 폴리설폰계 고분자를 사용하여 여과막을 제조하는 경우, 제조되는 정밀여과막 또는 한외여과막의 기공의 형태와 크기를 용이하게 조절하여, 기공을 균일한 분포로 형성시킬 수 있다. 또한, 상기 제조예에서 합성된 폴리설폰계 고분자는 여과막의 수투과도를 향상시키면서도 장시간 사용에도 물에 거의 녹지 않아 여과막 표면에 오염물질이 흡착되는 파울링 ( foul ing) 현상을 크게 줄일 수 있음을 확인하였다. Referring to the results of Examples and Comparative Examples 1 to 3, when preparing a filter membrane using the polysulfone-based polymer synthesized in the preparation example, it is easy to form and size the pores of the prepared microfiltration membrane or ultrafiltration membrane By adjusting, the pores can be formed in a uniform distribution. In addition, it was confirmed that the polysulfone polymer synthesized in the preparation example can greatly reduce the fouling phenomenon of adsorbing contaminants on the surface of the filter membrane because it is almost insoluble in water even after long time use while improving the water permeability of the filter membrane. It was.
이에 반하여, 상기 실시예의 폴리설폰계 고분자를 사용하지 않고, 폴리에틸렌 글리콜, 또는 폴리비닐피를리돈 (PVP)을 고분자 첨가제로 사용하여 제조한 비교예 1 내지 3 의 고분자막은 높은 접촉각을 나타내어, 실시예에서 제조한 여과막에 비하여 친수성이 낮게 나타내는 것을 확인하였다. On the other hand, without using the polysulfone polymer of the above embodiment, using polyethylene glycol or polyvinylpyridone (PVP) as a polymer additive It was confirmed that the prepared polymer membranes of Comparative Examples 1 to 3 exhibit high contact angles and exhibit low hydrophilicity compared to the filtration membranes prepared in Examples.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
하기 화학식 1 내지 화학식 2 의 반복 단위를 포함하는 폴리설폰계 고분자를 포함하는 정밀여과막 또는 한외여과막 제조용 고분자 첨가제:  A polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane including a polysulfone polymer comprising a repeating unit of Formulas 1 to 2 below:
[화학식 1]  [Formula 1]
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 1 에서, 내지 R12 중 적어도 하나는 설폰산 또는 염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5의 알킬기이고, In Formula 1, at least one of to R 12 is sulfonic acid or a salt, the rest is hydrogen or an alkyl group having 1 to 5 carbon atoms, respectively
[화학식 21  [Formula 21]
Figure imgf000016_0002
Figure imgf000016_0002
상기 화학식 2 에서, R21내지 R36 각각은 수소 또는 탄소수 1 내지 5 의 알킬기이다. In Formula 2, each of R 21 to R 36 is hydrogen or an alkyl group having 1 to 5 carbon atoms.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 폴리설폰계 고분자는 10 , 000 내지 150 , 000 의 수평균분자량을 갖는, 고분자 첨가제 .  The polysulfone polymer has a number average molecular weight of 10, 000 to 150, 000, polymer additives.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1의 반복 단위 및 상기 화학식 2의 반복 단위의 몰수 총합에 대하여 상기 화학식 1 의 반복 단위의 몰수의 비율이 0.5% 내지 95%인, 고분자 첨가제. 【청구항 4】 The polymer additive of 0.5% to 95% of the mole number of the repeating unit of Formula 1 with respect to the total number of moles of the repeating unit of Formula 1 and the repeating unit of Formula 2. [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1 에서, ¾ 내지 R4 중 적어도 하나는 설폰산 또는 이의 염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5의 알킬기이고,  In Formula 1, at least one of ¾ to R 4 is sulfonic acid or a salt thereof, and the rest are hydrogen or an alkyl group having 1 to 5 carbon atoms, respectively.
상기 폴리설폰계 고분자 중 화학식 1 의 반복 단위 및 상기 화학식 2 의 반복 단위의 몰수 총합에 대하여 상기 화학식 1의 반복 단위의 몰수의 비율은 1% 내지 70%인, 고분자 첨가제 . - 【청구항 5】  The ratio of the number of moles of the repeating unit of the formula (1) to the total number of moles of the repeating unit of the formula (1) and the repeating unit of the formula (2) in the polysulfone-based polymer is 1% to 70%, polymer additive. -Claim 5
제 1항에 있어서,  The method of claim 1,
상기 설폰산의 염은 설폰산 (一 S03H)의 칼륨염, 나트륨염, 세슴염, 리튬염 또는 탄소수 1 내지 10의 알킬 아민염인, 고분자 첨가제 . 【청구항 6】 The salt of the sulfonic acid is a polymer additive, which is a potassium salt, a sodium salt, a semi salt, a lithium salt or an alkyl amine salt having 1 to 10 carbon atoms of sulfonic acid (一 S0 3 H). [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 풀리설폰계 고분자는 60 °C에서 0 .7 dL/g 내지 1 .7 dL/g 의 고유 점도를 갖는, 고분자 첨가제 . 【청구항 7】 The pulleysulfone-based polymer has an inherent viscosity of 0.7 dL / g to 1.7 dL / g at 60 ° C, polymer additive. [Claim 7]
하기 화학식 21 내지 화학식 23 의 화합물을 반웅시키는 단계를 포함하는, 정밀여과막 또는 한외여과막 제조용 고분자 첨가제의 제조 방법 :  A method of preparing a polymer additive for preparing a microfiltration membrane or an ultrafiltration membrane, which comprises reacting a compound of Chemical Formulas 21 to 23:
Figure imgf000017_0001
상기 화학식 21 에서 , 내지 R4 중 적어도 하나는 설폰산 또 염이고, 나머지는 각각 수소 또는 탄소수 1 내지 5 의 알킬기이고, X: 각각 독립적으로 할로겐 또는 하이드록시기이며,
Figure imgf000017_0001
In Formula 21, at least one of R 4 is a sulfonic acid or a salt, and the rest are each hydrogen or an alkyl group having 1 to 5 carbon atoms, X is each independently a halogen or a hydroxyl group,
[화학식 22]  [Formula 22]
Figure imgf000018_0001
Figure imgf000018_0001
상기 화학식 22 에서, Ru내지 R18각각은 수소 또는 탄소수 1 내지 5 의 알킬기이고, ¾및 는 각각 독립적으로 할로겐 또는 하이드록시기이며, In Formula 22, each of R u to R 18 is hydrogen or an alkyl group having 1 to 5 carbon atoms, ¾ and are each independently a halogen or a hydroxyl group,
[화학식 23]  [Formula 23]
Figure imgf000018_0002
Figure imgf000018_0002
상기 화학식 23 에서, R21내자 R28각각은 수소 또는 탄소수 1 내지 5 의 알킬기이고, ¾및 ¾는 각각 독립적으로 할로겐 또는 하이드록시기이다. In Formula 23, each of R 21 and R 28 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and ¾ and ¾ are each independently a halogen or a hydroxyl group.
【청구항 8】 [Claim 8]
제 7항에 있어서, ' The method of claim 7, wherein '
상기 화학식 21 의 화합물 및 상기 화학식 22 의 화합물의 몰수 총합에 대하여 상기 화학식 21 의 화합물의 몰수의 비율이 0.5% 내지 95%인, 고분자 첨가제의 제조 방법 .  The molar ratio of the compound of the formula (21) is 0.5% to 95% with respect to the total number of moles of the compound of the formula (21) and the compound of the formula (22).
【청구항 9】 [Claim 9]
제 7항에 있어서, 상기 화학식 21 내지 화학식 22 의 화합물의 몰수 총합에 대하여 상기 화학식 23 의 화합물의 몰수의 비율이 80% 내지 150%인, 고분자 첨가제의 제조 방법. 【청구항 10】 The method of claim 7, The ratio of the number of moles of the compound of Formula 23 is 80% to 150% with respect to the total number of moles of the compound of Formula 21 to Formula 22, a method for producing a polymer additive. [Claim 10]
제 7항에 있어서,  The method of claim 7,
상기 화학식 21 내지 화학식 23 의 화합물을 반웅시키는 단계는 50 내지 30CTC에서 이루어지는 고분자 첨가제의 제조.방법 . 【청구항 11】 .  Step of reacting the compound of Formula 21 to Formula 23 is a method for producing a polymer additive made in 50 to 30CTC. 【Claim 11】.
제 7항에 있어서,  The method of claim 7,
상기 화학식 21 내지 화학식 23 의 화합물을 반응시키는 단계는 무기 염기 또는 유기 염기의 존재 하에 이루어지는 고분자 첨가제의 제조 방법. 【청구항 12】  Reacting the compound of Formula 21 to Formula 23 is a method of producing a polymer additive is made in the presence of an inorganic base or an organic base. [Claim 12]
제 7항에 있어서,  The method of claim 7,
상기 화학식 21 내지 화학식 23 의 화합물을 반웅시키는 단계는 비양성자성 극성용매, 양성자성 극성용매 및 공비용매로 이루어진 군에서 선택된 1종 이상의 용매의 존재하에 이루어지는 고분자 첨가제의 제조 '방법. Banung step of the compound of Formula 21 to Formula 23 is "method of producing a polymeric additive in the presence of at least one solvent selected from the group consisting of an aprotic polar solvent, a protic polar solvent and an azeotropic solvent.
PCT/KR2014/011028 2013-11-25 2014-11-17 Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor WO2015076539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0143812 2013-11-25
KR1020130143812A KR20150059984A (en) 2013-11-25 2013-11-25 Polymer additive for preparing of microfilter membrane or ultrafilter membrane and preparation method of the same

Publications (1)

Publication Number Publication Date
WO2015076539A1 true WO2015076539A1 (en) 2015-05-28

Family

ID=53179753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011028 WO2015076539A1 (en) 2013-11-25 2014-11-17 Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor

Country Status (2)

Country Link
KR (1) KR20150059984A (en)
WO (1) WO2015076539A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709020B1 (en) * 2015-11-30 2017-02-21 한국과학기술원 Block Copolymer for ultrafiltration membrane and Method of preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960004617B1 (en) * 1990-12-05 1996-04-09 유니온 카바이드 인더스트리얼 개시즈 테크놀로지 코포레이션 Semipermeable membranes based on certain sulfonated polysulfone polymers
JP2005232439A (en) * 2004-01-16 2005-09-02 Idemitsu Kosan Co Ltd Polyaryl ether copolymer, method for producing the same, and polymer electrolyte film prepared by using the same
KR20100095200A (en) * 2009-02-20 2010-08-30 고려대학교 산학협력단 Coating composition for fabricating reverse osmosis membrane, method of fabricating reverse osmosis membrane for sea water desalting using the coating composition and reverse osmosis membrane using cross-linked sulfonated poly(arylene ether sulfone) copolymers
KR20110079142A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Fouling resistant polysulfone membrane using sulfonated polysulfone polymer, its preparation method and manufcturing method of sulfonated polysulfone polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960004617B1 (en) * 1990-12-05 1996-04-09 유니온 카바이드 인더스트리얼 개시즈 테크놀로지 코포레이션 Semipermeable membranes based on certain sulfonated polysulfone polymers
JP2005232439A (en) * 2004-01-16 2005-09-02 Idemitsu Kosan Co Ltd Polyaryl ether copolymer, method for producing the same, and polymer electrolyte film prepared by using the same
KR20100095200A (en) * 2009-02-20 2010-08-30 고려대학교 산학협력단 Coating composition for fabricating reverse osmosis membrane, method of fabricating reverse osmosis membrane for sea water desalting using the coating composition and reverse osmosis membrane using cross-linked sulfonated poly(arylene ether sulfone) copolymers
KR20110079142A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Fouling resistant polysulfone membrane using sulfonated polysulfone polymer, its preparation method and manufcturing method of sulfonated polysulfone polymer

Also Published As

Publication number Publication date
KR20150059984A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
KR100756821B1 (en) Sulphonated multiblock copolymer and electrolyte membrane using the same
KR101425373B1 (en) Asymmetric composite membrane of silicone polymer and preparing method of the same
JP2008521999A5 (en)
US20210179450A1 (en) Membrane for water purification
KR101637267B1 (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
JPWO2014092107A1 (en) Composite separation membrane
KR101232277B1 (en) Method for in-situ preparing polybenzimidazole based electrolyte membrane and polybenzimidazole based electrolyte membrane prepared thereby
KR20120006764A (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
KR101198644B1 (en) Fouling resistant polysulfone membrane having water permeability and manufcturing method thereof
KR101823050B1 (en) Porous support for water treatment membrane, thin-film composite membrane containing the same and preparation method thereof
CN112126063B (en) Polybenzimidazole-polysiloxane block copolymer and preparation method and application thereof
KR101418064B1 (en) Polymer resin composition for preparing of microfilter membrane or ultrafilter membrane, preparation method of polymer filter membrane, and polymer filter membrane
WO2015076539A1 (en) Polymer additive for preparing microfiltration membrane or ultrafiltration membrane, and preparation method therefor
KR101418063B1 (en) Polymer additive for preparing of microfilter membrane or ultrafilter membrane and preparation method of the same
KR102478269B1 (en) Anion-exchange membrane based on aminated poly(tyrene-ethylene-butylene-styrene) copolymer and manufacturing method thereof
KR101732878B1 (en) Anion-exchange membrane based on polyether ether ketone, preparation method thereof and anion-exchange membrane fuel cell comprising the same
WO2017052185A1 (en) Method for producing polymer filtration membrane and polymer filtration membrane
JP3948993B2 (en) Polysulfone copolymer
KR101187372B1 (en) Composite membrane for fuel cell electrolyte and its preparation method
KR20110095511A (en) Method for fabricating desalination membrane utilizing electrospinning based on poly(arylene ether) and desalination membrane fabricated thereby
CN111686595A (en) Method for preparing high-performance hydrophilic modified polyacrylonitrile membrane by combining in-situ modification with phase separation technology
KR101963600B1 (en) Polyarylene-based polymer, process of manufacturing thereof, and the use of the same
KR101684494B1 (en) Polymer electrolyte membrane for fuel cell
KR102655259B1 (en) Anion exchange composite membrane, preparation method thereof and alkaline fuel cell comprising the same
KR20110034842A (en) Polymer desalination membrane comprising sulfonated poly(arylene ether) copolymers having crosslinkable moiety combined in the chain of polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864092

Country of ref document: EP

Kind code of ref document: A1