WO2015076461A1 - Electrolyte membrane manufactured from resin composition containing ionic electrolyte and polymer formed by branch-bonding of block copolymer comprising polypropylene oxide block and polyethylene oxide block, and usage of same - Google Patents

Electrolyte membrane manufactured from resin composition containing ionic electrolyte and polymer formed by branch-bonding of block copolymer comprising polypropylene oxide block and polyethylene oxide block, and usage of same Download PDF

Info

Publication number
WO2015076461A1
WO2015076461A1 PCT/KR2014/001632 KR2014001632W WO2015076461A1 WO 2015076461 A1 WO2015076461 A1 WO 2015076461A1 KR 2014001632 W KR2014001632 W KR 2014001632W WO 2015076461 A1 WO2015076461 A1 WO 2015076461A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
peo
electrolyte membrane
block
ppo
Prior art date
Application number
PCT/KR2014/001632
Other languages
French (fr)
Korean (ko)
Inventor
김태호
한재희
이장용
임종선
라은주
홍영택
김석제
유덕만
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2015076461A1 publication Critical patent/WO2015076461A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a support prepared from a resin composition containing a polymer formed by branching a block copolymer comprising a polypropylene oxide block and a polyethylene oxide block; An electrolyte membrane comprising the support and the ion conductive electrolyte supported on the support; A method of producing the electrolyte membrane; And a battery and an ultra high capacity capacitor including the electrolyte membrane.
  • the separator In the construction of a supercapacitor or a secondary battery, the separator is one of the important element technologies, and prevents electrical short circuit due to physical contact between two electrodes, but plays a role of freely moving ions by supporting an electrolyte.
  • Conventional separators are generally composed of polyolefin-based polymers such as polyethylene or polypropylene having pores having a diameter of 0.1 to 1 ⁇ m of interconnected structures having a thickness of about 10 to 30 ⁇ m, depending on the purpose of use. .
  • Solid polymer electrolytes can be applied to flexible electrochemical devices when used as separators in devices with electrochemical properties, and are easier to process into thin film electrolyte films than conventional liquid electrolytes, and are light and chemically stable. Concerns have little advantage.
  • a solid polymer electrolyte is composed of a polymer and a salt to be dissociated by the polymer, wherein the polymer contains a polar element such as oxygen or nitrogen, and these elements form coordination bonds with dissociated ions to form a polymer-ion complex. It is known to form.
  • the most researched and used polymer materials include polyethylene oxide (PEO) and polyvinyl alcohol (PVA). In 1975, Wright et al.
  • the present inventors have tried to devise a new electrolyte membrane having mechanical stability and thermal stability while having high ionic conductivity value by using the advantages of the polymer / salt electrolyte.
  • PEO block and PPO Forming a support from a polymer prepared by branch-bonding a block-containing block copolymer and preparing an electrolyte membrane impregnated with an ionic liquid as an electrolyte, it is possible to provide a separation membrane having excellent ionic conductivity and improved mechanical and thermal stability. It was confirmed that the present invention was completed.
  • the first aspect of the present invention comprises at least one poly (propylene oxide, PPO) block represented by the formula (1) and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the formula (2)
  • a support is prepared from a resin composition containing a first polymer formed by branching a block copolymer, wherein the first polymer is formed by combining block copolymers having a functional group capable of branching at both ends.
  • n and n which are block sizes, are each independently an integer of 1 or more
  • the block copolymer has a molecular weight of 300 to 100,000 Da.
  • the polyethylene oxide (poly (ethylene oxide); PEO) is an ethylene oxide oligomer or polymer, and is a synthetic polyether having a wide range of molecular weight, also called polyoxyethylene (POE) or polyethylene glycol (poly (ethylene glycol); PEG).
  • POE polyoxyethylene
  • PEG polyethylene glycol
  • POE polyethylene glycol
  • the polymer is amphiphilic and can be dissolved in water as well as organic solvents such as methylene chloride, ethanol, toluene, acetone and chloroform.
  • the PEO may be synthesized by the reaction of ethylene oxide and an ethylene glycol monomer or oligomer, which is a tricyclic cyclic ether including two carbon atoms and one oxygen atom, but is not limited thereto. Can be.
  • the polypropylene oxide (poly (propylene oxide); PPO) is a polymer of propylene oxide, is a synthetic polyether of a wide range of molecular weight, also called poly (propylene glycol) (PPG). It is generally similar to PEO, but shows lower hydrophilicity than PEO.
  • the PPO may be synthesized by ring-opening polymerization of propylene oxide, which is a tricyclic cyclic ether substituted with a methyl group, but is not limited thereto and may be commercially available.
  • a "block copolymer” is a copolymer in which two or more homopolymer subunits (blocks) are covalently linked, and a bond of the homopolymer block is a junction block. Intermediate non-repeating subunits may be needed.
  • Block copolymers comprising two or three distinct blocks are referred to as diblock copolymers and triblock copolymers, respectively.
  • the block copolymer including the PEO block and the PPO block may be prepared by polymerizing PEO and PPO, or may be used by purchasing one sold under the trade name Pluronic.
  • the block copolymer according to the invention may be in the form of PEO-PPO, PEO-PPO-PEO or PPO-PEO-PPO.
  • the block copolymer may be prepared by a block copolymer synthesis method known in the art. For example, it may be prepared from ethylene oxide and propylene oxide monomers or polyethylene oxide and polypropylene oxide using an anionic polymerization method or the like.
  • commercially available triblock copolymers of PEO-PPO-PEO or PPO-PEO-PPO type such as Pluronic may be purchased and used.
  • the support according to the invention the block copolymer may comprise 10 to 90% by weight of PEO.
  • PEO is a crystalline polymer
  • the addition of PPO may increase the physical strength due to increased carbon bonds and may have an effect of inhibiting crystallization by weakening the crystallization tendency between PEO chains.
  • compatibility with an ionic electrolyte or organic electrolyte such as an ionic liquid supported may be low.
  • branched bond means that one molecule is bonded to two or more neighboring molecules. That is, the block copolymer according to the present invention may combine with two or more other block copolymers through the terminal thereof to form a first polymer or a second polymer.
  • the first polymer formed through the branch bond may show a comb shape, a tree branch shape or a net shape according to the degree of branch bonding, or a combination thereof.
  • branch-linkable functional group refers to a functional group that includes three or more reactive functional groups, which are linked to the block copolymer through one functional group, and which can be bonded to the other block copolymer through two or more functional groups.
  • the branchable functional group is directly connected to both ends of the block copolymer; It may be linked via a linker comprising a spacer comprising an alkyl and a functional group selected from the group consisting of ethers, amides, urethanes, esters.
  • the branchable functional group may be triethoxysilane, acrylate or epoxy, but is not limited thereto.
  • the resin composition for preparing the support according to the present invention may further include a crosslinking agent in addition to the first polymer.
  • a crosslinking agent By further including the crosslinking agent, it is possible to increase the number of branch bonds per unit polymer.
  • the additional crosslinking agent may be a material that causes the same kind of chemical reaction as the branchable functional groups included in the first polymer.
  • TEOS tetraethoxysilane
  • the crosslinking agent further included may be an ethoxysilane-based, acrylic or epoxy-based compound, but is not limited thereto.
  • the first polymer forming the support according to the present invention has a number-average molecular weight (Mn) of 10,000 to 1,000,000 or a weight-average molecular weight (Mw) of 10,000 to 10,000,000. It may be.
  • Mn number-average molecular weight
  • Mw weight-average molecular weight
  • the molecular weight is low, for example, 10,000 or less, film formation is difficult, the water content is increased and can be easily decomposed to attack of radicals, thereby reducing the conductivity and durability.
  • the molecular weight is high, for example, when the number average molecular weight is 1,000,000 or more, the preparation of the polymer solution and the molding into the film may be difficult due to the rapidly increased viscosity, thereby making the film manufacturing process impossible.
  • a "resin composition” is a composition for forming a support from a resin.
  • the resin composition may be a solution in which a solid resin is dissolved in a suitable solvent to facilitate molding. Therefore, in the present invention, the resin composition may include a first polymer and a solvent for dissolving it.
  • the resin composition may further include additional additives to further impart injection moldability and physical property balance. The amount of the additive may be appropriately included within a range not impairing the physical properties of the resin composition, and may be determined by those skilled in the art.
  • the polymer membrane prepared therefrom is physically supported even if it carries an ion conductive electrolyte. Since the properties can be maintained, it can be usefully used as a support for providing an electrolyte membrane containing an ion conductive electrolyte. In particular, since the support does not melt even at a high temperature exceeding the melting temperature of PEO or PPO itself, it is possible to provide a support having greatly improved thermal stability.
  • a second aspect of the present invention provides an electrolyte membrane comprising the support according to the present invention and an ion conductive electrolyte supported on the support.
  • the support according to the present invention exhibits excellent ion conductive electrolyte content. Therefore, an electrolyte membrane prepared by supporting an ion conductive electrolyte on a support prepared using a block copolymer further comprising a PPO block having low ion conductivity has a same ratio of an ion conductive electrolyte supported on a support prepared using only PEO. It shows excellent ion conductivity compared to the prepared electrolyte membrane.
  • an "electrolyte membrane” refers to a membrane containing ions as an electrolyte, and may be used as a separator or separator in a secondary battery or an ultracapacitor capable of charging / discharging. Since the ions as electrolyte contained in the electrolyte membrane can move from one electrode to the other electrode or in the reverse direction during charging / discharging, the electrodes can be electrically connected. At this time, the electrodes are mechanically separated from each other by the ion-permeable electrolyte membrane (separation membrane) to prevent a short circuit.
  • ion conducting electrolyte refers to a substance that can move ions from one side to the other.
  • Non-limiting examples of the ion conductive electrolyte include ionic liquids or cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and vinylene carbonate; Chain carbonates such as dimethyl carbonate (DMC), methylethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Organic electrolytes such as amides such as dimethylformamide.
  • the electrolyte membrane according to the present invention may contain 5 to 150% by weight of the ionic liquid based on the total polymer weight constituting the support as the ion conductive electrolyte. If the content of the ionic liquid supported on the support is lower than 5% by weight, there is a disadvantage in that the electrolyte content is low to provide sufficient ionic conductivity, whereas in the case of the electrolyte membrane containing the ionic liquid to exceed 150% by weight, the membrane It has the disadvantage of being difficult to manufacture.
  • ionic liquid means a salt in a liquid state. In a narrow sense it is also limited to salts having a melting point below a certain arbitrary temperature, for example below 100 ° C. (212 ° F.), but ionic in the present invention as long as it is in the liquid state at the operating temperature of the device. The liquid is not limited to this.
  • ionic liquid has been used as a general term since 1943.
  • liquids consist mainly of electrically heavy components such as water, gasoline, etc.
  • ionic liquids are mostly ionic and short-lived ionic pairs.
  • These materials are also referred to as liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glass. It is called.
  • Ionic liquids can be utilized as powerful solvents and electrically conducting fluids. Salts that are liquid at near-ambient temperatures are important for applications in electric cells and because of their low vapor pressure they are used as sealants.
  • Salts that melt without decomposing or vaporizing generally yield an ionic liquid.
  • sodium chloride NaCl
  • Na + sodium cations
  • Cl ⁇ chlorine anions
  • Ionic bonds are generally stronger than the van der Waals forces between molecules in ordinary liquids.
  • conventional salts tend to melt at higher temperatures than other solid molecules. Only certain salts are liquid at or below room temperature.
  • Examples include compounds based on 1-ethyl-3-methylimidazolium (EMI) cations, EMIM: Cl, EMIM dicyanamide, which melt at ⁇ 21 ° C., (C 2 H 5) (CH 3) C 3 H 3 N + 2 ⁇ N (CN) - 1- butyl-3,5-dimethyl pyridinium bromide (1-butyl-3 of liberating at less than 2 and -24 °C , 5-dimethylpyridinium bromide).
  • EMIM 1-ethyl-3-methylimidazolium
  • Cold ionic liquids can be compared to ionic solutions containing both ions and heavy components.
  • mixtures of ionic and nonionic solid materials having a much lower melting point than pure compounds are called deep eutectic solvents.
  • Nitrate salts may have a melting point below 100 ° C.
  • the ionic liquid is imidazolium, quaternary ammonium, pyridinium, pyrrolidinium, pyrazolium, phosphonium and sulfonium It may be a salt-like material including a cation such as sulfonium or a perflurinated anion.
  • the ionic liquid may be impregnated after the formation of the electrolyte membrane, or may be contained in the resin composition to form an electrolyte membrane thereon.
  • the electrolyte membrane may be prepared to be contained more evenly over the entire area of the electrolyte membrane, thereby providing an electrolyte membrane having improved performance.
  • a third aspect of the present invention comprises a polypropylene oxide block represented by the following formula (1) and a precursor containing at least one block of polyethylene oxide represented by the formula (2), each precursor containing a block copolymer having a branchable functional group at both ends
  • a first step of preparing a solution A second step of inducing a crosslinking reaction of the branchable functional group to form a first polymer; And a third step of forming into a film, the method for producing an electrolyte membrane:
  • n and n which are block sizes, are each independently an integer of 1 or more
  • the block copolymer has a molecular weight of 300 to 100,000 Da.
  • the second step and the third step can be performed simultaneously.
  • the ion conductivity can be improved.
  • said second step can be achieved by heating, ultraviolet irradiation or the addition of an initiator.
  • the stimulus causing the crosslinking reaction can be appropriately selected by those skilled in the art from known methods depending on the kind of crosslinkable functional group.
  • the crosslinking reaction was performed by adding an acid solution.
  • the precursor solution may further include an ion conductive electrolyte.
  • the electrolyte membrane prepared by including the ion conductive electrolyte in the precursor solution to form a film containing the ion conductive electrolyte exhibits superior ion conductivity compared to the electrolyte membrane prepared by impregnating the ion conductive electrolyte after the preparation of the support. Can be.
  • the method may further include impregnating the ion conductive electrolyte in the film obtained in the third step.
  • the ion conductive electrolyte is an ionic liquid Or organic electrolyte.
  • the organic electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides such as dimethylformamide and the like.
  • the ion-conducting electrolyte is an ionic liquid, and more preferably from imidazolium based ionic liquid BIMI-BF 4, EMIM-TFSI and EMIM-BF 4 or the like.
  • the present invention is not limited thereto.
  • the precursor solution may further include a crosslinking agent.
  • the fourth aspect of the present invention comprises at least one poly (propylene oxide, PPO) block represented by the following formula (1) and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the following formula (2)
  • An electrode-electrolyte binder in which an electrolyte solution containing a second polymer and an ion conductive electrolyte formed by branching a block copolymer is impregnated to an electrode, and the second polymer has a block copolymer having a functional group capable of branching at both ends.
  • n and n which are block sizes, are each independently an integer of 1 or more
  • the block copolymer has a molecular weight of 300 to 100,000 Da.
  • the pair of electrode-electrolyte combinations may be coupled to face each other so that the electrodes face outward to form a cell.
  • the pair of electrode-electrolyte combinations may further include an electrolyte membrane according to the present invention therebetween, such that the electrodes may be bonded to face each other so as to face the cell.
  • an electrolyte membrane according to the present invention
  • an ion conductive electrolyte by adding an ion conductive electrolyte to a solution containing a polymer formed by branching the PEO-PPO-PEO terpolymer block copolymer, the electrode is immersed in the solution or the solution is brushed on the electrode.
  • An electrode-electrolyte binder was prepared, in which an electrolyte solution including a support polymer and an ion conductive solution was evenly applied, and the interface property between the solid electrolyte and the electrode was improved, and a pair of the electrode-electrolyte binders was coupled to face each other to form a cell. It was.
  • the manufacturing method is schematically illustrated in FIG. 3.
  • a fifth aspect of the present invention provides a secondary battery comprising the electrolyte membrane according to the present invention.
  • the “secondary battery” is a type of battery including one or more electrochemical cells.
  • the rechargeable battery converts external electrical energy into chemical energy and stores electricity therein.
  • the rechargeable battery is a rechargeable battery. Also called a storage battery (accumulator). Since the electrochemical reaction in the battery is electrically reversible, it can be repeatedly charged unlike a primary battery that is disposable.
  • Such rechargeable cells can be manufactured in a variety of shapes and sizes, and can be manufactured in a wide range of capacities, from button-sized cells up to megawatts of systems that are connected for stabilization of the electrical distribution network.
  • rechargeable batteries In general, combinations of compounds used in rechargeable batteries include lead-acid, nickel cadmium, nickel metal hydride (NiMH), lithium ion (Li-ion), and lithium ion polymers. (Li-ion polymer).
  • Rechargeable batteries have a high initial cost, but are cheaper than disposable batteries in that they can be used repeatedly and are more environmentally friendly. Some rechargeable cells may be provided the same as disposable batteries.
  • the rechargeable batteries may include automotive starters, portable consumer devices, light vehicles (eg, electric wheelchairs, golf carts, electric bicycles, electric forklifts, etc.), tools and uninterruptible power supplies. It is being used in uninterruptible power supplies (UPS) and the like, and is developing technologies for extending the life span while reducing the cost and weight for hybrid electric vehicles and electric vehicles.
  • UPS uninterruptible power supplies
  • a sixth aspect of the invention provides a supercapacitor comprising an electrolyte membrane according to the invention.
  • the "supercapacitor” is an energy storage device having a significantly higher capacity than a conventional capacitor, also called an electric double layer capacitor (EDLC) or ultra capacitor (ultra capacitor).
  • EDLC electric double layer capacitor
  • ultra capacitor ultra capacitor
  • the ultracapacitor is a device that can collect a large amount of energy and fill a characteristic region that the existing capacitor and the secondary battery cannot accommodate as a power source that emits high energy for several tens of seconds or several minutes (FIG. 1). That is, it is the only device that can provide high energy density and power density in a short time.
  • it has intermediate characteristics of a capacitor and a secondary battery having a dielectric in energy density, power density and cycle characteristics.
  • the ultracapacitor has the following characteristics: 1) it does not cause overcharge / overdischarge so that the electric circuit can be simplified and the cost can be reduced; 2) the residual capacity can be known from the voltage; 3) It exhibits a wide range of endurance temperature characteristics (-30 to + 90 ° C): 4) It is made of environmentally friendly materials.
  • Ultra-capacitors are being used as backup power and high output auxiliary power for home appliances such as mobile phones, AV and cameras, and are expected to be used in the uninterruptible power supply (UPS) and HEV / FCEV fields.
  • UPS uninterruptible power supply
  • HEV / FCEV fields due to the cycle life (cycle life) and high output characteristics such as vehicle life, it is useful as a power source for acceleration, starting of the vehicle.
  • the ultracapacitor has an electrolyte solution, an electrode, and a current collector on both sides of the separator in the center.
  • the electrode may be composed of an active material having a large effective specific surface area such as activated carbon powder or activated carbon fiber, a conductive material for imparting conductivity, and a binder for binding force between components.
  • an electrode may be formed using graphene.
  • electrolyte solution the electrolyte solution of aqueous solution system and the electrolyte solution of non-aqueous solution system are used.
  • the separator serves to prevent a short circuit due to contact between the electrodes. When voltage is applied during charging, electrolyte ions dissociated on the surface of each activated carbon electrode are physically adsorbed to the opposite electrode to accumulate electricity, and during discharge, positive and negative ions are desorbed from the electrode and returned to a neutral state.
  • an electrode solution is impregnated with an electrolyte solution containing a polymer and an ion conductive electrolyte formed by branching a polypropylene oxide block and a block copolymer each including at least one polyethylene oxide block represented by Formula 2 below.
  • a secondary battery having an electrode-electrolyte assembly is provided.
  • an electrode solution is impregnated with an electrolyte solution containing a polymer and an ion conductive electrolyte formed by branching a polypropylene oxide block and a block copolymer each including at least one polyethylene oxide block represented by Formula 2 below.
  • An ultracapacitor having an electrode-electrolyte combination is provided.
  • the secondary battery and the ultracapacitor are as described above.
  • the support prepared from the polymer formed by the branched copolymer of the polypropylene oxide (PPO) block and the polyethylene oxide (PEO) block of the present invention has excellent ability to contain an ion conductive electrolyte, so the electrolyte membrane prepared therefrom It has a high ionic conductivity, improved physical strength including a PPO block, and can provide a stable electrolyte membrane even at high temperatures through crosslinking. Therefore, the electrolyte membrane can be usefully used for secondary batteries and ultra high capacity capacitors.
  • 1 is a Ragon chart showing a comparison of a battery and a capacitor. The operating time, energy density and power density of ultracapacitors are shown in comparison with fuel cells, conventional batteries and capacitors.
  • FIG. 2 is a view showing an example of manufacture of an ultracapacitor having an electrolyte membrane according to the present invention.
  • FIG. 3 is a view showing an example of manufacturing a supercapacitor using (a) a process of impregnating a solution for preparing an electrolyte membrane containing an ionic liquid in an electrode, and (b) an electrode impregnated with the solution.
  • Figure 4 is a block copolymer (green) comprising at least one of a polypropylene oxide (PPO) block and a polyethylene oxide (PEO) block according to the present invention, a block copolymer having a functional group capable of branch bonding at both ends (blue) And an infrared transmission spectrum of a polymer (purple) obtained by crosslinking the same.
  • PPO polypropylene oxide
  • PEO polyethylene oxide
  • a block copolymer black solid line
  • PPO polypropylene oxide
  • PEO polyethylene oxide
  • a polymer membrane prepared from a polymer (blue dotted line) obtained by crosslinking it;
  • mass loss with temperature of the block copolymer polymer membrane pink dotted line comprising a crosslinked PPO block and a PEO block comprising 30% by weight of an ionic liquid.
  • FIG. 6 is a diagram showing the results of measurement by differential scanning calorimetry (DSC) of the electrolyte membrane according to the present invention in comparison with PEO and PEO-PPO-PEO terpolymers (PL84).
  • DSC differential scanning calorimetry
  • FIG. 7 is a view showing the results of a wide angle X-ray scattering (WAXS) analysis of the electrolyte membrane and the PEO membrane according to the present invention carrying 50% by weight of the ionic liquid.
  • WAXS wide angle X-ray scattering
  • FIG. 8 is a diagram showing a strain against stress of an electrolyte membrane and a PEO membrane according to the present invention in which 50% by weight of an ionic liquid is supported.
  • FIG. 9 is a diagram showing the ionic conductivity according to the ionic liquid content of the electrolyte membrane made of various polymers measured at 25, 40, 60 and 80 °C.
  • FIG. 10 is a diagram showing ionic conductivity according to temperature of an electrolyte membrane made of various polymers impregnated with 10, 50, and 70 wt% of an ionic liquid, respectively.
  • FIG. 11 is a diagram showing ionic conductivity according to temperature of an electrolyte membrane impregnated with various ionic liquids at 100 and 150 wt%, respectively.
  • FIG. 12 is a view showing the electrochemical characteristics of the ultracapacitor according to the present invention. The measurement results by cyclic voltammetry (CV) and (right) galvanostat using (left) impedance are shown.
  • FIG. 13 is a view showing the electrochemical characteristics of the ultracapacitor according to the present invention. Containing only ionic liquids without polymers (IL dipping); Prepared by sandwiching an electrolyte membrane containing an ionic liquid between both electrodes (IL-100wt% doped cPL-TPE (84); Example 4) and by impregnating the electrode in a polymer electrolyte solution containing an ionic liquid For one case (G750 (150com) / IL-100wt% doped cPL-TPE (84); Example 5), the results of measurement by cyclic ammeter using the impedance are shown.
  • FIG. 14 is a view showing a measurement result of the cyclic current method according to the type of ionic liquid.
  • a cell prepared by impregnating an electrode in a polymer electrolyte solution containing an ionic liquid was used, and EMIM-BF 4 , EMIM-TFSI, and BMIM-BF 4 were used as the ionic liquid.
  • FIG. 15 is a diagram showing charge and discharge characteristics by measuring specific capacitance according to current density. Containing only ionic liquids without polymers (IL dipping); Prepared by sandwiching an electrolyte membrane containing an ionic liquid between both electrodes (IL-100wt% doped cPL-TPE (84); Example 4) and by impregnating the electrode in a polymer electrolyte solution containing an ionic liquid The measurement results for one case (G750 (150 com) / IL-100 wt% doped cPL-TPE (84); Example 5) are shown.
  • FIG. 16 shows the results of analyzing specific capacitances according to types of ionic liquids.
  • a cell prepared by impregnating an electrode in a polymer electrolyte solution containing an ionic liquid was used, and EMIM-BF 4 , EMIM-TFSI, and BMIM-BF 4 were used as the ionic liquid.
  • Anhydrous tetrahydrofuran (Sigma-Aldrich 401757) 4 was added to a 30 ml vial containing PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane, prepared according to Example 1 above. After adding ml to dissolve, it was filtered, and an acidic solution was added for sol-gel reaction.
  • As the acid solution for the sol-gel reaction a solution prepared by mixing water, ethanol and hydrochloric acid in a volume ratio of 1: 3.2: 0.13 was used.
  • the support prepared from crosslinked PEO-PPO-PEO block copolymers was poured on a teflon sheet and cast at 40 ° C. for 12 hours and dried sufficiently for 24 hours in a vacuum oven. Obtained.
  • Example 3 Electrolyte Membrane Including an Ionic Liquid and Crosslinked PEO-PPO-PEO Block Copolymer
  • Example 2 When the reaction mixture of Example 2, that is, dissolve by adding PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane at the end and adding 4 ml of anhydrous tetrahydrofuran, Crosslinked PEO with ionic liquid added in the same manner as in Example 2, except that BMIM-BF 4 (seed) was added as an ionic liquid in an amount of 5 to 150% by weight based on the support. An electrolyte membrane prepared from -PPO-PEO block copolymers (cPL-TPEs) was obtained.
  • PL-TPEs PEO-PPO-PEO block copolymers
  • An ultracapacitor having an electrolyte membrane prepared according to Example 3 was prepared according to a coin cell manufacturing method. Specifically, the graphene electrode was cut into 14 pi using a punching tool. An electrolyte membrane containing the ionic liquid BMIM-BF 4 and the cross-linked PEO-PPO-PEO block copolymers (cPL-TPEs) prepared in Example 3 was placed on the graphene electrode, and the graphene electrode was placed on the graphene electrode again. After drying, a coin cell was prepared. Figure 2 shows the specific manufacturing process.
  • Example 5 Ultracapacitor Capacitor Fabricated by Impregnating an Electrode in a cPL-TPE Electrolyte Solution Containing an Ionic Liquid
  • Example 2 When the reaction mixture of Example 2, that is, dissolve by adding PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane at the end and adding 4 ml of anhydrous tetrahydrofuran, 5 to 150% by weight of BMIM-BF 4 (Cytree Co., Ltd.) was added to the support to prepare a mixed solution of the ionic liquid and the polymer as the ionic liquid.
  • An electrolyte carrying electrode was prepared by dipping a graphene electrode cut into 14 pies in the solution or brushing the solution on the graphene electrode to impregnate the electrolyte. Through the impregnation process, the interface property between the solid electrolyte and the electrode could be improved.
  • the two electrolyte supporting electrodes thus prepared were combined with each other and sufficiently dried in a reduced pressure oven to prepare a coin cell. At this time, in order to secure a sufficient gap between the two electrodes, an electrolyte membrane prepared according to Example 3 may be introduced between the electrolyte supporting electrodes.
  • the electrolyte supporting electrode and a method of manufacturing an ultracapacitor from the electrode are schematically illustrated in FIG. 3.
  • the cross-linked PEO-PPO-PEO block copolymer also includes a urethane bond, the NH absorption peak at 3513 cm ⁇ 1 and the C ⁇ O absorption peak at 1721 cm ⁇ 1 could be confirmed.
  • the cross-linking was formed by the decomposition of triethoxysilane from the fact that the Si-CH 2 peak at 1253 cm -1 decreased while the Si-O-Si peak was greatly increased at 1109 cm -1 . Can be.
  • an electrolyte membrane (Pluronic P84) made of an unmodified PEO-PPO-PEO block copolymer was used. The analysis was performed while raising the temperature at 10 ° C./min from room temperature to 800 ° C. under a nitrogen atmosphere. The results are shown in FIG.
  • DSC Differential scanning calorimetry
  • the melting temperature of PEO poly (ethylene oxide)
  • precursor PEO-PPO-PEO tertiary block copolymer and crosslinked PEO-PPO-PEO terpolymer block copolymer was also confirmed.
  • As the three-block copolymer PL84 having an average molecular weight of 4200 containing about 40% by weight of PEO was used. The results are shown in FIG.
  • the melting temperatures of PEO containing the precursor P84 and the ionic liquid BMIM-BF 4 were 35 ° C. and 53 ° C., respectively.
  • the cPL-TPE containing an ionic liquid no peak indicating melting temperature was observed, which is due to crosslinking of PEO-PPO-PEO, which is thermally induced in the cPL-TPE electrolyte membrane by the crosslinking. This indicates that the stability is improved.
  • P65 and P85 each have an average molecular weight of 3400 and 4600 and these copolymers contain PEO at about 50% by weight
  • P84 and P104 have an average molecular weight of 4200 and 5900 respectively and these copolymers are at about 40% by weight Contains PEO.
  • the PEO electrolyte membrane still showed high crystallinity, whereas the cPL-TPE electrolyte membrane did not all exhibit crystallinity. This indicates that formation of a crystal structure was suppressed through a crosslinking reaction using a sol-gel reaction in the manufacturing process of the cPL-TPE electrolyte membrane.
  • the above results indicate that the cPL-TPE electrolyte membrane has structural properties favoring ion transfer compared to a PEO electrolyte membrane.
  • tensile stress was measured by a universal test machine (UTM) using a 100N load cell (LR 50k, Lloyd instrument Ltd., UK). Measured.
  • Tensile specimens were prepared in the form of a film 60 mm long, 10 mm wide, and 0.06 mm thick, and were measured at a tensile speed of 5 mm / min.
  • PEO and various PEO-PPO-PEO terpolymers PL65, PL84, PL104 and PL85
  • BMIM-BF 4 an ionic liquid
  • the content of the ionic liquid was 10, 20, 30, 50
  • the electrolyte membrane was prepared while changing to 70% by weight, and its resistance was measured at 25 ° C, 40 ° C, 60 ° C, and 80 ° C, respectively, to calculate the ion conductivity.
  • PVA polyvinyl alcohol
  • PEO polyethylene glycol
  • An electrolyte membrane in which the support was impregnated with an ionic liquid was used.
  • the ion conductivity is shown while changing the temperature for each of the electrolyte membranes.
  • the experiment was conducted in a frequency range from 3 Hz to 4 MHz with varying temperatures from 25 ° C. to 40 ° C., 60 ° C. and 80 ° C. under nitrogen atmosphere. The results are shown in FIG.
  • an electrolyte membrane containing a crosslinked PEO-PPO-PEO block copolymer prepared from PVA or PEO when the ionic liquid was included in the same content at all temperatures (25, 40, 60 and 80 ° C.) It was confirmed that it has a higher ion conductivity than the membrane.
  • the ion conductivity increased as the content of the ionic liquid increased under the same temperature and polymer conditions.
  • a membrane made of a crosslinked PEO-PPO-PEO block copolymer containing no ionic liquid was used as an electrolyte membrane.
  • the membrane showed a remarkably low ion conductivity in the absence of an electrolyte, it was not used in subsequent experiments. Did.
  • the PEO-PPO-PEO block copolymer was selected in consideration of molecular weight and content of PEO in the molecule.
  • P65 and P85 have average molecular weights of 3400 and 4600 respectively and these copolymers comprise PEO at about 50% by weight.
  • P84 and P104 have average molecular weights of 4200 and 5900 respectively and these copolymers comprise PEO at about 40% by weight. All four block copolymers showed a markedly increased ion conductivity at all temperature ranges compared to electrolyte membranes prepared only with PVA and PEO.
  • P85 even though the molecular weight is lower than P104, it was confirmed that exhibiting a higher ionic conductivity by further containing 10% by weight of conductive PEO.
  • P84 has a similar molecular weight but slightly lower ionic conductivity than P85, which has a PEO content of about 10% by weight, and has a lower level of ionic conductivity than that of P104 containing PEO at the same level. It confirmed that it represents.
  • the ionic conductivity of the electrolyte membrane is determined not only by the content of the electrolyte solution, that is, the ionic liquid, impregnated in the electrolyte membrane, but also by the molecular weight of the block copolymer constituting the electrolyte membrane and the content of the double conductive PEO moiety.
  • the ionic conductivity of the electrolyte membranes was the highest at P85 and P104, but these electrolyte membranes were slightly weak in mechanical properties, making it difficult to manufacture 100% by weight of the ionic liquid, showing excellent ion conductivity.
  • a cell having an electrolyte membrane containing P84 having excellent mechanical properties was prepared and tested for performance.
  • the crosslinked PEO-PPO-PEO block copolymer electrolyte membrane exhibited an increased ion conductivity compared to the PEO electrolyte membrane in the entire temperature range of 25 ° C to 80 ° C.
  • the cPL-TPE P85
  • the ion conductivity value at room temperature reached 5 ⁇ 10 -4 S / cm, it was confirmed that excellent results are shown.
  • cPL-TPE was able to measure stable ion conductivity up to 80 °C. Also indicates that it has advantageous properties.
  • cPL-TPE (P84) electrolyte membranes containing 100 or 150% by weight of EMIM-TFSI, EMIM-BF 4 and BMIM-BF 4 which are mainly used for ultracapacitors, are prepared and their Hydrogen ion conductivity was measured and the results are shown in FIG. 11.
  • the cPL-TPE electrolyte membrane including all the ionic liquids has excellent ion conductivity at a wide range of temperatures from room temperature to 80 ° C. Indicated. From this, it was confirmed that all these electrolyte membranes could be usefully used for ultra high capacity capacitors. In particular, among these ionic liquids, it was confirmed that the electrolyte membrane containing EMIM-TFSI had excellent ion conductivity.
  • Cyclic voltammetry (CV) and galvanostat were used to determine the electrochemical characteristics of the ultracapacitors manufactured in the form of coin cells according to Example 4.
  • the circulating current method was performed from 0 to 3.2V, and the constant current method was performed by charging to 3.2V and discharging to 0V according to the current density. The results are shown in FIG.
  • an electrolyte membrane (IL-100 wt% doped cPL-TPE (P84)) prepared from a crosslinked PEO-PPO-PEO block copolymer prepared to contain 100% by weight of an ionic liquid was included.
  • the coin cell showed an operating voltage at 3.2 V and tested its charge / discharge performance and found that it had a capacity of 88.8 F / g.
  • the electrochemical characteristics of the ultracapacitor device manufactured in the form of coin cell according to Examples 4 and 5 were confirmed by CV analysis.
  • Graphene having a specific surface area of 750 m 2 / g was used as an electrode, and BMIM-BF 4 was used as an ionic liquid, and only BMIM-BF 4 , an ionic liquid, was used as an electrolyte without a polymer as a control.
  • the CV curve of the device manufactured by sandwiching the electrolyte membrane between the electrodes compared to the control showed a slight decrease in area, indicating a decrease in specific capacitance.
  • the device manufactured through the impregnation process showed a marked increase in area of the CV curve. This implies the improvement of specific capacitance, and also shows higher specific capacitance (increased CV curve area) compared to the control using only ionic liquid when the impregnation process is applied. To indicate that it can be improved. That is, it was confirmed that the device manufactured by impregnating an electrolyte solution in which an ionic liquid was directly supported on the electrode exhibited excellent electrochemical properties by improving the electrode and electrolyte interface properties.
  • the device was manufactured by the impregnation process according to Example 5, but the electrode was prepared by supporting 150 wt% using three ionic liquids.
  • the device manufactured through the impregnation process has a higher specific capacitance value than the device manufactured by sandwiching an electrolyte membrane on an electrode or a device using only an ionic liquid.
  • a device prepared by impregnating a graphene electrode having a specific surface area of 750 m 2 / g with a solution containing BMIM-BF 4 and a crosslinked PEO-PPO-PEO terpolymer block copolymer with an ionic liquid has a current density of 10. At mA / g, it was confirmed that it had a dose of 111.14 F / g.

Abstract

The present invention relates to: a support manufactured from a resin composition containing a polymer which is formed by the branch-bonding of a block copolymer comprising a polypropylene oxide block and a polyethylene oxide block; an electrolyte membrane comprising the support and an ion conducting electrolyte supported by the support; a method for manufacturing the electrolyte membrane; and a battery and an ultra-high-capacity capacitor comprising the electrolyte membrane. The support of the present invention, which is manufactured from the polymer formed by the branch-bonding of the block copolymer comprising the polypropylene oxide(PPO) block and the polyethylene oxide(PEO) block, has an excellent capacity for containing the ion conducting electrolyte. Therefore, the electrolyte membrane manufactured therefrom has a high ion conductivity, and has improved physical strength because of the inclusion of the PPO block, thereby providing an electrolyte membrane which is stable even at high temperature through crosslinking bonding. Therefore, the electrolyte membrane can advantageously be used in rechargeable batteries and high-capacity capacitors.

Description

폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자 및 이온성 전해질을 함유하는 수지조성물로부터 제조된 전해질 막 및 이의 용도Electrolyte membrane prepared from a resin composition containing a polymer and an ionic electrolyte formed by branching a block copolymer comprising a polypropylene oxide block and a polyethylene oxide block and use thereof
본 발명은 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 수지조성물로부터 제조된 지지체; 상기 지지체 및 상기 지지체에 담지된 이온전도성 전해질을 포함하는 전해질 막; 상기 전해질 막의 제조방법; 및 상기 전해질 막을 포함하는 전지 및 초고용량 축전기에 관한 것이다.The present invention provides a support prepared from a resin composition containing a polymer formed by branching a block copolymer comprising a polypropylene oxide block and a polyethylene oxide block; An electrolyte membrane comprising the support and the ion conductive electrolyte supported on the support; A method of producing the electrolyte membrane; And a battery and an ultra high capacity capacitor including the electrolyte membrane.
초고용량 축전기(supercapacitor) 또는 이차전지를 구성함에 있어서, 분리막은 매우 중요한 요소기술 중의 하나로, 두 전극 사이의 물리적 접촉에 따른 전기적 단락을 방지하되, 전해질을 담지하여 이온을 자유롭게 이동시키는 역할을 수행한다. 종래 분리막은 사용 목적에 따라 일반적으로 10 내지 30 ㎛ 정도의 두께를 갖는, 상호 연결된 구조의 0.1 내지 1 ㎛ 직경의 기공을 갖는 폴리에틸렌(polyethylene) 또는 폴리프로필렌(polypropylene) 등의 폴리올레핀계 고분자로 구성된다. 또는 극성작용기(polar group)를 포함하는 고분자에 이온전도도를 갖는 염을 첨가하여 해리된 염의 이온들이 고분자 내에서 이동하여 이온전도도를 나타낼 수 있는 고체 고분자 전해질 또는 비점이 높은 액체 전해질을 고분자 매트릭스 내에 함침시키고 이를 통해 이온전도도를 구현하는 겔형 고분자 전해질로 구분된다.In the construction of a supercapacitor or a secondary battery, the separator is one of the important element technologies, and prevents electrical short circuit due to physical contact between two electrodes, but plays a role of freely moving ions by supporting an electrolyte. . Conventional separators are generally composed of polyolefin-based polymers such as polyethylene or polypropylene having pores having a diameter of 0.1 to 1 μm of interconnected structures having a thickness of about 10 to 30 μm, depending on the purpose of use. . Or impregnating a polymer containing a polar group with a solid polymer electrolyte or a high boiling liquid electrolyte in which the ions of the dissociated salts may move in the polymer and exhibit ion conductivity by adding a salt having an ion conductivity to the polymer including a polar group. It is divided into a gel polymer electrolyte which realizes ionic conductivity.
고체 고분자 전해질은 전기화학적 특성을 갖는 장치에 분리막으로 사용할 경우 유연한 전기화학장치에 응용할 수 있으며, 기존의 액체 전해질에 비해 박막 형태의 전해질 필름으로 가공하기 쉽고 가벼우며 화학적으로 안정한 특성을 가지며 전해액 누액에 대한 우려가 적은 장점을 갖는다. 일반적으로 고체 고분자 전해질은 고분자와 그 고분자에 의해 해리될 염으로 구성되는데, 여기서 고분자는 산소나 질소와 같은 극성 원소를 포함하고 있으며, 이러한 원소들이 해리된 이온과 배위결합을 함으로써 고분자-이온 착제를 형성하는 것으로 알려져 있다. 현재 가장 많이 연구되고 사용되는 고분자 재료로는 폴리에틸렌옥사이드(polyethylene oxide; PEO) 및 폴리비닐알콜(polyvinyl alcohol; PVA) 등이 있다. 1975년 Wright 등에 의해 PEO/염(salt)의 이온전도도에 대한 연구결과가 발표되고, 1987년 Armand에 의해 고분자/염의 전기화학장치에의 응용이 제안된 이후, 최근까지 고분자 전해질에 대한 연구가 활발히 진행되고 있다. 그러나 PVA의 경우 이온전도도 값이 매우 낮아 초고용량 축전기의 전기화학적 특성을 구현하기에는 한계가 있으며, PEO의 경우 PEO/염 전해질은 이온전도도 값이 매우 높으나, PEO의 용융점이 65℃로 매우 낮아 50℃ 이상의 온도에서 구동되는 전기화학장치로 구현하기 어려운 단점이 있다.Solid polymer electrolytes can be applied to flexible electrochemical devices when used as separators in devices with electrochemical properties, and are easier to process into thin film electrolyte films than conventional liquid electrolytes, and are light and chemically stable. Concerns have little advantage. In general, a solid polymer electrolyte is composed of a polymer and a salt to be dissociated by the polymer, wherein the polymer contains a polar element such as oxygen or nitrogen, and these elements form coordination bonds with dissociated ions to form a polymer-ion complex. It is known to form. Currently, the most researched and used polymer materials include polyethylene oxide (PEO) and polyvinyl alcohol (PVA). In 1975, Wright et al. Published research on the ion conductivity of PEO / salts, and Armand's application of polymers / salts to electrochemical devices was proposed by Armand in 1987. It's going on. However, PVA has a very low ion conductivity value, which limits the ability to realize the electrochemical properties of ultracapacitors. For PEO, PEO / salt electrolyte has a high ion conductivity value, but the melting point of PEO is very low at 65 ° C and 50 ° C. There is a disadvantage that it is difficult to implement with an electrochemical device driven at the above temperature.
본 발명자들은 고분자/염 전해질의 장점을 이용하여 높은 이온전도도 값을 가지면서 기계적 안정성 및 열적 안정성을 갖는 새로운 전해질 막을 고안하고자 연구 노력한 결과, 말단에 가지결합 가능한 작용기를 연결한 후, PEO 블록 및 PPO 블록 함유 블록 공중합체를 가지결합하여 제조한 고분자로 지지체를 형성하고 여기에 전해질로서 이온성 액체를 함침시킨 전해질 막을 제조한 결과, 우수한 이온전도도 및 향상된 기계적 및 열적 안정성을 갖는 분리막을 제공할 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have tried to devise a new electrolyte membrane having mechanical stability and thermal stability while having high ionic conductivity value by using the advantages of the polymer / salt electrolyte. After connecting the branchable functional groups to the terminal, PEO block and PPO Forming a support from a polymer prepared by branch-bonding a block-containing block copolymer and preparing an electrolyte membrane impregnated with an ionic liquid as an electrolyte, it is possible to provide a separation membrane having excellent ionic conductivity and improved mechanical and thermal stability. It was confirmed that the present invention was completed.
본 발명의 제1양태는 하기 화학식 1로 표시되는 폴리프로필렌옥사이드(poly(propylene oxide), PPO) 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드(poly(ethylene oxide), PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 제1고분자를 함유하는 수지조성물로부터 제조된 지지체로서, 상기 제1고분자는 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체들을 결합시켜 형성된 것인 지지체를 제공한다:The first aspect of the present invention comprises at least one poly (propylene oxide, PPO) block represented by the formula (1) and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the formula (2) A support is prepared from a resin composition containing a first polymer formed by branching a block copolymer, wherein the first polymer is formed by combining block copolymers having a functional group capable of branching at both ends. do:
[화학식 1][Formula 1]
Figure PCTKR2014001632-appb-I000001
Figure PCTKR2014001632-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2014001632-appb-I000002
Figure PCTKR2014001632-appb-I000002
상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
상기 폴리에틸렌옥사이드(poly(ethylene oxide); PEO)는 에틸렌옥사이드 올리고머 또는 고분자로, 폴리옥시에틸렌(polyoxyethylene; POE) 또는 폴리에틸렌글리콜(poly(ethylene glycol); PEG)이라고도 하는 광범위한 분자량의 합성 폴리에테르이다. 보통 20,000 미만의 질량평균분자량을 갖는 물질을 PEG, 이보다 높은 분자량을 갖는 물질을 PEO, 분자량과 무관하게 고분자를 POE라고 하기도 하지만, 이에 제한되지 않는다. 상기 고분자는 양친성(amphiphilic)이며 메틸렌클로라이드, 에탄올, 톨루엔, 아세톤 및 클로로포름 등의 유기용매뿐만 아니라 물에 용해될 수 있다. 상기 PEO는 2개의 탄소원자와 하나의 산소원자를 포함하는 3각 고리형 에테르인 에틸렌옥사이드와 에틸렌글리콜 단량체 또는 올리고머와의 반응에 의해 합성될 수 있으나, 이에 제한되지 않으며, 상업화된 것을 구매하여 사용할 수 있다.The polyethylene oxide (poly (ethylene oxide); PEO) is an ethylene oxide oligomer or polymer, and is a synthetic polyether having a wide range of molecular weight, also called polyoxyethylene (POE) or polyethylene glycol (poly (ethylene glycol); PEG). Usually, a material having a mass average molecular weight of less than 20,000 is PEG, a material having a higher molecular weight is PEO, and a polymer is called POE regardless of molecular weight, but is not limited thereto. The polymer is amphiphilic and can be dissolved in water as well as organic solvents such as methylene chloride, ethanol, toluene, acetone and chloroform. The PEO may be synthesized by the reaction of ethylene oxide and an ethylene glycol monomer or oligomer, which is a tricyclic cyclic ether including two carbon atoms and one oxygen atom, but is not limited thereto. Can be.
상기 폴리프로필렌옥사이드(poly(propylene oxide); PPO)는 프로필렌옥사이드의 중합체로, 폴리프로필렌글리콜(poly(propylene glycol); PPG)이라고도 하는 광범위한 분자량의 합성 폴리에테르이다. 대체로 PEO와 유사한 특성을 지니나, PEO에 비해 낮은 친수성을 나타낸다. 상기 PPO는 메틸기가 치환된 3각 고리형의 에테르인 프로필렌옥사이드의 고리-개방 중합화(ring-opening polymerization)에 의해 합성될 수 있으나, 이에 제한되지 않으며, 상업화된 것을 구매하여 사용할 수 있다.The polypropylene oxide (poly (propylene oxide); PPO) is a polymer of propylene oxide, is a synthetic polyether of a wide range of molecular weight, also called poly (propylene glycol) (PPG). It is generally similar to PEO, but shows lower hydrophilicity than PEO. The PPO may be synthesized by ring-opening polymerization of propylene oxide, which is a tricyclic cyclic ether substituted with a methyl group, but is not limited thereto and may be commercially available.
본 발명에서, "블록 공중합체(block copolymer)"는 둘 또는 그 이상의 단일중합체(homopolymer) 서브유닛(블록)이 공유결합에 의해 연결된 공중합체로, 단일중합체 블록의 결합은 연결 블록(junction block)으로서의 중간 비-반복 서브유닛(intermediate non-repeating subunit)을 필요로 할 수 있다. 2개 또는 3개의 구별된 블록을 포함하는 블록 공중합체를 각각 이원블록 공중합체(diblock copolymer) 및 삼원블록 공중합체(triblock copolymer)라고 한다. 상기 PEO 블록 및 PPO 블록을 포함하는 블록 공중합체는 PEO와 PPO를 중합시켜 제조하거나, 플루로닉(Pluronic)이라는 상품명으로 판매되는 것을 구입하여 사용할 수 있다.In the present invention, a "block copolymer" is a copolymer in which two or more homopolymer subunits (blocks) are covalently linked, and a bond of the homopolymer block is a junction block. Intermediate non-repeating subunits may be needed. Block copolymers comprising two or three distinct blocks are referred to as diblock copolymers and triblock copolymers, respectively. The block copolymer including the PEO block and the PPO block may be prepared by polymerizing PEO and PPO, or may be used by purchasing one sold under the trade name Pluronic.
바람직하게, 본 발명에 따른 블록 공중합체는 PEO-PPO, PEO-PPO-PEO 또는 PPO-PEO-PPO 형태일 수 있다. 상기 블록 공중합체는 당업계에 공지된 블록 공중합체 합성법에 의해 제조할 수 있다. 예컨대, 음이온 중합법 등을 이용하여 에틸렌옥사이드 및 프로필렌옥사이드 단량체 또는 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드로부터 제조할 수 있다. 또는 플루로닉(Pluronic)과 같이 상용화된 PEO-PPO-PEO 또는 PPO-PEO-PPO 형태의 삼원블록 공중합체(triblock copolymer)를 구입하여 사용할 수 있다.Preferably, the block copolymer according to the invention may be in the form of PEO-PPO, PEO-PPO-PEO or PPO-PEO-PPO. The block copolymer may be prepared by a block copolymer synthesis method known in the art. For example, it may be prepared from ethylene oxide and propylene oxide monomers or polyethylene oxide and polypropylene oxide using an anionic polymerization method or the like. Alternatively, commercially available triblock copolymers of PEO-PPO-PEO or PPO-PEO-PPO type such as Pluronic may be purchased and used.
바람직하게, 본 발명에 따른 지지체는 상기 블록 공중합체는 PEO를 10 내지 90 중량%로 포함할 수 있다. PEO는 결정성 고분자이므로, PEO의 함량이 90 중량%를 초과하는 경우, 국부적으로 결정화로 인해 이온전도성을 감소시킬 수 있으며, 용융점이 60℃ 미만으로 낮아지므로 50℃ 이상에서는 고체 전해질로 활용이 불가능하다. 한편, PPO의 첨가는 증가된 탄소결합으로 인해 물리적 강도를 증가시킬 수 있고 PEO 사슬 간의 결정화 경향을 약화시킴으로써 결정화를 억제하는 효과를 나타낼 수 있다. 그러나, PPO의 상대적으로 높은 소수성으로 인해 담지되는 이온성 액체 등의 이온성 전해질이나 유기계 전해질과의 상용성이 낮아질 수 있다.Preferably, the support according to the invention the block copolymer may comprise 10 to 90% by weight of PEO. Since PEO is a crystalline polymer, when the content of PEO exceeds 90% by weight, it is possible to reduce the ionic conductivity due to local crystallization, and since the melting point is lowered below 60 ° C, it cannot be used as a solid electrolyte above 50 ° C. Do. On the other hand, the addition of PPO may increase the physical strength due to increased carbon bonds and may have an effect of inhibiting crystallization by weakening the crystallization tendency between PEO chains. However, due to the relatively high hydrophobicity of PPO, compatibility with an ionic electrolyte or organic electrolyte such as an ionic liquid supported may be low.
본 발명에서, "가지결합"은 하나의 분자가 이웃한 2개 이상의 분자와 결합하는 것을 의미한다. 즉, 본 발명에 따른 블록 공중합체는 그 말단을 통해 2개 이상의 다른 블록 공중합체와 결합하여 제1고분자 또는 제2고분자를 형성할 수 있다. 상기 가지결합을 통해 형성된 제1고분자는 가지결합 정도에 따라 빗모양(comlike), 나무가지 모양 또는 그물형을 나타내거나, 이들이 조합되어 나타날 수 있다.In the present invention, "branched bond" means that one molecule is bonded to two or more neighboring molecules. That is, the block copolymer according to the present invention may combine with two or more other block copolymers through the terminal thereof to form a first polymer or a second polymer. The first polymer formed through the branch bond may show a comb shape, a tree branch shape or a net shape according to the degree of branch bonding, or a combination thereof.
본 발명에서, "가지결합 가능한 작용기"는 3개 이상의 반응성 작용기를 포함하여 하나의 작용기를 통해 블록 공중합체에 연결되고 다른 2개 이상의 작용기를 통해 다른 블록 공중합체에 결합할 수 있는 작용기를 지칭한다. 상기 가지결합 가능한 작용기는 블록 공중합체의 양 말단에 직접 연결되거나; 에테르, 아미드, 우레탄, 에스테르로 구성된 군으로부터 선택되는 작용기 및 알킬을 포함하는 간격자(spacer)를 포함하는 링커를 통해 연결된 것일 수 있다. 또한, 바람직하게, 상기 가지결합 가능한 작용기는 트리에톡시실란, 아크릴레이트 또는 에폭시일 수 있으나, 이에 제한되지 않는다.In the present invention, “branch-linkable functional group” refers to a functional group that includes three or more reactive functional groups, which are linked to the block copolymer through one functional group, and which can be bonded to the other block copolymer through two or more functional groups. . The branchable functional group is directly connected to both ends of the block copolymer; It may be linked via a linker comprising a spacer comprising an alkyl and a functional group selected from the group consisting of ethers, amides, urethanes, esters. Also, preferably, the branchable functional group may be triethoxysilane, acrylate or epoxy, but is not limited thereto.
본 발명에 따른 지지체의 제조를 위한 수지조성물은 제1고분자 이외에 가교제를 추가로 포함할 수 있다. 상기 가교제를 추가로 포함함으로써 단위 고분자 당 가지결합수를 증가시킬 수 있다. 바람직하게, 상기 추가적인 가교제는 제1고분자에 포함된 가지결합 가능한 작용기와 동일한 종류의 화학반응을 일으키는 물질일 수 있다. 예컨대, 제1고분자의 가지결합 가능한 작용기가 트리에톡시기인 경우, 이와 반응할 수 있는 테트라에톡시실란(tetraethoxysilane; TEOS)을 추가적인 가교제로써 첨가할 수 있다. 바람직하게, 추가로 포함되는 가교제는 에톡시실란계, 아크릴계 또는 에폭시계 화합물일 수 있으나, 이에 제한되지 않는다.The resin composition for preparing the support according to the present invention may further include a crosslinking agent in addition to the first polymer. By further including the crosslinking agent, it is possible to increase the number of branch bonds per unit polymer. Preferably, the additional crosslinking agent may be a material that causes the same kind of chemical reaction as the branchable functional groups included in the first polymer. For example, when the branchable functional group of the first polymer is a triethoxy group, tetraethoxysilane (TEOS) capable of reacting with the first polymer may be added as an additional crosslinking agent. Preferably, the crosslinking agent further included may be an ethoxysilane-based, acrylic or epoxy-based compound, but is not limited thereto.
바람직하게, 본 발명에 따른 지지체를 형성하는 제1고분자는 10,000 내지 1,000,000의 수평균 분자량(Mn; number-average molecular weight) 또는 10,000 내지 10,000,000의 중량평균 분자량(Mw; weight-average molecular weight)을 갖는 것일 수 있다. 분자량이 낮은 경우 예컨대, 10,000 이하인 경우, 필름 형성이 어려우며, 수분 함유량이 증대되고 라디칼의 공격에 쉽게 분해되어 전도도 및 내구성이 감소할 수 있다. 반면, 분자량이 높은 경우 예컨대, 수평균 분자량이 1,000,000 이상인 경우, 급격히 증대된 점도로 인해 고분자 용액의 제조 및 필름으로의 성형이 어려워져 막 제조 공정이 불가능해질 수 있다.Preferably, the first polymer forming the support according to the present invention has a number-average molecular weight (Mn) of 10,000 to 1,000,000 or a weight-average molecular weight (Mw) of 10,000 to 10,000,000. It may be. When the molecular weight is low, for example, 10,000 or less, film formation is difficult, the water content is increased and can be easily decomposed to attack of radicals, thereby reducing the conductivity and durability. On the other hand, when the molecular weight is high, for example, when the number average molecular weight is 1,000,000 or more, the preparation of the polymer solution and the molding into the film may be difficult due to the rapidly increased viscosity, thereby making the film manufacturing process impossible.
본 발명에서, "수지조성물(resin composition)"은 수지로부터 지지체를 형성하기 위한 조성물이다. 예컨대, 성형을 용이하게 하기 위하여 고체인 수지를 적절한 용매에 용해시킨 용액일 수 있다. 따라서, 본 발명에 있어서 수지조성물은 제1고분자 및 이를 용해시키기 위한 용매를 포함할 수 있다. 바람직하게, 상기 수지조성물은 사출 성형성 및 물성 발란스 등을 더 부여하기 위하여 추가적인 첨가제를 더 포함할 수 있다. 첨가제의 함량은 상기 수지조성물의 물성을 저해하지 않는 범위 내에서 적절히 포함될 수 있으며, 당업자에 의해 결정될 수 있다.In the present invention, a "resin composition" is a composition for forming a support from a resin. For example, it may be a solution in which a solid resin is dissolved in a suitable solvent to facilitate molding. Therefore, in the present invention, the resin composition may include a first polymer and a solvent for dissolving it. Preferably, the resin composition may further include additional additives to further impart injection moldability and physical property balance. The amount of the additive may be appropriately included within a range not impairing the physical properties of the resin composition, and may be determined by those skilled in the art.
본 발명에 따라 PEO 블록 및 PPO 블록을 각각 하나 이상 포함하는 블록 공중합체의 양 말단에 적절한 가교결합 가능한 작용기를 도입하여 가교된 고분자를 형성하면, 이로부터 제조한 고분자 막은 이온전도성 전해질을 담지하더라도 물리적 특성을 유지할 수 있으므로 이온전도성 전해질을 함유하는 전해질 막을 제공하기 위한 지지체로 유용하게 사용될 수 있다. 특히, 상기 지지체는 PEO 또는 PPO 자체의 용융온도를 초과하는 고온에서도 용융되지 않으므로 열안정성이 크게 향상된 지지체를 제공할 수 있다.According to the present invention, when a crosslinked polymer is formed by introducing an appropriate crosslinkable functional group at both ends of a block copolymer including at least one PEO block and a PPO block, the polymer membrane prepared therefrom is physically supported even if it carries an ion conductive electrolyte. Since the properties can be maintained, it can be usefully used as a support for providing an electrolyte membrane containing an ion conductive electrolyte. In particular, since the support does not melt even at a high temperature exceeding the melting temperature of PEO or PPO itself, it is possible to provide a support having greatly improved thermal stability.
본 발명의 제2양태는 상기 본 발명에 따른 지지체 및 상기 지지체에 담지된 이온전도성 전해질을 포함하는 전해질 막을 제공한다.A second aspect of the present invention provides an electrolyte membrane comprising the support according to the present invention and an ion conductive electrolyte supported on the support.
본 발명에 따른 상기 지지체는 우수한 이온전도성 전해질 함유능을 나타낸다. 따라서, 이온전도능이 낮은 PPO 블록을 추가로 포함하는 블록 공중합체를 이용하여 제조한 지지체에 이온전도성 전해질을 담지시켜 제조한 전해질 막은 PEO만을 이용하여 제조한 지지체에 이온전도성 전해질을 같은 비율로 담지시켜 제조한 전해질 막에 비해 우수한 이온전도도를 나타낸다.The support according to the present invention exhibits excellent ion conductive electrolyte content. Therefore, an electrolyte membrane prepared by supporting an ion conductive electrolyte on a support prepared using a block copolymer further comprising a PPO block having low ion conductivity has a same ratio of an ion conductive electrolyte supported on a support prepared using only PEO. It shows excellent ion conductivity compared to the prepared electrolyte membrane.
본 발명에서, "전해질 막(electrolyte membrane)"은 전해질로서 이온을 함유한 막을 지칭하는 것으로, 충/방전이 가능한 이차전지 또는 초고용량 축전기에 분리막 또는 격리막으로서 사용될 수 있는 막이다. 상기 전해질 막에 함유된 전해질로서의 이온은 충/방전시 하나의 전극으로부터 다른 전극으로 또는 그 역방향으로 이동할 수 있으므로, 전극을 전기적으로 연결시킬 수 있다. 이때, 전극은 단락(short circuit)을 방지하기 위하여 상기 이온투과성(ion-permeable) 전해질 막(분리막)에 의해 서로 기계적으로 분리된다.In the present invention, an "electrolyte membrane" refers to a membrane containing ions as an electrolyte, and may be used as a separator or separator in a secondary battery or an ultracapacitor capable of charging / discharging. Since the ions as electrolyte contained in the electrolyte membrane can move from one electrode to the other electrode or in the reverse direction during charging / discharging, the electrodes can be electrically connected. At this time, the electrodes are mechanically separated from each other by the ion-permeable electrolyte membrane (separation membrane) to prevent a short circuit.
본 발명에서, "이온전도성 전해질(ion conducting electrolyte)"은 한 쪽에서 다른 쪽으로 이온을 이동시킬 수 있는 물질을 총칭한다. 상기 이온전도성 전해질의 비제한적인 예로는 이온성 액체 또는 에틸렌카보네이트(ethylene carbonate; EC), 프로필렌카보네이트(propylene carbonate; PC), 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트(dimethyl carbonate; DMC), 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등의 유기전해질이 있다.In the present invention, "ion conducting electrolyte" refers to a substance that can move ions from one side to the other. Non-limiting examples of the ion conductive electrolyte include ionic liquids or cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and vinylene carbonate; Chain carbonates such as dimethyl carbonate (DMC), methylethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and γ-butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Organic electrolytes such as amides such as dimethylformamide.
바람직하게, 본 발명에 따른 전해질 막은 상기 이온전도성 전해질로서 지지체를 구성하는 총 고분자 중량에 대하여 5 내지 150 중량%의 이온성 액체를 함유할 수 있다. 지지체에 담지된 이온성 액체의 함량이 5 중량% 미만으로 낮은 경우 전해질 함량이 낮아 충분한 이온전도도를 제공할 수 없는 단점이 있는 반면, 150 중량%를 초과하도록 이온성 액체를 함유하는 전해질 막의 경우 막 제조가 어려운 단점을 갖는다.Preferably, the electrolyte membrane according to the present invention may contain 5 to 150% by weight of the ionic liquid based on the total polymer weight constituting the support as the ion conductive electrolyte. If the content of the ionic liquid supported on the support is lower than 5% by weight, there is a disadvantage in that the electrolyte content is low to provide sufficient ionic conductivity, whereas in the case of the electrolyte membrane containing the ionic liquid to exceed 150% by weight, the membrane It has the disadvantage of being difficult to manufacture.
본 발명에서, "이온성 액체(ionic liquid; IL)"는 액체상태의 염을 의미한다. 좁은 의미로는 특정한 임의의 온도 이하 예컨대, 100℃(212℉) 이하의 용융점(melting point)을 갖는 염으로 한정하기도 하나, 소자의 작동 온도에서 액체상태로 존재하는 한, 본 발명에서의 이온성 액체는 이에 제한되지 않는다. 상기 이온성 액체라는 용어는 1943년부터 일반적인 용어로 상용되고 있다.In the present invention, "ionic liquid (IL)" means a salt in a liquid state. In a narrow sense it is also limited to salts having a melting point below a certain arbitrary temperature, for example below 100 ° C. (212 ° F.), but ionic in the present invention as long as it is in the liquid state at the operating temperature of the device. The liquid is not limited to this. The term ionic liquid has been used as a general term since 1943.
일반적으로 액체는 물, 가솔린 등과 같이 전기적으로 중성분자들로 주로 구성되는 반면, 이온성 액체는 이온 및 단수명 이온쌍(short-lived ionic pair)이 대부분이다. 이들 물질은 달리 액체 전해질(liquid electrolyte), 이온성 멜트(ionic melt), 이온성 유체(ionic fluid), 융해된 염(fused salt), 액체 염(liquid salt) 또는 이온성 유리(ionic glass)라고도 불린다.Generally, liquids consist mainly of electrically heavy components such as water, gasoline, etc., while ionic liquids are mostly ionic and short-lived ionic pairs. These materials are also referred to as liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glass. It is called.
이온성 액체는 강력한 용매 및 전기전도성 유체(electrically conducting fluid)으로 활용될 수 있다. 근접-주위 온도(near-ambient temperature)에서 액체인 염은 전기전지에 응용하기 위해 중요하며 이의 낮은 증기압으로 인해 밀폐제(sealant)로 사용된다.Ionic liquids can be utilized as powerful solvents and electrically conducting fluids. Salts that are liquid at near-ambient temperatures are important for applications in electric cells and because of their low vapor pressure they are used as sealants.
분해되거나 기화하지 않고 용융되는 염은 일반적으로 이온성 액체를 얻는다. 예컨대, 염화나트륨(NaCl)은 801℃에서 나트륨 양이온(Na+)과 염소 음이온(Cl-)으로 주로 구성되는 액체로 용융된다. 역으로 이온성 액체를 냉각시키는 경우, 종종 이온성 고체가 형성된다. 이온결합은 일반적으로 보통의 액체에서 분자 간의 반데르발스인력 보다 더 강하다. 따라서, 통상의 염은 다른 고체분자보다 더 높은 온도에서 용융하는 경향을 갖는다. 다만 특정 염은 실온 또는 그 미만의 온도에서 액체이다. 그 예는 1-에틸-3-메틸이미다졸리움(1-ethyl-3-methylimidazolium; EMIM) 양이온에 기초한 화합물을 포함하며, -21℃에서 용융되는 EMIM:Cl, EMIM 디시안아미드(dicyanamide), (C2H5)(CH3)C3H3N+ 2·N(CN)- 2 및 -24℃ 미만에서 유리화하는 1-부틸-3,5-디메틸피리디늄 브로마이드(1-butyl-3,5-dimethylpyridinium bromide)를 포함한다.Salts that melt without decomposing or vaporizing generally yield an ionic liquid. For example, sodium chloride (NaCl) is melted at 801 ° C. into a liquid consisting mainly of sodium cations (Na + ) and chlorine anions (Cl ). Conversely, when cooling the ionic liquid, an ionic solid is often formed. Ionic bonds are generally stronger than the van der Waals forces between molecules in ordinary liquids. Thus, conventional salts tend to melt at higher temperatures than other solid molecules. Only certain salts are liquid at or below room temperature. Examples include compounds based on 1-ethyl-3-methylimidazolium (EMI) cations, EMIM: Cl, EMIM dicyanamide, which melt at −21 ° C., (C 2 H 5) (CH 3) C 3 H 3 N + 2 · N (CN) - 1- butyl-3,5-dimethyl pyridinium bromide (1-butyl-3 of liberating at less than 2 and -24 ℃ , 5-dimethylpyridinium bromide).
저온 이온성 액체는 이온과 중성분자를 모두 포함하는 이온성 용액과 비교될 수 있다. 특히, 순수 화합물보다 훨씬 낮은 용융점을 갖는 이온성 및 비이온성 고체 물질의 혼합물을 딥 공융용매(deep eutectic solvent)라고 한다. 질산염(nitrate salt)은 100℃ 아래의 용융점을 가질 수 있다.Cold ionic liquids can be compared to ionic solutions containing both ions and heavy components. In particular, mixtures of ionic and nonionic solid materials having a much lower melting point than pure compounds are called deep eutectic solvents. Nitrate salts may have a melting point below 100 ° C.
바람직하게, 상기 이온성 액체는 이미다졸리움(imidazolium), 4차 암모늄(quaternary ammonium), 피리디늄(pyridinium), 피롤리디늄(pyrrolidinium), 피라졸리움(pyrazolium), 포스포늄(phosphonium) 및 설포늄(sulfonium) 등의 양이온 또는 퍼플러리네이트(perflurinated) 계열의 음이온을 포함하는 염-유사 물질(salt-like material)일 수 있다.Preferably, the ionic liquid is imidazolium, quaternary ammonium, pyridinium, pyrrolidinium, pyrazolium, phosphonium and sulfonium It may be a salt-like material including a cation such as sulfonium or a perflurinated anion.
상기 이온성 액체는 전해질 막 형성 후 함침시키거나, 수지조성물에 함유시켜 이를 담지한 전해질 막을 형성할 수 있다. 바람직하게는 수지조성물에 함유시켜 이온성 액체를 담지한 채로 전해질 막이 형성되도록 하는 경우 전해질 막 전 영역에 걸쳐서 보다 고르게 함유하도록 제조할 수 있으므로 향상된 성능의 전해질 막을 제공할 수 있다.The ionic liquid may be impregnated after the formation of the electrolyte membrane, or may be contained in the resin composition to form an electrolyte membrane thereon. Preferably, when the electrolyte membrane is formed to be contained in the resin composition to support the ionic liquid, the electrolyte membrane may be prepared to be contained more evenly over the entire area of the electrolyte membrane, thereby providing an electrolyte membrane having improved performance.
본 발명의 제3양태는 하기 화학식 1로 표시되는 폴리프로필렌옥사이드 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이 블록을 각각 하나 이상 포함하며 양 말단에는 가지결합 가능한 작용기를 구비한 블록 공중합체를 함유하는 전구체 용액을 준비하는 제1단계; 상기 가지결합 가능한 작용기의 가교반응을 유발하여, 제1고분자를 형성시키는 제2단계; 및 필름으로 성형하는 제3단계를 포함하는, 전해질 막의 제조방법을 제공한다:A third aspect of the present invention comprises a polypropylene oxide block represented by the following formula (1) and a precursor containing at least one block of polyethylene oxide represented by the formula (2), each precursor containing a block copolymer having a branchable functional group at both ends A first step of preparing a solution; A second step of inducing a crosslinking reaction of the branchable functional group to form a first polymer; And a third step of forming into a film, the method for producing an electrolyte membrane:
[화학식 1][Formula 1]
Figure PCTKR2014001632-appb-I000003
Figure PCTKR2014001632-appb-I000003
[화학식 2][Formula 2]
Figure PCTKR2014001632-appb-I000004
Figure PCTKR2014001632-appb-I000004
상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
바람직하게, 상기 제2단계 및 제3단계는 동시에 수행할 수 있다. 이 경우 PEO 사슬이 갖는 결정화 경향을 저해할 수 있으므로, 이온전도도를 향상시킬 수 있다.Preferably, the second step and the third step can be performed simultaneously. In this case, since the crystallization tendency of the PEO chain can be inhibited, the ion conductivity can be improved.
바람직하게 상기 제2단계는 가열, 자외선 조사 또는 개시제의 첨가에 의해 달성될 수 있다. 상기 가교반응을 유발하는 자극은 가교가능한 작용기의 종류에 따라 공지의 방법으로부터 당업자가 적절히 선택할 수 있다. 본 발명의 구체적인 실시예에서는 가교가능한 작용기로서 트리에톡시실란을 이용한 경우 산용액을 첨가함으로써 가교반응을 수행하였다.Preferably said second step can be achieved by heating, ultraviolet irradiation or the addition of an initiator. The stimulus causing the crosslinking reaction can be appropriately selected by those skilled in the art from known methods depending on the kind of crosslinkable functional group. In a specific embodiment of the present invention, when triethoxysilane was used as the crosslinkable functional group, the crosslinking reaction was performed by adding an acid solution.
바람직하게, 상기 전구체 용액은 이온전도성 전해질을 추가로 포함할 수 있다. 전술한 바와 같이, 전구체 용액에 이온전도성 전해질을 포함시켜 이를 함유한 채로 필름을 형성하도록 하여 제조한 전해질 막은 지지체 제조 후 이에 이온전도성 전해질을 함침시켜 제조한 전해질 막과 비교하여 보다 우수한 이온전도도를 나타낼 수 있다.Preferably, the precursor solution may further include an ion conductive electrolyte. As described above, the electrolyte membrane prepared by including the ion conductive electrolyte in the precursor solution to form a film containing the ion conductive electrolyte exhibits superior ion conductivity compared to the electrolyte membrane prepared by impregnating the ion conductive electrolyte after the preparation of the support. Can be.
또는, 제3단계에서 수득한 필름에 이온전도성 전해질을 함침시키는 단계를 추가로 포함할 수 있다.Alternatively, the method may further include impregnating the ion conductive electrolyte in the film obtained in the third step.
상기 이온전도성 전해질은 이온성 액체 또는 유기전해질일 수 있다. 상기 유기전해질의 비제한적인 예는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등이 있다. 바람직하게, 이온전도성 전해질은 이온성 액체, 보다 바람직하게는 이미다졸리움 계열의 이온성 액체인 BIMI-BF4, EMIM-TFSI 및 EMIM-BF4 등일 수 있으나, 이에 제한되지 않는다.The ion conductive electrolyte is an ionic liquid Or organic electrolyte. Non-limiting examples of the organic electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and γ-butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides such as dimethylformamide and the like. Preferably, the ion-conducting electrolyte is an ionic liquid, and more preferably from imidazolium based ionic liquid BIMI-BF 4, EMIM-TFSI and EMIM-BF 4 or the like. However, the present invention is not limited thereto.
또한 상기 전구체 용액은 가교제를 추가로 포함할 수 있다.In addition, the precursor solution may further include a crosslinking agent.
본 발명의 제4양태는 하기 화학식 1로 표시되는 폴리프로필렌옥사이드(poly(propylene oxide), PPO) 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드(poly(ethylene oxide), PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 제2고분자 및 이온전도성 전해질을 함유하는 전해질 용액을 전극에 함침시킨 전극-전해질 결합체로서, 상기 제2고분자는 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체들을 결합시켜 형성된 것인 전극-전해질 결합체를 제공한다:The fourth aspect of the present invention comprises at least one poly (propylene oxide, PPO) block represented by the following formula (1) and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the following formula (2) An electrode-electrolyte binder in which an electrolyte solution containing a second polymer and an ion conductive electrolyte formed by branching a block copolymer is impregnated to an electrode, and the second polymer has a block copolymer having a functional group capable of branching at both ends. To provide an electrode-electrolyte combination formed by:
[화학식 1][Formula 1]
Figure PCTKR2014001632-appb-I000005
Figure PCTKR2014001632-appb-I000005
[화학식 2][Formula 2]
Figure PCTKR2014001632-appb-I000006
Figure PCTKR2014001632-appb-I000006
상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
바람직하게, 상기 한쌍의 전극-전해질 결합체를 이용하여 셀을 구성하기 위하여 전극이 외부를 향하도록 마주보게 결합시킬 수 있다.Preferably, the pair of electrode-electrolyte combinations may be coupled to face each other so that the electrodes face outward to form a cell.
보다 바람직하게, 상기 한쌍의 전극-전해질 결합체를 사이에 본 발명에 따른 전해질 막을 추가로 포함하여 전극이 외부를 향하도록 마주보게 결합시켜 셀을 제조할 수 있다. 상기 전해질 막을 추가로 포함함으로써 두 전극 사이에 충분한 간격을 확보하여 단락을 방지할 수 있다.More preferably, the pair of electrode-electrolyte combinations may further include an electrolyte membrane according to the present invention therebetween, such that the electrodes may be bonded to face each other so as to face the cell. By further including the electrolyte membrane, a sufficient gap can be secured between the two electrodes to prevent a short circuit.
본 발명의 구체적인 실시예에서는 PEO-PPO-PEO 삼원블록 공중합체가 가지결합하여 형성된 고분자를 포함하는 용액에 이온전도성 전해질을 첨가하여 상기 용액에 전극을 담그거나 전극 상에 상기 용액을 브러싱하여 전극 상에 지지체 고분자 및 이온전도성 용액을 포함하는 전해질 용액이 고르게 도포된, 고체 전해질과 전극 사이의 계면 특성이 향상된, 전극-전해질 결합체를 제조하였으며, 상기 전극-전해질 결합체 한쌍을 마주보도록 결합시켜 셀을 구성하였다. 상기 제조방법을 도 3에 개략적으로 나타내었다.In a specific embodiment of the present invention, by adding an ion conductive electrolyte to a solution containing a polymer formed by branching the PEO-PPO-PEO terpolymer block copolymer, the electrode is immersed in the solution or the solution is brushed on the electrode. An electrode-electrolyte binder was prepared, in which an electrolyte solution including a support polymer and an ion conductive solution was evenly applied, and the interface property between the solid electrolyte and the electrode was improved, and a pair of the electrode-electrolyte binders was coupled to face each other to form a cell. It was. The manufacturing method is schematically illustrated in FIG. 3.
본 발명의 제5양태는 본 발명에 따른 전해질 막을 포함하는 이차전지를 제공한다.A fifth aspect of the present invention provides a secondary battery comprising the electrolyte membrane according to the present invention.
상기 "이차전지"는 하나 또는 그 이상의 전기화학적 셀을 포함하는 전지의 일종으로, 외부의 전기 에너지를 화학 에너지의 형태로 변환시켜 저장해 두었다가 필요에 따라 전기를 발생시키는 장치로서, 충전식 전지(rechargeable battery) 또는 축전지(storage battery; accumulator)라고도 한다. 상기 전지에서의 전기화학적 반응은 전기적으로 가역적이므로, 일회용인 일차전지와는 달리 반복하여 충전 가능하다. 이러한 충전식 전지는 다양한 형태 및 크기로 제조될 수 있으며, 단추만한 전지로부터 전기공급망(electrical distribution network) 안정화를 위해 연결되는 메가왓트에 달하는 시스템까지 광범위한 용량으로 제조가능하다. 일반적으로 충전식 전지에 사용되는 화합물의 조합으로는 납-산(lead-acid), 니켈 카드뮴(NiCd), 니켈금속수소화물(nickel metal hydride; NiMH), 리튬이온(Li-ion) 및 리튬 이온 고분자(Li-ion polymer) 등이 있다. 충전식 전지는 초기 비용은 높으나, 반복하여 사용할 수 있다는 점에서 일회용 전지에 비해 저렴하며, 보다 친환경적이다. 일부 충전식 전지는 일회용 전지와 동일한 제공될 수 있다.The “secondary battery” is a type of battery including one or more electrochemical cells. The rechargeable battery converts external electrical energy into chemical energy and stores electricity therein. The rechargeable battery is a rechargeable battery. Also called a storage battery (accumulator). Since the electrochemical reaction in the battery is electrically reversible, it can be repeatedly charged unlike a primary battery that is disposable. Such rechargeable cells can be manufactured in a variety of shapes and sizes, and can be manufactured in a wide range of capacities, from button-sized cells up to megawatts of systems that are connected for stabilization of the electrical distribution network. In general, combinations of compounds used in rechargeable batteries include lead-acid, nickel cadmium, nickel metal hydride (NiMH), lithium ion (Li-ion), and lithium ion polymers. (Li-ion polymer). Rechargeable batteries have a high initial cost, but are cheaper than disposable batteries in that they can be used repeatedly and are more environmentally friendly. Some rechargeable cells may be provided the same as disposable batteries.
상기 충전식 전지는 자동차 시동(automobile starters), 휴대용 소비자 기기(portable consumer devices), 경차(light vehicles, 예컨대, 전동 휠체어, 골프 카트, 전기자전거, 전기포크리프트 등), 공구(tools) 및 무정전전원공급장치(uninterruptible power supplies; UPS) 등에 사용되고 있으며, 하이브리드 전기 자동차 및 전기 자동차 등에 적용하기 위하여 비용과 중량은 줄이되 수명을 연장시키기 위한 기술을 개발하고 있다.The rechargeable batteries may include automotive starters, portable consumer devices, light vehicles (eg, electric wheelchairs, golf carts, electric bicycles, electric forklifts, etc.), tools and uninterruptible power supplies. It is being used in uninterruptible power supplies (UPS) and the like, and is developing technologies for extending the life span while reducing the cost and weight for hybrid electric vehicles and electric vehicles.
본 발명의 제6양태는 본 발명에 따른 전해질 막을 포함하는 초고용량 축전기(supercapacitor)를 제공한다.A sixth aspect of the invention provides a supercapacitor comprising an electrolyte membrane according to the invention.
상기 "초고용량 축전기(supercapacitor)"는 종래 축전기에 비해 현저히 높은 용량을 갖는 에너지 저장장치로, 전기이중층 축전기(electric double layer capacitor; EDLC) 또는 울트라 커패시트(ultra capacitor)라고도 불린다. 상기 초고용량 축전기는 많은 에너지를 모아두었다가 수십 초 또는 수 분 동안 높은 에너지를 발산하는 동력원으로 기존의 축전기와 이차전지가 수용하지 못하는 특성영역을 채울 수 있는 장치이다(도 1). 즉, 짧은 시간에 높은 에너지 밀도와 전력밀도를 제공할 수 있는 유일한 장치이다. 또한 에너지 밀도, 출력 밀도 및 사이클 특성에서 유전체를 가지는 콘덴서 및 이차전지의 중간적인 특성을 갖는다. 특히, 상기 초고용량 축전기는 하기의 특성을 갖는다: 1) 과충전/과방전을 일으키지 않으므로 전기회로를 단순화할 수 있고 단가를 낮출 수 있다; 2) 전압으로부터 잔류용량을 파악할 수 있다; 3) 광범위한 내구온도특성(-30 내지 +90℃)을 나타낸다: 4) 친환경적 재료로 구성된다. 초고용량 축전기는 휴대폰, AV, 카메라와 같은 가전제품의 백업용 전원 및 고출력 보조전원으로 활용되고 있으며, 향후 무정전전원장치(UPS), HEV/FCEV 분야 등에 활용될 수 있을 것으로 기대된다. 특히, 자동차 수명과 같은 사이클 라이프(cycle life)와 고출력 특성으로 인해 자동차의 가속, 시동용 전원으로 유용하다.The "supercapacitor" is an energy storage device having a significantly higher capacity than a conventional capacitor, also called an electric double layer capacitor (EDLC) or ultra capacitor (ultra capacitor). The ultracapacitor is a device that can collect a large amount of energy and fill a characteristic region that the existing capacitor and the secondary battery cannot accommodate as a power source that emits high energy for several tens of seconds or several minutes (FIG. 1). That is, it is the only device that can provide high energy density and power density in a short time. In addition, it has intermediate characteristics of a capacitor and a secondary battery having a dielectric in energy density, power density and cycle characteristics. In particular, the ultracapacitor has the following characteristics: 1) it does not cause overcharge / overdischarge so that the electric circuit can be simplified and the cost can be reduced; 2) the residual capacity can be known from the voltage; 3) It exhibits a wide range of endurance temperature characteristics (-30 to + 90 ° C): 4) It is made of environmentally friendly materials. Ultra-capacitors are being used as backup power and high output auxiliary power for home appliances such as mobile phones, AV and cameras, and are expected to be used in the uninterruptible power supply (UPS) and HEV / FCEV fields. In particular, due to the cycle life (cycle life) and high output characteristics such as vehicle life, it is useful as a power source for acceleration, starting of the vehicle.
상기 초고용량 축전기는 중앙에 격리막을 중심으로 양측에 전해액, 전극 및 집전체를 차례로 구비한다. 전극의 일례로 활성탄소분말 또는 활성탄소섬유 등과 같이 유효 비표면적이 큰 활물질과 전도성을 부여하기 위한 도전재 및 각 성분들 간의 결착력을 위한 바인더로 구성될 수 있다. 다른 예로 그라핀을 이용하여 전극을 형성할 수도 있다. 전해액으로는 수용액계의 전해액과 비수용액계의 전해액이 사용된다. 격리막은 전극 간의 접촉에 의한 단락을 방지하는 역할을 한다. 충전 시에 전압을 걸면 각각의 활성탄 전극의 표면에 해리된 전해질 이온이 물리적으로 반대 전극에 흡착하여 전기를 축적하고, 방전 시에는 양, 음극의 이온이 전극으로부터 탈착해서 중화 상태로 돌아온다.The ultracapacitor has an electrolyte solution, an electrode, and a current collector on both sides of the separator in the center. For example, the electrode may be composed of an active material having a large effective specific surface area such as activated carbon powder or activated carbon fiber, a conductive material for imparting conductivity, and a binder for binding force between components. In another example, an electrode may be formed using graphene. As electrolyte solution, the electrolyte solution of aqueous solution system and the electrolyte solution of non-aqueous solution system are used. The separator serves to prevent a short circuit due to contact between the electrodes. When voltage is applied during charging, electrolyte ions dissociated on the surface of each activated carbon electrode are physically adsorbed to the opposite electrode to accumulate electricity, and during discharge, positive and negative ions are desorbed from the electrode and returned to a neutral state.
본 발명의 제7양태는 폴리프로필렌옥사이드 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 고분자 및 이온전도성 전해질을 함유하는 전해질 용액을 전극에 함침시킨 전극-전해질 결합체를 구비한 이차전지를 제공한다.According to a seventh aspect of the present invention, an electrode solution is impregnated with an electrolyte solution containing a polymer and an ion conductive electrolyte formed by branching a polypropylene oxide block and a block copolymer each including at least one polyethylene oxide block represented by Formula 2 below. A secondary battery having an electrode-electrolyte assembly is provided.
본 발명의 제8양태는 폴리프로필렌옥사이드 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 고분자 및 이온전도성 전해질을 함유하는 전해질 용액을 전극에 함침시킨 전극-전해질 결합체를 구비한 초고용량 축전기를 제공한다.In an eighth aspect of the present invention, an electrode solution is impregnated with an electrolyte solution containing a polymer and an ion conductive electrolyte formed by branching a polypropylene oxide block and a block copolymer each including at least one polyethylene oxide block represented by Formula 2 below. An ultracapacitor having an electrode-electrolyte combination is provided.
상기 이차전지 및 초고용량 축전기에 대해서는 상기에서 설명한 바와 같다.The secondary battery and the ultracapacitor are as described above.
본 발명의 폴리프로필렌옥사이드(PPO) 블록 및 폴리에틸렌옥사이드(PEO) 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자로부터 제조된 지지체는 이온전도성 전해질을 함유하는 능력이 우수하므로 이로부터 제조된 전해질 막은 높은 이온전도도를 가지며, PPO 블록을 포함하여 물리적 강도가 향상되었으며, 가교결합을 통해 고온에서도 안정한 전해질 막을 제공할 수 있다. 따라서, 상기 전해질 막은 이차전지 및 초고용량 축전기에 유용하게 사용될 수 있다.The support prepared from the polymer formed by the branched copolymer of the polypropylene oxide (PPO) block and the polyethylene oxide (PEO) block of the present invention has excellent ability to contain an ion conductive electrolyte, so the electrolyte membrane prepared therefrom It has a high ionic conductivity, improved physical strength including a PPO block, and can provide a stable electrolyte membrane even at high temperatures through crosslinking. Therefore, the electrolyte membrane can be usefully used for secondary batteries and ultra high capacity capacitors.
도 1은 전지와 축전기를 비교하여 나타낸 라곤 차트(Ragone chart)이다. 초고용량 축전기의 작동시간, 에너지 밀도 및 전력밀도를 연료전지, 종래의 배터리 및 축전기와 비교하여 나타내었다.1 is a Ragon chart showing a comparison of a battery and a capacitor. The operating time, energy density and power density of ultracapacitors are shown in comparison with fuel cells, conventional batteries and capacitors.
도 2는 본 발명에 따른 전해질 막을 구비한 초고용량 축전기의 일 제조예를 나타낸 도이다.2 is a view showing an example of manufacture of an ultracapacitor having an electrolyte membrane according to the present invention.
도 3은 본 발명에 따른 (a) 이온성 액체를 포함하는 전해질 막 제조용 용액을 전극 내에 함침시키는 공정 및 (b) 상기 용액이 함침된 전극을 이용하는 초고용량 축전기의 일 제조예를 나타낸 도이다.FIG. 3 is a view showing an example of manufacturing a supercapacitor using (a) a process of impregnating a solution for preparing an electrolyte membrane containing an ionic liquid in an electrode, and (b) an electrode impregnated with the solution.
도 4는 본 발명에 따른 폴리프로필렌옥사이드(PPO) 블록 및 폴리에틸렌옥사이드(PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체(녹색), 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체(파란색) 및 이를 가교결합시켜 수득한 고분자(보라색)에 대한 적외선 투과 스펙트럼을 나타낸 도이다.Figure 4 is a block copolymer (green) comprising at least one of a polypropylene oxide (PPO) block and a polyethylene oxide (PEO) block according to the present invention, a block copolymer having a functional group capable of branch bonding at both ends (blue) And an infrared transmission spectrum of a polymer (purple) obtained by crosslinking the same.
도 5는 본 발명에 따른 고분자 막의 열중량분석 결과를 나타낸 도이다. 폴리프로필렌옥사이드(PPO) 블록 및 폴리에틸렌옥사이드(PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체(검정 실선), 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체(빨간 점선); 이를 가교결합시켜 수득한 고분자(파란 점선)로부터 제조한 고분자 막; 및 이온성 액체를 30 중량% 포함하는 가교된 PPO 블록 및 PEO 블록을 포함하는 블록 공중합체 고분자 막(분홍 점선)의 온도에 따른 질량 손실을 나타내었다.5 is a view showing the thermogravimetric analysis of the polymer membrane according to the present invention. A block copolymer (black solid line) each comprising at least one polypropylene oxide (PPO) block and a polyethylene oxide (PEO) block, and a block copolymer having a functional group capable of branching at both ends (red dotted line); A polymer membrane prepared from a polymer (blue dotted line) obtained by crosslinking it; And mass loss with temperature of the block copolymer polymer membrane (pink dotted line) comprising a crosslinked PPO block and a PEO block comprising 30% by weight of an ionic liquid.
도 6은 본 발명에 따른 전해질 막에 대한 시차주사열량계(differential scanning calorimetry; DSC)에 의한 측정결과를 PEO 및 PEO-PPO-PEO 삼원블록공중합체(PL84)와 비교하여 나타낸 도이다.FIG. 6 is a diagram showing the results of measurement by differential scanning calorimetry (DSC) of the electrolyte membrane according to the present invention in comparison with PEO and PEO-PPO-PEO terpolymers (PL84).
도 7은 이온성 액체를 50 중량% 담지한 본 발명에 따른 전해질 막과 PEO 막의 광각 X-선 산란(wide angle X-ray scattering; WAXS) 분석결과를 나타낸 도이다.7 is a view showing the results of a wide angle X-ray scattering (WAXS) analysis of the electrolyte membrane and the PEO membrane according to the present invention carrying 50% by weight of the ionic liquid.
도 8은 이온성 액체를 50 중량% 담지한 본 발명에 따른 전해질 막과 PEO 막의 응력(stress)에 대한 변형률(strain)을 나타낸 도이다.FIG. 8 is a diagram showing a strain against stress of an electrolyte membrane and a PEO membrane according to the present invention in which 50% by weight of an ionic liquid is supported.
도 9는 25, 40, 60 및 80℃에서 측정한 다양한 고분자로 제조한 전해질 막의 이온성 액체 함량에 따른 이온전도도를 나타낸 도이다.9 is a diagram showing the ionic conductivity according to the ionic liquid content of the electrolyte membrane made of various polymers measured at 25, 40, 60 and 80 ℃.
도 10은 이온성 액체를 각각 10, 50 및 70 중량% 함침시킨 다양한 고분자로 제조한 전해질 막의 온도에 따른 이온전도도를 나타낸 도이다.FIG. 10 is a diagram showing ionic conductivity according to temperature of an electrolyte membrane made of various polymers impregnated with 10, 50, and 70 wt% of an ionic liquid, respectively.
도 11은 다양한 이온성 액체를 각각 100 및 150 중량%로 함침시킨 전해질 막의 온도에 따른 이온전도도를 나타낸 도이다.FIG. 11 is a diagram showing ionic conductivity according to temperature of an electrolyte membrane impregnated with various ionic liquids at 100 and 150 wt%, respectively.
도 12는 본 발명에 따른 초고용량 축전기의 전기화학적 특성을 나타낸 도이다. (좌) 임피던스를 사용하여 순환전류법(cyclic voltammetry; CV) 및 (우) 정전류법(galvanostat)에 의한 측정 결과를 도시하였다.12 is a view showing the electrochemical characteristics of the ultracapacitor according to the present invention. The measurement results by cyclic voltammetry (CV) and (right) galvanostat using (left) impedance are shown.
도 13은 본 발명에 따른 초고용량 축전기의 전기화학적 특성을 나타낸 도이다. 고분자 없이 이온성 액체만을 포함하는 경우(IL dipping); 양 전극 사이에 이온성 액체를 포함하는 전해질 막을 샌드위치 시켜 제조한 경우(IL-100wt% doped cPL-TPE(84); 실시예 4) 및 이온성 액체를 포함하는 고분자 전해질 용액에 전극을 함침시켜 제조한 경우(G750(150com)/IL-100wt% doped cPL-TPE(84); 실시예 5)에 대해 임피던스를 사용하여 순환전류법에 의한 측정 결과를 도시하였다.13 is a view showing the electrochemical characteristics of the ultracapacitor according to the present invention. Containing only ionic liquids without polymers (IL dipping); Prepared by sandwiching an electrolyte membrane containing an ionic liquid between both electrodes (IL-100wt% doped cPL-TPE (84); Example 4) and by impregnating the electrode in a polymer electrolyte solution containing an ionic liquid For one case (G750 (150com) / IL-100wt% doped cPL-TPE (84); Example 5), the results of measurement by cyclic ammeter using the impedance are shown.
도 14는 이온성 액체의 종류에 따른 순환전류법에 대한 측정결과를 나타낸 도이다. 이온성 액체를 포함하는 고분자 전해질 용액에 전극을 함침시켜 제조한 셀을 사용하였으며, 이온성 액체로는 EMIM-BF4, EMIM-TFSI 및 BMIM-BF4를 이용하였다.14 is a view showing a measurement result of the cyclic current method according to the type of ionic liquid. A cell prepared by impregnating an electrode in a polymer electrolyte solution containing an ionic liquid was used, and EMIM-BF 4 , EMIM-TFSI, and BMIM-BF 4 were used as the ionic liquid.
도 15는 전류밀도에 따른 비정전용량을 측정하여 충방전 특성을 나타낸 도이다. 고분자 없이 이온성 액체만을 포함하는 경우(IL dipping); 양 전극 사이에 이온성 액체를 포함하는 전해질 막을 샌드위치 시켜 제조한 경우(IL-100wt% doped cPL-TPE(84); 실시예 4) 및 이온성 액체를 포함하는 고분자 전해질 용액에 전극을 함침시켜 제조한 경우(G750(150com)/IL-100wt% doped cPL-TPE(84); 실시예 5)에 대한 측정 결과를 도시하였다.15 is a diagram showing charge and discharge characteristics by measuring specific capacitance according to current density. Containing only ionic liquids without polymers (IL dipping); Prepared by sandwiching an electrolyte membrane containing an ionic liquid between both electrodes (IL-100wt% doped cPL-TPE (84); Example 4) and by impregnating the electrode in a polymer electrolyte solution containing an ionic liquid The measurement results for one case (G750 (150 com) / IL-100 wt% doped cPL-TPE (84); Example 5) are shown.
도 16은 이온성 액체의 종류에 따른 비정전용량을 분석한 결과를 나타낸 도이다. 이온성 액체를 포함하는 고분자 전해질 용액에 전극을 함침시켜 제조한 셀을 사용하였으며, 이온성 액체로는 EMIM-BF4, EMIM-TFSI 및 BMIM-BF4를 이용하였다.16 shows the results of analyzing specific capacitances according to types of ionic liquids. A cell prepared by impregnating an electrode in a polymer electrolyte solution containing an ionic liquid was used, and EMIM-BF 4 , EMIM-TFSI, and BMIM-BF 4 were used as the ionic liquid.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시에에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these embodiments.
실시예 1: 말단이 트리에톡시실란(triethoxysilane)으로 캡핑된 PEO-PPO-PEO 블록 공중합체(block copolymer)Example 1 PEO-PPO-PEO Block Copolymer Terminated with Triethoxysilane
3구 둥근 바닥 플라스크에 교반기를 장착하고, 오일배스를 준비한 후, PEO-PPO-PEO 블록 공중합체(Pluronic P65, P84, P85 및 P104 이하, P65, P84, P85 및 P104로 구분, BASF) 1 몰과 (3-이소시아나토프로필)트리에톡시실란((3-isocyanotopropyl)triethoxysilane; Sigma-Aldrich 413364) 2 몰을 촉매인 2-에틸-헥사노에이트(2-ethyl-hexanoate; Sigma-Aldrich S3252)와 함께 질소 분위기 하에 첨가하고 70℃에서 1시간 동안 반응시켰다. 반응이 종결된 후 클로로포름을 사용하여 세척하면서 미반응 단량체를 제거하고, 석유 에테르(petrolium ether; SAMCHUN P0222)로 침전시킨 후 여과하였다. 수득물을 감압오븐에서 충분히 건조하여 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs)를 수득하였다.After equipping the three-neck round bottom flask with a stirrer and preparing the oil bath, 1 mole of PEO-PPO-PEO block copolymer (Pluronic P65, P84, P85 and P104, divided into P65, P84, P85 and P104, BASF) And 2-mole of (3-isocyanotopropyl) triethoxysilane ((3-isocyanotopropyl) triethoxysilane; Sigma-Aldrich 413364) catalyzed by 2-ethyl-hexanoate (Sigma-Aldrich S3252) Was added under nitrogen atmosphere and reacted at 70 ° C. for 1 hour. After the reaction was terminated by washing with chloroform to remove the unreacted monomer, precipitated with petroleum ether (petrolium ether; SAMCHUN P0222) and filtered. The obtained product was sufficiently dried in a vacuum oven to obtain PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane at the ends.
실시예 2: PEO-PPO-PEO 블록 공중합체들이 가교되어 형성된 지지체Example 2 Support Formed by Crosslinking of PEO-PPO-PEO Block Copolymers
30 ㎖ 바이알에 상기 실시예 1에 따라 제조한 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs)를 넣고 무수 테트라히드로퓨란(anhydrous tetrahydrofuranl; Sigma-Aldrich 401757) 4 ㎖을 첨가하여 용해시킨 후 여과하고, 졸-겔(sol-gel) 반응을 위해 산성용액을 첨가하였다. 상기 졸-겔 반응을 위한 산성용액으로는 물, 에탄올 및 염산을 1:3.2:0.13의 부피비로 혼합하여 제조한 용액을 사용하였다. 졸-겔 반응 후, 테프론 시트 위에 부어 40℃에서 12시간 동안 캐스팅(casting)하고 감압오븐에서 24시간 동안 충분히 건조하여 가교된 PEO-PPO-PEO 블록 공중합체(cPL-TPEs)로부터 제조된 지지체를 수득하였다.Anhydrous tetrahydrofuran (Sigma-Aldrich 401757) 4 was added to a 30 ml vial containing PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane, prepared according to Example 1 above. After adding ml to dissolve, it was filtered, and an acidic solution was added for sol-gel reaction. As the acid solution for the sol-gel reaction, a solution prepared by mixing water, ethanol and hydrochloric acid in a volume ratio of 1: 3.2: 0.13 was used. After the sol-gel reaction, the support prepared from crosslinked PEO-PPO-PEO block copolymers (cPL-TPEs) was poured on a teflon sheet and cast at 40 ° C. for 12 hours and dried sufficiently for 24 hours in a vacuum oven. Obtained.
실시예 3: 이온성 액체 및 가교된 PEO-PPO-PEO 블록 공중합체를 포함하는 전해질 막Example 3: Electrolyte Membrane Including an Ionic Liquid and Crosslinked PEO-PPO-PEO Block Copolymer
상기 실시예 2의 반응 혼합물 즉, 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs)를 넣고 무수 테트라히드로퓨란(anhydrous tetrahydrofuran) 4 ㎖을 첨가하여 용해시킬 때, 이온성 액체로서 BMIM-BF4((주) 씨트리)를 지지체에 대해 5 내지 150 중량%로 추가로 첨가하는 것을 제외하고는 상기 실시예 2와 동일하게 수행하여 이온성 액체가 첨가된 가교된 PEO-PPO-PEO 블록 공중합체(cPL-TPEs)로부터 제조된 전해질 막을 얻었다.When the reaction mixture of Example 2, that is, dissolve by adding PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane at the end and adding 4 ml of anhydrous tetrahydrofuran, Crosslinked PEO with ionic liquid added in the same manner as in Example 2, except that BMIM-BF 4 (seed) was added as an ionic liquid in an amount of 5 to 150% by weight based on the support. An electrolyte membrane prepared from -PPO-PEO block copolymers (cPL-TPEs) was obtained.
실시예 4: 이온성 액체 및 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막을 구비한 초고용량 축전기(supercapacitor)Example 4 Supercapacitor with Electrolyte Membrane Containing Ionic Liquid and Crosslinked PEO-PPO-PEO Block Copolymer
상기 실시예 3에 따라 제조된 전해질 막을 구비한 초고용량 축전기는 코인 셀(coin cell) 제조방법에 따라 제조하였다. 구체적으로, 그라핀(graphene) 전극을 천공기(punching tool)를 이용하여 14 파이로 잘랐다. 상기 그라핀 전극 위에 실시예 3에서 제조한 이온성 액체 BMIM-BF4 및 가교된 PEO-PPO-PEO 블록 공중합체(cPL-TPEs) 함유 전해질 막을 얹고 그 위에 다시 그라핀 전극을 올려 감압오븐에서 충분히 건조시킨 후 코인 셀을 제조하였다. 상기 구체적인 제작과정을 도식화하여 도 2에 나타내었다.An ultracapacitor having an electrolyte membrane prepared according to Example 3 was prepared according to a coin cell manufacturing method. Specifically, the graphene electrode was cut into 14 pi using a punching tool. An electrolyte membrane containing the ionic liquid BMIM-BF 4 and the cross-linked PEO-PPO-PEO block copolymers (cPL-TPEs) prepared in Example 3 was placed on the graphene electrode, and the graphene electrode was placed on the graphene electrode again. After drying, a coin cell was prepared. Figure 2 shows the specific manufacturing process.
실시예 5: 이온성 액체를 포함하는 cPL-TPE 전해질 용액에 전극을 함침시켜 제조한 초고용량 축전기Example 5 Ultracapacitor Capacitor Fabricated by Impregnating an Electrode in a cPL-TPE Electrolyte Solution Containing an Ionic Liquid
상기 실시예 2의 반응 혼합물 즉, 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs)를 넣고 무수 테트라히드로퓨란(anhydrous tetrahydrofuran) 4 ㎖을 첨가하여 용해시킬 때, 이온성 액체로서 BMIM-BF4((주) 씨트리)를 지지체에 대해 5 내지 150 중량% 첨가하여 이온성 액체와 고분자의 혼합 용액을 준비하였다. 14 파이로 자른 그라핀 전극을 상기 용액에 담그거나 상기 용액을 그라핀 전극 상에 브러싱하여 전극에 전해질을 함침시킴으로써 전해질 담지 전극을 제조하였다. 상기 함침공정을 통하여 고체 전해질과 전극 사이의 계면 특성을 향상시킬 수 있었다. 이와 같이 제조한 2개의 전해질 담지 전극을 상호 결합하여 감압오븐에서 충분히 건조시킨 후 코인 셀을 제조하였다. 이때, 두 전극 사이에 충분한 간격을 확보하기 위하여 전해질 담지 전극 사이에 추가로 실시예 3에 따라 제조한 전해질 막을 도입할 수 있다. 상기 전해질 담지 전극 및 상기 전극으로부터 초고용량 축전기를 제조하는 방법을 도 3에 개략적으로 나타내었다.When the reaction mixture of Example 2, that is, dissolve by adding PEO-PPO-PEO block copolymers (PL-TPEs) capped with triethoxysilane at the end and adding 4 ml of anhydrous tetrahydrofuran, 5 to 150% by weight of BMIM-BF 4 (Cytree Co., Ltd.) was added to the support to prepare a mixed solution of the ionic liquid and the polymer as the ionic liquid. An electrolyte carrying electrode was prepared by dipping a graphene electrode cut into 14 pies in the solution or brushing the solution on the graphene electrode to impregnate the electrolyte. Through the impregnation process, the interface property between the solid electrolyte and the electrode could be improved. The two electrolyte supporting electrodes thus prepared were combined with each other and sufficiently dried in a reduced pressure oven to prepare a coin cell. At this time, in order to secure a sufficient gap between the two electrodes, an electrolyte membrane prepared according to Example 3 may be introduced between the electrolyte supporting electrodes. The electrolyte supporting electrode and a method of manufacturing an ultracapacitor from the electrode are schematically illustrated in FIG. 3.
실험예 1: 적외선 분광법을 이용한 블록 공중합체의 합성 여부 확인 및 구조 동정Experimental Example 1 Synthesis and Identification of Block Copolymers Using Infrared Spectroscopy
상기 실시예 1 및 2에 따라 제조한 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs) 및 가교된 PEO-PPO-PEO 블록 공중합체(cPL-TPEs)의 합성 여부를 확인하고, 그 구조를 동정하기 위하여 적외선 분광광도계를 이용하여 적외선 스펙트럼을 얻었다. 시편은 필름 형성이 가능한 것은 KRS-5 디스크 위에 얇게 캐스팅하여 준비하였고, 필름 형성이 어려운 것은 KBr 분말에 샘플을 혼합한 후 곱게 분쇄하고 프레스로 압력을 가해 얇은 판막으로 만들어 사용하였다. 실험 조건은 4000-400 cm-1 영역에서 24회 반복 측정하였다. 측정된 적외선 투과 스펙트럼을 도 4에 나타내었다.Synthesis of PEO-PPO-PEO Block Copolymers (PL-TPEs) and Cross-linked PEO-PPO-PEO Block Copolymers (cPL-TPEs) Capped with Triethoxysilane Terminals Prepared According to Examples 1 and 2 In order to confirm whether or not the structure thereof was identified, an infrared spectrum was obtained using an infrared spectrophotometer. Specimens were prepared by casting a thin film on the KRS-5 disk to form a film, and difficult to form a film was mixed with a sample of KBr powder, finely ground and pressed into a thin plate by using a press. Experimental conditions were measured 24 times in the 4000-400 cm -1 region. The measured infrared transmission spectrum is shown in FIG. 4.
도 4에 나타난 바와 같이, 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체는 우레탄 결합에 의해 형성되는 바, 3513 cm-1에서의 N-H 흡수피크와 1721 cm-1에서의 C=O 흡수피크를 확인할 수 있었다. 한편, 가교된 PEO-PPO-PEO 블록 공중합체 또한 우레탄 결합을 포함하므로 이에 따른 3513 cm-1에서의 N-H 흡수피크와 1721 cm-1에서의 C=O 흡수피크를 확인할 수 있었다. 추가적으로, 상대적으로 1253 cm-1에서의 Si-CH2 피크는 감소하는 한편 1109 cm-1에서 Si-O-Si 피크가 크게 증가된 사실로부터 트리에톡시실란이 분해되면서 가교결합이 형성되었음을 유추할 수 있다.As shown in FIG. 4, the PEO-PPO-PEO block copolymers capped with triethoxysilane at the ends are formed by urethane bonds, with NH absorption peak at 3513 cm −1 and C at 1721 cm −1 . = O absorption peak was confirmed. On the other hand, since the cross-linked PEO-PPO-PEO block copolymer also includes a urethane bond, the NH absorption peak at 3513 cm −1 and the C═O absorption peak at 1721 cm −1 could be confirmed. In addition, it can be inferred that the cross-linking was formed by the decomposition of triethoxysilane from the fact that the Si-CH 2 peak at 1253 cm -1 decreased while the Si-O-Si peak was greatly increased at 1109 cm -1 . Can be.
실험예 2: 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막의 열적 안정성 분석Experimental Example 2: Thermal Stability Analysis of Electrolyte Membrane Containing Crosslinked PEO-PPO-PEO Block Copolymer
상기 실시예 1 내지 3에 따라 제조한 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체(PL-TPEs) 또는 가교된 PEO-PPO-PEO 블록 공중합체(cPL-TPEs)로부터 제조된 지지체와 상기 이온성 액체를 30 중량% 함유한 가교된 PEO-PPO-PEO 블록 공중합체로 된 전해질 막(cPL-TPEs)에 대해 열중량분석(thermogravimetric analysis; TGA)을 수행하여 상기 전해질 막의 열적 안정성을 확인하였다. 대조군으로는 수식하지 않은 PEO-PPO-PEO 블록 공중합체로 제조한 전해질 막(Pluronic P84)을 사용하였다. 질소분위기 하에서 상온부터 800℃까지 10℃/min로 승온시키면서 분석을 수행하였다. 그 결과는 도 5에 나타내었다.Terminals prepared according to Examples 1 to 3 prepared from PEO-PPO-PEO block copolymers (PL-TPEs) or crosslinked PEO-PPO-PEO block copolymers (cPL-TPEs) capped with triethoxysilane Thermogravimetric analysis (TGA) was performed on the electrolyte membrane (cPL-TPEs) of a crosslinked PEO-PPO-PEO block copolymer containing 30% by weight of the supported support and the ionic liquid. The stability was confirmed. As a control, an electrolyte membrane (Pluronic P84) made of an unmodified PEO-PPO-PEO block copolymer was used. The analysis was performed while raising the temperature at 10 ° C./min from room temperature to 800 ° C. under a nitrogen atmosphere. The results are shown in FIG.
도 5에 나타난 바와 같이, 말단이 트리에톡시실란으로 캡핑된 PEO-PPO-PEO 블록 공중합체 함유 지지체(실시예 1)의 경우 무기물의 존재로 인해 열 전달이 낮아져 초기 분해 온도가 약간 낮아짐을 확인할 수 있었다. 한편 가교된 PEO-PPO-PEO 블록 공중합체 함유 지지체(실시예 2) 및 이에 이온성 액체를 함침시킨 전해질 막(실시예 3)에 있어서 열 분해 최대 온도는 대조군인 PEO-PPO-PEO 블록 공중합체 함유 전해질 막보다 다소 증가한 것을 확인할 수 있었는데, 이는 트리에톡시실란 부분이 깨지면서 생기는 지방족 사슬(aliphatic chain)으로 인한 것으로 유추할 수 있다.As shown in FIG. 5, in the case of the PEO-PPO-PEO block copolymer-containing support (Example 1) capped with triethoxysilane at the end, the heat transfer was lowered due to the presence of the inorganic material, and thus the initial decomposition temperature was slightly lowered. Could. On the other hand, in the crosslinked PEO-PPO-PEO block copolymer-containing support (Example 2) and the electrolyte membrane impregnated with the ionic liquid (Example 3), the maximum thermal decomposition temperature was PEO-PPO-PEO block copolymer as a control. It was confirmed that there is a slight increase than the containing electrolyte membrane, which may be inferred due to the aliphatic chain generated when the triethoxysilane portion is broken.
실험예 3: 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막의 시차주사열량계 분석결과Experimental Example 3 Analysis of Differential Scanning Calorimetry of an Electrolyte Membrane Containing a Crosslinked PEO-PPO-PEO Block Copolymer
시차주사열량계(differential scanning calorimetry; DSC, Q 1000, TA instrument)를 사용하여 질소 분위기 하에서 -50℃로부터 250℃까지 10℃/min 속도로 승온시키면서, 전해질 막의 열적 특성을 측정하였다.Differential scanning calorimetry (DSC, Q 1000, TA instrument) was used to measure the thermal properties of the electrolyte membrane while raising the temperature from -50 ° C to 250 ° C at a rate of 10 ° C / min under a nitrogen atmosphere.
PEO(poly(ethylene oxide)), 전구체인 PEO-PPO-PEO 삼원불록 공중합체 및 가교된 PEO-PPO-PEO 삼원블록 공중합체의 용융온도도 확인하였다. 상기 삼원블록 공중합체로는 PEO를 약 40 중량% 포함하는 평균 분자량 4200의 PL84를 사용하였다. 그 결과는 도 6에 나타내었다.The melting temperature of PEO (poly (ethylene oxide)), precursor PEO-PPO-PEO tertiary block copolymer and crosslinked PEO-PPO-PEO terpolymer block copolymer was also confirmed. As the three-block copolymer, PL84 having an average molecular weight of 4200 containing about 40% by weight of PEO was used. The results are shown in FIG.
도 6에 나타난 바와 같이, 전구체인 P84와 이온성 액체 BMIM-BF4를 함유한 PEO의 용융온도는 각각 35℃와 53℃로 나타났다. 그러나, 이온성 액체를 함유한 cPL-TPE의 경우에는 용융온도를 나타내는 피크가 관찰되지 않았으며, 이는 PEO-PPO-PEO의 가교결합에 의한 것으로, 이는 상기 가교결합에 의해 cPL-TPE 전해질 막의 열적 안정성이 향상되었음을 나타내는 것이다.As shown in FIG. 6, the melting temperatures of PEO containing the precursor P84 and the ionic liquid BMIM-BF 4 were 35 ° C. and 53 ° C., respectively. However, in the case of cPL-TPE containing an ionic liquid, no peak indicating melting temperature was observed, which is due to crosslinking of PEO-PPO-PEO, which is thermally induced in the cPL-TPE electrolyte membrane by the crosslinking. This indicates that the stability is improved.
실험예 4: 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막의 결정성Experimental Example 4: Crystallinity of Electrolyte Membrane Containing Crosslinked PEO-PPO-PEO Block Copolymer
상기 실시예 3에 따라 제조한 전해질 막의 결정성을 확인하기 위하여, 광각 X-선 산란(wide angle X-ray scattering; WAXS) 분석을 수행하였다. 이온성 액체를 50 중량% 함유한, PEO 및 분자량 및 분자 내 PEO의 함량을 고려하여 선택한 다양한 PEO-PPO-PEO 삼원블록 공중합체(P65, P84, P104 및 P85)를 각각 가교시켜 제조한 가교된 PEO-PPO-PEO 삼원블록 공중합체(cPL-TPE)로부터 제조한 전해질 막의 결정성 차이를 확인하였다. 그 결과는 도 7에 나타내었다. 상기 P65 및 P85는 각각 3400 및 4600의 평균 분자량을 가지며 이들 공중합체는 약 50 중량%로 PEO를 포함하며, P84 및 P104는 각각 4200 및 5900의 평균 분자량을 가지며 이들 공중합체는 약 40 중량%로 PEO를 포함한다.In order to confirm the crystallinity of the electrolyte membrane prepared according to Example 3, a wide angle X-ray scattering (WAXS) analysis was performed. Crosslinked, prepared by crosslinking PEO containing 50% by weight of ionic liquid and various PEO-PPO-PEO terpolymers (P65, P84, P104 and P85) selected, taking into account the molecular weight and the molecular weight of PEO. The crystallinity difference of the electrolyte membrane prepared from the PEO-PPO-PEO terpolymer block copolymer (cPL-TPE) was confirmed. The results are shown in FIG. P65 and P85 each have an average molecular weight of 3400 and 4600 and these copolymers contain PEO at about 50% by weight, P84 and P104 have an average molecular weight of 4200 and 5900 respectively and these copolymers are at about 40% by weight Contains PEO.
도 7에 나타난 바와 같이, 이온성 액체를 함침시킨 후에도 PEO 전해질 막은 여전히 높은 결정성을 나타내는 반면, cPL-TPE 전해질 막은 모두 결정성을 나타내지 않았다. 이는, cPL-TPE 전해질 막의 제조과정에 있어서, 졸-겔 반응을 이용한 가교반응을 통해 결정구조의 형성이 억제되었음을 나타내는 것이다. 일반적으로 결정구조를 갖는 물질이 무정형 구조의 물질에 비해 낮은 이온전도성을 나타냄을 고려할 때, 위와 같은 결과는 cPL-TPE 전해질 막이 PEO 전해질 막에 비해 이온전달에 유리한 구조적 특성을 보유함을 나타내는 것이다.As shown in FIG. 7, even after impregnating the ionic liquid, the PEO electrolyte membrane still showed high crystallinity, whereas the cPL-TPE electrolyte membrane did not all exhibit crystallinity. This indicates that formation of a crystal structure was suppressed through a crosslinking reaction using a sol-gel reaction in the manufacturing process of the cPL-TPE electrolyte membrane. In general, considering that a material having a crystal structure exhibits lower ionic conductivity than a material having an amorphous structure, the above results indicate that the cPL-TPE electrolyte membrane has structural properties favoring ion transfer compared to a PEO electrolyte membrane.
실험예 5: 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막의 기계적 물성Experimental Example 5: Mechanical Properties of Electrolyte Membrane Containing Crosslinked PEO-PPO-PEO Block Copolymer
상기 실시예 3에 따라 제조된 전해질 막의 기계적 물성을 확인하기 위하여, 100N의 로드셀(load cell)을 이용한 UTM(universal test machine, LR 50k, Lloyd instrument Ltd., UK)으로 인장강도(tensile stress)를 측정하였다. 인장시편은 길이 60 mm, 너비 10 mm, 두께 0.06 mm의 필름형태로 제조하였으며, 5 mm/min의 인장속도로 측정하였다. 상기 실험예 4에 사용한 것과 동일하게 이온성 액체(BMIM-BF4)를 50 중량% 함유한, PEO 및 다양한 PEO-PPO-PEO 삼원블록 공중합체(PL65, PL84, PL104 및 PL85)를 각각 가교시켜 제조한 가교된 PEO-PPO-PEO 삼원블록 공중합체(cPL-TPE)로부터 제조한 전해질 막에 대한 인장강도를 측정하여 함께 도 8에 나타내었다.In order to confirm the mechanical properties of the electrolyte membrane prepared according to Example 3, tensile stress was measured by a universal test machine (UTM) using a 100N load cell (LR 50k, Lloyd instrument Ltd., UK). Measured. Tensile specimens were prepared in the form of a film 60 mm long, 10 mm wide, and 0.06 mm thick, and were measured at a tensile speed of 5 mm / min. PEO and various PEO-PPO-PEO terpolymers (PL65, PL84, PL104 and PL85) containing 50% by weight of an ionic liquid (BMIM-BF 4 ) were crosslinked, respectively, as used in Experimental Example 4. Tensile strength of the electrolyte membrane prepared from the prepared crosslinked PEO-PPO-PEO terpolymer block copolymer (cPL-TPE) was measured and shown in FIG. 8.
BMIM-BF4를 50 중량% 함유하는 경우 PEO는 결정구조로 인해 5% 이하의 매우 낮은 변형률을 나타내었다. 그러나, cPL-TPE 전해질 막은 동일한 조건에서 최대 약 55%까지의 변형률을 나타내는, 우수한 기계적 물성을 가지고 있음을 확인하였다.When containing 50% by weight of BMIM-BF 4 , PEO exhibited a very low strain of less than 5% due to the crystal structure. However, the cPL-TPE electrolyte membrane was found to have excellent mechanical properties, showing a strain of up to about 55% under the same conditions.
실험예 6: 이온성 액체 함량에 따른 전해질 막의 전도도 분석Experimental Example 6 Analysis of Conductivity of Electrolyte Membrane According to Ionic Liquid Content
6.1. 이온성 액체 함량에 따른 전해질 막의 이온전도도 분석6.1. Ion Conductivity Analysis of Electrolyte Membrane According to Ionic Liquid Content
상기 실시예 3에 따른 이온성 액체 및 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막에서 이온성 액체 함량에 따른 이온 전도능을 확인하기 위하여 이온성 액체의 함량을 10, 20, 30, 50 또는 70 중량%로 변화시키면서 전해질 막을 제조하고, 각각 25℃, 40℃, 60℃ 및 80℃의 온도에서 이의 저항을 측정하여 이온전도도를 계산하였다. 비교군으로는 고분자로서 가교된 PEO-PPO-PEO 블록 공중합체 대신 고분자 전해질로 널리 사용되는 재료인 폴리비닐알콜(polyvinyl alcohol; PVA) 및 본 발명에 따른 고분자의 전도성 부분인 PEO 만을 사용하여 제조한 지지체에 이온성 액체를 함침시킨 전해질 막을 사용하였다. 또한 상기 각 전해질 막에 대해 온도를 변화시키면서 이온전도도를 도시하였다. 실험은 질소분위기 하에서 25℃부터 40℃, 60℃ 및 80℃까지 온도를 변화시키면서 3Hz로부터 4MHz까지의 주파수 범위에서 진행하였다. 그 결과는 도 9에 나타내었다.In order to confirm the ion conductivity according to the ionic liquid content in the ionic liquid and the crosslinked PEO-PPO-PEO block copolymer electrolyte membrane according to Example 3, the content of the ionic liquid was 10, 20, 30, 50 Alternatively, the electrolyte membrane was prepared while changing to 70% by weight, and its resistance was measured at 25 ° C, 40 ° C, 60 ° C, and 80 ° C, respectively, to calculate the ion conductivity. Comparative group prepared using only polyvinyl alcohol (PVA), a material widely used as a polymer electrolyte, and PEO, a conductive part of the polymer according to the present invention, instead of a crosslinked PEO-PPO-PEO block copolymer as a polymer. An electrolyte membrane in which the support was impregnated with an ionic liquid was used. In addition, the ion conductivity is shown while changing the temperature for each of the electrolyte membranes. The experiment was conducted in a frequency range from 3 Hz to 4 MHz with varying temperatures from 25 ° C. to 40 ° C., 60 ° C. and 80 ° C. under nitrogen atmosphere. The results are shown in FIG.
도 9에 나타난 바와 같이, 모든 온도(25, 40, 60 및 80℃)에서 동일한 함량으로 이온성 액체를 포함하는 경우 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막이 PVA 또는 PEO로부터 제조된 전해질 막에 비해 높은 이온전도도를 가짐을 확인하였다. 또한 동일한 온도 및 고분자 조건 하에서 이온성 액체의 함량이 증가할수록 이온전도도가 증가하였다.As shown in FIG. 9, an electrolyte membrane containing a crosslinked PEO-PPO-PEO block copolymer prepared from PVA or PEO when the ionic liquid was included in the same content at all temperatures (25, 40, 60 and 80 ° C.) It was confirmed that it has a higher ion conductivity than the membrane. In addition, the ion conductivity increased as the content of the ionic liquid increased under the same temperature and polymer conditions.
대조군으로는 이온성 액체를 함유하지 않는 가교된 PEO-PPO-PEO 블록 공중합체로 제조한 막을 전해질 막으로 이용하여 실험하였으나, 전해질의 부재로 현저히 낮은 이온전도도를 나타내었으므로, 이후 실험에는 사용하지 않았다.As a control group, a membrane made of a crosslinked PEO-PPO-PEO block copolymer containing no ionic liquid was used as an electrolyte membrane. However, since the membrane showed a remarkably low ion conductivity in the absence of an electrolyte, it was not used in subsequent experiments. Did.
상기 PEO-PPO-PEO 블록 공중합체는 분자량 및 분자 내 PEO의 함량을 고려하여 선택하였다. P65 및 P85는 각각 3400 및 4600의 평균 분자량을 가지며 이들 공중합체는 약 50 중량%로 PEO를 포함한다. 한편, P84 및 P104는 각각 4200 및 5900의 평균 분자량을 가지며 이들 공중합체는 약 40 중량%로 PEO를 포함한다. 상기 4종의 블록 공중합체 모두 PVA 및 PEO 만으로 제조한 전해질 막에 비해 모든 온도 범위에서 현저히 증가된 이온전도도를 나타내었다. 특히, PVA의 경우 이온성 액체를 10% 함유한 전해질 막에 대해서만 테스트하였으나, 동일한 함량으로 이온성 액체를 포함하는 본 발명에 따른 전해질 막(cPL-TPEs(P65), cPL-TPEs(P84), cPL-TPEs(P85) 및 cPL-TPEs(P104))이나 PEO 막에 비해 현저히 낮은 이온전도도를 나타내었으므로, 이러한 차이는 이온성 액체의 함량이 증가한다 하더라도 극복될 수 없는 것으로 판단하여 더이상의 실험을 진행하지 않았다. 분자량이 가장 낮은 P65의 경우 P84, P85 또는 P104에 비해 낮은 이온전도도를 나타내었는데, 이는 상대적으로 사슬의 길이가 짧아 보다 많은 가교 결합을 형성하기 때문인 것으로 유추되었다. 한편, P85의 경우 P104보다 분자량이 낮음에도 불구하고 전도성 PEO를 10 중량% 더 포함함으로써 보다 높은 이온전도도를 나타내는 것을 확인할 수 있었다. 또한, P84는 이와 유사한 수준의 분자량을 가지나 PEO 함량이 10 중량% 정도 더 높은 P85에 비해 다소 낮은 이온전도도를 나타내었으며, 동일한 수준으로 PEO를 함유하고 있으나 분자량이 더 높은 P104에 비해서도 다소 낮은 이온전도도를 나타내는 것을 확인하였다. 이로부터 전해질 막의 이온전도도는 전해질 막에 함침된 전해질 용액 즉, 이온성 액체의 함량뿐만 아니라, 상기 전해질 막을 구성하는 블록 공중합체의 분자량 및 이중 전도성 PEO 부분의 함량에 의해 복합적으로 결정됨을 유추할 수 있었다. 도 9에 나타난 바와 같이, 전해질 막의 이온전도도는 P85 및 P104에서 가장 높은 수준을 나타내었으나, 이들 전해질 막은 기계적 물성이 다소 약하여 100 중량%의 이온성 액체를 함유하도록 제조하는 것이 어려워 우수한 이온전도성을 나타내면서도 기계적 물성이 우수한 P84를 함유하는 전해질 막을 구비한 셀을 제조하여 성능을 시험하였다.The PEO-PPO-PEO block copolymer was selected in consideration of molecular weight and content of PEO in the molecule. P65 and P85 have average molecular weights of 3400 and 4600 respectively and these copolymers comprise PEO at about 50% by weight. On the other hand, P84 and P104 have average molecular weights of 4200 and 5900 respectively and these copolymers comprise PEO at about 40% by weight. All four block copolymers showed a markedly increased ion conductivity at all temperature ranges compared to electrolyte membranes prepared only with PVA and PEO. In particular, in the case of PVA, only the electrolyte membrane containing 10% of the ionic liquid was tested, but the electrolyte membrane (cPL-TPEs (P65), cPL-TPEs (P84), Since the ionic conductivity was significantly lower than that of cPL-TPEs (P85) and cPL-TPEs (P104)) or PEO membranes, these differences could not be overcome even if the ionic liquid content was increased. Did not proceed. P65, which has the lowest molecular weight, showed lower ionic conductivity than P84, P85, or P104, because it was relatively short in chain length to form more crosslinks. On the other hand, in the case of P85, even though the molecular weight is lower than P104, it was confirmed that exhibiting a higher ionic conductivity by further containing 10% by weight of conductive PEO. In addition, P84 has a similar molecular weight but slightly lower ionic conductivity than P85, which has a PEO content of about 10% by weight, and has a lower level of ionic conductivity than that of P104 containing PEO at the same level. It confirmed that it represents. From this, it can be inferred that the ionic conductivity of the electrolyte membrane is determined not only by the content of the electrolyte solution, that is, the ionic liquid, impregnated in the electrolyte membrane, but also by the molecular weight of the block copolymer constituting the electrolyte membrane and the content of the double conductive PEO moiety. there was. As shown in FIG. 9, the ionic conductivity of the electrolyte membranes was the highest at P85 and P104, but these electrolyte membranes were slightly weak in mechanical properties, making it difficult to manufacture 100% by weight of the ionic liquid, showing excellent ion conductivity. Also, a cell having an electrolyte membrane containing P84 having excellent mechanical properties was prepared and tested for performance.
특히, 실온에 가까운 25℃와 80℃의 고온에서 측정된 이온성 액체 함량에 따른 이온전도도를 직접 비교하기 위하여 하나의 도면으로 병합하여 도 9e에 나타내었다. 도 9e에 나타난 바와 같이, 25℃의 저온에서도 PEO 전해질 막에 비해 사용한 고분자의 종류에 무관하게 가교된 고분자인 cPL-TPE를 포함하는 전해질 막 모두에서 보다 높은 이온전도도를 나타냄을 확인하였다. 아울러, 동일한 가교된 고분자 cPL-TPE 전해질 막에 대해 이온성 액체 함량이 동일한 경우 10 내지 70 중량% 전 범위에 걸쳐 80℃ 즉, 고온에서 높은 이온전도도를 나타내는 것을 확인하였다.In particular, in order to directly compare the ionic conductivity according to the ionic liquid content measured at a high temperature of 25 ℃ and 80 ℃ close to the room temperature is shown in Figure 9e combined. As shown in FIG. 9E, it was confirmed that even at a low temperature of 25 ° C., all of the electrolyte membranes including cPL-TPE, which is a crosslinked polymer, exhibited higher ion conductivity than the PEO electrolyte membrane. In addition, it was confirmed that the same cross-linked polymer cPL-TPE electrolyte membrane exhibits high ionic conductivity at 80 ° C., that is, at a high temperature, over the entire range of 10 to 70 wt% when the ionic liquid content is the same.
6.2. 온도에 따른 전해질 막의 이온전도도 분석6.2. Ion Conductivity Analysis of Electrolyte Membrane with Temperature
상기 실시예 3에 따라 제조한 이온성 액체 및 가교된 PEO-PPO-PEO 블록 공중합체 함유 전해질 막의 온도에 따른 이온 전도능을 확인하기 위하여 이온성 액체를 각각 10, 50 또는 70 중량%로 포함하는 전해질 막을 제조하고, 온도를 25℃로부터 80℃까지 증가시키면서 상기 전해질 막의 저항을 측정하여 이온전도도를 계산하였다. 상기 이온성 액체로는 BMIM-BF4를 사용하였으며, 그 결과는 도 10에 나타내었다.In order to confirm the ion conductivity of the ionic liquid and the cross-linked PEO-PPO-PEO block copolymer-containing electrolyte membrane prepared according to Example 3 according to the temperature of 10, 50 or 70% by weight, respectively An electrolyte membrane was prepared, and the ion conductivity was calculated by measuring the resistance of the electrolyte membrane while increasing the temperature from 25 ° C to 80 ° C. BMIM-BF 4 was used as the ionic liquid, and the results are shown in FIG. 10.
도 10에 나타난 바와 같이, 25℃ 내지 80℃의 전 온도범위에서 가교된 PEO-PPO-PEO 블록 공중합체 전해질 막(cPL-TPE)은 PEO 전해질 막에 비해 증가된 이온전도도를 나타내었다. 구체적으로 이온성 액체를 70 중량% 포함하는 cPL-TPE(P85)에 대해 상온에서의 이온전도도 수치가 5×10-4 S/cm에 달하는 등 우수한 결과는 나타냄을 확인하였다. 또한, 전해질 막 자체의 낮은 용융온도(53℃)로 인해 60℃ 이하에서만 측정이 가능한 PEO 전해질 막과는 달리, cPL-TPE는 80℃까지도 안정적인 이온전도도의 측정이 가능하였으며, 이는 높은 구동온도 환경에서도 유리한 특성을 가짐을 나타내는 것이다.As shown in FIG. 10, the crosslinked PEO-PPO-PEO block copolymer electrolyte membrane (cPL-TPE) exhibited an increased ion conductivity compared to the PEO electrolyte membrane in the entire temperature range of 25 ° C to 80 ° C. Specifically, the cPL-TPE (P85) containing 70% by weight of the ionic liquid, the ion conductivity value at room temperature reached 5 × 10 -4 S / cm, it was confirmed that excellent results are shown. In addition, unlike PEO electrolyte membrane, which can be measured only below 60 ℃ due to the low melting temperature (53 ℃) of the electrolyte membrane itself, cPL-TPE was able to measure stable ion conductivity up to 80 ℃. Also indicates that it has advantageous properties.
6.3. 담지된 이온성 액체의 종류에 따른 전해질 막의 이온전도도 분석6.3. Analysis of Ion Conductivity of Electrolyte Membrane According to the Type of Supported Ionic Liquid
상용되고 있는 다양한 이온성 액체 중에서 초고용량 축전기에 주로 사용되는 EMIM-TFSI, EMIM-BF4 및 BMIM-BF4를 각각 100 또는 150 중량%로 포함하는 cPL-TPE(P84) 전해질 막을 제조하고 이들의 수소이온전도도를 측정하였고, 그 결과를 도 11에 나타내었다.Among various commercially available ionic liquids, cPL-TPE (P84) electrolyte membranes containing 100 or 150% by weight of EMIM-TFSI, EMIM-BF 4 and BMIM-BF 4 , which are mainly used for ultracapacitors, are prepared and their Hydrogen ion conductivity was measured and the results are shown in FIG. 11.
도 11에 나타난 바와 같이, 사용된 이온성 전해질의 종류 및 함량에 따라 다소간의 차이는 있으나, 상기 모든 이온성 액체를 포함하는 cPL-TPE 전해질 막은 상온으로부터 80℃까지 광범위한 범위의 온도에서 우수한 이온전도도를 나타내었다. 이로부터 이들 전해질 막은 모두 초고용량 축전기에 유용하게 사용될 수 있음을 확인하였다. 특히, 이들 이온성 액체 중, EMIM-TFSI를 포함하는 전해질 막이 우수한 이온전도성을 갖는 것을 확인하였다.As shown in FIG. 11, although there are some differences depending on the type and content of the ionic electrolyte used, the cPL-TPE electrolyte membrane including all the ionic liquids has excellent ion conductivity at a wide range of temperatures from room temperature to 80 ° C. Indicated. From this, it was confirmed that all these electrolyte membranes could be usefully used for ultra high capacity capacitors. In particular, among these ionic liquids, it was confirmed that the electrolyte membrane containing EMIM-TFSI had excellent ion conductivity.
실험예 7: 가교된 PEO-PPO-PEO 블록 공중합체를 포함하는 전해질 막을 포함하는 초고용량 축전기의 전기화학적 특성 분석Experimental Example 7: Analysis of the electrochemical characteristics of an ultra high capacity capacitor comprising an electrolyte membrane comprising a crosslinked PEO-PPO-PEO block copolymer
상기 실시예 4에 따라 코인 셀 형태로 제조한 초고용량 축전기의 전기화학적 특성을 확인하기 위하여 임피던스를 사용하여 순환전류법(cyclic voltammetry; CV) 및 정전류법(galvanostat)을 이용하였다. 상기 순환전류법은 0부터 3.2V까지 수행하였고, 정전류법은 전류밀도에 따라 3.2 V로 충전하고 0 V까지 방전시켜 수행하였다. 그 결과는 도 12에 나타내었다.Cyclic voltammetry (CV) and galvanostat were used to determine the electrochemical characteristics of the ultracapacitors manufactured in the form of coin cells according to Example 4. The circulating current method was performed from 0 to 3.2V, and the constant current method was performed by charging to 3.2V and discharging to 0V according to the current density. The results are shown in FIG.
도 12에 나타난 바와 같이, 이온성 액체를 100 중량%로 포함하도록 제조한 가교된 PEO-PPO-PEO 블록 공중합체로부터 제조된 전해질 막(IL-100wt% doped cPL-TPE(P84))을 포함하는 코인 셀은 3.2 V에서 작동전압이 나타났으며, 충전/방전 성능을 테스트한 결과 88.8 F/g의 용량을 가짐을 확인하였다.As shown in FIG. 12, an electrolyte membrane (IL-100 wt% doped cPL-TPE (P84)) prepared from a crosslinked PEO-PPO-PEO block copolymer prepared to contain 100% by weight of an ionic liquid was included. The coin cell showed an operating voltage at 3.2 V and tested its charge / discharge performance and found that it had a capacity of 88.8 F / g.
7.1. 전극 제조방법에 따른 초고용량 축전기의 전기화학적 특성분석7.1. Electrochemical Characterization of Ultracapacitors by Electrode Manufacturing Method
상기 실시예 4 및 5에 따라 코인 셀 형태로 제조된 초고용량 축전기 소자의 전기화학적 특성을 CV 분석을 통해 확인하였다. 전극으로는 750 m2/g의 비표면적을 갖는 그라핀을, 이온성 액체로는 BMIM-BF4를 이용하였으며, 대조군으로는 고분자 없이 전해질로서 이온성 액체인 BMIM-BF4만을 이용하였다. 결과는 도 13에 나타내었으며, 이온성 액체만을 이용한 대조군은 IL-dipping으로, 실시예 4에 따라 이온성 액체를 포함하는 고분자 전해질 막을 두 개의 전극 사이에 샌드위치 시켜 제조한 소자를 IL-100wt% doped cPL-TPE(P84)로, 실시예 5에 따라 함침공정을 통해 제조한 소자를 G750(150com)/IL100wt% doped cPL-TPE(P84)로 각각 표시하였다.The electrochemical characteristics of the ultracapacitor device manufactured in the form of coin cell according to Examples 4 and 5 were confirmed by CV analysis. Graphene having a specific surface area of 750 m 2 / g was used as an electrode, and BMIM-BF 4 was used as an ionic liquid, and only BMIM-BF 4 , an ionic liquid, was used as an electrolyte without a polymer as a control. The results are shown in Figure 13, the control using only ionic liquid is IL-dipping, IL-100wt% doped device prepared by sandwiching a polymer electrolyte membrane containing an ionic liquid between two electrodes according to Example 4 cPL-TPE (P84), the device manufactured through the impregnation process according to Example 5 was expressed as G750 (150com) / IL100wt% doped cPL-TPE (P84), respectively.
도 13에 나타난 바와 같이, 대조군과 비교하여 전해질 막을 전극 사이에 샌드위치시켜 제조한 소자의 CV 곡선은 면적이 다소 감소하였으며, 이는 비정전용량이 다소 감소하였음을 나타내는 것이다. 반면, 함침공정을 통해 제조한 소자는 CV 곡선에서 뚜렷한 면적 증가를 나타내었다. 이는 비정전용량의 향상을 의미하는 것이며, 또한 함침공정을 적용하는 경우 이온성 액체만을 사용한 대조군에 비해서도 높은 비정전용량(증가된 CV 곡선 면적)을 나타내는데, 이는 함침공정을 통해 효과적으로 전극과 전해질 간의 계면 특성을 향상시킬 수 있음을 나타내는 것이다. 즉, 전극에 직접 이온성 액체가 담지된 전해질 용액을 함침시켜 제조한 소자는 전극과 전해질 계면 특성이 향상되어 우수한 전기화학적 특성을 나타냄을 확인하였다.As shown in FIG. 13, the CV curve of the device manufactured by sandwiching the electrolyte membrane between the electrodes compared to the control showed a slight decrease in area, indicating a decrease in specific capacitance. On the other hand, the device manufactured through the impregnation process showed a marked increase in area of the CV curve. This implies the improvement of specific capacitance, and also shows higher specific capacitance (increased CV curve area) compared to the control using only ionic liquid when the impregnation process is applied. To indicate that it can be improved. That is, it was confirmed that the device manufactured by impregnating an electrolyte solution in which an ionic liquid was directly supported on the electrode exhibited excellent electrochemical properties by improving the electrode and electrolyte interface properties.
7.2. 담지된 이온성 액체의 종류에 따른 전기화학적 특성분석7.2. Electrochemical Characterization According to the Type of Supported Ionic Liquid
실시예 5에 따라 함침공정을 통해 소자를 제조하되 3가지 이온성 액체를 사용하여 150 중량% 담지시켜 전극을 제조하였다. 상기 3가지 다른 이온성 액체 즉, EMIM-BF4, EMIM-TFSI 및 BMIM-BF4를 포함하는 소자로부터 측정한 CV 곡선을 도 14에 나타내었다.The device was manufactured by the impregnation process according to Example 5, but the electrode was prepared by supporting 150 wt% using three ionic liquids. The CV curves measured from devices comprising these three different ionic liquids, EMIM-BF 4 , EMIM-TFSI and BMIM-BF 4 , are shown in FIG. 14.
도 14에 나타난 바와 같이, 실험예 6.3에서 나타난 이온전도도에 대한 결과와 유사하게, EMIM-BF4에 비해 EMIM-TFSI 또는 BMIM-BF4를 이온성 액체로 이용한 경우 보다 우수한 특성을 나타내었다.As shown in Figure 14, similar to the results of the ionic conductivity shown in Experimental Example 6.3, it exhibited excellent characteristics than the case of using than the EMIM-BF 4 or the EMIM-TFSI as an ionic liquid BMIM-BF 4.
7.3. 전류밀도에 따른 충방전 성능 분석7.3. Charge / discharge performance analysis according to current density
전류밀도에 따른 충방전 특성을 평가하기 위하여 다양한 전류밀도에서 비정전용량을 측정하여 비교하였다. 상기 실험예 7.1.에 사용한 대조군 및 2가지 실험군 소자를 사용하였다. 상기 3가지 소자에 대해 전류밀도에 대한 비정전용량(specific capacitance)을 측정하여 도 15에 나타내었다.In order to evaluate the charge and discharge characteristics according to the current density, the specific capacitances were measured and compared at various current densities. The control group and the two experimental group elements used in Experimental Example 7.1. Were used. Specific capacitances of current densities of the three devices are measured and shown in FIG. 15.
도 15에 나타난 바와 같이, 함침공정을 통해 제조한 소자가 전극에 전해질 막을 샌드위치시켜 제조한 소자나 이온성 액체만을 이용한 소자에 비해 비정전용량 값이 우수한 것을 확인하였다. 이는 상기 실험예 7.1.에 따른 CV 분석결과와도 일치하는 결과이다. 구체적으로, 750 m2/g의 비표면적을 갖는 그라핀 전극에 이온성 액체로 BMIM-BF4 및 가교된 PEO-PPO-PEO 삼원블록 공중합체 함유 용액을 함침시켜 제조한 소자는 전류밀도가 10 mA/g일 때, 111.14 F/g의 용량을 가짐을 확인하였다.As shown in FIG. 15, it was confirmed that the device manufactured through the impregnation process has a higher specific capacitance value than the device manufactured by sandwiching an electrolyte membrane on an electrode or a device using only an ionic liquid. This is also in agreement with the results of CV analysis according to Experimental Example 7.1. Specifically, a device prepared by impregnating a graphene electrode having a specific surface area of 750 m 2 / g with a solution containing BMIM-BF 4 and a crosslinked PEO-PPO-PEO terpolymer block copolymer with an ionic liquid has a current density of 10. At mA / g, it was confirmed that it had a dose of 111.14 F / g.
나아가, 실험예 7.2.에서와 유사하게 3가지 다른 이온성 액체를 사용하여 제조한 소자에 대해 상기 충방전 특성을 평가하고, 그 결과를 도 16에 나타내었다. 도 16에 나타난 바와 같이, EMIM-TFSI, BMEM-BF4 및 EMIM-BF4의 순서로 비정전용량을 나타냄을 확인하였으며, 이러한 결과는 실험예 6.3. 및 7.2.에서 나타난 이온전도도 및 CV 분석결과와도 일치하는 것이다. 각 소자에 대한 5 mA/g 전류밀도에서의 비정전용량 값을 이온성 액체만을 사용한 경우와 비교하여 하기 표 1에 나타내었다.In addition, the charge and discharge characteristics of the device manufactured using three different ionic liquids similar to those of Experimental Example 7.2 were evaluated, and the results are shown in FIG. 16. As shown in Figure 16, it was confirmed that the specific capacitance in the order of EMIM-TFSI, BMEM-BF 4 and EMIM-BF 4 , these results are shown in Experimental Example 6.3. It is also consistent with the ion conductivity and the CV analysis results shown in and 7.2. Specific capacitance values at 5 mA / g current density for each device are shown in Table 1 below compared with the case of using only the ionic liquid.
표 1
EMIM-TFSI BMIM-BF4 EMIM-BF4
함침공정(실시예 5) 119.51 F/g 119.85 F/g 103.93 F/g
고분자를 사용하지 않고이온성 액체만을 사용한 경우 83.75 F/g 83.93 F/g 81.71 F/g
Table 1
EMIM-TFSI BMIM-BF 4 EMIM-BF 4
Impregnation Process (Example 5) 119.51 F / g 119.85 F / g 103.93 F / g
When only ionic liquid is used without using polymer 83.75 F / g 83.93 F / g 81.71 F / g
상기 표 1에 나타난 바와 같이, 3가지 이온성 액체 모두에 대해 함침공정에 의해 제조된 소자에서 이온성 액체 자체만을 이용한 소자보다도 향상된 성능 즉, 보다 높은 비정전용량 수치를 나타냄을 확인하였다.As shown in Table 1, it was confirmed that the device manufactured by the impregnation process for all three ionic liquids showed improved performance, that is, higher specific capacitance value, than the device using only the ionic liquid itself.

Claims (24)

  1. 하기 화학식 1로 표시되는 폴리프로필렌옥사이드(poly(propylene oxide), PPO) 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드(poly(ethylene oxide), PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 제1고분자를 함유하는 수지조성물로부터 제조된 지지체로서,A block copolymer comprising at least one polypropylene oxide (PPO) block and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the following Formula 2 A support prepared from a resin composition containing a first polymer formed by
    상기 제1고분자는 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체들을 결합시켜 형성된 것인 지지체:The first polymer is formed by combining block copolymers having branchable functional groups at both ends thereof:
    [화학식 1][Formula 1]
    Figure PCTKR2014001632-appb-I000007
    Figure PCTKR2014001632-appb-I000007
    [화학식 2][Formula 2]
    Figure PCTKR2014001632-appb-I000008
    Figure PCTKR2014001632-appb-I000008
    상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
    상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
  2. 제1항에 있어서,The method of claim 1,
    상기 블록 공중합체는 PEO-PPO, PEO-PPO-PEO 또는 PPO-PEO-PPO 형태인 것이 특징인 지지체.The block copolymer is characterized in that the PEO-PPO, PEO-PPO-PEO or PPO-PEO-PPO form.
  3. 제1항에 있어서,The method of claim 1,
    상기 블록 공중합체는 PEO를 10 내지 90 질량%로 포함하는 것이 특징인 지지체.The block copolymer is characterized in that it comprises 10 to 90% by mass of PEO.
  4. 제1항에 있어서,The method of claim 1,
    상기 가지결합 가능한 작용기는 블록 공중합체의 양 말단에 직접 연결되거나; 에테르, 아미드, 우레탄, 에스테르로 구성된 군으로부터 선택되는 작용기 및 C1 내지 C18 알킬을 포함하는 간격자(spacer)를 포함하는 링커를 통해 연결된 것이 특징인 지지체.The branchable functional group is directly connected to both ends of the block copolymer; A support characterized in that it is connected via a linker comprising a functional group selected from the group consisting of ethers, amides, urethanes, esters and a spacer comprising C1 to C18 alkyl.
  5. 제1항에 있어서,The method of claim 1,
    상기 가지결합 가능한 작용기는 트리에톡시실란, 아크릴레이트 및 에폭시로 구성된 군으로부터 선택되는 것이 특징인 지지체.And wherein said branchable functional group is selected from the group consisting of triethoxysilane, acrylate, and epoxy.
  6. 제1항에 있어서,The method of claim 1,
    가교제가 추가로 포함된 수지조성물로부터 제조한 것이 특징인 지지체.A support characterized in that it is prepared from a resin composition further comprising a crosslinking agent.
  7. 제1항에 있어서,The method of claim 1,
    제1고분자는 10,000 내지 1,000,000의 수평균 분자량(Mn; number-average molecular weight) 또는 10,000 내지 10,000,000의 중량평균 분자량(Mw; weight-average molecular weight)을 갖는 것인 지지체.The first polymer has a number-average molecular weight (Mn) of 10,000 to 1,000,000 or a weight-average molecular weight (Mw) of 10,000 to 10,000,000.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 지지체 및 상기 지지체에 담지된 이온전도성 전해질을 포함하는 전해질 막.An electrolyte membrane comprising the support according to any one of claims 1 to 7 and an ion conductive electrolyte supported on the support.
  9. 제8항에 있어서,The method of claim 8,
    상기 이온전도성 전해질로서 5 내지 150 중량%의 이온성 액체를 함유한 것이 특징인 전해질 막.An electrolyte membrane comprising 5 to 150% by weight of an ionic liquid as the ion conductive electrolyte.
  10. 제9항에 있어서,The method of claim 9,
    이온성 액체를 지지체 형성 후 함침시키거나, 제1고분자 함유 수지조성물에 함유시켜, 이온성 액체를 담지한 전해질 막이 형성된 것인 전해질 막.An electrolyte membrane in which an ionic liquid is impregnated after formation of a support or contained in a first polymer-containing resin composition to form an electrolyte membrane supporting an ionic liquid.
  11. 하기 화학식 1로 표시되는 폴리프로필렌옥사이드(poly(propylene oxide), PPO) 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드(poly(ethylene oxide), PEO) 블록을 각각 하나 이상 포함하며 양 말단에는 가지결합 가능한 작용기를 구비한 블록 공중합체를 함유하는 전구체 용액을 준비하는 제1단계;To include a polypropylene oxide (poly (propylene oxide), PPO) block represented by the formula (1) and one or more polyethylene (poly (ethylene oxide), PEO) block represented by the formula (2), each branch can be branched A first step of preparing a precursor solution containing a block copolymer having a functional group;
    상기 가지결합 가능한 작용기의 가교반응을 유발하여, 제1고분자를 형성시키는 제2단계; 및A second step of inducing a crosslinking reaction of the branchable functional group to form a first polymer; And
    필름으로 성형하는 제3단계를 포함하는, 전해질 막의 제조방법:A method for producing an electrolyte membrane, comprising the third step of forming into a film:
    [화학식 1][Formula 1]
    Figure PCTKR2014001632-appb-I000009
    Figure PCTKR2014001632-appb-I000009
    [화학식 2][Formula 2]
    Figure PCTKR2014001632-appb-I000010
    Figure PCTKR2014001632-appb-I000010
    상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
    상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
  12. 제11항에 있어서,The method of claim 11,
    제2단계 및 제3단계는 동시에 수행하는 것이 특징인 제조방법.The second step and the third step is characterized in that the manufacturing at the same time.
  13. 제11항에 있어서,The method of claim 11,
    제2단계는 가열, 자외선 조사 또는 개시제의 첨가에 의해 달성되는 것인 제조방법.The second step is achieved by heating, ultraviolet irradiation or the addition of an initiator.
  14. 제11항에 있어서,The method of claim 11,
    상기 전구체 용액은 이온전도성 전해질을 추가로 포함하는 것이 특징인 제조방법.The precursor solution is characterized in that it further comprises an ion conductive electrolyte.
  15. 제11항에 있어서,The method of claim 11,
    제3단계에서 수득한 필름에 이온전도성 전해질을 함침시키는 단계를 추가로 포함하는 것인 제조방법.The method of claim 3 further comprising the step of impregnating the ion conductive electrolyte in the film obtained in the third step.
  16. 제14항 또는 제15항에 있어서,The method according to claim 14 or 15,
    상기 이온전도성 전해질은 이온성 액체 또는 유기전해질인 제조방법.The ion conductive electrolyte is a ionic liquid or an organic electrolyte.
  17. 제11항에 있어서,The method of claim 11,
    상기 전구체 용액은 가교제를 추가로 포함하는 것인 제조방법.The precursor solution further comprises a crosslinking agent.
  18. 하기 화학식 1로 표시되는 폴리프로필렌옥사이드(poly(propylene oxide), PPO) 블록 및 하기 화학식 2로 표시되는 폴리에틸렌옥사이드(poly(ethylene oxide), PEO) 블록을 각각 하나 이상 포함하는 블록 공중합체가 가지결합하여 형성된 제2고분자 및 이온전도성 전해질을 함유하는 전해질 용액을 전극에 함침시킨 전극-전해질 결합체로서,A block copolymer comprising at least one polypropylene oxide (PPO) block and at least one polyethylene (poly (ethylene oxide), PEO) block represented by the following Formula 2 An electrode-electrolyte combination in which an electrode is impregnated with an electrolyte solution containing a second polymer and an ion conductive electrolyte formed by
    상기 제2고분자는 양 말단에 가지결합 가능한 작용기를 구비한 블록 공중합체들을 결합시켜 형성된 것인 전극-전해질 결합체:The second polymer is an electrode-electrolyte combination formed by combining block copolymers having branchable functional groups at both ends:
    [화학식 1][Formula 1]
    Figure PCTKR2014001632-appb-I000011
    Figure PCTKR2014001632-appb-I000011
    [화학식 2][Formula 2]
    Figure PCTKR2014001632-appb-I000012
    Figure PCTKR2014001632-appb-I000012
    상기 식에서 블록의 크기인 m 및 n은 각각 독립적으로 1이상의 정수이며,In the above formula, m and n, which are block sizes, are each independently an integer of 1 or more,
    상기 블록 공중합체는 300 내지 100,000 Da의 분자량을 가짐.The block copolymer has a molecular weight of 300 to 100,000 Da.
  19. 제18항에 있어서,The method of claim 18,
    상기 한쌍의 전극-전해질 결합체를 전극이 외부를 향하도록 마주보게 결합시킨 것이 특징인 전극-전해질 결합체.And the pair of electrode-electrolyte combinations facing each other with the electrodes facing outwards.
  20. 제19항에 있어서,The method of claim 19,
    상기 한쌍의 전극-전해질 결합체를 사이에 제8항에 기재된 전해질 막을 추가로 포함하여 전극이 외부를 향하도록 마주보게 결합시킨 것이 특징인 전극-전해질 결합체.The electrode-electrolyte assembly, wherein the pair of electrode-electrolyte combinations further include an electrolyte membrane according to claim 8 so that the electrodes face each other to face the outside.
  21. 제8항 내지 제10항 중 어느 한 항에 기재된 전해질 막을 포함하는 이차전지.A secondary battery comprising the electrolyte membrane according to any one of claims 8 to 10.
  22. 제8항 내지 제10항 중 어느 한 항에 기재된 전해질 막을 포함하는 초고용량 축전기(supercapacitor).A supercapacitor comprising the electrolyte membrane according to any one of claims 8 to 10.
  23. 제18항 내지 제20항 중 어느 한 항에 기재된 전극-전해질 결합체를 구비한 이차전지.The secondary battery provided with the electrode-electrolyte assembly in any one of Claims 18-20.
  24. 제18항 내지 제20항 중 어느 한 항에 기재된 전극-전해질 결합체를 구비한 초고용량 축전기.An ultracapacitor having an electrode-electrolyte combination according to any one of claims 18 to 20.
PCT/KR2014/001632 2013-11-25 2014-02-27 Electrolyte membrane manufactured from resin composition containing ionic electrolyte and polymer formed by branch-bonding of block copolymer comprising polypropylene oxide block and polyethylene oxide block, and usage of same WO2015076461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0144155 2013-11-25
KR20130144155 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076461A1 true WO2015076461A1 (en) 2015-05-28

Family

ID=53179711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001632 WO2015076461A1 (en) 2013-11-25 2014-02-27 Electrolyte membrane manufactured from resin composition containing ionic electrolyte and polymer formed by branch-bonding of block copolymer comprising polypropylene oxide block and polyethylene oxide block, and usage of same

Country Status (2)

Country Link
KR (1) KR101718444B1 (en)
WO (1) WO2015076461A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071326A (en) * 2018-01-23 2019-07-30 三星电子株式会社 Tensile polymer dielectric, electrode and copolymer, electrochemical appliance and the method for preparing tensile copolymer
CN110770959A (en) * 2017-06-27 2020-02-07 株式会社日本触媒 Electrolyte composition, electrolyte membrane, electrode, battery, and method for evaluating electrolyte composition
CN112038693A (en) * 2020-09-11 2020-12-04 惠州亿纬锂能股份有限公司 Solid electrolyte and preparation method and application thereof
US11031624B2 (en) 2017-11-21 2021-06-08 Korea Institute Of Industrial Technology Polysilsesquioxane polyalkylene glycol polymer having urethane bonds, solid polymer electrolyte composition comprising the same and method of preparing the same
CN114551995A (en) * 2021-12-30 2022-05-27 吉林省东驰新能源科技有限公司 Five-block polymer, preparation method and application thereof, and five-block polymer electrolyte
CN116836381A (en) * 2023-09-02 2023-10-03 河南师范大学 Stable solid electrolyte membrane and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140883B (en) * 2016-03-30 2021-01-29 株式会社Lg化学 Solid polymer electrolyte and method for preparing same
CN110506353B (en) * 2017-04-13 2022-08-30 百拉得动力***公司 Membrane electrode assembly with improved cohesion
KR102618543B1 (en) * 2018-01-23 2023-12-27 삼성전자주식회사 Stretchable polymer electrolyte, Stretchable electrode, Stretchable polymer, Electrocheical device, and Preparation method of stretchable polymer
KR102517991B1 (en) * 2018-09-28 2023-04-03 주식회사 엘지에너지솔루션 A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
KR102538143B1 (en) * 2018-10-15 2023-05-26 주식회사 엘지에너지솔루션 A method for manufacturing an all solid state lithium secondary battery
WO2020262731A1 (en) * 2019-06-26 2020-12-30 주식회사 그리너지 Polymer electrolyte membrane, electrode structure and electrochemical device including same, and method for manufacturing polymer electrolyte membranesolid polymer electrolyte film
CN112509820B (en) * 2019-09-16 2022-03-29 天津大学 3D printing self-repairing flexible supercapacitor taking ionic gel electrolyte as substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608482B1 (en) * 2005-06-10 2006-08-02 한양대학교 산학협력단 Proton exchange membrane comprising compatibilizer and fuel cell comprising the same
KR20070077231A (en) * 2006-01-23 2007-07-26 주식회사 엘지화학 Lithium secondary battery employed with separator coating layer containing surfactant
KR20070078851A (en) * 2006-01-31 2007-08-03 주식회사 엘지화학 Lithium secondary battery employed with electrolyte containing hydrophilic-hydrophobic block copolymer
KR20100037796A (en) * 2008-10-02 2010-04-12 성균관대학교산학협력단 Polymer electrolyte, method for fabricating the electrolyte, and electrochemical capacitor and dye-sensitized solar cell including the electrolyte
US20100221614A1 (en) * 2006-03-31 2010-09-02 Denis Bertin Solid polymer electrolytes based on triblock copolymers, especially polystyrene-poly(oxyethylene)-polystyrene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608482B1 (en) * 2005-06-10 2006-08-02 한양대학교 산학협력단 Proton exchange membrane comprising compatibilizer and fuel cell comprising the same
KR20070077231A (en) * 2006-01-23 2007-07-26 주식회사 엘지화학 Lithium secondary battery employed with separator coating layer containing surfactant
KR20070078851A (en) * 2006-01-31 2007-08-03 주식회사 엘지화학 Lithium secondary battery employed with electrolyte containing hydrophilic-hydrophobic block copolymer
US20100221614A1 (en) * 2006-03-31 2010-09-02 Denis Bertin Solid polymer electrolytes based on triblock copolymers, especially polystyrene-poly(oxyethylene)-polystyrene
KR20100037796A (en) * 2008-10-02 2010-04-12 성균관대학교산학협력단 Polymer electrolyte, method for fabricating the electrolyte, and electrochemical capacitor and dye-sensitized solar cell including the electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770959A (en) * 2017-06-27 2020-02-07 株式会社日本触媒 Electrolyte composition, electrolyte membrane, electrode, battery, and method for evaluating electrolyte composition
CN110770959B (en) * 2017-06-27 2023-08-25 株式会社日本触媒 Electrolyte composition, electrolyte membrane, electrode, battery, and method for evaluating electrolyte composition
US11031624B2 (en) 2017-11-21 2021-06-08 Korea Institute Of Industrial Technology Polysilsesquioxane polyalkylene glycol polymer having urethane bonds, solid polymer electrolyte composition comprising the same and method of preparing the same
CN110071326A (en) * 2018-01-23 2019-07-30 三星电子株式会社 Tensile polymer dielectric, electrode and copolymer, electrochemical appliance and the method for preparing tensile copolymer
CN112038693A (en) * 2020-09-11 2020-12-04 惠州亿纬锂能股份有限公司 Solid electrolyte and preparation method and application thereof
CN114551995A (en) * 2021-12-30 2022-05-27 吉林省东驰新能源科技有限公司 Five-block polymer, preparation method and application thereof, and five-block polymer electrolyte
CN116836381A (en) * 2023-09-02 2023-10-03 河南师范大学 Stable solid electrolyte membrane and preparation method thereof
CN116836381B (en) * 2023-09-02 2024-03-08 河南师范大学 Stable solid electrolyte membrane and preparation method thereof

Also Published As

Publication number Publication date
KR20150061538A (en) 2015-06-04
KR101718444B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2015076461A1 (en) Electrolyte membrane manufactured from resin composition containing ionic electrolyte and polymer formed by branch-bonding of block copolymer comprising polypropylene oxide block and polyethylene oxide block, and usage of same
WO2019190126A1 (en) Complex solid electrolyte membrane for all-solid-state battery and all-solid-state battery including same
EP3093906A1 (en) Lithium metal battery
WO2017217596A1 (en) Composite electrolyte for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same
WO2011087334A2 (en) Electrolyte comprising an amide compound, and electrochemical device comprising the electrolyte
WO2019212315A1 (en) Method for manufacturing electrode comprising polymer-based solid electrolyte, and electrode manufactured by method
JPH03188157A (en) Solid electrolyte comprising crosslinked polymer
WO2020067792A1 (en) Method for manufacturing electrode comprising polymeric solid electrolyte, and electrode manufactured using same
WO2019212314A1 (en) Method for manufacturing all-solid-state battery comprising polymer-based solid electrolyte and all-solid-state battery manufactured by same method
WO2009091159A2 (en) Electrolyte having eutectic mixture and electrochemical device containing the same
WO2018056615A1 (en) Negative electrode comprising multiple protection layers and lithium secondary battery comprising same
WO2023068807A1 (en) Lithium secondary battery
WO2019212313A1 (en) Method for manufacturing electrode comprising polymeric solid electrolyte, and electrode manufactured using same
WO2021071125A1 (en) Lithium secondary battery and method for manufacturing lithium secondary battery
KR20120057168A (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
WO2017074116A1 (en) Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
KR101735585B1 (en) Electrolyte membrane made of resin composition comprising polymer formed by branching of multifunctional block copolymer comprising poly(propylene oxide) block and poly(ethylene oxide) block, and ionic electrolyte
WO2022250254A1 (en) Crosslinking agent for quasi-solid electrolyte, quasi-solid electrolyte comprising same, and secondary battery using same
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
WO2018012881A1 (en) Binder for secondary battery electrode, composition comprising same for secondary battery electrode, and secondary battery using same
WO2021241959A1 (en) Free-standing film-type positive electrode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2018012877A1 (en) Polymer, and electrolyte and lithium battery each comprising same
WO2020197093A1 (en) Lithium secondary battery including electrolyte additive for lithium secondary battery
WO2022197094A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023191269A1 (en) Gel polymer electrolyte composition having reduced crosslinking time, secondary battery comprising same, and method for manufacturing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863446

Country of ref document: EP

Kind code of ref document: A1