WO2015076198A1 - Error state detection device for automobile tires - Google Patents

Error state detection device for automobile tires Download PDF

Info

Publication number
WO2015076198A1
WO2015076198A1 PCT/JP2014/080202 JP2014080202W WO2015076198A1 WO 2015076198 A1 WO2015076198 A1 WO 2015076198A1 JP 2014080202 W JP2014080202 W JP 2014080202W WO 2015076198 A1 WO2015076198 A1 WO 2015076198A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal state
rotation
detection device
automobile tire
fluctuation pattern
Prior art date
Application number
PCT/JP2014/080202
Other languages
French (fr)
Japanese (ja)
Inventor
高橋亨
西川健太郎
福島靖之
正木信男
若尾泰通
Original Assignee
Ntn株式会社
株式会社ブリヂストン
高橋亨
西川健太郎
福島靖之
正木信男
若尾泰通
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 株式会社ブリヂストン, 高橋亨, 西川健太郎, 福島靖之, 正木信男, 若尾泰通 filed Critical Ntn株式会社
Publication of WO2015076198A1 publication Critical patent/WO2015076198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/025Tyres using infrasonic, sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/004Tyre sensors other than for detecting tyre pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/006Warning devices, e.g. devices generating noise due to flat or worn tyres

Definitions

  • the present invention relates to an abnormal state detecting device for an automobile tire that detects an abnormality such as a foreign object biting, a chipped block, a flat spot, etc. in an automobile tire and enables a safety warning.
  • Patent Document 1 a physical quantity (vibration, sound, rotational speed, distortion, displacement) of a rotating body is measured, and one adaptive digital filter analyzes one rotational order component, thereby generating time delay and memory capacity.
  • a rotating body abnormality detection device capable of improving the detection accuracy without an increase in.
  • Patent Document 2 discloses an abnormal state or a rough road of a magnetic rotor by determining an apparent rotational speed fluctuation at a specific position based on a product of an interval time of an apparent rotational speed fluctuation of the magnetic rotor and the rotational speed.
  • a vehicle control device using a magnetic rotation detection device capable of detecting a state is presented.
  • Patent Document 3 proposes a method for obtaining various parameters related to a vehicle by analyzing a waveform generated from a sensor attached to a tire.
  • Patent Document 4 proposes a high-resolution rotation detection device provided with a function of multiplying a signal by attaching a rotation detection device to a wheel bearing of an automobile.
  • Patent Document 5 proposes a rotation detection device capable of detecting an absolute angle by attaching a rotation detection device to a wheel bearing of an automobile.
  • Patent Document 6 presents a method for estimating a slip ratio and the like from a tire rotation sensor signal, and also presents a method for detecting the rotation synchronization component by averaging the rotation signal of the tire over several rotations.
  • Patent Document 3 proposes a method for obtaining various parameters related to a vehicle by analyzing a waveform generated from a sensor attached to a tire as described above. However, a special sensor attached to the tire is required, which increases the cost.
  • Patent Document 2 describes a technique for detecting an abnormal state and a rough road state of a magnetic rotor
  • Patent Document 6 presents a method for estimating a slip ratio.
  • Patent Documents 1, 4 and 5 all disclose a technique for detecting rotation and do not present an abnormality detection for a running tire.
  • An object of the present invention is to detect an abnormal condition of a tire during traveling, to surely detect a tire abnormality, to notify a driver, to promote safety confirmation, preventive safety, and to eliminate the need for a special sensor.
  • the abnormal state detecting device for an automobile tire is based on a rotation sensor 2 that detects the rotation of the wheel 1 and a rotation signal detected by the rotation sensor 2 so as to measure the speed of the automobile.
  • Rotational speed fluctuation pattern is extracted from the rotational speed fluctuation synchronized with the rotation, and from the extracted rotational speed fluctuation, the rotational speed fluctuation pattern extends over a plurality of rotations, and each pattern includes the rotational speed fluctuation synchronized with the rotation.
  • the signal processing unit 3 for acquiring the difference between the acquired rotation speed fluctuation pattern and the set reference rotation speed fluctuation pattern is obtained, and the abnormal state of the tire 1a of the wheel 1 is estimated from the obtained difference.
  • an abnormal state determination unit 4 for outputting.
  • variation of the rotational speed synchronized with rotation arises when the tire 1a rolls on the road surface.
  • the “abnormal state” is, for example, a foreign object biting or flaw, a block defect, a flat spot, or the like that changes the fluctuation of the rotation speed.
  • the rotation sensor 2 is installed on a wheel bearing 30 or a drive shaft, and detects the rotation of the wheel 1.
  • the signal processing unit 3 uses the rotation signal detected by the rotation sensor 2 to extract a change in rotational speed synchronized with the rotation of the tire 1a during traveling.
  • the signal processing unit 3 may further measure the rotational speed of the running tire using the input rotation signal.
  • the rotational speed fluctuation pattern is acquired from the rotational speed fluctuation over a plurality of rotations.
  • fluctuations in the rotational speed for only one rotation are affected by road surface unevenness, etc., by collecting rotation signals over a period of a certain number of rotations and performing averaging processing or integration processing, it can be caused by road surface unevenness etc.
  • a rotational speed fluctuation pattern from which the influence is eliminated is acquired.
  • filtering is performed by a low-pass filter, a high-pass filter, or the like, and components resulting from fluctuations synchronized with the rotation of the tire are extracted from the rotation speed data.
  • the abnormal state determination unit 4 obtains a difference between the rotational speed fluctuation pattern acquired by the signal processing unit 3 and the set reference rotational speed fluctuation pattern, and the tire of the wheel 1 from the obtained difference, for example, the feature of the difference.
  • the abnormal state 1a is estimated and abnormal information is output.
  • the shape of the tire contact surface with the road surface of the abnormality occurrence portion is different from that of other portions, so that the rotational speed fluctuates.
  • This fluctuation appears as a difference between the rotational speed fluctuation pattern acquired by the signal processing unit 3 and the reference rotational speed fluctuation pattern. Therefore, by obtaining this difference, the abnormal state of the tire 1a can be detected from the feature of this difference.
  • the abnormal state of the tire 1a can be detected from the information of the rotation sensor 2 during traveling, it is not necessary to provide a special sensor. Therefore, the abnormality detection function of the tire 1a can be mounted on the vehicle without significantly increasing the cost.
  • the signal processing unit 3 subjects the rotation speed fluctuation pattern synchronized with the rotation to the rotation signal data over a plurality of rotations of the rotation sensor 2 by performing averaging processing or integration processing synchronized with the rotation. , You may get.
  • integrating or averaging and extracting the rotation synchronization component it is possible to detect very slight fluctuations in the rotation speed, so that signs can be detected in the initial state where an abnormal condition has occurred, and the abnormality is detected and notified before the situation develops. The possibility that it can be increased.
  • the signal processing unit 3 may perform the process of extracting the fluctuation of the rotational speed synchronized with the rotation in a traveling speed range selected from one or more set traveling speed ranges. .
  • the signal processing unit 3 performs the extraction process for each of a plurality of travel speed ranges, and the abnormal state determination unit 4 performs data for each speed range for which the signal processing unit 3 performs the extraction process.
  • An abnormal state estimation process may be performed, and the abnormal state may be comprehensively determined from the results of the plurality of estimation processes. As a result, the accuracy and reliability of abnormality determination can be improved.
  • the abnormal state determination unit 4 is configured so that a peak value of a pattern obtained from a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern exceeds a preset threshold value. An abnormal state may be determined. By determining using the threshold value, it is possible to easily determine the abnormal state.
  • the reason why the peak value exceeds the threshold value may be due to a tire change or an abnormality, and there is a possibility that these cannot be distinguished.
  • the number of peaks exceeding the threshold is 1 to several during one rotation, it is determined that there is an abnormality. If the set upper limit number is exceeded, a warning may be output on the assumption that the tire 1a has been replaced or an abnormality such as puncture is assumed.
  • the abnormal state determination unit 4 has an absolute value integrated value of a pattern corresponding to a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern, or a square integrated value. An abnormal state may be determined by exceeding a preset value. Thereby, an accurate judgment can be made.
  • the rotation sensor 2 is constituted by a rotation sensor having a zero phase or a rotation sensor 2 having an absolute angle detection function
  • the abnormal state determination unit 4 has a phase of the acquired rotation speed variation pattern.
  • the difference between the rotational speed variation pattern and the reference rotational speed variation pattern may be obtained, and the abnormal state of the wheel tire may be estimated based on the magnitude of the difference.
  • the abnormal state of the tire can be easily and accurately estimated from the magnitude of the difference.
  • the rotation sensor 2 may be provided on either the wheel bearing 30 or the drive shaft.
  • the detection error becomes small, and a slight rotation speed fluctuation can be detected. Therefore, it is possible to accurately detect an abnormal state of the tire 1a that cannot be detected by the driver.
  • a rotation sensor 2 mounted on the wheel 1 having sufficient detection accuracy and sufficient spatial resolution is used. It is desirable to do.
  • the rotation sensor 2 may be composed of a magnetic sensor 2b and a magnetic encoder 2a or a pulsar gear, and may output a variation in magnetic intensity due to rotation as an analog signal. If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible.
  • the rotation sensor 2 includes a magnetic sensor, a magnetic encoder or pulser gear having a detected pole detected by the magnetic sensor, and a multiplication circuit that outputs a rotation pulse obtained by multiplying a detection signal of the magnetic sensor. It may be.
  • Rotational sensor composed of magnetic sensor and magnetic encoder or pulsar gear is resistant to poor environment such as temperature change and dirt.
  • the resolution is lower than that of an optical rotation sensor, but the resolution can be increased by providing a multiplication circuit. Since the rotation sensor is a high-resolution rotation sensor 2 such as one equipped with a multiplication circuit, the rotational fluctuation component in the low-speed traveling state can be detected with high resolution, so that the detection sensitivity of the abnormal state is increased. .
  • an abnormality estimation result utilization means 17 for warning the driver or changing the control state of the vehicle based on the abnormality information output by the abnormal state determination unit 4.
  • the abnormality estimation result utilization means 17 is provided, for example, in a computer of the vehicle that is higher than the abnormal state determination unit 4.
  • the abnormality estimation result utilization unit 17 has, for example, one of the following functions.
  • the abnormality estimation result utilization unit 17 may have a function of displaying on the warning notification unit in the driver's seat based on the abnormality information output by the abnormal state determination unit 4. In this case, based on the detected abnormality information, it is desirable to notify which wheel 1 is in an abnormal state of the tire 1a.
  • the abnormality estimation result utilization means 17 changes the function of decelerating the vehicle to a set speed or the control parameter of the vehicle control computer based on the abnormality information output by the abnormal state determination unit 4 and considers the ability of the tire 1a. It may have a function of performing safety control. By automatically performing a control for decelerating the vehicle to a set speed based on the abnormality information of the tire 1a, for example, a control for stopping the vehicle, safety can be obtained even for an abnormality of the tire 1a that the driver does not notice.
  • the safety control system 22a such as vehicle attitude control according to the decrease in the performance of the tire 1a and adjusting the safety control system 22a in consideration of the decrease in the performance of the tire 1a, the safety suitable for the situation Control can be performed reliably.
  • the abnormality estimation result utilization means 17 uses the abnormality information output from the abnormal state determination unit 4 to a predetermined sales office where a computer mounted on the vehicle can inspect the vehicle or replace the tire 1a through a communication line. You may have the function to transmit to a terminal. As described above, information on the inspection and replacement for the abnormality of the tire 1a is transmitted to the terminal of the sales office 20. Therefore, the inventory check of the tire 1a at the sales office 20 can be performed at an early stage, and prompt and appropriate inspection and replacement can be expected. .
  • the abnormality estimation result utilization means 17 may have a function of operating an abnormality notifying means for other vehicles, such as a hazard lamp, provided in the vehicle.
  • FIG. 1 is a block diagram showing a conceptual configuration of an abnormal state detecting device for an automobile tire according to a first embodiment of the present invention. It is a block diagram of a conceptual structure of the signal processing unit of the abnormal state detection device. It is a block diagram of a conceptual configuration of an abnormal state determination unit of the abnormal state detection device. It is a block diagram which shows the utilization form of the abnormal state detection apparatus.
  • (A)-(c) is a graph which shows the difference in the rotational speed fluctuation data by tape adhesion.
  • (A) And (b) is a graph which shows the difference in the rotational speed fluctuation
  • (A) to (c) are graphs showing rotational fluctuations at different speeds. It is sectional drawing of an example of the bearing for wheels equipped with the rotation sensor used with the same abnormal condition detection apparatus. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the other example of the wheel bearing provided with the rotation sensor used with the same abnormal condition detection apparatus. It is the figure which looked at the bearing for the wheels from the inboard.
  • FIG. 18B is a perspective view of the rotation sensor of FIG. 18A. It is sectional drawing which shows the 2nd example of the rotation sensor which the abnormal state detection apparatus uses.
  • FIG. 19B is a perspective view of the rotation sensor of FIG. 19A. It is a block diagram which shows an example of the multiplication circuit in a rotation sensor. It is explanatory drawing of the magnetic sensor using the same multiplication circuit. It is composition explanatory drawing which shows the example of the absolute angle rotation sensor used as the rotation sensor.
  • (A)-(E) are explanatory drawings of the magnetic pole arrangement and detection signals of the rotation sensor.
  • A)-(E) are explanatory drawings of a magnetic pole arrangement and detection signal processing example of the same rotation sensor.
  • an abnormal state detecting device 5 for an automobile tire is a rotation sensor 2 for detecting a rotational speed of a wheel 1 having a tire 1a to be detected for abnormality, and is a wheel bearing or a drive shaft. It has the rotation sensor 2 installed in the outer ring etc., and the signal processing unit 3 for processing the rotation signal output.
  • the vehicle tire abnormal state detection device 5 also includes an abnormal state determination unit 4 that detects an abnormality of the tire 1 a using the output of the signal processing unit 3.
  • the signal processing unit 3 and the abnormal state determination unit 4 constitute an abnormal state detection device main body 15.
  • the abnormal state detection device main body 15 may be an independent ECU, or may be provided as a part of the ECU that controls the entire vehicle.
  • the rotation sensor 2 is a wheel speed sensor.
  • FIGS. 12 to 17 illustrate wheel bearings with a rotation sensor, which will be described later.
  • FIG. 2 shows a conceptual configuration of the signal processing unit 3.
  • the rotational speed of the running wheel 1 is measured by the rotational speed discriminating unit 5a using the rotational signal detected by the rotational sensor 2, and the fluctuation of the rotational speed synchronized with the rotation of the wheel 1, that is, one revolution.
  • the rotation fluctuation pattern for each rotation is extracted by the rotation fluctuation pattern extraction unit 6.
  • a detection target such as a magnetic encoder used for the rotation sensor 2 includes a pitch error due to manufacturing variations. Therefore, the rotation speed fluctuation pattern in the normal state in the initial state is stored in the reference speed pattern storage unit 7 as the reference speed pattern P0, and a minute error component superimposed on the rotation signal of the rotation sensor 2 is corrected for error. The correction is performed by the unit 8.
  • filter processing is performed by a low-pass filter (LPF) or a high-pass filter (HPF) (both not shown), A speed fluctuation component caused by the shape or tread pattern of the tire 1a is extracted. Further, in order to eliminate the influence of road surface unevenness, a rotation signal for a period of a certain number of rotations is processed to extract an arbitrary rotation speed fluctuation pattern. For example, the rotation synchronization component is averaged and detected from the rotation signal of the wheel 1 over several rotations. By applying an averaging process and an integration process to the extraction process, the influence of random rotation fluctuations that are not effectively synchronized with the rotation of the wheel 1 is eliminated.
  • LPF low-pass filter
  • HPF high-pass filter
  • the rotation sensor 2 is composed of a magnetic encoder 2a and a magnetic sensor 2b, and the magnetic encoder 2a has N and S magnetic poles 2aa which are detected portions alternately. It is applied when it is a sensor. Even if a detection gear (not shown) is used in place of the magnetic encoder 2a, it is applied in the same manner as the magnetic encoder 2a.
  • the rotation sensor 2 will be specifically described later.
  • the output of the rotation sensor 2 is rotated by the rotation speed of the detected portion (the magnetic pole 2aa or the individual teeth of the detection gear) or the required time for the rotation of the tire for one rotation of the tire.
  • An averaging unit 6a of the fluctuation pattern extraction unit 6 averages and a rotation speed fluctuation pattern that becomes tire characteristics is obtained by the extraction unit 6b. Not only taking a simple average but also taking a weighted average that puts more weight on the previous value than the past value, you can always get the latest tire characteristics and follow the tire characteristics over time .
  • the passing speed or the passing time of the detected portion (the individual teeth of the magnetic pole 2aa or the detection gear) for a plurality of rotations.
  • a rotation speed fluctuation pattern which is tire characteristics shown in FIG. 6B is obtained.
  • the vertical axis represents the passing speed or the time required for passing through each detected part
  • the horizontal axis represents the time (corresponding to each detected part) or the position of the pulse.
  • FIG. 1 An example of the rotational speed fluctuation pattern in the abnormal state is shown in FIG.
  • a change peculiar to the fluctuation of the rotational speed occurs due to a change in the shape of the ground contact surface of the tire or a resistance change at the time of depression, as shown in FIG.
  • a rotational speed fluctuation pattern is observed. Since an error protruding from the normal rotational speed pattern is observed, this is detected by the abnormal state determination unit 4 in FIGS. 1 and 3, and information on the abnormal state is output.
  • FIG. 3 shows a conceptual configuration of the abnormal state determination unit 4.
  • the abnormal state determination unit 4 obtains the difference between the rotation speed fluctuation pattern extracted by the signal processing unit 3 and the reference rotation speed fluctuation pattern set in the reference pattern storage section 13 by the difference calculation section 14, and obtains this difference.
  • the abnormality estimation unit 11 estimates the abnormal state of the tire 1a of the wheel 1 from the difference, and outputs the estimated abnormality information (information regarding the abnormal state).
  • a difference between the reference rotational speed fluctuation pattern (Pref) and the observed rotational speed fluctuation pattern (Pobs) is obtained by the difference calculation unit 14, and in the pattern (Pdif) corresponding to this difference,
  • the abnormality estimation unit 11 of the abnormal condition determination unit 4 determines that an abnormal condition has been observed. “Several times” is preferably 5 or 6 times, more preferably 2 or 3 times.
  • a specific example of a method for detecting the rotational speed fluctuation pattern will be described.
  • the difference between the rotational speed fluctuation pattern (Pobs) and the reference rotational speed fluctuation pattern (Pref) during traveling with the rotational phases being matched is detected.
  • a rotation angle sensor having a Z phase (zero phase) signal may be used as the rotation sensor 2 (FIG. 1), or an absolute angle sensor is used. May be.
  • the abnormal state determination unit 4 may determine that the abnormal state is present when the peak value of the pattern (Pdif) corresponding to the difference becomes larger than a set threshold value. Also, when the integrated value (sum) ⁇
  • the pattern (Pdif) may be limited to when the number of peaks exceeding the threshold is 1 to several during one rotation. If the set upper limit number is exceeded, it is assumed that a special abnormality such as a puncture or a puncture (an abnormality throughout the entire tire) is assumed.
  • the abnormality estimation unit 11 outputs a warning corresponding to the abnormality determination result.
  • an initial rotational speed fluctuation pattern (when the above-described general abnormality does not occur, such as immediately after tire replacement) is stored in a reference pattern storage unit 13 (for example, an initial state memory). It is possible to store this information, so that the change from the initial state including information such as the inherent error pattern of the rotation sensor 2 and the unbalance of the tire 1a can be detected, and the detection sensitivity is further increased. Can do.
  • the reference pattern storage unit 13 may have a function of updating an initial rotation speed fluctuation pattern as a reference rotation speed fluctuation pattern (Pref).
  • the rotation sensor 2 mounted on the wheel 1 has sufficient detection accuracy and sufficient spatial resolution in order to accurately detect the rotational speed fluctuation pattern that is the detection target. For example, it has an accuracy capable of detecting at least 0.5% rotation speed variation, and the number of pulses per rotation is 40 or more. In order to acquire sufficient data at the time of low-speed rotation including a higher-order rotation fluctuation component, it is desirable to further increase the resolution of the rotation sensor 2. Considering the structure such as the block size of the tire 1a, it is desirable that the number of output pulses per rotation of the rotation sensor 2 be at least 100 or more so as to ensure a resolution with a contact length of about 20 mm.
  • the output of the rotation sensor 2 is not necessarily a pulse output, and may be an analog signal. If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible. In particular, when the resolution (multiplication capability) of the rotation pulse is low, it is desirable to execute signal processing with high resolution by actively using analog signals.
  • Tests were conducted assuming that foreign matter adhered to the tire tread surface or when local wear progressed.
  • a vinyl tape with a thickness of about 0.3mm pasting the tire tread surface across the tread, the vehicle travels several tens of meters on an asphalt road surface at a speed of about 15km / h with a resolution of 960 times per revolution.
  • Rotational speed data was collected.
  • the coefficient of friction decreases on the surface of the vinyl tape, the force acting on the tire ground contact surface changes and rotation fluctuation occurs.
  • size changes with the width
  • the extracted speed fluctuation pattern for one rotation is shown in FIGS.
  • 9 (a) to 9 (c) are plots obtained by normalizing the rotation speeds when there is no tape, the tape width is 6 mm, and the tape width is 12 mm. It can be seen that a specific rotation variation pattern is generated by attaching the tape to the tire tread surface.
  • FIG. 10B shows a waveform obtained by removing low frequency components from the extracted speed fluctuation pattern for one rotation.
  • FIG. 10A shows a waveform when there is no screw for reference. Since the force acting on the tire ground contact surface is changed by the screw and rotation fluctuation occurs, it can be seen that a specific rotation fluctuation pattern is generated.
  • the response to the change in the rotational speed pattern will be described. Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed.
  • the portions within the elliptical dotted lines of the waveforms shown in FIGS. 11A to 11C are the velocity fluctuation waveforms observed at the rotational position where the rotational fluctuation occurs, as shown in FIGS. 11A to 11C.
  • the waveform changes according to the running speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed.
  • the rotational speed fluctuation patterns are classified by a plurality of rotational speed regions (rotational speed levels).
  • the rotation speed discriminating unit 5a outputs speed area information indicating which rotation speed area is classified into a plurality of rotation speed areas together with information on the rotation speed fluctuation pattern.
  • the abnormality determination unit 4 (FIGS. 1 and 3)
  • a reference rotational speed fluctuation pattern to be compared is prepared for each rotational speed region, and an abnormal state is determined in each region.
  • the method of comprehensive determination is, for example, when it is determined that there is an abnormality in the tire when it is in an abnormal state for a plurality of rotational speed regions, or in the case of abnormality in any one rotational speed region, If there is an abnormality in the tire, a comprehensive determination may be made, and various other methods can be used for comprehensive determination.
  • detecting the rotational speed variation pattern in a plurality of speed regions compared to the case of extracting and discriminating only the rotational speed region pattern limited to one, it is comprehensive based on more travel data Since determination is possible, the accuracy of abnormality detection is improved.
  • FIG. 4 shows an example.
  • the detected abnormal state of the tire is transmitted from the abnormal state detection device main body 15 (FIG. 4) including the signal processing unit 3 and the abnormal state determination unit 4 of FIG.
  • the provided abnormality estimation result utilization means 17 displays the warning notification means 19 in the driver's seat according to the abnormal state.
  • a display lamp 19a such as a warning lamp is turned on. This prompts the driver to check and check the tire 1a.
  • the warning notification means 19 may display a warning display image on an image display device 19b such as a liquid crystal display device in addition to the display lamp 19a.
  • the abnormality estimation result utilization means 17 transmits information from the host computer 16 through the communication network 18 communicable with the vehicle simultaneously with the display on the warning notification means 19, and if necessary, such as a vehicle dealer or a service store. Promote inspection, repair, and replacement through the sales office 20.
  • the abnormality estimation result utilization unit 17 displays the wheel 1 in which the abnormal state of the detected tire 1a is generated in an easy-to-understand manner for the driver and the operator when the warning notification unit 19 is informed. It is preferable to do.
  • the abnormality estimation result utilization means 17 may be decelerated or stopped to a speed at which the vehicle can safely travel according to the type and level of the abnormal state detected during traveling. For example, if it is determined that the state is particularly dangerous, the deceleration or stop command is given to the vehicle control device 22 such as an ECU (electrical control unit).
  • the vehicle control device 22 such as an ECU (electrical control unit).
  • the abnormality estimation result utilization means 17 changes the parameters of the safety control system 22a such as vehicle attitude control in the vehicle control device 22 according to the detected abnormal state, and takes into account the abnormality of the tire 1a. 22a may be adjusted.
  • the abnormality estimation result utilization means 17 should take preventive measures such as sending attention information to surrounding vehicles through the communication line and maintaining a safe distance.
  • the abnormal state of the tire 1a can be detected from the information of the rotation sensor during traveling, there is no need to provide a special sensor. Therefore, it can be mounted on a vehicle without significantly increasing the cost. Conventionally, there is a possibility that an abnormality may be missed due to visual inspection, but since detection is performed using the rotation sensor 2 of the vehicle, an appropriate warning is transmitted to promote safety confirmation and preventive safety can be realized. -Even if the driver is not aware that he is driving with an abnormality in the tire 1a, the vehicle can issue a warning based on the detection signal. It is possible to prevent traffic accidents.
  • a traffic accident can be prevented by performing a control to automatically reduce or stop the vehicle speed.
  • the rotation synchronization component is integrated or averaged and extracted, a very slight rotation fluctuation pattern can be detected, so signs are detected in the initial state when an abnormal condition has occurred, and the abnormality is detected before the situation progresses. The possibility of notification is increased.
  • the detection error is small, and a slight fluctuation in the rotation speed can be detected. Therefore, it is possible to accurately detect an abnormal state of the tire that cannot be detected by the driver.
  • the rotational fluctuation component in the low-speed traveling state can be detected with a high resolution, so that the detection sensitivity of the abnormal state is increased.
  • the rotation sensor 2 is a radial type magnetic type, and includes an annular magnetic encoder 2a that is a target, and a magnetic sensor 2b that faces the outer peripheral surface of the magnetic encoder 2a and detects the magnetism of the magnetic encoder 2a. .
  • the magnetic encoder 2a has N and S magnetic poles 2aa alternately, and outputs a sine wave rotation signal from the magnetic sensor 2b. This sinusoidal rotation signal is shaped into a rectangle by the signal processing means 2c and output as a rectangular wave pulse signal.
  • the signal processing means 2c may have a multiplication circuit 2ca, and in that case, outputs a multiplied high-resolution rotation signal.
  • the magnetic encoder 2a may include a magnetic pole 2ab for detecting the Z phase (zero phase) in one place on the circumference, aligned in the axial direction with the magnetic pole 2aa.
  • the magnetic sensor 2b In addition to the sensor unit 2ba for detecting the N and S alternating magnetic poles 2aa, a sensor unit 2bb for detecting the magnetic pole 2ab for detecting the Z phase is provided. This sensor unit 2bb outputs a Z-phase (zero-phase) signal once in one rotation.
  • the rotation sensor 2 is an axial magnetic type, and an annular magnetic encoder 2a and a magnetic sensor 2b face each other in the axial direction.
  • the magnetic encoder 2a is attached to a flange portion of a sensor attachment ring 2d having an L-shaped cross section.
  • Other configurations are the same as those of the radial type rotation sensor 2 shown in FIGS. 18A and 18B.
  • the radial type rotation sensor 2 may also be provided with a zero-phase magnetic pole, a sensor unit, and a multiplier circuit as described above.
  • FIGS. 19A and 19B all show a rotation sensor 2 having a magnetic encoder 2a.
  • the rotation sensor 2 is a so-called pulsar ring (not shown) whose target is made of a gear-type magnetic material, so-called. It may be a detection gear. In that case, the magnetic sensor detects the teeth of the pulsar ring and outputs a rotation signal.
  • FIG. 20 shows an example of the multiplier circuit 2ca.
  • the multiplication circuit 2ca has a phase difference of 90 degrees ( ⁇ / 4) when the pitch ⁇ of one magnetic pole pair of the magnetic encoder 2ba is one period as shown in FIG.
  • the multiplication circuit 2ca includes a signal generation means 41, a fan detection means 42, a multiplexer means 43, and a fine interpolation means 44.
  • the signal generating means 41 has the same amplitude A0 and the same average value C0 from the two-phase signals sin ⁇ and cos ⁇ which are the outputs of the magnetic sensor elements 2baa and 2bab of the magnetic sensor 2b, and m is n or less.
  • Is a means for generating 2 m ⁇ 1 signals si that are successively shifted in phase by 2 ⁇ / 2 m ⁇ 1 from each other, where i is a positive integer of 1 to 2 m ⁇ 1 .
  • the sector detection means 42 generates m digital signals bn-m + 1, bn-m + 2, ..., bn-1, bnb encoded to define 2m equal sector Pi ⁇ ⁇ ⁇ . This is means for detecting 2m sector Pi delimited by 2m-1 signals si.
  • the multiplexer means 43 is controlled by the m digital signals bn-m + 1, bn-m + 2,..., Bn-1, bn generated from the sector detecting means 42, and is generated from the signal generating means 41.
  • 2m-1 of the above-mentioned signals si are processed, and the amplitude is constituted by a portion of the series of 2m-1 of the signals si between the average value C0 and the first threshold value L1.
  • the fine interpolation means 44 is coded to subdivide each of the 2 m sectors Pi at an angle 2 ⁇ / 2 m into 2 nm identical subsectors at an angle 2 ⁇ / 2n to obtain the desired resolution.
  • the (n ⁇ m) digital signals b1, b2,..., Bn-m ⁇ 1, bn-m (here b1, b2,..., B8, b9) are multiplied by rotation pulses.
  • FIGS. 23A to 23E show an example in which the rotation sensor 2 is an absolute angle detection type.
  • the magnetic encoder 2a is provided with two magnetic pole rows 2aA and 2aB, the number of magnetic pole pairs of one magnetic pole row 2aA is P, and the number of magnetic pole pairs of the other magnetic pole row 2aB is P + n. Therefore, there is a phase difference of n magnetic pole pairs per rotation between the magnetic pole arrays 2aA and 2aB, and the phases of the detection signals of the magnetic sensors 2ba and 2bb corresponding to these magnetic magnetic pole arrays 2aA and 2aB are It coincides with every 360 / n degrees of rotation.
  • the phase difference detection means 2cb constituting the signal processing means 2c outputs a phase difference signal as shown in FIG. 23 (E) based on the detection signals of the magnetic sensors 2ba and 2bb.
  • the angle calculation means 2cc provided in the subsequent stage corrects the phase difference obtained by the phase difference detection means 2cb and then performs a process of converting into an absolute angle according to a preset calculation parameter.
  • FIGS. 23A and 23B show examples of magnetic pole patterns of both magnetic pole arrays 2aA and 2aB.
  • FIGS. 23C and 23D show waveforms of detection signals of the magnetic sensors 2ba and 2bb corresponding to the magnetic pole arrays 2aA and 2aB.
  • two magnetic pole pairs of the magnetic pole array 2aB correspond to three magnetic pole pairs of the magnetic pole array 2aA, and the absolute position within this section can be detected.
  • FIG. 24E shows a waveform diagram of the output signal of the phase difference obtained by the phase difference detecting means 2cb of FIG. 22 based on the detection signals of FIGS. 23C and 23D.
  • phase difference signals detected by the phase difference detecting means 2cb are affected by the magnetic interference and noise of the magnetic pole arrays 2aA and 2aB, they are actually distorted. A waveform with Therefore, the angle calculation means 2cc corrects the angle correction means 2cca to calculate an absolute angle with high detection accuracy.
  • the wheel bearing 30 shown in FIGS. 12 and 13 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided in the center of the double row.
  • the wheel bearing 30 includes an outer member 31 having a double row rolling surface 33 formed on the inner periphery, an inner member 32 having a rolling surface 34 opposed to each of the rolling surfaces 33, and these outer members.
  • the rolling member 35 of the double row interposed between the rolling surfaces 33 and 34 of the direction member 31 and the inward member 32 is provided, and a wheel is rotatably supported with respect to a vehicle body.
  • the wheel bearing 30 is a double-row outward angular ball bearing type, and the rolling elements 35 are formed of balls and are held by a cage 36 for each row.
  • the inner member 32 includes a hub wheel 32a and an inner ring 32b fitted to the outer periphery of the inboard side end of the hub wheel 32a.
  • the rolling surface 34 is provided on the outer periphery of each wheel 32a, 32b. . Both ends of the bearing space between the outer member 31 and the inner member 32 are sealed by seals 37 and 38, respectively.
  • the encoder 2 a of the rotation sensor 2 is provided on the outer periphery between the rolling surfaces 34 of the inner member 32, and the magnetic sensor 2 b facing the encoder 2 a is provided on the outer member 31. It is installed in the provided sensor mounting hole 40 in the radial direction.
  • the rotation sensor 2 is of the radial type described above with reference to FIGS. 18A and 18B, for example.
  • the wheel bearing 30 shown in FIG. 14 and FIG. 15 is a third generation type inner ring rotation type and for driving wheel support, and shows an example in which the rotation sensor 2 is provided at the inboard side end.
  • the rotation sensor 2 is of the axial type described above with reference to FIGS. 19A and 19B.
  • a slinger that is press-fitted and fixed to the outer peripheral surface of the inner member 32 in the seal 38 at the inboard side end also serves as the sensor support ring 2d in the example of FIG.
  • the magnetic sensor 2 b is resin-molded in a ring-shaped metal case 39 and fixed to the outer member 31 via the metal case 39.
  • Other configurations are the same as those of the example shown in FIGS.
  • the wheel bearing 30 shown in FIGS. 16 and 17 is a third generation inner ring rotating type and is for supporting a driven wheel, and shows an example in which the rotation sensor 2 is provided at the inboard side end.
  • the end face opening at the inboard side end portion of the outer member 31 is covered with a cover 29, and the magnetic sensor 2 b of the rotation sensor 2 is attached to the cover 29.
  • Other configurations and operational effects are the same as those of the example shown in FIGS.
  • the abnormal state detection device for automobile tires of the above embodiment can be widely applied from small cars such as passenger cars and taxis to large cars such as trucks, trailers and buses.
  • the most preferable form is application to large vehicles such as trucks, trailers and buses.
  • These automobiles require passengers and cargo to be transported safely and efficiently, so it is important to always keep the vehicle in a normal state.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Tires In General (AREA)

Abstract

Provided is an error state detection device that does not require provision therein of a special sensor and which is capable of detecting error states for tires during travel, reliably detecting tire errors, making drivers aware of said errors, promoting safety confirmation, and of achieving preventative safety. The error state detection device has: a rotation sensor (2) that detects rotation of a wheel (1) so as to measure automobile speed; a signal processing unit (3) that extracts fluctuation in rotation speed synchronized to rotation, from rotation signals detected by the rotation sensor, and obtains a rotation speed fluctuation pattern synchronized to the rotation, from fluctuation in the rotation speed across a plurality of rotations; and an error state determination unit (4) that finds the difference between this obtained rotation speed fluctuation pattern and a rotation speed fluctuation pattern serving as a set reference, estimates the error state of the tire from this found difference, and outputs error information.

Description

自動車用タイヤの異常状態検出装置Abnormal state detection device for automobile tires 関連出願Related applications
 本出願は、2013年11月21日出願の特願2013-241126の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2013-241126 filed on Nov. 21, 2013, which is incorporated herein by reference in its entirety.
 この発明は、自動車のタイヤにおける異物噛み込みやブロックの欠け、フラットスポットの発生などの異常を検知し、安全性に関する警告を可能にする、自動車用タイヤの異常状態検出装置に関する。 The present invention relates to an abnormal state detecting device for an automobile tire that detects an abnormality such as a foreign object biting, a chipped block, a flat spot, etc. in an automobile tire and enables a safety warning.
 特許文献1には、回転体の物理量(振動、音、回転数、歪、変位)を計測し、1つの適応デジタルフィルタが1つの回転次数成分を解析することで、時間遅れの発生やメモリ量の増大なしに検出精度を向上させることができる回転体の異常検出装置が提示されている。 In Patent Document 1, a physical quantity (vibration, sound, rotational speed, distortion, displacement) of a rotating body is measured, and one adaptive digital filter analyzes one rotational order component, thereby generating time delay and memory capacity. There has been proposed a rotating body abnormality detection device capable of improving the detection accuracy without an increase in.
 特許文献2には、磁気ロータの見かけの回転速度変動の発生間隔時間とその回転速度の積に基づいて、特定位置における見かけの回転速度変動を判定することで、磁気ロータの異常状態や悪路状態を検出できる磁気式回転検出装置を用いた車両制御装置が提示されている。 Patent Document 2 discloses an abnormal state or a rough road of a magnetic rotor by determining an apparent rotational speed fluctuation at a specific position based on a product of an interval time of an apparent rotational speed fluctuation of the magnetic rotor and the rotational speed. A vehicle control device using a magnetic rotation detection device capable of detecting a state is presented.
 特許文献3には、タイヤに取り付けたセンサから発生した波形を解析することで、車両に関連する様々なパラメータを得るための方法が提示されている。 Patent Document 3 proposes a method for obtaining various parameters related to a vehicle by analyzing a waveform generated from a sensor attached to a tire.
 特許文献4には、自動車の車輪用軸受に回転検出装置を取り付け、信号を逓倍する機能を設けた高分解能回転検出装置が提示されている。
 特許文献5には、自動車の車輪用軸受に回転検出装置を取り付けた、絶対角検出を可能とした回転検出装置が提示されている。
 特許文献6には、タイヤの回転センサ信号からスリップ率等を推定する方法が提示されており、数回転にわたるタイヤの回転信号から回転同期成分を平均化して検出する方法も提示されている。
Patent Document 4 proposes a high-resolution rotation detection device provided with a function of multiplying a signal by attaching a rotation detection device to a wheel bearing of an automobile.
Patent Document 5 proposes a rotation detection device capable of detecting an absolute angle by attaching a rotation detection device to a wheel bearing of an automobile.
Patent Document 6 presents a method for estimating a slip ratio and the like from a tire rotation sensor signal, and also presents a method for detecting the rotation synchronization component by averaging the rotation signal of the tire over several rotations.
特開2007-139697号公報JP 2007-139697 A 特開2008-174235号公報JP 2008-174235 A 特開2012-162259号公報JP 2012-162259 A 特開2011-002357号公報JP 2011-002357 A 特開2008-232426号公報JP 2008-232426 A 特開2006-126164号公報JP 2006-126164 A
 タイヤに異物が噛み込んだ状態、または傷やフラットスポットが生じた状態で自動車が走行すると、タイヤの性能低下、さらにはパンクの発生を引き起こす危険性が高くなる。これらを予防するためには、走行前にタイヤに異物の噛み込みや傷、フラットスポットなどの異常がないかを確認する必要がある。 If the vehicle runs with foreign matter in the tire or scratches or flat spots, there is a high risk of tire performance degradation and further occurrence of puncture. In order to prevent these problems, it is necessary to check whether there are any abnormalities such as biting of foreign matter, scratches, and flat spots before traveling.
 しかしながら、タイヤの状態を目視点検する場合、一般ユーザには状態を判別し難い場合もある。そのため、定期的に点検しないと見逃してしまう恐れがある。また、走行中に発生した釘や石の噛み込みやパンクなどは、運転者が気づかない場合も多く、交通事故に繋がる恐れもある。 However, when visually inspecting the condition of the tire, it may be difficult for a general user to determine the condition. Therefore, there is a risk that it will be overlooked if it is not inspected regularly. In addition, nails, stone bites, and punctures that occur while driving are often not noticed by the driver, which may lead to traffic accidents.
 そのため、タイヤの異常状態を走行中に検出できる異常状態検出装置が望まれる。特許文献3には、前述のように、タイヤに取り付けたセンサから発生した波形を解析することで、車両に関連する様々なパラメータを得るための方法が提示されている。しかし、タイヤに取り付けられる特殊なセンサが必要となり、コスト高になる。 Therefore, an abnormal state detection device that can detect an abnormal state of the tire while traveling is desired. Patent Document 3 proposes a method for obtaining various parameters related to a vehicle by analyzing a waveform generated from a sensor attached to a tire as described above. However, a special sensor attached to the tire is required, which increases the cost.
 このため、特殊なセンサを設けることなく、それほど大きくコストが増加することなしにタイヤが異常状態にあることを検出し、運転者に知らせることを可能にして、不安全な状態での走行による事故を未然に防ぐことが望まれている。特に、給油を必要としない電動車両などでは、ガソリンスタンド等でのサービスマンによるタイヤの状況確認機会が少なくなることから、自動的に異常状態を検知して運転者に注意を促すことが望まれる。 For this reason, it is possible to detect that the tire is in an abnormal state without providing a special sensor, without increasing the cost so much, and to inform the driver, and accidents caused by driving in an unsafe state It is desired to prevent this. In particular, for electric vehicles that do not require refueling, there are fewer opportunities for service personnel to check tire conditions at gas stations, etc., so it is desirable to automatically detect abnormal conditions and alert the driver. .
 特許文献2には、磁気ロータの異常状態や悪路状態を検出する技術につき記載されており、特許文献6にはスリップ率を推定する方法が提示されている。しかし、走行中のタイヤの異常検出についての提示はない。他の特許文献1,4,5は、いずれも回転検出についての技術を開示し、走行中のタイヤの異常検出についての提示はない。 Patent Document 2 describes a technique for detecting an abnormal state and a rough road state of a magnetic rotor, and Patent Document 6 presents a method for estimating a slip ratio. However, there is no presentation about the abnormality detection of the running tire. Other Patent Documents 1, 4 and 5 all disclose a technique for detecting rotation and do not present an abnormality detection for a running tire.
 この発明の目的は、タイヤの異常状態を走行中に検出できてタイヤ異常の確実な検出、運転者への報知、安全確認の促進、予防安全が実現でき、かつ特殊なセンサを設ける必要がなくて、大幅にコストアップすることなく、車両に実装することができる自動車用タイヤの異常状態検出装置を提供することである。 An object of the present invention is to detect an abnormal condition of a tire during traveling, to surely detect a tire abnormality, to notify a driver, to promote safety confirmation, preventive safety, and to eliminate the need for a special sensor. Thus, it is an object of the present invention to provide an abnormal state detecting device for an automobile tire that can be mounted on a vehicle without significantly increasing the cost.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の一構成に係る自動車用タイヤの異常状態検出装置は、前記自動車の速度を測定するように、車輪1の回転を検出する回転センサ2と、この回転センサ2によって検出された回転信号から回転に同期した回転速度の変動を抽出し、この抽出した回転速度の変動から、複数回転にわたる回転速度変動パターンであって、各パターンが回転に同期した回転速度の変動を含む、回転速度変動パターンを取得する信号処理ユニット3と、この取得した回転速度変動パターンと設定された基準となる回転速度変動パターンとの差分を求め、この求めた差分から前記車輪1のタイヤ1aの異常状態を推定し出力する異常状態判断ユニット4とを備える。
 なお、回転に同期した回転速度の変動は、タイヤ1aが路面上を転動することによって生じる。
 前記「異常状態」は、例えば、回転速度の変動に変化を与える異物噛み込みや傷、ブロックの欠損、フラットスポット等である。
The abnormal state detecting device for an automobile tire according to one configuration of the present invention is based on a rotation sensor 2 that detects the rotation of the wheel 1 and a rotation signal detected by the rotation sensor 2 so as to measure the speed of the automobile. Rotational speed fluctuation pattern is extracted from the rotational speed fluctuation synchronized with the rotation, and from the extracted rotational speed fluctuation, the rotational speed fluctuation pattern extends over a plurality of rotations, and each pattern includes the rotational speed fluctuation synchronized with the rotation. The signal processing unit 3 for acquiring the difference between the acquired rotation speed fluctuation pattern and the set reference rotation speed fluctuation pattern is obtained, and the abnormal state of the tire 1a of the wheel 1 is estimated from the obtained difference. And an abnormal state determination unit 4 for outputting.
In addition, the fluctuation | variation of the rotational speed synchronized with rotation arises when the tire 1a rolls on the road surface.
The “abnormal state” is, for example, a foreign object biting or flaw, a block defect, a flat spot, or the like that changes the fluctuation of the rotation speed.
 前記回転センサ2は、車輪用軸受30またはドライブシャフト等に設置され、車輪1の回転を検出する。前記信号処理ユニット3は、前記回転センサ2によって検出された回転信号を用いて、走行中に、タイヤ1aの回転に同期した回転速度の変動を抽出する。前記信号処理ユニット3は、さらに、入力された回転信号を用いて、走行中のタイヤの回転速度を測定するようにしても良い。 The rotation sensor 2 is installed on a wheel bearing 30 or a drive shaft, and detects the rotation of the wheel 1. The signal processing unit 3 uses the rotation signal detected by the rotation sensor 2 to extract a change in rotational speed synchronized with the rotation of the tire 1a during traveling. The signal processing unit 3 may further measure the rotational speed of the running tire using the input rotation signal.
 信号処理においては、複数回転にわたる回転速度の変動から回転速度変動パターンを取得する。1回転分のみの回転速度の変動には路面の凹凸などによる影響があるが、ある程度の回転回数にわたる期間の回転信号を収集し、平均化処理または積算処理を施すことで、路面の凹凸などによる影響が排除された回転速度変動パターンが取得される。また、信号処理においては、ノイズ成分やセンサ誤差成分を抑制するために、例えばローパスフィルタやハイパスフィルタ等によってフィルタ処理し、回転速度データからタイヤの回転に同期した変動に起因する成分を抽出する。 In the signal processing, the rotational speed fluctuation pattern is acquired from the rotational speed fluctuation over a plurality of rotations. Although fluctuations in the rotational speed for only one rotation are affected by road surface unevenness, etc., by collecting rotation signals over a period of a certain number of rotations and performing averaging processing or integration processing, it can be caused by road surface unevenness etc. A rotational speed fluctuation pattern from which the influence is eliminated is acquired. In the signal processing, in order to suppress noise components and sensor error components, for example, filtering is performed by a low-pass filter, a high-pass filter, or the like, and components resulting from fluctuations synchronized with the rotation of the tire are extracted from the rotation speed data.
 異常状態判断ユニット4は、信号処理ユニット3で取得した回転速度変動パターンと設定された基準となる回転速度変動パターンとの差分を求め、この求めた差分、例えば差分の特徴から前記車輪1のタイヤ1aの異常状態を推定し異常情報を出力する。 The abnormal state determination unit 4 obtains a difference between the rotational speed fluctuation pattern acquired by the signal processing unit 3 and the set reference rotational speed fluctuation pattern, and the tire of the wheel 1 from the obtained difference, for example, the feature of the difference. The abnormal state 1a is estimated and abnormal information is output.
 タイヤ1aに異物の噛み込みや傷、フラットスポット等による変形や摩耗が生じると、異常発生部位の路面とのタイヤ接地面の形状が他の部位と異なるため、回転速度の変動が発生する。この変動は、前記信号処理ユニット3によって取得された回転速度変動パターンと設定された基準となる回転速度変動パターンとの差分として現れる。そのため、この差分を求めることで、この差分の特徴からタイヤ1aの異常状態を検出することができる。 When the tire 1a is deformed or worn due to foreign matter biting, scratches, flat spots, etc., the shape of the tire contact surface with the road surface of the abnormality occurrence portion is different from that of other portions, so that the rotational speed fluctuates. This fluctuation appears as a difference between the rotational speed fluctuation pattern acquired by the signal processing unit 3 and the reference rotational speed fluctuation pattern. Therefore, by obtaining this difference, the abnormal state of the tire 1a can be detected from the feature of this difference.
 このように、タイヤ1aの異常状態を、走行中に回転センサ2の情報から検出することができるため、特殊なセンサを設ける必要がない。そのため、大幅にコストアップすることなく、タイヤ1aの異常状態の検出機能を車両に実装することができる。 Thus, since the abnormal state of the tire 1a can be detected from the information of the rotation sensor 2 during traveling, it is not necessary to provide a special sensor. Therefore, the abnormality detection function of the tire 1a can be mounted on the vehicle without significantly increasing the cost.
 従来は目視による点検のため見逃す可能性があったが、車両の車速測定用のセンサによって検出するため、適切な警告を発信して安全確認を促し、予防安全を実現できる。タイヤ1aに異常が生じた状態で運転していることを運転者が気づかない場合であっても、検出信号によって車両が警告を発信できるため、走行速度を落とし急ハンドルを避けるなどの運転操作を促すことが可能になり、交通事故を防止することができる。また、タイヤ1aに深刻な異常が発生した場合、自動的に車両の速度を落とすか、または停止させる制御を施すことで、交通事故を防止することができる。 Previously, there was a possibility of oversight due to visual inspection, but since it is detected by a vehicle speed measurement sensor, an appropriate warning is issued to promote safety confirmation and preventive safety can be realized. Even if the driver is not aware that the tire 1a is operating in a state where an abnormality has occurred, the vehicle can issue a warning by means of the detection signal. It is possible to prevent traffic accidents. Further, when a serious abnormality occurs in the tire 1a, a traffic accident can be prevented by performing a control to automatically reduce or stop the speed of the vehicle.
 好ましい実施形態において、前記信号処理ユニット3は、前記回転に同期した回転速度変動パターンを、前記回転センサ2の複数回転にわたる回転信号データに、回転に同期させた平均化処理または積算処理を施して、取得しても良い。
 回転同期成分を積算もしくは平均化して抽出することにより、ごくわずかな回転速度変動を検出できるため、異常状態が発生した初期の状態で兆候をとらえ、状況が進展する前に異常を検知して通知できる可能性が高くなる。
In a preferred embodiment, the signal processing unit 3 subjects the rotation speed fluctuation pattern synchronized with the rotation to the rotation signal data over a plurality of rotations of the rotation sensor 2 by performing averaging processing or integration processing synchronized with the rotation. , You may get.
By integrating or averaging and extracting the rotation synchronization component, it is possible to detect very slight fluctuations in the rotation speed, so that signs can be detected in the initial state where an abnormal condition has occurred, and the abnormality is detected and notified before the situation develops. The possibility that it can be increased.
 好ましい実施形態において、前記信号処理ユニット3は、前記回転に同期した回転速度の変動の抽出の処理を、一つ以上の設定された走行速度範囲から選択された走行速度範囲で実施しても良い。
 前記信号処理ユニット3は、前記抽出の処理を複数の走行速度範囲についてそれぞれ行い、前記異常状態判断ユニット4は、前記信号処理ユニット3が前記抽出の処理を行うそれぞれの速度範囲のデータについて、それぞれ異常状態の推定処理を行い、これら複数の推定処理の結果から異常状態を総合判断するようにしても良い。これにより異常判断の精度、信頼性の向上が得られる。
In a preferred embodiment, the signal processing unit 3 may perform the process of extracting the fluctuation of the rotational speed synchronized with the rotation in a traveling speed range selected from one or more set traveling speed ranges. .
The signal processing unit 3 performs the extraction process for each of a plurality of travel speed ranges, and the abnormal state determination unit 4 performs data for each speed range for which the signal processing unit 3 performs the extraction process. An abnormal state estimation process may be performed, and the abnormal state may be comprehensively determined from the results of the plurality of estimation processes. As a result, the accuracy and reliability of abnormality determination can be improved.
 好ましい実施形態において、前記異常状態判断ユニット4は、前記基準となる回転速度変動パターンと検出した回転速度変動パターンとの差分より得られるパターンのピーク値が、あらかじめ設定したしきい値を超えることによって異常状態を判断しても良い。しきい値を用いて判断することで、容易に異常状態の判断が行える。 In a preferred embodiment, the abnormal state determination unit 4 is configured so that a peak value of a pattern obtained from a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern exceeds a preset threshold value. An abnormal state may be determined. By determining using the threshold value, it is possible to easily determine the abnormal state.
 前記ピーク値が前記しきい値を超えるのは、タイヤ交換による場合と異常による場合とがあり、これらの区別が付かない恐れがある。これに対して、しきい値を超えるピークの数が1回転中に1~数個であるときに異常であると判断する。そして、設定された上限個数を超える場合は、タイヤ1aが交換されたか、又は、パンク等の異常が想定されるとして、警告を出力してもよい。 The reason why the peak value exceeds the threshold value may be due to a tire change or an abnormality, and there is a possibility that these cannot be distinguished. On the other hand, when the number of peaks exceeding the threshold is 1 to several during one rotation, it is determined that there is an abnormality. If the set upper limit number is exceeded, a warning may be output on the assumption that the tire 1a has been replaced or an abnormality such as puncture is assumed.
 好ましい実施形態において、前記異常状態判断ユニット4は、前記基準となる回転速度変動パターンと検出した回転速度変動パターンとの差分に相当するパターンの絶対値の積算値、又は2乗の積算値が、あらかじめ設定した値を超えることによって異常状態を判断するようにしても良い。これにより正確な判断が行える。 In a preferred embodiment, the abnormal state determination unit 4 has an absolute value integrated value of a pattern corresponding to a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern, or a square integrated value. An abnormal state may be determined by exceeding a preset value. Thereby, an accurate judgment can be made.
 好ましい実施形態において、前記回転センサ2は、零相を備えた回転センサまたは絶対角検出機能を備えた回転センサ2で構成し、前記異常状態判断ユニット4は、取得した前記回転速度変動パターンの位相を合わせた状態で、前記回転速度変動パターンと前記基準となる回転速度変動パターンとの差分を求め、この差分の大きさに基づいて前記車輪のタイヤの異常状態を推定しても良い。位相を合わせて差分を求めることで、その差分の大きさからタイヤの異常状態を容易にかつ精度良く推定できる。 In a preferred embodiment, the rotation sensor 2 is constituted by a rotation sensor having a zero phase or a rotation sensor 2 having an absolute angle detection function, and the abnormal state determination unit 4 has a phase of the acquired rotation speed variation pattern. The difference between the rotational speed variation pattern and the reference rotational speed variation pattern may be obtained, and the abnormal state of the wheel tire may be estimated based on the magnitude of the difference. By obtaining the difference by matching the phases, the abnormal state of the tire can be easily and accurately estimated from the magnitude of the difference.
 回転センサ2は、車輪用軸受30およびドライブシャフトのいずれに設けられていても良い。特に、車輪用軸受30に回転センサ2が組み込まれている場合、検出誤差が小さくなり、僅かな回転速度変動も検出することができる。そのため、運転者が感知できないようなタイヤ1aの異常状態を精度よく検出することができる。 The rotation sensor 2 may be provided on either the wheel bearing 30 or the drive shaft. In particular, when the rotation sensor 2 is incorporated in the wheel bearing 30, the detection error becomes small, and a slight rotation speed fluctuation can be detected. Therefore, it is possible to accurately detect an abnormal state of the tire 1a that cannot be detected by the driver.
 検出対象である特定の変動を有する回転速度変動パターンを精度よく検出するために、車輪1に対して搭載される回転センサ2には十分な検出精度と、十分な空間分解能を備えたものを使用することが望まれる。 In order to accurately detect a rotational speed fluctuation pattern having a specific fluctuation, which is a detection target, a rotation sensor 2 mounted on the wheel 1 having sufficient detection accuracy and sufficient spatial resolution is used. It is desirable to do.
 好ましい実施形態において、前記回転センサ2が磁気センサ2bと磁気エンコーダ2aもしくはパルサギヤで構成され、回転による磁気強度の変動をアナログ信号で出力する構成であっても良い。
 回転に伴って出力されるアナログ信号を分析すれば、信号に含まれている波形の歪みなどから回転速度の変動を抽出できるため、パルス出力の場合と同様の処理が可能である。
In a preferred embodiment, the rotation sensor 2 may be composed of a magnetic sensor 2b and a magnetic encoder 2a or a pulsar gear, and may output a variation in magnetic intensity due to rotation as an analog signal.
If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible.
 また、前記回転センサ2が、磁気センサとこの磁気センサで検出される被検出極を有する磁気エンコーダもしくはパルサギヤと、前記磁気センサの検出信号を逓倍した回転パルスを出力する逓倍回路とを備えたものであっても良い。 The rotation sensor 2 includes a magnetic sensor, a magnetic encoder or pulser gear having a detected pole detected by the magnetic sensor, and a multiplication circuit that outputs a rotation pulse obtained by multiplying a detection signal of the magnetic sensor. It may be.
 磁気センサと磁気エンコーダもしくはパルサギヤで構成される回転センサは、温度変化や汚れ等の劣悪な環境に強い。その反面、光学式の回転センサに比べて分解能が低いが、逓倍回路を備えることで分解能を高めることができる。前記回転センサが、逓倍回路を備えたものであるなど、高分解能な回転センサ2であることで、低速走行状態における回転変動成分を、高い分解能で検出できるため、異常状態の検知感度が高くなる。 Rotational sensor composed of magnetic sensor and magnetic encoder or pulsar gear is resistant to poor environment such as temperature change and dirt. On the other hand, the resolution is lower than that of an optical rotation sensor, but the resolution can be increased by providing a multiplication circuit. Since the rotation sensor is a high-resolution rotation sensor 2 such as one equipped with a multiplication circuit, the rotational fluctuation component in the low-speed traveling state can be detected with high resolution, so that the detection sensitivity of the abnormal state is increased. .
 好ましい実施形態において、前記異常状態判断ユニット4が出力した異常情報に基づいて、運転者への警告または車両の制御状態の変更を行う異常推定結果利用手段17を備えても良い。異常推定結果利用手段17は、例えば異常状態判断ユニット4に対して上位となる車両のコンピュータに設けられる。異常推定結果利用手段17は、具体的には、例えば次のいずれかの機能を持つものとされる。 In a preferred embodiment, there may be provided an abnormality estimation result utilization means 17 for warning the driver or changing the control state of the vehicle based on the abnormality information output by the abnormal state determination unit 4. The abnormality estimation result utilization means 17 is provided, for example, in a computer of the vehicle that is higher than the abnormal state determination unit 4. Specifically, the abnormality estimation result utilization unit 17 has, for example, one of the following functions.
 前記異常推定結果利用手段17は、前記異常状態判断ユニット4が出力した異常情報に基づいて、運転席の警告報知手段に表示させる機能を有しても良い。この場合に、検出した異常情報に基づいて、タイヤ1aの異常状態がどの車輪1で発生しているかを知らせる構成とすることが望ましい。 The abnormality estimation result utilization unit 17 may have a function of displaying on the warning notification unit in the driver's seat based on the abnormality information output by the abnormal state determination unit 4. In this case, based on the detected abnormality information, it is desirable to notify which wheel 1 is in an abnormal state of the tire 1a.
 前記異常推定結果利用手段17は、前記異常状態判断ユニット4が出力した異常情報に基づいて、車両を設定速度まで減速させる機能、または車両制御コンピュータの制御パラメータを変更し、タイヤ1aの能力を考慮した安全制御を行う機能を有しても良い。タイヤ1aの異常情報に基づいて車両を設定速度まで減速させる制御、例えば停止させる制御を自動で行うことで、運転者が気づかないタイヤ1aの異常にも安全性が得られる。また、タイヤ1aの能力低下に応じて、車両姿勢制御などの安全制御システム22aのパラメータを変更し、タイヤ1aの能力低下を考慮して安全制御システム22aを調整することで、状況に適した安全制御が確実に行える。 The abnormality estimation result utilization means 17 changes the function of decelerating the vehicle to a set speed or the control parameter of the vehicle control computer based on the abnormality information output by the abnormal state determination unit 4 and considers the ability of the tire 1a. It may have a function of performing safety control. By automatically performing a control for decelerating the vehicle to a set speed based on the abnormality information of the tire 1a, for example, a control for stopping the vehicle, safety can be obtained even for an abnormality of the tire 1a that the driver does not notice. Further, by changing the parameters of the safety control system 22a such as vehicle attitude control according to the decrease in the performance of the tire 1a and adjusting the safety control system 22a in consideration of the decrease in the performance of the tire 1a, the safety suitable for the situation Control can be performed reliably.
 前記異常推定結果利用手段17は、前記異常状態判断ユニット4が出力した異常情報を、車両に搭載されたコンピュータが通信回線を通じて、車両の点検またはタイヤ1aの交換が可能な定められた営業所の端末に発信する機能を有しても良い。
 このようにタイヤ1aの異常に対する点検,交換の情報が営業所20の端末に送信されるため、営業所20におけるタイヤ1aの在庫確認等を早期に行い、迅速かつ適切な点検,交換が期待できる。
The abnormality estimation result utilization means 17 uses the abnormality information output from the abnormal state determination unit 4 to a predetermined sales office where a computer mounted on the vehicle can inspect the vehicle or replace the tire 1a through a communication line. You may have the function to transmit to a terminal.
As described above, information on the inspection and replacement for the abnormality of the tire 1a is transmitted to the terminal of the sales office 20. Therefore, the inventory check of the tire 1a at the sales office 20 can be performed at an early stage, and prompt and appropriate inspection and replacement can be expected. .
 前記異常推定結果利用手段17は、車両に設けられた、他車両への異常報知手段、例えばハザードランプを動作させる機能を有しても良い。 The abnormality estimation result utilization means 17 may have a function of operating an abnormality notifying means for other vehicles, such as a hazard lamp, provided in the vehicle.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る自動車用タイヤの異常状態検出装置の概念構成を示すブロック図である。 同異常状態検出装置の信号処理ユニットの概念構成のブロック図である。 同異常状態検出装置の異常状態判断ユニットの概念構成のブロック図である。 同異常状態検出装置の利用形態を示すブロック図である。 複数回転にわたる回転に同期した回転速度変動パターンの作成方法の一例を示す概念図である。 (A)および(B)は、複数回転にわたる回転に同期した回転速度変動パターンの作成方法の一例を波形により示す説明図であって、(A)は、複数回転にわたる回転に同期した回転速度変動パターンを示し、(B)は、これら複数のパターンを平均化した回転速度変動パターンを示す。 異常状態の回転速度変動パターン例の説明図である。 同異常状態検出装置の信号処理ユニットによる回転速度変動パターンの検出方法の例を示す説明図である。 (a)~(c)は、テープ付着による回転速度変動データの違いを示すグラフである。 (a)および(b)は、ネジ有無による回転速度変動データの違いを示すグラフである。 (a)~(c)はそれぞれ異なる速度の回転変動を示すグラフである。 同異常状態検出装置で用いる回転センサを装備した車輪用軸受の一例の断面図である。 同車輪用軸受をインボードから見た図である。 同異常状態検出装置で用いる回転センサを装備した車輪用軸受の他の例の断面図である。 同車輪用軸受をインボードから見た図である。 同異常状態検出装置で用いる回転センサを装備した車輪用軸受のさらに他の例の断面図である。 同車輪用軸受をインボードから見た図である。 同異常状態検出装置が用いる回転センサの第1の例を示す断面図である。 図18Aの回転センサの斜視図である。 同異常状態検出装置が用いる回転センサの第2の例を示す断面図である。 図19Aの回転センサの斜視図である。 回転センサにおける逓倍回路の一例を示すブロック図である。 同逓倍回路を用いる磁気センサの説明図である。 同回転センサとして用いる絶対角回転センサの例を示す構成説明図である。 (A)~(E)は、同回転センサの磁極配列および検出信号の説明図である。 (A)~(E)は、同回転センサの磁極配列および検出信号の処理例の説明図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a block diagram showing a conceptual configuration of an abnormal state detecting device for an automobile tire according to a first embodiment of the present invention. It is a block diagram of a conceptual structure of the signal processing unit of the abnormal state detection device. It is a block diagram of a conceptual configuration of an abnormal state determination unit of the abnormal state detection device. It is a block diagram which shows the utilization form of the abnormal state detection apparatus. It is a conceptual diagram which shows an example of the preparation method of the rotational speed fluctuation pattern synchronized with the rotation over several rotations. (A) And (B) is explanatory drawing which shows an example of the production method of the rotational speed fluctuation pattern synchronized with the rotation over multiple rotations, and (A) is the rotational speed fluctuation synchronized with the rotation over multiple rotations A pattern is shown, (B) shows the rotational speed fluctuation pattern which averaged these some patterns. It is explanatory drawing of the example of a rotational speed fluctuation pattern of an abnormal state. It is explanatory drawing which shows the example of the detection method of the rotational speed fluctuation pattern by the signal processing unit of the abnormal condition detection apparatus. (A)-(c) is a graph which shows the difference in the rotational speed fluctuation data by tape adhesion. (A) And (b) is a graph which shows the difference in the rotational speed fluctuation | variation data by the presence or absence of a screw | thread. (A) to (c) are graphs showing rotational fluctuations at different speeds. It is sectional drawing of an example of the bearing for wheels equipped with the rotation sensor used with the same abnormal condition detection apparatus. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the other example of the wheel bearing provided with the rotation sensor used with the same abnormal condition detection apparatus. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the further another example of the wheel bearing equipped with the rotation sensor used with the same abnormal condition detection apparatus. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing which shows the 1st example of the rotation sensor which the same abnormal condition detection apparatus uses. FIG. 18B is a perspective view of the rotation sensor of FIG. 18A. It is sectional drawing which shows the 2nd example of the rotation sensor which the abnormal state detection apparatus uses. FIG. 19B is a perspective view of the rotation sensor of FIG. 19A. It is a block diagram which shows an example of the multiplication circuit in a rotation sensor. It is explanatory drawing of the magnetic sensor using the same multiplication circuit. It is composition explanatory drawing which shows the example of the absolute angle rotation sensor used as the rotation sensor. (A)-(E) are explanatory drawings of the magnetic pole arrangement and detection signals of the rotation sensor. (A)-(E) are explanatory drawings of a magnetic pole arrangement and detection signal processing example of the same rotation sensor.
 この発明の第1の実施形態に係る異常状態検出装置について図面を参照して説明する。図1に示すように、この自動車用タイヤの異常状態検出装置5は、異常の検知対象となるタイヤ1aを有する車輪1の回転速度を検出する回転センサ2であって、車輪用軸受もしくはドライブシャフト外輪等に設置された回転センサ2と、出力される回転信号を処理するための信号処理ユニット3とを有する。自動車用タイヤ異常状態検出装置5は、また、この信号処理ユニット3の出力を用いてタイヤ1aの異常を検知する異常状態判断ユニット4を有する。信号処理ユニット3と異常状態判断ユニット4とで、異常状態検出装置本体15が構成される。異常状態検出装置本体15は、独立したECUとしても良く、また車両全体の制御を行うECUの一部として設けても良い。回転センサ2は、換言すれば車輪速センサである。図12~図17に回転センサ付きの車輪用軸受を例示するが、これについては後に説明する。 An abnormal state detection apparatus according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an abnormal state detecting device 5 for an automobile tire is a rotation sensor 2 for detecting a rotational speed of a wheel 1 having a tire 1a to be detected for abnormality, and is a wheel bearing or a drive shaft. It has the rotation sensor 2 installed in the outer ring etc., and the signal processing unit 3 for processing the rotation signal output. The vehicle tire abnormal state detection device 5 also includes an abnormal state determination unit 4 that detects an abnormality of the tire 1 a using the output of the signal processing unit 3. The signal processing unit 3 and the abnormal state determination unit 4 constitute an abnormal state detection device main body 15. The abnormal state detection device main body 15 may be an independent ECU, or may be provided as a part of the ECU that controls the entire vehicle. In other words, the rotation sensor 2 is a wheel speed sensor. FIGS. 12 to 17 illustrate wheel bearings with a rotation sensor, which will be described later.
 図2に信号処理ユニット3の概念構成を示す。信号処理ユニット3では、回転センサ2が検出した回転信号を用いて走行中の車輪1の回転速度を回転速度判別部5aで測定し、車輪1の回転に同期した回転速度の変動、つまり1回転毎の回転速度変動パターンを、回転変動パターン抽出部6で抽出する。
 ここで、回転センサ2に用いられる磁気エンコーダなどの検出ターゲットには、製造上のばらつきなどによるピッチ誤差が含まれている。そのため、初期状態の正常な状態の回転速度変動パターンを基準の速度パターンP0として、基準速度パターン記憶部7に記憶しておき、回転センサ2の回転信号に重畳する微小な誤差成分を、誤差補正部8で補正する構成としている。
FIG. 2 shows a conceptual configuration of the signal processing unit 3. In the signal processing unit 3, the rotational speed of the running wheel 1 is measured by the rotational speed discriminating unit 5a using the rotational signal detected by the rotational sensor 2, and the fluctuation of the rotational speed synchronized with the rotation of the wheel 1, that is, one revolution. The rotation fluctuation pattern for each rotation is extracted by the rotation fluctuation pattern extraction unit 6.
Here, a detection target such as a magnetic encoder used for the rotation sensor 2 includes a pitch error due to manufacturing variations. Therefore, the rotation speed fluctuation pattern in the normal state in the initial state is stored in the reference speed pattern storage unit 7 as the reference speed pattern P0, and a minute error component superimposed on the rotation signal of the rotation sensor 2 is corrected for error. The correction is performed by the unit 8.
 回転変動パターン抽出部6による信号処理においては、ノイズ成分やセンサ誤差成分を抑制するために、ローパスフィルタ(LPF)やハイパスフィルタ(HPF)(いずれも図示せず)によってフィルタ処理し、回転信号からタイヤ1aの形状やトレッドパターンに起因する速度変動成分を抽出する。また、路面の凹凸による影響を排除するために、ある程度の回転回数にわたる期間の回転信号を処理して、任意の回転速度変動パターンを抽出する。例えば、数回転にわたる車輪1の回転信号から回転同期成分を平均化して検出する。抽出処理に平均化処理や積算処理を適用することで、効果的に車輪1の回転に同期しないランダムな回転変動の影響が排除される。 In the signal processing by the rotation variation pattern extraction unit 6, in order to suppress noise components and sensor error components, filter processing is performed by a low-pass filter (LPF) or a high-pass filter (HPF) (both not shown), A speed fluctuation component caused by the shape or tread pattern of the tire 1a is extracted. Further, in order to eliminate the influence of road surface unevenness, a rotation signal for a period of a certain number of rotations is processed to extract an arbitrary rotation speed fluctuation pattern. For example, the rotation synchronization component is averaged and detected from the rotation signal of the wheel 1 over several rotations. By applying an averaging process and an integration process to the extraction process, the influence of random rotation fluctuations that are not effectively synchronized with the rotation of the wheel 1 is eliminated.
 上記平均化処理の具体例を図5,図6(A),(B)と共に説明する。この例は、回転センサ2が、図18A,18Bに示すように、磁気エンコーダ2aと磁気センサ2bとで構成され、磁気エンコーダ2aが、被検出部であるN,Sの磁極2aaを交互に有するセンサである場合に適用される。磁気エンコーダ2aの代わりに検出歯車(図示せず)を用いても、磁気エンコーダ2aと同様に適用される。回転センサ2については、後に具体的に説明する。 A specific example of the averaging process will be described with reference to FIGS. 5 and 6A and 6B. In this example, as shown in FIGS. 18A and 18B, the rotation sensor 2 is composed of a magnetic encoder 2a and a magnetic sensor 2b, and the magnetic encoder 2a has N and S magnetic poles 2aa which are detected portions alternately. It is applied when it is a sensor. Even if a detection gear (not shown) is used in place of the magnetic encoder 2a, it is applied in the same manner as the magnetic encoder 2a. The rotation sensor 2 will be specifically described later.
 図5に示すように、回転センサ2の出力を、タイヤ1回転を周期として、タイヤ複数回転分の、被検出部(磁極2aaまたは検出歯車の個々の歯)の通過速度または通過所要時間を回転変動パターン抽出部6の平均化部6aで平均して、タイヤ特性となる回転速度変動パターンを抽出部6bで得る。単純平均をとるだけでなく、過去の値よりも直前の値に重きを置いた加重平均をとれば、常に最新のタイヤの特性を得ることができ、タイヤ特性の経時変化に追従することができる。 As shown in FIG. 5, the output of the rotation sensor 2 is rotated by the rotation speed of the detected portion (the magnetic pole 2aa or the individual teeth of the detection gear) or the required time for the rotation of the tire for one rotation of the tire. An averaging unit 6a of the fluctuation pattern extraction unit 6 averages and a rotation speed fluctuation pattern that becomes tire characteristics is obtained by the extraction unit 6b. Not only taking a simple average but also taking a weighted average that puts more weight on the previous value than the past value, you can always get the latest tire characteristics and follow the tire characteristics over time .
 例えば、図6(A)に示すように、回転センサ2の出力が与えられた場合に、複数回転分の被検出部(磁極2aaまたは検出歯車の個々の歯)の通過速度または通過所要時間の値を平均すると、図6(B)に示す、タイヤ特性である回転速度変動パターンが得られる。なお、図6(A),(B)において縦軸は個々の被検出部の通過速度または通過所要時間、横軸は時刻(個々の被検出部に対応)またはパルスの位置である。 For example, as shown in FIG. 6 (A), when the output of the rotation sensor 2 is given, the passing speed or the passing time of the detected portion (the individual teeth of the magnetic pole 2aa or the detection gear) for a plurality of rotations. When the values are averaged, a rotation speed fluctuation pattern which is tire characteristics shown in FIG. 6B is obtained. 6A and 6B, the vertical axis represents the passing speed or the time required for passing through each detected part, and the horizontal axis represents the time (corresponding to each detected part) or the position of the pulse.
 異常状態の回転速度変動パターンの例を図7に示す。タイヤ1aに異物噛み込みや傷、フラットスポットが生じると、タイヤの接地面の形状の変化や、踏込時の抵抗変化などにより、回転速度の変動に特有の変化が発生し、図7のような回転速度変動パターンが観測される。通常の回転速度のパターンから突出した誤差が観測されるので、これを図1,図3の異常状態判断ユニット4で検出し異常状態に関する情報を出力する。 An example of the rotational speed fluctuation pattern in the abnormal state is shown in FIG. When a foreign object is caught, scratched, or flat spot is generated in the tire 1a, a change peculiar to the fluctuation of the rotational speed occurs due to a change in the shape of the ground contact surface of the tire or a resistance change at the time of depression, as shown in FIG. A rotational speed fluctuation pattern is observed. Since an error protruding from the normal rotational speed pattern is observed, this is detected by the abnormal state determination unit 4 in FIGS. 1 and 3, and information on the abnormal state is output.
 図3に異常状態判断ユニット4の概念構成を示す。異常状態判断ユニット4は、信号処理ユニット3で抽出した回転速度変動パターンと、基準パターン記憶部13に設定された基準となる回転速度変動パターンとの差分を、差分計算部14で求め、この求めた差分から、異常推定部11により前記車輪1のタイヤ1aの異常状態を推定しその推定した異常情報(異常状態に関する情報)を出力する。 FIG. 3 shows a conceptual configuration of the abnormal state determination unit 4. The abnormal state determination unit 4 obtains the difference between the rotation speed fluctuation pattern extracted by the signal processing unit 3 and the reference rotation speed fluctuation pattern set in the reference pattern storage section 13 by the difference calculation section 14, and obtains this difference. The abnormality estimation unit 11 estimates the abnormal state of the tire 1a of the wheel 1 from the difference, and outputs the estimated abnormality information (information regarding the abnormal state).
 すなわち、図8に示すように、基準となる回転速度変動パターン(Pref)と観測した回転速度変動パターン(Pobs)の差分を差分計算部14で求め、この差分に相当するパターン(Pdif)において、1回転中に1~数回のしきい値を超えるようなズレが発生したときに、異常状態判断ユニット4の異常推定部11は異常状態が観測されたと判断する。数回とは、好ましくは5,6回、より好ましくは2,3回である。 That is, as shown in FIG. 8, a difference between the reference rotational speed fluctuation pattern (Pref) and the observed rotational speed fluctuation pattern (Pobs) is obtained by the difference calculation unit 14, and in the pattern (Pdif) corresponding to this difference, When a deviation that exceeds the threshold value one or several times during one rotation occurs, the abnormality estimation unit 11 of the abnormal condition determination unit 4 determines that an abnormal condition has been observed. “Several times” is preferably 5 or 6 times, more preferably 2 or 3 times.
 回転速度変動パターンの検出方法の具体例を説明する。
 例えば、回転位相を合わせた状態で走行中の回転速度変動パターン(Pobs)と基準の回転速度変動パターン(Pref)の差分を検出する。このとき、回転位相の判別を容易にするために、前記回転センサ2(図1)として、Z相(ゼロ相)信号を備えた回転角センサを使用してもよいし、絶対角センサを使用してもよい。
A specific example of a method for detecting the rotational speed fluctuation pattern will be described.
For example, the difference between the rotational speed fluctuation pattern (Pobs) and the reference rotational speed fluctuation pattern (Pref) during traveling with the rotational phases being matched is detected. At this time, in order to easily determine the rotation phase, a rotation angle sensor having a Z phase (zero phase) signal may be used as the rotation sensor 2 (FIG. 1), or an absolute angle sensor is used. May be.
 異常状態判断ユニット4は、前記差分に相当するパターン(Pdif)のピーク値が、設定したしきい値より大きくなったときに、異常状態と判断してもよい。また、このピーク値の絶対値の積算値(総和)Σ|Pdif|またはこのピーク値の2乗の積算値(総和)Σ(Pdif)2が設定値より大きくなったときに、異常状態と判断してもよい。 The abnormal state determination unit 4 may determine that the abnormal state is present when the peak value of the pattern (Pdif) corresponding to the difference becomes larger than a set threshold value. Also, when the integrated value (sum) Σ | Pdif | of the absolute value of this peak value or the integrated value (sum) Σ (Pdif) 2 of the square of this peak value is larger than the set value, it is judged as an abnormal state. May be.
 タイヤ交換した場合も、これらピーク値や前記積算値が大きくなる。そのため、異常状態をタイヤ交換後の状態から区別するために、一般の異常状態(異物噛み込みやブロックの欠け、フラットスポットの発生などの局所的な異常)と判断するには、差分に相当するパターン(Pdif)のうち、しきい値を超えるピークの数が、1回転中に1~数個であるときに限定しても良い。設定された上限個数を超える場合は、タイヤが交換されたか、又はパンク等の特別な異常(タイヤ全体にわたる異常)が想定されるとして、一般の異常判断ではなく、タイヤ交換またはパンクを示す特別の異常の判断結果に相当する警告を、異常推定部11によって出力する。 Even when tires are replaced, these peak values and the integrated value become large. Therefore, in order to distinguish the abnormal state from the state after tire replacement, it is equivalent to the difference to determine a general abnormal state (local abnormality such as foreign object biting, block missing, flat spot generation, etc.). The pattern (Pdif) may be limited to when the number of peaks exceeding the threshold is 1 to several during one rotation. If the set upper limit number is exceeded, it is assumed that a special abnormality such as a puncture or a puncture (an abnormality throughout the entire tire) is assumed. The abnormality estimation unit 11 outputs a warning corresponding to the abnormality determination result.
 基準となる回転速度変動パターン(Pref)としては、初期(タイヤ交換直後のような、上記一般の異常が生じていない時点)の回転速度変動パターンを基準パターン記憶部13(例えば初期状態メモリ)に記憶しておいても良く、これにより、回転センサ2の固有の誤差パターンやタイヤ1aのアンバランスなどの情報も含めた初期状態からの変化分を検出することができ、より検出感度を高めることができる。ただし、車輪1のタイヤ1aやホイール(図示せず)を交換したときには、基準となる回転速度変動パターン(Pref)が変化するため、精度が劣化することになる。そのため、前記基準パターン記憶部13は、基準とする回転速度変動パターン(Pref)とする初期の回転速度変動パターンを更新する機能を備えてもよい。 As a reference rotational speed fluctuation pattern (Pref), an initial rotational speed fluctuation pattern (when the above-described general abnormality does not occur, such as immediately after tire replacement) is stored in a reference pattern storage unit 13 (for example, an initial state memory). It is possible to store this information, so that the change from the initial state including information such as the inherent error pattern of the rotation sensor 2 and the unbalance of the tire 1a can be detected, and the detection sensitivity is further increased. Can do. However, when the tire 1a of the wheel 1 or the wheel (not shown) is replaced, the rotation speed fluctuation pattern (Pref) serving as a reference changes, and the accuracy deteriorates. Therefore, the reference pattern storage unit 13 may have a function of updating an initial rotation speed fluctuation pattern as a reference rotation speed fluctuation pattern (Pref).
 検出対象である回転速度変動パターンを精度よく検出するために、車輪1に対して搭載される回転センサ2には十分な検出精度と、十分な空間分解能を備えたものとするのが望ましい。例えば、少なくとも0.5%の回転速度変動を検出できる精度を備え、1回転あたりのパルス数を40以上とする。より高い次数の回転変動成分を含む低速回転時に十分なデータを取得するためには、回転センサ2の分解能をさらに高いものにするのが望ましい。タイヤ1aのブロックサイズなどの構造を考慮すると、接地長20mm程度の分解能を確保できるように、回転センサ2の1回転あたりの出力パルス数を最低100以上にするのが望ましい。 It is desirable that the rotation sensor 2 mounted on the wheel 1 has sufficient detection accuracy and sufficient spatial resolution in order to accurately detect the rotational speed fluctuation pattern that is the detection target. For example, it has an accuracy capable of detecting at least 0.5% rotation speed variation, and the number of pulses per rotation is 40 or more. In order to acquire sufficient data at the time of low-speed rotation including a higher-order rotation fluctuation component, it is desirable to further increase the resolution of the rotation sensor 2. Considering the structure such as the block size of the tire 1a, it is desirable that the number of output pulses per rotation of the rotation sensor 2 be at least 100 or more so as to ensure a resolution with a contact length of about 20 mm.
 なお、回転センサ2の出力は必ずしもパルス出力である必要はなく、アナログ信号であってもよい。回転に伴って出力されるアナログ信号を分析すれば、信号に含まれている波形の歪みなどから回転速度の変動を抽出できるため、パルス出力の場合と同様の処理が可能である。特に、回転パルスの分解能(逓倍能力)が低い場合には、アナログ信号を積極的に利用することにより、高い分解能での信号処理を実行するのが望ましい。 Note that the output of the rotation sensor 2 is not necessarily a pulse output, and may be an analog signal. If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible. In particular, when the resolution (multiplication capability) of the rotation pulse is low, it is desirable to execute signal processing with high resolution by actively using analog signals.
 異常状態を模擬して試験したデータ例につき、図9(a)~(c)、図10(a),(b)と共に説明する。
 タイヤトレッド面に異物が付着した場合や、局所的に摩耗が進んだ場合を想定した試験をした。タイヤトレッド面にトレッドを横切るようにして厚さ約0.3mmのビニールテープを貼り付けた状態で、約15km/hの速度でアスファルト路面を数十メートル走行し、一回転あたり960回の分解能で回転速度データを収集した。このとき、ビニールテープ表面では摩擦係数が減少するため、タイヤ接地面に作用する力が変化して回転変動が発生する。また、その大きさはビニールテープの幅によって変化する。抽出された一回転分の速度変動パターンを、図9(a)~(c)に示す。
An example of data tested by simulating an abnormal state will be described with reference to FIGS. 9 (a) to 9 (c) and FIGS. 10 (a) and 10 (b).
Tests were conducted assuming that foreign matter adhered to the tire tread surface or when local wear progressed. With a vinyl tape with a thickness of about 0.3mm pasting the tire tread surface across the tread, the vehicle travels several tens of meters on an asphalt road surface at a speed of about 15km / h with a resolution of 960 times per revolution. Rotational speed data was collected. At this time, since the coefficient of friction decreases on the surface of the vinyl tape, the force acting on the tire ground contact surface changes and rotation fluctuation occurs. Moreover, the magnitude | size changes with the width | variety of a vinyl tape. The extracted speed fluctuation pattern for one rotation is shown in FIGS.
 図9(a)~(c)は、それぞれ、テープ無し、テープ幅6mm、テープ幅12mm、における回転速度を正規化してプロットしたものである。タイヤトレッド面にテープを貼り付けたことにより、特有の回転変動パターンが発生していることがわかる。 9 (a) to 9 (c) are plots obtained by normalizing the rotation speeds when there is no tape, the tape width is 6 mm, and the tape width is 12 mm. It can be seen that a specific rotation variation pattern is generated by attaching the tape to the tire tread surface.
 また、タイヤ1aのトレッドブロックに釘が刺さったような場合や、トレッドブロックの溝に異物が噛み込んだ場合を想定した試験をした。タイヤ1aの接地面にあるトレッドブロックの側面にネジを刺し込み、トレッド面からネジ頭が約3mm飛び出した状態で約15km/hの速度でアスファルト路面を数十メートル走行し、一回転あたり960回の分解能で回転速度データを収集した。抽出された一回転分の速度変動パターンから、低周波成分を除去した波形を図10(b)に示す。図10(a)には、参考のためにネジがない場合の波形を示す。ネジによってタイヤ接地面に作用する力が変化して回転変動が発生するため、特有の回転変動パターンが発生していることがわかる。 In addition, a test was performed assuming that nails were stuck in the tread block of the tire 1a or a foreign object was caught in the groove of the tread block. Screw the screw into the side of the tread block on the ground contact surface of the tire 1a. Drive about 960 meters per revolution on the asphalt road surface at a speed of about 15 km / h with the screw head protruding about 3 mm from the tread surface. Rotational speed data was collected with a resolution of. FIG. 10B shows a waveform obtained by removing low frequency components from the extracted speed fluctuation pattern for one rotation. FIG. 10A shows a waveform when there is no screw for reference. Since the force acting on the tire ground contact surface is changed by the screw and rotation fluctuation occurs, it can be seen that a specific rotation fluctuation pattern is generated.
 回転速度のパターンの変化に対する対応につき説明する。
 回転速度変動の発生状況はタイヤ1aの状態に応じて変化するため、走行速度によって影響を受ける。図11(a)~(c)に示す波形の楕円状の点線内の部分は、回転変動の発生する回転位置で観測された速度変動波形であり、(a)~(c)に示されるように走行速度によって波形が変化している。すなわち、回転速度変動成分はタイヤ1aの伝達特性により周波数特性を示し、走行速度によってその位相や振幅が変化する。そのため、回転速度変動パターンを抽出する際には、回転速度が特定の範囲にある状態の信号を用いて処理するのが望ましく、信号処理ユニット3(図2)には回転信号から回転速度を判別する回転速度判別部5aを設けることで、回転速度の判別機能を備えておく。
The response to the change in the rotational speed pattern will be described.
Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed. The portions within the elliptical dotted lines of the waveforms shown in FIGS. 11A to 11C are the velocity fluctuation waveforms observed at the rotational position where the rotational fluctuation occurs, as shown in FIGS. 11A to 11C. The waveform changes according to the running speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed. Therefore, when extracting the rotational speed fluctuation pattern, it is desirable to process using a signal in a state where the rotational speed is in a specific range, and the signal processing unit 3 (FIG. 2) determines the rotational speed from the rotational signal. By providing the rotational speed discriminating section 5a, a function for discriminating the rotational speed is provided.
 好ましくは、回転速度判別部5aによる回転速度判別処理では、回転速度変動パターンを、複数の回転速度領域(回転速度レベル)によって分類する。例えば、回転速度判別部5aが、複数の回転速度領域に分類されたどの回転速度の領域に該当するかを示す速度領域情報を、回転速度変動パターンの情報と共に出力する。異常判断ユニット4(図1,図3)では、それぞれの回転速度領域に対して、比較対象とする基準の回転速度変動パターンを用意しておき、それぞれの領域で異常状態を判別し、その結果から総合判断するように構成する。総合判断の方法は、例えば、複数の回転速度領域について異常状態であるとされた場合にタイヤに異常があると総合判断をしても、またいずれか一つの回転速度領域において異常の場合に、タイヤに異常があると総合判断としても良く、その他、種々の方法で総合判断できる。複数の速度領域で回転速度変動パターンを検出することにより、一つに限定された回転速度領域のパターンだけを抽出して判別する場合と比較して、より多くの走行データに基づいて総合的な判断が可能になるため、異常検出の精度が向上する。 Preferably, in the rotational speed discrimination process by the rotational speed discriminating unit 5a, the rotational speed fluctuation patterns are classified by a plurality of rotational speed regions (rotational speed levels). For example, the rotation speed discriminating unit 5a outputs speed area information indicating which rotation speed area is classified into a plurality of rotation speed areas together with information on the rotation speed fluctuation pattern. In the abnormality determination unit 4 (FIGS. 1 and 3), a reference rotational speed fluctuation pattern to be compared is prepared for each rotational speed region, and an abnormal state is determined in each region. It is configured to make a comprehensive judgment from The method of comprehensive determination is, for example, when it is determined that there is an abnormality in the tire when it is in an abnormal state for a plurality of rotational speed regions, or in the case of abnormality in any one rotational speed region, If there is an abnormality in the tire, a comprehensive determination may be made, and various other methods can be used for comprehensive determination. By detecting the rotational speed variation pattern in a plurality of speed regions, compared to the case of extracting and discriminating only the rotational speed region pattern limited to one, it is comprehensive based on more travel data Since determination is possible, the accuracy of abnormality detection is improved.
 検出した異常状態の情報を利用する例につき説明する。
 図4はその一例を示す。検出されたタイヤの異常状態は、図1の前記信号処理ユニット3および異常状態判断ユニット4からなる異常状態検出装置本体15(図4)から、車両の上位コンピュータ16に伝達され、上位コンピュータ16に設けられた異常推定結果利用手段17は、異常状態に応じて運転席の警告報知手段19に表示させる。例えば警告ランプなどの表示ランプ19aを点灯させる。これにより、運転者にタイヤ1aの確認や点検を促す。警告報知手段19は、表示ランプ19aの他、液晶表示装置等の画像表示装置19bに注意表示の画像を表示するものであっても良い。
An example in which the detected abnormal state information is used will be described.
FIG. 4 shows an example. The detected abnormal state of the tire is transmitted from the abnormal state detection device main body 15 (FIG. 4) including the signal processing unit 3 and the abnormal state determination unit 4 of FIG. The provided abnormality estimation result utilization means 17 displays the warning notification means 19 in the driver's seat according to the abnormal state. For example, a display lamp 19a such as a warning lamp is turned on. This prompts the driver to check and check the tire 1a. The warning notification means 19 may display a warning display image on an image display device 19b such as a liquid crystal display device in addition to the display lamp 19a.
 異常推定結果利用手段17は、前記警告報知手段19への表示と同時に、上位コンピュータ16から車両と通信可能な通信回線網18を通じて情報を発信し、必要に応じて車両販売店やサービス店などの営業所20を通じた点検・修理・交換の促進が行われるようにする。 The abnormality estimation result utilization means 17 transmits information from the host computer 16 through the communication network 18 communicable with the vehicle simultaneously with the display on the warning notification means 19, and if necessary, such as a vehicle dealer or a service store. Promote inspection, repair, and replacement through the sales office 20.
 異常推定結果利用手段17は、警告報知手段19に報知させる場合等に、検出されたタイヤ1aの異常状態がどの車輪1で発生しているのかを運転者や作業者に分かりやすく表示させるようにすることが好ましい。 The abnormality estimation result utilization unit 17 displays the wheel 1 in which the abnormal state of the detected tire 1a is generated in an easy-to-understand manner for the driver and the operator when the warning notification unit 19 is informed. It is preferable to do.
 異常推定結果利用手段17は、走行中に検出された異常状態の種類やレベルに応じて、安全に走行できる速度まで減速、または停止させるようにしてもよい。例えば、特に危険な状態と判断された場合には、ECU(電機制御ユニット)等の車両制御装置22に、前記減速または停止の指令を与える。 The abnormality estimation result utilization means 17 may be decelerated or stopped to a speed at which the vehicle can safely travel according to the type and level of the abnormal state detected during traveling. For example, if it is determined that the state is particularly dangerous, the deceleration or stop command is given to the vehicle control device 22 such as an ECU (electrical control unit).
 また、異常推定結果利用手段17は、検出された異常状態に応じて、車両制御装置22における車両姿勢制御などの安全制御システム22aのパラメータを変更し、タイヤ1aの異常を考慮して安全制御システム22aを調整してもよい。 Further, the abnormality estimation result utilization means 17 changes the parameters of the safety control system 22a such as vehicle attitude control in the vehicle control device 22 according to the detected abnormal state, and takes into account the abnormality of the tire 1a. 22a may be adjusted.
 上記のように減速または停止させるその場合には、異常状態の種類やレベルに応じて、周囲への安全配慮のためハザードランプなどで注意を促すようにしても良い。
 また、異常推定結果利用手段17は、車両間の通信回線がある場合には、通信回線を通じて周囲の車両に対して注意情報を発信し、安全な距離を保つ等の予防措置を講じるのがよい。
In the case of decelerating or stopping as described above, attention may be urged with a hazard lamp or the like for safety considerations to the surroundings according to the type and level of the abnormal state.
In addition, when there is a communication line between vehicles, the abnormality estimation result utilization means 17 should take preventive measures such as sending attention information to surrounding vehicles through the communication line and maintaining a safe distance. .
 この実施形態に係る自動車用タイヤの異常状態検出装置の効果を整理して次に示す。
  ・タイヤ1aの異常状態を、走行中に回転センサの情報から検出することができるため、特殊なセンサを設ける必要がない。そのため、大幅にコストアップすることなく、車両に実装することができる。
  ・従来は目視による点検のため、異常を見逃す可能性があったが、車両の回転センサ2を用いて検出するため、適切な警告を発信して安全確認を促し、予防安全を実現できる。
  ・タイヤ1aに異常が生じた状態で運転していることを運転者が気づかない場合であっても、検出信号によって車両が警告を発信できるため、走行速度を落とし急ハンドルを避けるなどの運転操作を促すことが可能になり、交通事故を防止することができる。
  ・タイヤ1aに深刻な異常が発生した場合、自動的に車両の速度を落とすか、または停止させる制御を施すことで、交通事故を防止することができる。
  ・回転同期成分を積算もしくは平均化して抽出することにより、ごくわずかな回転変動パターンを検出できるため、異常状態が発生した初期の状態で兆候をとらえ、状況が進展する前に異常を検知して通知できる可能性が高くなる。
  ・車輪用軸受に回転センサが組み込まれている場合は、検出誤差が小さくなり、わずかな回転速度変動も検出することができる。そのため、運転者が感知できないようなタイヤの異常状態を精度よく検出することができる。
・さらに高分解能な回転センサ2と組み合わせることで、低速走行状態における回転変動成分を、高い分解能で検出できるため、異常状態の検知感度が高くなる。
The effects of the abnormal state detecting device for automobile tires according to this embodiment will be summarized below.
Since the abnormal state of the tire 1a can be detected from the information of the rotation sensor during traveling, there is no need to provide a special sensor. Therefore, it can be mounted on a vehicle without significantly increasing the cost.
Conventionally, there is a possibility that an abnormality may be missed due to visual inspection, but since detection is performed using the rotation sensor 2 of the vehicle, an appropriate warning is transmitted to promote safety confirmation and preventive safety can be realized.
-Even if the driver is not aware that he is driving with an abnormality in the tire 1a, the vehicle can issue a warning based on the detection signal. It is possible to prevent traffic accidents.
-When a serious abnormality occurs in the tire 1a, a traffic accident can be prevented by performing a control to automatically reduce or stop the vehicle speed.
・ Since the rotation synchronization component is integrated or averaged and extracted, a very slight rotation fluctuation pattern can be detected, so signs are detected in the initial state when an abnormal condition has occurred, and the abnormality is detected before the situation progresses. The possibility of notification is increased.
・ When a rotation sensor is incorporated in the wheel bearing, the detection error is small, and a slight fluctuation in the rotation speed can be detected. Therefore, it is possible to accurately detect an abnormal state of the tire that cannot be detected by the driver.
-By combining with the rotation sensor 2 having a higher resolution, the rotational fluctuation component in the low-speed traveling state can be detected with a high resolution, so that the detection sensitivity of the abnormal state is increased.
 図18A,18Bは、回転センサ2の第1の例を示す。この回転センサ2は、ラジアルタイプの磁気式であり、ターゲットとなる環状の磁気エンコーダ2aと、この磁気エンコーダ2aの外周面に対面してこの磁気エンコーダ2aの磁気を検出する磁気センサ2bとを有する。磁気エンコーダ2aは、N,Sの磁極2aaを交互に有し、磁気センサ2bからは正弦波状の回転信号を出力する。この正弦波状の回転信号は信号処理手段2cで矩形に整形され、矩形波のパルス信号として出力される。信号処理手段2cは、逓倍回路2caを有していても良く、その場合、逓倍された高分解能の回転信号を出力する。 18A and 18B show a first example of the rotation sensor 2. The rotation sensor 2 is a radial type magnetic type, and includes an annular magnetic encoder 2a that is a target, and a magnetic sensor 2b that faces the outer peripheral surface of the magnetic encoder 2a and detects the magnetism of the magnetic encoder 2a. . The magnetic encoder 2a has N and S magnetic poles 2aa alternately, and outputs a sine wave rotation signal from the magnetic sensor 2b. This sinusoidal rotation signal is shaped into a rectangle by the signal processing means 2c and output as a rectangular wave pulse signal. The signal processing means 2c may have a multiplication circuit 2ca, and in that case, outputs a multiplied high-resolution rotation signal.
 磁気エンコーダ2aは、前記磁極2aaに軸方向に並んで、円周上の1か所にZ相(零相)検出用の磁極2abを有するものであっても良く、その場合、磁気センサ2bは、前記N,S交互の磁極2aaの検出用のセンサ部2baに加えて、Z相検出用の磁極2abを検出するセンサ部2bbが設けられる。このセンサ部2bbは、1回転で1回のZ相(零相)信号を出力する。 The magnetic encoder 2a may include a magnetic pole 2ab for detecting the Z phase (zero phase) in one place on the circumference, aligned in the axial direction with the magnetic pole 2aa. In this case, the magnetic sensor 2b In addition to the sensor unit 2ba for detecting the N and S alternating magnetic poles 2aa, a sensor unit 2bb for detecting the magnetic pole 2ab for detecting the Z phase is provided. This sensor unit 2bb outputs a Z-phase (zero-phase) signal once in one rotation.
 図19A,19Bは、回転センサ2の第2の例を示す。この回転センサ2は、アキシアルタイプの磁気式であり、環状の磁気エンコーダ2aと磁気センサ2bとがアキシアル方向に対面する。磁気エンコーダ2aは、断面L字状のセンサ取付リング2dのフランジ部に取付けられている。その他の構成は、図18A,18Bに示したラジアルタイプの回転センサ2と同様である。なお、図19A,19Bの例では図示を省略したが、このラジアルタイプの回転センサ2においても、前記と同様に零相用の磁極およびセンサ部、並びに逓倍回路を設けても良い。 19A and 19B show a second example of the rotation sensor 2. The rotation sensor 2 is an axial magnetic type, and an annular magnetic encoder 2a and a magnetic sensor 2b face each other in the axial direction. The magnetic encoder 2a is attached to a flange portion of a sensor attachment ring 2d having an L-shaped cross section. Other configurations are the same as those of the radial type rotation sensor 2 shown in FIGS. 18A and 18B. Although not shown in the examples of FIGS. 19A and 19B, the radial type rotation sensor 2 may also be provided with a zero-phase magnetic pole, a sensor unit, and a multiplier circuit as described above.
 なお、図18A,18Bおよび図19A,19Bは、いずれも磁気エンコーダ2aを有する回転センサ2を示したが、回転センサ2は、ターゲットがギヤ型の磁性体からなるパルサリング(図示せず)、いわゆる検出歯車であっても良い。その場合、磁気センサはパルサリングの歯部を検出して回転信号を出力する。 18A and 18B and FIGS. 19A and 19B all show a rotation sensor 2 having a magnetic encoder 2a. The rotation sensor 2 is a so-called pulsar ring (not shown) whose target is made of a gear-type magnetic material, so-called. It may be a detection gear. In that case, the magnetic sensor detects the teeth of the pulsar ring and outputs a rotation signal.
 これら磁気エンコーダ2aやギヤ型のパルサリングを用いた磁気式の回転センサ2によると、温度変化や汚れなどの劣悪な環境に強い。磁気式の場合、光学式に比べて磁極を細かく設けることが困難であるが、逓倍回路2caを有すると、回転速度変動パターンを検出するために必要な分解能の回転信号が得られる。 These magnetic encoders 2a and magnetic rotation sensors 2 using gear-type pulsar rings are resistant to inferior environments such as temperature changes and dirt. In the case of the magnetic type, it is difficult to provide the magnetic poles more finely than in the optical type. However, if the multiplication circuit 2ca is provided, a rotation signal having a resolution necessary for detecting the rotation speed fluctuation pattern can be obtained.
 図20は、前記逓倍回路2caの一例を示す。なお、この逓倍回路2caは、磁気センサ2bとして、図21に示すように、磁気エンコーダ2baの1磁極対のピッチλを1周期とするとき、90度位相差(λ/4)となるように磁極の並び方向に離して配置したホール素子などの2つの磁気センサ素子2baa,2babを用い、これら2つの磁気センサ素子2baa,2babにより得られる2相の信号(sinφ,cosφ) から磁極内位相 (φ=tan-1(sinφ/cos φ))を逓倍して算出するものとしている。 FIG. 20 shows an example of the multiplier circuit 2ca. As shown in FIG. 21, the multiplication circuit 2ca has a phase difference of 90 degrees (λ / 4) when the pitch λ of one magnetic pole pair of the magnetic encoder 2ba is one period as shown in FIG. Using two magnetic sensor elements 2baa and 2bab such as Hall elements arranged apart from each other in the arrangement direction of the magnetic poles, a phase in the magnetic pole ( The calculation is made by multiplying φ = tan-1 (sinφ / cos φ)).
 この逓倍回路2ca、図20に示すように、信号発生手段41、扇形検出手段42、マルチプレクサ手段43、および微細内挿手段44を備える。 As shown in FIG. 20, the multiplication circuit 2ca includes a signal generation means 41, a fan detection means 42, a multiplexer means 43, and a fine interpolation means 44.
 信号発生手段41は、前記磁気センサ2bの磁気センサ素子2baa,2babの各出力である2相の信号sinφ,cosφから、同一の振幅A0と同一の平均値C0とを有し、mをn以下の正の整数、iを1~2m-1 の正の整数として、相次いで互いに2π/2m-1 ずつ位相がずれた、2m-1 個の信号si を生成する手段である。 The signal generating means 41 has the same amplitude A0 and the same average value C0 from the two-phase signals sinφ and cosφ which are the outputs of the magnetic sensor elements 2baa and 2bab of the magnetic sensor 2b, and m is n or less. Is a means for generating 2 m−1 signals si that are successively shifted in phase by 2π / 2 m−1 from each other, where i is a positive integer of 1 to 2 m−1 .
 扇形検出手段42は、2m 個の等しい扇形Pi を定義するようにコード化された、m個のディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn を発生する、2m-1 個の信号si によって区切られた2m 個の扇形Pi を検出する手段である。 The sector detection means 42 generates m digital signals bn-m + 1, bn-m + 2, ..., bn-1, bnb encoded to define 2m equal sector Pi 等 し い. This is means for detecting 2m sector Pi delimited by 2m-1 signals si.
 マルチプレクサ手段43は、上記扇形検出手段42から発生するm個の上記ディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn によって制御され、上記信号発生手段41から生成される2m-1 個の上記信号si を処理して、振幅が一連の2m-1 個の上記信号si の上記平均値C0 と第1のしきい値L1 との間にある部分によって構成される一方の信号Aと、振幅が一連の2m-1 個の上記信号si の上記第1のしきい値L1 とこのしきい値よりも高い第2のしきい値L2 との間にある部分によって構成される他方の信号Bとを生成するアナログの手段である。 The multiplexer means 43 is controlled by the m digital signals bn-m + 1, bn-m + 2,..., Bn-1, bn generated from the sector detecting means 42, and is generated from the signal generating means 41. 2m-1 of the above-mentioned signals si are processed, and the amplitude is constituted by a portion of the series of 2m-1 of the signals si between the average value C0 and the first threshold value L1. By a portion of one signal A between the first threshold L1 of the series of 2 m-1 signals si and the second threshold L2 higher than this threshold. This is an analog means for generating the other signal B to be constructed.
 微細内挿手段44は、所望の分解能を得るために、角度2π/2m の2m 個の上記扇形Pi の各々を角度2π/2n の2n-m 個の同じサブ扇形に細分するようにコード化された、(n-m)個のディジタル信号b1 ,b2 ,……,bn-m-1 ,bn-m (ここではb1 ,b2 ,……,b8 ,b9 )回転パルスに逓倍される。 The fine interpolation means 44 is coded to subdivide each of the 2 m sectors Pi at an angle 2π / 2 m into 2 nm identical subsectors at an angle 2π / 2n to obtain the desired resolution. The (n−m) digital signals b1, b2,..., Bn-m−1, bn-m (here b1, b2,..., B8, b9) are multiplied by rotation pulses.
 図22および図23(A)~(E)は、回転センサ2を絶対角検出型とした一例を示す。この例では、磁気エンコーダ2aに2列の磁極列2aA,2aBを設け、片方の磁極列2aAの磁極対数をP、もう片方の磁極列2aBの磁極対数をP+nとしている。そのため、両磁極列2aA,2aBの間で、1回転あたり磁極対にしてn個分の位相差があり、これら磁気磁極列2aA,2aBに対応する磁気センサ2ba,2bbの検出信号の位相は、360/n度回転するごとに一致する。 22 and FIGS. 23A to 23E show an example in which the rotation sensor 2 is an absolute angle detection type. In this example, the magnetic encoder 2a is provided with two magnetic pole rows 2aA and 2aB, the number of magnetic pole pairs of one magnetic pole row 2aA is P, and the number of magnetic pole pairs of the other magnetic pole row 2aB is P + n. Therefore, there is a phase difference of n magnetic pole pairs per rotation between the magnetic pole arrays 2aA and 2aB, and the phases of the detection signals of the magnetic sensors 2ba and 2bb corresponding to these magnetic magnetic pole arrays 2aA and 2aB are It coincides with every 360 / n degrees of rotation.
 信号処理手段2cを構成する位相差検出手段2cbは、磁気センサ2ba,2bbの検出信号により、図23(E)に示したような位相差信号を出力する。その次段に設けられた角度算出手段2ccは、位相差検出手段2cbで求められた位相差を補正した後に、予め設定された計算パラメータにしたがって絶対角度へ換算する処理を行う。 The phase difference detection means 2cb constituting the signal processing means 2c outputs a phase difference signal as shown in FIG. 23 (E) based on the detection signals of the magnetic sensors 2ba and 2bb. The angle calculation means 2cc provided in the subsequent stage corrects the phase difference obtained by the phase difference detection means 2cb and then performs a process of converting into an absolute angle according to a preset calculation parameter.
 図23(A),(B)には両磁極列2aA,2aBの磁極のパターン例を示す。図23(C),(D)にはこれら磁極列2aA,2aBに対応する磁気センサ2ba,2bbの検出信号の波形を示す。図示の例では、磁極列2aAの3磁極対に対して、磁極列2aBの2磁極対が対応しており、この区間内での絶対位置を検出することができる。図24(E)は、図23(C),(D)の検出信号に基づき、図22の位相差検出手段2cbにより求められる位相差の出力信号の波形図を示す。 23A and 23B show examples of magnetic pole patterns of both magnetic pole arrays 2aA and 2aB. FIGS. 23C and 23D show waveforms of detection signals of the magnetic sensors 2ba and 2bb corresponding to the magnetic pole arrays 2aA and 2aB. In the illustrated example, two magnetic pole pairs of the magnetic pole array 2aB correspond to three magnetic pole pairs of the magnetic pole array 2aA, and the absolute position within this section can be detected. FIG. 24E shows a waveform diagram of the output signal of the phase difference obtained by the phase difference detecting means 2cb of FIG. 22 based on the detection signals of FIGS. 23C and 23D.
 位相差検出手段2cbの検出した位相差信号(図23(E),図24(E))は、互いの磁極列2aA,2aBの磁気干渉やノイズの影響を受けているため、実際には歪みを持った波形となる。そこで角度算出手段2ccでは、角度補正手段2ccaで補正し、検出精度の高い絶対角度を算出する。 Since the phase difference signals detected by the phase difference detecting means 2cb (FIGS. 23E and 24E) are affected by the magnetic interference and noise of the magnetic pole arrays 2aA and 2aB, they are actually distorted. A waveform with Therefore, the angle calculation means 2cc corrects the angle correction means 2cca to calculate an absolute angle with high detection accuracy.
 図12~図17は、前記回転センサ2が設けられる車輪用軸受の各例を示す。図12,図13に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ駆動輪支持用であり、複列の中央に回転センサ2を設けた例を示す。この車輪用軸受30は、内周に複列の転走面33を形成した外方部材31と、これら各転走面33に対向する転走面34を形成した内方部材32と、これら外方部材31および内方部材32の転走面33,34間に介在した複列の転動体35とを備え、車体に対して車輪を回転自在に支持する。この車輪用軸受30は、複列外向きアンギュラ玉軸受型とされていて、転動体35はボールからなり、各列毎に保持器36で保持されている。内方部材32は、ハブ輪32aと、このハブ輪32aのインボード側端の外周に嵌合した内輪32bとでなり、各輪32a、32bの外周に前記転走面34が設けられている。外方部材31と内方部材32の間の軸受空間の両端は、シール37,38によりそれぞれ密封されている。 12 to 17 show examples of wheel bearings on which the rotation sensor 2 is provided. The wheel bearing 30 shown in FIGS. 12 and 13 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided in the center of the double row. The wheel bearing 30 includes an outer member 31 having a double row rolling surface 33 formed on the inner periphery, an inner member 32 having a rolling surface 34 opposed to each of the rolling surfaces 33, and these outer members. The rolling member 35 of the double row interposed between the rolling surfaces 33 and 34 of the direction member 31 and the inward member 32 is provided, and a wheel is rotatably supported with respect to a vehicle body. The wheel bearing 30 is a double-row outward angular ball bearing type, and the rolling elements 35 are formed of balls and are held by a cage 36 for each row. The inner member 32 includes a hub wheel 32a and an inner ring 32b fitted to the outer periphery of the inboard side end of the hub wheel 32a. The rolling surface 34 is provided on the outer periphery of each wheel 32a, 32b. . Both ends of the bearing space between the outer member 31 and the inner member 32 are sealed by seals 37 and 38, respectively.
 この車輪用軸受30において、内方部材32の両転走面34,34間の外周に、回転センサ2のエンコーダ2aが設けられ、このエンコーダ2aに対面する磁気センサ2bが、外方部材31に設けられた半径方向のセンサ取付孔40内に設置されている。回転センサ2は、例えば図18A,18Bと共に前述したラジアルタイプのものである。 In the wheel bearing 30, the encoder 2 a of the rotation sensor 2 is provided on the outer periphery between the rolling surfaces 34 of the inner member 32, and the magnetic sensor 2 b facing the encoder 2 a is provided on the outer member 31. It is installed in the provided sensor mounting hole 40 in the radial direction. The rotation sensor 2 is of the radial type described above with reference to FIGS. 18A and 18B, for example.
 図14,図15に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ駆動輪支持用であり、インボード側端に回転センサ2を設けた例を示す。この例では、回転センサ2には、図19A,19Bと共に前述したアキシアルタイプのものが用いられている。具体的にはインボード側端のシール38における、内方部材32の外周面に圧入固定されるスリンガが、図19の例のセンサ支持リング2dを兼ねている。磁気センサ2bは、リング状の金属ケース39内に樹脂モールドされ、金属ケース39を介して外方部材31に固定される。その他の構成は、図12,図13に示した例と同様である。 The wheel bearing 30 shown in FIG. 14 and FIG. 15 is a third generation type inner ring rotation type and for driving wheel support, and shows an example in which the rotation sensor 2 is provided at the inboard side end. In this example, the rotation sensor 2 is of the axial type described above with reference to FIGS. 19A and 19B. Specifically, a slinger that is press-fitted and fixed to the outer peripheral surface of the inner member 32 in the seal 38 at the inboard side end also serves as the sensor support ring 2d in the example of FIG. The magnetic sensor 2 b is resin-molded in a ring-shaped metal case 39 and fixed to the outer member 31 via the metal case 39. Other configurations are the same as those of the example shown in FIGS.
 図16,図17に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ従動輪支持用であり、インボード側端に回転センサ2を設けた例を示す。この例では、外方部材31のインボード側端部の端面開口がカバー29で覆われており、このカバー29に回転センサ2の磁気センサ2bが取付けられている。その他の構成および作用効果は図12,図13に示した例と同様である。 The wheel bearing 30 shown in FIGS. 16 and 17 is a third generation inner ring rotating type and is for supporting a driven wheel, and shows an example in which the rotation sensor 2 is provided at the inboard side end. In this example, the end face opening at the inboard side end portion of the outer member 31 is covered with a cover 29, and the magnetic sensor 2 b of the rotation sensor 2 is attached to the cover 29. Other configurations and operational effects are the same as those of the example shown in FIGS.
 なお、上記実施形態の自動車用タイヤの異常状態検出装置は、乗用車やタクシーなど小型の自動車から、トラックやトレーラー、バスなどの 大型自動車まで幅広く適用できる。最も好ましい形態は、トラックやトレーラー、バスなどの大型自動車への適用である。これら自動車では、乗客や貨物を安全に効率よく運搬することが要求されるため、常に車両を正常な状態に保つことが重要になる。日常の運行前点検に加えて、走行中にも車両状態をモニタすることにより、運行に影響が出る前にその兆候をつかむことが必要になっている。 Note that the abnormal state detection device for automobile tires of the above embodiment can be widely applied from small cars such as passenger cars and taxis to large cars such as trucks, trailers and buses. The most preferable form is application to large vehicles such as trucks, trailers and buses. These automobiles require passengers and cargo to be transported safely and efficiently, so it is important to always keep the vehicle in a normal state. In addition to daily pre-service inspections, it is necessary to monitor the vehicle status while driving to catch signs before they affect operation.
1…車輪
1a…タイヤ
3…信号処理ユニット
4…異常状態判断ユニット
5…異常状態検出装置本体
DESCRIPTION OF SYMBOLS 1 ... Wheel 1a ... Tire 3 ... Signal processing unit 4 ... Abnormal state judgment unit 5 ... Abnormal state detection apparatus main body

Claims (15)

  1.  自動車用タイヤの異常状態を検知する装置であって、
     前記自動車の速度を測定するように、車輪の回転信号を検出する回転センサと、
     この回転センサによって検出された回転信号から回転に同期した回転速度の変動を抽出し、この抽出した回転速度の変動から、複数回転にわたる回転速度変動パターンであって、各パターンが回転に同期した回転速度の変動を含む、回転速度変動パターンを取得する信号処理ユニットと、
     この取得した回転速度変動パターンと設定された基準となる回転速度変動パターンとの差分を求め、この求めた差分から前記車輪のタイヤの異常状態を推定し異常情報を出力する異常状態判断ユニットと
    を備えた自動車用タイヤの異常状態検出装置。
    A device for detecting an abnormal state of an automobile tire,
    A rotation sensor for detecting a rotation signal of a wheel so as to measure the speed of the automobile;
    A rotation speed fluctuation synchronized with the rotation is extracted from the rotation signal detected by the rotation sensor, and a rotation speed fluctuation pattern over a plurality of rotations is obtained from the extracted fluctuation of the rotation speed, and each pattern is synchronized with the rotation. A signal processing unit for obtaining a rotational speed fluctuation pattern, including speed fluctuations;
    An abnormality state determination unit that obtains a difference between the obtained rotation speed fluctuation pattern and a set reference rotation speed fluctuation pattern, estimates an abnormal state of the tire of the wheel from the obtained difference, and outputs abnormality information; An abnormal state detection device for an automobile tire provided.
  2.  請求項1に記載の自動車用タイヤの異常状態検出装置において、前記信号処理ユニットは、前記回転に同期した回転速度変動パターンを、前記回転センサの複数回転にわたる回転信号に、回転に同期させた平均化処理または積算処理を施して、取得する自動車用タイヤの異常状態検出装置。 The abnormal condition detecting device for an automobile tire according to claim 1, wherein the signal processing unit is an average obtained by synchronizing a rotation speed fluctuation pattern synchronized with the rotation with a rotation signal over a plurality of rotations of the rotation sensor. An abnormal state detection device for an automobile tire that is obtained by performing a process of integrating or integrating.
  3.  請求項1または請求項2に記載の自動車用タイヤの異常状態検出装置において、前記信号処理ユニットは、前記回転速度変動パターンの取得を、一つ以上の設定された走行速度範囲から選択された走行速度範囲で実施する自動車用タイヤの異常状態検出装置。 3. The abnormal state detecting apparatus for an automobile tire according to claim 1, wherein the signal processing unit is a travel selected from one or more set travel speed ranges for obtaining the rotational speed variation pattern. An abnormal state detection device for an automobile tire to be implemented in a speed range.
  4.  請求項3に記載の自動車用タイヤの異常状態検出装置において、前記信号処理ユニットは、前記回転速度変動パターンの取得を複数の走行速度範囲についてそれぞれ行い、前記異常状態判断ユニットは、前記信号処理ユニットが前記取得の処理を行うそれぞれの走行速度範囲について、それぞれ異常状態の推定処理を行い、これら複数の推定処理の結果から異常状態を総合判断する自動車用タイヤの異常状態検出装置。 4. The abnormal state detecting device for an automobile tire according to claim 3, wherein the signal processing unit acquires the rotational speed variation pattern for each of a plurality of travel speed ranges, and the abnormal state determination unit is the signal processing unit. A vehicle tire abnormal state detection device that performs an abnormal state estimation process for each travel speed range in which the acquisition process is performed, and comprehensively determines the abnormal state from the results of the plurality of estimation processes.
  5.  請求項1ないし請求項4のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記異常状態判断ユニットは、前記基準となる回転速度変動パターンと検出した回転速度変動パターンとの差分に相当するパターンのピーク値が、あらかじめ設定したしきい値を超えることによって異常状態を判別する自動車用タイヤの異常状態検出装置。 5. The abnormal state detection device for an automobile tire according to claim 1, wherein the abnormal state determination unit is configured to detect a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern. An abnormal state detecting device for an automobile tire that determines an abnormal state when a peak value of a pattern corresponding to the above exceeds a preset threshold value.
  6.  請求項5に記載の自動車用タイヤの異常状態検出装置において、前記異常状態判断ユニットは、前記差分に相当するパターンのうち、しきい値を超えるピークの数が、1回転中に1~数個であるときに異常であると判断する自動車用タイヤの異常状態検出装置。 6. The abnormal state detection device for an automobile tire according to claim 5, wherein the abnormal state determination unit has 1 to several peaks exceeding one threshold value in one rotation among patterns corresponding to the difference. An abnormal state detection device for an automobile tire that determines that the vehicle is abnormal when
  7.  請求項1ないし請求項6のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記異常状態判断ユニットは、前記基準となる回転速度変動パターンと検出した回転速度変動パターンとの差分に相当するパターンの絶対値の積算値、又は、2乗の積算値があらかじめ設定した値を超えることによって異常状態を判別する自動車用タイヤの異常状態検出装置。 The abnormal state detection device for an automobile tire according to any one of claims 1 to 6, wherein the abnormal state determination unit includes a difference between the reference rotational speed fluctuation pattern and the detected rotational speed fluctuation pattern. An abnormal state detection device for an automobile tire that determines an abnormal state when an integrated value of absolute values of patterns corresponding to or an integrated value of squares exceeds a preset value.
  8.  請求項1ないし請求項7のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記回転センサは、零相を備えた回転センサまたは絶対角検出機能を備えた回転センサで構成し、前記異常状態判断ユニットは、取得した前記回転速度変動パターンの位相を合わせた状態で、前記回転速度変動パターンと前記基準となる回転速度変動パターンとの差分を求め、この差分の大きさに基づいて前記車輪のタイヤの異常状態を推定する自動車用タイヤの異常状態検出装置。 The abnormal state detection device for an automobile tire according to any one of claims 1 to 7, wherein the rotation sensor includes a rotation sensor having a zero phase or a rotation sensor having an absolute angle detection function. The abnormal state determination unit obtains a difference between the rotation speed fluctuation pattern and the reference rotation speed fluctuation pattern in a state where the phases of the acquired rotation speed fluctuation pattern are matched, and based on the magnitude of the difference An abnormal state detection device for an automobile tire that estimates an abnormal state of the tire of the wheel.
  9.  請求項1ないし請求項8のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記回転センサが、磁気センサとこの磁気センサで検出される被検出極を有する磁気エンコーダまたはパルサギヤで構成され、回転による磁気強度の変動をアナログ信号で出力する構成とした自動車用タイヤの異常状態検出装置。 The abnormal state detecting device for an automobile tire according to any one of claims 1 to 8, wherein the rotation sensor is a magnetic encoder or a pulsar gear having a magnetic sensor and a detected pole detected by the magnetic sensor. An abnormal state detecting device for an automobile tire configured to output a fluctuation of magnetic intensity due to rotation as an analog signal.
  10.  請求項1ないし請求項8のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記回転センサが、磁気センサとこの磁気センサで検出される被検出極を有する磁気エンコーダまたはパルサギヤと、前記磁気センサの検出信号を逓倍した回転パルスを出力する逓倍回路とを備えた自動車用タイヤの異常状態検出装置。 The abnormal state detecting device for an automobile tire according to any one of claims 1 to 8, wherein the rotation sensor includes a magnetic sensor and a magnetic encoder or a pulsar gear having a detected pole detected by the magnetic sensor. An abnormality detection device for an automobile tire, comprising: a multiplication circuit that outputs a rotation pulse obtained by multiplying a detection signal of the magnetic sensor.
  11.  請求項1ないし請求項10のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、さらに、
     前記異常状態判断ユニットが出力した異常情報に基づいて、運転者への警告または車両の制御状態の変更を行う異常推定結果利用手段を備えた自動車用タイヤの異常状態検出装置。
    The abnormality detection device for an automobile tire according to any one of claims 1 to 10, further comprising:
    An automotive tire abnormal state detection device comprising an abnormality estimation result utilization means for performing a warning to a driver or changing a vehicle control state based on abnormality information output by the abnormal state determination unit.
  12.  請求項11に記載の自動車用タイヤの異常状態検出装置において、前記異常推定結果利用手段は、前記異常状態判断ユニットが出力した異常情報に基づいて、運転席の警告報知手段に表示させる機能を有する自動車用タイヤの異常状態検出装置。 The abnormal condition detection device for an automobile tire according to claim 11, wherein the abnormality estimation result utilization unit has a function of displaying on a warning notification unit in a driver's seat based on abnormality information output by the abnormal state determination unit. An abnormal state detection device for automobile tires.
  13.  請求項11または請求項12に記載の自動車用タイヤの異常状態検出装置において、前記異常推定結果利用手段は、前記異常状態判断ユニットが出力した異常情報に基づいて、車両を設定速度まで減速させ、または車両制御ユニットの制御パラメータを変更し、タイヤの能力を考慮した安全制御を行う機能を有する自動車用タイヤの異常状態検出装置。 The abnormal condition detection device for an automobile tire according to claim 11 or 12, wherein the abnormality estimation result utilization means decelerates the vehicle to a set speed based on the abnormality information output by the abnormal condition determination unit, Alternatively, an abnormal state detection device for an automobile tire having a function of performing a safety control in consideration of tire performance by changing a control parameter of a vehicle control unit.
  14.  請求項11ないし請求項13のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記異常推定結果利用手段は、前記異常状態判断ユニットが出力した異常情報を、車両の点検またはタイヤの交換が可能な定められた営業所の端末に発信する機能を有する自動車用タイヤの異常状態検出装置。 14. The abnormal state detection device for an automobile tire according to claim 11, wherein the abnormality estimation result utilization unit uses the abnormality information output by the abnormal state determination unit as a vehicle inspection or tire. An abnormal state detection device for an automobile tire having a function of transmitting to a terminal of a predetermined sales office that can be replaced.
  15.  請求項11ないし請求項14のいずれか1項に記載の自動車用タイヤの異常状態検出装置において、前記異常推定結果利用手段は、車両に設けられた、他車両への異常報知手段を動作させる機能を有する自動車用タイヤの異常状態検出装置。 15. The abnormality state detecting device for an automobile tire according to claim 11, wherein the abnormality estimation result utilization means is a function of operating an abnormality notifying means for other vehicles provided in the vehicle. An abnormal state detecting device for an automobile tire having
PCT/JP2014/080202 2013-11-21 2014-11-14 Error state detection device for automobile tires WO2015076198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-241126 2013-11-21
JP2013241126A JP6425881B2 (en) 2013-11-21 2013-11-21 Abnormal condition detection device for automobile tire

Publications (1)

Publication Number Publication Date
WO2015076198A1 true WO2015076198A1 (en) 2015-05-28

Family

ID=53179463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080202 WO2015076198A1 (en) 2013-11-21 2014-11-14 Error state detection device for automobile tires

Country Status (2)

Country Link
JP (1) JP6425881B2 (en)
WO (1) WO2015076198A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109551972A (en) * 2018-12-19 2019-04-02 常州机电职业技术学院 A kind of automobile tire detection device for foreign matter and its detection method
EP4015250A1 (en) * 2020-12-15 2022-06-22 Tata Consultancy Services Limited System and method for real-time health prediction of tires
US11573303B2 (en) 2019-12-18 2023-02-07 Stmicroelectronics, Inc. Time of flight based rotary speed sensor with early fault detection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800005904A1 (en) * 2018-05-31 2019-12-01 SYSTEM AND METHOD OF DETECTION OF DAMAGE TO TIRES
IT201800005907A1 (en) * 2018-05-31 2019-12-01 SYSTEM AND METHOD OF DETECTION OF DAMAGE TO TIRES
CN113758513B (en) * 2020-06-04 2022-11-04 杭州海康威视数字技术股份有限公司 Method for detecting precision of magnetic encoder in equipment and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127721A (en) * 1998-10-29 2000-05-09 Maruyoshi:Kk Automobile and method of preventing chain of accidents of automobile
JP2000255230A (en) * 1999-02-26 2000-09-19 Continental Ag Method and device for detecting emergency traveling state of pneumatic tire
JP2002173954A (en) * 2000-09-14 2002-06-21 Komatsu Ltd Management device for construction machine
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd Radio tag having vehicle information memory area, device for reading/writing on radio tag having vehicle information memory area, method for reading/writing on radio tag having vehicle information memory area and vehicle provided with device for reading/writing on radio tag having vehicle information memory area
JP2005186702A (en) * 2003-12-24 2005-07-14 Bridgestone Corp Tire and method and device for estimating wear of the same
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
WO2010147004A1 (en) * 2009-06-15 2010-12-23 Ntn株式会社 System for monitoring tire air pressure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195697A (en) * 2000-01-11 2001-07-19 Omron Corp Vehicle detecting device and vehicle managing system
JP4292955B2 (en) * 2003-11-12 2009-07-08 日本精工株式会社 Stability control device
US6993449B2 (en) * 2004-01-31 2006-01-31 Continental Teves, Inc. Tire pressure loss detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127721A (en) * 1998-10-29 2000-05-09 Maruyoshi:Kk Automobile and method of preventing chain of accidents of automobile
JP2000255230A (en) * 1999-02-26 2000-09-19 Continental Ag Method and device for detecting emergency traveling state of pneumatic tire
JP2002173954A (en) * 2000-09-14 2002-06-21 Komatsu Ltd Management device for construction machine
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd Radio tag having vehicle information memory area, device for reading/writing on radio tag having vehicle information memory area, method for reading/writing on radio tag having vehicle information memory area and vehicle provided with device for reading/writing on radio tag having vehicle information memory area
JP2005186702A (en) * 2003-12-24 2005-07-14 Bridgestone Corp Tire and method and device for estimating wear of the same
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
WO2010147004A1 (en) * 2009-06-15 2010-12-23 Ntn株式会社 System for monitoring tire air pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109551972A (en) * 2018-12-19 2019-04-02 常州机电职业技术学院 A kind of automobile tire detection device for foreign matter and its detection method
US11573303B2 (en) 2019-12-18 2023-02-07 Stmicroelectronics, Inc. Time of flight based rotary speed sensor with early fault detection
EP4015250A1 (en) * 2020-12-15 2022-06-22 Tata Consultancy Services Limited System and method for real-time health prediction of tires

Also Published As

Publication number Publication date
JP2015101123A (en) 2015-06-04
JP6425881B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6227385B2 (en) Wear detection device for automobile tires
WO2015076198A1 (en) Error state detection device for automobile tires
JP6099819B2 (en) Vehicle sensor unit
US20090139327A1 (en) Method and a system for determining wheel imbalances of at least one wheel on a vehicle
US9728016B2 (en) Wheel monitoring system and method
JP6526818B2 (en) Loose wheel detection
US20060265154A1 (en) Failure warning for a tire among a plurality of tires
JP2003146036A (en) Method for detecting separation beginning of traveling tread of pneumatic tire in vehicle
KR102503857B1 (en) Defect diagnosis device and wheel bearing for vehicle provided therewith
CN108839670B (en) Vehicle monitoring system and vehicle monitoring method
JP2007278895A (en) Device and method for diagnosing abnormality
WO2015076199A1 (en) Type recognition device for automobile tires
US20080211434A1 (en) System, Method and Computer Readable Media for Reducing Wheel Sliding on a Locomotive
US20100318304A1 (en) Bearing for wheel with sensor
JP6425883B2 (en) Tire pressure drop detection device for automobile tires
EP3556636A2 (en) Sensor signal processing system and method
JP6563207B2 (en) Wheel speed sensor error correction structure and wheel bearing with rotation detector
JP6442316B2 (en) Wheel speed rotation fluctuation pattern extraction device and its reference pattern setting method
JP6563206B2 (en) Wheel speed rotation fluctuation pattern extraction device
JP6411160B2 (en) Rotational speed information detector
CN108225770B (en) Method for preventing each week of historical faults of bearing from being missed and misdiagnosed
WO2023083854A1 (en) Method for monitoring the balancing of the wheels of a motor vehicle
RU2255012C2 (en) Device for diagnosing automated brake system aboard the automobile
JP2005207788A (en) Load measuring apparatus of rolling bearing unit
JPH06183229A (en) Method and device for detecting tire pressure abnormality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864271

Country of ref document: EP

Kind code of ref document: A1