WO2015075294A1 - Production of corrugated and porous graphene from cof for the use thereof as supercapacitors - Google Patents

Production of corrugated and porous graphene from cof for the use thereof as supercapacitors Download PDF

Info

Publication number
WO2015075294A1
WO2015075294A1 PCT/ES2014/070861 ES2014070861W WO2015075294A1 WO 2015075294 A1 WO2015075294 A1 WO 2015075294A1 ES 2014070861 W ES2014070861 W ES 2014070861W WO 2015075294 A1 WO2015075294 A1 WO 2015075294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cof
metal
graphene
benzene
linear
Prior art date
Application number
PCT/ES2014/070861
Other languages
Spanish (es)
French (fr)
Inventor
Eugenio Coronado Miralles
Antonio Luis Ribera Hermano
Gonzalo ABELLÁN SÁEZ
Félix ZAMORA ABANADES
Rubén MAS BALLESTË
David RODRÍGUEZ SAN MIGUEL
Original Assignee
Universitat De València
Universidad Autónoma de Madrid
Fundación Imdea Nanociencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De València, Universidad Autónoma de Madrid, Fundación Imdea Nanociencia filed Critical Universitat De València
Publication of WO2015075294A1 publication Critical patent/WO2015075294A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a process for obtaining graphene from "COF-Metal" organic structures, which are calcined under controlled conditions.
  • the electrode materials are the determinants in the preparation of supercapacitors, their requirements being: large specific surface area, precise distributions of pore size, thermal stability and stable electrochemical behavior.
  • carbonaceous materials occupy a privileged position, be they active carbons (CA), mesoporous carbons (CM), nanotubes or graphene.
  • CAs have been used as materials in the electrodes of commercial supercapacitors, thanks to their moderate cost and high capacity.
  • Graphene has been synthesized traditionally by mechanical exfoliation of graphite, epitaxial growth in substrates or by chemical deposition in vapor phase on catalytic surfaces. Generally, non-porous graphene does not exceed 200 F / g at 1 A / g).
  • new types of highly corrugated porous graphene have been prepared by template procedures with MgO, starting with methane and using a tubular oven with an argon atmosphere at very high flows of 1000 mL / min The template consisting of MgO is introduced and carbon deposition occurs, then the graphene obtained is purified with reflux hydrochloric acid.
  • the porous graphene obtained by this methodology has a high specific capacity (ca. 245 F / g at 1A / g) and superior performance compared to chemically reduced graphene due to its narrow distribution of mesopores and its large open structure.
  • highly corrugated graphene sheets have been obtained by cooling in liquid nitrogen of graphene oxide obtained by the Hummers method; in this case the drastic cooling induces a huge thermal stress that corrugating graphene (Coal, 2012, 50, 2179-2188).
  • porous graphenes with three-dimensional structure have also been prepared by a combined method of ion exchange and activation with NaOH using an acrylic ion exchange resin with metals as a carbonaceous precursor (Adv. Mater. 2013, 25, 2474-2480).
  • WO2013124503A1 describes the use of laminar hydroxides to obtain a graffiti carbon porous material, by controlled calcination thereof, and the subsequent acid washing of the metal nanoparticles embedded inside the resulting material.
  • the invention is directed to a process for obtaining corrugated porous graphene comprising calcining a COF carbon precursor coordinated with a metal complex or combination of metal complexes.
  • Said carbon precursor coordinated by a metal complex or combination of metal complexes is also referred to herein as "COF-Metal”.
  • the carbon precursor with donor atoms in its cavities will be called COF.
  • the process for obtaining corrugated porous graphene of the invention may further comprise the preparation of the COF-Metal precursor, prior to calcination thereof.
  • the calcination of COF-Metal is carried out in an air atmosphere or in a controlled atmosphere, preferably in a controlled atmosphere, for example in an inert atmosphere or in a vacuum.
  • Said calcination of the COF-Metal is carried out at a temperature between approximately 400 ° C and 1200 ° C, preferably between approximately 600 ° C and 1000 ° C, more preferably between approximately 800 ° C and 1000 ° C, and especially preferably between approximately 850 ° C and 950 ° C.
  • the calcination is carried out at 900 ° C, a temperature by which a graffiti value with high electrical conductivity values is obtained, which is of great importance for its use as a material in supercapacitor electrodes.
  • the calcination temperature affects the degree of carbonization of the material and its morphology, this aspect being decisive in the final porosity of the material.
  • the thermal decomposition of the precursor causes the formation of corrugated and highly porous graphene, thanks to the catalytic activity of the metal cations absorbed in the COF-Metal.
  • the precursor has a distribution of highly dispersed metal centers and not in the form of particles, which seems to play a fundamental role in the results obtained.
  • the catalyst metals are forming part of crystalline networks, on surfaces or in the form of nanoparticles, in the precursor of the invention, COF-Metal, are located in coordination centers along the material. This fact, together with the morphology of the COF, makes that the system evolves during calcination towards the formation of corrugated porous graphene.
  • the structure, morphology and arrangement of the precursor favors the generation of hierarchical porosity in the final material without the need to use MgO templates, ion exchange resins or NaOH as activator and porosity generator. This allows to obtain porous graphene in a single step synthesized directly without the need for costly subsequent stages of reduction, as occurs in the case of syntheses based on graphene oxide.
  • the calcination takes place for a time between approximately 1 and 6 hours. According to a preferred embodiment the calcination takes place for approximately 4 hours.
  • a heating ramp of between 1 ° C / min and 10 ° C / min, preferably of about 2 ° C / min, and a nitrogen flow of between 50 ml / min and 150 mL / min, can be used, preferably about 100 mL / min.
  • An especially preferred embodiment of the process comprises calcining the COF-Metal in a controlled atmosphere at a temperature of between about 850 ° C and 950 ° C, for a time between about 1 and 6 h and with a heating ramp of between about 1 ° C / min and 10 ° C / min.
  • a stage prior to calcination, deposition (including in this term the various possible deposition and impregnation techniques) of the COF-Metal precursor can be performed on a solid surface (either by dip coating, layer by layer, casting, filtration, etc.). These options would allow graphene to be obtained directly on any surface by calcining it in an inert atmosphere or under vacuum.
  • the process includes a previous step of deposition of the COF-Metal precursor on a solid surface, subsequently proceeding to calcine the assembly to obtain graphene deposited on said surface.
  • Preferred embodiments of the process include, after calcining the COF-Metal, to perform an acid wash of the corrugated and porous graphene obtained, obtaining a corrugated and porous graphene free of metal residues.
  • the corrugated and porous graphene obtained is suitable for use in supercapacitors, and has higher specific capacity values than those published for similar graphene-based materials (Small, 8 (12), 1805-1834), and even higher than the best recently published carbonaceous materials, such as: “carbon nanocages” obtained from CVD with benzene on MgO templates (Ad. Mater., 2012, 24, 347-352), “mesoporous graphitic carbon nanodisks” obtained from coordination polymers (Chem. Commun. 2012, 48, 8769-8771) or “nanoporous carbons obtained from zeolitic materials (Chem. Commun. 2012, 48, 7259-7261).
  • the COF-Metal precursor can be obtained from a COF which has donor atoms in its cavities, for example being N, S, O donor atoms and combinations thereof.
  • the COF-Metal carbon precursor comprises metal centers of a metal selected from Fe, Mn, Co, Ru, Rh, Ni, Pd, Cu and Cr, or a combination thereof, preferably Fe.
  • COF can be obtained, for example, from polymers resulting from the condensation of an amine and an aldehyde.
  • Said amine and said aldehyde have formulas selected from the following: for the amine: (I) (la) (Ib) and for the aldehyde:
  • R 1 and R 2 can be, for example, the same or different organic fragments, and can be selected from radicals with a structure containing 2, 3 or 4 functional groups in a linear, trigonal, flat-square or tetrahedral geometry, and both R 1 and R 2 can be selected from alkyl, aryl moieties and combinations of both.
  • the linear structures may be carbon structures, which may optionally contain heteroatoms.
  • Said carbonated structures may be alkyl, aryl and arylalkyl chains, said linear or branched carbon structures being able to be, and being optionally substituted.
  • alkyl refers to a linear or branched, cyclic or acyclic hydrocarbon or heterocarbon chain consisting of carbon and hydrogen atoms, with or without unsaturations, of a total of between 1 and 20 carbon atoms and / or heteroatoms in the main chain, preferably from two to 16, more preferably from 3 to 8 carbon atoms and / or heteroatoms, optionally substituted.
  • Especially preferred alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, pentyl, isopentyl, or hexyl.
  • aryl refers to an aromatic hydrocarbon of 6 to 14 carbon atoms, such as phenyl, naphthyl, anthracil, optionally substituted by a linear or branched alkyl group of 1 to 4 carbon atoms, or linear or branched oxyalkyl , of between 1 and 4 carbon atoms, which may be optionally substituted.
  • aryl groups are phenyl, naphthyl, anthracil.
  • arylalkyl refers to one or more aryl groups attached to the rest of the molecule by an alkyl radical, for example, benzyl, toluyl, xylyl, ethyl-naphthyl, methyl-anthracil, etc., and such that said one or several aryl groups in turn are optionally substituted.
  • optionally substituted refers in any of the preceding embodiments to the replacement of a hydrogen by a functional group selected from halogen, hydroxyl, C1-C6 alkyl, hydroxy C1-C6 alkyl, alkyloxy C1-C6 alkyl, a keto group, a nitro group, amide, a C1-C3 acyloxy group, a C1-C3 acid group, and OR 3 , where R 3 is a C1-C4 alkyl optionally substituted by hydroxyl, d-C6 alkyl, C1-C6 hydroxyalkyl .
  • the two-dimensional structures may be constituted by aromatic or heteroaromatic rings condensed or linked together through hydrocarbon chains which in turn may or may not contain heteroatoms, and said rings may be optionally substituted in one or more positions with equal or different substituents. selected from alkyl groups of 1 to 3 carbon atoms, alkoxy or thioalkoxy of 1 to 3 carbon atoms, nitro, sulfonyl, or halogens.
  • the two-dimensional structures have between 1 and 20 aromatic or heteroaromatic rings, more preferably between 1 and 16 aromatic or heteroaromatic rings, and more preferably even between 1 and 10 aromatic or heteroaromatic rings.
  • Preferred three-dimensional structures may be formed by combinations of branched linear structures, combinations of two-dimensional structures linked together by linear spacers that may be one or more tetrahedral carbon atoms, or combinations of linear structures and two-dimensional structures, uncondensed polycyclic radicals such as biphenyl, where linear structure and two-dimensional structure have the meanings indicated above.
  • R 1 and R 2 are the same or different and are selected from:
  • - a chain of one to three aromatic rings, preferably phenyl substituted in one or more positions with the same or different substituents, selected from halogen, methyl, ethyl, tertbutyl, vinyl,
  • - a polycyclic structure of non-condensed aromatic rings, more preferably between one and nine arranged so that a central ring has equal or different rings in alternate positions such as 1,3-disubstituted, 1,3,5-trisubstituted etc, and where said substituents are preferably phenyl or biphenyl, and the rest of the positions of the central ring or of the others may be, optionally substituted with the same or different groups selected from methyl, ethyl, propyl, tert-butyl, halogen and vinyl,
  • R 1 and R 2 are:
  • COF-Metal in this case with a two-dimensional structure, is obtained from 1,3,5-tris (4-aminophenyl) benzene, benzene-1, 3,5-tricarboxaldehyde and Fe complexes (lll) , and has the structure represented by the formula (III)
  • the process for obtaining corrugated porous graphene comprises:
  • a Fe (lll) salt selected from acetyl acetonate, chloride, acetate, nitrate and perchlorate.
  • the present invention also relates to porous corrugated graphene obtained through the process described above, according to any of its embodiments.
  • the corrugated porous graphene obtained according to any variant of the described process has a homogeneous pore size distribution.
  • the metal appears in the form of nanoparticles with a state of zero oxidation, whose presence does not negatively interfere with the electrochemical properties of the material due to the small amount and high dispersion of the same and their small size ( ⁇ 10 nm). It is also possible to remove them easily by acid washing the material.
  • porous corrugated graphene is obtained with a specific capacity of 167 F / g at 100 A / g, and 544 F / g for a current density of 2 A / g, which makes it an excellent material for be used as supercapacitor.
  • a further particular embodiment of the porous corrugated graphene is graphene comprising metal in the form of nanoparticles with zero oxidation state, with a high dispersion and a size smaller than 10 nm before the acidic graphene wash.
  • the porous corrugated graphene obtained has a Raman spectrum with the characteristic bands of the graffiti carbon: G and D centered at 1596 and 1343 cnr 1 respectively before being subjected to acid washing, and the bands G and D centered at 1599 and 1348 cnr 1 respectively after being subjected to acid washing.
  • the porous corrugated graphene obtained before being subjected to acid washing has the following properties:
  • E energy density
  • P power density
  • the invention also relates to the use of graphene obtained by the process described in any of its embodiments, for applications that require materials with supercapacitance properties, including supercapacitor devices.
  • COF-Metal materials The effectiveness of these COF-Metal materials is based on: i) the optimal dispersion of homogeneously distributed metals; ii) the textural and conductive properties of the highly porous graphene obtained, iii) the stability and mechanical resistance of graphene in perspective to its possible processing for various applications.
  • FIG. 1 It shows the result of analyzing the structure of graphene obtained by X-ray diffraction (XRD) after heat treatment at 900 ° C to the COF-Metal precursor.
  • FIG. 2 Shows the X-ray diffraction pattern of the graphene subjected to acid washing.
  • FIG. 3 Shows the results of Raman spectroscopy on the graphene obtained after the COF-Metal precursor was heat treated at 900 ° C.
  • FIG. 4 Shows the results of Raman spectroscopy on graphene subjected to acid washing.
  • FIG. 5 Shows the porosity of the graphene synthesized at 900 ° C and the graphene obtained after acid washing, studied by nitrogen adsorption isotherms at 77 K (BET).
  • FIG. 6 It shows the results of the pore size distribution study of graphene synthesized at 900 ° C and graphene obtained after acid washing using the Barret-Joyner-Halenda (BJH) method.
  • FIG 7. Shows the images obtained by high resolution transmission electron microscopy of graphene synthesized at 900 ° C (A). Image at higher magnifications highlighting the porous hierarchical structure (B). Detail of a nanoparticle of Fe (C). EDAX spectrum showing the residual presence of Fe in the sample (D).
  • FIG 8. Shows the images obtained by high-resolution transmission electron microscopy of the graphene subjected to acid washing (A). Image at higher magnifications highlighting the porous hierarchical structure (B). Detail of a cavity highlighting the graffiti drawings (C). EDAX spectrum showing the absence of Fe in the sample (D).
  • FIG. 9 Shows the cyclic voltammetry measurements of graphene synthesized at 900 ° C at different scanning rates in the KOH electrolyte.
  • FIG. 10 Shows the specific capacity values obtained at different current densities of graphene synthesized at 900 ° C obtained from the galvanostatic discharges.
  • FIG. 11 Shows the stationary galvanostatic discharge curves at various densities of discharge current in the potential window from -1 to 0 V (vs Ag / AgCI) of graphene synthesized at 900 ° C (A) and the stationary load curves and galvanostatic discharge at the current density of 30 A / g (B).
  • FIG. 12 Shows the cyclic voltammetry measurements of the graphene subjected to acid washing at different scanning rates in the KOH electrolyte.
  • FIG. 13 Shows the specific capacity values obtained at different current densities of the acid washed graphene obtained from the galvanostatic discharges.
  • FIG. 14 Shows the stationary galvanostatic discharge curves at various densities of discharge current in the potential window from -1.2 to 0 V (vs Ag / AgCI) of the graphene subjected to acid washing (A) and the stationary load and discharge curves galvanostatic at the current density of 30 A / g (B).
  • the iron functionalized laminar polymer used in this invention was generated by the condensation of components 1, 3,5-tris (4-aminiphenyl) benzene (1) and 1,3,5-benzenetrricarbaldehyde (2) to produce a material with an extended 2D hex network known as COF-1.
  • this reaction consists in the condensation of aniline with benzaldehyde, which results in the formation of mine-type bonds with the removal of water, which is a reaction called "polyimine condensation. ".
  • imine nitrogens can act as ligands to metal centers.
  • the coordination of Fe (lll) has allowed incorporating catalytic centers into our material.
  • the CP contact time varied from 3.5 ms
  • a phase modulation of two pulses of high decoupling power of 1 H (TPPM) was applied during data acquisition.
  • the decoupling frequency corresponded to 80 kHz.
  • the MAS spin frequency of the sample was 10 kHz. Recycling delays between the samples were 4 s, depending on the compound determined by the apparent absence of the 13 C signal from one scan to another.
  • the chemical shifts of 13 C are given in relation to tetramethylsilane as zero ppm, calibrated using the adamantane methylene carbon signal assigned at 29.5 ppm as a secondary reference.
  • the FT-IR spectra of the starting materials and the synthesized COFs were obtained using KBr pellets on a Bruker IFS66v FTIR spectrometer with a Transmittance / absorbance measurement accessory (Bruker / Harrick) and an MCT detector (7000-550 cnr 1 (medium IR measurements)), the signals are presented in wave numbers (cnr 1 ) and are described as: very strong ( mf), strong (s), medium (m), shoulder (h), weak (w), very weak (md) or wide (a).
  • the allocation and analysis of the infrared absorption bands of the starting materials and COF products are presented in this section.
  • the vibration modes of COF-1 are analyzed as the convolution of 1,3,5-phenylin-trimethylidene and 1,3,5- (p-phenylene) -benzene compared to benzene-1, 3,5-tricarbaldehyde and 1, 3,5- (p-aminophenyl) -benzene, respectively.
  • thermogravimetric analyzes of the samples were performed in a TGA Q-500 Thermobalance with samples supported on a platinum sample holder under a nitrogen atmosphere. A speed ramp of 10 K / min was used.
  • Total reflection X-ray fluorescence was measured on a Bruker S2 PICOFOX spectrometer at 50 kV and 600 mA. The acquisition time was 500 s. As an internal standard, a 10 ppm vanadium solution was used.
  • the gel obtained according to the synthetic procedure was suspended in methanol containing 200 mg of Fe acetylacetonate (lll). After stirring at room temperature (20-30 ° C) for 72 h, the gel was washed with THF and dried.
  • the N / Fe atomic ratio determined by TXRF was 155,382.
  • Example 2 Obtaining corrugated and porous graphene from COF-Fe.
  • Example 3 Obtaining corrugated and porous graphene free of Fe residues from graphene obtained in Example 2.
  • Example 4 study of the structure of corrugated and porous graphene and graphene obtained after acid washing.
  • XRD X-ray diffraction
  • the porosity of the materials obtained has been studied by nitrogen isotherms at 77 K (FIG. 5), reaching values of 642 m 2 / g in the surface area and 0.39 cc / g of total pore volume (BET method) .
  • the results show the presence of microporosity in the initial graphene, and a high surface area.
  • graphene obtained after acid washing of the initial material no significant differences are observed, reaching values of 623 m 2 / g in the surface area and 0.38 cc / g of mesopore volume (BET method).
  • Pore size distribution study shows the presence of 3-5 nm mesopores (BJH method) corresponding to the tunnels between the graffiti sheets associated with the open structure of the material, as well as to the surface roughness.
  • BJH method 3-5 nm mesopores
  • the presence of 10-50 nm mesopores (BJH method) related to nanocavities caused by graphene corrugation is also observed (FIG. 6).
  • Graphene obtained after acid washing shows a similar pore distribution.
  • the structure and morphology of graphene consists of a generalized porous hierarchical structure, as can be observed through the use of high resolution transmission electron microscopy (HRTEM) of the English term high resolution transmission electron microscopy) shown in FIG. 7-A. Looking at higher magnifications, it can be seen that the network distance between two planes is 0.34 nm, which corresponds to the distance that separates the graffiti planes (FIG. 7-B and C). You can also observe a nanoparticles of Faith resulting from the leaching associated with the calcination process. In FIG. 7-C shows the residual character of the Fe present in the sample, as demonstrated by the EDAX, the atomic percentage being less than 2% (FIG. 7-D).
  • the morphology of graphene obtained after acid treatment has also been characterized by the use of HRTEM.
  • the morphology is similar to that of the sample before washing, presenting an open graffiti structure in which the graphene layers form mesoporous cavities (FIG. 8-A), the number of graphene planes oscillating between 1 and 10 depending from the sample area (FIG. 8-B).
  • the image in detail allows us to observe the intricate morphology of the sample, which consists of numerous cavities resulting from the folds of graphene sheets (FIG, 8-C).
  • FIG. 8-D This case can be seen the complete disappearance of Faith in the sample, as indicated by the EDAX.
  • Example 5 Study of the supercapacitance properties of corrugated and porous graphene and graphene obtained after acid washing.
  • measurements were made of the current and voltage characteristics of the graphene synthesized at 900 ° C and the graphene obtained after the acid wash of the same, by cyclic voltammetry (CV, of the English term cyclic voltamperometry).
  • CV cyclic voltammetry
  • each of the powder samples was mixed with carbon black and the PTFE polymer (polytetrafluoroethylene) in an 80: 10: 10 weight ratio, and a small amount of ethanol was added to the resulting mixture.
  • the final mixture was deposited in a nickel foam electrode, dried in an oven at 10 ° C for 12 hours and pressed before proceeding to the measurement.
  • Each electrode was prepared with an amount of this mixture of approximately equal to 1 mg / cm 2 .
  • a system consisting of a three electrode cell was used to measure both graphene synthesized at 900 ° C, and graphene obtained after acid washing, using them as working electrodes.
  • a 4 cm 2 stainless steel plate was used as the counter electrode and an Ag / AgCI electrode (3M KCI) was used as the reference electrode.
  • the system was purged with N2 for 15 minutes before carrying out the measurements to avoid the presence of oxygen in the cell.
  • the electrochemical behavior of the electrodes was analyzed using the three electrode cell system with 6M KOH as electrolyte, at different scanning rates between 5 and 500 mV / s.
  • the CV curve (FIG. 9) shows an appropriate rectangular morphology up to scanning speeds of 500 mV / s, indicating a behavior according to the traditional electrochemical supercapacitors based on carbon.
  • the graphitization of the material guarantees an appropriate conductive network, and the hierarchical porosity it presents allows the correct accessibility of the electrolytes to the electrodes.
  • a system consisting of a three electrode cell was used to measure the graphene synthesized at 900 ° C, using it as a working electrode.
  • a 4 cm 2 stainless steel plate was used as the counter electrode and an Ag / AgCI electrode (3M KCI) was used as the reference electrode.
  • the electrochemical behavior of the electrodes was analyzed using the three electrode cell system with a 6M KOH electrolyte, at different discharge currents between 2-100 A g _1 .
  • the values of energy density (E) and power density (P) of the graphene synthesized at 900 ° C as well as of the graphene obtained after acid washing of the initial material have been extracted, observing high energy density values.
  • E energy density
  • P power density
  • the energy density was 75.75 Wh / kg for graphene synthesized at 900 ° C, with a corresponding power density of 998.97 W / kg.
  • the values of E and P were: 23.21 Wh / Kg and 44215.24 W / Kg, respectively.

Abstract

The invention relates to the use of COF-type materials (Covalent Organic Frameworks) with adsorbed metals, for producing graphene upon calcination in special conditions. The graphene produced has supercapacitance properties. The efficiency of said materials is based on: i) the optimum dispersion of the homogeneously distributed metals; ii) the textural and conductive properties of the highly porous graphene produced, and iii) the mechanical resistance and stability of the graphene in terms of its possible processing for various applications.

Description

Preparación de grafeno corrugado y poroso a partir de COF para su uso como supercapacitores  Preparation of corrugated and porous graphene from COF for use as supercapacitors
DESCRIPCIÓN Campo de la Invención DESCRIPTION Field of the Invention
La presente invención se refiere a un procedimiento para la obtención de grafeno a partir de estructuras orgánicas "COF-Metal", que son calcinadas en condiciones controladas. The present invention relates to a process for obtaining graphene from "COF-Metal" organic structures, which are calcined under controlled conditions.
Antecedentes de la Invención Como dispositivos de almacenamiento de energía, los supercapacitores han atraído una gran atención en la comunidad científica debido a sus grandes prestaciones, como por ejemplo su gran reversibilidad, ciclos de vida y altas densidades de energía y potencia. Generalmente, los materiales para electrodos son los determinantes en la preparación de los supercapacitores, siendo sus requisitos: gran superficie específica, distribuciones precisas de tamaño de poro, estabilidad térmica y un comportamiento electroquímico estable. En este sentido los materiales carbonosos ocupan una posición privilegiada, ya sean carbones activos (CA), carbones mesoporosos (CM), nanotubos o grafeno. Tradicionalmente se han empleado los CA como materiales en los electrodos de los supercapacitores comerciales, gracias a su moderado coste y alta capacidad. Pero estos materiales disminuyen drásticamente sus prestaciones cuando se aumentan las velocidades de carga y descarga, un requisito de vital importancia para satisfacer las demandas de los sistemas actuales (vehículos eléctricos, ascensores, etc.). Esta disminución de las prestaciones viene asociada generalmente a limitaciones en el transporte de los iones a través de los poros, originando una insuficiente accesibilidad electroquímica. Actualmente se está dedicando un gran esfuerzo de investigación en sintetizar materiales carbonosos con unas apropiadas distribuciones de tamaño de poro, así como con elevados valores de superficie específica. En este contexto, el grafeno se presenta como un candidato excepcional gracias a sus inigualables propiedades y singular morfología bidimensional, tales como alta conductividad eléctrica y térmica, alta superficie específica, robustez y procesabilidad. Background of the Invention As energy storage devices, supercapacitors have attracted great attention in the scientific community due to their high performance, such as their great reversibility, life cycles and high densities of energy and power. Generally, the electrode materials are the determinants in the preparation of supercapacitors, their requirements being: large specific surface area, precise distributions of pore size, thermal stability and stable electrochemical behavior. In this sense, carbonaceous materials occupy a privileged position, be they active carbons (CA), mesoporous carbons (CM), nanotubes or graphene. Traditionally, CAs have been used as materials in the electrodes of commercial supercapacitors, thanks to their moderate cost and high capacity. But these materials drastically decrease their performance when loading and unloading speeds are increased, a requirement of vital importance to meet the demands of current systems (electric vehicles, elevators, etc.). This decrease in performance is generally associated with limitations in the transport of ions through the pores, resulting in insufficient electrochemical accessibility. A great research effort is currently being devoted to synthesizing carbonaceous materials with appropriate pore size distributions, as well as with high specific surface values. In this context, graphene is presented as an exceptional candidate thanks to its unique properties and unique two-dimensional morphology, such as high electrical and thermal conductivity, high specific surface area, robustness and processability.
El grafeno se ha sintetizado tradicionalmente mediante exfoliación mecánica de grafito, crecimiento epitaxial en sustratos o por deposición química en fase vapor sobre superficies catalíticas. Generalmente, el grafeno no poroso no excede los 200 F/g a 1 A/g). Por otra parte, se han preparado nuevos tipos de grafeno poroso altamente corrugado por procedimientos de plantilla con MgO, partiendo de metano y empleando un horno tubular con atmósfera de argón a flujos muy elevados de 1000 mL/min. Se introduce la plantilla consistente en MgO y se produce la deposición del carbón, posteriormente el grafeno obtenido se purifica con ácido clorhídrico a reflujo. (Adv. Funct. Mater. 2012, 22, 2632-2641 ; Chem. Commun. 201 1 , 47, 5976; Adv. Mater. 2012, 24, 347-352). El grafeno poroso obtenido por esta metodología presenta una alta capacidad específica (ca. 245 F/g a 1A/g) y rendimiento superior en comparación con el grafeno reducido químicamente debido a su estrecha distribución de mesoporos y su estructura abierta con gran superficie. Adicionalmente, se han obtenido láminas de grafeno altamente corrugadas por enfriamiento en nitrógeno líquido de óxido de grafeno obtenido mediante el método de Hummers; en este caso el drástico enfriamiento induce un enorme stress térmico que corruga el grafeno (Carbón, 2012, 50, 2179-2188). Recientemente se han preparado también grafenos porosos con estructura tridimensional mediante un método combinado de intercambio iónico y activación con NaOH usando como precursor carbonoso una resina de intercambio iónico acrílica con metales (Adv. Mater. 2013, 25, 2474-2480). Graphene has been synthesized traditionally by mechanical exfoliation of graphite, epitaxial growth in substrates or by chemical deposition in vapor phase on catalytic surfaces. Generally, non-porous graphene does not exceed 200 F / g at 1 A / g). On the other hand, new types of highly corrugated porous graphene have been prepared by template procedures with MgO, starting with methane and using a tubular oven with an argon atmosphere at very high flows of 1000 mL / min The template consisting of MgO is introduced and carbon deposition occurs, then the graphene obtained is purified with reflux hydrochloric acid. (Adv. Funct. Mater. 2012, 22, 2632-2641; Chem. Commun. 201 1, 47, 5976; Adv. Mater. 2012, 24, 347-352). The porous graphene obtained by this methodology has a high specific capacity (ca. 245 F / g at 1A / g) and superior performance compared to chemically reduced graphene due to its narrow distribution of mesopores and its large open structure. Additionally, highly corrugated graphene sheets have been obtained by cooling in liquid nitrogen of graphene oxide obtained by the Hummers method; in this case the drastic cooling induces a huge thermal stress that corrugating graphene (Coal, 2012, 50, 2179-2188). Recently, porous graphenes with three-dimensional structure have also been prepared by a combined method of ion exchange and activation with NaOH using an acrylic ion exchange resin with metals as a carbonaceous precursor (Adv. Mater. 2013, 25, 2474-2480).
En este sentido, el interés por desarrollar métodos de síntesis escalables, económicos y que resulten sencillos de implantar en la industria está creciendo exponencialmente, y cualquier avance en este campo puede tener una repercusión primordial en el sector del almacenamiento energético eléctrico, en las baterías de ion litio, en la preparación de composites conductores así como en la fotocatálisis. Para el desarrollo de nuevos supercapacitores con mejores prestaciones, la implantación de nuevos métodos de síntesis de grafeno poroso es de extrema importancia. In this sense, the interest in developing scalable, economical and simple synthesis methods in the industry is growing exponentially, and any progress in this field can have a primary impact on the electric energy storage sector, in the batteries of lithium ion, in the preparation of conductive composites as well as in photocatalysis. For the development of new supercapacitors with better performance, the introduction of new methods of porous graphene synthesis is extremely important.
En este sentido, WO2013124503A1 describe el uso de hidróxidos laminares para la obtención de un material poroso de carbono grafitizado, mediante la calcinación controlada de los mismos, y el posterior lavado ácido de las nanopartículas metálicas embebidas en el interior del material resultante. In this sense, WO2013124503A1 describes the use of laminar hydroxides to obtain a graffiti carbon porous material, by controlled calcination thereof, and the subsequent acid washing of the metal nanoparticles embedded inside the resulting material.
En base a ello los inventores han encontrado que a partir de una estructura rica en carbono, previamente ordenada, se podría sintetizar grafeno. No obstante, la dificultad del proceso radica precisamente en la adecuada selección de un material precursor con una estructura apropiada, ya que el comportamiento general en este tipo de procesos de calcinación, tal como hace pensar el estado de la técnica, es la obtención de un carbón amorfo, no grafitizado. Based on this, the inventors have found that from a previously rich carbon structure, graphene could be synthesized. However, the difficulty of the process lies precisely in the proper selection of a precursor material with an appropriate structure, since the general behavior in this type of calcination processes, as the state of the art suggests, is obtaining a amorphous coal, not graffiti.
Descripción de la invención Los inventores han comprobado que a partir de un "covalent organic framework" (COF) con átomos dadores de electrones en las cavidades, es posible obtener un precursor de carbono COF coordinado con un complejo metálico o combinación de complejos metálicos (COF-Metal) homogéneamente distribuidos. La calcinación adecuada de este sistema en atmósfera controlada (por ejemplo, mediante gases inertes o en vacío) da lugar a la síntesis de grafeno altamente corrugado y poroso, con una distribución homogénea del tamaño de poro. Su caracterización electroquímica ha revelado unas excelentes propiedades de capacidad específica. DESCRIPTION OF THE INVENTION The inventors have proven that from a "covalent organic framework" (COF) with electron donor atoms in the cavities, it is possible to obtain a COF carbon precursor coordinated with a metal complex or combination of metal complexes (COF) -Metal) homogeneously distributed. Calcination Proper use of this system in a controlled atmosphere (for example, by inert or vacuum gases) results in the synthesis of highly corrugated and porous graphene, with a homogeneous distribution of the pore size. Its electrochemical characterization has revealed excellent properties of specific capacity.
Así, en un primer aspecto, la invención se dirige a un procedimiento de obtención de grafeno poroso corrugado que comprende calcinar un precursor de carbono COF coordinado con un complejo metálico o combinación de complejos metálicos. Dicho precursor de carbono coordinado por un complejo metálico o combinación de complejos metálicos, se denomina también en esta memoria "COF-Metal". Al precursor de carbono con átomos dadores en sus cavidades le llamaremos COF. Thus, in a first aspect, the invention is directed to a process for obtaining corrugated porous graphene comprising calcining a COF carbon precursor coordinated with a metal complex or combination of metal complexes. Said carbon precursor coordinated by a metal complex or combination of metal complexes, is also referred to herein as "COF-Metal". The carbon precursor with donor atoms in its cavities will be called COF.
El procedimiento de obtención de grafeno poroso corrugado de la invención puede comprender además la preparación del precursor COF-Metal, previa a la calcinación del mismo. The process for obtaining corrugated porous graphene of the invention may further comprise the preparation of the COF-Metal precursor, prior to calcination thereof.
La calcinación del COF-Metal se realiza en atmósfera de aire o en atmósfera controlada, preferiblemente en atmosfera controlada, por ejemplo en atmósfera inerte o en vacío. Dicha calcinación del COF-Metal se realiza a una temperatura de entre aproximadamente 400 °C y 1200 °C, preferentemente entre aproximadamente 600 °C y 1000 °C, más preferentemente entre aproximadamente 800 °C y 1000 °C, y de forma especialmente preferida entre aproximadamente 850 °C y 950 °C. Según una realización preferente la calcinación se realiza a 900 °C, temperatura mediante la cual se obtiene un valor de grafitización con elevados valores de conductividad eléctrica, lo que resulta de gran importancia de cara a su uso como material en electrodos de supercapacitores. La temperatura de calcinación afecta al grado de carbonización del material y a su morfología, siendo este aspecto determinante en la porosidad final del material. The calcination of COF-Metal is carried out in an air atmosphere or in a controlled atmosphere, preferably in a controlled atmosphere, for example in an inert atmosphere or in a vacuum. Said calcination of the COF-Metal is carried out at a temperature between approximately 400 ° C and 1200 ° C, preferably between approximately 600 ° C and 1000 ° C, more preferably between approximately 800 ° C and 1000 ° C, and especially preferably between approximately 850 ° C and 950 ° C. According to a preferred embodiment, the calcination is carried out at 900 ° C, a temperature by which a graffiti value with high electrical conductivity values is obtained, which is of great importance for its use as a material in supercapacitor electrodes. The calcination temperature affects the degree of carbonization of the material and its morphology, this aspect being decisive in the final porosity of the material.
A diferencia de lo esperable de acuerdo a lo descrito en el estado de la técnica en este tipo de materiales, que sería la obtención de carbón amorfo, la descomposición térmica del precursor origina la formación de grafeno corrugado y altamente poroso, gracias a la actividad catalítica de los cationes metálicos absorbidos en el COF- Metal. A diferencia de lo divulgado en WO2013124503A1 , en este caso el precursor cuenta con una distribución de centros metálicos altamente dispersos y no en forma de partículas, lo cual parece jugar un papel fundamental en los resultados obtenidos. Mientras que en otros materiales los metales catalizadores se encuentran formando parte de redes cristalinas, en superficies o en forma de nanopartículas, en el precursor de la invención, el COF-Metal, se encuentran localizados en centros de coordinación a lo largo del material. Este hecho, unido a la morfología del COF, hace que el sistema evolucione durante la calcinación hacia la formación de grafeno poroso corrugado. Unlike what is expected according to what is described in the state of the art in this type of materials, which would be obtaining amorphous carbon, the thermal decomposition of the precursor causes the formation of corrugated and highly porous graphene, thanks to the catalytic activity of the metal cations absorbed in the COF-Metal. Unlike what was disclosed in WO2013124503A1, in this case the precursor has a distribution of highly dispersed metal centers and not in the form of particles, which seems to play a fundamental role in the results obtained. While in other materials the catalyst metals are forming part of crystalline networks, on surfaces or in the form of nanoparticles, in the precursor of the invention, COF-Metal, are located in coordination centers along the material. This fact, together with the morphology of the COF, makes that the system evolves during calcination towards the formation of corrugated porous graphene.
Además, la estructura, morfología y disposición del precursor favorece la generación de porosidad jerárquica en el material final sin la necesidad de emplear plantillas de MgO, resinas de intercambio iónico o NaOH como activador y generador de porosidad. Esto permite la obtención de grafeno poroso en un solo paso sintetizado directamente sin necesidad de realizar costosas etapas posteriores de reducción, como ocurre en el caso de las síntesis que parten de óxido de grafeno. In addition, the structure, morphology and arrangement of the precursor favors the generation of hierarchical porosity in the final material without the need to use MgO templates, ion exchange resins or NaOH as activator and porosity generator. This allows to obtain porous graphene in a single step synthesized directly without the need for costly subsequent stages of reduction, as occurs in the case of syntheses based on graphene oxide.
La calcinación tiene lugar durante un tiempo comprendido entre aproximadamente 1 y 6 horas. Según una realización preferente la calcinación tiene lugar durante aproximadamente 4 horas. Durante la calcinación se puede usar una rampa de calentamiento de entre 1 °C/min y 10 °C/min, preferentemente de aproximadamente 2 °C/min, y un flujo de nitrógeno de entre 50 ml/min y 150 mL/min, preferentemente de aproximadamente 100 mL/min. Una realización especialmente preferida del procedimiento comprende calcinar el COF-Metal en atmósfera controlada a una temperatura de entre aproximadamente 850 °C y 950 °C, durante un tiempo comprendido entre aproximadamente 1 y 6 h y con una rampa de calentamiento de entre aproximadamente 1 °C/min y 10 °C/min. Según variantes del procedimiento de la invención, se puede realizar una etapa previa a la calcinación, de deposición (incluyendo en este término las diversas técnicas de deposición e impregnación posibles) del precursor COF-Metal sobre una superficie sólida (ya sea por dip coating, layer by layer, casting, filtración, etc.). Estas opciones permitirían obtener directamente el grafeno sobre cualquier superficie calcinando la misma en atmósfera inerte o a vacío. Esta ventaja es muy superior a los métodos descritos al no requerir de plantillas de MgO o similares, ni un proceso de CVD, ni resinas de intercambio. Simplemente partiendo de un precursor molecular, como un COF, que puede ser procesado sin dificultad, se puede obtener el grafeno poroso en cualquier superficie, lo que facilita mucho su escalado a nivel industrial. The calcination takes place for a time between approximately 1 and 6 hours. According to a preferred embodiment the calcination takes place for approximately 4 hours. During the calcination a heating ramp of between 1 ° C / min and 10 ° C / min, preferably of about 2 ° C / min, and a nitrogen flow of between 50 ml / min and 150 mL / min, can be used, preferably about 100 mL / min. An especially preferred embodiment of the process comprises calcining the COF-Metal in a controlled atmosphere at a temperature of between about 850 ° C and 950 ° C, for a time between about 1 and 6 h and with a heating ramp of between about 1 ° C / min and 10 ° C / min. According to variants of the process of the invention, a stage prior to calcination, deposition (including in this term the various possible deposition and impregnation techniques) of the COF-Metal precursor can be performed on a solid surface (either by dip coating, layer by layer, casting, filtration, etc.). These options would allow graphene to be obtained directly on any surface by calcining it in an inert atmosphere or under vacuum. This advantage is far superior to the methods described as it does not require MgO templates or similar, or a CVD process, or exchange resins. Simply starting from a molecular precursor, such as a COF, which can be processed without difficulty, you can obtain porous graphene on any surface, which greatly facilitates its scaling at the industrial level.
En base a esto, en otra realización preferida, el procedimiento incluye un paso previo de deposición del precursor COF-Metal sobre una superficie sólida, procediendo posteriormente a calcinar el conjunto para obtener grafeno depositado sobre dicha superficie. Realizaciones preferidas del procedimiento comprenden, tras la calcinación del COF- Metal, realizar un lavado ácido del grafeno corrugado y poroso obtenido, consiguiendo un grafeno corrugado y poroso libre de restos de metales. El grafeno corrugado y poroso obtenido es apropiado para su uso en supercapacitores, y presenta valores de capacidad específica más elevados que los publicados para materiales similares basados en grafeno (Small, 8(12), 1805-1834), e incluso superiores a los mejores materiales carbonosos publicados recientemente, como: "carbón nanocages" obtenidas a partir de CVD con benceno sobre plantillas de MgO (Ad. Mater., 2012, 24, 347-352), "mesoporous graphitic carbón nanodisks" obtenidos a partir de polímeros de coordinación (Chem. Commun. 2012, 48, 8769- 8771) o "nanoporous carbons obtained from zeolitic materials (Chem. Commun. 2012, 48, 7259-7261). Además presentan valores similares de capacidad específica (ligeramente superiores a medida que disminuye la densidad de corriente) a los obtenidos para láminas de grafeno altamente corrugadas obtenidas por enfriamiento en nitrógeno líquido (Carbón, 2012, 50, 2179-2188). También presenta estabilidad y resistencia mecánica en perspectiva a su posible procesamiento para aplicaciones prácticas. El precursor COF-Metal se puede obtener a partir de un COF el cual presenta átomos dadores en sus cavidades, siendo por ejemplo átomos dadores N, S, O y combinaciones de los mismos. Based on this, in another preferred embodiment, the process includes a previous step of deposition of the COF-Metal precursor on a solid surface, subsequently proceeding to calcine the assembly to obtain graphene deposited on said surface. Preferred embodiments of the process include, after calcining the COF-Metal, to perform an acid wash of the corrugated and porous graphene obtained, obtaining a corrugated and porous graphene free of metal residues. The corrugated and porous graphene obtained is suitable for use in supercapacitors, and has higher specific capacity values than those published for similar graphene-based materials (Small, 8 (12), 1805-1834), and even higher than the best recently published carbonaceous materials, such as: "carbon nanocages" obtained from CVD with benzene on MgO templates (Ad. Mater., 2012, 24, 347-352), "mesoporous graphitic carbon nanodisks" obtained from coordination polymers (Chem. Commun. 2012, 48, 8769-8771) or "nanoporous carbons obtained from zeolitic materials (Chem. Commun. 2012, 48, 7259-7261). They also have similar values of specific capacity (slightly higher as the current density) to those obtained for highly corrugated graphene sheets obtained by cooling in liquid nitrogen (Carbon, 2012, 50, 2179-2188) It also presents stability and mechanical resistance in perspec tiva possible processing for practical applications. The COF-Metal precursor can be obtained from a COF which has donor atoms in its cavities, for example being N, S, O donor atoms and combinations thereof.
El precursor de carbono COF-Metal, comprende centros metálicos de un metal seleccionado entre Fe, Mn, Co, Ru, Rh, Ni, Pd, Cu y Cr, o una combinación de los mismos, siendo preferentemente Fe. The COF-Metal carbon precursor comprises metal centers of a metal selected from Fe, Mn, Co, Ru, Rh, Ni, Pd, Cu and Cr, or a combination thereof, preferably Fe.
El COF se puede obtener, por ejemplo, a partir de polímeros resultantes de la condensación de una amina y un aldehido. COF can be obtained, for example, from polymers resulting from the condensation of an amine and an aldehyde.
Dicha amina y dicho aldehido tienen fórmulas seleccionadas entre las siguientes: para la amina:
Figure imgf000006_0001
(I) (la) (Ib) y para el aldehido:
Said amine and said aldehyde have formulas selected from the following: for the amine:
Figure imgf000006_0001
(I) (la) (Ib) and for the aldehyde:
Figure imgf000007_0001
Figure imgf000007_0001
R1 y R2 pueden ser, por ejemplo, fragmentos orgánicos iguales o diferentes, y pueden ser seleccionados entre radicales con una estructura que contenga 2, 3 ó 4 grupos funcionales en una geometría lineal, plana trigonal, plano-cuadrada o tetraédrica, y tanto R1 como R2 pueden ser seleccionados entre restos alquilo, arilo y combinaciones de ambos. R 1 and R 2 can be, for example, the same or different organic fragments, and can be selected from radicals with a structure containing 2, 3 or 4 functional groups in a linear, trigonal, flat-square or tetrahedral geometry, and both R 1 and R 2 can be selected from alkyl, aryl moieties and combinations of both.
Según realizaciones particulares las estructuras lineales pueden ser estructuras carbonadas, que opcionalmente pueden contener heteroátomos. Dichas estructuras carbonadas pueden ser cadenas de alquilo, arilo y arilalquilo, pudiendo ser dichas estructuras carbonadas lineales o ramificadas, y estando opcionalmente sustituidas. According to particular embodiments, the linear structures may be carbon structures, which may optionally contain heteroatoms. Said carbonated structures may be alkyl, aryl and arylalkyl chains, said linear or branched carbon structures being able to be, and being optionally substituted.
El término "alquilo" se refiere a una cadena hidrocarbonada o heterocarbonada lineal o ramificada, cíclica o acíclica formada por átomos de carbono e hidrógeno, con o sin insaturaciones, de un total de entre 1 y 20 átomos de carbono y/o heteroátomos en la cadena principal, preferiblemente de dos a 16, más preferiblemente de 3 a 8 átomos de carbono y/o heteroátomos, opcionalmente sustituida. Grupos alquilo especialmente preferidos son el metilo, etilo, propilo, isopropilo, butilo, tert-butilo, isobutilo, pentilo, isopentilo, o hexilo. El término "arilo" se refiere a un hidrocarburo aromático de 6 a 14 átomos de carbono, tal como fenilo, naftilo, antracilo, opcionalmente sustituido por un grupo alquilo lineal o ramificado de entre 1 y 4 átomos de carbono, u oxialquilo lineal o ramificado, de entre 1 y 4 átomos de carbono, que pueden estar a su vez opcionalmente sustituidos. Grupos arilo especialmente preferidos son fenilo, naftilo, antracilo. The term "alkyl" refers to a linear or branched, cyclic or acyclic hydrocarbon or heterocarbon chain consisting of carbon and hydrogen atoms, with or without unsaturations, of a total of between 1 and 20 carbon atoms and / or heteroatoms in the main chain, preferably from two to 16, more preferably from 3 to 8 carbon atoms and / or heteroatoms, optionally substituted. Especially preferred alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, pentyl, isopentyl, or hexyl. The term "aryl" refers to an aromatic hydrocarbon of 6 to 14 carbon atoms, such as phenyl, naphthyl, anthracil, optionally substituted by a linear or branched alkyl group of 1 to 4 carbon atoms, or linear or branched oxyalkyl , of between 1 and 4 carbon atoms, which may be optionally substituted. Especially preferred aryl groups are phenyl, naphthyl, anthracil.
El término "arilalquilo" se refiere a uno o varios grupos arilo unidos al resto de la molécula mediante un radical alquilo, por ejemplo, bencilo, toluilo, xililo, etil-naftilo, metil-antracilo, etc., y tal que dicho uno o varios grupos arilo a su vez están opcionalmente sustituidos. The term "arylalkyl" refers to one or more aryl groups attached to the rest of the molecule by an alkyl radical, for example, benzyl, toluyl, xylyl, ethyl-naphthyl, methyl-anthracil, etc., and such that said one or several aryl groups in turn are optionally substituted.
El término "opcionalmente sustituido" se refiere en cualquiera de las realizaciones anteriores a la sustitución de un hidrógeno por un grupo funcional seleccionado entre halógeno, hidroxilo, alquilo C1-C6, hidroxialquilo C1-C6, alquiloxi alquilo C1-C6, un grupo ceto, un grupo nitro, amida, un grupo aciloxi C1-C3, un grupo ácido C1-C3, y OR3, donde R3 es un alquilo C1-C4 opcionalmente sustituido por hidroxilo, alquilo d- C6, hidroxialquilo C1-C6. Las estructuras bidimensionales pueden estar constituidas por anillos aromáticos o heteroaromáticos condensados o unidos entre sí a través de cadenas hidrocarbonadas que a su vez pueden contener, o no, heteroátomos, y pudiendo estar dichos anillos opcionalmente sustituidos en una o más posiciones con sustituyentes iguales o diferentes seleccionados entre grupos alquilo de 1 a 3 átomos de carbono, alcoxi o tioalcoxi de 1 a 3 átomos de carbono, nitro, sulfonilo, o halógenos. Preferentemente las estructuras bidimensionales tienen entre 1 y 20 anillos aromáticos o heteroaromáticos, más preferentemente entre 1 y 16 anillos aromáticos o heteroaromáticos, y más preferentemente aún entre 1 y 10 anillos aromáticos o heteroaromáticos. The term "optionally substituted" refers in any of the preceding embodiments to the replacement of a hydrogen by a functional group selected from halogen, hydroxyl, C1-C6 alkyl, hydroxy C1-C6 alkyl, alkyloxy C1-C6 alkyl, a keto group, a nitro group, amide, a C1-C3 acyloxy group, a C1-C3 acid group, and OR 3 , where R 3 is a C1-C4 alkyl optionally substituted by hydroxyl, d-C6 alkyl, C1-C6 hydroxyalkyl . The two-dimensional structures may be constituted by aromatic or heteroaromatic rings condensed or linked together through hydrocarbon chains which in turn may or may not contain heteroatoms, and said rings may be optionally substituted in one or more positions with equal or different substituents. selected from alkyl groups of 1 to 3 carbon atoms, alkoxy or thioalkoxy of 1 to 3 carbon atoms, nitro, sulfonyl, or halogens. Preferably the two-dimensional structures have between 1 and 20 aromatic or heteroaromatic rings, more preferably between 1 and 16 aromatic or heteroaromatic rings, and more preferably even between 1 and 10 aromatic or heteroaromatic rings.
Las estructuras tridimensionales preferentes pueden estar formadas por combinaciones de estructuras lineales ramificadas, combinaciones de estructuras bidimensionales unidas entre sí por espaciadores lineales que pueden ser uno o más átomos de carbono tetraédricos, o combinaciones de estructuras lineales y estructuras bidimensionales, radicales policíclicos no condensados tales como bifenilo, donde estructura lineal y estructura bidimensional tienen los significados indicados anteriormente. Preferred three-dimensional structures may be formed by combinations of branched linear structures, combinations of two-dimensional structures linked together by linear spacers that may be one or more tetrahedral carbon atoms, or combinations of linear structures and two-dimensional structures, uncondensed polycyclic radicals such as biphenyl, where linear structure and two-dimensional structure have the meanings indicated above.
Según realizaciones particulares R1 y R2 son iguales o diferentes y se seleccionan entre: According to particular embodiments R 1 and R 2 are the same or different and are selected from:
- una cadena de uno a tres anillos aromáticos, preferentemente fenilos sustituidos en una o más posiciones con sustituyentes iguales o distintos, seleccionados entre halógeno, metilo, etilo, tertbutilo, vinilo,  - a chain of one to three aromatic rings, preferably phenyl substituted in one or more positions with the same or different substituents, selected from halogen, methyl, ethyl, tertbutyl, vinyl,
- una estructura policíclica de anillos aromáticos no condensados, más preferentemente entre uno y nueve dispuestos de manera que un anillo central tiene anillos iguales o distintos en posiciones alternas tales como 1 ,3-disustituido, 1 ,3,5- trisustituido etc, y donde dichos sustituyentes son preferentemente fenilo o bifenilo, y pudiendo estar el resto de posiciones del anillo central o de los otros, opcionalmente sustituidas con grupos iguales o distintos seleccionados entre metilo, etilo, propilo, tert-butilo, halógeno y vinilo,  - a polycyclic structure of non-condensed aromatic rings, more preferably between one and nine arranged so that a central ring has equal or different rings in alternate positions such as 1,3-disubstituted, 1,3,5-trisubstituted etc, and where said substituents are preferably phenyl or biphenyl, and the rest of the positions of the central ring or of the others may be, optionally substituted with the same or different groups selected from methyl, ethyl, propyl, tert-butyl, halogen and vinyl,
- una estructura del tipo porfirina, en la que los átomos de carbono puente entre los anillos de cinco miembros tienen un grupo fenilo como sustituyente, y el resto de posiciones carbonadas pueden estar opcionalmente sustituidas con sustituyentes iguales o distintos seleccionados entre metilo, etilo, propilo, tert-butilo, halógeno y vinilo,  - a structure of the porphyrin type, in which the bridging carbon atoms between the five-member rings have a phenyl group as a substituent, and the remaining carbonated positions may be optionally substituted with the same or different substituents selected from methyl, ethyl, propyl , tert-butyl, halogen and vinyl,
- un anillo aromático de benceno unido a los grupos amino o aldehido respectivos en las posiciones 1 , 2, 4 y 5, y que opcionalmente puede tener sustituyentes iguales o distintos seleccionados entre metilo, etilo, propilo, tert-butilo, halógeno y vinilo en las posiciones 3 y 6, y - an aromatic benzene ring attached to the respective amino or aldehyde groups at positions 1, 2, 4 and 5, and which may optionally have equal substituents or different selected from methyl, ethyl, propyl, tert-butyl, halogen and vinyl in positions 3 and 6, and
- un grupo metilo sustituido con 4 anillos aromáticos ligados cada uno de ellos a un grupo amino en el caso de la amina, o aldehido en el caso del aldehido, según corresponda, y estando las restantes posiciones de los anillos opcionalmente sustituidos con sustituyentes iguales o distintos seleccionados entre metilo, etilo, propilo, tert-butilo, halógeno y vinilo.  - a methyl group substituted with 4 aromatic rings each linked to an amino group in the case of the amine, or aldehyde in the case of the aldehyde, as appropriate, and the remaining positions of the rings being optionally substituted with equal substituents or distinct selected from methyl, ethyl, propyl, tert-butyl, halogen and vinyl.
Ejemplos de R1 y R2 son: Examples of R 1 and R 2 are:
Figure imgf000009_0001
Figure imgf000009_0001
Un ejemplo particular de COF-Metal, en este caso con estructura bidimensional, se obtiene a partir de 1 ,3,5-tris(4-aminofenil)benceno, benceno-1 ,3,5-tricarboxaldehido y complejos de Fe(lll), y tiene la estructura representada por la fórmula (III)
Figure imgf000010_0001
A particular example of COF-Metal, in this case with a two-dimensional structure, is obtained from 1,3,5-tris (4-aminophenyl) benzene, benzene-1, 3,5-tricarboxaldehyde and Fe complexes (lll) , and has the structure represented by the formula (III)
Figure imgf000010_0001
(III) (III)
Según una realización más concreta, el procedimiento de obtención de grafeno poroso corrugado comprende: According to a more specific embodiment, the process for obtaining corrugated porous graphene comprises:
- mezclar una solución de 1 ,3,5-tris(4-aminofenil)benceno y una solución de benceno-1 ,3,5-tricarboxaldehido a temperatura ambiente,  - mixing a solution of 1,3,5-tris (4-aminophenyl) benzene and a solution of benzene-1,3,5-tricarboxaldehyde at room temperature,
- añadir ácido acético obteniendo una suspensión,  - add acetic acid to obtain a suspension,
- añadir una solución de una sal de Fe(lll) seleccionada entre acetil acetonato, cloruro, acetato, nitrato y perclorato.  - add a solution of a Fe (lll) salt selected from acetyl acetonate, chloride, acetate, nitrate and perchlorate.
La presente invención tiene como objeto también grafeno corrugado poroso obtenido a través del procedimiento descrito anteriormente, según cualquiera de sus realizaciones. The present invention also relates to porous corrugated graphene obtained through the process described above, according to any of its embodiments.
El grafeno poroso corrugado obtenido según cualquier variante del procedimiento descrito tiene una distribución homogénea del tamaño de poro. The corrugated porous graphene obtained according to any variant of the described process has a homogeneous pore size distribution.
En el grafeno obtenido, el metal aparece en forma de nanopartículas con estado de oxidación cero, cuya presencia no interfiere negativamente en las propiedades electroquímicas del material debido a la poca cantidad y alta dispersión de las mismas y su pequeño tamaño (< 10 nm). Además es posible eliminarlas fácilmente mediante un lavado ácido del material. Con el procedimiento de la invención se obtiene grafeno corrugado poroso con una capacidad específica de 167 F/g a 100 A/g, y 544 F/g para una densidad de corriente de 2 A/g, lo que lo convierte en un material excelente para ser usado como supercapacitor. Una realización particular adicional del grafeno corrugado poroso es grafeno que comprende metal en forma de nanopartículas con estado de oxidación cero, con una elevada dispersión y un tamaño menor de 10 nm antes del lavado ácido del grafeno. Según realizaciones particulares adicionales, el grafeno corrugado poroso obtenido tiene un espectro Raman con las bandas características del carbono grafitico: G y D centradas a 1596 y 1343 cnr1 respectivamente antes de ser sometido a lavado ácido, y las bandas G y D centradas a 1599 y 1348 cnr1 respectivamente después de ser sometido al lavado ácido. In the graphene obtained, the metal appears in the form of nanoparticles with a state of zero oxidation, whose presence does not negatively interfere with the electrochemical properties of the material due to the small amount and high dispersion of the same and their small size (<10 nm). It is also possible to remove them easily by acid washing the material. With the process of the invention, porous corrugated graphene is obtained with a specific capacity of 167 F / g at 100 A / g, and 544 F / g for a current density of 2 A / g, which makes it an excellent material for be used as supercapacitor. A further particular embodiment of the porous corrugated graphene is graphene comprising metal in the form of nanoparticles with zero oxidation state, with a high dispersion and a size smaller than 10 nm before the acidic graphene wash. According to additional particular embodiments, the porous corrugated graphene obtained has a Raman spectrum with the characteristic bands of the graffiti carbon: G and D centered at 1596 and 1343 cnr 1 respectively before being subjected to acid washing, and the bands G and D centered at 1599 and 1348 cnr 1 respectively after being subjected to acid washing.
Según realizaciones particulares adicionales, el grafeno corrugado poroso obtenido antes de ser sometido al lavado ácido tiene las siguientes propiedades: According to additional particular embodiments, the porous corrugated graphene obtained before being subjected to acid washing has the following properties:
- una porosidad de valores de 642 m2/g en el área superficial medida mediante el estudio de la isoterma de adsorción de N2 a 77 K y aplicando el método BET, y 0,39 cc/g de volumen total de poros, aplicando el método BET (Brunauer - Emmett - Teller) - a porosity of values of 642 m 2 / g in the surface area measured by studying the adsorption isotherm of N2 at 77 K and applying the BET method, and 0.39 cc / g of total pore volume, applying the BET method (Brunauer - Emmett - Teller)
- mesoporos de 3-5 nm correspondientes a los túneles entre las láminas grafiticas y a la rugosidad de la superficie y mesoporos de 10-50 nm relacionados con las nanocavidades originadas por la corrugación del grafeno, aplicando el método BJH (Barret - Joyner - Halenda)  - 3-5 nm mesopores corresponding to the tunnels between the graffiti sheets and the surface roughness and 10-50 nm mesopores related to nanocavities caused by graphene corrugation, applying the BJH method (Barret - Joyner - Halenda)
- capacidad específica, medida usando una celda de 3 electrodos con KOH 6M como electrolito acuoso y espuma de níquel como soporte, de 167 F/g a 100 A/g, y 544 F/g para una densidad de corriente de 2 A/g,  - specific capacity, measured using a 3-electrode cell with 6M KOH as aqueous electrolyte and nickel foam as support, from 167 F / g to 100 A / g, and 544 F / g for a current density of 2 A / g,
- valores siempre superiores al 89 % de la capacidad original después de 1000 ciclos,  - values always higher than 89% of the original capacity after 1000 cycles,
- valores de densidad de energía (E) para una densidad de corriente de 5 A/g, de 75.75 Wh/Kg para el grafeno sintetizado a 900 °C, y densidad de potencia (P) de 998.97 W/Kg; para 100 A/g los valores de E y P fueron: 23.21 Wh/Kg y 44215.24 W/Kg, respectivamente. y después de ser sometido al lavado ácido tiene las siguientes propiedades:  - values of energy density (E) for a current density of 5 A / g, 75.75 Wh / kg for graphene synthesized at 900 ° C, and power density (P) of 998.97 W / Kg; for 100 A / g the values of E and P were: 23.21 Wh / kg and 44215.24 W / kg, respectively. and after being subjected to acid washing it has the following properties:
- valores de 623 m2/g en el área superficial obtenida mediante el estudio de la isoterma de adsorción de N2 a 77 K y aplicando el método BET y 0,38 cc/g de volumen de mesoporos, aplicando el método BET, - values of 623 m 2 / g in the surface area obtained by studying the adsorption isotherm of N2 at 77 K and applying the BET method and 0.38 cc / g of mesopore volume, applying the BET method,
- mesoporos similares a los descritos para el grafeno antes del lavado,  - mesopores similar to those described for graphene before washing,
- comportamiento supercapacitivo con un valor de capacidad específica, medida usando una celda de 3 electrodos con KOH 6M como electrolito acuoso y espuma de níquel como soporte, de 90 F/g a 100 A/g y de 579 F/g a 5 A/g,  - supercapacitive behavior with a specific capacity value, measured using a 3 electrode cell with 6M KOH as aqueous electrolyte and nickel foam as support, from 90 F / g at 100 A / g and from 579 F / g at 5 A / g,
- valores de densidad de energía (E) para una densidad de corriente de 5 A/g de 1 16.09 Wh/Kg y un valor correspondiente de densidad de potencia de 3050.61 W/Kg; para una densidad de corriente de 100 A/g, densidad de energía de 18.21 Wh/Kg y densidad de potencia de 4607.08 W/Kg. La invención se refiere también al uso del grafeno obtenido por el procedimiento descrito en cualquiera de sus realizaciones, para aplicaciones que requieran materiales con propiedades de supercapacitancia, incluyendo dispositivos supercapacitores. - energy density values (E) for a current density of 5 A / g of 1 16.09 Wh / kg and a corresponding power density value of 3050.61 W / Kg; for a current density of 100 A / g, energy density of 18.21 Wh / kg and power density of 4607.08 W / kg. The invention also relates to the use of graphene obtained by the process described in any of its embodiments, for applications that require materials with supercapacitance properties, including supercapacitor devices.
Cabe destacar que la metodología descrita en esta invención es más económica que muchas de las aproximaciones sintéticas descritas en la bibliografía, el método sintético descrito es extremadamente sencillo, y además presenta otras bondades como altas prestaciones electroquímicas del material obtenido y el bajo coste que requiere su producción (tanto la síntesis del precursor como la obtención de grafeno poroso). It should be noted that the methodology described in this invention is cheaper than many of the synthetic approaches described in the literature, the synthetic method described is extremely simple, and also presents other benefits such as high electrochemical performance of the material obtained and the low cost required by its production (both precursor synthesis and obtaining porous graphene).
La eficacia de estos materiales COF-Metal se basa en: i) la óptima dispersión de los metales homogéneamente distribuidos; ii) las propiedades texturales y conductoras del grafeno altamente poroso obtenido, iii) la estabilidad y resistencia mecánica del grafeno en perspectiva a su posible procesamiento para diversas aplicaciones. The effectiveness of these COF-Metal materials is based on: i) the optimal dispersion of homogeneously distributed metals; ii) the textural and conductive properties of the highly porous graphene obtained, iii) the stability and mechanical resistance of graphene in perspective to its possible processing for various applications.
Breve descripción de las figuras Brief description of the figures
FIG. 1. Muestra el resultado de analizar mediante difracción de rayos X (XRD) la estructura del grafeno obtenido después de someter a tratamiento térmico a 900 °C al precursor COF-Metal. FIG. 1. It shows the result of analyzing the structure of graphene obtained by X-ray diffraction (XRD) after heat treatment at 900 ° C to the COF-Metal precursor.
FIG. 2. Muestra el patrón de difracción de rayos X del grafeno sometido a lavado ácido.  FIG. 2. Shows the X-ray diffraction pattern of the graphene subjected to acid washing.
FIG. 3. Muestra los resultados de espectroscopia Raman sobre el grafeno obtenido después de someter a tratamiento térmico a 900 °C al precursor COF-Metal.  FIG. 3. Shows the results of Raman spectroscopy on the graphene obtained after the COF-Metal precursor was heat treated at 900 ° C.
FIG. 4. Muestra los resultados de espectroscopia Raman sobre el grafeno sometido a lavado ácido. FIG. 4. Shows the results of Raman spectroscopy on graphene subjected to acid washing.
FIG. 5. Muestra la porosidad del grafeno sintetizado a 900 °C y del grafeno obtenido tras el lavado ácido, estudiada mediante isotermas de adsorción de nitrógeno a 77 K (BET). FIG. 5. Shows the porosity of the graphene synthesized at 900 ° C and the graphene obtained after acid washing, studied by nitrogen adsorption isotherms at 77 K (BET).
FIG. 6. Muestra los resultados del estudio de distribución de tamaño de poro del grafeno sintetizado a 900 °C y del grafeno obtenido tras el lavado ácido mediante el método de Barret-Joyner-Halenda (BJH).  FIG. 6. It shows the results of the pore size distribution study of graphene synthesized at 900 ° C and graphene obtained after acid washing using the Barret-Joyner-Halenda (BJH) method.
FIG 7. Muestra las imágenes obtenidas mediante microscopía electrónica de transmisión de alta resolución del grafeno sintetizado a 900 °C (A). Imagen a mayores aumentos destacando la estructura jerárquica porosa (B). Detalle de una nanopartícula de Fe (C). Espectro de EDAX mostrando la presencia residual de Fe en la muestra (D).  FIG 7. Shows the images obtained by high resolution transmission electron microscopy of graphene synthesized at 900 ° C (A). Image at higher magnifications highlighting the porous hierarchical structure (B). Detail of a nanoparticle of Fe (C). EDAX spectrum showing the residual presence of Fe in the sample (D).
FIG 8. Muestra las imágenes obtenidas mediante microscopía electrónica de transmisión de alta resolución del grafeno sometido a lavado ácido (A). Imagen a mayores aumentos destacando la estructura jerárquica porosa (B). Detalle de una cavidad destacando los planos grafiticos (C). Espectro de EDAX mostrando la ausencia de Fe en la muestra (D). FIG 8. Shows the images obtained by high-resolution transmission electron microscopy of the graphene subjected to acid washing (A). Image at higher magnifications highlighting the porous hierarchical structure (B). Detail of a cavity highlighting the graffiti drawings (C). EDAX spectrum showing the absence of Fe in the sample (D).
FIG. 9. Muestra las medidas de voltamperometría cíclica del grafeno sintetizado a 900°C a diferentes velocidades de barrido en el electrolito KOH.  FIG. 9. Shows the cyclic voltammetry measurements of graphene synthesized at 900 ° C at different scanning rates in the KOH electrolyte.
FIG. 10. Muestra los valores de capacidad específica obtenidos a diferentes densidades de corriente del grafeno sintetizado a 900 °C obtenidos de las descargas galvanostáticas. FIG. 10. Shows the specific capacity values obtained at different current densities of graphene synthesized at 900 ° C obtained from the galvanostatic discharges.
FIG. 11. Muestra las curvas estacionarias de descarga galvanostática a varias densidades de corriente de descarga en la ventana de potencial de -1 a 0 V (vs Ag/AgCI) del grafeno sintetizado a 900 °C (A) y las curvas estacionarias de carga y descarga galvanostática a la densidad de corriente de 30 A/g (B).  FIG. 11. Shows the stationary galvanostatic discharge curves at various densities of discharge current in the potential window from -1 to 0 V (vs Ag / AgCI) of graphene synthesized at 900 ° C (A) and the stationary load curves and galvanostatic discharge at the current density of 30 A / g (B).
FIG. 12. Muestra las medidas de voltamperometría cíclica del grafeno sometido a lavado ácido a diferentes velocidades de barrido en el electrolito KOH.  FIG. 12. Shows the cyclic voltammetry measurements of the graphene subjected to acid washing at different scanning rates in the KOH electrolyte.
FIG. 13. Muestra los valores de capacidad específica obtenidos a diferentes densidades de corriente del grafeno sometido a lavado ácido obtenidos de las descargas galvanostáticas.  FIG. 13. Shows the specific capacity values obtained at different current densities of the acid washed graphene obtained from the galvanostatic discharges.
FIG. 14. Muestra las curvas estacionarias de descarga galvanostática a varias densidades de corriente de descarga en la ventana de potencial de -1.2 a 0 V (vs Ag/AgCI) del grafeno sometido a lavado ácido (A) y las curvas estacionarias de carga y descarga galvanostática a la densidad de corriente de 30 A/g (B).  FIG. 14. Shows the stationary galvanostatic discharge curves at various densities of discharge current in the potential window from -1.2 to 0 V (vs Ag / AgCI) of the graphene subjected to acid washing (A) and the stationary load and discharge curves galvanostatic at the current density of 30 A / g (B).
EJEMPLOS EXAMPLES
Ejemplo 1 : obtención de COF-Fe Example 1: Obtain COF-Fe
Descripción general del precursor polimérico de grafeno: General description of the graphene polymer precursor:
El polímero laminar funcionalizado con hierro empleado en esta invención se generó mediante la condensación de los componentes 1 ,3,5-tris(4-aminifenil)benceno (1 ) y 1 ,3,5-bencenotricarbaldehído (2) para producir un material con una red hexagonal 2D extendida conocida como COF-1. Como es bien conocido en el estado del arte, esta reacción consiste en la condensación de la anilina con el benzaldehído, lo que da lugar a la formación de enlaces tipo ¡mina con la eliminación de agua, que es una reacción denominada "condensación de poliimina". Es también conocido que los nitrógenos imínicos pueden actuar como ligandos hacia centros metálicos. Como consecuencia la coordinación de Fe(lll) ha permitido incorporar centros catalíticos a nuestro material. The iron functionalized laminar polymer used in this invention was generated by the condensation of components 1, 3,5-tris (4-aminiphenyl) benzene (1) and 1,3,5-benzenetrricarbaldehyde (2) to produce a material with an extended 2D hex network known as COF-1. As is well known in the state of the art, this reaction consists in the condensation of aniline with benzaldehyde, which results in the formation of mine-type bonds with the removal of water, which is a reaction called "polyimine condensation. ". It is also known that imine nitrogens can act as ligands to metal centers. As a consequence, the coordination of Fe (lll) has allowed incorporating catalytic centers into our material.
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002
Sin embargo, debe entenderse que la presente invención no está de ninguna manera limitada a este COF específico (COF-1). However, it should be understood that the present invention is in no way limited to this specific COF (COF-1).
Síntesis del COF1 y su derivado con Fe(lll) Synthesis of COF1 and its derivative with Fe (lll)
100 mg (0.285 mmol) de 1 ,3,5-tris(4-aminofenil)benceno (1 ) se disolvieron en 5 mi¬ de m-cresol. Por otra parte, 46.1 mg (0.285 mmol) de 1 ,3,5-bencenotricarbaldehído (2) se disolvieron en otros 5 ml_ de m-cresol. 100 mg (0.285 mmol) of 1, 3,5-tris (4-aminophenyl) benzene (1) were dissolved in 5 ml of m-cresol ¬. On the other hand, 46.1 mg (0.285 mmol) of 1, 3,5-benzenetrricarbaldehyde (2) was dissolved in another 5 ml_ of m-cresol.
Seguidamente, ambas disoluciones fueron mezcladas a temperatura ambiente y posteriormente 1 ml_ de 99.8 % de ácido acético fue adicionado mientras la mezcla era agitada manualmente. Se observó casi de inmediato tras la adición del ácido acético la formación de una suspensión amarilla. La suspensión de COF-1 fue tratada con una disolución de sales estándar (acetil acetonato, cloruro, acetato, nitrato o perclorato) de Fe(lll). El nivel de incorporación de Fe(lll) se puede modular controlando los tiempos de reacción, la concentración de Fe(lll), la elección del disolvente y la fuerza de coordinación de los ligandos. Materiales y métodos Next, both solutions were mixed at room temperature and subsequently 1 ml_ of 99.8% acetic acid was added while the mixture was stirred manually. The formation of a yellow suspension was observed almost immediately after the addition of acetic acid. The COF-1 suspension was treated with a solution of standard salts (acetyl acetonate, chloride, acetate, nitrate or perchlorate) of Fe (lll). The level of incorporation of Fe (lll) can be modulated by controlling the reaction times, the concentration of Fe (lll), the choice of solvent and the coordination force of the ligands. Materials and methods
Todos los reactivos químicos y disolventes fueron obtenidos de proveedores comerciales y empleados sin una purificación posterior. Los materiales de partida, 1 ,3,5-(4-aminofenil)benceno (1 ) y benceno-1 ,3,5-tricarbaldehído (2), fueron sintetizados usando procedimientos publicados con anterioridad. Los disolventes y reactivos empleados para la preparación de estos materiales fueron secados mediante los métodos convencionales antes de ser empleados, y generalmente fueron usados bajo atmósfera inerte. Todas las reacciones para la preparación del COF-1 fueron realizadas en condiciones normales de laboratorio, y no se tomaron precauciones para excluir el oxígeno o la humedad ambiental. All chemical reagents and solvents were obtained from commercial suppliers and employees without further purification. The starting materials, 1,3,5- (4-aminophenyl) benzene (1) and benzene-1,3,5-tricarbaldehyde (2), were synthesized using previously published procedures. The solvents and reagents used for the preparation of these materials were dried by conventional methods before being used, and were generally used under an inert atmosphere. All reactions for the preparation of COF-1 were performed under normal laboratory conditions, and no precautions were taken to exclude oxygen or ambient humidity.
Los microanálisis elementales fueron obtenidos empleando un analizador elemental LECO CHNS-932. Los espectros de RMN fueron obtenidos en un dispositivo Bruker DPX 300 y los desplazamientos químicos en ppm se registraron con relación al tetrametilsilano (TMS) a 0,0 ppm. Los desplazamientos químicos de los disolventes deuterados eran: CDC a 7.26 y 77.16 ppm; DMSO-d6 a 2.50 y 39.52 ppm (para 1 H- NMR y 13C-NMR respectivamente en cada uno). Los patrones de desdoblamiento se designan como sigue: s (singlete), bs (singlete ancho), d (doblete), t (triplete), q (cuadruplete) y m (multiplete). El fenil y los fragmentos de benceno se nombran como Ph y Benz, en la asignación del espectro, respectivamente. The elementary microanalyses were obtained using a LECO CHNS-932 elemental analyzer. NMR spectra were obtained on a Bruker DPX 300 device and chemical shifts in ppm were recorded relative to tetramethylsilane (TMS) at 0.0 ppm. The chemical shifts of deuterated solvents were: CDC at 7.26 and 77.16 ppm; DMSO-d 6 at 2.50 and 39.52 ppm (for 1 H-NMR and 13 C-NMR respectively in each). The split patterns are designated as follows: s (singlet), bs (wide singlet), d (doublet), t (triplet), q (quadruplet) and m (multiplet). Phenyl and benzene fragments are named as Ph and Benz, in the spectrum allocation, respectively.
Los espectros de resonancia magnética nuclear de estado sólido de alta resolución (RMN) se registraron a presión ambiente en un espectrómetro Bruker AV 400 WB utilizando un espectrómetro de triple canal (BL4 X/Y/1 H) y sonda de ángulo mágico de giro (MAS) Bruker con rotores de circonio de 4 mm (de diámetro exterior). El ángulo mágico se ajustó mediante la maximización de la cantidad y amplitudes de las señales de los ecos de rotación observadas en la señal 79Br MAS FID del KBr. Para la adquisición de datos de 13C se utilizó la polarización cruzada con MAS (CP- MAS) a 100,61 MHz. Las anchuras del los pulsos del 1 H a noventa grados fueron 3,1 S. El tiempo de contacto CP varió desde 3,5 ms. Se aplicó una modulación de fase de dos pulsos de alta potencia de desacoplamiento de 1 H (TPPM) durante la adquisición de los datos. La frecuencia de desacoplamiento correspondió a 80 kHz. La frecuencia de giro MAS de la muestra fue de 10 kHz. Los retrasos de reciclaje entre los muéstreos fueron 4 s, dependiendo del compuesto determinado mediante la aparente ausencia de la señal de 13C de un escaneo a otro. Los desplazamientos químicos del 13C se dan en relación al tetrametilsilano como cero ppm, calibrado usando la señal de carbono del metileno del adamantano asignado a 29,5 ppm como referencia secundaria. High resolution solid state nuclear magnetic resonance (NMR) spectra were recorded at ambient pressure on a Bruker AV 400 WB spectrometer using a triple channel spectrometer (BL4 X / Y / 1 H) and magic angle of rotation probe ( MAS) Bruker with 4mm zirconia rotors (outside diameter). The magic angle was adjusted by maximizing the quantity and amplitudes of the signals of the rotation echoes observed in the 79 Br MAS FID signal of the KBr. For the acquisition of 13 C data, cross polarization with MAS (CP-MAS) at 100.61 MHz was used. Pulse widths from 1 H to ninety degrees were 3.1 S. The CP contact time varied from 3.5 ms A phase modulation of two pulses of high decoupling power of 1 H (TPPM) was applied during data acquisition. The decoupling frequency corresponded to 80 kHz. The MAS spin frequency of the sample was 10 kHz. Recycling delays between the samples were 4 s, depending on the compound determined by the apparent absence of the 13 C signal from one scan to another. The chemical shifts of 13 C are given in relation to tetramethylsilane as zero ppm, calibrated using the adamantane methylene carbon signal assigned at 29.5 ppm as a secondary reference.
Los espectros FT-IR de los materiales de partida y de los COFs sintetizados fueron obtenidos usando pastillas de KBr en un espectrómetro FTIR Bruker IFS66v con un accesorio de medidas de transmitancia/absorbancia (Bruker/Harrick) y un detector MCT (7000-550 cnr1 (medidas de IR medio)), las señales se presentan en números de onda (cnr1) y se describen como: muy fuerte (mf), fuerte (s), media (m), hombro (h), débil (w), muy débil (md) o amplia (a). La asignación y el análisis de las bandas de absorción de infrarrojos de los materiales de partida y productos de COF se presentan en esta sección. Los datos y su discusión relativa a las relaciones espectrales de IR entre estos compuestos se ofrecen para apoyar la formación de sólidos extendidos unidos covalentemente. Los modos de vibración del COF-1 se analizan como la convolución de 1 ,3,5-fenilina-trimetilideno y 1 ,3,5-(p-fenileno)- benceno en comparación con benceno-1 ,3,5-tricarbaldehído y 1 ,3,5-(p-aminofenil)- benceno, respectivamente. The FT-IR spectra of the starting materials and the synthesized COFs were obtained using KBr pellets on a Bruker IFS66v FTIR spectrometer with a Transmittance / absorbance measurement accessory (Bruker / Harrick) and an MCT detector (7000-550 cnr 1 (medium IR measurements)), the signals are presented in wave numbers (cnr 1 ) and are described as: very strong ( mf), strong (s), medium (m), shoulder (h), weak (w), very weak (md) or wide (a). The allocation and analysis of the infrared absorption bands of the starting materials and COF products are presented in this section. The data and its discussion regarding the IR spectral relationships between these compounds are offered to support the formation of covalently bound extended solids. The vibration modes of COF-1 are analyzed as the convolution of 1,3,5-phenylin-trimethylidene and 1,3,5- (p-phenylene) -benzene compared to benzene-1, 3,5-tricarbaldehyde and 1, 3,5- (p-aminophenyl) -benzene, respectively.
Los análisis termogravimétricos de las muestras se realizaron en una Termobalanza TGA Q-500 con muestras soportadas en un portamuestras de platino en atmósfera de nitrógeno. Se utilizó una rampa de velocidad de 10 K/min. The thermogravimetric analyzes of the samples were performed in a TGA Q-500 Thermobalance with samples supported on a platinum sample holder under a nitrogen atmosphere. A speed ramp of 10 K / min was used.
La fluorescencia de rayos X por reflexión total (TXRF) se midió en un espectrómetro Bruker S2 PICOFOX a 50 kV y 600 mA. El tiempo de adquisición fue de 500 s. Como estándar interno se empleó una disolución de vanadio 10 ppm. Total reflection X-ray fluorescence (TXRF) was measured on a Bruker S2 PICOFOX spectrometer at 50 kV and 600 mA. The acquisition time was 500 s. As an internal standard, a 10 ppm vanadium solution was used.
Caracterización del COF1 y su derivado con Fe(lll) Characterization of COF1 and its derivative with Fe (lll)
Espectro 13C CP-MAS en estado sólido (100.61 MHz): δ (ppm) = 156.7, 147.8, 137.5, 127.9, 121.5, 115.3. 13 C CP-MAS spectrum in solid state (100.61 MHz): δ (ppm) = 156.7, 147.8, 137.5, 127.9, 121.5, 115.3.
Figure imgf000016_0001
Figure imgf000016_0001
Señal Asignación Comentarios Signal Assignment Comments
(ppm) (ppm)
156.7 7 Carbón Imina (alfa-imina, alfa-aromático) 147.8 6 Carbono Aromático (alfa-imina) 156.7 7 Imine Carbon (alpha-imine, alpha-aromatic) 147.8 6 Aromatic Carbon (alpha-imine)
137.5 2, 8, 9 Carbono Aromático (epsilon-imina, alfa-vinilo, beta- vinilo)  137.5 2, 8, 9 Aromatic Carbon (epsilon-imine, alpha-vinyl, beta-vinyl)
127.9 3, 4 Carbono Aromático (delta-imina, gamma-imina)  127.9 3, 4 Aromatic Carbon (delta-imine, gamma-imine)
121.5 1 Carbono Aromático (zeta-imina)  121.5 1 Aromatic Carbon (zeta-imina)
1 15.3 5 Carbono Aromático (beta-alifático, beta-imina)  1 15.3 5 Aromatic Carbon (beta-aliphatic, beta-imine)
La espectroscopia de resonancia magnética nuclear de 13C en estado sólido de polarización cruzada/giro de ángulo mágico (CP/MAS NMR) proporcionó señales a 156.7 ppm correspondientes al carbono ¡mina, y a 147.8 ppm que pueden ser atribuidas al carbono aromático enlazado directamente al átomo de N de la ¡mina. Las señales aromáticas restantes del polímero COF 2D aparecen sobre 1 15.3 y 137.5 ppm. 13 C nuclear magnetic resonance spectroscopy in the solid state of cross polarization / magic angle rotation (CP / MAS NMR) provided signals at 156.7 ppm corresponding to the mine carbon, and 147.8 ppm that can be attributed to aromatic carbon linked directly to the N atom of the mine. The remaining aromatic signals of the 2D COF polymer appear above 1 15.3 and 137.5 ppm.
• Espectro FT-IR (Pastilla de KBr, crrr1): 3421.1 , 3074.9, 3027.2, 2964.5,• FT-IR spectrum (KBr tablet, crrr 1 ): 3421.1, 3074.9, 3027.2, 2964.5,
2918.7, 2867.6, 1900.0, 1793.0, 1773.2, 1700.4, 1696.6, 1617.5, 1589.5, 1516.3, 1500.3, 1440.1 , 1391.4, 1357.2, 1282.9, 1249.2, 1219.8, 1 181.2,2918.7, 2867.6, 1900.0, 1793.0, 1773.2, 1700.4, 1696.6, 1617.5, 1589.5, 1516.3, 1500.3, 1440.1, 1391.4, 1357.2, 1282.9, 1249.2, 1219.8, 1 181.2,
1 136.8, 1091.0, 101 1.5, 970.0, 879.9, 858.2, 826.3, 733.8, 728.0, 681.2, 660.5, 607.5, 556.4, 527.9, 514.4, 441.1 , 419.4, 41 1.2. 1 136.8, 1091.0, 101 1.5, 970.0, 879.9, 858.2, 826.3, 733.8, 728.0, 681.2, 660.5, 607.5, 556.4, 527.9, 514.4, 441.1, 419.4, 41 1.2.
Pico (cnr1) Asignación y notas Peak (cnr 1 ) Assignment and notes
3421.1 (br) Estiramiento de N— H de los grupos presentes en la superficie de los cristales y en grupos que no han reaccionado completamente en los defectos del material y en parte del material de partida sin reaccionar.  3421.1 (br) N-H stretching of the groups present on the surface of the crystals and in groups that have not fully reacted to defects in the material and in part of the unreacted starting material.
3074.9 (vw) Estiramiento del C— H aromático de los anillos de fenilo en 1 ,3,5- (p-fenileno)-benceno y 1 ,3,5-fenileno-trimetilideno.  3074.9 (vw) Stretching the aromatic C— H of the phenyl rings in 1, 3,5- (p-phenylene) -benzene and 1,3,5-phenylene-trimethylidene.
3027.2 (w) Estiramiento del C— H aromático de los anillos de fenilo en 1 ,3,5- (p-fenileno)-benceno y 1 ,3,5-fenileno-trimetilideno.  3027.2 (w) Stretching the aromatic C— H of phenyl rings in 1, 3,5- (p-phenylene) -benzene and 1,3,5-phenylene-trimethylidene.
2964.5 (vw), Estiramiento del C— H alqueno de la ¡mina. Este enlace tiene 2918.7 (vw), varios modos vibracionales en el aldehido de partida a 2955.9, 2964.5 (vw), Stretch of the C— H alkene of the mine. This link has 2918.7 (vw), several vibrational modes in the starting aldehyde at 2955.9,
2867.6 (w) 2927.4, 2876.3, 2855.6, 2780.4, 2743.7 y 2704.7 crrr1. 2867.6 (w) 2927.4, 2876.3, 2855.6, 2780.4, 2743.7 and 2704.7 crrr 1 .
1900.0 (w), Harmónicos de la flexión del C— H aromático.  1900.0 (w), Harmonics of the aromatic C-H flexion.
1793.0 (w), 1793.0 (w),
1773.2 (w) 1773.2 (w)
1700.4 (s), Estiramiento del C=0 de los grupos presentes en la superficie de 1696.6 (s) los cristales y en grupos que no han reaccionado completamente en los defectos del material y en parte del material de partida sin reaccionar.  1700.4 (s), Stretching of C = 0 of the groups present on the surface of 1696.6 (s) the crystals and in groups that have not reacted completely in the defects of the material and in part of the unreacted starting material.
1617.5 (s, br) Estiramiento del C=N ¡mina. Este enlace también está confirmado por la desaparición del modo de estiramiento vC-N del 1 ,3,5-(p-aminofenil)-benceno (1280.5 cnr1) y el estiramiento vC=0 del benceno-1 ,3,5-tricarbaldehído (1694.2 cnr1). Esta señal también está solapada con dos modos de flexión del anillo aromático, que aparecen a 1621.4 y 1606.9 cnr1 en el 1 ,3,5-(p- fenileno)-benceno y a 1595.3 cnr1 en el 1 ,3,5-fenileno- trimetilideno. 1617.5 (s, br) Stretch of the C = N mine. This link is also confirmed by the disappearance of the vC-N stretch mode of 1, 3,5- (p-aminophenyl) -benzene (1280.5 cnr 1 ) and the stretch vC = 0 of benzene-1, 3,5-tricarbaldehyde (1694.2 cnr 1 ). This signal is also overlapped with two flexural modes of the aromatic ring, which appear at 1621.4 and 1606.9 cnr 1 at 1, 3,5- (p-phenylene) -benzene and 1595.3 cnr 1 at 1, 3,5-phenylene - trimethylidene.
1589.5 (vs) Estiramiento aromático de los anillos de fenilo en el 1 ,3,5-(p- fenileno)-benceno.  1589.5 (vs) Aromatic stretching of phenyl rings in 1, 3,5- (p-phenylene) -benzene.
1516.3 (s) Estiramiento aromático de los anillos de fenilo en el 1 ,3,5-(p- fenileno)-benceno.  1516.3 (s) Aromatic stretching of phenyl rings in 1, 3,5- (p-phenylene) -benzene.
1500.3 (vs) Estiramiento C— C del anillo aromático del anillo 1 ,3,5-fenileno- trimetilideno.  1500.3 (vs) C-C stretching of the aromatic ring of ring 1, 3,5-phenylene-trimethylidene.
1440.1 (s) Estiramiento del C— C aromático de los anillos de fenilo en el  1440.1 (s) Stretching the aromatic C— C of the phenyl rings in the
1 ,3,5-(p-fenileno)-benceno.  1, 3,5- (p-phenylene) -benzene.
1391.4 (m) Flexión del anillo aromático.  1391.4 (m) Bending of the aromatic ring.
1357.2 (m) Estiramiento del anillo aromático del anillo 1 ,3,5,-fenileno- trimetilideno.  1357.2 (m) Stretching the aromatic ring of ring 1, 3,5, -phenylene-trimethylidene.
1282.9 (m) Estiramiento del C— C=N— C de la ¡mina. Este modo es el estiramiento de los enlaces simples del C— C y el C— N. Este modo también aparece a 1280.5 cnr1 en el 1 ,3,5-(p- aminofenil)benceno. 1282.9 (m) Stretching of the C— C = N— C of the mine. This mode is the stretching of the simple bonds of C— C and C— N. This mode also appears at 1280.5 cnr 1 at 1, 3,5- (p-aminophenyl) benzene.
1249.2 (m), Vibraciones C— H en el plano del anillo aromático del anillo de 1249.2 (m), Vibrations C— H in the plane of the aromatic ring of the ring
1219.8 (m), 1 ,3,5-(p-fenileno)-benceno. Estos modos también aparecen a1219.8 (m), 1, 3,5- (p-phenylene) -benzene. These modes also appear at
1 181.2 (m) 1241 ,0 y 1176,4 cnr1 en el 1 ,3,5-(p-aminofenil)benceno (anillos1 181.2 (m) 1241, 0 and 1176.4 cnr 1 in 1, 3,5- (p-aminophenyl) benzene (rings
1 136.8 (s, br) p-sustituidos). Este modo también aparece a 1 142,6 cnr1 en benceno-1 ,3,5-tricarbaldehído. 1 136.8 (s, br) p-substituted). This mode also appears at 1 142.6 cnr 1 in benzene-1, 3,5-tricarbaldehyde.
101 1.5 (m) Flexión del C— H aromático en el plano del 1 ,3,5-(p-fenileno)- benceno.  101 1.5 (m) Bending of aromatic C— H in the plane of 1, 3,5- (p-phenylene) - benzene.
970.0 (m) Estiramiento de los anillos aromáticos de fenilo en el 1 ,3,5-(p- fenileno)-benceno.  970.0 (m) Stretching of aromatic phenyl rings in 1, 3,5- (p-phenylene) -benzene.
879.9 (w) Vibración del C— H aromático fuera del plano del 1 ,3,5-(p- fenileno)-benceno.  879.9 (w) Vibration of aromatic C— H outside the plane of 1, 3,5- (p-phenylene) -benzene.
858.2 (w) Estiramiento del anillo aromático del 1 ,3,5-(p-fenileno)-benceno. 858.2 (w) Stretch of the aromatic ring of 1, 3,5- (p-phenylene) -benzene.
826.3 (vs, br) Estiramiento del anillo aromático del 1 ,3,5-(p-fenileno)-benceno826.3 (vs, br) Stretch of the aromatic ring of 1, 3,5- (p-phenylene) -benzene
728.0 (m) Flexión del C— H del metileno en el plano. Este modo aparece en el benceno-1 , 3, 5-tricarbaldehído a 739.1 cnr1. 728.0 (m) C-H flexion of methylene in the plane. This mode appears in benzene-1, 3, 5-tricarbaldehyde at 739.1 cnr 1 .
681.2 (m) Estiramiento del anillo aromático del 1 ,3,5-(p-fenileno)-benceno. 681.2 (m) Stretch of the aromatic ring of 1, 3,5- (p-phenylene) -benzene.
660.5 (s) Estiramiento del triedro C— Ph característico del 1 ,3,5-(p- fenileno)-benceno. También presente en el 1 ,3,5-(p- aminofenil)benceno (649.4 cnr1). 660.5 (s) Stretch of the C-Ph trihedron characteristic of 1, 3,5- (p-phenylene) -benzene. Also present in 1,3,5- (p-aminophenyl) benzene (649.4 cnr 1 ).
527.9 (s, br) Flexión del anillo aromático del 1 ,3,5-(p-fenileno)-benceno. El FT-IR confirma la formación del enlace ¡mina con la presencia del estiramiento del C = N de la ¡mina a 1617 cnr1. Esta unión también se confirmó por la desaparición casi completa del modo de estiramiento vC-N del 1 ,3,5-tris(4-aminofenil)benceno (1) (1281 cnr1) y la vC = O estiramiento de 1 ,3 ,5-bencenotricarbaldehído (2) (1697 cnr 1). 527.9 (s, br) Aromatic ring flexion of 1, 3,5- (p-phenylene) -benzene. The FT-IR confirms the formation of the mine link with the presence of the C = N stretch of the mine at 1617 cnr 1 . This binding was also confirmed by the almost complete disappearance of the vC-N stretch mode of 1,3,5-tris (4-aminophenyl) benzene (1) (1281 cnr 1 ) and the vC = 0 stretch of 1, 3, 5-benzenetrabaldehyde (2) (1697 cnr 1 ).
• Análisis elemental (calculado para COF-1 2H2Q): (C33H25N3O2) C (79.98 %), H (5.08 %), N (8.48 %); Encontrado: C (80.35 %), H (5.25 %), N (8.29 %). • Elemental analysis (calculated for COF-1 2H 2 Q): (C33H25N3O2) C (79.98%), H (5.08%), N (8.48%); Found: C (80.35%), H (5.25%), N (8.29%).
El análisis elemental reveló que el contenido en C, H, N y S era cercano a los valores calculados para una lámina infinita 2D considerando la presencia de dos moléculas de agua por unidad repetida en el gel polimérico preparado usando m-cresol como disolvente.  The elemental analysis revealed that the content in C, H, N and S was close to the values calculated for an infinite 2D sheet considering the presence of two water molecules per repeated unit in the polymer gel prepared using m-cresol as solvent.
• Análisis termogravimétrico (Portamuestra de platino bajo atmósfera de nitrógeno, rampa de 10 K/min): El COF-1 es estable en aire hasta 550 °C, como revela la TGA, se observa una pérdida de peso del 4.6 % a 100 °C que se puede racionalizar en términos de pérdida de agua ocluida en la estructura porosa polimérica y que es observada en el análisis elemental (mirar análisis elemental calculado arriba).  • Thermogravimetric analysis (Platinum sample holder under nitrogen atmosphere, 10 K / min ramp): COF-1 is stable in air up to 550 ° C, as revealed by the TGA, a weight loss of 4.6% at 100 ° is observed C that can be rationalized in terms of loss of occluded water in the polymeric porous structure and that is observed in the elementary analysis (see elemental analysis calculated above).
Determinación de la incorporación de Fe(lll) al COF-1 : Determination of the incorporation of Fe (lll) to COF-1:
El gel obtenido de acuerdo con el procedimiento sintético fue suspendido en metanol que contenía 200 mg de acetilacetonato de Fe(lll). Después de agitar a temperatura ambiente (20-30 °C) durante 72 h, el gel fue lavado con THF y secado. El ratio atómico N/Fe determinado mediante TXRF fue de 155.382. The gel obtained according to the synthetic procedure was suspended in methanol containing 200 mg of Fe acetylacetonate (lll). After stirring at room temperature (20-30 ° C) for 72 h, the gel was washed with THF and dried. The N / Fe atomic ratio determined by TXRF was 155,382.
Ejemplo 2: obtención de grafeno corrugado y poroso a partir de COF-Fe. Example 2: Obtaining corrugated and porous graphene from COF-Fe.
Diferentes muestras de sólidos obtenidos en la primera etapa (COF-Fe) se calcinaron en atmósfera de nitrógeno a 900 °C durante 4 h en un horno programable con una rampa de calentamiento de 2 °C/min y un flujo de nitrógeno de 100 ml/min. Para todos los casos, se obtuvo un polvo, el grafeno con nanopartículas de Fe. Different samples of solids obtained in the first stage (COF-Fe) were calcined in a nitrogen atmosphere at 900 ° C for 4 h in a programmable oven with a heating ramp of 2 ° C / min and a nitrogen flow of 100 ml / min For all cases, a powder was obtained, graphene with Fe nanoparticles.
Ejemplo 3: obtención de grafeno corrugado y poroso libre de restos de Fe a partir del grafeno obtenido en el ejemplo 2. Example 3: Obtaining corrugated and porous graphene free of Fe residues from graphene obtained in Example 2.
Los materiales de grafeno obtenidos en el ejemplo 1 , se sometieron a un lavado ácido con HCI 2M durante 20 horas, con agitación magnética, con lo que se consiguió eliminar las nanopartículas de Fe presentes en el material, obteniéndose así el grafeno libre de restos de Fe. The graphene materials obtained in example 1 were subjected to an acid wash with 2M HCI for 20 hours, with magnetic stirring, whereby it was possible to eliminate the Fe nanoparticles present in the material, thus obtaining graphene free of debris residues. Faith.
Ejemplo 4: estudio de la estructura del grafeno corrugado y poroso y del grafeno obtenido después del lavado ácido. Para estudiar los cambios estructurales producidos durante la calcinación del precursor para obtener el grafeno, se procedió a hacer un análisis de la estructura mediante difracción de rayos X (XRD). Del análisis de XRD realizado al grafeno obtenido después de someter a tratamiento térmico el precursor (FIG. 1), se obtuvieron los picos de difracción característicos del grafeno, que aparecen a ángulos en torno a 25 y 43 °. La presencia de Fe no se pudo detectar por XRD debido a la baja cantidad del mismo presente en el material y a su elevada dispersión. Se procedió también a estudiar la cristalinidad del grafeno obtenido después del lavado ácido con HCI 2 M durante 20 h. En el patrón de difracción de rayos X se observan los mismos picos que en el material sin lavar, confirmando la cristalinidad del mismo (FIG. 2). El carácter grafitico de los materiales obtenidos se estudió mediante espectroscopia Raman, mostrando el grafeno la presencia de las bandas características del carbono: G y D centradas a 1596 y 1343 cnr1 respectivamente (FIG. 3) y el grafeno sometido al lavado ácido las bandas G y D centradas a 1599 y 1348 cnr1 respectivamente (FIG. 4). Example 4: study of the structure of corrugated and porous graphene and graphene obtained after acid washing. In order to study the structural changes produced during the calcination of the precursor to obtain graphene, an analysis of the structure was carried out by X-ray diffraction (XRD). From the XRD analysis performed on graphene obtained after the precursor was heat treated (FIG. 1), the diffraction peaks characteristic of graphene were obtained, which appear at angles around 25 and 43 °. The presence of Fe could not be detected by XRD due to the low amount of it present in the material and its high dispersion. The crystallinity of graphene obtained after acid washing with 2M HCI for 20 h was also studied. The same peaks are observed in the X-ray diffraction pattern as in the unwashed material, confirming the crystallinity of the same (FIG. 2). The graffiti character of the materials obtained was studied by Raman spectroscopy, showing graphene the presence of the characteristic carbon bands: G and D centered at 1596 and 1343 cnr 1 respectively (FIG. 3) and graphene subjected to acid washing the bands G and D centered at 1599 and 1348 cnr 1 respectively (FIG. 4).
La porosidad de los materiales obtenidos ha sido estudiada mediante isotermas de nitrógeno a 77 K (FIG. 5), alcanzándose valores de 642 m2/g en el área superficial y 0,39 cc/g de volumen total de poros (método BET). Los resultados muestran la presencia de microporosidad en el grafeno inicial, y una alta área superficial. En el caso del grafeno obtenido tras el lavado ácido del material inicial, no se observan diferencias significativas, alcanzándose valores de 623 m2/g en el área superficial y 0,38 cc/g de volumen de mesoporos (método BET).. El estudio de distribución de tamaño de poro muestra la presencia de mesoporos de 3-5 nm (método BJH) correspondientes a los túneles entre las láminas grafiticas asociados con la estructura abierta del material, así como a la rugosidad de la superficie. También se observa la presencia de mesoporos de 10-50 nm (método BJH) relacionados con las nanocavidades originadas por la corrugación del grafeno (FIG. 6). El grafeno obtenido tras el lavado ácido muestra una distribución de poros similar. The porosity of the materials obtained has been studied by nitrogen isotherms at 77 K (FIG. 5), reaching values of 642 m 2 / g in the surface area and 0.39 cc / g of total pore volume (BET method) . The results show the presence of microporosity in the initial graphene, and a high surface area. In the case of graphene obtained after acid washing of the initial material, no significant differences are observed, reaching values of 623 m 2 / g in the surface area and 0.38 cc / g of mesopore volume (BET method). Pore size distribution study shows the presence of 3-5 nm mesopores (BJH method) corresponding to the tunnels between the graffiti sheets associated with the open structure of the material, as well as to the surface roughness. The presence of 10-50 nm mesopores (BJH method) related to nanocavities caused by graphene corrugation is also observed (FIG. 6). Graphene obtained after acid washing shows a similar pore distribution.
La estructura y morfología del grafeno consiste en una estructura jerárquica porosa generalizada, como puede observarse mediante el uso de microscopía electrónica de transmisión de alta resolución (HRTEM, del término en inglés high resolution transmission electrón microscopy) mostrado en la FIG. 7-A. Observando a mayores aumentos se puede apreciar que la distancia de red entre dos planos es 0,34 nm, lo que corresponde a la distancia que separa los planos grafiticos (FIG. 7-B y C). También se puede observar una nanopartículas de Fe resultante del leaching asociado al proceso de calcinación. En la FIG. 7-C se aprecia el carácter residual del Fe presente en la muestra, como demuestra el EDAX, siendo el porcentaje atómico inferior al 2 % (FIG. 7-D). Mediante el empleo de HRTEM también se ha caracterizado la morfología del grafeno obtenido tras el tratamiento ácido. Como se puede observar en la FIG. 8, la morfología es similar a la de la muestra antes del lavado, presentando una estructura grafitica abierta en la que las capas de grafeno forman cavidades mesoporosas (FIG. 8-A), oscilando el número de planos de grafeno entre 1 y 10 dependiendo de la zona de la muestra (FIG. 8-B). La imagen en detalle permite observar la intrincada morfología de la muestra, que consiste en numerosas cavidades resultantes de los pliegues de las láminas de grafeno (FIG, 8-C). En la FIG. 8-D este caso se puede observar la completa desaparición del Fe en la muestra, como indica el EDAX. The structure and morphology of graphene consists of a generalized porous hierarchical structure, as can be observed through the use of high resolution transmission electron microscopy (HRTEM) of the English term high resolution transmission electron microscopy) shown in FIG. 7-A. Looking at higher magnifications, it can be seen that the network distance between two planes is 0.34 nm, which corresponds to the distance that separates the graffiti planes (FIG. 7-B and C). You can also observe a nanoparticles of Faith resulting from the leaching associated with the calcination process. In FIG. 7-C shows the residual character of the Fe present in the sample, as demonstrated by the EDAX, the atomic percentage being less than 2% (FIG. 7-D). The morphology of graphene obtained after acid treatment has also been characterized by the use of HRTEM. As can be seen in FIG. 8, the morphology is similar to that of the sample before washing, presenting an open graffiti structure in which the graphene layers form mesoporous cavities (FIG. 8-A), the number of graphene planes oscillating between 1 and 10 depending from the sample area (FIG. 8-B). The image in detail allows us to observe the intricate morphology of the sample, which consists of numerous cavities resulting from the folds of graphene sheets (FIG, 8-C). In FIG. 8-D This case can be seen the complete disappearance of Faith in the sample, as indicated by the EDAX.
Ejemplo 5: estudio de las propiedades de supercapacitancia del grafeno corrugado y poroso y del grafeno obtenido después del lavado ácido. Para demostrar las propiedades de supercapacitancia de los materiales obtenidos, se procedió a realizar medidas de las características de corriente y voltaje del grafeno sintetizado a 900 °C y del grafeno que se obtiene tras el lavado ácido del mismo, mediante voltamperometría cíclica (CV, del término en inglés cyclic voltamperometry). Para este análisis, cada una de las muestras en polvo se mezclaron con negro de carbono y el polímero PTFE (politetrafluoroetileno) en una relación 80: 10: 10 en peso, y a la mezcla resultante se le añadió una pequeña cantidad de etanol. La mezcla final se depositó en un electrodo de espuma de níquel, se secó en una estufa a 1 10 °C durante 12 horas y se prensó antes de proceder a la medida. Cada electrodo se preparó con una cantidad de esta mezcla de aproximadamente igual a 1 mg/cm2. Un sistema consistente en una celda de tres electrodos se empleó para medir tanto el grafeno sintetizado a 900 °C, como el grafeno obtenido tras el lavado ácido del mismo, empleándolos como electrodos de trabajo. Como contraelectrodo se usó una placa de acero inoxidable de 4 cm2 y como electrodo de referencia se empleó un electrodo de Ag/AgCI (3M KCI). El sistema se purgó con N2 durante 15 minutos antes de realizar las medidas para evitar la presencia de oxígeno en la celda. El comportamiento electroquímico de los electrodos se analizó usando el sistema de celda de tres electrodos con 6M KOH como electrolito, a diferentes velocidades de barrido entre 5 y 500 mV/s. La curva CV (FIG. 9) muestra una apropiada morfología rectangular hasta velocidades de barrido de 500 mV/s, indicando un comportamiento acorde a los supercapacitores electroquímicos tradicionales basados en carbono. La grafitización del material garantiza una apropiada red conductora, y la porosidad jerárquica que presenta permite la correcta accesibilidad de los electrolitos a los electrodos. Example 5: Study of the supercapacitance properties of corrugated and porous graphene and graphene obtained after acid washing. To demonstrate the supercapacitance properties of the materials obtained, measurements were made of the current and voltage characteristics of the graphene synthesized at 900 ° C and the graphene obtained after the acid wash of the same, by cyclic voltammetry (CV, of the English term cyclic voltamperometry). For this analysis, each of the powder samples was mixed with carbon black and the PTFE polymer (polytetrafluoroethylene) in an 80: 10: 10 weight ratio, and a small amount of ethanol was added to the resulting mixture. The final mixture was deposited in a nickel foam electrode, dried in an oven at 10 ° C for 12 hours and pressed before proceeding to the measurement. Each electrode was prepared with an amount of this mixture of approximately equal to 1 mg / cm 2 . A system consisting of a three electrode cell was used to measure both graphene synthesized at 900 ° C, and graphene obtained after acid washing, using them as working electrodes. A 4 cm 2 stainless steel plate was used as the counter electrode and an Ag / AgCI electrode (3M KCI) was used as the reference electrode. The system was purged with N2 for 15 minutes before carrying out the measurements to avoid the presence of oxygen in the cell. The electrochemical behavior of the electrodes was analyzed using the three electrode cell system with 6M KOH as electrolyte, at different scanning rates between 5 and 500 mV / s. The CV curve (FIG. 9) shows an appropriate rectangular morphology up to scanning speeds of 500 mV / s, indicating a behavior according to the traditional electrochemical supercapacitors based on carbon. The graphitization of the material guarantees an appropriate conductive network, and the hierarchical porosity it presents allows the correct accessibility of the electrolytes to the electrodes.
Para estudiar las propiedades de supercapacitancia de los materiales a diferentes densidades de corriente, se han llevado a cabo medidas de las características de potencial frente al tiempo (medidas galvanostáticas) (FIG. 1 1 -A y B) del grafeno sintetizados a 900 °C. Para este análisis, de forma análoga a la descrita en el párrafo anterior, cada una de las muestras en polvo se mezclaron con negro de carbono y el polímero PTFE (politetrafluoroetileno) en una relación 80: 10: 10 en peso, y a la mezcla resultante se le añadió una pequeña cantidad de etanol. La mezcla final se depositó en un electrodo de espuma de níquel porosa, se secó en un horno a 110 °C durante 12 h y posteriormente se comprimió en una prensa. Cada electrodo se preparó con una cantidad de esta mezcla de aproximadamente igual a 1 mg/cm2. Un sistema consistente en una celda de tres electrodos se empleó para medir el grafeno sintetizado a 900 °C, empleándolo como electrodo de trabajo. Como contraelectrodo se usó una placa de acero inoxidable de 4 cm2 y como electrodo de referencia se empleó un electrodo de Ag/AgCI (3M KCI). El comportamiento electroquímico de los electrodos se analizó usando el sistema de celda de tres electrodos con un electrolito 6M KOH, a diferentes corrientes de descarga entre 2-100 A g_1. El material presentó valores elevados de capacidad específica en todo el intervalo de densidades de corriente estudiadas, obteniéndose 167 F g_1 a 100 A g_1 , y 544 F g_1 para una densidad de corriente de 2 A g_1 (FIG. 10). Este comportamiento demuestra que el grafeno obtenido tras la calcinación del COF-Fe es apropiado para su uso en supercapacitores. To study the supercapacitance properties of materials at different current densities, measurements of the potential versus time characteristics (galvanostatic measurements) (FIG. 1 1 -A and B) of graphene synthesized at 900 ° C have been carried out . For this analysis, analogously to that described in the paragraph Above, each of the powder samples were mixed with carbon black and the PTFE polymer (polytetrafluoroethylene) in an 80: 10: 10 weight ratio, and a small amount of ethanol was added to the resulting mixture. The final mixture was deposited in a porous nickel foam electrode, dried in an oven at 110 ° C for 12 h and subsequently compressed in a press. Each electrode was prepared with an amount of this mixture of approximately equal to 1 mg / cm 2 . A system consisting of a three electrode cell was used to measure the graphene synthesized at 900 ° C, using it as a working electrode. A 4 cm 2 stainless steel plate was used as the counter electrode and an Ag / AgCI electrode (3M KCI) was used as the reference electrode. The electrochemical behavior of the electrodes was analyzed using the three electrode cell system with a 6M KOH electrolyte, at different discharge currents between 2-100 A g _1 . The material presented high values of specific capacity in the entire range of current densities studied, obtaining 167 F g _1 at 100 A g _1 , and 544 F g _1 for a current density of 2 A g _1 (FIG. 10). This behavior demonstrates that graphene obtained after calcination of COF-Fe is appropriate for use in supercapacitors.
Otro aspecto importante para el funcionamiento efectivo de los supercapacitores es su capacidad de ciclabilidad. Se han realizado estudios galvanostáticos cíclicos de carga y descarga. Los experimentos se han llevado a cabo con densidades de corriente de ± 30 A/g entre -1.0 y 0 V (vs. Ag/AgCI). Se han obtenido después de 1000 ciclos valores siempre superiores al 89 % de la capacidad original, mostrando la durabilidad y estabilidad de los materiales estudiados. Another important aspect for the effective functioning of supercapacitors is their ability to cyclability. Cyclic galvanic static loading and unloading studies have been carried out. Experiments have been carried out with current densities of ± 30 A / g between -1.0 and 0 V (vs. Ag / AgCI). Values always exceeding 89% of the original capacity have been obtained after 1000 cycles, showing the durability and stability of the materials studied.
También se procedió a realizar medidas de las características de corriente y voltaje del grafeno obtenido tras el lavado ácido del material inicial a diferentes velocidades de barrido en el electrolito 6M KOH (FIG.12). En este caso se puede observar una desviación de la morfología rectangular en las curvas CV, probablemente debido a la contribución de grupos redox generados durante el tratamiento ácido del material. Measures of the current and voltage characteristics of graphene obtained after acid washing of the initial material at different scanning speeds in the 6M KOH electrolyte were also made (FIG. 12). In this case, a deviation from the rectangular morphology can be observed in the CV curves, probably due to the contribution of redox groups generated during the acid treatment of the material.
Sobre la correspondiente muestra obtenida tras el lavado ácido del grafeno inicial, se procedió a realizar las medidas de las características de corriente y voltaje así como de las galvanostáticas (FIG. 14-A y B), mediante el mismo procedimiento descrito en el párrafo anterior. En este caso se deduce que la contribución de las nanopartículas metálicas de Fe a la capacidad faradaica no es determinante. El material presenta un comportamiento supercapacitivo con un valor de capacidad específica de 90 F/g a 100 A/g y de 579 F/g a 5 A/g (FIG. 13). Las curvas de CV mostradas demuestran las características de almacenamiento energético del grafeno sintetizado por este procedimiento. El aumento de la porosidad explicaría los valores más elevados a bajas densidades de corriente, por otra parte, tras el lavado ácido disminuyen las capacidades específicas a altas densidades. De este estudio se puede deducir que el grafeno obtenido tras la calcinación del COF-Fe presenta un comportamiento supercapacitivo con valores elevados de capacidades específicas incluso a elevadas densidades de corriente. Este excelente comportamiento se puede explicar en base a dos aspectos fundamentales. Por una parte la intrincada morfología del grafeno, con su estructura corrugada, lo que evita la agregación del grafeno, haciendo que, a diferencia de los grafenos obtenidos por reducción química, se maximice la contribución de cada lámina. Por otra parte, la elevada presencia de mesoporosidad, con una distribución de tamaño de poros definida, permite que las distancias que tienen que recorrer los electrolitos en su difusión sean mucho más cortas, facilitando un rápido transporte y difusión de los iones de los electrolitos durante los procesos de carga y descarga. On the corresponding sample obtained after the acid wash of the initial graphene, the measurements of the current and voltage characteristics as well as the galvanostatic (FIG. 14-A and B) were carried out, by the same procedure described in the previous paragraph . In this case it follows that the contribution of Fe's metal nanoparticles to the faradaic capacity is not decisive. The material exhibits a supercapacitive behavior with a specific capacity value of 90 F / g at 100 A / g and 579 F / g at 5 A / g (FIG. 13). The CV curves shown demonstrate the energy storage characteristics of graphene synthesized by this procedure. The increase in porosity would explain the higher values at low current densities, on the other hand, after acid washing, the specific capacities at high densities decrease. From this study it can be deduced that the graphene obtained after the calcination of COF-Fe exhibits a supercapacitive behavior with high values of specific capacities even at high current densities. This excellent behavior can be explained based on two fundamental aspects. On the one hand the intricate morphology of graphene, with its corrugated structure, which prevents the aggregation of graphene, making, unlike graphenes obtained by chemical reduction, the contribution of each sheet is maximized. On the other hand, the high presence of mesoporosity, with a defined pore size distribution, allows the distances that electrolytes have to travel in their diffusion to be much shorter, facilitating rapid transport and diffusion of electrolyte ions during loading and unloading processes
Adicionalmente se han extraído los valores de densidad de energía (E) y densidad de potencia (P) del grafeno sintetizado a 900° C así como del grafeno obtenido tras el lavado ácido del material inicial, observándose valores elevados de densidad de energía. Concretamente para una densidad de corriente de 5 A/g, la densidad de energía era de 75.75 Wh/Kg para el grafeno sintetizado a 900 °C, con una densidad de potencia correspondiente de 998.97 W/Kg. Para 100 A/g los valores de E y P fueron: 23.21 Wh/Kg y 44215.24 W/Kg, respectivamente. Additionally, the values of energy density (E) and power density (P) of the graphene synthesized at 900 ° C as well as of the graphene obtained after acid washing of the initial material have been extracted, observing high energy density values. Specifically for a current density of 5 A / g, the energy density was 75.75 Wh / kg for graphene synthesized at 900 ° C, with a corresponding power density of 998.97 W / kg. For 100 A / g the values of E and P were: 23.21 Wh / Kg and 44215.24 W / Kg, respectively.
Para el caso del grafeno obtenido tras el lavado ácido del material inicial se ha medido a 5 A/g un valor de 116.09 Wh/Kg con un valor correspondiente de densidad de potencia de 3050.61 W/Kg, mientras que para una densidad de corriente de 100 A/g se obtuvieron valores de E y P de 18.21 Wh/Kg y 44607.08 W/Kg, respectivamente. In the case of graphene obtained after acid washing of the starting material, a value of 116.09 Wh / kg with a corresponding power density value of 3050.61 W / kg has been measured at 5 A / g, while for a current density of 100 A / g E and P values of 18.21 Wh / kg and 44607.08 W / kg, respectively, were obtained.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de grafeno poroso corrugado caracterizado por que comprende: 1. Procedure for obtaining corrugated porous graphene characterized in that it comprises:
- calcinar un precursor COF coordinado por un complejo metálico o combinación de complejos metálicos - COF-Metal -. - calcining a COF precursor coordinated by a metal complex or combination of metal complexes - COF-Metal -.
2. Procedimiento de obtención de grafeno poroso corrugado según la reivindicación 1 , caracterizado por que comprende: 2. Method for obtaining corrugated porous graphene according to claim 1, characterized in that it comprises:
- preparar un precursor COF coordinado por un complejo metálico o combinación de complejos metálicos - COF-Metal -, y - prepare a COF precursor coordinated by a metal complex or combination of metal complexes - COF-Metal -, and
- calcinar dicho COF-Metal. - calcine said COF-Metal.
3. Procedimiento de obtención de grafeno según la reivindicación 1 ó 2, caracterizado por que la calcinación del COF-Metal se realiza en atmósfera controlada. 3. Procedure for obtaining graphene according to claim 1 or 2, characterized in that the calcination of COF-Metal is carried out in a controlled atmosphere.
4. Procedimiento de obtención de grafeno según la reivindicación 3, caracterizado por que la atmósfera controlada es atmósfera inerte. 4. Procedure for obtaining graphene according to claim 3, characterized in that the controlled atmosphere is an inert atmosphere.
5. Procedimiento de obtención de grafeno poroso corrugado según una cualquiera de las reivindicaciones 1 a 3, caracterizado por que la calcinación del COF-Metal se realiza a una temperatura de al menos 400 0 C. 5. Process for obtaining corrugated porous graphene according to any one of claims 1 to 3, characterized in that the calcination of the COF-Metal is carried out at a temperature of at least 400 0 C.
6. Procedimiento de obtención de grafeno poroso corrugado según la reivindicación 5, caracterizado por que la calcinación del COF-Metal se realiza a una temperatura de entre 600 °C y 1000 °C. Method for obtaining corrugated porous graphene according to claim 5, characterized in that the calcination of the COF-Metal is carried out at a temperature between 600 ° C and 1000 ° C.
7. Procedimiento de obtención de grafeno poroso según una cualquiera de las reivindicaciones 1 a 6, caracterizado por que la calcinación del COF-Metal se realiza durante un tiempo comprendido entre 1 y 6 horas. 7. Method for obtaining porous graphene according to any one of claims 1 to 6, characterized in that the calcination of COF-Metal is carried out for a time between 1 and 6 hours.
8. Procedimiento de obtención de grafeno poroso corrugado según una cualquiera de las reivindicaciones 1 a 3, caracterizado por que la calcinación del COF-Metal se realiza en atmósfera controlada a una temperatura de entre 850 °C y 950 °C, durante un tiempo comprendido entre 1 y 6 h y con una rampa de calentamiento de entre 1 °C/min y 10 °C/min. 8. Method for obtaining corrugated porous graphene according to any one of claims 1 to 3, characterized in that the calcination of COF-Metal is carried out in a controlled atmosphere at a temperature between 850 ° C and 950 ° C, for a period of time between 1 and 6 h and with a heating ramp between 1 ° C / min and 10 ° C / min.
9. Procedimiento según la reivindicación 1 ó 2, caracterizado por que comprende una etapa previa a la calcinación, de deposición del precursor COF-Metal sobre una superficie sólida. Method according to claim 1 or 2, characterized in that it comprises a stage prior to calcination, of deposition of the COF-Metal precursor on a solid surface.
10. Procedimiento según una cualquiera de las reivindicaciones 1 , 2, ó 9, caracterizado por que después de calcinar el precursor COF-Metal, se realiza un lavado ácido del material obtenido, obteniendo un grafeno corrugado y poroso libre de restos de metales. Method according to any one of claims 1, 2, or 9, characterized in that after calcining the COF-Metal precursor, an acid washing of the material obtained is performed, obtaining a corrugated and porous graphene free of metal residues.
1 1. Procedimiento según una cualquiera de las reivindicaciones 1 , 2, ó 9, caracterizado por que el precursor COF-Metal se obtiene a partir de un COF con átomos dadores de electrones en sus cavidades. 1. Method according to any one of claims 1, 2, or 9, characterized in that the COF-Metal precursor is obtained from a COF with electron donor atoms in its cavities.
12. Procedimiento según la reivindicación 1 1 , en el que los átomos dadores están seleccionados entre N, S, O y combinaciones de ellos. 12. The method according to claim 1, wherein the donor atoms are selected from N, S, O and combinations thereof.
13. Procedimiento según una cualquiera de las reivindicaciones 1 , 2, 9, 10 ó 11 caracterizado por que el precursor COF-Metal, comprende complejos metálicos de un metal seleccionado entre Fe, Mn, Co, Ru, Rh, Ni, Pd, Cu y Cr, y combinaciones de los mismos. 13. Method according to any one of claims 1, 2, 9, 10 or 11 characterized in that the COF-Metal precursor comprises metal complexes of a metal selected from Fe, Mn, Co, Ru, Rh, Ni, Pd, Cu and Cr, and combinations thereof.
14. Procedimiento según la reivindicación 2, caracterizado por que comprende preparar el COF a partir de polímeros resultantes de la condensación de una amina y un aldehido. 14. Method according to claim 2, characterized in that it comprises preparing the COF from polymers resulting from the condensation of an amine and an aldehyde.
15. Procedimiento según la reivindicación 14, caracterizado por que dicha amina y dicho aldehido tienen fórmulas seleccionadas entre las siguientes: 15. Method according to claim 14, characterized in that said amine and said aldehyde have formulas selected from the following:
para la amina:
Figure imgf000025_0001
for the amine:
Figure imgf000025_0001
(l) (la) (Ib) y para el aldehido: (l) (la) (Ib) and for the aldehyde:
Figure imgf000025_0002
Figure imgf000025_0002
(ll) (Na) (llb)  (ll) (Na) (llb)
donde R1 y R2 son fragmentos orgánicos iguales o diferentes, seleccionados entre radicales con una estructura que contiene 2, 3 ó 4 grupos funcionales en una geometría lineal, plana trigonal, plano-cuadrada o tetraédrica, y tanto R1 como R2 pueden ser seleccionados entre restos alquilo, arilo y combinaciones de ambos. where R 1 and R 2 are the same or different organic fragments, selected from radicals with a structure that contains 2, 3 or 4 functional groups in a linear, trigonal, flat-square or tetrahedral geometry, and both R 1 and R 2 can be selected from alkyl, aryl moieties and combinations of both.
16. Procedimiento según la reivindicación 15, caracterizado por que R1 y R2 son fragmentos orgánicos iguales o diferentes, seleccionados entre radicales con una estructura que contiene 2, 3 ó 4 grupos funcionales en una estructura seleccionada entre: 16. Method according to claim 15, characterized in that R 1 and R 2 are the same or different organic fragments, selected from radicals with a structure containing 2, 3 or 4 functional groups in a structure selected from:
geometría lineal que es una estructura carbonada, o carbonada con heteroátomos, y dicha estructura lineal está seleccionada entre cadenas de alquilo, arilo y arilalquilo, lineal o ramificada, y cadenas de alquilo, arilo y arilalquilo, lineal o ramificada sustituidas,  linear geometry which is a carbon skeleton, or carbon skeleton, and said linear structure is selected from alkyl, aryl and arylalkyl chains, linear or branched, and alkyl, aryl and arylalkyl chains, linear or branched substituted,
donde el término "alquilo" se refiere a una cadena hidrocarbonada o heterocarbonada lineal o ramificada, cíclica o acíclica formada por átomos de carbono e hidrógeno, con o sin insaturaciones, de un total de entre 1 y 20 átomos de carbono y/o heteroátomos en la cadena principal, where the term "alkyl" refers to a linear or branched, cyclic or acyclic hydrocarbon or heterocarbon chain consisting of carbon and hydrogen atoms, with or without unsaturations, of a total of between 1 and 20 carbon atoms and / or heteroatoms in the main chain,
el término "arilo" se refiere a un hidrocarburo aromático de 6 a 14 átomos de carbono, tal como fenilo, naftilo, antracilo, The term "aryl" refers to an aromatic hydrocarbon of 6 to 14 carbon atoms, such as phenyl, naphthyl, anthracil,
el término "arilalquilo" se refiere a uno o varios grupos arilo unidos al resto de la molécula mediante un radical alquilo, the term "arylalkyl" refers to one or more aryl groups attached to the rest of the molecule by an alkyl radical,
- una estructura bidimensional seleccionadas entre anillos aromáticos o heteroaromáticos condensados o unidos entre sí a través de cadenas hidrocarbonadas, - a two-dimensional structure selected from aromatic or heteroaromatic rings condensed or linked together through hydrocarbon chains,
una estructura tridimensional seleccionada entre combinaciones de estructuras lineales ramificadas, combinaciones de estructuras bidimensionales unidas entre sí por espaciadores lineales seleccionados entre uno o más átomos de carbono tetraédricos, o combinaciones de estructuras lineales y estructuras bidimensionales y radicales policíclicos no condensados.  a three-dimensional structure selected from combinations of branched linear structures, combinations of two-dimensional structures linked together by linear spacers selected from one or more tetrahedral carbon atoms, or combinations of linear structures and two-dimensional structures and uncondensed polycyclic radicals.
17. Procedimiento según la reivindicación 15, caracterizado por que R1 y R2 son iguales o diferentes y se seleccionan entre: 17. Method according to claim 15, characterized in that R 1 and R 2 are the same or different and are selected from:
- una cadena de uno a tres anillos aromáticos, preferentemente fenilos sustituidos en una o más posiciones con sustituyentes iguales o distintos, seleccionados entre halógeno, metilo, etilo, tertbutilo y vinilo,  - a chain of one to three aromatic rings, preferably phenyl substituted in one or more positions with the same or different substituents, selected from halogen, methyl, ethyl, tertbutyl and vinyl,
una estructura policíclica de entre uno y nueve anillos aromáticos no condensados, dispuestos de manera que un anillo central tiene anillos iguales o distintos en posiciones alternas y donde dichos sustituyentes seleccionados entre fenilo o bifenilo,  a polycyclic structure of between one and nine non-condensed aromatic rings, arranged such that a central ring has equal or different rings in alternate positions and wherein said substituents selected from phenyl or biphenyl,
- una estructura del tipo porfirina, en la que los átomos de carbono puente entre los anillos de cinco miembros tienen un grupo fenilo como sustituyente,  - a structure of the porphyrin type, in which the bridging carbon atoms between the five-membered rings have a phenyl group as a substituent,
- un anillo aromático de benceno unido a grupos amino o aldehido respectivos en las posiciones 1 , 2, 4 y 5, y - un grupo metilo sustituido con 4 anillos aromáticos ligados cada uno de ellos a un grupo amino en el caso de la amina, o aldehido en el caso del aldehido, según corresponda. - an aromatic benzene ring attached to respective amino or aldehyde groups at positions 1, 2, 4 and 5, and - a methyl group substituted with 4 aromatic rings each linked to an amino group in the case of the amine, or aldehyde in the case of the aldehyde, as appropriate.
18. Procedimiento según la reivindicación 15, caracterizado por que R1 y R2 se seleccionan entre: 18. Method according to claim 15, characterized in that R 1 and R 2 are selected from:
Figure imgf000027_0001
Figure imgf000027_0001
(III)  (III)
19. Procedimiento según una cualquiera de las reivindicaciones 1 , 2, ó 9 a 13, caracterizado porque el COF-Metal es bidimensional. 19. Method according to any one of claims 1, 2, or 9 to 13, characterized in that the COF-Metal is two-dimensional.
20. Procedimiento según la reivindicación 19, en el que el precursor de carbono COF-Metal bidimensional y se obtiene a partir de 1 ,3,5-tris(4-aminofenil)benceno y benceno-1 ,3,5-tricarboxaldehido y un complejo de Fe(lll), y tiene la estructura representada por la fórmula (III) 20. The method according to claim 19, wherein the two-dimensional COF-Metal carbon precursor is obtained from 1,3,5-tris (4-aminophenyl) benzene and benzene-1,3,5-tricarboxaldehyde and a Fe complex (lll), and has the structure represented by formula (III)
Figure imgf000028_0001
Figure imgf000028_0001
21. Procedimiento según la reivindicación 20, caracterizado porque comprende: -mezclar una solución de 1 ,3,5-tris(4-aminofenil)benceno y una solución de benceno- 1 ,3,5-tricarboxaldehido a temperatura ambiente, 21. Method according to claim 20, characterized in that it comprises: mixing a solution of 1,3,5-tris (4-aminophenyl) benzene and a solution of benzene-1,3,5-tricarboxaldehyde at room temperature,
- añadir ácido acético obteniendo una suspensión,  - add acetic acid to obtain a suspension,
- añadir una solución de una sal de Fe(lll) seleccionada entre acetil acetonato, cloruro, acetato, nitrato y perclorato.  - add a solution of a Fe (lll) salt selected from acetyl acetonate, chloride, acetate, nitrate and perchlorate.
22. Procedimiento según una cualquiera de las reivindicaciones 1 , 2, 9 ó 10, caracterizado por que el grafeno obtenido tiene una distribución homogénea del tamaño de poro. 22. Method according to any one of claims 1, 2, 9 or 10, characterized in that the graphene obtained has a homogeneous distribution of the pore size.
23. Grafeno poroso corrugado obtenido de acuerdo con el procedimiento descrito en una de las reivindicaciones anteriores. 23. Corrugated porous graphene obtained according to the method described in one of the preceding claims.
24. Uso del grafeno obtenido por el procedimiento de la invención para aplicaciones que requieran materiales con propiedades de supercapacitancia, incluyendo dispositivos supercapacitores. 24. Use of graphene obtained by the process of the invention for applications that require materials with supercapacitance properties, including supercapacitor devices.
PCT/ES2014/070861 2013-11-22 2014-11-21 Production of corrugated and porous graphene from cof for the use thereof as supercapacitors WO2015075294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201301099A ES2538604B1 (en) 2013-11-22 2013-11-22 Preparation of corrugated and porous graphene from COF for use as supercapacitors
ESP201301099 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015075294A1 true WO2015075294A1 (en) 2015-05-28

Family

ID=53179013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070861 WO2015075294A1 (en) 2013-11-22 2014-11-21 Production of corrugated and porous graphene from cof for the use thereof as supercapacitors

Country Status (2)

Country Link
ES (1) ES2538604B1 (en)
WO (1) WO2015075294A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882797A (en) * 2017-01-15 2017-06-23 复旦大学 A kind of grapheme material of covalent organic frame modification and its synthetic method and application
CN107151006A (en) * 2017-06-02 2017-09-12 江西师范大学 The method of class graphene film Rotating fields is grown on three-dimensional porous mestha bar carbon
CN107720720A (en) * 2016-08-10 2018-02-23 中国科学院大连化学物理研究所 The preparation method and porous carbon materials of porous carbon based on covalent organic frame material
CN108033436A (en) * 2018-01-09 2018-05-15 西北师范大学 A kind of preparation method based on organic covalently nitrogen-doped porous carbon material of frame
CN108133836A (en) * 2016-11-30 2018-06-08 中国科学院大连化学物理研究所 A kind of preparation method and applications of the supported porous carbon material of base metal
CN108671962A (en) * 2018-05-29 2018-10-19 北京化工大学 A method of based on graphene-supported modified COFs bases elctro-catalyst catalytic performance
CN109524652A (en) * 2018-11-16 2019-03-26 华南师范大学 A kind of covalent organic frame/graphene compositing organic material and preparation method and the application in lithium/anode material of lithium-ion battery
CN109775693A (en) * 2018-06-26 2019-05-21 郑州大学 A kind of preparation method of nitrogen-doped graphene material
CN109923631A (en) * 2016-09-26 2019-06-21 加利福尼亚大学董事会 The method for having hole graphene frame compound and prepare the compound for ultra-high magnifications energy storage
CN111540620A (en) * 2020-01-08 2020-08-14 中南民族大学 Super capacitor with covalent organic framework composite film and preparation method thereof
CN112080010A (en) * 2019-06-14 2020-12-15 南京工业大学 Preparation method and application of proton conductive material based on amino organic supermolecule nanosheet derivative

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436242B (en) * 2022-02-18 2023-04-28 辽宁科技大学 Three-dimensional heteroatom doped porous carbon material, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124503A1 (en) * 2012-02-23 2013-08-29 Universitat De Valéncia Graphitized matrix nanocomposites and metal nanoparticles with supercapacitance and magnetoresistance properties
US20130230709A1 (en) * 2010-12-29 2013-09-05 Ocean's King Lighting Science & Technology Co., Ltd Porous graphene material and preparation method and uses as electrode material thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230709A1 (en) * 2010-12-29 2013-09-05 Ocean's King Lighting Science & Technology Co., Ltd Porous graphene material and preparation method and uses as electrode material thereof
WO2013124503A1 (en) * 2012-02-23 2013-08-29 Universitat De Valéncia Graphitized matrix nanocomposites and metal nanoparticles with supercapacitance and magnetoresistance properties

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. NING ET AL.: "High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner", CHEMICAL COMMUNICATIONS, vol. 48, 2012, pages 6815 - 6817 *
J. YAN ET AL.: "High-performance supercapacitor electrodes based on highly corrugated graphene sheets", CARBON, vol. 50, 2012, pages 2179 - 2188 *
Y. WANG ET AL.: "Large scale template synthesis of single-layered graphene with a high electrical capacitance", CARBON, vol. 53, 2013, pages 245 - 251 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720720A (en) * 2016-08-10 2018-02-23 中国科学院大连化学物理研究所 The preparation method and porous carbon materials of porous carbon based on covalent organic frame material
CN109923631A (en) * 2016-09-26 2019-06-21 加利福尼亚大学董事会 The method for having hole graphene frame compound and prepare the compound for ultra-high magnifications energy storage
CN108133836A (en) * 2016-11-30 2018-06-08 中国科学院大连化学物理研究所 A kind of preparation method and applications of the supported porous carbon material of base metal
CN106882797A (en) * 2017-01-15 2017-06-23 复旦大学 A kind of grapheme material of covalent organic frame modification and its synthetic method and application
CN107151006A (en) * 2017-06-02 2017-09-12 江西师范大学 The method of class graphene film Rotating fields is grown on three-dimensional porous mestha bar carbon
CN108033436A (en) * 2018-01-09 2018-05-15 西北师范大学 A kind of preparation method based on organic covalently nitrogen-doped porous carbon material of frame
CN108671962B (en) * 2018-05-29 2021-12-21 北京化工大学 Method for modifying catalytic performance of COFs-based electrocatalyst based on graphene load
CN108671962A (en) * 2018-05-29 2018-10-19 北京化工大学 A method of based on graphene-supported modified COFs bases elctro-catalyst catalytic performance
CN109775693A (en) * 2018-06-26 2019-05-21 郑州大学 A kind of preparation method of nitrogen-doped graphene material
CN109524652A (en) * 2018-11-16 2019-03-26 华南师范大学 A kind of covalent organic frame/graphene compositing organic material and preparation method and the application in lithium/anode material of lithium-ion battery
CN109524652B (en) * 2018-11-16 2020-06-30 华南师范大学 Covalent organic framework/graphene composite organic material, preparation method and application in lithium/sodium ion battery cathode material
CN112080010A (en) * 2019-06-14 2020-12-15 南京工业大学 Preparation method and application of proton conductive material based on amino organic supermolecule nanosheet derivative
CN112080010B (en) * 2019-06-14 2022-02-08 南京工业大学 Preparation method and application of proton conductive material based on amino organic supermolecule nanosheet derivative
CN111540620A (en) * 2020-01-08 2020-08-14 中南民族大学 Super capacitor with covalent organic framework composite film and preparation method thereof
CN111540620B (en) * 2020-01-08 2022-03-18 中南民族大学 Super capacitor with covalent organic framework composite film and preparation method thereof

Also Published As

Publication number Publication date
ES2538604A1 (en) 2015-06-22
ES2538604B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015075294A1 (en) Production of corrugated and porous graphene from cof for the use thereof as supercapacitors
Gholipour-Ranjbar et al. Application of Ni/Co-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors
Gong et al. Nitrogen-doped porous carbon nanosheets derived from poly (ionic liquid) s: hierarchical pore structures for efficient CO 2 capture and dye removal
Saha et al. Editors’ choice—review—conductive forms of MoS2 and their applications in energy storage and conversion
Umeshbabu et al. Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures
Gao et al. ZIF-67-derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction
Jahan et al. Structure-directing role of graphene in the synthesis of metal− organic framework nanowire
Modak et al. A triazine functionalized porous organic polymer: excellent CO 2 storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions
Ganesan et al. Activated graphene-derived porous carbon with exceptional gas adsorption properties
Luo et al. Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages
Poyraz et al. Crystalline Mesoporous K2–x Mn8O16 and ε-MnO2 by Mild Transformations of Amorphous Mesoporous Manganese Oxides and Their Enhanced Redox Properties
Padmini et al. High-performance solid-state hybrid energy-storage device consisting of reduced graphene-oxide anchored with NiMn-layered double hydroxide
Sunahiro et al. Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide
Morishige et al. Iron oxide pillared graphite
Pahalagedara et al. Microwave-assisted hydrothermal synthesis of α-MnO2: lattice expansion via rapid temperature ramping and framework substitution
Hou et al. Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors
Tallo et al. Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide
Natile et al. Surface reactivity of NiO: Interaction with methanol
Gao et al. Co based N, S co-doped carbon hybrids for catalytic hydrogenation: Role of cobalt salt and doped S
Zhu et al. Hematite nanoparticle-templated hollow carbon nanonets supported palladium nanoparticles: preparation and application as efficient recyclable catalysts
Bo et al. Template-free synthesis of rectangular mesoporous carbon nanorods and their application as a support for Pt electrocatalysts
Zhou et al. Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications
Shadkam et al. Enhanced electrochemical performance of graphene aerogels by using combined reducing agents based on mild chemical reduction method
Tiwari et al. One pot synthesis of coordination polymer 2, 5-dimercapto-1, 3, 4-thiadiazole–gold and its application in voltammetric sensing of resorcinol
Wang et al. One-pot electrochemical assembling of porous cobalt hydroxide/nitrogen-doped porous graphene onto Ni foam as a binder-free electrode for supercapacitor applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863759

Country of ref document: EP

Kind code of ref document: A1