WO2015074698A1 - Particulate filter designed as a wall-flow filter - Google Patents

Particulate filter designed as a wall-flow filter Download PDF

Info

Publication number
WO2015074698A1
WO2015074698A1 PCT/EP2013/074345 EP2013074345W WO2015074698A1 WO 2015074698 A1 WO2015074698 A1 WO 2015074698A1 EP 2013074345 W EP2013074345 W EP 2013074345W WO 2015074698 A1 WO2015074698 A1 WO 2015074698A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
porosity
zone
filter
particle filter
Prior art date
Application number
PCT/EP2013/074345
Other languages
German (de)
French (fr)
Inventor
Klaus Schrewe
Simon Steigert
Original Assignee
Hjs Emission Technology Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hjs Emission Technology Gmbh & Co. Kg filed Critical Hjs Emission Technology Gmbh & Co. Kg
Priority to PCT/EP2013/074345 priority Critical patent/WO2015074698A1/en
Priority to CN201380081133.XA priority patent/CN105813715A/en
Publication of WO2015074698A1 publication Critical patent/WO2015074698A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Particle filter designed as a wall-flow filter
  • the invention relates to a designed as a wall-flow filter particulate filter for removing entrained in the exhaust gas of an internal combustion engine soot particles, which particulate filter has a porous substrate with a plurality of filter walls enclosed by filter walls.
  • a particle filter is turned on. This serves to remove entrained in the exhaust gas of the internal combustion engine particles, in particular of soot particles.
  • the particulate filters are designed as full filters.
  • Such full filters are wall-flow filters, ie: filters in which the medium to be filtered - here: the particles, and indeed the soot particles entraining exhaust gas - must flow through a filter wall to get from the upstream side of the substrate on the downstream side - the clean side.
  • the substrate of such a particle filter comprises a multiplicity of filter channels which run parallel to one another and are enclosed by filter walls.
  • a ceramic material is often used.
  • the filter channels are arranged side by side in the manner of honeycombs and each separated by a filter wall.
  • the filter channels are alternately closed on the upstream side and downstream side.
  • the cross sections of the inlet and outlet channels can be symmetrical or asymmetrical.
  • Particle filters with other filter channel geometry are also known from sintered metal materials.
  • Such particulate filters are designed for operation of the exhaust gas purification system, so that the exhaust backpressure does not increase too much as a result of this, even with increasing accumulation of soot. For this reason, it is necessary that such a substrate is regenerated with sufficient soot loading.
  • a regeneration of the accumulated soot is oxidized, which is also addressed as a controlled Rußabbrand.
  • Such regeneration can passively and thus automatically or actively upon reaching a certain temperature of the soot triggered by temperature, done.
  • the soot accumulated on the upstream side NO 2 is supplied, whereby an oxidation of the soot already takes place at lower temperatures and thus no additional increase in temperature must be made.
  • such a particle filter or its substrate is designed that they have a relatively small pore size of typically 5 ⁇ to 15 ⁇ and a porosity of usually significantly less than 50%.
  • the substrate is designed so that, starting from an unloaded substrate, the filtration process sets as quickly as possible to a surface filtration. Before a surface filtration takes place at least to a significant degree, the pores in the filter walls must have added something with soot, whereby the effective porosity compared to that of the substrate is further reduced. During the duration of the depth filtering, the desired separation efficiency of more than 98% can not yet be realized with such filters. Therefore, it is endeavored to design such particle filters so that they quickly reach the state of their intended surface filtration.
  • soot emission of an internal combustion engine is reduced by 50% or even only 20% to 25%.
  • Partial filters have a maximum nominal degree of separation of the desired order of magnitude. This means that such filters can absorb the proportion of the entrained in the exhaust gas of an internal combustion engine particles, in particular soot particles.
  • Partial filters can be designed as a wall-flow filter. In such a case, the substrate used for a full filter is used and one or more, usually a plurality of bypass channels are formed by different measures. The bypass channels represent a flow path from the upstream side of the substrate to the downstream side, without having to flow through a filter wall of the exhaust gas. Such a bypass is established by connecting a outflow-closed filter channel with one or more outflow-side open filter channels.
  • the flow-through cross-sectional area of the bypass flow path is designed so that a certain portion of the exhaust gas flow through this unfiltered.
  • the degree of separation that can be achieved with such a sub-filter is determined.
  • Particulate filters which are designed as wall-flow filters with a channel structure, accumulate the soot entrained in the exhaust gas essentially in the filter channels sealed off on the outflow side. With soot accumulation, it can be observed that as the depth of a filter channel increases, soot build-up increases. Thus, the soot load increases successively from the inlet side of a filter channel to its downstream closure.
  • the present in the region of the downstream end of the particulate filter and relative to the input side relatively larger soot mass can lead to thermal problems in the downstream end zone of the particulate filter or its substrate in a regeneration. This can overheat in this zone, which can damage or even destroy the particulate filter. This is especially true for particulate filters whose substrates are made of a ceramic material, such as a cordierite material.
  • the invention is therefore the object of developing a configured as a wall-flow filter with a channel structure particulate filter in such a way that the risk of overheating caused by a regeneration in the Substratendzone is effectively avoided.
  • a generic particle filter mentioned in the introduction in which the substrate has at least two substrate zones of different porosity located behind one another in the throughflow direction of the exhaust gas through the substrate.
  • the substrate and thus the filter walls enclosing the filter channels have at least two zones arranged one behind the other in the flow direction of the exhaust gas through the substrate.
  • different porosity The design of a substrate with zones of different porosity requires that in these zones a different flow behavior of the exhaust gas through the filter walls can be adjusted.
  • the drawback with respect to a sometimes too strong accumulation of carbon black in the downstream end zone of the substrate in the filter channels closed in this direction can be effectively counteracted with the concept discussed in the background discussed in the introduction. This is achieved with the fact that, in an end zone of the substrate arranged downstream, it is provided with a lower porosity than in the main flow accumulation zone arranged upstream of it.
  • the lower porosity in such an end zone means that the exhaust gas entraining the soot particles increasingly flows through the one or more upstream zones of higher porosity and thus entrained soot particles corresponding to the favored flow path in this or these zones on the upstream filter wall is deposited. In this way, particulate filter damage by undesired overheating of the exit end zone during regeneration can be effectively avoided.
  • a substrate initially produced with a uniform porosity if this has not already been provided with appropriate porosity zoning during production, by coating the one or more zones of the substrate which are to have a lower porosity than other porosity zones.
  • Such a coating is preferably carried out as a surface-enlarging coating, typically by applying a so-called washcoat.
  • washcoats are well known.
  • washcoats are conventionally used to increase the substrate surface area of catalysts. It is understood that the porosity of a zone can be easily adjusted by coating once or more with one and the same washcoat or with different washcoats.
  • an input zone may have a lower porosity than the downstream thereof. Adjacent adjacent porosity zone.
  • a porosity zone over the entire cross-sectional area of the substrate.
  • a porosity zone which differs with regard to its porosity from an adjacent porosity zone, is restricted to only a partial region of the cross-sectional area of the substrate.
  • this concept can also be used to promote an even distribution of soot deposition across the cross section of the substrate, when the substrate is asymmetrically flowed through the exhaust gas to be cleaned. For filter assemblies made of individual segments, this can be implemented particularly easily.
  • a porosity zoning of a particle filter designed as a wall-flow filter can be applied equally to full filters as to partial filters.
  • this concept is of particular interest for particulate filters designed as wall-flow filters, since according to a preferred embodiment they have a substrate with a high porosity, in particular a porosity of more than 50%.
  • This high porosity which is preferably between about 60 and 70%, is advantageously accompanied by a relatively large average pore size, specifically between 15 ⁇ m and 30 ⁇ m. According to an advantageous development, a pore size of not more than 25 ⁇ is sought.
  • Such a substrate which may be made of a silicon carbide material, is particularly well suited to carry out the porosity zoning by applying one or more surface-enhancing coatings, in particular in the manner of a washcoat, on the basis of a substrate of uniform porosity. It makes sense to adjust the washcoat used so that the porosity of the substrate is reduced by about 5% to 10% in a coating process. This allows the formation of a sufficient for the purposes mentioned porosity contrast between adjacent porosity zones of the substrate. It may well be provided that in a first step, the substrate is coated with a washcoat as a whole, in order then to form in subsequent steps, compared to the initially set uniform porosity porosity zones with reduced porosity. When a washcoat is applied, the highly porous substrate which is preferably used is also coated in its pores, so that the reduction of the porosity is accompanied by a certain reduction in the pore size.
  • washcoat coating used for porosity zoning of the substrate can also be used as a surface-enlarging carrier for a catalytic coating. This may be, for example, an oxidation-catalytic coating.
  • Such a substrate which is wholly or partially equipped with a washcoat, to have a catalytic coating effective for NO x reduction, for example such that a selective catalytic reduction of the nitrogen oxides according to the so-called SCR method is possible .
  • a catalytic coating effective for NO x reduction for example such that a selective catalytic reduction of the nitrogen oxides according to the so-called SCR method is possible
  • This zone which then acts as a hydrolysis catalyst, supports the digestion of urea droplets entrained in the exhaust gas as a reducing agent precursor in order to liberate the NH 3 contained therein as a reducing agent. This is needed for the NO x reduction taking place downstream of the substrate at the SCR catalytic coating.
  • the degree of separation of such a particle filter is also determined by the filter channel density.
  • This feature also referred to as cell density, is preferably between about 100 cpsi and 350 cpsi, in particular between about 180 cpsi and about 225 cpsi (cpsi: cells per square inch).
  • cpsi cells per square inch.
  • Especially effective Particle Filters have about 200 cpsi, considering the design criteria already mentioned above.
  • the filter channel density for the purpose of the substrate can be considered. If the filter channel density is lower, it has been shown that the flow velocity through the filter walls is relatively high, thus reducing the depth filtration desired in the design of such a particle filter and thus decreasing the separation efficiency. In addition, then the cross-sectional area of the bypass flow path is relatively large. At higher cell density, the cross-sectional area of the bypass pathway is relatively small. In addition, it has been shown that a depth filtration in the filter walls then takes place only subordinate, which leads to too rapid Rußakkumulation alone on the surface.
  • FIG. 1 shows a schematic longitudinal section through a filter channel of FIG Variety of such filter channels having substrate of a particulate filter according to the invention with soot-loaded filter walls,
  • FIG. 2 shows a schematic longitudinal section through a filter channel of a
  • FIG 3 shows an exhaust gas purification unit provided with two catalytically coated particle filter elements designed as wall-flow filters.
  • a made of a highly porous silicon carbide material substrate 1 has a plurality of mutually parallel, enclosed by filter walls filter channels.
  • the particulate filter is designed as a sub-filter, which is why a first plurality of filter channels is closed downstream in this embodiment, while a second plurality of channels is unlocked and thus provide bypass fürströmwegsamkeiten.
  • the porosity of the silicon carbide material from which the substrate 1 is made is about 65% in the illustrated embodiment.
  • FIG. 1 shows in a longitudinal section a filter channel 3 enclosed by filter walls 2, 2.1, 2.2.
  • the filter channel 3 is closed downstream by a closing body 4 which forms a stopper with respect to the filter channel 3.
  • the adjacent to this filter channel 3 filter channels are not closed in the illustrated embodiment.
  • the particulate filter formed from the substrate 1 is a particulate filter.
  • the stopper 4 and with this all other, one filter channel downstream occlusive stopper has been used only after a plurality of porosity zones have been established over the longitudinal extent of the substrate.
  • three porosity zones PL P 2 , P3 are provided. These are arranged one behind the other in the flow direction of the exhaust gas through the substrate 1, as represented by the block arrows.
  • the three porosity zones P 2 , P 3 by correspondingly reducing the original porosity of the substrate 1 after its production.
  • the substrate 1 has been coated overall with a washcoat in a first step. In this and also in the subsequent coating processes, it has a positive effect that the sealing plugs 4 are not yet installed.
  • the washcoat used is a per se known, which conventionally serves as a carrier for a catalytic coating.
  • the substrate 1 it is primarily the surface-enlarging properties of the applied washcoat that are used to reduce the porosity.
  • the porosity in the central porosity zone P2 has been adjusted. Compared to the original porosity this is reduced by about 7%.
  • the porosity zone P 3 - the porosity is again reduced by about 7% by a second washcoat coating process.
  • the porosity zone P1 in Figure 1 the porosity is also reduced by a second washcoat coating process from the porosity in the porosity zone P2.
  • the same washcoat so that the substrate 1 in the Porosticianszonen P1, P 3 having a porosity of about 51% and in the Porosticianszone P2 of about 58%.
  • the exhaust gas preferably flows through the porosity zone P 2 .
  • the washcoat present in the porosity zones P2 and P3 is equipped with a selectively reducing catalytic coating.
  • the substrate 1 of the particulate filter works in the zones P 2 and P 3 in the manner of an SCR catalyst in the presence of ammonia as a reducing agent in addition to its filtering function.
  • the washcoat present in the porosity zone P1 is provided with a hydrolysis-causing coating. This serves to accelerate a hydrolysis of fine urea droplets entrained in the exhaust gas, in order to use as the reduction catalyst for the SCR catalysis. release the required NH 3 .
  • the substrate 1 of the particle part filter in addition to its actual filter function and the function of an SCR catalyst is assigned. It is understood that urea is injected into the exhaust stream upstream of the substrate for SCR catalysis.
  • soot deposits in the porosity zone Pi. Due to the lower flow resistance in the porosity zone P 2 , most of the amount of soot in the porosity zone P 2 is accumulated. This is especially true with respect to the thickness of the accumulated soot. Since the porosity zone P 2, based on the longitudinal extent of the substrate 1 is the longest zone and occupies about 70% of the length of the substrate 1, this contributes to the fact that most amount of soot is accumulated in this porosity zone P 2 .
  • FIG. 2 shows a representation corresponding to that of FIG. 1 with a substrate of homogeneous porosity over its longitudinal extent according to the concept known from the prior art.
  • the filter channel F shown in FIG. 2 has a soot charge R, which increases successively to the closure body V.
  • This soot accumulation which is typical for conventional particulate filter substrates, illustrates the risk of overheating during regeneration in the downstream end region due to the relatively large amount of soot present in the end zone. The reason for this is simply the relatively large amount of soot present in this area, which further increases the regeneration temperature and, above all, the regeneration process lasts longer than in those areas in which only a smaller amount of soot accumulation has taken place.
  • FIG. 3 shows an exhaust-gas cleaning unit with the substrate 1 forming a particle-part filter.
  • a housing 7 with the substrate 1 is another substrate 8, also formed as a particle filter.
  • the substrate 8 is also one as described for the substrate 1.
  • the substrate 8 has only two porosity zones P 4 , P 5 .
  • the porosity zones P 4 , P 5 correspond to the porosity zones P 2 , P 3 of the substrate 1.
  • the washcoat coating of the substrate 8 is equipped with an oxidation-catalytic coating.
  • This is used to remove hydrocarbons and carbon monoxide from the exhaust stream and to generate NO 2 from the entrained in the exhaust NO.
  • On the output side with respect to the substrate 8 one desires an exhaust gas stream with a NO: NO 2 ratio of 1: 2 to 2: 1.
  • NO: NO 2 ratio promotes SCR catalysis in the substrate 1.
  • the reduced porosity zone P5 in the substrate 8 serves the purpose of preventing it from overheating during regeneration.
  • an injection device 9 for supplying urea as a reducing agent precursor in liquid form.
  • the injection device 9 is added in liquid form led urea atomized, which is digested at the latest on impact on the hydrolysis catalytic coating in the porosity zone Pi of the substrate 1.
  • pore sizes are indicated in the context of these statements, this means the mean pore size is regularly meant.
  • the bandwidth of the pore size preferably corresponds to a standard deviation of not more than 70%.
  • Both purification stages of the exhaust gas purification unit described with reference to FIG. 3 can be constructed from one or more filter substrates connected in series.
  • a structure of a total substrate of a plurality of individual substrates is useful for regeneration due to the then relatively short length of the individual substrates in the flow direction of the exhaust gas, since thermally induced damage is effectively avoided.
  • the individual substrates are arranged in cascade to one another. In the case of such a cascade-like configuration, it is expedient that each individual substrate has a zone of reduced porosity in an end region, as described in the exemplary embodiments.
  • turbulence-generating internals can be provided, for example, designed as a turbulence grid.
  • the partial particle filter designed as a wall-flow filter as a substrate for a catalytic coating to be applied thereto has a very large compared to full filters for the application of the washcoat and thus for the catalytic coating due to the relatively high porosity and relatively large pore size have achievable surface.
  • the sub-filter ensures that the pore volume is coated catalytically.
  • a substrate provides, in a compact space, a particularly large catalyst area compared to a surface designed for pure catalysts.
  • the exhaust gas purification concept has been described in the embodiments based on the purification of the exhaust gases of a diesel engine, such as a diesel engine. Likewise, this concept can also be used to clean the exhaust gases of gasoline engines.
  • the described exhaust gas purification units can also be addressed as four-way exhaust gas purification units or four-way catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A particulate filter designed as a wall-flow filter is used for removing soot particles entrained in the exhaust gas of an internal combustion engine, in particular a diesel engine. The particulate filter comprises a porous substrate (1) that has a plurality of filter ducts (3) surrounded by filter walls (2). The substrate (1) has at least two substrate zones (Ρ1, P2, P3) that have different porosities and follow each other in the direction in which the exhaust gas flows through the substrate (1).

Description

Als Wandstromfilter ausgelegter Partikelfilter  Particle filter designed as a wall-flow filter
Die Erfindung betrifft einen als Wandstromfilter ausgelegten Partikelfilter zum Entfernen von in dem Abgas einer Brennkraftmaschine mitgeführten Rußpartikeln, welcher Partikelfilter ein poröses Substrat mit einer Vielzahl von durch Filterwände eingefasste Filterkanäle aufweist. The invention relates to a designed as a wall-flow filter particulate filter for removing entrained in the exhaust gas of an internal combustion engine soot particles, which particulate filter has a porous substrate with a plurality of filter walls enclosed by filter walls.
Zur Reduzierung der Emissionen einer Brennkraftmaschine, vor allem wenn es sich hierbei um einen Dieselmotor handelt, wird in den Abgasstrang derselben ein Partikelfilter eingeschaltet. Dieser dient zum Entfernen von in dem Abgas der Brennkraftmaschine mitgeführten Partikeln, insbesondere von Rußpartikeln. Dabei ist man in aller Regel bestrebt, die Rußpartikelemission möglichst vollständig zu unterdrücken, weshalb in vielen Fällen die Partikelfilter als Vollfilter ausgeführt sind. Derartige Vollfilter sind Wandstromfilter, also: Filter, bei denen das zu filternde Medium - hier: das die Partikel, und zwar die Rußpartikel mitführende Abgas - eine Filterwand durchströmen muss, um von der Anströmseite des Substrates auf die Abströmseite - die Reinseite - zu gelangen. Das Substrat eines solchen Partikelfilters umfasst eine Vielzahl von parallel zueinander verlaufende, durch Filterwände eingefasste Filterkanäle. Als Material wird vielfach ein keramisches Material eingesetzt. Bei diesem sind die Filterkanäle nach Art von Waben nebeneinander liegend angeordnet und jeweils durch eine Filterwand voneinander getrennt. Die Filterkanäle sind wechselweise an- strömseitig bzw. abströmseitig verschlossen. Die Querschnitte der An- und Abströmkanäle können symmetrisch oder asymmetrisch ausgebildet sein. Partikelvollfilter sind mit anderer Filterkanalgeometrie auch aus Sintermetall Werkstoffen bekannt. To reduce the emissions of an internal combustion engine, especially if this is a diesel engine, in the exhaust line of the same a particle filter is turned on. This serves to remove entrained in the exhaust gas of the internal combustion engine particles, in particular of soot particles. In this case, one usually endeavors to suppress the soot particle emission as completely as possible, which is why in many cases the particulate filters are designed as full filters. Such full filters are wall-flow filters, ie: filters in which the medium to be filtered - here: the particles, and indeed the soot particles entraining exhaust gas - must flow through a filter wall to get from the upstream side of the substrate on the downstream side - the clean side. The substrate of such a particle filter comprises a multiplicity of filter channels which run parallel to one another and are enclosed by filter walls. As a material, a ceramic material is often used. In this filter channels are arranged side by side in the manner of honeycombs and each separated by a filter wall. The filter channels are alternately closed on the upstream side and downstream side. The cross sections of the inlet and outlet channels can be symmetrical or asymmetrical. Particle filters with other filter channel geometry are also known from sintered metal materials.
Ausgelegt werden derartige Partikelfilter für einen Betrieb des Abgasreinigungssystems, damit durch diese auch bei einer zunehmenden Rußakkumulation der Abgasgegendruck nicht zu weit ansteigt. Aus diesem Grunde ist es erforderlich, dass ein solches Substrat bei hinreichender Rußbeladung regeneriert wird. Im Zuge einer solchen Regeneration wird der akkumulierte Ruß oxidiert, was auch als kontrollierter Rußabbrand angesprochen wird. Eine solche Regeneration kann passiv und somit bei Erreichen einer bestimmten Temperatur des Rußes selbsttätig oder aktiv, durch Temperaturzufuhr ausgelöst, erfolgen. Bei einer passiven Regeneration wird dem auf der Anströmseite akkumulierten Ruß NO2 zugeführt, wodurch eine Oxidation des Rußes bereits bei niedrigeren Temperaturen stattfindet und somit keine zusätzliche Temperaturerhöhung vorgenommen werden muss. Um den vorgenannten Anforderungen zu genügen, werden derartige Partikelfilter bzw. wird deren Substrat ausgelegt, dass diese eine relativ kleine Porengröße von typischerweise 5 μιτι bis 15 μιτι und eine Porosität von meist deutlich weniger als 50% aufweisen. Darüber hinaus ist das Substrat ausgelegt, damit sich ausgehend von einem unbe- ladenen Substrat der Filtrationsprozess möglichst rasch zu einer Oberflächenfiltration einstellt. Bevor eine Oberflächenfiltration zumindest in nennenswertem Maße stattfindet, müssen sich die in den Filterwänden befindlichen Poren mit Ruß etwas zugesetzt haben, wodurch die effektive Porosität gegenüber derjenigen des Substrates nochmals herabgesetzt wird. Während der Zeitdauer der Tiefenfilterung kann mit derartigen Filtern der gewünschte Abscheidegrad von mehr als 98% noch nicht realisiert werden. Daher ist man bestrebt, derartige Partikelfilter so auszulegen, dass diese rasch in den Zustand der ihnen zugedachten Oberflächenfiltration gelangen. Such particulate filters are designed for operation of the exhaust gas purification system, so that the exhaust backpressure does not increase too much as a result of this, even with increasing accumulation of soot. For this reason, it is necessary that such a substrate is regenerated with sufficient soot loading. In the course of such a regeneration of the accumulated soot is oxidized, which is also addressed as a controlled Rußabbrand. Such regeneration can passively and thus automatically or actively upon reaching a certain temperature of the soot triggered by temperature, done. In a passive regeneration, the soot accumulated on the upstream side NO 2 is supplied, whereby an oxidation of the soot already takes place at lower temperatures and thus no additional increase in temperature must be made. To meet the above requirements, such a particle filter or its substrate is designed that they have a relatively small pore size of typically 5 μιτι to 15 μιτι and a porosity of usually significantly less than 50%. In addition, the substrate is designed so that, starting from an unloaded substrate, the filtration process sets as quickly as possible to a surface filtration. Before a surface filtration takes place at least to a significant degree, the pores in the filter walls must have added something with soot, whereby the effective porosity compared to that of the substrate is further reduced. During the duration of the depth filtering, the desired separation efficiency of more than 98% can not yet be realized with such filters. Therefore, it is endeavored to design such particle filters so that they quickly reach the state of their intended surface filtration.
Für einige Anwendungen wird eine vollständige bzw. weitestgehend vollständige Reduzierung der Rußemission nicht gefordert. Bei diesen Anwendungen ist es mitunter ausreichend, wenn die Rußemission einer Brennkraftmaschine um 50% oder auch nur 20% bis 25% reduziert ist. For some applications, complete or largely complete reduction of soot emission is not required. In these applications, it is sometimes sufficient if the soot emission of an internal combustion engine is reduced by 50% or even only 20% to 25%.
Zu diesem Zweck sind so genannte Teilfilter entwickelt worden. Teilfilter haben einen maximalen nominalen Abscheidegrad in der gewünschten Größenordnung. Dieses bedeutet, dass derartige Filter den dem Abscheidegrad entsprechenden Anteil der in dem Abgas einer Brennkraftmaschine mitgeführten Partikel, insbesondere Rußpartikel auffangen können. Teilfilter können als Wandstromfilter ausgelegt sein. In einem solchen Fall wird das für einen Vollfilter eingesetzte Substrat verwendet und es werden durch unterschiedliche Maßnahmen ein oder mehrere, üblicherweise eine Vielzahl an Bypass-Kanälen ausgebildet. Die Bypass-Kanäle stellen eine Strömungswegsamkeit von der Anströmseite des Substrates zur Abströmseite hin dar, ohne dass von dem Abgas eine Filterwand durchströmt werden muss. Eingerichtet wird ein solcher Bypass durch Verbinden eines abströmseitig verschlossenen Filterkanals mit einem oder mehreren ab- strömseitig offenen Filterkanälen. Die durchströmbare Querschnittsfläche der Bypass-Strömungswegsamkeit ist ausgelegt, damit ein bestimmter Anteil des Abgasstromes diesen ungefiltert durchströmt. In Abhängigkeit von der durchströmbaren Querschnittsfläche der Bypass-Strömungswegsamkeit bestimmt sich der mit einem solchen Teilfilter realisierbare Abscheidegrad. So-called sub-filters have been developed for this purpose. Partial filters have a maximum nominal degree of separation of the desired order of magnitude. This means that such filters can absorb the proportion of the entrained in the exhaust gas of an internal combustion engine particles, in particular soot particles. Partial filters can be designed as a wall-flow filter. In such a case, the substrate used for a full filter is used and one or more, usually a plurality of bypass channels are formed by different measures. The bypass channels represent a flow path from the upstream side of the substrate to the downstream side, without having to flow through a filter wall of the exhaust gas. Such a bypass is established by connecting a outflow-closed filter channel with one or more outflow-side open filter channels. The flow-through cross-sectional area of the bypass flow path is designed so that a certain portion of the exhaust gas flow through this unfiltered. Depending on the permeable cross-sectional area of the bypass flow pathability, the degree of separation that can be achieved with such a sub-filter is determined.
Partikelfilter, die als Wandstromfilter mit Kanalstruktur ausgelegt sind, akkumulieren den im Abgas mitgeführten Ruß maßgeblich in den abströmseitig verschlossenen Filterkanälen. Bei der Rußakkumulation ist zu beobachten, dass mit zunehmender Tiefe eines Filterkanals die Rußablagerung zunimmt. Somit steigt die Rußbeladung von der Eingangsseite eines Filterkanals bis hin zu seinem abströmseitigen Verschluss sukzessive an. Die im Bereich des abströmseitigen Endes des Partikelfilters vorhandene und gegenüber der Eingangsseite relativ größere Rußmasse kann bei einer Regeneration zu thermischen Problemen in der abströmseitigen Endzone des Partikelfilters bzw. seines Substrates führen. Dieser kann in dieser Zone überhitzen, wodurch der Partikelfilter beschädigt oder sogar zerstört werden kann. Dieses gilt vor allem für Partikelfilter, deren Substrate aus einem Keramikwerkstoff, wie etwa einem Cordierit-Werkstoff hergestellt sind. Particulate filters, which are designed as wall-flow filters with a channel structure, accumulate the soot entrained in the exhaust gas essentially in the filter channels sealed off on the outflow side. With soot accumulation, it can be observed that as the depth of a filter channel increases, soot build-up increases. Thus, the soot load increases successively from the inlet side of a filter channel to its downstream closure. The present in the region of the downstream end of the particulate filter and relative to the input side relatively larger soot mass can lead to thermal problems in the downstream end zone of the particulate filter or its substrate in a regeneration. This can overheat in this zone, which can damage or even destroy the particulate filter. This is especially true for particulate filters whose substrates are made of a ceramic material, such as a cordierite material.
Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, einen als Wandstromfilter mit Kanalstruktur ausgelegten Partikelfilter dergestalt weiterzubilden, dass die Gefahr einer durch eine Regeneration bedingten Überhitzung in der Substratendzone wirksam vermieden ist. Based on this discussed prior art, the invention is therefore the object of developing a configured as a wall-flow filter with a channel structure particulate filter in such a way that the risk of overheating caused by a regeneration in the Substratendzone is effectively avoided.
Gelöst wird diese Aufgabe erfindungsgemäß durch einen eingangs genannten, gattungsgemäßen Partikelfilter, bei dem das Substrat zumindest zwei in Durchströmungsrichtung des Abgases durch das Substrat hintereinander liegende Substratzonen unterschiedlicher Porosität aufweist. This object is achieved according to the invention by a generic particle filter mentioned in the introduction, in which the substrate has at least two substrate zones of different porosity located behind one another in the throughflow direction of the exhaust gas through the substrate.
Bei diesem Partikelfilter verfügt das Substrat und damit die die Filterkanäle einfassenden Filterwände in Strömungsrichtung des Abgases durch das Substrat zumindest über zwei hintereinander angeordnete Zonen unter- schiedlicher Porosität. Die Konzeption eines Substrates mit Zonen unterschiedlicher Porosität bedingt, dass in diesen Zonen ein unterschiedliches Durchströmungsverhalten des Abgases durch die Filterwände hindurch eingestellt werden kann. Dem zu dem eingangs diskutierten Stand der Technik aufgezeigten Nachteil in Bezug auf eine mitunter zu starke Rußakkumulation in der abströmseitigen Endzone des Substrates in den in dieser Richtung geschlossenen Filterkanälen kann mit diesem Konzept wirksam begegnet werden. Erreicht wird dieses damit, dass in einer ab- strömseitig angeordneten Endzone des Substrats dieses mit einer geringeren Porosität ausgestattet ist als in der stromauf zu dieser angeordneten Hauptrußakkumulationszone. Die geringere Porosität in einer solchen Endzone bedingt, dass das Rußpartikel mitführende Abgas vermehrt aufgrund des geringeren Strömungswiderstandes durch die eine oder die mehreren stromauf angeordneten Zonen höherer Porosität durchströmt und somit die mitgeführten Rußpartikel entsprechend dem begünstigten Strömungspfad in dieser oder in diesen Zonen auf der anströmseitigen Filterwand abgelagert wird. Auf diese Weise kann wirksam eine Partikelfilterbeschädigung durch unerwünschtes Überhitzen der ausgangsseitigen Endzone bei einer Regeneration vermieden werden. In the case of this particle filter, the substrate and thus the filter walls enclosing the filter channels have at least two zones arranged one behind the other in the flow direction of the exhaust gas through the substrate. different porosity. The design of a substrate with zones of different porosity requires that in these zones a different flow behavior of the exhaust gas through the filter walls can be adjusted. The drawback with respect to a sometimes too strong accumulation of carbon black in the downstream end zone of the substrate in the filter channels closed in this direction can be effectively counteracted with the concept discussed in the background discussed in the introduction. This is achieved with the fact that, in an end zone of the substrate arranged downstream, it is provided with a lower porosity than in the main flow accumulation zone arranged upstream of it. Due to the lower flow resistance, the lower porosity in such an end zone means that the exhaust gas entraining the soot particles increasingly flows through the one or more upstream zones of higher porosity and thus entrained soot particles corresponding to the favored flow path in this or these zones on the upstream filter wall is deposited. In this way, particulate filter damage by undesired overheating of the exit end zone during regeneration can be effectively avoided.
Ausstatten lässt sich ein mit einer einheitlichen Porosität zunächst hergestelltes Substrat, falls dieses nicht bereits bei der Herstellung mit entsprechender Porositätszonierung versehen worden ist, durch Beschichten der einen oder mehreren Zonen des Substrates, die eine geringere Porosität gegenüber anderen Porositätszonen aufweisen sollen. Eine solche Be- schichtung wird vorzugsweise als oberflächenvergrößerende Beschich- tung ausgeführt werden, und zwar typischerweise durch Aufbringen eines so genannten Washcoats. Die Zusammensetzung und die Applikation derartiger Washcoats ist hinlänglich bekannt. Eingesetzt werden derartige Washcoats herkömmlich zur Vergrößerung der Substratoberfläche von Katalysatoren. Es versteht sich, dass sich die Porosität einer Zone durch ein- oder mehrmaliges Beschichten mit ein und demselben Washcoat oder auch mit unterschiedlichen Washcoats in einfacher Weise einstellen lässt. It is possible to equip a substrate initially produced with a uniform porosity, if this has not already been provided with appropriate porosity zoning during production, by coating the one or more zones of the substrate which are to have a lower porosity than other porosity zones. Such a coating is preferably carried out as a surface-enlarging coating, typically by applying a so-called washcoat. The composition and application of such washcoats is well known. Such washcoats are conventionally used to increase the substrate surface area of catalysts. It is understood that the porosity of a zone can be easily adjusted by coating once or more with one and the same washcoat or with different washcoats.
Ebenso wie dieses zuvor zu der Endzone des Substrates eines Partikelfilters beschrieben ist, kann unabhängig hiervon oder zusätzlich auch eine Eingangszone eine geringere Porosität aufweisen als die stromab diesbe- züglich angeordnete benachbarte Porositätszone. As described above for the end zone of the substrate of a particulate filter, regardless of or in addition, an input zone may have a lower porosity than the downstream thereof. Adjacent adjacent porosity zone.
In vielen Fällen wird man eine Porositätszone über die gesamte Querschnittsfläche des Substrates definieren. Durchaus besteht jedoch auch die Möglichkeit, dass eine sich hinsichtlich ihrer Porosität von einer benachbarten Porositätszone unterscheidende Porositätszone nur auf einen Teilbereich der Querschnittsfläche des Substrates beschränkt ist. Damit kann dieses Konzept auch eingesetzt werden, um eine Gleichverteilung einer Rußablagerung über den Querschnitt des Substrates hinweg zu begünstigen, wenn das Substrat asymmetrisch durch das zu reinigende Abgas angeströmt ist. Bei Filteraufbauten aus Einzelsegmenten lässt sich dieses besonders einfach realisieren. In many cases, one will define a porosity zone over the entire cross-sectional area of the substrate. However, there is also the possibility that a porosity zone, which differs with regard to its porosity from an adjacent porosity zone, is restricted to only a partial region of the cross-sectional area of the substrate. Thus, this concept can also be used to promote an even distribution of soot deposition across the cross section of the substrate, when the substrate is asymmetrically flowed through the exhaust gas to be cleaned. For filter assemblies made of individual segments, this can be implemented particularly easily.
Das vorbeschriebene Konzept einer Porositätszonierung eines als Wandstromfilter ausgelegten Partikelfilters lässt sich gleichermaßen auf Vollfilter wie auf Teilfilter anwenden. Interessant ist dieses Konzept allerdings vor allem für als Wandstromfilter ausgelegte Partikelteilfilter, da diese gemäß einem bevorzugten Ausführungsbeispiel über ein Substrat mit einer hohen Porosität, insbesondere einer Porosität von mehr als 50 % verfügen. Diese hohe Porosität, die bevorzugt zwischen etwa 60 und 70 % liegt, geht vorteilhafterweise einher mit einer relativ großen mittleren Porengröße, und zwar zwischen 15 μιτι und 30 μιτι. Gemäß einer vorteilhaften Weiterbildung wird eine Porengröße von nicht mehr als 25 μιτι angestrebt. Ein solches Substrat, welches aus einem Siliziumkarbidwerkstoff hergestellt sein kann, eignet sich aufgrund dieser hohen Porosität besonders gut, um, ausgehend von einem Substrat einheitlicher Porosität die Porositätszonierung durch Aufbringen einer oder mehrerer oberflächenvergrößernder Be- schichtungen, insbesondere nach Art eines Washcoats vorzunehmen. Dabei bietet es sich an, den verwendeten Washcoat so einzustellen, dass die Porosität des Substrates bei einem Beschichtungsvorgang um etwa 5 % bis 10 % herabgesetzt wird. Dieses erlaubt die Ausbildung eines für die genannten Zwecke hinreichenden Porositätskontrastes zwischen benachbarten Porositätszonen des Substrates. Dabei kann durchaus vorgesehen sein, dass in einem ersten Schritt das Substrat insgesamt mit einem Washcoat beschichtet wird, um dann in nachfolgenden Schritten die gegenüber der dann zunächst einheitlichen eingestellten Porosität Porositätszonen mit reduzierter Porosität auszubilden. Bei der Applikation eines Washcoats wird das bevorzugt eingesetzte hoch poröse Substrat auch in seinen Poren beschichtet, sodass die Reduzierung der Porosität auch mit einer gewissen Reduzierung in der Porengröße einhergeht. The above-described concept of a porosity zoning of a particle filter designed as a wall-flow filter can be applied equally to full filters as to partial filters. However, this concept is of particular interest for particulate filters designed as wall-flow filters, since according to a preferred embodiment they have a substrate with a high porosity, in particular a porosity of more than 50%. This high porosity, which is preferably between about 60 and 70%, is advantageously accompanied by a relatively large average pore size, specifically between 15 μm and 30 μm. According to an advantageous development, a pore size of not more than 25 μιτι is sought. Such a substrate, which may be made of a silicon carbide material, is particularly well suited to carry out the porosity zoning by applying one or more surface-enhancing coatings, in particular in the manner of a washcoat, on the basis of a substrate of uniform porosity. It makes sense to adjust the washcoat used so that the porosity of the substrate is reduced by about 5% to 10% in a coating process. This allows the formation of a sufficient for the purposes mentioned porosity contrast between adjacent porosity zones of the substrate. It may well be provided that in a first step, the substrate is coated with a washcoat as a whole, in order then to form in subsequent steps, compared to the initially set uniform porosity porosity zones with reduced porosity. When a washcoat is applied, the highly porous substrate which is preferably used is also coated in its pores, so that the reduction of the porosity is accompanied by a certain reduction in the pore size.
Das Vorhandensein eines solchen Washcoats in dem gesamten Substrat oder auch nur in den damit beschichteten Zonen wird in einer Weiterbildung genutzt, um den Washcoat als Träger einer katalytischen Beschich- tung zu verwenden. Es kann vorgesehen sein, dass Aktivsubstanzen in einem solchen Fall in den Washcoat integriert sind oder in einem nachfolgenden Prozessschritt auf die durch den Washcoat bereitgestellte Oberfläche aufgebracht werden. In beiden Fällen kann die für eine Porositäts- zonierung des Substrates verwendete Washcoatbeschichtung zugleich als oberflächenvergrößernder Träger für eine katalytische Beschichtung genutzt werden. Hierbei kann es sich beispielsweise um eine oxidationskata- lytische Beschichtung handeln. Möglich ist es auch, dass ein solches mit einem Washcoat insgesamt oder teilweise ausgerüstetes Substrat ein für eine NOx-Reduktion wirksame katalytische Beschichtung aufweist, beispielsweise eine solche, dass an dieser eine selektive katalytische Reduktion der Stickoxide gemäß dem so genannten SCR-Verfahren möglich ist. In einem solchen Fall bietet es sich an, eine Eingangszone vorzusehen, die eine katalytische Beschichtung zum Bewirken einer Hydrolyse aufweist. Diese dann als Hydrolysekatalysator wirkende Zone unterstützt den Aufschluss von im Abgas mitgeführten Urea-Tröpfchen als Reduktionsmit- tel-Precursor, um das darin enthaltene NH3 als Reduktionsmittel freizusetzen. Dieses wird für die stromabwärts innerhalb des Substrates an der SCR-katalytischen Beschichtung stattfindende NOx-Reduktion benötigt. The presence of such a washcoat in the entire substrate or even in the zones coated therewith is used in a further development in order to use the washcoat as carrier of a catalytic coating. It can be provided that active substances in such a case are integrated into the washcoat or applied to the surface provided by the washcoat in a subsequent process step. In both cases, the washcoat coating used for porosity zoning of the substrate can also be used as a surface-enlarging carrier for a catalytic coating. This may be, for example, an oxidation-catalytic coating. It is also possible for such a substrate, which is wholly or partially equipped with a washcoat, to have a catalytic coating effective for NO x reduction, for example such that a selective catalytic reduction of the nitrogen oxides according to the so-called SCR method is possible , In such a case, it is convenient to provide an entrance zone having a catalytic coating for effecting hydrolysis. This zone, which then acts as a hydrolysis catalyst, supports the digestion of urea droplets entrained in the exhaust gas as a reducing agent precursor in order to liberate the NH 3 contained therein as a reducing agent. This is needed for the NO x reduction taking place downstream of the substrate at the SCR catalytic coating.
Bei einem als Teilfilter ausgelegten Partikelwandstromfilter mit der vorstehend genannten Porosität und der bevorzugten Porengröße werden in die Auslegung des Substrates bereits Eigenschaften des aus dem Substrat herzustellenden Partikelteilfilters eingebracht. Die Folge ist eine verglichen mit Substraten geringerer Porosität widerstandsärmere Durchströmbarkeit der Filterwände. Infolgedessen bleibt der bei einem als Wandstromfilter mit Kanalstruktur ausgelegten Teilfilter dieser Art der Tiefenfiltrationseffekt deutlich länger erhalten. Die freie Querschnittsfläche der Bypass-Strömungswegsamkeit kann somit gegenüber vorbekannten, als Wandstromfilter ausgelegten Partikelteilfiltern kleiner bemessen sein. Im Ergebnis führt dieses bei gleichem Substratvolumen zu einer Effizienzverbesserung des Abscheidegrades. Zugleich ist durch die signifikant höhere Porosität des Substrates dessen Gewicht gegenüber vorbekannten Substraten nicht unerheblich reduziert. In the case of a particle wall flow filter designed as a partial filter with the aforementioned porosity and the preferred pore size, properties of the particle filter part to be produced from the substrate are already introduced into the design of the substrate. The result is a low resistance to flow through the filter walls compared to substrates of lower porosity. As a result, the subfilter of this type of depth filtration effect designed as a wall-flow filter with a channel structure remains significantly longer. The free cross-sectional area of the bypass Strömungswegsamkeit can thus be dimensioned smaller than previously known, designed as a wall-flow filter particulate filters. As a result, this results in the same substrate volume to improve the efficiency of the separation efficiency. At the same time, the significantly higher porosity of the substrate significantly reduces its weight compared with previously known substrates.
Der Abscheidegrad eines solchen Partikelteilfilters wird auch durch die Filterkanaldichte bestimmt. Dieses auch als Zellendichte angesprochene Merkmal liegt bevorzugt zwischen etwa 100 cpsi und 350 cpsi, insbesondere zwischen etwa 180 cpsi und etwa 225 cpsi (cpsi: cells per Square inch). Besonders effektive Partikelteilfilter verfügen unter Berücksichtigung der bereits vorstehenden Auslegungskriterien über etwa 200 cpsi. The degree of separation of such a particle filter is also determined by the filter channel density. This feature, also referred to as cell density, is preferably between about 100 cpsi and 350 cpsi, in particular between about 180 cpsi and about 225 cpsi (cpsi: cells per square inch). Especially effective Particle Filters have about 200 cpsi, considering the design criteria already mentioned above.
Somit kann die Filterkanaldichte zur Zweckbestimmung des Substrates berücksichtigt werden. Ist die Filterkanaldichte geringer, hat sich gezeigt, dass die Strömungsgeschwindigkeit durch die Filterwände relativ hoch ist und somit die bei der Auslegung eines solchen Partikelteilfilters gewünschte Tiefenfiltration reduziert und somit der Abscheidegrad sinkt. Zudem ist dann die Querschnittsfläche der Bypass-Strömungswegsamkeit relativ groß. Bei höherer Zellendichte ist die Querschnittsfläche der Bypass- Wegsamkeit relativ klein. Zudem hat sich gezeigt, dass eine Tiefenfiltration in den Filterwänden dann nur mehr untergeordnet stattfindet, was zu einer zu raschen Rußakkumulation allein auf der Oberfläche führt. Thus, the filter channel density for the purpose of the substrate can be considered. If the filter channel density is lower, it has been shown that the flow velocity through the filter walls is relatively high, thus reducing the depth filtration desired in the design of such a particle filter and thus decreasing the separation efficiency. In addition, then the cross-sectional area of the bypass flow path is relatively large. At higher cell density, the cross-sectional area of the bypass pathway is relatively small. In addition, it has been shown that a depth filtration in the filter walls then takes place only subordinate, which leads to too rapid Rußakkumulation alone on the surface.
Bei einem solchermaßen ausgelegten Partikelteilfilter wird aufgrund des gewünschten Tiefenfiltrationseffektes vor allem auch die Filterwand als solche für das Herausfiltern von im Abgasstrom mitgeführter Partikel genutzt. Als besonders zweckmäßig haben sich Wandstärken zwischen 0,3 mm und 0,7 mm, insbesondere von etwa 0,4 mm erwiesen, um den an einen solchen Teilfilter gestellten Anforderungen zu genügen. In the case of a particulate filter designed in this way, owing to the desired depth filtration effect, it is above all the filter wall that is used as such for filtering out particles entrained in the exhaust gas flow. Wall thicknesses between 0.3 mm and 0.7 mm, in particular of approximately 0.4 mm, have proved to be particularly expedient in order to meet the requirements imposed on such a partial filter.
Die Erfindung ist nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen: einen schematisierten Längsschnitt durch einen Filterkanal einer Vielzahl derartiger Filterkanäle aufweisenden Substrates eines Partikelfilters gemäß der Erfindung mit rußbeladenen Filterwänden, The invention is described below by means of embodiments with reference to the accompanying figures. FIG. 1 shows a schematic longitudinal section through a filter channel of FIG Variety of such filter channels having substrate of a particulate filter according to the invention with soot-loaded filter walls,
Fig. 2: einen schematisierten Längsschnitt durch einen Filterkanal einer 2 shows a schematic longitudinal section through a filter channel of a
Vielzahl derartiger Filterkanäle aufweisenden Substrates eines Partikelfilters gemäß dem Stand der Technik mit rußbeladenen Filterwänden und  Variety of such filter channels having substrate of a particulate filter according to the prior art with soot-laden filter walls and
Fig. 3: ein aus zwei katalytisch beschichteten, als Wandstromfilter ausgelegten Partikelteilfiltern bereitgestelltes Abgasreinigungsaggregat. 3 shows an exhaust gas purification unit provided with two catalytically coated particle filter elements designed as wall-flow filters.
Ein aus einem hochporösen Siliziumkarbidwerkstoff gefertigtes Substrat 1 verfügt über eine Vielzahl parallel zueinander verlaufender, durch Filterwände eingefasste Filterkanäle. Der Partikelfilter ist als Teilfilter ausgelegt, weshalb eine erste Vielzahl von Filterkanälen bei diesem Ausführungsbeispiel abströmseitig verschlossen ist, während eine zweite Vielzahl von Kanälen unverschlossen ist und somit Bypass-Durchströmwegsamkeiten bereitstellen. Die Porosität des Siliziumkarbidmaterials, aus dem das Substrat 1 gefertigt ist, beträgt bei dem dargestellten Ausführungsbeispiel etwa 65 %. Figur 1 zeigt in einem Längsschnitt einen durch Filterwände 2, 2.1 , 2.2 eingefassten Filterkanal 3. Der Filterkanal 3 ist abströmseitig durch einen Verschlusskörper 4, der bezüglich des Filterkanals 3 einen Stopfen bildet, verschlossen. Die zu diesem Filterkanal 3 benachbarten Filterkanäle sind bei dem dargestellten Ausführungsbeispiel unverschlossen. Somit handelt es sich bei dem aus dem Substrat 1 gebildeten Partikelfilter um einen Partikelteilfilter. A made of a highly porous silicon carbide material substrate 1 has a plurality of mutually parallel, enclosed by filter walls filter channels. The particulate filter is designed as a sub-filter, which is why a first plurality of filter channels is closed downstream in this embodiment, while a second plurality of channels is unlocked and thus provide bypass Durchströmwegsamkeiten. The porosity of the silicon carbide material from which the substrate 1 is made is about 65% in the illustrated embodiment. FIG. 1 shows in a longitudinal section a filter channel 3 enclosed by filter walls 2, 2.1, 2.2. The filter channel 3 is closed downstream by a closing body 4 which forms a stopper with respect to the filter channel 3. The adjacent to this filter channel 3 filter channels are not closed in the illustrated embodiment. Thus, the particulate filter formed from the substrate 1 is a particulate filter.
Bei dem dargestellten Ausführungsbeispiel ist der Verschlussstopfen 4 und mit diesem auch alle anderen, jeweils einen Filterkanal abströmseitig verschließende Stopfen erst eingesetzt worden, nachdem über die Längserstreckung des Substrates mehrere Porositätszonen eingerichtet worden sind. Bei dem in Figur 1 dargestellten Ausführungsbeispiel sind drei Porositätszonen PL P2, P3 vorgesehen. Diese sind in Durchströmungsrichtung des Abgases durch das Substrat 1 , wie durch die Blockpfeile dargestellt, hintereinander liegend angeordnet. Eingestellt werden die drei Porositäts- zonen P2, P3 durch entsprechendes Reduzieren der Ursprungsporosität des Substrates 1 nach seiner Herstellung. Zu diesem Zweck ist das Substrat 1 in einem ersten Schritt insgesamt mit einem Washcoat beschichtet worden. Bei diesem und auch bei den nachfolgenden Beschich- tungsprozessen wirkt sich positiv aus, dass die Verschlussstopfen 4 noch nicht eingebaut sind. Somit kann der Washcoat durch Eintauchen und Herausnehmen des Substrates 1 in und aus einer Washcoatlösung besonders gut ablaufen. Gleichfalls ist ein anschließendes Ausblasen zum Trocknen des aufgebrachten Washcoats begünstigt. Bei dem eingesetzten Washcoat handelt es sich um einen an sich bekannten, der herkömmlich als Träger für eine katalytische Beschichtung dient. Bei dem Substrat 1 macht man sich jedoch primär die oberflächenvergrößernden Eigenschaften des aufgetragenen Washcoats zur Reduzierung der Porosität nutze. Durch diesen ersten Washcoat-Beschichtungsvorgang ist die Porosität in der mittleren Porositätszone P2 eingestellt worden. Gegenüber der Ursprungsporosität ist diese um etwa 7 % herabgesetzt. In einem nachfolgenden Schritt wird in einer Endzone - der Porositätszone P3 - die Porosität durch einen zweiten Washcoat-Beschichtungsprozess nochmals um etwa 7 % herabgesetzt. Ebenso ist in der durch die Porositätszone P1 in Figur 1 gezeigten Eingangszonen ebenfalls die Porosität durch einen zweiten Washcoat-Beschichtungsprozess gegenüber der Porosität in der Porositätszone P2 herabgesetzt. Eingesetzt worden ist hierzu wiederum derselbe Washcoat, so dass das Substrat 1 in den Porositätszonen P1 , P3 eine Porosität von etwa 51 % und in der Porositätszone P2 von etwa 58 % aufweist. Dieses bedeutet für die Durchströmbarkeit des Substrates 1 , dass aufgrund der unterschiedlichen Porositäten das Abgas bevorzugt die Porositätszone P2 durchströmt. In the illustrated embodiment, the stopper 4 and with this all other, one filter channel downstream occlusive stopper has been used only after a plurality of porosity zones have been established over the longitudinal extent of the substrate. In the embodiment shown in Figure 1, three porosity zones PL P 2 , P3 are provided. These are arranged one behind the other in the flow direction of the exhaust gas through the substrate 1, as represented by the block arrows. The three porosity zones P 2 , P 3 by correspondingly reducing the original porosity of the substrate 1 after its production. For this purpose, the substrate 1 has been coated overall with a washcoat in a first step. In this and also in the subsequent coating processes, it has a positive effect that the sealing plugs 4 are not yet installed. Thus, by immersing and removing the substrate 1 in and out of a washcoat solution, the washcoat can run particularly well. Likewise, subsequent blowing out to dry the applied washcoat is favored. The washcoat used is a per se known, which conventionally serves as a carrier for a catalytic coating. In the case of the substrate 1, however, it is primarily the surface-enlarging properties of the applied washcoat that are used to reduce the porosity. By this first washcoat coating process, the porosity in the central porosity zone P2 has been adjusted. Compared to the original porosity this is reduced by about 7%. In a subsequent step, in an end zone - the porosity zone P 3 - the porosity is again reduced by about 7% by a second washcoat coating process. Likewise, in the entrance zones shown by the porosity zone P1 in Figure 1, the porosity is also reduced by a second washcoat coating process from the porosity in the porosity zone P2. Has been used for this purpose, in turn, the same washcoat so that the substrate 1 in the Porositätszonen P1, P 3 having a porosity of about 51% and in the Porositätszone P2 of about 58%. This means for the flowability of the substrate 1 that due to the different porosities, the exhaust gas preferably flows through the porosity zone P 2 .
Bei dem dargestellten Ausführungsbeispiel ist der in den Porositätszonen P2 und P3 vorhandene Washcoat mit einer ΝΟχ selektiv reduzierenden ka- talytischen Beschichtung ausgerüstet. Dieses bedeutet, dass das Substrat 1 des Partikelfilters in den Zonen P2 und P3 nach Art eines SCR-Katalysators bei Vorhandensein von Ammoniak als Reduktionsmittel neben seiner Filterfunktion arbeitet. Der in der Porositätszone P1 befindliche Washcoat ist mit einer eine Hydrolyse bewirkenden Beschichtung ausgestattet. Dieses dient zum Beschleunigen einer Hydrolyse von im Abgas mitgeführten feinen Urea-Tröpfchen, um aus diesen das für die SCR-Katalyse als Reduktions- mittel benötigte NH3 freizusetzen. Somit kommt dem Substrat 1 des Partikelteilfilters neben seiner eigentlichen Filterfunktion auch die Funktion eines SCR-Katalysators zuteil. Es versteht sich, dass für eine SCR-Katalyse stromauf des Substrates Urea in den Abgasstrom eingedüst wird. In the illustrated embodiment, the washcoat present in the porosity zones P2 and P3 is equipped with a selectively reducing catalytic coating. This means that the substrate 1 of the particulate filter works in the zones P 2 and P 3 in the manner of an SCR catalyst in the presence of ammonia as a reducing agent in addition to its filtering function. The washcoat present in the porosity zone P1 is provided with a hydrolysis-causing coating. This serves to accelerate a hydrolysis of fine urea droplets entrained in the exhaust gas, in order to use as the reduction catalyst for the SCR catalysis. release the required NH 3 . Thus, the substrate 1 of the particle part filter in addition to its actual filter function and the function of an SCR catalyst is assigned. It is understood that urea is injected into the exhaust stream upstream of the substrate for SCR catalysis.
Die vorbeschriebene Porositätszonierung des Substrates 1 hat zur Folge, dass im Abgas mitgeführter Ruß in den endseitig durch Verschlussstopfen 4 verschlossenen Filterkanälen 3 zu einem Maximum in der Porositätszone P2 akkumuliert wird. Grund hierfür ist die verglichen mit den Porositätszonen Ρί und P3 der durch die größere Porosität bedingte geringere Durchströmungswiderstand. In Figur 1 ist ein typisches Rußbeladungsbild des Filterkanals 3 schematisiert eingetragen. Der Ruß ist darin mit dem Bezugszeichen 5 kenntlich gemacht. Deutlich erkennbar ist, dass in der Endzone mit der Porosität P3 die Rußbeladung in Richtung zum Verschlusskörper 4 hin abnimmt. Zugleich ist bei dem dargestellten Ausführungsbeispiel durch die zusätzliche Washcoat-Beschichtung in der Porositätszone P3 zur Reduzierung der Porosität dieser Zone P3 gegenüber derjenigen in der Zone P2 zusätzliche Masse in die Porositätszone P3 eingebracht. Die geringere Rußbeladung in der Porositätszone P3 und die durch die Washcoat-Beschichtung eingebrachte zusätzliche Masse schützt die Porositätszone P3 - die Endzone des Substrates 1 - vor einem unerwünschten Überhitzen bei einer Regeneration des Substrates 1 , bei der der akkumulierte Ruß 5 oxidiert wird. Tritt das mit Urea angereicherte Abgas in das Substrat 1 ein, reagiert das Urea als Reduktionsmittel- Precursor hydrolytisch an der Oberfläche in der Porositätszone Pi zum Freisetzen des mitgeführten NH3. Gleichzeitig lagert sich durch den eintretenden Filtereffekt auch Ruß in der Porositätszone Pi ab. Aufgrund des geringeren Strömungswiderstandes in der Porositätszone P2 wird die meiste Rußmenge in der Porositätszone P2 akkumuliert. Dieses gilt vor allem in Bezug auf die Dicke des akkumulierten Rußes. Da die Porositätszone P2 bezogen auf die Längserstreckung des Substrates 1 die längste Zone ist und etwa 70 % der Länge des Substrates 1 einnimmt, trägt dieses im Übrigen dazu bei, dass die meiste Rußmenge in dieser Porositätszone P2 akkumuliert wird. Zugleich mit der Rußakkumulation wird das mitgeführte ΝΟχ an der katalytischen Oberfläche in den Porositätszonen P2 und P3 infolge des spätestens an dem Hydrolysekatalysator der Porositätszone Pi freigesetzten NH3 reduziert. Figur 2 zeigt eine Darstellung entsprechend derjenigen der Figur 1 mit einem Substrat homogener Porosität über seine Längserstreckung gemäß dem aus dem Stand der Technik bekannten Konzept. Der in Figur 2 gezeigte Filterkanal F weist eine sich zu dem Verschlusskörper V sukzessiv zunehmende Rußbeladung R auf. Diese für herkömmliche Substrate von Partikelfiltern typische Rußakkumulation verdeutlicht aufgrund der in der Endzone vorhandenen relativ großen Rußmenge die Überhitzungsgefahr bei einer Regeneration in dem abstromseitigen Endbereich. Grund hierfür ist schlichtweg die in diesem Bereich vorhandene relativ große Rußmenge, durch die die Regenerationstemperatur weiter angehoben und vor allem der Regenerationsprozess länger andauert als in denjenigen Bereichen, in denen nur eine geringere Rußakkumulation stattgefunden hat. The above-described Porositätszonierung of the substrate 1 has the consequence that in the exhaust gas of entrained soot is accumulated in the end closed by closing plugs 4 filter channels 3 to a maximum in the Porositätszone P2. The reason for this is compared to the porosity zones Ρ ί and P 3 caused by the larger porosity lower flow resistance. In Figure 1, a typical soot loading image of the filter channel 3 is shown schematically. The soot is identified therein by the reference numeral 5. It can clearly be seen that in the end zone with the porosity P 3, the soot charge decreases in the direction of the closure body 4. At the same time 3 over that introduced additional mass 2 in the Porositätszone P 3 in the zone P in the illustrated embodiment by the additional washcoat in the Porositätszone P 3 for reducing the porosity in this area P. The lower soot loading in the porosity zone P 3 and the additional mass introduced by the washcoat coating protects the porosity zone P 3 - the end zone of the substrate 1 - from undesirable overheating upon regeneration of the substrate 1 at which the accumulated soot 5 is oxidized. If the enriched with urea exhaust gas enters the substrate 1, the urea reacts as a reducing agent precursor hydrolytically on the surface in the porosity zone Pi to release the entrained NH 3 . At the same time, due to the entering filter effect, soot deposits in the porosity zone Pi. Due to the lower flow resistance in the porosity zone P 2 , most of the amount of soot in the porosity zone P 2 is accumulated. This is especially true with respect to the thickness of the accumulated soot. Since the porosity zone P 2, based on the longitudinal extent of the substrate 1 is the longest zone and occupies about 70% of the length of the substrate 1, this contributes to the fact that most amount of soot is accumulated in this porosity zone P 2 . At the same time as the soot accumulation, entrained ΝΟχ is reduced on the catalytic surface in the porosity zones P 2 and P 3 as a consequence of the NH 3 liberated at the latest at the hydrolysis catalyst of the porosity zone Pi. FIG. 2 shows a representation corresponding to that of FIG. 1 with a substrate of homogeneous porosity over its longitudinal extent according to the concept known from the prior art. The filter channel F shown in FIG. 2 has a soot charge R, which increases successively to the closure body V. This soot accumulation, which is typical for conventional particulate filter substrates, illustrates the risk of overheating during regeneration in the downstream end region due to the relatively large amount of soot present in the end zone. The reason for this is simply the relatively large amount of soot present in this area, which further increases the regeneration temperature and, above all, the regeneration process lasts longer than in those areas in which only a smaller amount of soot accumulation has taken place.
Figur 3 zeigt ein Abgasreinigungsaggregat mit dem einen Partikelteilfilter ausbildenden Substrat 1 . Gemeinsam in einem Gehäuse 7 mit dem Substrat 1 befindet sich ein weiteres Substrat 8, ebenfalls ausgebildet als Partikelteilfilter. Auch bei dem Substrat 8 handelt es sich um ein solches, wie dieses zu dem Substrat 1 beschrieben ist. Im Unterschied zu dem Substrat 1 verfügt das Substrat 8 nur über zwei Porositätszonen P4, P5. Die Porositätszonen P4, P5 entsprechen den Porositätszonen P2, P3 des Substrates 1 . Somit ist bei dem Substrat 8 die Porosität in der Porositätszone P5 gegenüber derjenigen in der Porositätszone P4 herabgesetzt. Insgesamt ist die Washcoat-Beschichtung des Substrates 8 mit einer oxidati- onskatalytischen Beschichtung ausgerüstet. Diese dient zum Entfernen von Kohlenwasserstoffen sowie von Kohlenmonoxid aus dem Abgasstrom und zum Generieren von NO2 aus dem im Abgas mitgeführten NO. Aus- gangsseitig bezüglich des Substrates 8 wünscht man einen Abgasstrom mit einem NO:NO2-Verhältnis von 1 :2 bis 2:1 . Ein solches NO:NO2- Verhältnis unterstützt die SCR-Katalyse in dem Substrat 1 . Ebenso wie bei dem Substrat 1 dient die reduzierte Porositätszone P5 bei dem Substrat 8 dem Zweck, dieses vor einer Überhitzung bei einer Regeneration zu bewahren. FIG. 3 shows an exhaust-gas cleaning unit with the substrate 1 forming a particle-part filter. Together in a housing 7 with the substrate 1 is another substrate 8, also formed as a particle filter. The substrate 8 is also one as described for the substrate 1. In contrast to the substrate 1, the substrate 8 has only two porosity zones P 4 , P 5 . The porosity zones P 4 , P 5 correspond to the porosity zones P 2 , P 3 of the substrate 1. Thus, in the substrate 8, the porosity in the porosity zone P5 is lowered from that in the porosity zone P4. Overall, the washcoat coating of the substrate 8 is equipped with an oxidation-catalytic coating. This is used to remove hydrocarbons and carbon monoxide from the exhaust stream and to generate NO 2 from the entrained in the exhaust NO. On the output side with respect to the substrate 8 one desires an exhaust gas stream with a NO: NO 2 ratio of 1: 2 to 2: 1. Such a NO: NO 2 ratio promotes SCR catalysis in the substrate 1. As with the substrate 1, the reduced porosity zone P5 in the substrate 8 serves the purpose of preventing it from overheating during regeneration.
Zwischen den beiden Substraten 8, 1 befindet sich eine Einspritzeinrichtung 9 zum Zuführen von Urea als Reduktionsmittel-Precursor in flüssiger Form. Durch die Einspritzeinrichtung 9 wird das in flüssiger Form zuge- führte Urea zerstäubt, welches spätestens bei Auftreffen auf der Hydroly- se-katalytischen Beschichtung in der Porositätszone Pi des Substrates 1 aufgeschlossen wird. Between the two substrates 8, 1 is an injection device 9 for supplying urea as a reducing agent precursor in liquid form. By the injection device 9 is added in liquid form led urea atomized, which is digested at the latest on impact on the hydrolysis catalytic coating in the porosity zone Pi of the substrate 1.
Wenn im Rahmen dieser Ausführungen Porengrößen angegeben sind, ist hiermit regelmäßig die mittlere Porengröße gemeint. Dabei entspricht bevorzugt die Bandbreite der Porengröße einer Standardabweichung von maximal 70 %. If pore sizes are indicated in the context of these statements, this means the mean pore size is regularly meant. In this case, the bandwidth of the pore size preferably corresponds to a standard deviation of not more than 70%.
Beide Reinigungsstufen des zu Figur 3 beschriebenen Abgasreinigungsaggregates können aus ein oder mehreren, hintereinander geschalteten Filtersubstraten aufgebaut sein. Ein Aufbau eines Gesamtsubstrates aus mehreren Einzelsubstraten ist für eine Regeneration aufgrund der dann nur relativ kurzen Länge der Einzelsubstrate in Strömungsrichtung des Abgases sinnvoll, da thermisch bedingte Beschädigungen wirksam vermieden sind. In einer solchen Ausgestaltung, bei der mehr als ein Substrat eine Reinigungsstufe ausmacht, sind die Einzelsubstrate kaskadenartig zueinander angeordnet. Im Falle einer solchen kaskadenartigen Ausgestaltung ist es zweckmäßig, dass jedes Einzelsubstrat eine Zone verringerter Porosität in einem Endbereich aufweist, wie dieses in den Ausführungsbeispielen beschrieben ist. Both purification stages of the exhaust gas purification unit described with reference to FIG. 3 can be constructed from one or more filter substrates connected in series. A structure of a total substrate of a plurality of individual substrates is useful for regeneration due to the then relatively short length of the individual substrates in the flow direction of the exhaust gas, since thermally induced damage is effectively avoided. In such an embodiment, in which more than one substrate constitutes a cleaning stage, the individual substrates are arranged in cascade to one another. In the case of such a cascade-like configuration, it is expedient that each individual substrate has a zone of reduced porosity in an end region, as described in the exemplary embodiments.
Zwischen einzelnen Filtersubstraten können turbulenzerzeugende Einbauten vorgesehen sein, beispielsweise ausgeführt als Turbulenzgitter. Between individual filter substrates turbulence-generating internals can be provided, for example, designed as a turbulence grid.
Von Vorteil bei dem vorbeschriebenen Konzept ist zudem, dass die als Wandstromfilter ausgelegten Partikelteilfilter als Substrat für eine darauf aufzubringende katalytische Beschichtung aufgrund der relativ hohen Porosität und der relativ großen Porengröße verglichen mit Vollfiltern eine für das Aufbringen des Washcoats und somit für die katalytische Beschichtung sehr große erreichbare Oberfläche aufweisen. Schließlich ist aufgrund dieser Auslegung der Teilfilter gewährleistet, dass auch das Porenvolumen katalytisch beschichtet wird. Somit wird durch ein solches Substrat auf kompaktem Raum eine besonders große Katalysatorfläche, verglichen mit reinen Katalysatoren ausgelegte Oberfläche zur Verfügung gestellt. Das Abgasreinigungskonzept ist in den Ausführungsbeispielen anhand der Reinigung der Abgase einer Dieselbrennkraftmaschine, beispielsweise eines Dieselmotors beschrieben worden. Gleichermaßen lässt sich dieses Konzept auch für die Reinigung der Abgase von Otto-Motoren einsetzen. Another advantage of the above-described concept is that the partial particle filter designed as a wall-flow filter as a substrate for a catalytic coating to be applied thereto has a very large compared to full filters for the application of the washcoat and thus for the catalytic coating due to the relatively high porosity and relatively large pore size have achievable surface. Finally, due to this design of the sub-filter ensures that the pore volume is coated catalytically. Thus, such a substrate provides, in a compact space, a particularly large catalyst area compared to a surface designed for pure catalysts. The exhaust gas purification concept has been described in the embodiments based on the purification of the exhaust gases of a diesel engine, such as a diesel engine. Likewise, this concept can also be used to clean the exhaust gases of gasoline engines.
Die beschriebenen Abgasreinigungsaggregate können auch als Vier- Wege-Abgasreinigungsaggregate oder Vier-Wege-Katalysatoren angesprochen werden. The described exhaust gas purification units can also be addressed as four-way exhaust gas purification units or four-way catalysts.
Die Erfindung ist anhand von Ausführungsbeispielen beschrieben worden. Ohne den Umfang der geltenden Ansprüche zu verlassen, ergeben sich für einen Fachmann zahlreiche weitere Möglichkeiten, die Erfindung zu verwirklichen. The invention has been described with reference to embodiments. Without departing from the scope of the applicable claims, numerous other ways for the skilled person to realize the invention will become apparent.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Substrat1 substrate
, 2.1 , 2.2 Filterwand , 2.1, 2.2 Filter wall
3 Filterkanal  3 filter channel
4 Verschlusskörper  4 closure body
5 Ruß  5 soot
6 Abgasreinigungsaggregat  6 emission control unit
7 Gehäuse  7 housing
8 Substrat  8 substrate
9 Einspritzeinrichtung  9 injection device
Pi - Ps Porositätszone  Pi - Ps porosity zone
F Filterkanal F filter channel
R Rußbeladung  R soot loading
V Verschlusskörper  V closure body

Claims

Patentansprüche Patent claims
Als Wandstromfilter ausgelegter Partikelfilter zum Entfernen von in dem Abgas einer Brennkraftmaschine mitgeführten Rußpartikeln, welcher Partikelfilter ein poröses Substrat (1 , 8) mit einer Vielzahl von durch Filterwände (2, 2.1 , 2.2) eingefasste Filterkanäle (3) aufweist, dadurch gekennzeichnet, dass das Substrat (1 , 8) zumindest zwei in Durchströmungsrichtung des Abgases durch das Substrat (1 , 8) hintereinander liegende Substratzonen (P^ P2, P3; P4, P5) unterschiedlicher Porosität aufweist. A particle filter designed as a wall-flow filter for removing soot particles carried in the exhaust gas of an internal combustion engine, which particle filter has a porous substrate (1, 8) with a plurality of filter channels (3) enclosed by filter walls (2, 2.1, 2.2), characterized in that Substrate (1, 8) has at least two substrate zones (P^ P 2 , P3; P4, P 5 ) of different porosity lying one behind the other in the direction of flow of the exhaust gas through the substrate (1, 8).
Partikelfilter nach Anspruch 1 , dadurch gekennzeichnet, dass in einer Substratzone (P1, P3, P5) mit einer gegenüber einer anderen Substratzone (P2, P4) verringerten Porosität das Substrat (1 , 8) ein- oder mehrfach zur Reduzierung der Porosität in dieser Substratzone (Pi, P3, P5) oberflächenvergrößernd beschichtet ist. Particle filter according to claim 1, characterized in that in a substrate zone (P 1 , P3, P5) with a reduced porosity compared to another substrate zone (P 2 , P4), the substrate (1, 8) is inserted one or more times to reduce the porosity This substrate zone (Pi, P 3 , P5) is coated to increase the surface area.
Partikelfilter nach Anspruch 2, dadurch gekennzeichnet, dass es sich bei der porositätsreduzierenden Beschichtung um eine als Washcoat aufgebrachte Beschichtung handelt. Particle filter according to claim 2, characterized in that the porosity-reducing coating is a coating applied as a washcoat.
Partikelfilter nach einem der Ansprüche 1 bis 3., dadurch gekennzeichnet, dass das Substrat (1 , 8) eine seine Abströmseite umfassende Endzone mit einer gegenüber der in Strömungsrichtung des Abgases stromauf benachbarten Substratzone reduzierte Porosität aufweist. Particle filter according to one of claims 1 to 3, characterized in that the substrate (1, 8) has an end zone comprising its outflow side with a reduced porosity compared to the substrate zone adjacent upstream in the flow direction of the exhaust gas.
Partikelfilter nach Anspruch 4, dadurch gekennzeichnet, dass die Längserstreckung der Endzone nicht mehr als 20 % der Länge des Substrats (1 , 8) beträgt. Particle filter according to claim 4, characterized in that the longitudinal extent of the end zone is not more than 20% of the length of the substrate (1, 8).
Partikelfilter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Substrat (1 ) eine Eingangszone mit einer gegenüber der in Strömungsrichtung des Abgases stromabwärts benachbarten Substratzone (P2) reduzierten Porosität aufweist. Particulate filter according to one of claims 1 to 5, characterized in that the substrate (1) has an inlet zone with a reduced porosity compared to the substrate zone (P 2 ) adjacent downstream in the flow direction of the exhaust gas.
7. Partikelfilter nach Anspruch 6, dadurch gekennzeichnet, dass die Eingangszone zum Bewirken einer Hydrolyse von im Abgasstrom mitgeführten wässrigen Flüssigkeitstropfen katalytisch beschichtet ist. 7. Particulate filter according to claim 6, characterized in that the input zone is catalytically coated to effect hydrolysis of aqueous liquid drops carried in the exhaust gas stream.
8. Partikelfilter nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die der Eingangszone in Strömungsrichtung des Abgases folgende zumindest eine Substratzone zum Bewirken einer ΝΟχ- Reduktion katalytisch beschichtet ist. 8. Particle filter according to claim 6 or 7, characterized in that the at least one substrate zone following the entrance zone in the flow direction of the exhaust gas is catalytically coated to bring about a ΝΟχ reduction.
9. Partikelfilter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Substrat (1 , 8) ein poröser Keramikwerkstoff, etwa ein Siliziumkarbidwerkstoff, ein Cordierit-Werkstoff oder ein Aluminiumtitanat-Werkstoff ist. 9. Particle filter according to one of claims 1 to 8, characterized in that the substrate (1, 8) is a porous ceramic material, such as a silicon carbide material, a cordierite material or an aluminum titanate material.
10. Partikelfilter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Partikelfilter als Teilfilter ausgelegt ist. 10. Particle filter according to one of claims 1 to 9, characterized in that the particle filter is designed as a partial filter.
11. Partikelfilter nach Anspruch 10, dadurch gekennzeichnet, dass eine bestimmte Anzahl an Filterkanälen weder anströmseitig noch abströmseitig verschlossen sind. 11. Particle filter according to claim 10, characterized in that a certain number of filter channels are closed neither on the inflow side nor on the outflow side.
12. Partikelfilter nach Anspruch 1 1 , dadurch gekennzeichnet, dass das Substrat (1 , 8) unbeschichtet eine Porosität von mehr als 50 % sowie eine Porengröße zwischen etwa 15 μιτι und 30 μιτι aufweist. 12. Particle filter according to claim 1 1, characterized in that the uncoated substrate (1, 8) has a porosity of more than 50% and a pore size between approximately 15 μm and 30 μm.
13. Partikelfilter nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das Substrat (1 , 8) bzw. zumindest eines der mehreren Substrate katalytisch beschichtet ist, etwa mit einer oxi- dationskatalytischen Beschichtung ausgerüstet ist. 13. Particle filter according to one of claims 10 to 12, characterized in that the substrate (1, 8) or at least one of the several substrates is catalytically coated, for example equipped with an oxidation-catalytic coating.
14. Partikelfilter nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Wandstärke der Filterwände (2, 2.1 , 2.2) zwischen 0,3 mm und 0,7 mm, insbesondere etwa 0,4 mm beträgt. 14. Particle filter according to one of claims 10 to 13, characterized in that the wall thickness of the filter walls (2, 2.1, 2.2) is between 0.3 mm and 0.7 mm, in particular approximately 0.4 mm.
PCT/EP2013/074345 2013-11-21 2013-11-21 Particulate filter designed as a wall-flow filter WO2015074698A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2013/074345 WO2015074698A1 (en) 2013-11-21 2013-11-21 Particulate filter designed as a wall-flow filter
CN201380081133.XA CN105813715A (en) 2013-11-21 2013-11-21 Particulate filter designed as a wall-flow filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/074345 WO2015074698A1 (en) 2013-11-21 2013-11-21 Particulate filter designed as a wall-flow filter

Publications (1)

Publication Number Publication Date
WO2015074698A1 true WO2015074698A1 (en) 2015-05-28

Family

ID=49679499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074345 WO2015074698A1 (en) 2013-11-21 2013-11-21 Particulate filter designed as a wall-flow filter

Country Status (2)

Country Link
CN (1) CN105813715A (en)
WO (1) WO2015074698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3574983A3 (en) * 2015-06-28 2020-02-26 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane
US11203958B2 (en) 2015-09-30 2021-12-21 Johnson Matthey Public Limited Company Gasoline particulate filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729356B2 (en) * 2016-12-27 2020-07-22 株式会社デンソー Porous honeycomb filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072551A1 (en) * 2002-10-28 2008-03-27 Bilal Zuberi Highly porous mullite particulate filter substrate
US20100003172A1 (en) * 2006-07-21 2010-01-07 Dow Global Technologies Inc. Zone catalyzed soot filter
US20120230881A1 (en) * 2011-03-11 2012-09-13 Thorsten Rolf Boger HONEYCOMB FILTERS FOR REDUCING NOx AND PARTICULATE MATTER IN DIESEL ENGINE EXHAUST
US20120247092A1 (en) * 2011-03-29 2012-10-04 Basf Corporation Multi-Component Filters For Emissions Control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072551A1 (en) * 2002-10-28 2008-03-27 Bilal Zuberi Highly porous mullite particulate filter substrate
US20100003172A1 (en) * 2006-07-21 2010-01-07 Dow Global Technologies Inc. Zone catalyzed soot filter
US20120230881A1 (en) * 2011-03-11 2012-09-13 Thorsten Rolf Boger HONEYCOMB FILTERS FOR REDUCING NOx AND PARTICULATE MATTER IN DIESEL ENGINE EXHAUST
US20120247092A1 (en) * 2011-03-29 2012-10-04 Basf Corporation Multi-Component Filters For Emissions Control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3574983A3 (en) * 2015-06-28 2020-02-26 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane
KR20230112155A (en) * 2015-06-28 2023-07-26 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Catalytic wall-flow filter having a membrane
KR102605894B1 (en) * 2015-06-28 2023-11-27 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Catalytic wall-flow filter having a membrane
US11203958B2 (en) 2015-09-30 2021-12-21 Johnson Matthey Public Limited Company Gasoline particulate filter

Also Published As

Publication number Publication date
CN105813715A (en) 2016-07-27

Similar Documents

Publication Publication Date Title
EP2558691B1 (en) Diesel particulate filter coated with reduction catalyst with improved characteristics
DE102014004712B4 (en) Wall flow type exhaust gas purification filter
DE60020070T2 (en) CATALYTIC HATCH FILTER WITH POROUS WALLS
EP1728984B1 (en) Exhaust system
EP1892396B1 (en) Exhaust gas treatment system
DE102005023518B4 (en) Blockage-free filter unit with high efficiency
DE102015011430A1 (en) honeycombs
EP3134622B1 (en) Model kit and method of production for a catalyst assembly
DE102015011432B4 (en) honeycombs
WO2010051983A1 (en) Particle reduction having a combined scr and nh3 slip catalyst
DE102016003381A1 (en) Exhaust gas purifying filter, exhaust gas purifier and method of using the exhaust gas purifier
DE10247946A1 (en) exhaust aftertreatment arrangement
DE102010021589A1 (en) aftertreatment system
DE102016111766A1 (en) CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE
DE60212245T3 (en) Method and device for removing soot particles from the exhaust gas of a diesel engine
EP2166203B1 (en) Device for cleaning an exhaust gas flow of a combustion engine of a motor vehicle, in particular a commercial vehicle
WO2015074698A1 (en) Particulate filter designed as a wall-flow filter
EP3490693B1 (en) Catalyst for reducing nitrogen oxides
DE102014112862A1 (en) Particulate filter and method for producing a particulate filter
WO2015074697A1 (en) Apparatus for purifying the emissions of an internal combustion engine
EP2659950B1 (en) Exhaust gas finishing treatment system
AT504391B1 (en) COMBINED EXHAUST GAS CLEANING SYSTEM
EP2699770B1 (en) Particle filter provided with a catalytic coating
DE102007063100A1 (en) Exhaust gas aftertreatment device for internal combustion engine, has filter elements, where storage capacity for soot particles of one of filter elements is larger or equal to storage capacity of another filter element
WO2015007306A1 (en) Particle filter designed as a wall-flow filter with duct structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011506

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13798287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016011506

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160520