WO2015074532A1 - 带有矫正装置的自移动机器人及其矫正方法 - Google Patents

带有矫正装置的自移动机器人及其矫正方法 Download PDF

Info

Publication number
WO2015074532A1
WO2015074532A1 PCT/CN2014/091380 CN2014091380W WO2015074532A1 WO 2015074532 A1 WO2015074532 A1 WO 2015074532A1 CN 2014091380 W CN2014091380 W CN 2014091380W WO 2015074532 A1 WO2015074532 A1 WO 2015074532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
self
main body
robot
frame
Prior art date
Application number
PCT/CN2014/091380
Other languages
English (en)
French (fr)
Inventor
周四海
Original Assignee
苏州科沃斯商用机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科沃斯商用机器人有限公司 filed Critical 苏州科沃斯商用机器人有限公司
Publication of WO2015074532A1 publication Critical patent/WO2015074532A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the invention relates to a self-moving robot with a correcting device and a correcting method thereof, and belongs to the technical field of small household appliance manufacturing.
  • the cleaning robot moves on the working surface according to the preset traveling trajectory, and mainly indicates the walking direction of the robot through a direction sensor such as an acceleration sensor or a gyroscope.
  • the acceleration sensor is mounted on the cleaning robot and connected to the control unit, and the motion state of the cleaning robot is detected by the acceleration sensor, and the detection result is fed back to the control unit. If the tilting or deviation from the predetermined route occurs, the control unit issues an instruction to adjust accordingly.
  • the traveling direction of the robot is indicated by an electronic component such as an acceleration sensor, and a certain cumulative error occurs when the electronic component is used for a long time.
  • the direction of the indication of the acceleration sensor deviates from the original planned path. The direction, so that the cleaning robot cannot walk along the planned route, has a great influence on the cleaning efficiency of the cleaning robot on the work surface.
  • the technical problem to be solved by the present invention is to provide a self-moving robot with a correcting device and a correcting method thereof for the deficiencies of the prior art, and the boundary detecting sensor for the cleaning robot can assist the direction sensor to work and verify the detection result. Accuracy allows the robot to always move with a small level of error or vertical.
  • a self-moving robot with a correcting device includes: a main body, the main body is provided with a control unit, a direction sensor and a walking unit, and the control unit controls the self-moving robot with the correcting device to follow the preset walking
  • the mode is used to indicate the walking direction of the robot
  • the main body is further provided with a boundary detecting sensor, and the boundary detecting sensor is connected to the control unit, and the control unit determines according to the sensing signal of the boundary detecting sensor.
  • the direction sensor is in the correct working state, and the direction sensor is corrected if it is in the wrong working state.
  • the boundary detecting sensors are at least two.
  • At least one boundary detecting sensor is disposed on each of two sides of the main body.
  • the end face is a front end face or a rear end face of the main body
  • the boundary detection sensor is a contact sensor or a non-contact sensor.
  • the direction sensor is an acceleration sensor, a gyroscope or a code wheel.
  • the invention also provides a method for correcting a self-mobile robot with the above-mentioned correcting device, comprising the following steps:
  • the mobile robot is turned on near the frame, and the boundary detecting sensor adjusts the main body to the posture A relative to the frame, and records the angle value ⁇ of the direction sensor at this time;
  • S2 the self-moving robot walks according to a preset walking mode, and indicates a walking direction of the main body 1 through a direction sensor;
  • the border is a horizontal border or a vertical border.
  • the boundary detecting sensor is disposed on both sides of the front end surface of the main body, and the posture A is the front end of the main body parallel to the frame.
  • the boundary detecting sensor is also It can be placed on both sides of the rear end surface of the main body, and the posture A is the rear end of the main body parallel to the frame.
  • the boundary detecting sensor adjusts the main body to the posture A by the boundary detecting sensor 5 disposed on both sides or the rear end surface of the front end surface of the main body 1 to sense different boundary signals or only one side detecting device detects the boundary signal.
  • the preset walking mode is planned to be a "bow"-shaped route or a reciprocating straight-line route perpendicular to the frame.
  • the control unit controls the main body to walk to the boundary in the direction of the frame on the working surface according to the feedback signal of the direction sensor, and is disposed on the front end surface of the main body Or the boundary detection sensor of the rear end face detects the error of the direction sensor when detecting the tilt of the main body posture.
  • the self-moving robot with the correcting device of the invention has a simple structure, and the boundary detecting sensor is used for the cleaning robot to assist the direction sensor to work, and the accuracy of the detection result is verified, so that the robot can always move with a small error.
  • Figure 1 is a block diagram of a control structure of a self-moving robot with a correcting device
  • FIG. 2 is a schematic view showing the boundary detecting sensor disposed on both sides of the front end of the main body;
  • 3 is a schematic view showing the boundary detecting sensor disposed on both sides of the rear end of the main body
  • Figure 4 is a step-by-step diagram of a method of correcting a self-moving robot with a correcting device
  • FIG. 5 is a schematic diagram of a correction process of the boundary detecting sensor disposed on both sides of the front end of the main body;
  • FIG. 6 is a schematic diagram of a correction process of the boundary detecting sensor disposed on both sides of the rear end of the main body;
  • FIG. 7 is a schematic diagram of a conventional path planning (horizontal direction) of a prior art wiping cleaning robot
  • FIG. 8 is a schematic diagram of a conventional path planning (vertical direction) of a prior art wiping cleaning robot.
  • a self-moving robot with a correcting device includes: a main body 1 , the main body 1 is provided with a control unit 2 , a direction sensor 3 and a walking unit 4 , and the control unit 2 controlling the self-mobile robot to walk according to a preset walking mode, such as walking in a "bow" shape perpendicular to the frame or walking in a reciprocating straight line, the direction sensor 3 is used to indicate the walking direction of the robot, and the direction sensor 3 may be an acceleration Sensor, gyroscope or code wheel.
  • the direction indicated by the arrow is the forward direction of the mobile robot, and a boundary detecting sensor 5 is disposed on each of the front ends of the main body 1.
  • the boundary detecting sensor 5 and the The control unit 2 is connected. According to the sensing signal of the boundary detecting sensor 5, the control unit 2 determines whether the direction sensor is in the correct working state. If the direction sensor 3 is in the wrong working state, it corrects it.
  • the boundary detecting sensor 5 is disposed on the front and rear sides of the main body 1.
  • the boundary detecting sensor can also be disposed on the left and right sides of the main body 1 or the rear end of the main body 1 (see FIG. 3).
  • the number of the boundary detecting sensors 5 may be any one or more.
  • the main body 1 is provided with a gravitational acceleration sensor or a gyroscope as the direction sensor 3, and the boundary detecting sensor 5 is disposed on the left and right sides of the front end of the main body 1 as an example for explanation.
  • the direction sensor 3 When the self-moving robot adopts the "bow" shape as shown in FIG. 8 to walk vertically, the direction sensor 3 always takes the direction of gravity as the reference direction, and controls the robot to repeatedly walk up vertically and touch the frame to turn and then walk vertically downward. process.
  • the direction sensor 3 is working normally, the robot can accurately recognize the vertical direction; but as the robot continues to walk and the direction sensor 3 has an error, the direction in which the robot walks will deviate from the vertical direction.
  • the boundary detecting sensor 5 of the front end detects the posture of the robot in real time to determine whether the direction sensor 3 is in the correct working state.
  • the boundary detecting sensor 5 of the left and right sides of the front end of the robot simultaneously senses the signal, and then determines that the direction sensor 3 is in the correct working state;
  • the boundary detecting sensor 5 on the left side or the boundary detecting sensor 5 on the right senses the signal, it is judged that the body is tilted, the robot is deviated from the vertical direction, and the direction sensor 3 is in an erroneous working state, which needs to be corrected.
  • the robot if an ultrasonic sensor or an infrared sensor is used, if the robot walks to the frame, the left and right boundary detecting sensors 5 will not receive the signal at the same time or the strength of the received signal is different, the robot determines that the body is tilted, the direction Sensor 3 is in the wrong working condition and needs to be corrected.
  • the glass bezel itself is horizontally disposed. If the glass frame is inclined, when the robot walks up or down, the robot cannot judge the machine only according to whether a sensing signal of the boundary detecting sensor 5 is received or a sensing signal of two different boundary detecting sensors 5 is received. Whether the body deviates from the vertical direction, and thus it is impossible to judge whether the direction sensor 3 has an error or not, and is in a correct or wrong working state.
  • the robot When the robot walks in the arcuate mode in the vertical direction, if the robot walks up to the frame according to the direction sensor indication, it is necessary to adjust the machine to the posture A relative to the frame according to the boundary detecting sensor 5 (ie, adjust the body The position is such that the left and right sides of the front end of the body sense signals or sense the same intensity signal.
  • the angle value ⁇ ' of the direction sensor 3 is equal to ⁇ . If ⁇ ' is not equal to ⁇ , the direction sensor 3 is corrected. After the angle value reaches ⁇ , it returns to S2, otherwise it returns directly to S2.
  • the direction sensor is corrected once every predetermined time t.
  • a boundary detecting sensor is disposed on each side of the front end of the main body 1 to determine whether the body is tilted when the robot walks to the frame, and it is also possible to use only one boundary detecting sensor for the same purpose.
  • a boundary detecting sensor 5 is disposed in the middle of the front end of the robot for explanation. If the boundary detecting sensor 5 is a contact type sensor, such as a travel switch, when the robot walks to the frame (if the frame cannot be stopped by the frame), if the control unit does not sense the stroke switch collision signal, it is determined that the body is tilted. Correct the direction sensor; if the control unit can sense the stroke switch collision signal, it is judged that the direction sensor is in the correct working state.
  • the boundary detecting sensor 5 is a non-contact sensor, such as an infrared sensor
  • the infrared sensor includes a transmitter and a receiver.
  • the receiver does not receive an infrared signal or receives a letter If the intensity of the number is less than the preset value, it is judged that the body is tilted, and the direction sensor needs to be corrected; if the receiver receives the infrared signal, it is judged that the direction sensor is in the correct working state.
  • the control unit 2 controls the main body 1 to travel to the boundary in the direction of the frame on the working surface according to the feedback signal of the direction sensor 3, and is disposed at the front end of the main body 1.
  • the boundary detecting sensor 5 of the front or rear end surface detects the tilt of the main body 1 posture, the error of the direction sensor is corrected.
  • the following method of correcting the self-moving robot with the correcting device may be employed.
  • the self-moving robot walks according to a preset walking mode, and indicates a walking direction of the main body 1 by the direction sensor 3, wherein the preset walking mode is a “bow”-shaped route or a reciprocating straight line perpendicular to the frame;
  • the boundary detecting sensor 5 adjusts the machine to the posture A with respect to the frame, and compares whether the angle value ⁇ ' of the direction sensor 3 is equal to ⁇ at this time, and if ⁇ ' is not equal to ⁇ , After correcting the angle value of the direction sensor 3 to ⁇ , return to S2, otherwise return directly to S2.
  • a boundary detecting sensor 5 is disposed on each of the front ends of the main body 1.
  • the posture A is that the front end of the main body 1 is parallel to the frame.
  • the boundary detecting sensor 5 is disposed on the main body 1, On both sides, the pose A is the rear end of the main body 1 parallel to the frame (as shown in FIG. 6). It should be pointed out that this correction method can also be used when the robot walks in a "bow" pattern or a reciprocating straight line pattern perpendicular to the frame.
  • the self-moving robot with the correcting device has a simple structure, and the boundary detecting sensor is used for the cleaning robot to assist the direction sensor to verify the accuracy of the detection result, so that the robot can always move with a small error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种带有矫正装置的自移动机器人及其矫正方法,自移动机器人包括:主机体(1),主机体(1)设有控制单元(2)、方向传感器(3)及行走单元(4),控制单元(2)控制带有矫正装置的自移动机器人按照预设行走模式行走,方向传感器(3)用于指示机器人的行走方向,主机体(1)上还设有边界检测传感器(5)并与控制单元(2)连接,根据边界检测传感器(5)的感应信号,控制单元(2)判断方向传感器(3)是否处于正确的工作状态,若方向传感器(3)处于错误的工作状态则对其矫正。带有矫正装置的自移动机器人结构简单,将边界检测传感器(5)用于清洁机器人可以辅助方向传感器(3)工作,验证其检测结果的准确性,使得机器人始终能够以较小的误差水平或竖直移动。

Description

带有矫正装置的自移动机器人及其矫正方法 技术领域
本发明涉及一种带有矫正装置的自移动机器人及其矫正方法,属于小家电制造技术领域。
背景技术
现有的清洁机器人都是依靠履带或轮子在工作表面上移动,为提高清洁效率,机器的行进轨迹一般都是规划成垂直于一条边的“弓”字形轨迹(如图7-图8所示)。
目前,清洁机器人按照预设行进轨迹在工作表面移动,主要通过加速度传感器或陀螺仪等方向传感器指示机器人的行走方向。将加速度传感器安装在清洁机器人上,并与控制单元相连,通过加速度传感器检测清洁机器人的运动状态,同时将检测结果反馈给控制单元,如果出现倾斜或偏离预定路线由控制单元发出指令进行相应的调整。然而在该方案中,通过加速度传感器等电子元器件指示机器人的行走方向,而电子元器件长时间使用会产生一定的累积误差,当加速度传感器存在误差时,加速度传感器的指示方向偏离原规划路径的方向,从而清洁机器人不能沿预定规划的路线行走,对清洁机器人在工作表面上的清洁效率存在较大的影响。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种带有矫正装置的自移动机器人及其矫正方法,通过边界检测传感器用于清洁机器人可以辅助方向传感器工作,验证其检测结果的准确性,使得机器人始终能够以较小的误差水平或竖直移动。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种带有矫正装置的自移动机器人,包括:主机体,所述主机体设有控制单元、方向传感器及行走单元,所述控制单元控制所述带有矫正装置的自移动机器人按照预设行走模式行走,所述方向传感器用于指示机器人的行走方向,所述主机体上还设有边界检测传感器,所述边界检测传感器与所述控制单元连接,根据边界检测传感器的感应信号,控制单元判断方向传感器是否处于正确的工作状态,若方向传感器处于错误的工作状态则对其矫正。
优选地,所述边界检测传感器为至少两个。
更好地,所述主机体的一端面两边分别设有至少一个边界检测传感器。
更好地,所述端面为主机体的前端面或后端面
所述边界检测传感器为接触式传感器或非接触式传感器。
所述方向传感器为加速度传感器、陀螺仪或码盘。
本发明还提供一种具有上述的带有矫正装置的自移动机器人的矫正方法,包括如下步骤:
S1:自移动机器人开机放在边框附近,根据边界检测传感器调整主机体至相对于边框的位姿A,记录此时方向传感器的角度值φ;
S2:自移动机器人按照预设的行走模式行走,通过方向传感器指示主机体1的行走方向;
S3:当机器人行走至边框附近时,根据边界检测传感器调整机器至相对于边框的位姿A,比较此时方向传感器的角度值φ’是否与φ相等,若φ’不等于φ,则矫正方向传感器的角度值至φ后,返回S2,否则直接返回S2。
较常见的,所述边框为水平边框或竖直边框。
为方便自移动机器人准确快速地找到相对于边框的位姿A,所述边界检测传感器设置于主机体前端面两边,则位姿A为主机体前端与边框平行,当然,所述边界检测传感器也可以设置于主机体后端面两边,则位姿A为主机体后端与边框平行。
较佳的,所述边界检测传感器调整主机体至位姿A是通过设置于主机体1前端面两边或后端面两边的边界检测传感器5感测到不同的边界信号或仅一边矫正装置检测到边界信号。
为提高自移动机器人的工作效率,所述预设行走模式规划为垂直于边框的“弓”字形路线或往复直线路线。
优选的,当机器人沿垂直于边框的“弓”字形模式或往复直线模式行走时,控制单元根据方向传感器的反馈信号控制主机体在工作表面向边框的方向行走至边界,设置于主机体前端面或后端面的边界检测传感器检测到主机***姿倾斜时,矫正方向传感器的误差。
本发明带有矫正装置的自移动机器人结构简单,将边界检测传感器用于清洁机器人可以辅助方向传感器工作,验证其检测结果的准确性,使得机器人始终能够以较小的误差移动。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。
附图说明
图1为带有矫正装置的自移动机器人控制结构框图;
图2为边界检测传感器设置于主机体前端两边的示意图;
图3为边界检测传感器设置于主机体后端两边的示意图;
图4为带有矫正装置的自移动机器人的矫正方法步骤图;
图5为边界检测传感器设置于主机体前端两边的矫正过程示意图;
图6为边界检测传感器设置于主机体后端两边的矫正过程示意图;
图7为现有技术擦清洁机器人传统路径规划(水平方向)示意图;
图8为现有技术擦清洁机器人传统路径规划(垂直方向)示意图。
具体实施方式
图1为带有矫正装置的自移动机器人控制结构框图;图2为带有矫正装置的清洁机器人实施例一的结构示意图。如图2并参考图1所示,一种带有矫正装置的自移动机器人,包括:主机体1,所述主机体1设有控制单元2、方向传感器3及行走单元4,所述控制单元2控制所述自移动机器人按照预设行走模式行走,如垂直于边框的“弓”字形行走或往复直线行走,所述方向传感器3用于指示机器人的行走方向,所述方向传感器3可以为加速度传感器、陀螺仪或码盘等。如图5所示,以图示箭头指示方向为自移动机器人的前向,在主机体1的前端两边各设一边界检测传感器5,如图2所示,所述边界检测传感器5与所述控制单元2连接,根据边界检测传感器5的感应信号,控制单元2判断方向传感器是否处于正确的工作状态,若方向传感器3处于错误的工作状态则对其矫正,需要指出的是,在主机体1的前端两边各设一边界检测传感器5仅为本实施例所列举的一种设置方式,所述边界检测传感器同样可以设置于主机体1的左右两侧或主机体1的后端(如图3所示),所述边界检测传感器5的数量可以为任意一个以上的多个。
请再次参考图5所示,具体的,下面以主机体1设有重力加速度传感器或陀螺仪作为方向传感器3,主机体1前端左右两边分别设有边界检测传感器5为例进行解释说明。当自移动机器人采用如图8所示的“弓”字形竖直行走,方向传感器3始终以重力方向为基准方向,控制机器人重复竖直向上行走碰到边框转弯后再竖直向下行走的行走过程。当方向传感器3正常工作时,机器人能准确识别竖直方向;但随着机器人的继续行走,方向传感器3出现误差,则机器人行走的方向会偏离竖直方向,而机 器人本身仍然以为沿竖直方向行走,造成较大的行走结果偏差,降低机器人的清洁效率等。而当机器人向上或向下行走到边框时,通过其前端的边界检测传感器5实时检测机器人的位姿来判断方向传感器3是否处于正确的工作状态。如当机器人根据方向传感器3的指示,向上行走碰到边框时,机器人前端左、右两边的边界检测传感器5同时感应到信号,则判断方向传感器3处于正确的工作状态;若仅主机体1前端左边的边界检测传感器5或右边的边界检测传感器5感应到信号,则判断机身倾斜,机器人偏离竖直方向,方向传感器3处于错误的工作状态,需对其进行矫正。当然,若采用超声传感器或红外传感器时,若机器人行走到边框时,左、右边的边界检测传感器5不会同时收到信号或者收到信号的强弱不同,则机器人判断出机身倾斜,方向传感器3处于错误的工作状态,需对其进行矫正。
上述实施中,玻璃边框本身是水平设置的。若玻璃边框是倾斜的,则当机器人向上或向下行走,仅根据是否收到一个边界检测传感器5的感测信号或收到两个不同的边界检测传感器5的感测信号,机器人无法判断机身是否偏离竖直,进而无法判断方向传感器3是否存在误差,处于正确或错误的工作状态。此时,需要先将自移动机器人放在边框附近,根据边界检测传感器5调整主机体1至相对于边框的位姿A(主机体1前端左边、右边同时感应到信号或感应到相同强度的信号),记录此时方向传感器3的角度值φ(如边框与水平方向呈45度时,φ为45度,即机身偏离竖直方向45度)。
当机器人沿竖直方向进行弓字形模式行走时,若机器人根据方向传感器的指示向上行走碰到边框,需根据边界检测传感器5再次调整机器至相对于边框的位姿A,(即调整机身的位置,使得机体前端左边、右边同时感应到信号或感应到相同强度的信号),比较此时方向传感器3的角度值φ’是否与φ相等,若φ’不等于φ,则矫正方向传感器3的角度值至φ后,返回S2,否则直接返回S2。较佳的,每隔一段预设的时间t,对所述方向传感器矫正一次。
上述实施方式通过主机体1前端两边各设一边界检测传感器判断机器人行走到边框时,机身是否倾斜,同样可以仅使用一个边界检测传感器达5到同样的目的。下面以机器人的前端中间设置一边界检测传感器5进行解释说明。若边界检测传感器5为接触式传感器,如行程开关,机器人行走到边框时(如被边框阻挡无法继续行走的情况),若控制单元感测不到行程开关碰撞信号,则判断机身倾斜,需对方向传感器进行矫正;若控制单元可以感测到行程开关碰撞信号,则判断方向传感器处于正确的工作状态。若边界检测传感器5为非接触式传感器,如红外传感器,所述红外传感器包含一发射器和一接收器,当机器人行走到边框时,若接收器接收不到红外信号或收到信 号强度小于预设值,则判断机身倾斜,需对方向传感器进行矫正;若接收器接收到红外信号,则判断方向传感器处于正确的工作状态。
当机器人沿垂直于边框的“弓”字形模式或往复直线模式行走时,控制单元2根据方向传感器3的反馈信号控制主机体1在工作表面向边框的方向行走至边界,设置于主机体1前端面或后端面的边界检测传感器5检测到主机体1位姿倾斜时,矫正方向传感器的误差。
如当机器人沿偏离边框一定角度进行“弓”字形模式或往复直线模式行走时,参见图4,可采用下述带有矫正装置的自移动机器人的一种矫正方法步,
具体包括如下步骤:
S1:自移动机器人放在边框附近,根据边界检测传感器5调整主机体1至相对于边框的位姿A,记录此时方向传感器的角度值φ;
S2:自移动机器人按照预设的行走模式行走,通过方向传感器3指示主机体1的行走方向,所述预设行走模式为垂直于边框的“弓”字形路线或往复直线路线;
S3:当机器人行走至边框附近时,根据边界检测传感器5调整机器至相对于边框的位姿A,比较此时方向传感器3的角度值φ’是否与φ相等,若φ’不等于φ,则矫正方向传感器3的角度值至φ后,返回S2,否则直接返回S2。
需要说明的是,所示主机体与边框的位姿关系需要根据边界检测传感器设置方式确定。在本实施例中,在所述主机体1前端两边各设一边界检测传感器5,则所述位姿A为主机体1前端与边框平行,当然,若边界检测传感器5设置于主机体1后端两边,所述位姿A为主机体1后端与边框平行(如图6所示)。需要指出的是,当机器人沿垂直于边框的“弓”字形模式或往复直线模式行走时同样可以采用该矫正方法。
综上,本发明带有矫正装置的自移动机器人结构简单,将边界检测传感器用于清洁机器人可以辅助方向传感器工作,验证其检测结果的准确性,使得机器人始终能够以较小的误差移动。

Claims (13)

  1. 一种带有矫正装置的自移动机器人,包括:主机体(1),所述主机体(1)设有控制单元(2)、方向传感器(3)及行走单元(4),所述控制单元(2)控制所述带有矫正装置的自移动机器人按照预设行走模式行走,所述方向传感器用于指示机器人的行走方向,其特征在于,所述主机体(1)上还设有边界检测传感器(5),所述边界检测传感器(5)与所述控制单元(2)连接,根据边界检测传感器(5)的感应信号,控制单元(2)判断方向传感器是否处于正确的工作状态,若方向传感器处于错误的工作状态则对其矫正。
  2. 如权利要求1所述的带有矫正装置的自移动机器人,其特征在于,所述边界检测传感器(5)为至少两个。
  3. 如权利要求2所述的带有矫正装置的自移动机器人,其特征在于,所述主机体(1)的一端面两边分别设有至少一个边界检测传感器(5)。
  4. 如权利要求3所述的带有矫正装置的自移动机器人,其特征在于,所述端面为主机体的前端面或后端面。
  5. 如权利要求1所述的带有矫正装置的自移动机器人,其特征在于,所述边界检测传感器(5)为接触式传感器或非接触式传感器。
  6. 如权利要求1所述的带有矫正装置的自移动机器人,其特征在于,所述方向传感器(3)为加速度传感器、陀螺仪或码盘。
  7. 一种具有如权利要求1-6任一项所述的带有矫正装置的自移动机器人的矫正方法,其特征在于,包括如下步骤:
    S1:自移动机器人开机放在边框附近,根据边界检测传感器(5)调整主机体(1)至相对于边框的位姿A,记录此时方向传感器的角度值φ;
    S2:自移动机器人按照预设的行走模式行走,通过方向传感器(3)指示主机体(1)的行走方向;
    S3:当机器人行走至边框附近时,根据边界检测传感器(5)调整机器至相对于边 框的位姿A,比较此时方向传感器(3)的角度值φ’是否与φ相等,若φ’不等于φ,则矫正方向传感器(3)的角度值至φ后,返回S2,否则直接返回S2。
  8. 根据权利要求7所述的带有矫正装置的自移动机器人的矫正方法,其特征在于:所述边框为水平边框或竖直边框。
  9. 如权利要求7所述的带有矫正装置的自移动机器人的矫正方法,其特征在于,若边界检测传感器(5)设置于主机体(1)前端面两边,所述位姿A为主机体(1)前端与边框平行。
  10. 如权利要求7所述的带有矫正装置的自移动机器人的矫正方法,其特征在于,若边界检测传感器(5)设置于主机体(1)后端面两边,所述位姿A为主机体(1)后端与边框平行。
  11. 如权利要求9或10所述的带有矫正装置的自移动机器人的矫正方法,其特征在于,边界检测传感器(5)调整主机体至位姿A是通过设置于主机体(1)前端面两边或后端面两边的边界检测传感器(5)感测到不同的边界信号或仅一边矫正装置检测到边界信号。
  12. 如权利要求9或10所述的带有矫正装置的自移动机器人的矫正方法,其特征在于,在S2中,所述预设行走模式为垂直于边框的“弓”字形路线或往复直线路线。
  13. 一种具有如权利要求1-6任一项所述的带有矫正装置的自移动机器人的矫正方法,其特征在于:所述预设行走模式为垂直于边框的“弓”字形路线或往复直线路线,当控制单元(2)根据方向传感器(3)的反馈信号控制主机体(1)在工作表面向边框的方向行走至边界,设置于主机体(1)前端面或后端面的边界检测传感器(5)检测到主机体(1)位姿倾斜时,矫正方向传感器的误差。
PCT/CN2014/091380 2013-11-20 2014-11-18 带有矫正装置的自移动机器人及其矫正方法 WO2015074532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310591136.X 2013-11-20
CN201310591136.XA CN104644061B (zh) 2013-11-20 2013-11-20 带有矫正装置的自移动机器人及其矫正方法

Publications (1)

Publication Number Publication Date
WO2015074532A1 true WO2015074532A1 (zh) 2015-05-28

Family

ID=53178937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091380 WO2015074532A1 (zh) 2013-11-20 2014-11-18 带有矫正装置的自移动机器人及其矫正方法

Country Status (2)

Country Link
CN (1) CN104644061B (zh)
WO (1) WO2015074532A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105816106A (zh) * 2016-05-31 2016-08-03 台州市霸业智能科技有限公司 智能扫地机器人
CN106909140A (zh) * 2015-12-22 2017-06-30 苏州宝时得电动工具有限公司 路线回归方法及***
CN113748826A (zh) * 2020-06-01 2021-12-07 上海山科机器人有限公司 自主作业设备和自主作业***

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106239528B (zh) * 2016-08-30 2019-04-09 宁波菜鸟智能科技有限公司 扫地机器人的路径清扫方法
CN106325276B (zh) * 2016-09-21 2019-06-25 苏州瑞得恩光能科技有限公司 机器人在斜坡平面上直线行驶的判定方法及控制方法
CN106970623B (zh) * 2017-04-18 2021-05-25 杭州匠龙机器人科技有限公司 智能清洁装置及其网格路径作业方法
CN108646733B (zh) * 2018-04-27 2021-08-10 杭州艾豆智能科技有限公司 一种自动矫正的移动机器人的矫正方法
CN109491397B (zh) * 2019-01-14 2021-07-30 傲基科技股份有限公司 割草机器人及其割草区域划定方法
CN110162061B (zh) * 2019-06-06 2022-06-24 深圳怪虫机器人有限公司 一种光伏清洁机器人直线清洁路径的方法
CN115486765B (zh) * 2022-09-26 2023-06-27 茅台学院 一种自移动机器人及其矫正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080834A (ja) * 2003-09-08 2005-03-31 Matsushita Electric Ind Co Ltd 自律走行装置
JP2005346477A (ja) * 2004-06-03 2005-12-15 Toshiba Tec Corp 自律走行体
CN201759498U (zh) * 2010-09-01 2011-03-16 莱克电气股份有限公司 自动修正旋转角度的智能吸尘器
CN202714801U (zh) * 2012-08-17 2013-02-06 乐金电子(天津)电器有限公司 智能吸尘器控制***
CN103054516A (zh) * 2011-10-21 2013-04-24 三星电子株式会社 机器人吸尘器以及用于机器人吸尘器的控制方法
CN103356130A (zh) * 2012-04-06 2013-10-23 三星电子株式会社 机器人清洁器以及控制该机器人清洁器的方法
CN203609373U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 带有矫正装置的自移动机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028800A1 (fr) * 1997-11-27 1999-06-10 Solar & Robotics Ameliorations a des robots mobiles et a leur systeme de commande
KR20080051936A (ko) * 2006-12-07 2008-06-11 삼성광주전자 주식회사 로봇의 자동 도킹 유도장치
DE102007010979B3 (de) * 2007-03-05 2008-05-08 Miele & Cie. Kg Verfahren zur Reinigung einer Bodenfläche mittels eines selbstfahrenden Reinigungsgerätes, insbesondere eines Robotsaugers
DE102009041362A1 (de) * 2009-09-11 2011-03-24 Vorwerk & Co. Interholding Gmbh Verfahren zum Betreiben eines Reinigungsroboters
CN103217926B (zh) * 2012-01-20 2015-08-19 苏州宝时得电动工具有限公司 自动工作设备及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080834A (ja) * 2003-09-08 2005-03-31 Matsushita Electric Ind Co Ltd 自律走行装置
JP2005346477A (ja) * 2004-06-03 2005-12-15 Toshiba Tec Corp 自律走行体
CN201759498U (zh) * 2010-09-01 2011-03-16 莱克电气股份有限公司 自动修正旋转角度的智能吸尘器
CN103054516A (zh) * 2011-10-21 2013-04-24 三星电子株式会社 机器人吸尘器以及用于机器人吸尘器的控制方法
CN103356130A (zh) * 2012-04-06 2013-10-23 三星电子株式会社 机器人清洁器以及控制该机器人清洁器的方法
CN202714801U (zh) * 2012-08-17 2013-02-06 乐金电子(天津)电器有限公司 智能吸尘器控制***
CN203609373U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 带有矫正装置的自移动机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106909140A (zh) * 2015-12-22 2017-06-30 苏州宝时得电动工具有限公司 路线回归方法及***
CN105816106A (zh) * 2016-05-31 2016-08-03 台州市霸业智能科技有限公司 智能扫地机器人
CN113748826A (zh) * 2020-06-01 2021-12-07 上海山科机器人有限公司 自主作业设备和自主作业***

Also Published As

Publication number Publication date
CN104644061B (zh) 2017-09-19
CN104644061A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2015074532A1 (zh) 带有矫正装置的自移动机器人及其矫正方法
CN203609373U (zh) 带有矫正装置的自移动机器人
EP3552532B1 (en) Method for angle correction of mobile robot in working area and mobile robot
US10773938B2 (en) Forklift system and control method thereof
KR102502219B1 (ko) 로봇 운동시 카펫으로 인한 드리프트 제어방법, 칩 및 청소 로봇
KR100600487B1 (ko) 로봇 청소기의 좌표보정방법 및 이를 이용한 로봇 청소기시스템
JP2006260161A (ja) 自走式作業ロボット
KR100871114B1 (ko) 이동로봇 및 그 동작방법
KR20120059427A (ko) 이동 로봇의 슬립 감지 장치 및 방법
US20060132079A1 (en) Self-traveling cleaning robot
CN202141947U (zh) 擦玻璃机器人的直角区域移动控制***
CN110320906A (zh) 一种基于麦克纳姆轮的四驱agv小车差速直线行驶姿态调整方法
CN106168803A (zh) 一种用于移动机器人的位置感知方法
CN107037807B (zh) 自移动机器人位姿校准***和方法
WO2014135115A1 (zh) 铅垂校验装置及其具有该铅垂校验装置的擦玻璃机器人
TWI711913B (zh) 資訊處理裝置以及移動機器人
CN112697153A (zh) 自主移动设备的定位方法、电子设备及存储介质
CN110703780A (zh) 船用胎架移动底盘运动控制***及其控制方法
KR101227008B1 (ko) 모빌로봇 시스템의 자이로스코프 보정장치 및 이를 이용한보정방법
JPH04300781A (ja) 移動車の走行制御装置
KR20180129179A (ko) 로봇 청소기, 로봇 청소기를 제어하는 방법 및 로봇 청소기의 제어 방법
CN107966986A (zh) 一种机器人及其导航方法、***、设备
JP7253186B2 (ja) 軌道狂い測定装置
KR20080041890A (ko) 로봇청소기의 외력감지방법, 이를 기록한 기록매체 및 이를이용한 로봇 청소기
CN207710777U (zh) 一种机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863743

Country of ref document: EP

Kind code of ref document: A1