WO2015074161A1 - Continuous method and system based on non-submerged arc discharge with controlled atmosphere for the production of nanometric material - Google Patents

Continuous method and system based on non-submerged arc discharge with controlled atmosphere for the production of nanometric material Download PDF

Info

Publication number
WO2015074161A1
WO2015074161A1 PCT/CL2014/000056 CL2014000056W WO2015074161A1 WO 2015074161 A1 WO2015074161 A1 WO 2015074161A1 CL 2014000056 W CL2014000056 W CL 2014000056W WO 2015074161 A1 WO2015074161 A1 WO 2015074161A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric arc
material according
production
nanometric material
controlled atmosphere
Prior art date
Application number
PCT/CL2014/000056
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Francisco MELÉNDREZ CASTRO
Paulo Andrés FLORES VEGA
Carlos Andrés MEDINA MUÑOZ
Eduardo Gerardo PÉREZ TIJERINA
Original Assignee
Universidad de Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Concepción filed Critical Universidad de Concepción
Publication of WO2015074161A1 publication Critical patent/WO2015074161A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0033Manufacture or treatment of substrate-free structures, i.e. not connected to any support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/485Preparation involving the use of a plasma or of an electric arc

Definitions

  • the technology is oriented to the chemical area, more specifically, it corresponds to a system and a process for the continuous production of nanometric material.
  • the arc discharge generates a plasma at high temperatures that involves highly reactive metal atoms, which in the presence of an oxidizing or reducing gas can react producing growing structures.
  • the principle is simple and is based on generating a short circuit between two precursor materials until plasma generation is controlled at a constant speed, angles and voltage.
  • This method can be used with dry or submerged arc, for the first case it presents as disadvantages that the equipment only has a variable electrode and does not incorporate an accumulation chamber, so the reaction chamber acts as both.
  • the synthesized material is then mixed with the residue of the anode or the cathode that is deposited in the bottom of the reaction chamber (quartz chamber), making its separation difficult. Overheating of the system leads to pressure loss, so it is likely that in the case of the synthesis of oxide nanostructures mixtures of metal and oxidized structures are obtained.
  • the process is not continuous and the thickness of the 00056
  • the anode ends at a point to reduce the operating voltage of the system, when this is carried out, the arc generated splits the tip due to overheating which happens quickly. This is very counterproductive due to the loss of efficiency of the equipment and the poor performance of the reaction.
  • the second case like dry synthesis, is not conditioned a separation of the accumulation chamber with the reaction chamber, which leads to producing mixtures of residue with the synthesized material.
  • the residual material remains in the same solution where the dispersed nanostructures are found, making it difficult to separate them.
  • This system is simple in operation and can be of the compact or integrated type, depending on the purpose for which it is required. It is safe, non-polluting, efficient with a conversion capacity greater than 90% and empowers production from reusable waste. In addition, it allows to expand the field of action since it not only facilitates the elaboration of nanostructures of the nickel, zinc, copper and aluminum type, but also allows the production of nanometric alloys or bimetallic particles and even doped oxides.
  • the safety of the system is based mainly on the fact that it has closed areas and the joints between the reaction chamber and the accumulation are also tightly closed, therefore there are no material leaks in the synthesis process, which makes it safe and secure. non-polluting.
  • the reaction zone that could be considered the most dangerous, since it is where the electric arc discharge occurs, is well conditioned with a robust chamber and electrically isolated from the arc by means of a polymeric connection piece, which would avoid a possible electric shock out of the camera.
  • the system for the continuous production of nanometric material consists of 3 sections: (a) feeding, (b) discharge and reaction, and (c) accumulation and relaxation.
  • Figure 1 shows the parts that make up the different sections of the system, where (a) corresponds to the welders, (b) to the precursor "1", (c) to the precursor "2" , (d) at the gas inlet, (e) at the voltage source, (f) at the flow of oxygen, (g) at the precursor material, (h) at the electric arc, (i) at the nanoparticles, (j ) to the gas inlet that can be of the nitrogen, oxygen or argon type, and (k) corresponds to a vacuum valve.
  • This section is composed of welding equipment (welders) located in parallel, which must be joined by means of starting triggers of both welders to work at the same time, which operate between 30 - 80 amps.
  • This section also includes the gas feeders and their respective system of digital flow controllers that operate up to 500 mlJmin.
  • the thickness of the precursor electrodes is between 1-2 mm, allowing low voltages to be used, which decreases the consumption capacity of the equipment.
  • the reaction chamber made of stainless steel, preferably has a longitudinal shape since it benefits the movement of the particles and better resists internal pressures. It is also provided on the outside by a cooling system that prevents overheating of the reaction and discharge zone, which prevents the chamber from melting.
  • FIG. 2 A detail of the parts that make up the chamber is shown in Figure 2, where: (I) corresponds to copper electrodes where the precursor passes; (m) a stainless steel conveyor gas tube, which is located at least 2 cm from the arc zone to facilitate oxidation of the nanoparticles; (n) corresponds to an insulating polymer having a preferred shape of the cylinder type; (o) is a stainless steel cover, which is screwed into the reaction chamber and supports the electrodes, the insulating polymer and the connectors to the power source (welders); and (p) is the body (cover) of the stainless steel reaction chamber.
  • the feed system of the precursor material and the gases that produce the reaction is formed by the copper extension (I) and the gas injector (m), where the copper extensions (I) are the guides of the precursor material from welding machines.
  • the copper extensions (I) are the guides of the precursor material from welding machines.
  • "ground" wires of the welders are connected in such a way to allow the flow of electric current at the time of the arc discharge.
  • These connections are attached to the cover (o) by means of the polymeric connector (n), which allows the tips to be electrically insulated with the rest of the reaction chamber.
  • This connector (n) corresponds to an insulating polymer of the acetal type with a cylindrical shape, capable of withstanding the high temperatures that occur inside the reaction chamber, and whose purpose is the aligned maintenance of the precursor material feed system.
  • the cover (o) and the tube-shaped gas injector (m) are made of stainless steel and M10 bolts are attached, in order to avoid leaking nanoparticles to the outside.
  • Said tube (m) has a perforation of between 20-30 mm at the end where the reaction chamber ends, to guide the flow of the nanoparticles to the accumulation chamber, in addition to preventing an overpressure of the system, allowing its operation in the form keep going.
  • the precursor materials from the feed section are directed to the interior of the reaction chamber at a speed between 1 - 13 m / min, in addition a gas flow that can be the type 0 2 , N 2 is introduced or Ar, which operates at atmospheric pressure and at a flow between 50-500 mL / min that enters through the gas injector (m).
  • a gas flow that can be the type 0 2 , N 2 is introduced or Ar, which operates at atmospheric pressure and at a flow between 50-500 mL / min that enters through the gas injector (m).
  • the precursors are introduced horizontally and continuously to the electric arc reaction chamber.
  • the equipment is empowered for continuous production and 90% efficiency, where the reaction occurs through pulses to prevent the electrodes from burning.
  • the pulses operate in a 2: 1 ratio for on (power on) and off (power off), with a maximum of up to 20 seconds on, c- Accumulation and relaxation section:
  • the synthesized nanostructures are transported with a constant gas flow to the accumulation and relaxation section by means of a quartz tube (transparent and resistant) that has a diameter that varies between 8-12 cm, which is located from the end of the reaction chamber to the accumulation chamber, through a surface charge acceleration system (ASC) to prevent radiation leakage.
  • This acceleration system corresponds to a conventional furnace, which operates between 10 - 1000 watts of power, and which is conditioned in the lateral areas by two holes with a diameter between 8 - 12 cm, and which is located perpendicular to the magnetron of microwave.
  • the microwave is placed in a box of carbon fibers and the holes must be sealed with a special epoxy resin type material, which blocks the microwaves.
  • the ASC also has a security system based on 2 microwave leak detectors, which provide an alarm when leaks are greater than 2 watt / m 2 .
  • a detail of the ASC system is shown in Figure 4, where (q) corresponds to the connector to the reaction chamber; (r) is the connector to the accumulation chamber; (s) represents the quartz tube; (t) corresponds to microwave detectors; (u) is a microwave blocking mesh; (v) is the carbon fiber box; and (w) corresponds to the microwave.
  • the nanostructures remain in the accumulation and relaxation chamber for 30-60 min.
  • This section physically corresponds to a chamber commonly referred to as a glove box, made of materials with particularities such as transparency and resistance, such as acrylic.
  • This chamber is fitted on its sides with cavities provided with neoprene gloves in order to facilitate the manipulation of the nanostructures at the time of extraction.
  • the system is provided with conventional microwave magnetrons with variable power. They correspond to an intermediate passage where the quartz tube passes through the inside of a perforated microwave before reaching the accumulation chamber.
  • the feeding section allows the continuity of the equipment to be supplied by supplying the precursor material.
  • the precursor material is conducted inside an insulating conduit to the discharge chamber, the conveyor tube is electrically isolated from the material and connected to the power source.
  • zinc oxide nanoparticles (Zn02) were obtained, according to the following reaction:
  • the precursor wire used had a purity of 99.99% (Sulzel metco) with a diameter of 2.0 mm, and the precursor gas was supplied by Linde.
  • the wire speed was adjusted in 1.5 m / minutes and the gas flow was 500 mL / min.
  • the power source (welders) was adjusted to a voltage of 40 -60 V.
  • the wire was introduced into the adjusted and synchronized welding machine, so that its passage was not interrupted at the time of the arc. .
  • the terminal points where the electric arc is made were adjusted to the electrodes to prevent them from moving during the reaction process.
  • the surface charge acceleration system was connected and turned on.
  • the accumulation chamber was previously cleaned and sealed to prevent the nanometric dust from being lost.
  • the system was tuned for the reaction (wire speed, gas flow, controllers and welding machines on, accelerator and microwave leak detectors on).
  • the reaction chamber operated at room temperature at the beginning of the arc reaction, which was carried out by pulses of 10 seconds and resting pulses of 5 seconds for a total of 100 seconds. After the electric arc, the interior of the chamber increased the temperature to 500 ° C, which was controlled by the heat exchange cooling system that the walls of the reaction chamber possess, where water was used as a refrigerant.
  • Figure 3 shows two views of the zinc oxide nanoparticles obtained, where the size of these was distributed between 20-40 nm.
  • the non-reactive material and the nanometric material produced was heavy, obtaining a conversion rate of 95%.
  • 100 seconds of reaction 37 grams of metallic Zn were used and 33.3 grams of particularized nano zinc oxide were obtained.

Abstract

The invention relates to an electric arc system having a controlled atmosphere, which operates continuously to produce nanometric material and includes the following components: (a) a supply section, consisting of welding equipment, precursor electrodes and gas feeders; (b) a discharge and reaction section in which the electric arc reaction takes place, which consists of a stainless-steel reaction chamber that is longitudinal in shape in order to promote the movement of the particles; (c) a surface load acceleration system (ASC); and (d) an accumulation and release section, in which the nucleation and growth process of the nanostructures is completed, which consists of a chamber, the sides of which are provided with cavities equipped with gloves and a quartz connector. In addition, the process is protected in order to obtain nanometric material from the electric arc system.

Description

UN SISTEMA Y PROCESO CONTINUO BASADO EN DESCARGA DE ARCO NO SUMERGIDO CON ATMÓSFERA CONTROLADA PARA LA PRODUCCIÓN DE MATERIAL NANOMÉTRICO.  A CONTINUOUS SYSTEM AND PROCESS BASED ON UNLOADED ARC DOWNLOAD WITH CONTROLLED ATMOSPHERE FOR THE PRODUCTION OF NANOMETRIC MATERIAL.
Sector Técnico Technical Sector
La tecnología está orientada al área química, más específicamente, corresponde a un sistema y un proceso para la producción continua de material nanométrico.  The technology is oriented to the chemical area, more specifically, it corresponds to a system and a process for the continuous production of nanometric material.
Técnica Anterior Previous Technique
Hoy en día, no es posible encontrar en el mercado equipos que garanticen la obtención de nanopartículas o algún tipo de nanoestructuras a gran escala, las que cada vez son más requeridas en los rubros de la cosmética, pinturas, recubrimientos, plásticos y polímeros, empaques, entre otros. Una de las limitaciones que se presenta es este campo, es la falta de métodos químicos o físico de síntesis masiva para la obtención de nanopartículas a alta escala, más aún la falta de métodos de separación avanzada para clasificar las nanoestructuras por tamaño y forma, dificulta extrapolar su campo de acción a nivel industrial.  Nowadays, it is not possible to find in the market equipment that guarantees the obtaining of nanoparticles or some type of large-scale nanostructures, which are increasingly required in the areas of cosmetics, paints, coatings, plastics and polymers, packaging , among others. One of the limitations presented is this field, it is the lack of chemical or physical methods of mass synthesis for obtaining large-scale nanoparticles, moreover the lack of advanced separation methods to classify the nanostructures by size and shape, makes it difficult extrapolate its field of action at the industrial level.
Una de las técnicas que ha sido utilizada corresponde a la descarga de arco, siendo el grupo de Lin y colaboradores el más representativo en la obtención de: ZnO (2007), CuO (2005) y Au (2007). Su técnica consiste en realizar el arco eléctrico en agua que actúa como agente oxidante, aunque no utiliza oxígeno para la síntesis, su desventaja radica en que la escala de producción es menor que cuando se utiliza oxígeno, y además, efectos de polarización limitan la técnica. Por otra parte, Zhu y colaboradores (2007) obtuvieron nanobarras de ZnO realizando el arco eléctrico en la cámara de una evaporadora, y Yang (2010) por su parte sintetizó tetrápodos, pero al igual que la síntesis en medio acuosa la escala de producción de este tipo de nanoestructuras es bajo. La descarga de arco genera un plasma a altas temperaturas que involucra átomos metálicos muy reactivos, los cuales en presencia de un gas oxidante o reductor pueden reaccionar produciendo estructuras que crecen. El principio es sencillo y se basa en generar controladamente a una velocidad, ángulos y voltaje constante, un corto circuito entre dos materiales precursores hasta la generación del plasma.  One of the techniques that has been used corresponds to the arc discharge, the Lin and collaborators group being the most representative in obtaining: ZnO (2007), CuO (2005) and Au (2007). Its technique consists in performing the electric arc in water that acts as an oxidizing agent, although it does not use oxygen for synthesis, its disadvantage is that the production scale is smaller than when oxygen is used, and in addition, polarization effects limit the technique . On the other hand, Zhu et al. (2007) obtained ZnO nanobars by performing the electric arc in the chamber of an evaporator, and Yang (2010) in turn synthesized tetrapods, but like the synthesis in aqueous medium the production scale of This type of nanostructures is low. The arc discharge generates a plasma at high temperatures that involves highly reactive metal atoms, which in the presence of an oxidizing or reducing gas can react producing growing structures. The principle is simple and is based on generating a short circuit between two precursor materials until plasma generation is controlled at a constant speed, angles and voltage.
Este método puede ser utilizado con arco seco o sumergido, para el primer caso presenta como inconvenientes que el equipo sólo tiene un electrodo variable y no incorpora cámara de acumulación por lo que la cámara de reacción actúa como ambas. El material sintetizado se mezcla entonces con el residuo del ánodo o el cátado que se depositan en el fondo de la cámara de reacción (cámara de cuarzo), dificultando su separación. El sobrecalentamiento del sistema conduce a la pérdida de la presión, por lo que es probable que en el caso de la síntesis de nanoestructuras de óxidos se obtengan mezclas de estructuras metálicas y oxidadas. El proceso no es continuo y el espesor de los 00056 This method can be used with dry or submerged arc, for the first case it presents as disadvantages that the equipment only has a variable electrode and does not incorporate an accumulation chamber, so the reaction chamber acts as both. The synthesized material is then mixed with the residue of the anode or the cathode that is deposited in the bottom of the reaction chamber (quartz chamber), making its separation difficult. Overheating of the system leads to pressure loss, so it is likely that in the case of the synthesis of oxide nanostructures mixtures of metal and oxidized structures are obtained. The process is not continuous and the thickness of the 00056
electrodos aumenta el poder de consumo de la fuente, requiriendo mayor voltaje. Generalmente, el ánodo termina en una punta para reducir el voltaje de operación del sistema, cuando esto se lleva a cabo, el arco generado parte la punta por sobrecalentamiento lo que ocurre rápidamente. Esto es muy contraproducente por la pérdida de eficiencia del equipo y por el bajo rendimiento de la reacción. El segundo caso, al igual que la síntesis en seco, no está acondicionada una separación de la cámara de acumulación con la cámara de reacción, lo que conlleva a producir mezclas de residuo con el material sintetizado. Por otra parte, el material residual queda en la misma solución donde se encuentran las nanoestructuras dispersas dificultando la separación de estas últimas. No existe continuidad en ninguno de los electrodos, ya que estos deben estar, generalmente, fijos y su movimiento está limitado a una pieza que los pone en contacto entre sí, presionándolos por uno de sus extremos, lo que explica que deben tener un espesor considerable para evitar que se doblen. El líquido debe ser generalmente agua, ya que los solventes orgánicos son inflamables. Por último la cantidad de material que se obtiene es pequeña. electrodes increases the power consumption of the source, requiring higher voltage. Generally, the anode ends at a point to reduce the operating voltage of the system, when this is carried out, the arc generated splits the tip due to overheating which happens quickly. This is very counterproductive due to the loss of efficiency of the equipment and the poor performance of the reaction. The second case, like dry synthesis, is not conditioned a separation of the accumulation chamber with the reaction chamber, which leads to producing mixtures of residue with the synthesized material. On the other hand, the residual material remains in the same solution where the dispersed nanostructures are found, making it difficult to separate them. There is no continuity in any of the electrodes, since these must be generally fixed and their movement is limited to a piece that puts them in contact with each other, pressing them at one end, which explains that they must have a considerable thickness to avoid bending. The liquid should generally be water, since organic solvents are flammable. Finally, the amount of material obtained is small.
En base a los antecedentes, se hace necesario el desarrollo de tecnologías que permitan la producción masiva de nanopartículas, para así cubrir una creciente demanda de los mercados nacionales y extranjeros.  Based on the background, the development of technologies that allow the mass production of nanoparticles is necessary, in order to meet a growing demand from domestic and foreign markets.
Divulgación de la Invención Disclosure of the Invention
La presente tecnología corresponde a un sistema y un proceso para la producción de material nanométrico, en forma continua, eficiente y económica. Dicho sistema comprende un dispositivo de síntesis de descarga de arco en atmósfera controlada, el cual requiere como único precursor algún material metálico del tipo preferente Al, Cu, Zn, Mo, Ag y Ni.  The present technology corresponds to a system and a process for the production of nanometric material, in a continuous, efficient and economic way. Said system comprises an arc discharge synthesis device in a controlled atmosphere, which requires as a single precursor some metallic material of the preferred type Al, Cu, Zn, Mo, Ag and Ni.
Este sistema es sencillo en su operación y puede ser del tipo compacto o integrado, dependiendo del propósito para el cual se requiera. Es seguro, no contaminante, eficiente con una capacidad de conversión superior al 90 % y faculta la producción a partir de residuos reutilizables. Además, permite ampliar el campo de acción ya que no sólo facilita la elaboración de nanoestructuras del tipo níquel, zinc, cobre y aluminio, sino que además permite la producción de aleaciones nanométricas o partículas bimetálicas e incluso óxidos dopados.  This system is simple in operation and can be of the compact or integrated type, depending on the purpose for which it is required. It is safe, non-polluting, efficient with a conversion capacity greater than 90% and empowers production from reusable waste. In addition, it allows to expand the field of action since it not only facilitates the elaboration of nanostructures of the nickel, zinc, copper and aluminum type, but also allows the production of nanometric alloys or bimetallic particles and even doped oxides.
La seguridad del sistema se basa, principalmente, en que éste posee zonas cerradas y las uniones entre cámara de reacción y acumulación también se encuentran herméticamente cerradas, por lo tanto no existen fugas de material en el proceso de síntesis, lo que lo hace seguro y no contaminante. La zona de reacción que podría considerarse la más peligrosa, ya que es donde se produce la descarga de arco eléctrico, se encuentra bien acondicionada con una cámara robusta y aislada eléctricamente del arco por medio de una pieza de conexión polimérica, lo cual evitaría una posible descarga eléctrica fuera de la cámara. The safety of the system is based mainly on the fact that it has closed areas and the joints between the reaction chamber and the accumulation are also tightly closed, therefore there are no material leaks in the synthesis process, which makes it safe and secure. non-polluting. The reaction zone that could be considered the most dangerous, since it is where the electric arc discharge occurs, is well conditioned with a robust chamber and electrically isolated from the arc by means of a polymeric connection piece, which would avoid a possible electric shock out of the camera.
El sistema para la producción en forma continua de material nanométrico está compuesto por 3 secciones: (a) alimentación, (b) descarga y reacción, y (c) acumulación y relajación. Para una mejor comprensión de la tecnología, en la Figura 1 se muestran las partes que componen las diferentes secciones del sistema, donde (a) corresponde a los soldadores, (b) al precursor "1", (c) al precursor "2", (d) a la entrada de gas, (e) a la fuente de voltaje, (f) al flujo de oxígeno, (g) al material precursor, (h) al arco eléctrico, (i) a las nanopartículas, (j) a la entrada de gas que puede ser del tipo nitrógeno, oxígeno o argón, y (k) corresponde a una válvula de vacío. The system for the continuous production of nanometric material consists of 3 sections: (a) feeding, (b) discharge and reaction, and (c) accumulation and relaxation. For a better understanding of the technology, Figure 1 shows the parts that make up the different sections of the system, where (a) corresponds to the welders, (b) to the precursor "1", (c) to the precursor "2" , (d) at the gas inlet, (e) at the voltage source, (f) at the flow of oxygen, (g) at the precursor material, (h) at the electric arc, (i) at the nanoparticles, (j ) to the gas inlet that can be of the nitrogen, oxygen or argon type, and (k) corresponds to a vacuum valve.
El detalle de las secciones del sistema es el siguiente:  The detail of the system sections is as follows:
a. - Sección de alimentación: to. - Feeding section:
Corresponde a la parte del sistema que suministra los electrodos precursores en forma continua a la sección de generación de arco eléctrico. Esta sección está compuesta por equipos de soldar (soldadores) localizados en paralelo, los cuales se deben unir por medio de unos gatillos de partida de ambas soldadoras para que trabajen al mismo tiempo, los cuales operan entre 30 - 80 amperes. Esta sección además incluye a los alimentadores de gases y a su respectivo sistema de controladores de flujo digital que operan hasta 500 mlJmin.  It corresponds to the part of the system that supplies the precursor electrodes continuously to the electric arc generation section. This section is composed of welding equipment (welders) located in parallel, which must be joined by means of starting triggers of both welders to work at the same time, which operate between 30 - 80 amps. This section also includes the gas feeders and their respective system of digital flow controllers that operate up to 500 mlJmin.
El espesor de los electrodos precursores se encuentra entre 1 - 2 mm, permitiendo utilizar voltajes bajos, lo que disminuye la capacidad de consumo del equipo.  The thickness of the precursor electrodes is between 1-2 mm, allowing low voltages to be used, which decreases the consumption capacity of the equipment.
b. - Sección de descarga y reacción: b. - Download and reaction section:
Corresponde a la cámara de reacción que es considerada el corazón del sistema, ya que en ella se forma el arco eléctrico entre los electrodos precursores, y es donde ocurre la reacción para la producción de nanoestructuras propiciada por el flujo de gases controlado. La temperatura del arco eléctrico puede alcanzar valores de hasta 1000°C.  It corresponds to the reaction chamber that is considered the heart of the system, since it forms the electric arc between the precursor electrodes, and this is where the reaction for the production of nanostructures caused by the controlled gas flow occurs. The temperature of the electric arc can reach values of up to 1000 ° C.
La cámara de reacción, elaborada de acero inoxidable, tiene preferentemente forma longitudinal ya que beneficia el desplazamiento de las partículas y resiste mejor las presiones internas. Además está provista en la parte externa por un sistema de refrigeración que evita el sobrecalentamiento de la zona de reacción y descarga, lo que previene que se funda la cámara. En la Figura 2 se muestra un detalle de las partes que componen la cámara, donde: (I) corresponde a electrodos de cobre por donde pasa el precursor; (m) un tubo de gas transportador, de acero inoxidable, el cual se ubica a al menos 2 cm de la zona de arco para facilitar la oxidación de las nanopartículas; (n) corresponde a un polímero aislante que presenta forma preferente del tipo cilindro; (o) es una tapa de acero inoxidable, la cual va atornillada en la cámara de reacción y soporta a los electrodos, al polímero aislante y los conectores a la fuente de poder (soldadores); y (p) es el cuerpo (cubierta) de la cámara de reacción de acero inoxidable.  The reaction chamber, made of stainless steel, preferably has a longitudinal shape since it benefits the movement of the particles and better resists internal pressures. It is also provided on the outside by a cooling system that prevents overheating of the reaction and discharge zone, which prevents the chamber from melting. A detail of the parts that make up the chamber is shown in Figure 2, where: (I) corresponds to copper electrodes where the precursor passes; (m) a stainless steel conveyor gas tube, which is located at least 2 cm from the arc zone to facilitate oxidation of the nanoparticles; (n) corresponds to an insulating polymer having a preferred shape of the cylinder type; (o) is a stainless steel cover, which is screwed into the reaction chamber and supports the electrodes, the insulating polymer and the connectors to the power source (welders); and (p) is the body (cover) of the stainless steel reaction chamber.
El sistema de alimentación del material precursor y de los gases que producen la reacción está formado por la extensión de cobre (I) y el inyector de gases (m), donde las extensiones de cobre (I) son las guías del material precursor proveniente de las máquinas soldadoras. En el extremo opuesto de las extensiones (I), se conectan unos cables "tierra" de las soldadoras de tal manera permitir el flujo de corriente eléctrica al momento de la descarga de arco. Dichas conexiones, a su vez, van adosadas a la tapa (o) por medio del conector polimérico (n), que permite aislar las puntas eléctricamente con el resto de la cámara de reacción. Este conector (n) corresponde a un polímero aislante del tipo acetal con forma cilindrica, capaz de soportar las altas temperaturas que se producen en el interior de la cámara de reacción, y que tiene como propósito la mantención alineada del sistema de alimentación del material precursor y de los gases para la fabricación de las nanopartículas, además de soportador los electrodos para evitar corto circuitos. Por otra parte, la tapa (o) y el inyector de gases con forma de tubo (m) se elaboran de acero inoxidable y se unen mediantes pernos M10, de tal manera de evitar fugas de nanopartículas al exterior. Dicho tubo (m) posee una perforación de entre 20 - 30 mm en el extremo donde termina la cámara de reacción, para guiar el flujo de las nanopartículas a la cámara de acumulación, además evita una sobre presión del sistema, permitiendo su operación en forma continua. The feed system of the precursor material and the gases that produce the reaction is formed by the copper extension (I) and the gas injector (m), where the copper extensions (I) are the guides of the precursor material from welding machines. At the opposite end of the extensions (I), "ground" wires of the welders are connected in such a way to allow the flow of electric current at the time of the arc discharge. These connections, in turn, are attached to the cover (o) by means of the polymeric connector (n), which allows the tips to be electrically insulated with the rest of the reaction chamber. This connector (n) corresponds to an insulating polymer of the acetal type with a cylindrical shape, capable of withstanding the high temperatures that occur inside the reaction chamber, and whose purpose is the aligned maintenance of the precursor material feed system. and of the gases for the manufacture of the nanoparticles, in addition to supporting the electrodes to avoid short circuits. On the other hand, the cover (o) and the tube-shaped gas injector (m) are made of stainless steel and M10 bolts are attached, in order to avoid leaking nanoparticles to the outside. Said tube (m) has a perforation of between 20-30 mm at the end where the reaction chamber ends, to guide the flow of the nanoparticles to the accumulation chamber, in addition to preventing an overpressure of the system, allowing its operation in the form keep going.
En esta sección, los materiales precursores provenientes de la sección de alimentación son dirigidos al interior de la cámara de reacción a una velocidad entre 1 - 13 m/min, además se introduce un flujo de gas que puede ser el tipo 02, N2 ó Ar, el cual opera a presión atmosférica y a un flujo entre 50 - 500 mL/min que ingresan por medio del inyector de gases (m). Para evitar que la reacción sea interrumpida, los precursores son introducidos en forma horizontal y en forma continua a la cámara de reacción de arco eléctrico. In this section, the precursor materials from the feed section are directed to the interior of the reaction chamber at a speed between 1 - 13 m / min, in addition a gas flow that can be the type 0 2 , N 2 is introduced or Ar, which operates at atmospheric pressure and at a flow between 50-500 mL / min that enters through the gas injector (m). To prevent the reaction from being interrupted, the precursors are introduced horizontally and continuously to the electric arc reaction chamber.
El equipo está facultado para una producción continua y una eficiencia del 90 %, donde la reacción ocurre a través de pulsos para evitar que los electrodos se quemen. Los pulsos operan en una razón 2:1 para encendido (power on) y apagado (power off), con un máximo de hasta 20 segundos de encendido, c- Sección de acumulación y relajación:  The equipment is empowered for continuous production and 90% efficiency, where the reaction occurs through pulses to prevent the electrodes from burning. The pulses operate in a 2: 1 ratio for on (power on) and off (power off), with a maximum of up to 20 seconds on, c- Accumulation and relaxation section:
Las nanoestructuras sintetizadas son transportadas con un flujo de gas constante a la sección de acumulación y relajación por medio de un tubo de cuarzo (transparente y resistente) que tiene un diámetro que varía entre 8 - 12 cm, el cual se localiza desde el término de la cámara de reacción hasta la cámara de acumulación, pasando por un sistema de aceleración de carga superficial (ASC) para evitar fugas de radiación. Este sistema de aceleración corresponde a un horno convencional, que opera entre 10 - 1000 watt de potencia, y que se encuentra acondicionado en las zonas laterales por dos orificios de diámetro entre 8 - 12 cm, y que se ubica en forma perpendicular al magnetrón de microondas. El microondas es colocado en una caja de fibras de carbón y los orificios se deben sellar con un material especial del tipo resina epóxica, que bloquea las microondas. El ASC además cuenta con un sistema de seguridad basado en 2 detectores de fuga de microondas, que dan cuenta de alarma cuando las fugas son superiores a 2 watt/m2. En la Figura 4 se muestra un detalle del sistema ASC, donde (q) corresponde al conector a la cámara de reacción; (r) es el conector a la cámara de acumulación; (s) representa al tubo de cuarzo; (t) corresponde a los detectores de microondas; (u) es una malla bloqueadora de microondas; (v) es la caja de fibra de carbono; y (w) corresponde al microondas. Las nanoestructuras permanecen en la cámara de acumulación y relajación entre 30 - 60 min. Es en este lugar donde se sigue el proceso de oxidación cuando se utiliza oxígeno como gas, dando lugar a productos como ZnO, AL203, CuO, AgO, Ni203, entre otros; y en el caso de utilizar nitrógeno se pueden obtener productos del tipo nanoestructuras metálicas de Zn, Al, Cu, Mo, Ag y Ni. Además, en esta sección se termina de completar el proceso de nucleación y crecimiento de las nanoestructuras. Finalizado este proceso, las nanoestructuras decantan para su posterior extracción. The synthesized nanostructures are transported with a constant gas flow to the accumulation and relaxation section by means of a quartz tube (transparent and resistant) that has a diameter that varies between 8-12 cm, which is located from the end of the reaction chamber to the accumulation chamber, through a surface charge acceleration system (ASC) to prevent radiation leakage. This acceleration system corresponds to a conventional furnace, which operates between 10 - 1000 watts of power, and which is conditioned in the lateral areas by two holes with a diameter between 8 - 12 cm, and which is located perpendicular to the magnetron of microwave. The microwave is placed in a box of carbon fibers and the holes must be sealed with a special epoxy resin type material, which blocks the microwaves. The ASC also has a security system based on 2 microwave leak detectors, which provide an alarm when leaks are greater than 2 watt / m 2 . A detail of the ASC system is shown in Figure 4, where (q) corresponds to the connector to the reaction chamber; (r) is the connector to the accumulation chamber; (s) represents the quartz tube; (t) corresponds to microwave detectors; (u) is a microwave blocking mesh; (v) is the carbon fiber box; and (w) corresponds to the microwave. The nanostructures remain in the accumulation and relaxation chamber for 30-60 min. It is in this place where the oxidation process is followed when oxygen is used as a gas, giving rise to products such as ZnO, AL 2 0 3 , CuO, AgO, Ni 2 0 3 , among others; and in the case of using nitrogen, products of the metal nanostructures of Zn, Al, Cu, Mo, Ag and Ni can be obtained. In addition, this section completes the process of nucleation and growth of nanostructures. Once this process is finished, the nanostructures decant for later extraction.
Como las partículas son arrastradas por el gas a esta cámara, no se mezclan con los residuos que quedan en la cámara de reacción justo debajo del punto de generación de arco.  As the particles are carried by the gas into this chamber, they do not mix with the residues that remain in the reaction chamber just below the arc generation point.
Esta sección corresponde físicamente a una cámara denominada comúnmente como caja de guantes, elaborada de materiales con particularidades como la transparencia y resistencia, tal como el acrílico. Esta cámara se encuentra acondicionada en sus costados con cavidades provistas de guantes de neopreno de modo de facilitar la manipulación de las nanoestructuras al momento de la extracción. This section physically corresponds to a chamber commonly referred to as a glove box, made of materials with particularities such as transparency and resistance, such as acrylic. This chamber is fitted on its sides with cavities provided with neoprene gloves in order to facilitate the manipulation of the nanostructures at the time of extraction.
d.- Opcionalmente, el sistema está provisto de magnetrones de microondas convencionales con potencia variable. Corresponden a un paso intermedio donde el tubo de cuarzo pasa por el interior de un microondas perforado antes de llegar a la cámara de acumulación. d.- Optionally, the system is provided with conventional microwave magnetrons with variable power. They correspond to an intermediate passage where the quartz tube passes through the inside of a perforated microwave before reaching the accumulation chamber.
Las ventajas que presenta el sistema para la producción de material nanométrico son:  The advantages of the system for the production of nanometric material are:
• La sección de alimentación permite la continuidad de funcionamiento del equipo suministrando el material precursor.  • The feeding section allows the continuity of the equipment to be supplied by supplying the precursor material.
• La continuidad de la síntesis puede ser ininterrumpida, ya que el sistema de alimentación se realiza a través de un motor que suministra el material precursor a la cámara de descarga, donde dicho motor tiene una potencia variable, lo que permite la variación de la velocidad del electrodo aumentando o disminuyendo el tiempo de reacción.  • The continuity of the synthesis can be uninterrupted, since the feeding system is realized through a motor that supplies the precursor material to the discharge chamber, where said motor has a variable power, which allows the variation of the speed of the electrode increasing or decreasing the reaction time.
• El material precursor es conducido dentro de un conducto aislante a la cámara de descarga, el tubo transportador se encuentra aislado eléctricamente del material y conectado a la fuente de poder.  • The precursor material is conducted inside an insulating conduit to the discharge chamber, the conveyor tube is electrically isolated from the material and connected to the power source.
• Tanto el sistema eléctrico y como el sistema de gas del sistema se encuentran conectados a interruptores para su desconexión automática al momento de sobretensiones o presiones, permitiendo la seguridad durante la operación.  • Both the electrical system and the system's gas system are connected to switches for automatic disconnection at the time of overvoltages or pressures, allowing safety during operation.
• El equipo permite bajos niveles de residuos de material precursor, lo que se traduce en una conversión superior al 90%. Ejemplo de aplicación • The equipment allows low levels of precursor material waste, which translates into a conversion greater than 90%. Application example
Obtención de nanopartículas de óxido de zinc en forma continua a partir del sistema con arco en atmósfera controlada.  Obtaining zinc oxide nanoparticles continuously from the arc system in a controlled atmosphere.
Utilizando alambres precursores de zinc (Zn) mezclados con oxígeno gaseoso (O2) se procedió a la obtención de nanopartículas de óxido de zinc (Zn02), de acuerdo a la siguiente reacción: Using zinc precursor wires (Zn) mixed with gaseous oxygen (O 2 ), zinc oxide nanoparticles (Zn02) were obtained, according to the following reaction:
1 arco eléctrico  1 electric arc
Zn + - 02 ZnO Zn + - 0 2 ZnO
El alambre precursor utilizado presentaba una pureza del 99,99% (Sulzel metco) con un diámetro de 2,0 mm, y el gas precursor fue suministrado por la empresa Linde. La velocidad del alambre fue ajustada en 1 ,5 m/minutos y el flujo de gas fue de 500 mL/min. La fuente de poder (soldadores) fue ajustada a un voltaje de 40 -60 V. El alambre fue introducido al interior de la máquina de soldar ajustado y sincronizado, de tal manera de que no se interrumpiera su paso al momento de la realización del arco. The precursor wire used had a purity of 99.99% (Sulzel metco) with a diameter of 2.0 mm, and the precursor gas was supplied by Linde. The wire speed was adjusted in 1.5 m / minutes and the gas flow was 500 mL / min. The power source (welders) was adjusted to a voltage of 40 -60 V. The wire was introduced into the adjusted and synchronized welding machine, so that its passage was not interrupted at the time of the arc. .
Paralelamente se ensambló la cámara de reacción, las puntas terminales donde se realiza el arco eléctrico fueron ajustadas a los electrodos para evitar que se movieran durante el proceso de reacción. El sistema de aceleración de carga superficial fue conectado y encendido. La cámara de acumulación fue previamente limpiada y sellada para evitar que el polvo nanométrico se perdiera. El sistema fue puesto a punto para la reacción (velocidad del alambre, flujo de gas, controladores y máquinas de soldar encendido, acelerador y detectores de fuga de microondas encendidos).  At the same time the reaction chamber was assembled, the terminal points where the electric arc is made were adjusted to the electrodes to prevent them from moving during the reaction process. The surface charge acceleration system was connected and turned on. The accumulation chamber was previously cleaned and sealed to prevent the nanometric dust from being lost. The system was tuned for the reaction (wire speed, gas flow, controllers and welding machines on, accelerator and microwave leak detectors on).
La cámara de reacción operó a temperatura ambiente al comienzo de la reacción de arco, la cual fue llevada a cabo por pulsos de 10 segundos y pulsos de descanso de 5 segundos para un total de 100 segundos. Después del arco eléctrico, el interior de la cámara aumentó la temperatura hasta 500 °C, la cual fue controlada por el sistema de refrigeración de intercambio calórico que poseen las paredes de la cámara de reacción, donde se utilizó agua como refrigerante. The reaction chamber operated at room temperature at the beginning of the arc reaction, which was carried out by pulses of 10 seconds and resting pulses of 5 seconds for a total of 100 seconds. After the electric arc, the interior of the chamber increased the temperature to 500 ° C, which was controlled by the heat exchange cooling system that the walls of the reaction chamber possess, where water was used as a refrigerant.
Posterior a la reacción, el material fue dejado en relajación en la cámara de acumulación hasta que la carga superficial de las nanoestructuras se estabilizara, este proceso duró aproximadamente 45 minutos. Después de esto, el material fue recolectado y analizado por TEM para verificar el tamaño obtenido según las condiciones de reacción utilizada. En la Figura 3 se pueden apreciar dos vistas de las nanopartículas de óxido de zinc obtenidas, donde el tamaño de éstas se distribuyó entre 20 - 40 nm.  After the reaction, the material was left in relaxation in the accumulation chamber until the surface charge of the nanostructures stabilized, this process lasted approximately 45 minutes. After this, the material was collected and analyzed by TEM to verify the size obtained according to the reaction conditions used. Figure 3 shows two views of the zinc oxide nanoparticles obtained, where the size of these was distributed between 20-40 nm.
El material no reaccionante y el material nanométrico producido fue pesado, obteniendo una taza de conversión del 95 %. En 100 segundos de reacción se utilizaron 37 gramos de Zn metálico y se obtuvieron 33,3 gramos de óxido de zinc nano particularizado. The non-reactive material and the nanometric material produced was heavy, obtaining a conversion rate of 95%. In 100 seconds of reaction 37 grams of metallic Zn were used and 33.3 grams of particularized nano zinc oxide were obtained.

Claims

Reivindicaciones  Claims
1- Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico CARACTERIZADO porque comprende los siguientes componentes:  1- A system with electric arc in a controlled atmosphere, which operates continuously for the production of CHARACTERIZED nanometric material because it comprises the following components:
a. una sección de alimentación, compuesta por equipos de soldar, electrodos precursores y alimentadores de gases;  to. a feeding section, consisting of welding equipment, precursor electrodes and gas feeders;
b. una sección de descarga y reacción, donde se efectúa la reacción de arco eléctrico, la cual que está compuesta por una cámara de reacción de acero inoxidable y de forma longitudinal para favorecer el desplazamiento de las partículas;  b. a discharge and reaction section, where the electric arc reaction is carried out, which is composed of a stainless steel reaction chamber and longitudinally to favor the displacement of the particles;
c. un sistema de aceleración de carga superficial (ASC); y  C. a surface charge acceleration system (ASC); Y
d. una sección de acumulación y relajación, donde se completa el proceso de nucleación y crecimiento de las nanoestructuras, y que está compuesta por una cámara acondicionada en los costados de cavidades provistas de guantes y de un conector de cuarzo.  d. a section of accumulation and relaxation, where the process of nucleation and growth of the nanostructures is completed, and which is composed of a chamber fitted on the sides of cavities provided with gloves and a quartz connector.
2. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO porque, opcionalmente, el sistema comprende magnetrones de microondas, donde en su interior pasa el conector de cuarzo que conecta con la cámara de acumulación.  2. - A system with electric arc in a controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED because, optionally, the system comprises microwave magnetrons, where the quartz connector that connects with The accumulation chamber.
3. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 3. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1
CARACTERIZADO porque los electrodos precursores se introducen en forma horizontal y continua a la cámara de reacción de arco eléctrico. CHARACTERIZED because the precursor electrodes are introduced horizontally and continuously to the electric arc reaction chamber.
4. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 4. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1
CARACTERIZADO porque la cámara de reacción comprende: electrodos de cobre (I) por donde pasa el precursor; un tubo de gas transportador (m), el cual se ubica a al menos 2 cm de la zona de arco; un polímero aislante del tipo acetal (n); una tapa de acero inoxidable (o) y una cubierta (p) de dicha cámara.CHARACTERIZED because the reaction chamber comprises: copper electrodes (I) through which the precursor passes; a conveyor gas tube (m), which is located at least 2 cm from the arc zone; an insulating polymer of the acetal type (n); a stainless steel cover (o) and a cover (p) of said chamber.
5.- Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicaciones 1 y 4 CARACTERIZADO porque el polímero aislante (n) presenta forma preferente del tipo cilindro y actúa como soporte de los electrodos. 5. A system with electric arc in a controlled atmosphere, which operates continuously for the production of nanometric material according to claims 1 and 4 CHARACTERIZED because the insulating polymer (n) has a preferred cylinder type and acts as a support for the electrodes.
6. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicaciones 1 y 4 CARACTERIZADO porque el tubo de gas transportador (m) se ubica a al menos 2 cm de la zona de arco y presenta una perforación entre 20 - 30 mm en el extremo donde termina cámara de reacción.  6. - A system with electric arc in a controlled atmosphere, which operates continuously for the production of nanometric material according to claims 1 and 4 CHARACTERIZED because the conveyor gas tube (m) is located at least 2 cm from the arc zone and has a perforation between 20-30 mm at the end where the reaction chamber ends.
7. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicaciones 1 y 4, CARACTERIZADO porque la tapa (o) y el inyector de gases (m) se unen mediante pernos M 10. 7. - A system with electric arc in a controlled atmosphere, which operates continuously for the production of nanometric material according to claims 1 and 4, CHARACTERIZED because the cover (o) and the gas injector (m) are connected by bolts M 10 .
8. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO por el conector de cuarzo es preferentemente un tubo transparente, que permite el paso del material con el gas hacia la cámara de acumulación. 8. - A system with electric arc in a controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED by the quartz connector is preferably a transparent tube, which allows the material to pass through the gas into the chamber. of accumulation
9. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO porque la cámara de reacción está provista en la parte externa por un sistema de refrigeración.  9. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED because the reaction chamber is provided externally by a cooling system.
10. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO porque las uniones entre la cámara de reacción y acumulación están herméticamente selladas.  10. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED because the joints between the reaction chamber and accumulation are hermetically sealed.
11. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO porque el sistema ASC es un horno convencional, que opera entre 10 - 1000 watt de potencia, y que se encuentra acondicionado en las zonas laterales por dos orificios de diámetro entre 8 - 12 cm, y que se ubica en forma perpendicular al magnetrón de microondas.  11. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED because the ASC system is a conventional furnace, which operates between 10 - 1000 watt of power, and is conditioned in the lateral zones by two holes of diameter between 8 - 12 cm, and that is located perpendicular to the microwave magnetron.
12. - Un sistema con arco eléctrico en atmósfera controlada, que opera en forma continua para la producción de material nanométrico según reivindicación 1 CARACTERIZADO porque el sistema ASC está provisto de un sistema de seguridad basado en al menos 2 detectores de fuga de microondas, que dan cuenta de alarma cuando las fugas son superiores a 2 watt/m2. 12. - A system with electric arc in controlled atmosphere, which operates continuously for the production of nanometric material according to claim 1 CHARACTERIZED because the ASC system is provided with a safety system based on at least 2 microwave leak detectors, which realize alarm when leaks are greater than 2 watt / m 2 .
13.- Un proceso para obtener material nanométrico a partir del sistema con arco eléctrico en atmósfera controlada, según reivindicación 1 CARACTERIZADO porque comprende las siguientes etapas: 13.- A process to obtain nanometric material from the system with electric arc in controlled atmosphere, according to claim 1 CHARACTERIZED because it comprises the following steps:
a. alimentación: se deben suministrar en forma continua los precursores, los alimentadores de gases y se deben localizar los soldadores en forma paralela;  to. Feeding: precursors, gas feeders must be supplied continuously and welders must be located in parallel;
b. reacción: los precursores se deben dirigir al interior de la cámara de reacción a una velocidad entre 1 - 13 m/min y el flujo de gas entre 50 - 500 mlJmin por medo de un inyector de gases, donde la reacción se inicia a temperatura ambiente a través de pulsos eléctricos para sintetizar las nanoestructuras; y  b. reaction: the precursors must be directed into the reaction chamber at a speed between 1 - 13 m / min and the gas flow between 50 - 500 mlJmin by means of a gas injector, where the reaction starts at room temperature through electrical pulses to synthesize the nanostructures; Y
c. acumulación y relajación: a través de un conector y con un flujo constante de gas se introduce el material a la cámara de acumulación durante 30 - 60 min, para completar el proceso de nucleación y crecimiento de las nanoestructuras.  C. accumulation and relaxation: through a connector and with a constant flow of gas the material is introduced to the accumulation chamber for 30-60 min, to complete the process of nucleation and growth of the nanostructures.
14.- Un proceso para obtener material nanométrico según reivindicación 13 CARACTERIZADO porque los gases operan hasta 500 mL/min y los soldadores entre 30 - 80 amperes. 14. A process for obtaining nanometric material according to claim 13 CHARACTERIZED because the gases operate up to 500 mL / min and the welders between 30-80 amps.
15.- Un proceso para obtener material nanométrico según reivindicación 13 CARACTERIZADO porque los pulsos operan en una razón 2: 1 para encendido y apagado, hasta un máximo de 20 segundos de encendido. 15. A process for obtaining nanometric material according to claim 13 CHARACTERIZED because the pulses operate in a 2: 1 ratio for switching on and off, up to a maximum of 20 seconds of switching on.
16.- Un proceso para obtener material nanométrico según reivindicación 13 CARACTERIZADO porque el espesor de los electrodos debe variar entre 1 - 2 mm. 16. A process for obtaining nanometric material according to claim 13 CHARACTERIZED because the thickness of the electrodes must vary between 1-2 mm.
17. - Un proceso para obtener material nanométrico según reivindicación 13 CARACTERIZADO porque el gas es del tipo oxígeno, nitrógeno o argón.  17. - A process for obtaining nanometric material according to claim 13 CHARACTERIZED because the gas is of the oxygen, nitrogen or argon type.
18. - Un proceso para obtener material nanométrico según reivindicación 13 CARACTERIZADO porque tiene una conversión superior al 90%.  18. - A process for obtaining nanometric material according to claim 13 CHARACTERIZED because it has a conversion greater than 90%.
PCT/CL2014/000056 2013-11-21 2014-10-22 Continuous method and system based on non-submerged arc discharge with controlled atmosphere for the production of nanometric material WO2015074161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3340-2013 2013-11-21
CL2013003340A CL2013003340A1 (en) 2013-11-21 2013-11-21 Electric arc system in a controlled atmosphere, which includes a feed section, a discharge and reaction section, followed by a surface charge acceleration system, which leads to an accumulation and relaxation section; and continuous process for the production of nanometric material in said system.

Publications (1)

Publication Number Publication Date
WO2015074161A1 true WO2015074161A1 (en) 2015-05-28

Family

ID=53178764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000056 WO2015074161A1 (en) 2013-11-21 2014-10-22 Continuous method and system based on non-submerged arc discharge with controlled atmosphere for the production of nanometric material

Country Status (2)

Country Link
CL (1) CL2013003340A1 (en)
WO (1) WO2015074161A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638403B1 (en) * 2000-07-07 2003-10-28 Hitachi, Ltd. Plasma processing apparatus with real-time particle filter
US6794599B2 (en) * 2001-03-01 2004-09-21 Sony Corporation Device and method for manufacture of carbonaceous material
JP3803757B2 (en) * 2003-09-24 2006-08-02 独立行政法人物質・材料研究機構 Ultrafine particle production equipment
US7153398B2 (en) * 2001-06-01 2006-12-26 Euronano Spa Method for producing fullerene-containing carbon and device for carrying out said method
US7306503B2 (en) * 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
US7666381B2 (en) * 2003-06-10 2010-02-23 Plasmet Corporation Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
US8071906B2 (en) * 2002-05-09 2011-12-06 Institut National De La Recherche Scientifique Apparatus for producing single-wall carbon nanotubes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638403B1 (en) * 2000-07-07 2003-10-28 Hitachi, Ltd. Plasma processing apparatus with real-time particle filter
US6794599B2 (en) * 2001-03-01 2004-09-21 Sony Corporation Device and method for manufacture of carbonaceous material
US7153398B2 (en) * 2001-06-01 2006-12-26 Euronano Spa Method for producing fullerene-containing carbon and device for carrying out said method
US8071906B2 (en) * 2002-05-09 2011-12-06 Institut National De La Recherche Scientifique Apparatus for producing single-wall carbon nanotubes
US7306503B2 (en) * 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
US7666381B2 (en) * 2003-06-10 2010-02-23 Plasmet Corporation Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
JP3803757B2 (en) * 2003-09-24 2006-08-02 独立行政法人物質・材料研究機構 Ultrafine particle production equipment

Also Published As

Publication number Publication date
CL2013003340A1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
ES2662959B1 (en) Composite reinforcement material and obtaining procedure
ES2548096T3 (en) Manual cold plasma device for plasma surface treatment
US20040245087A1 (en) Water discharge in a dielectric barrier discharge system to generate an ozonated water
TW200940154A (en) Plasma scrubber
CN104013985B (en) Portable micro-plasma sterilizer
BR112015025493B1 (en) process and device for thermochemical hardening of workpieces
CN102933490B (en) Method for producing onino-like carbon
CN103945627B (en) A kind of hand-held large area low temperature plasma generating means
WO2003097521A1 (en) Inductively coupled plasma reactor for producing nano-powder
KR20070099345A (en) Dc arc plasmatron and the method using the same
KR20070026675A (en) Microwave plasma nozzle with enhanced plume stability and heating efficiency
KR20110139196A (en) High concentration no2 generating system and method for generating high concentration no2 using the generating system
CN104735893B (en) A kind of low temperature plasma is used for the apparatus and method that slender pipeline sterilizes
CN1937881A (en) Water electrode medium barrier discharge device
CN208964552U (en) A kind of normal pressure microwave plasma reduction removing graphene oxide device
Wang et al. Magnetically enhanced plasma exfoliation of polyaniline-modified graphene for flexible solid-state supercapacitors
WO2015074161A1 (en) Continuous method and system based on non-submerged arc discharge with controlled atmosphere for the production of nanometric material
Korbut et al. Emission properties of an atmospheric-pressure helium plasma jet generated by a barrier discharge
KR101337047B1 (en) Atomspheric pressure plasma apparatus
CN111642052B (en) Flexible slender microplasma jet source and using method
CN108235552B (en) Plasma generation unit having multi-stage vortex structure and exhaust gas treatment device
CN102647844B (en) Device and method for generating large-gap and atmospheric-pressure at low voltage and discharging uniformly
CN105025649B (en) The apparatus and method of inductively hot plasma are generated under a kind of low pressure
JP7130899B2 (en) Plasma device
Mirzaei et al. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863093

Country of ref document: EP

Kind code of ref document: A1