WO2015072814A1 - Method for preparing polyalkylene carbonate resin - Google Patents

Method for preparing polyalkylene carbonate resin Download PDF

Info

Publication number
WO2015072814A1
WO2015072814A1 PCT/KR2014/011080 KR2014011080W WO2015072814A1 WO 2015072814 A1 WO2015072814 A1 WO 2015072814A1 KR 2014011080 W KR2014011080 W KR 2014011080W WO 2015072814 A1 WO2015072814 A1 WO 2015072814A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
zinc
carbonate resin
catalyst
polyalkylene carbonate
Prior art date
Application number
PCT/KR2014/011080
Other languages
French (fr)
Korean (ko)
Inventor
김성경
조현주
강성균
박승영
최현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480062879.0A priority Critical patent/CN105722888B/en
Priority to EP14862413.3A priority patent/EP3048128B1/en
Priority to JP2016526103A priority patent/JP6272473B2/en
Priority to US15/035,458 priority patent/US9732187B2/en
Priority claimed from KR1020140160730A external-priority patent/KR101703275B1/en
Publication of WO2015072814A1 publication Critical patent/WO2015072814A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides, epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Definitions

  • the present invention relates to a method for producing a polyalkylene carbonate resin in which aggregation between catalyst particles is suppressed during polymerization and excellent catalyst activity can be maintained during the polymerization process.
  • such zinc dicarboxylate-based catalysts typically zinc glutarate catalysts, are formed by reacting dicarboxylic acids such as zinc precursors and glutaric acid, and have a form of fine crystalline particles.
  • the zinc dicarboxylate-based catalyst in the form of crystalline particles has often caused a void between the catalyst particles during the polymerization process. If a cross between these catalyst particles occurs, When proceeding the polymerization process for the production of polyalkylene carbonate resin, there is a disadvantage that the sufficient contact area between the reactant and the catalyst is not secured, the polymerization activity by the catalyst is not sufficiently expressed.
  • the present invention provides a method for producing a polyalkylene carbonate resin in which aggregation between catalyst particles is suppressed in polymerization, so that excellent catalytic activity can be maintained during the polymerization process.
  • the present invention includes a step of polymerizing a zinc dicarboxylate-based organic zinc catalyst and a monomer including an epoxide and carbon dioxide in the presence of a dispersant, wherein the dispersant is an alkyl acrylate having 1 to 10 carbon atoms and 1 to 1 carbon atoms.
  • At least one selected from the group consisting of 10 alkylmethacrylates, monocarboxylic acids having 1 to 20 carbon atoms having oxo (0X0) groups in the molecular structure and polyether polymers having alkylene oxide repeat units having 2 to 6 carbon atoms It provides a method for producing a polyalkylene carbonate resin comprising a.
  • a method for preparing a polyalkylene carbonate resin according to an embodiment of the present invention will be described in detail.
  • an epoxide in the presence of a zinc dicarboxylate organic zinc catalyst and a dispersant. And polymerizing a monomer comprising carbon dioxide,
  • the dispersant is an alkyl acrylate having 1 to 10 carbon atoms, an alkyl methacrylate having 1 to 10 carbon atoms, a monocarboxylic acid having 1 to 20 carbon atoms having an oxo (0X0) group in the molecular structure, and an alkylene oxide having 2 to 6 carbon atoms.
  • a method for producing a polyalkylene carbonate resin comprising at least one member selected from the group consisting of polyether polymers having units.
  • a predetermined dispersant more specifically alkyl acrylates of 1 to 10 carbon atoms, alkyl methacrylate of 1 to 10 carbon atoms
  • Particular dispersants of polyether based polymers having monocarboxylic acids having 1 to 20 carbon atoms or alkylene oxide repeating units having 2 to 6 carbon atoms having an oxo (0X0) group in the molecular structure are used.
  • the organozinc catalyst can maintain a more uniform and fine particle state during the polymerization, and thus the contact area with the monomers is in contact with the monomer throughout the polymerization. It can exhibit excellent activity.
  • alkyl acrylate or alkyl having 1 to 10, or 3 to 8 carbon atoms alkyl acrylate or alkyl having 1 to 10, or 3 to 8 carbon atoms.
  • a specific dispersant in the copolymer increases, more specific, examples of such dispersants, haeksil methacrylic jjeyi agent, 3,5-dioxo-nuclear Sano acid, 3,5,7- tree-oxo-dodecanoyl acid, or propylene An oxide (P0) -ethylene oxide (EO) block copolymer etc. are mentioned, Of course, 2 or more types selected from these can also be used together.
  • a zinc dicarboxylate type organic zinc catalyst is used,
  • This organic zinc catalyst is a zinc precursor, C3-C20 aliphatic dicarboxylic acid, or C8-C40. It can be used as a catalyst obtained by reacting an aromatic dicarboxylic acid.
  • the zinc precursor may be zinc oxide, zinc hydroxide, zinc acetate (Zn (0 2 CCH 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ) or zinc sulfate
  • zinc precursor that has previously been used for the preparation of zinc dicarboxylate catalysts such as (ZnSO 4 ) and the like can be used without any particular limitation.
  • any aliphatic dicarboxylic acid having 3 to 20 carbon atoms or aromatic dicarboxylic acid having 8 to 40 carbon atoms can be used.
  • aliphatic dicarboxylic acid selected from the group consisting of malonic acid, glutaric acid, succinic acid and adipic acid, or aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid, homophthalic acid and phenylglutaric acid Acids and the like can be used.
  • the aliphatic dicarboxylic acid for example, glutaric acid
  • glutaric acid may be used to convert the zinc dicarboxylate-based organic zinc catalyst into a zinc glutarate-based catalyst. proper.
  • the dicarboxylic acid is from about 1.0 to 1 mole of the zinc precursor. 1.5 mol, or about 1.1 to 1.4 mol.
  • the production of the organic zinc catalyst by the reaction of the zinc precursor and dicarboxylic acid may proceed in a liquid medium, the liquid medium can uniformly dissolve or disperse the zinc precursor and / or dicarboxylic acid.
  • Any organic solvent known to be used can be used. Specific examples of such organic solvents include one or more organic solvents selected from the group consisting of toluene, DMF (dimethylformamide), ethane and methane.
  • reaction step between the zinc precursor and the dicarboxylic acid may proceed for about 5 to 24 hours at a temperature of about 30 to "0 ° C.
  • the organic zinc catalyst prepared under such conditions has a more uniform and finer particle diameter. Together can exhibit excellent catalytic activity.
  • the aforementioned organic zinc catalyst has a finer average particle diameter of about 0.3 to 1.0, black about 0.3 to 0.8 ⁇ , black about 0.5 to 0.7, and about 0.3 or less, black about 0.05 to 0.3 / m, or about 0.05 to 0.2 / zm, or in the form of uniform particles having a standard deviation of a particle diameter of about 0.05 to 0.1.
  • a dispersant during the polymerization process, it is possible to maintain such a uniform and fine particle diameter even in the polymerization process for the production of polyalkylene carbonate resin, so that a sufficient contact area with the reactants such as the monomer is maintained throughout the polymerization and excellent Catalytic activity can be shown during polymerization.
  • the organic zinc catalyst may be used as a heterogeneous catalyst
  • the polymerization step may be carried out by solution polymerization in an organic solvent.
  • solvents include methylene chloride, ethylene dichloride, trichloroethane, tetrachloroethane, chloroform, Acetonitrile, propionitrile, dimethylformamide, ⁇ -methyl-2-pyridone, dimethyl sulfoxide, nitromethane, 1,4-dioxane, nucleic acid, toluene, tetrahydrofuran, methylethylketone, methylamine Ketones, methyl isobutyl ketone, acetone, cyclonuxanonone, trichloroethylene, methyl acetate, vinyl acetate, ethyl acetate, propyl acetate, butyrolactone, caprolactone, nitropropane, benzene, styrene, xylene and methylpropazole ( Methyl propas) may be used one or more selected from the group consisting of. Also in the
  • the solvent is about 1: 0.5 to 1: 1 relative to the epoxide . It can be used in the weight ratio of 100, Preferably it can be used in the weight ratio of about 1: 1-1: 10. At this time, if the ratio is too small, less than about 1: 0.5, the solvent may not function properly as the reaction medium, and it may be difficult to take advantage of the above-described solution polymerization. In addition, when the ratio exceeds about 1: 100, the concentration of epoxide and the like may be relatively lowered, which may lower productivity, and may lower the molecular weight of the finally formed resin or increase side reactions.
  • the organic zinc catalyst may be added in a molar ratio of about 1:50 to 1: 1000 relative to the epoxide. More preferably, the organic zinc catalyst may be added at a molar ratio of about 1:70 to 1: 600, or about 1:80 to 1: 300 relative to the epoxide. If the ratio is too small, it is difficult to exhibit sufficient catalytic activity during solution polymerization. On the contrary, if the ratio is excessively large, an excessive amount of catalyst may be used, resulting in inefficient by-products, or back-biting of the resin due to heating in the presence of a catalyst. This can happen.
  • examples of the epoxide include an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms; Cycloalkylene oxide having 4 to 20 carbon atoms unsubstituted or substituted with halogen or alkyl group having 1 to 5 carbon atoms; And a styrene oxide having 8 to 20 carbon atoms substituted or unsubstituted with halogen or an alkyl group having 1 to 5 carbon atoms.
  • the epoxide may be a C 2 to C 20 unsubstituted or substituted with a halogen or an alkyl group having 1 to 5 carbon atoms.
  • Alkylene oxides can be used. Specific examples of such epoxides include ethylene oxide, propylene oxide, butene oxide, pentene oxide, nuxene oxide, octene oxide, decene oxide, dodecene oxide, tetradecene oxide, nuxadecene oxide, octadecene oxide, butadiene monooxide, 1 , 2-Epoxy-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethyl Hexyl glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclonuxene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-
  • solution polymerization described above may be performed at about 50 to 100 ° C. and about 15 to 50 bar for about 1 to 60 hours.
  • solution polymerization is more suitably carried out at about 70 to 90 ° C and about 20 to 40 bar, for about 3 to 40 hours.
  • the puncturing between the catalyst particles can be effectively suppressed. Therefore, during the polymerization process, the organic zinc catalyst can maintain a more uniform and finer particle state during the polymerization, and thus can exhibit excellent activity throughout the polymerization while contacting the monomer with a sufficient contact area. Thus, according to one embodiment, excellent catalytic activity is maintained continuously during the polymerization, so that the polyalkylene carbonate resin can be produced more effectively with excellent yield.
  • the organic zinc catalyst of Preparation Example 1 was prepared, and its chemical structure was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, it was confirmed that the organic zinc catalyst of Preparation Example 1 had a standard deviation of an average particle diameter of about 0.6 / im and a particle diameter of about 0.18 /.
  • Example 1
  • Example 1 polyethylene carbonate was prepared in the same manner as in Example 1, except that 10 mg of 3,5,7-trioxo-dodecanoic acid was used instead of nucleus methacrylate as the dispersant. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below.
  • Example 3
  • Example 1 polyethylene carbonate was prepared in the same manner as in Example 1, except that 10 mg of 3,5-dioxonuxanoic acid was used instead of nucleus methacrylate as the dispersant. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below.
  • Example 4 The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below.
  • Example 1 In Example 1, except that 10 mg of propylene oxide (PO) -ethylene oxide (EO) block copolymer (Mw: 8000; Sigma Aldrich Co. I) was used as dispersant instead of nucleus methacrylate. In the same manner, polyethylene carbonate was prepared. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Comparative Example 1:
  • Example 1 polyethylene carbonate was prepared in the same manner as in Example 1, except that no dispersant was used. The remaining solids were quantified after complete drying to determine the ' amount of polyethylene carbonate prepared. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Comparative Example 2:
  • Example 1 instead of nucleus methacrylate as the dispersant, 10 mg of Polyethylene carbonate was prepared in the same manner as in Example 1 except for using propionic acid. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. According to the polymerization results, the activity and yield of the catalyst are summarized in Table 1 below.

Abstract

The present invention relates to a method for preparing a polyalkylene carbonate resin, wherein remarkable catalytic activities can be maintained during a polymerization step by inhibiting aggregation among catalyst particles during polymerization. The method for preparing a polyalkylene carbonate resin can comprise a step of polymerizing monomers comprising an epoxide and carbon dioxide in the presence of a zinc dicarboxylate-based organic zinc catalyst and a dispersant, and the dispersant can comprise at least one selected from the group consisting of a C1-10 alkyl acrylate, a C1-10 alkyl methacrylate, a C1-20 monocarboxylic acid having an oxo group in a molecular structure, and a polyether-based polymer having a C2-6 alkylene oxide repeating unit.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
폴리알킬렌 카보네이트 수지의 제조 방법  Process for producing polyalkylene carbonate resin
【기술분야】  Technical Field
본 발명은 중합 중에 촉매 입자 간의 응집이 억제되어, 중합 과정에서 우수한 촉매 활성이 유지될 수 있는 폴리알킬렌 카보네이트 수지의 제조 방법에 관한 것이다.  The present invention relates to a method for producing a polyalkylene carbonate resin in which aggregation between catalyst particles is suppressed during polymerization and excellent catalyst activity can be maintained during the polymerization process.
【배경기술】  Background Art
산업 혁명 이후, 인류는 화석 연료를 대량 소비함으로써, 현대 사회를 구축하여 왔지만, 한편으로 대기 중의 이산화탄소 농도를 증가시키고, 게다가 삼림 파괴 등의 환경 파괴에 의해 이 증가를 더욱 촉진시키고 있다. 지구 온난화는 대기 중의 이산화탄소, 프레온이나 메탄과 같은 온실 효과 가스가 증가한 것이 원인이 되는 점에서, 지구 온난화에 대한 기여율이 높은 이산화탄소의 대기 중 농도를 감소시키는 것은 매우 중요하고, 이 배출 규제나 고정화 등의 여러 가지 연구가 세계적인 규모로 실시되고 있다.  Since the Industrial Revolution, mankind has built up a modern society by consuming large amounts of fossil fuels, but on the one hand, increasing the concentration of carbon dioxide in the atmosphere, and further promoting this increase by environmental destruction such as deforestation. Since global warming is caused by an increase in greenhouse gases such as carbon dioxide in the atmosphere and freon or methane, it is very important to reduce the atmospheric concentration of carbon dioxide, which has a high contribution to global warming. A variety of studies are being conducted on a global scale.
그 중에서도 이노우에 등에 의해 발견된 이산화탄소와 에폭사이드의 공중합 반웅은 지구 온난화 문제의 해결을 담당할 반응으로서 기대되고 있고, 화학적 이산화탄소의 고정과 같은 관점뿐만 아니라, 탄소 자원으로서의 이산화탄소의 이용이라는 관점에서도 활발히 연구되고 있다. 특히, 최근 들어, 상기 이산화탄소와 에폭사이드의 중합에 의한 폴리알킬렌 카보네이트 수지는 생분해 가능한 수지의 일종으로서 크게 각광받고 있다.  Among them, the reaction of copolymerization of carbon dioxide and epoxide found by Inoue et al. Is expected as a reaction to solve the global warming problem, and is actively studied not only from the viewpoint of chemical carbon dioxide fixing but also from the use of carbon dioxide as a carbon resource. It is becoming. In particular, in recent years, polyalkylene carbonate resins obtained by polymerization of carbon dioxide and epoxide have been widely spotlighted as a kind of biodegradable resins.
이전부터 이러한 폴리알킬렌 카보네이트 수지의 제조를 위한 다양한 촉매가 연구 및 제안되고 있으며 , 대표적인 촉매로서 아연 및 디카르복실산이 결합된 아연 글루타레이트 촉매 등의 아연 디카르복실레이트계 촉매가 알려져 있다.  Various catalysts for the preparation of such polyalkylene carbonate resins have been researched and proposed in the past, and zinc dicarboxylate-based catalysts such as zinc glutarate catalysts in which zinc and dicarboxylic acid are combined are known as representative catalysts.
그런데, 이러한 아연 디카르복실레이트계 촉매, 대표적으로 아연 글루타레이트 촉매는 아연 전구체 및 글루타르산 등 디카르복실산을 반응시켜 형성되며, 미세한 결정성 입자 형태를 띠게 된다. 그런데, 이러한 결정성 입자 형태의 아연 디카르복실레이트계 촉매는 중합 과정 등에서 촉매 입자 간의 웅집이 일어나는 경우가 많았다. 이러한 촉매 입자 간의 웅집이 일어나면, 폴리알킬렌 카보네이트 수지의 제조를 위한 중합 공정을 진행할 경우, 반응물과 촉매 간의 층분한 접촉 면적이 확보되지 않아 촉매에 의한 중합 활성이 충분히 발현되지 못하는 단점이 있었다. However, such zinc dicarboxylate-based catalysts, typically zinc glutarate catalysts, are formed by reacting dicarboxylic acids such as zinc precursors and glutaric acid, and have a form of fine crystalline particles. By the way, the zinc dicarboxylate-based catalyst in the form of crystalline particles has often caused a void between the catalyst particles during the polymerization process. If a cross between these catalyst particles occurs, When proceeding the polymerization process for the production of polyalkylene carbonate resin, there is a disadvantage that the sufficient contact area between the reactant and the catalyst is not secured, the polymerization activity by the catalyst is not sufficiently expressed.
이러한 단점으로 인해, 중합 과정 중에 촉매 입자 간의 웅집을 억제하여 우수한 활성을 유지하면서 폴리알킬렌 카보네이트 수지를 제조할 수 있게 하는 기술의 개발이 계속적으로 요구되고 있다. .  Due to these drawbacks, there is a continuous demand for the development of a technology capable of producing a polyalkylene carbonate resin while maintaining excellent activity by inhibiting puncture between catalyst particles during the polymerization process. .
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 중합 증에 촉매 입자 간의 응집이 억제되어, 중합 과정에서 우수한 촉매 활성이 유지될 수 있는 폴리알킬렌 카보네이트 수지의 제조 방법을 제공하는 것이다.  The present invention provides a method for producing a polyalkylene carbonate resin in which aggregation between catalyst particles is suppressed in polymerization, so that excellent catalytic activity can be maintained during the polymerization process.
【과제의 해결 수단】  [Measures of problem]
본 발명은 아연 디카르복실레이트계 유기 아연 촉매와, 분산제의 존재 하에, 에폭사이드 및 이산화탄소를 포함한 단량체를 중합시키는 단계를 포함하고, 상기 분산제는 탄소수 1 내지 10의 알킬 아크릴레이트, 탄소수 1 내지 The present invention includes a step of polymerizing a zinc dicarboxylate-based organic zinc catalyst and a monomer including an epoxide and carbon dioxide in the presence of a dispersant, wherein the dispersant is an alkyl acrylate having 1 to 10 carbon atoms and 1 to 1 carbon atoms.
10의 알킬메타크릴레이트, 분자 구조 내에 옥소 (0X0)기를 갖는 탄소수 1 내지 20의 모노카르복실산 및 탄소수 2 내지 6의 알킬렌 옥사이드 반복 단위를 갖는 폴리에테르계 중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법을 제공한다. 이하, 발명의 구현예에 따른 폴리알킬렌 카보네이트 수지의 제조 방법 등에 대해 상세히 설명하기로 한다. At least one selected from the group consisting of 10 alkylmethacrylates, monocarboxylic acids having 1 to 20 carbon atoms having oxo (0X0) groups in the molecular structure and polyether polymers having alkylene oxide repeat units having 2 to 6 carbon atoms It provides a method for producing a polyalkylene carbonate resin comprising a. Hereinafter, a method for preparing a polyalkylene carbonate resin according to an embodiment of the present invention will be described in detail.
발명의 일 구현예에 따르면, 아연 디카르복실레이트계 유기 아연 촉매와, 분산제의 존재 하에, 에폭사이드. 및 이산화탄소를 포함한 단량체를 중합시키는· 단계를 포함하고,  According to one embodiment of the invention, an epoxide in the presence of a zinc dicarboxylate organic zinc catalyst and a dispersant. And polymerizing a monomer comprising carbon dioxide,
상기 분산제는 탄소수 1 내지 10의 알킬 아크릴레이트, 탄소수 1 내지 10의 알킬메타크릴레이트, 분자 구조 내에 옥소 (0X0)기를 갖는 탄소수 1 내지 20의 모노카르복실산 및 탄소수 2 내지 6의 알킬렌 옥사이드 반복 단위를 갖는 폴리에테르계 중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법이 제공된다. 일 구현예의 폴리알킬렌 카보네이트 수지의 제조 방법에서는, 아연 디카르복실레이트계 유기 아연 촉매와 함께, 소정의 분산제, 보다 구체적으로 탄소수 1 내지 10의 알킬 아크릴레이트, 탄소수 1 내지 10의 알킬메타크릴레이트 분자 구조 내에 옥소 (0X0)기를 갖는 탄소수 1 내지 20의 모노카르복실산 또는 탄소수 2 내지 6의 알킬렌 옥사이드 반복 단위를 갖는 플리에테르계 중합체의 특정 분산제가 사용된다. The dispersant is an alkyl acrylate having 1 to 10 carbon atoms, an alkyl methacrylate having 1 to 10 carbon atoms, a monocarboxylic acid having 1 to 20 carbon atoms having an oxo (0X0) group in the molecular structure, and an alkylene oxide having 2 to 6 carbon atoms. Provided is a method for producing a polyalkylene carbonate resin comprising at least one member selected from the group consisting of polyether polymers having units. In the method for producing a polyalkylene carbonate resin of one embodiment, together with a zinc dicarboxylate organic zinc catalyst, a predetermined dispersant, more specifically alkyl acrylates of 1 to 10 carbon atoms, alkyl methacrylate of 1 to 10 carbon atoms Particular dispersants of polyether based polymers having monocarboxylic acids having 1 to 20 carbon atoms or alkylene oxide repeating units having 2 to 6 carbon atoms having an oxo (0X0) group in the molecular structure are used.
본 발명자들의 계속적인 실험 결과, 이러한 분산제는 에폭사이드 및 이산화탄소를 포함한 단량체를 중합하여 폴리알킬렌 카보네이트 수지를 제조하는 과정에서, 촉매 입자 간의 응집을 효과적으로 억제할 수 있음이 확인되었다. 이는 상기 분산제의 친수기, 예를 들어, 산소나 카보닐기 등이 각 촉매 입자를 둘러싸고, 분산제의 나머지 탄화수소계 소수성기들이 반응 매질 내에서 촉매 입자 간의 접촉을 억제하여 상기 촉매 입자 간의 응집을 효과적으로 억제할 수 있기 때문으로 예측된다.  As a result of continuous experiments by the present inventors, it was confirmed that such a dispersant can effectively suppress aggregation between catalyst particles in the process of preparing a polyalkylene carbonate resin by polymerizing monomers including epoxide and carbon dioxide. This is because the hydrophilic group of the dispersant, for example, oxygen or carbonyl group, etc. surrounds each catalyst particle, and the remaining hydrocarbon-based hydrophobic groups of the dispersant can effectively inhibit the contact between the catalyst particles in the reaction medium to effectively suppress aggregation between the catalyst particles. Because it is expected.
이와 같이, 중합 과정 중에 촉매 입자 간의 응집이 효과적으로 억제됨에 따라, 상기 유기 아연 촉매는 보다 균일하고도 미세한 입자 상태를 중합 중에 유지할 수 있고, 이로 인해 층분한 접촉 면적으로 상기 단량체와 .접촉하면서 중합 내내 우수한 활성을 나타낼 수 있다.  As such, as the aggregation between the catalyst particles is effectively suppressed during the polymerization process, the organozinc catalyst can maintain a more uniform and fine particle state during the polymerization, and thus the contact area with the monomers is in contact with the monomer throughout the polymerization. It can exhibit excellent activity.
따라서, 일 구현예에 따르면, 중합 중에 우수한 촉매 활성이 계속적으로 유지되어, 상기 폴리알킬렌 카보네이트 수지가 우수한 수율로서 보다 효과적으로 제조될 수 있다.  Thus, according to one embodiment, excellent catalytic activity is maintained continuously during the polymerization, so that the polyalkylene carbonate resin can be produced more effectively with excellent yield.
이와 달리, 위 특정 분산제에 해당하지 않는 다른 물질, 예를 들어, 옥소기를 갖지 않는 프로피온산 또는 초산 등의 일반적인 모노카르복실산이나, 일반적인 아크릴산등을 사용할 경우, 이러한 성분이 친수기나 소수성기를 적절히 포함하지 않음에 따라, 중합 중에 촉매 입자를 제대로 둘러싸기 어렵고, 촉매 입자 간의 접촉을 효과적으로 억제하기 어렵다. 이로 인해 , 중합 중에 촉매 입자 간의 응집이 제대로 억제되지 않아, 중합 반응의 진행에 따라 촉매의 활성이 크게 떨어질 수 있다. 한편, 이하에서는 상기 일 구현예의 제조 방법에 따른 폴리알킬렌 카보네이트 수지의 제조에 관하여 보다 구체적으로 설명하기로 한다. 상기 일 구현예의 제조 방법에서는, 탄소수 1 내지 10, 혹은 탄소수 3 내지 8의 알킬 아크릴레이트나 알킬. 메타크릴레이트, 분자 구조 내에 옥소 (0X0)기를 갖는 탄소수 1 내지 20, 혹은 탄소수 5 내지 15의 모노카르복실산 또는 탄소수 2 내지 6, 혹은 탄소수 2 내지 4의 알킬렌 옥사이드 반복 단위를 갖는 폴리에테르계 증합체의 특정 분산제를 사용할 수 있는데, 이러한 분산제의 보다 구체적인' 예로는, 핵실 메타크릴쩨이트, 3,5-디옥소핵사노익산, 3,5,7- 트리옥소-도데카노익산, 또는 프로필렌 옥사이드 (P0)-에틸렌 옥사이드 (EO) 블록 공중합체 등을 들 수 있고, 이들 중에 선택된 2 종 이상을 함께 사용할 수도 있음은 물론이다. On the other hand, when other materials which do not correspond to the above specific dispersant, for example, general monocarboxylic acid such as propionic acid or acetic acid that do not have an oxo group, or general acrylic acid, may not contain hydrophilic or hydrophobic groups appropriately. As a result, it is difficult to properly surround the catalyst particles during the polymerization, and it is difficult to effectively suppress the contact between the catalyst particles. For this reason, aggregation between catalyst particles is not suppressed properly during superposition | polymerization, and activity of a catalyst may fall significantly with progress of a polymerization reaction. On the other hand, it will be described in more detail with respect to the production of polyalkylene carbonate resin according to the production method of the embodiment. In the production method of the above embodiment, alkyl acrylate or alkyl having 1 to 10, or 3 to 8 carbon atoms. Methacrylates, polyethers having 1 to 20 carbon atoms having oxo (0X0) groups in the molecular structure or monocarboxylic acids having 5 to 15 carbon atoms or alkylene oxide repeating units having 2 to 6 carbon atoms or 2 to 4 carbon atoms It is possible to use a specific dispersant in the copolymer increases, more specific, examples of such dispersants, haeksil methacrylic jjeyi agent, 3,5-dioxo-nuclear Sano acid, 3,5,7- tree-oxo-dodecanoyl acid, or propylene An oxide (P0) -ethylene oxide (EO) block copolymer etc. are mentioned, Of course, 2 or more types selected from these can also be used together.
이러한 특정 분산제의 사용으로, 상기 유기 아연 촉매 입자 간의 응집을 보다 효과적으로 억제하면서도, 촉매 활성을 저해하지 않을 수 있다.  By using this specific dispersant, it is possible to more effectively suppress the aggregation between the organic zinc catalyst particles, while not inhibiting the catalytic activity.
또, 상기 폴리알킬렌 카보네이트 수지의 제조 방법에서는, 아연 디카르복실레이트계 유기 아연 촉매가 사용되는데, 이러한 유기 아연 촉매는 아연 전구체와, 탄소수 3 내지 20의 지방족 디카르복실산 또는 탄소수 8 내지 40의 방향족 디카르복실산을 반응시켜 얻어진 촉매로 될 수 있다.  Moreover, in the manufacturing method of the said polyalkylene carbonate resin, a zinc dicarboxylate type organic zinc catalyst is used, This organic zinc catalyst is a zinc precursor, C3-C20 aliphatic dicarboxylic acid, or C8-C40. It can be used as a catalyst obtained by reacting an aromatic dicarboxylic acid.
보다 구체적으로, 이러한 유기 아연 촉매의 제조에 있어, 상기 아연 전구체로는 산화아연, 수산화아연, 아세트산 아연 (Zn(02CCH3)2), 질산 아연 (Zn(NO3)2) 또는 황산 아연 (ZnSO4) 등과 같이 이전부터 아연 디카르복실레이트계 촉매의 제조에 사용되던 임의의 아연 전구체를 별다른 제한 없이 모두 사용할 수 있다. More specifically, in the preparation of such an organic zinc catalyst, the zinc precursor may be zinc oxide, zinc hydroxide, zinc acetate (Zn (0 2 CCH 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ) or zinc sulfate Any zinc precursor that has previously been used for the preparation of zinc dicarboxylate catalysts such as (ZnSO 4 ) and the like can be used without any particular limitation.
또한, 이러한 아연 전구체와 반응하는 지방족 디카르복실산 또는 방향족 디카르복실산으로는, 임의의 탄소수 3 내지 20의 지방족 디카르복실산 또는 임의의 탄소수 8 내지 40의 방향족 디카르복실산을 사용할 수 있으며, 보다 구체적으로, 말론산, 글루타르산, 숙신산 및 아디프산으로 이루어진 군에서 선택된 지방족 디카르복실산, 또는 테레프탈산, 이소프탈산, 호모프탈산 및 페닐글루타르산으로 이루어진 군에서 선택된 방향족 디카르복실산 등을 사용할 수 있다. 다만, 상기 유기 아연 촉매의 활성 등의 측면에서 상기 지방족 디카르복실산, 예를 들어, 글루타르산을 사용하여 상기 아연 디카르복실레이트계 유기 아연 촉매는 아연 글루타레이트계 촉매로 됨이 보다 적절하다.  As the aliphatic dicarboxylic acid or aromatic dicarboxylic acid reacting with such a zinc precursor, any aliphatic dicarboxylic acid having 3 to 20 carbon atoms or aromatic dicarboxylic acid having 8 to 40 carbon atoms can be used. And, more specifically, aliphatic dicarboxylic acid selected from the group consisting of malonic acid, glutaric acid, succinic acid and adipic acid, or aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid, homophthalic acid and phenylglutaric acid Acids and the like can be used. However, in view of the activity of the organic zinc catalyst and the like, the aliphatic dicarboxylic acid, for example, glutaric acid, may be used to convert the zinc dicarboxylate-based organic zinc catalyst into a zinc glutarate-based catalyst. proper.
그리고, 상기 디카르복실산은 상기 아연 전구체의 1몰에 대해 약 1 .0 내지 1.5 몰, 혹은 약 1.1 내지 1.4 몰의 비율로 사용될 수 있다. 이로서, 우수한 활성을 갖는 아연 디카르복실레이트계 촉매의 적절한 생성을 담보하면서, 촉매 제조 과정 중의 촉매 입자 간 웅집이 억제되어 보다 균일하고도 미세한 입경 및 우수한 활성을 나타내는 촉매가 적절히 얻어질 수 있다. And the dicarboxylic acid is from about 1.0 to 1 mole of the zinc precursor. 1.5 mol, or about 1.1 to 1.4 mol. Thereby, while ensuring the proper production of the zinc dicarboxylate-based catalyst having excellent activity, interspersing of the catalyst particles during the catalyst preparation process is suppressed, so that a catalyst showing a more uniform and finer particle size and excellent activity can be appropriately obtained.
한편, 상기 아연 전구체 및 디카르복실산의 반응에 의한 유기 아연 촉매의 제조는 액상 매질 내에서 진행될 수 있으며, 이러한 액상 매질로는 아연 전구체 및 /또는 디카르복실산을 균일하게 용해 또는 분산시킬 수 았는 것으로 알려진 임의의 유기 용매를 사용할 수 있다. 이러한 유기 용매와 보다 구체적인 예로는, 를루엔, DMF (디메틸포름아마이드), 에탄을 및 메탄을로 이루어진 군에서 선택된 1종 이상의 유기 용매를 들 수 있다.  On the other hand, the production of the organic zinc catalyst by the reaction of the zinc precursor and dicarboxylic acid may proceed in a liquid medium, the liquid medium can uniformly dissolve or disperse the zinc precursor and / or dicarboxylic acid. Any organic solvent known to be used can be used. Specific examples of such organic solvents include one or more organic solvents selected from the group consisting of toluene, DMF (dimethylformamide), ethane and methane.
. 또한, 상기 아연 전구체 및 디카르복실산 간의 반응 단계는 약 30 내지 "0 °C의 온도에서 약 5 내지 24 시간 동안 진행될 수 있다. 이러한 조건 하에 제조된 유기 아연 촉매는 보다 균일하고도 미세한 입경과 함께 우수한 촉매 활성을 나타낼 수 있다. . In addition, the reaction step between the zinc precursor and the dicarboxylic acid may proceed for about 5 to 24 hours at a temperature of about 30 to "0 ° C. The organic zinc catalyst prepared under such conditions has a more uniform and finer particle diameter. Together can exhibit excellent catalytic activity.
상술한 유기 아연 촉매는 약 0.3 내지 1.0 , 흑은 약 0.3 내지 0.8 Λΐι, 흑은 약 0.5 내지 0.7 의 보다 미세한 평균 입경 및 약 0.3 이하, 흑은 약 0.05 내지 0.3/ m, 혹은 약 0.05 내지 0.2/zm, 혹은 약 0.05 내지 0.1 의 입경의 표준 편차를 갖는 균일한 입자 형태로 될 수 있다. 특히, 중합 과정 중의 분산제의 사용으로 인해, 폴리알킬렌 카보네이트 수지의 제조를 위한 중합 과정에서도 이러한 균일하고도 미세한 입경을 유지할 수 있고, 그 결과 단량체 등 반응물과의 충분한 접촉 면적이 중합 내내 유지되고 뛰어난 촉매 활성을 중합 중에 나타낼 수 있다. 그 결과, 일 구현예에 따라, 보다 높은 수율로 폴리알킬렌 카보네이트 수지를 제조할 수 있게 된다.  The aforementioned organic zinc catalyst has a finer average particle diameter of about 0.3 to 1.0, black about 0.3 to 0.8 Λΐι, black about 0.5 to 0.7, and about 0.3 or less, black about 0.05 to 0.3 / m, or about 0.05 to 0.2 / zm, or in the form of uniform particles having a standard deviation of a particle diameter of about 0.05 to 0.1. In particular, due to the use of a dispersant during the polymerization process, it is possible to maintain such a uniform and fine particle diameter even in the polymerization process for the production of polyalkylene carbonate resin, so that a sufficient contact area with the reactants such as the monomer is maintained throughout the polymerization and excellent Catalytic activity can be shown during polymerization. As a result, according to one embodiment, it is possible to produce a polyalkylene carbonate resin in a higher yield.
한편, 상술한 일 구현예의 폴리알킬렌 카보네이트 수지의 제조 방법에서, 상기 유기 아연 촉매는 불균일 촉매의 형태로서 사용될 수 있고, 상기 중합 단계는 유기 용매 내에서 용액 중합으로 진행될 수 있다. 이로서, 반응열이 적절히 제어될 수 있으며, 얻고자 하는 폴리알킬렌 카보네이트 수지의 분자량 또는 점도 제어가용이해 질 수 있다.  On the other hand, in the above-described method for producing a polyalkylene carbonate resin, the organic zinc catalyst may be used as a heterogeneous catalyst, the polymerization step may be carried out by solution polymerization in an organic solvent. As a result, the heat of reaction can be properly controlled, and the molecular weight or viscosity of the polyalkylene carbonate resin to be obtained can be easily controlled.
이러한 용액 중합에서, 용매로는 메틸렌 클로라이드, 에틸렌 디클로라이드, 트리클로로 에탄, 테트라클로로에탄, 클로로포름, 아세토나이트릴, 프로피오나이트릴, 디메틸포름아마이드 , Ν-메틸 -2-피를리돈, 디메틸 설폭사이드, 니트로메탄, 1 ,4-다이옥산, 핵산, 를루엔, 테트라하이드로퓨란, 메틸에틸케톤, 메틸아민케톤, 메틸 아이소부틸 케톤, 아세톤, 사이클로핵사논, 트리클로로 에틸렌, 메틸 아세테이트, 바이닐 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 부틸로락톤, 카프로락톤, 니트로프로판, 벤젠, 스티렌, 자일렌 및 메틸프로파졸 (methyl propas이)로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다. 이증에서도, 메틸렌 클로라이드 또는 에틸렌 디클로라이드를 용매로서 사용함에 따라, 중합 반응의 진행을 보다 효과적으로 할 수 있다. In this solution polymerization, solvents include methylene chloride, ethylene dichloride, trichloroethane, tetrachloroethane, chloroform, Acetonitrile, propionitrile, dimethylformamide, Ν-methyl-2-pyridone, dimethyl sulfoxide, nitromethane, 1,4-dioxane, nucleic acid, toluene, tetrahydrofuran, methylethylketone, methylamine Ketones, methyl isobutyl ketone, acetone, cyclonuxanonone, trichloroethylene, methyl acetate, vinyl acetate, ethyl acetate, propyl acetate, butyrolactone, caprolactone, nitropropane, benzene, styrene, xylene and methylpropazole ( Methyl propas) may be used one or more selected from the group consisting of. Also in the case of using methylene chloride or ethylene dichloride as a solvent, the progress of a polymerization reaction can be made more effective.
상기 용매는 에폭사이드 대비 약 1 : 0.5 내지 1 :. 100의 중량비로 사용할 수 있고, 적절하게는 약 1 : 1 내지 1 : 10의 중량비로 사용할 수 있다. 이때, 그 비을이 약 1 : 0.5 미만으로 너무 적으면 용매가 반응 매질로서 제대로 작용하지 못하여 상술한 용액 중합의 장점을 살리기 어려울 수 있다. 또한, 그 비율이 약 1 : 100을 초과하면 상대적으로 에폭사이드 등의 농도가 낮아져 생산성이 저하될 수 있고, 최종 형성된 수지의 분자량이 낮아지거나 부반응이 늘어날 수 있다. The solvent is about 1: 0.5 to 1: 1 relative to the epoxide . It can be used in the weight ratio of 100, Preferably it can be used in the weight ratio of about 1: 1-1: 10. At this time, if the ratio is too small, less than about 1: 0.5, the solvent may not function properly as the reaction medium, and it may be difficult to take advantage of the above-described solution polymerization. In addition, when the ratio exceeds about 1: 100, the concentration of epoxide and the like may be relatively lowered, which may lower productivity, and may lower the molecular weight of the finally formed resin or increase side reactions.
또한 상기 유기 아연 촉매는 에폭사이드 대비 약 1 : 50 내지 1 : 1000의 몰비로 투입될 수 있다. 보다 바람직하게 상기 유기 아연 촉매는 에폭사이드 대비 약 1 : 70 내지 1 : 600, 혹은 약 1 : 80 내지 1 : 300의 몰비로 투입될 수 있다. 그 비율이 지나치게 작으면 용액 중합시 충분한 촉매활성을 나타내기 어렵고, 반대로 지나치게 커지면 과다한 양의 촉매 사용으로 효율적이지 않고 부산물이 생기거나, 촉매 존재 하에 가열로 인한 수지의 백 바이팅 (back-biting)이 일어날 수 있다.  In addition, the organic zinc catalyst may be added in a molar ratio of about 1:50 to 1: 1000 relative to the epoxide. More preferably, the organic zinc catalyst may be added at a molar ratio of about 1:70 to 1: 600, or about 1:80 to 1: 300 relative to the epoxide. If the ratio is too small, it is difficult to exhibit sufficient catalytic activity during solution polymerization. On the contrary, if the ratio is excessively large, an excessive amount of catalyst may be used, resulting in inefficient by-products, or back-biting of the resin due to heating in the presence of a catalyst. This can happen.
한편, 상기 에폭사이드로는, 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 2 내지 20의 알킬렌 옥사이드; 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 4 내지 20의 사이클로 알킬렌옥사이드; 및 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치된 탄소수 8 내지 20의 스타이렌 옥사이드;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 대표적으로, 상기 에폭사이드로는 할로겐 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 탄소수 2 내지 20의 알킬렌 옥사이드를 사용할 수 있다. - 이러한 에폭사이드의 구체적인 예로는 에틸렌 옥사이드, 프로필렌 옥사이드, 부텐 옥사이드, 펜텐 옥사이드, 핵센 옥사이드, 옥텐 옥사이드, 데센 옥사이드, 도데센 옥사이드, 테트라데센 옥사이드, 핵사데센 옥사이드, 옥타데센 옥사이드, 부타디엔 모노옥사이드, 1,2-에폭시 -7-옥텐, 에피플루오로하이드린, 에피클로로하이드린, 에피브로모하이드린, 아이소프로필 글리시딜 에테르, 부틸 글리시딜 에테르, t-부틸 글리시딜 에테르, 2-에틸핵실 글리시딜 에테르, 알릴 글리시딜 에테르, 사이클로펜텐 옥사이드, 사이클로핵센 옥사이드, 사이클로옥텐 옥사이드, 사이클로도데센 옥사이드, 알파-파이넨 옥사이드, 2,3-에폭시노보넨, 리모넨 옥사이드, 디엘드린, 2,3-에폭시프로필벤젠, 스타이렌 옥사이드, 페닐프로필렌 옥사이드, 스틸벤 옥사이드, 클로로스탈벤 옥사이드, 디클로로스틸벤 옥사이드, 1 ,2-에폭시 -3-페녹시프로판, 벤질옥시메틸 옥시란, 글리시딜-메틸페닐 에테르, 클로로페닐 -2,3-에폭시프로필 에테르, 에폭시프로필 메특시페닐 에테르, 바이페닐 글리시딜 에테르, 글리시딜 나프틸 에테르 등이 있다. 가장 대표적으로, 상기 에폭사이드로는 에틸렌 옥사이드를 사용한다. On the other hand, examples of the epoxide include an alkylene oxide having 2 to 20 carbon atoms unsubstituted or substituted with halogen or an alkyl group having 1 to 5 carbon atoms; Cycloalkylene oxide having 4 to 20 carbon atoms unsubstituted or substituted with halogen or alkyl group having 1 to 5 carbon atoms; And a styrene oxide having 8 to 20 carbon atoms substituted or unsubstituted with halogen or an alkyl group having 1 to 5 carbon atoms. Representatively, the epoxide may be a C 2 to C 20 unsubstituted or substituted with a halogen or an alkyl group having 1 to 5 carbon atoms. Alkylene oxides can be used. Specific examples of such epoxides include ethylene oxide, propylene oxide, butene oxide, pentene oxide, nuxene oxide, octene oxide, decene oxide, dodecene oxide, tetradecene oxide, nuxadecene oxide, octadecene oxide, butadiene monooxide, 1 , 2-Epoxy-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethyl Hexyl glycidyl ether, allyl glycidyl ether, cyclopentene oxide, cyclonuxene oxide, cyclooctene oxide, cyclododecene oxide, alpha-pinene oxide, 2,3-epoxynorbornene, limonene oxide, dieldrin, 2 , 3-epoxypropylbenzene, styrene oxide, phenylpropylene oxide, Tilbene oxide, chlorostalbene oxide, dichlorostilbene oxide, 1,2-epoxy-3-phenoxypropane, benzyloxymethyl oxirane, glycidyl-methylphenyl ether, chlorophenyl-2,3-epoxypropyl ether, epoxy Propyl mesoxyphenyl ether, biphenyl glycidyl ether, glycidyl naphthyl ether, and the like. Most typically, ethylene oxide is used as the epoxide.
부가하여, 상술한 용액 중합은 약 50 내지 100 °C 및 약 15 내지 50 bar에서, 약 1 내지 60 시간 동안 수행할 수 있다. 또한, 상기 용액 중합은 약 70 내지 90 °C 및 약 20 내지 40 bar에서, 약 3 내지 40시간.동안 수행하는 것이 보다 적절하다. In addition, the solution polymerization described above may be performed at about 50 to 100 ° C. and about 15 to 50 bar for about 1 to 60 hours. In addition, the solution polymerization is more suitably carried out at about 70 to 90 ° C and about 20 to 40 bar, for about 3 to 40 hours.
한편, 상술한 사항을 제외한 나머지 중합 공정 및 조건은 폴리알킬렌 카보네이트 수지의 제조를 위한 통상적인 중합 조건 등에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.  On the other hand, the other polymerization process and conditions except for the above may be followed according to the conventional polymerization conditions for the production of polyalkylene carbonate resin, etc., further description thereof will be omitted.
[발명의 효과】  [Effects of the Invention】
. 본 발명에 따르면, 특정한 분산제의 사용으로 인해, 에폭사이드 및 이산화탄소를 포함한 단량체를 중합하여 폴리알킬렌 카보네이트 수지를 제조하는 과정에서 , 촉매 입자 간의 웅집이 효과적으로 억제될 수 있다. 따라서 , 상기 중합 과정 중에 유기 아연 촉매가 보다 균일하고도 미세한 입자 상태를 중합 중에 유지할 수 있고, 이로 인해 충분한 접촉 면적으로 상기 단량체와 접촉하면서 중합 내내 우수한 활성을 나타낼 수 있다. 따라서, 일 구현예에 따르면, 중합 중에 우수한 촉매 활성이 계속적으로 유지되어, 상기 폴리알킬렌 카보네이트 수지가 우수한 수율로서 보다 효과적으로 제조될 수 있다. . According to the present invention, due to the use of a specific dispersant, in the process of producing a polyalkylene carbonate resin by polymerizing monomers including epoxide and carbon dioxide, the puncturing between the catalyst particles can be effectively suppressed. Therefore, during the polymerization process, the organic zinc catalyst can maintain a more uniform and finer particle state during the polymerization, and thus can exhibit excellent activity throughout the polymerization while contacting the monomer with a sufficient contact area. Thus, according to one embodiment, excellent catalytic activity is maintained continuously during the polymerization, so that the polyalkylene carbonate resin can be produced more effectively with excellent yield.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 발명을 예시하기 위한 것일 뿐, 발명을 이들만으로 한정하는 것은 아니다. 제조예 1 : 유기 아연 촉매의 제조  Hereinafter, preferred embodiments are presented to help understand the invention. However, the following examples are only to illustrate the invention, not limited to the invention only. Preparation Example 1 Preparation of Organic Zinc Catalyst
250mL 크기의 등근 바닥 플라스크에서, 100mL 를루엔에 6.6g(0.05mol)의 글루타르산 및 O l mL의 아세트산을 가하여 환류 하에 분산시켰다. 이어서 , 55 °C의 온도에서 30 분간 가열하고, 4.1 g(0.05mol)의 Znᄋ를 50mL의 를루엔에 가하여 분산시키고, 이를 상기 글루타르산의 분산액에 가한 후 3 시간 동안 교반하였다. 이후, 110 °C에서 4 시간 동안 가열하였다. 흰색 고체가 생성된 후, 이를 여과하고, 아세톤 /에관올로 세척하고, 130 °C에서 진공 오븐으로 건조하였다. 이러한 방법으로 제조예 1의 유기 아연 촉매를 제조하여 그 화학 구^를 확인하였다. 또한, 이러한 유기 아연 촉매를 SEM 분석을 통해 확인하였고, 그 결과, 제조예 1의 유기 아연 촉매는 약 0.6/im의 평균 입경 및 약 0.18/ 의 입경의 표준 편차를 갖는 것으로 확인되었다. 실시예 1 : In a 250 mL equilateral bottom flask, 100 mL was added to luene and dispersed under reflux by addition of 6.6 g (0.05 mol) of glutaric acid and 10 mL of acetic acid. Subsequently, the mixture was heated for 30 minutes at a temperature of 55 ° C., and 4.1 g (0.05 mol) of Zn 0 was added to 50 mL of toluene and dispersed, which was added to the dispersion of glutaric acid, followed by stirring for 3 hours. Thereafter, it was heated at 110 ° C for 4 hours. After a white solid had formed it was filtered, washed with acetone / ethanol and dried in a vacuum oven at 130 ° C. In this way, the organic zinc catalyst of Preparation Example 1 was prepared, and its chemical structure was confirmed. In addition, such an organic zinc catalyst was confirmed through SEM analysis, and as a result, it was confirmed that the organic zinc catalyst of Preparation Example 1 had a standard deviation of an average particle diameter of about 0.6 / im and a particle diameter of about 0.18 /. Example 1:
먼저, Glove box 내에서, 고압 반웅기 내에 0.4g의 제조예 1의 촉매 및 10mg의 분산제 (헥실 메타크릴레이트)와 8.52g의 디클로로메탄 (methylene chloride)을 넣은 후, 8.9g의 산화에틸렌 (ethylene oxide)을 넣었다. 그 후 반응기내에 이산화탄소를 이용해 30bar로 가압하였다. 중합반웅은 70°C에서 3시간 동안 진행되었다. 반응 종료 후 미반웅의 이산화탄소와 산화에틸렌은 용매인 디클로로메탄과 함께 제거되었다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. 실시예 2: First, 0.4 g of the catalyst of Preparation Example 1, 10 mg of dispersant (hexyl methacrylate) and 8.52 g of dichloromethane (methylene chloride) were added into a high pressure reaction vessel in a glove box, followed by 8.9 g of ethylene oxide (ethylene). oxide). Then pressurized to 30 bar with carbon dioxide in the reactor. The polymerization reaction was carried out for 3 hours at 70 ° C. After completion of the reaction, Mibanung's carbon dioxide and ethylene oxide were removed together with the solvent dichloromethane. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Example 2:
실시예 1에서, 분산제로서 핵실 메타크릴레이트 대신, 10mg의 3,5,7- 트리옥소-도데카노익산을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 폴리에틸렌 카보네이트를 제조하였다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. 실시예 3:  In Example 1, polyethylene carbonate was prepared in the same manner as in Example 1, except that 10 mg of 3,5,7-trioxo-dodecanoic acid was used instead of nucleus methacrylate as the dispersant. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Example 3:
실시예 1에서, 분산제로서 핵실 메타크릴레이트 대신, 10mg의 3,5- 디옥소핵사노익산을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 폴리에틸렌 카보네이트를 제조하였다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. 실시예 4:  In Example 1, polyethylene carbonate was prepared in the same manner as in Example 1, except that 10 mg of 3,5-dioxonuxanoic acid was used instead of nucleus methacrylate as the dispersant. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Example 4:
실시예 1에서, 분산제로서 핵실 메타크릴레이트 대신, 10mg의 프로필렌 옥사이드 (PO)-에틸렌 옥사이드 (EO) 블록 공중합체 (Mw: 8000; 시그마알드리치사 거 I)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 폴리에틸렌 카보네이트를 제조하였다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. 비교예 1 :  In Example 1, except that 10 mg of propylene oxide (PO) -ethylene oxide (EO) block copolymer (Mw: 8000; Sigma Aldrich Co. I) was used as dispersant instead of nucleus methacrylate. In the same manner, polyethylene carbonate was prepared. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Comparative Example 1:
실시예 1에서, 분산제를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로, 폴리에틸렌 카보네이트를 제조하였다. 제조된 폴리에틸렌 카보네이트의 '양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따른 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. 비교예 2: In Example 1, polyethylene carbonate was prepared in the same manner as in Example 1, except that no dispersant was used. The remaining solids were quantified after complete drying to determine the ' amount of polyethylene carbonate prepared. The activity and yield of the catalyst according to the polymerization results are summarized in Table 1 below. Comparative Example 2:
실시예 1에서, 분산제로서 핵실 메타크릴레이트 대신, 10mg의 프로피온산을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로, 폴리에틸렌 카보네이트를 제조하였다. 제조된 폴리에틸렌 카보네이트의 양을 알기 위해 남아있는 고체를 완전 건조 후 정량하였다. 이러한 중합 결과에 따론 촉매의 활성 및 수율을 하기 표 1에 정리하여 나타내었다. In Example 1, instead of nucleus methacrylate as the dispersant, 10 mg of Polyethylene carbonate was prepared in the same manner as in Example 1 except for using propionic acid. The remaining solids were quantified after complete drying to determine the amount of polyethylene carbonate produced. According to the polymerization results, the activity and yield of the catalyst are summarized in Table 1 below.
[표 1] TABLE 1
Figure imgf000011_0001
상기 표 1 을 참고하면, 실시예 1 내지 4에서는, 비교예 1 및 2과 동일한 촉매를 사용하였음에도 불구하고, 이러한 촉매가 중합 중에 우수한 활성을 유지 및 발현하고, 우수한 수율로 폴리에틸렌 카보네이트가 제조될 수 있음이 확인되었다.
Figure imgf000011_0001
Referring to Table 1, in Examples 1 to 4, despite using the same catalysts as Comparative Examples 1 and 2, these catalysts can maintain and express excellent activity during polymerization, and polyethylene carbonate can be produced with excellent yield. It was confirmed.
이는 특정 분산제의 사용에 따라, 위 증합 과정에서 촉매 입자 간의 웅집이 보다 효과적으로 억제되며, 그 결과 중합 과정 중에 우수한 촉매 활성이 저해되지 않기 때문으로 예측된다.  This is predicted because, depending on the use of a specific dispersant, the spat between the catalyst particles in the above-mentioned polymerization process is more effectively suppressed, and as a result, excellent catalytic activity is not inhibited during the polymerization process.
이에 비해, 비교예 2에서 사용된 프로피온산은 중합 중에 촉매 입자 간의 응집을 효과적으로 억제하지 못하여, 비교예 2에서 촉매 활성의 상대적 저하가 크게 나타나는 것으로 보인다.  In contrast, the propionic acid used in Comparative Example 2 does not effectively suppress aggregation between the catalyst particles during the polymerization, so that the relative decrease in the catalytic activity appears to be large in Comparative Example 2.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
아연 디카르복실레이트계 유기 아연 촉매와, 분산제의 존재 하에, 에폭사이드 및 이산화탄소를 포함한 단량체를 중합시키는 단계를 포함하고, It includes the step of polymerizing monomers containing epoxide and carbon dioxide in the presence of a zinc dicarboxylate-based organic zinc catalyst and a dispersant,
상기 분산제는 탄소수 1 내지 10의 알킬 아크릴레이트, 탄소수 1 내지 The dispersant is an alkyl acrylate with 1 to 10 carbon atoms, and 1 to 10 carbon atoms.
10의 알킬메타크릴레이트, 분자 구조 내에 옥소 (0X0)기를 갖는 탄소수 1 내지 20의 모노카르복실산 및 탄소수 2 내지 6의 알킬렌 옥사이드 반복 단위를 갖는 폴리에테르계 중합체로 이루어전 군에서 선택된 1종 이상을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법. 10 alkyl methacrylate, a monocarboxylic acid with 1 to 20 carbon atoms having an oxo (0 A method for producing a polyalkylene carbonate resin comprising the above.
【청구항 2【Claim 2
제 1 항에 '있어서, 상기 분산제는 핵실 메타크릴레이트, 3,5- 디옥소헥사노익산, 3,5,7-트리옥소-도데카노익산, 및 프로필렌 옥사이드 (PO)-에틸렌 옥사이드 (EO) 블록 공중합체로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법. According to claim 1, wherein the dispersant is hexyl methacrylate, 3,5-dioxohexanoic acid, 3,5,7-trioxo-dodecanoic acid, and propylene oxide (PO)-ethylene oxide (EO) A method for producing a polyalkylene carbonate resin comprising at least one selected from the group consisting of block copolymers.
【청구항 3】 【Claim 3】
제 1 항에 있어서, 상기 아연 디카르복실레이트계 유기 아연 촉매는 아연 전구체와, 탄소수 3 내지 20의 지방족 디카르복실산 또는 탄소수 8 내지 40의 - 방향족 디카르복실산을 반웅시켜 얻어진 촉매인 폴리알킬렌 카보네이트 수지의 제조 방법. The method of claim 1, wherein the zinc dicarboxylate-based organic zinc catalyst is a poly catalyst obtained by reacting a zinc precursor with an aliphatic dicarboxylic acid having 3 to 20 carbon atoms or an aromatic dicarboxylic acid having 8 to 40 carbon atoms. Method for producing alkylene carbonate resin.
【청구항 4】 【Claim 4】
제 3 항에 있어서, 상기 지방족 디카르복실산 또는 방향족 디카르복실산은 말론산, 글루타르산, 숙신산, 아디프산, 테레프탈산, 이소프탈산, 호모프탈산 및 페닐글루타르산으로 이루어진 군에서 선택된 디카르복실산을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법. The method of claim 3, wherein the aliphatic dicarboxylic acid or aromatic dicarboxylic acid is a dicarboxylic acid selected from the group consisting of malonic acid, glutaric acid, succinic acid, adipic acid, terephthalic acid, isophthalic acid, homophthalic acid, and phenylglutaric acid. Method for producing polyalkylene carbonate resin containing boxylic acid.
【청구항 5】 【Claim 5】
제 3 항에 있어서, 상기 아연 전구체는 산화아연, 수산화아연, 아세트산 아연 (Zn(O2CCH3)2), 질산 아연 (Zn(N03)2) 또는 황산 아연 (ZnSO4)을 포함하는 폴리알킬렌 카보네이트 수지의 제조 방법. The method of claim 3, wherein the zinc precursor is zinc oxide, zinc hydroxide, or acetic acid. A method for producing a polyalkylene carbonate resin containing zinc (Zn(O 2 CCH 3 ) 2 ), zinc nitrate (Zn(N0 3 ) 2 ) or zinc sulfate (ZnSO 4 ).
【청구항 6】 . 【Claim 6】.
제 3 항에 있어서, 상기 지방족 디카르복실산 또는 방향족 디카르복실산은 상기 아연 전구체 1 몰에 대해 1.0 내지 1 .5 몰의 비율로 사용 및 반응되는 폴리알킬렌 카보네이트 수지의 제조 방법. The method for producing a polyalkylene carbonate resin according to claim 3, wherein the aliphatic dicarboxylic acid or aromatic dicarboxylic acid is used and reacted at a ratio of 1.0 to 1.5 mole based on 1 mole of the zinc precursor.
【청구항 7】 【Claim 7】
제 1 항에 있어서, 상기 아연 디카르복실레이트계 유기 아연 촉매는 0.3 내지 1.0 의 평균 입경 및 0.3/im 이하의 입경의 표준 편차를 갖는 입자 형태로서 중합 중에 사용되는 폴리알킬렌 카보네이트 수지의 제조 방법. The method of claim 1, wherein the zinc dicarboxylate-based organic zinc catalyst is in the form of particles having an average particle diameter of 0.3 to 1.0 and a standard deviation of the particle diameter of 0.3/im or less, and is used during polymerization. .
【창구항 8】 【Canggu Port 8】
제 1 항에 있어서, 유기 용매 내에서 용액 중합으로 진행되는 폴리알킬렌 카보네이트 수지의 제조 방법. The method of claim 1, wherein the method for producing a polyalkylene carbonate resin is carried out by solution polymerization in an organic solvent.
PCT/KR2014/011080 2013-11-18 2014-11-18 Method for preparing polyalkylene carbonate resin WO2015072814A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480062879.0A CN105722888B (en) 2013-11-18 2014-11-18 The preparation method of zinc-containing solid catalyst resin
EP14862413.3A EP3048128B1 (en) 2013-11-18 2014-11-18 Method for preparing polyalkylene carbonate resin
JP2016526103A JP6272473B2 (en) 2013-11-18 2014-11-18 Method for producing polyalkylene carbonate resin
US15/035,458 US9732187B2 (en) 2013-11-18 2014-11-18 Manufacturing method of polyalkylene carbonate resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130140000 2013-11-18
KR10-2013-0140000 2013-11-18
KR10-2014-0160730 2014-11-18
KR1020140160730A KR101703275B1 (en) 2013-11-18 2014-11-18 Preparation method of poly(alkylene carbonate) resin

Publications (1)

Publication Number Publication Date
WO2015072814A1 true WO2015072814A1 (en) 2015-05-21

Family

ID=53057678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011080 WO2015072814A1 (en) 2013-11-18 2014-11-18 Method for preparing polyalkylene carbonate resin

Country Status (1)

Country Link
WO (1) WO2015072814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038264A (en) * 2016-09-30 2021-03-11 ダイキン工業株式会社 Carboxylate salt or sulfonate salt, and surfactant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943677A (en) * 1989-06-08 1990-07-24 Air Products And Chemicals, Inc. Making poly(alkylene carbonates) of controlled molecular weight
US4981948A (en) * 1988-08-09 1991-01-01 Mitsui Petrochemical Industries, Ltd. Zinc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
KR20030097237A (en) * 2002-06-20 2003-12-31 주식회사 포스코 Method of preparing catyalyst for polymerization of aliphatic polycarbonate and method of polymerizing aliphatic polycarbonate
KR20120023820A (en) * 2009-05-22 2012-03-13 스미또모 세이까 가부시키가이샤 Method for producing aliphatic polycarbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981948A (en) * 1988-08-09 1991-01-01 Mitsui Petrochemical Industries, Ltd. Zinc-containing solid catalyst, process of preparing same and process for preparing polyalkylene carbonate
KR930003163B1 (en) * 1988-08-09 1993-04-23 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤 Zinc containing solid catalyst and process for preparing polyalkylene carbonate
US4943677A (en) * 1989-06-08 1990-07-24 Air Products And Chemicals, Inc. Making poly(alkylene carbonates) of controlled molecular weight
KR20030097237A (en) * 2002-06-20 2003-12-31 주식회사 포스코 Method of preparing catyalyst for polymerization of aliphatic polycarbonate and method of polymerizing aliphatic polycarbonate
KR20120023820A (en) * 2009-05-22 2012-03-13 스미또모 세이까 가부시키가이샤 Method for producing aliphatic polycarbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038264A (en) * 2016-09-30 2021-03-11 ダイキン工業株式会社 Carboxylate salt or sulfonate salt, and surfactant

Similar Documents

Publication Publication Date Title
KR101640244B1 (en) Preparation method of organic zinc catalyst and poly(alkylene carbonate) resin
US9732187B2 (en) Manufacturing method of polyalkylene carbonate resin
US10836860B2 (en) Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using the catalyst
EP3048129B1 (en) Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same
CN111440302A (en) Method for preparing polycaprolactone by catalyzing caprolactone ring-opening polymerization through super-crosslinked metalloporphyrin
US9803048B2 (en) Organic zinc catalyst and preparation method thereof
WO2015072814A1 (en) Method for preparing polyalkylene carbonate resin
KR102233983B1 (en) Organic zinc catalyst, preparation method of the catalyst and production method of poly(alkylene carbonate) resin over the catalyst
KR102073952B1 (en) Poly(alkylene carbonate) resin composition, preparation method of the same, molded article formed from the same, and preparation method of molded article using the same
KR101870315B1 (en) Organic zinc catalyst, preparation method of the catalyst, and preparation method of poly(alkylene carbonate) resin using the catalyst
KR102039206B1 (en) Organic zinc catalyst, its preparation method, and method for preparing poly(alkylene carbonate) using the same
WO2015072815A1 (en) Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same
KR20160012726A (en) Process for producing polyalkylene carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862413

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014862413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862413

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016526103

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE