WO2015070543A1 - 单针集成型人工胰腺 - Google Patents

单针集成型人工胰腺 Download PDF

Info

Publication number
WO2015070543A1
WO2015070543A1 PCT/CN2014/071526 CN2014071526W WO2015070543A1 WO 2015070543 A1 WO2015070543 A1 WO 2015070543A1 CN 2014071526 W CN2014071526 W CN 2014071526W WO 2015070543 A1 WO2015070543 A1 WO 2015070543A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
needle
artificial pancreas
sensor
electrode
Prior art date
Application number
PCT/CN2014/071526
Other languages
English (en)
French (fr)
Inventor
杨翠军
Original Assignee
上海移宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移宇科技有限公司 filed Critical 上海移宇科技有限公司
Priority to ES14861997T priority Critical patent/ES2703373T3/es
Priority to US14/897,685 priority patent/US20160136357A1/en
Priority to EP14861997.6A priority patent/EP2997988B1/en
Priority to DK14861997.6T priority patent/DK2997988T3/en
Publication of WO2015070543A1 publication Critical patent/WO2015070543A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14556Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases by fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/425Evaluating particular parts, e.g. particular organs pancreas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • A61M2005/1726Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure the body parameters being measured at, or proximate to, the infusion site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling

Definitions

  • the invention belongs to the field of medical instruments, and relates to an artificial pancreas, in particular to a single-needle integrated artificial pancreas. Background technique
  • diabetes is a lifelong disease.
  • medical technology cannot cure diabetes. It can only control the occurrence and development of diabetes and its complications by stabilizing blood sugar.
  • the normal human pancreas automatically monitors changes in the body's blood glucose levels and automatically secretes the required insulin.
  • the device that can dynamically monitor the blood sugar changes in the human body by the glucose sensor implanted in the subcutaneous tissue of the human body is a "real-time dynamic blood glucose monitoring system"; the infusion tube implanted in the subcutaneous tissue of the human body can accurately inject the subcutaneous tissue into the human body for 24 hours.
  • the device for insulin is the "insulin pump”.
  • the device capable of dynamically monitoring the blood sugar changes in the human body in real time and simultaneously achieving accurate infusion of insulin into the subcutaneous tissue of the human body for 24 hours is an "artificial pancreas".
  • the traditional artificial pancreas is usually composed of two sets of devices, namely "real-time dynamic blood glucose monitoring system” and "insulin pump system”.
  • glucose sensor and indwelling hose In patients with diabetes, when they are treated with traditional artificial pancreas, they need to wear at least two discrete components: glucose sensor and indwelling hose. Considering the comfort level of the patient when wearing it, both parts are made of slender and soft medical polymer material.
  • a larger glucose sensor is fitted with an auxiliary mounting device such as an ejector and an indwelling hose mounting ejector.
  • this puncture indwelling process is similar to the mechanical structure that accomplishes this process.
  • the area of action of the glucose sensor and the indwelling hose on the human body, as well as the requirements for both disposable disposable use and aseptic production, are the same.
  • the surface temperature of human skin is usually 32-37 degrees. Between these, the peak temperature of insulin in this temperature range is longer. The lower the temperature, the longer the time.
  • the traditional artificial pancreatic system cannot solve the delay between the target blood glucose concentration and the peak insulin action time, so the real-time rapid adjustment of the human blood glucose concentration cannot be achieved. Summary of the invention
  • an object of the present invention is to provide a single-needle integrated artificial pancreas for solving the need in the prior art that a glucose sensor and an insulin indwelling hose are implanted when a patient uses an artificial pancreas.
  • the present invention provides a single-needle integrated artificial pancreas, the single-needle integrated artificial pancreas comprising: a drug storage unit for storing insulin; and being connected to the drug storage unit a drug delivery unit for pushing insulin stored in the drug storage unit to a subcutaneous tissue of a patient; an indwelling unit including a glucose sensor, an insulin indwelling hose, a puncture needle, and a mounting device connected to the drug storage unit;
  • the glucose sensor and the insulin indwelling hose are simultaneously implanted in the same subcutaneous tissue of the patient via the mounting device with the aid of the puncture needle;
  • the puncture needle is a puncture needle or a puncture needle;
  • Blood glucose usable signals for processing the glucose sensor output and blood glucose monitoring for controlling the drug storage unit, the drug delivery driving unit and the retention unit, respectively, connected to the drug storage unit, the drug delivery unit, and the retention unit Insulin administration control unit.
  • the glucose sensor comprises an electrode sensor, and/or a fiber optic sensor.
  • the electrode sensor is integrated on an outer surface of an insulin indwelling hose, the puncture steel needle being located in a tube of the insulin indwelling hose.
  • the electrode sensor is integrated on an outer surface of the insulin indwelling hose, and the electrode sensor and the insulin indwelling hose are located in a recess of the split needle.
  • the electrodes of the electrode sensor are annular or fan-shaped, and the electrode contacts of the electrode sensor are annular or fan-shaped.
  • the electrode coating structure of the electrode sensor comprises an anti-interference layer, an enzyme layer, an adjustment layer, and a protective layer.
  • the electrode coating structure of the electrode sensor comprises an enzyme layer, an adjustment layer, and a protective layer.
  • the electrode coating structure of the electrode sensor further includes an anti-interference layer, an adhesive layer, an enzyme layer, an adhesive layer, an adjustment layer, and a protective layer.
  • the glucose sensor and the insulin indwelling hose are discharged side by side, the glucose transmission
  • the sensor and the insulin indwelling hose are located in the recess of the split needle.
  • the end of the insulin indwelling hose is between 1 mm and 8 mm from the end of the glucose sensor.
  • the insulin indwelling hose end and the glucose sensor end are both in the shape of a tip.
  • the single needle integrated artificial pancreas further comprises an automatic skin temperature regulating device for heating the skin tissue at which the glucose sensor and the insulin indwelling hose are implanted.
  • the skin temperature automatic regulating device comprises a skin heating film, a heating module, a temperature control module, a heat preservation module, and a temperature detecting module.
  • the single-needle integrated type artificial pancreas mounting device is an automatic ejection mounting device or a manual garment.
  • the single-needle integrated artificial pancreas may further include a pump body and a controller connected to the pump body; the pump body includes a drug storage unit, a drug delivery driving unit and a retention unit; the controller includes blood sugar Monitoring and insulin administration control unit.
  • the single-needle integrated artificial pancreas according to the present invention has the following beneficial effects:
  • the invention can simultaneously implant the indwelling hose and the glucose sensor in the artificial pancreas into the same part of the human subcutaneous tissue, thereby reducing the probability of infection of the diabetic patient;
  • the invention has simple installation and convenient use
  • the invention solves the problem of delay between the target blood glucose concentration and the peak insulin action time, realizes real-time rapid adjustment of the human blood glucose concentration, and reduces the influence of temperature change on blood glucose monitoring.
  • Fig. 1 is a schematic view showing the principle structure of a single-needle integrated artificial pancreas according to the present invention.
  • Fig. 2 is a view showing the structure of a glucose sensor using an electrode sensor in the single-needle integrated artificial pancreas of the present invention.
  • Fig. 3 is a view showing the structure of a glucose sensor using a fiber-optic sensor in the single-needle integrated artificial pancreas of the present invention.
  • Fig. 4 is a view showing the structure of the single needle integrated artificial pancreas of the present invention in which the puncture needle is placed in the insulin indwelling hose tube integrated with the electrode sensor.
  • Fig. 5 is a view showing the electrode structure of an electrode sensor integrated in the outer surface of an insulin indwelling hose in the single needle integrated artificial pancreas of the present invention.
  • Fig. 6 is a view showing the electrode structure of an electrode sensor integrated in the outer surface of an insulin indwelling hose in the single needle integrated artificial pancreas of the present invention.
  • Fig. 7 is a view showing the structure of an electrode contact point of an electrode sensor integrated in the outer surface of an insulin indwelling hose in the single needle integrated artificial pancreas of the present invention.
  • Fig. 8 is a view showing the structure of an electrode contact point of an electrode sensor integrated in the outer surface of an insulin indwelling hose in the single needle integrated artificial pancreas of the present invention.
  • Fig. 9 is a view showing another structural diagram of the insulin indwelling hose in the single needle integrated artificial pancreas and the electrode sensor integrated on the outer surface of the insulin indwelling hose in the puncture needle of the present invention.
  • Fig. 10 is a view showing the structure of the electrode sensor and the insulin indwelling hose which are juxtaposed and discharged in the single-needle integrated artificial pancreas of the present invention in the puncture needle.
  • Fig. 11 is a view showing the structure of the optical fiber sensor and the insulin indwelling hose which are juxtaposed and discharged together in the single-needle integrated artificial pancreas of the present invention.
  • Fig. 12 is a view showing the structure of the electrode sensor and the optical fiber sensor and the insulin indwelling hose which are juxtaposed and discharged together in the single-needle integrated artificial pancreas of the present invention.
  • Fig. 13 is a view showing the structure of the electrode sensor and the optical fiber sensor and the insulin indwelling hose which are juxtaposed and discharged together in the single-needle integrated artificial pancreas of the present invention.
  • Fig. 14a is a schematic view showing the principle structure of the skin temperature automatic regulating device in the single needle integrated artificial pancreas of the present invention.
  • Fig. 14b is a schematic view showing the principle structure of the skin temperature automatic regulating device in the single needle integrated artificial pancreas of the present invention. Component label description
  • the invention provides a single-needle integrated artificial pancreas, see FIG. 1, which is shown as the single-needle integration.
  • the principle structure of the artificial pancreas includes the drug storage unit 1, the drug delivery driving unit 2, the indwelling unit 3, the blood glucose monitoring and insulin administration control unit 4, and the skin temperature automatic regulating device 5.
  • the indwelling unit 3 includes a glucose sensor 31, an insulin indwelling hose 32, a puncture needle 33, and a mounting device 34.
  • the puncture needle 33 includes a puncture needle 331 or a split puncture needle 332.
  • the mounting device 34 includes an automatic ejection mounting device or a manual mounting device.
  • the single-needle integrated artificial pancreas may further include a pump body and a controller connected to the pump body, the pump body including a drug storage unit, a drug delivery driving unit and a retention unit; the controller includes blood glucose monitoring and insulin Administration control unit.
  • the drug storage unit 1 is used for storing insulin
  • the drug delivery driving unit 2 connected to the drug storage unit 1 is for pushing the insulin stored in the drug storage unit 1 to the subcutaneous tissue of the patient;
  • the indwelling unit 3 respectively connected to the drug storage unit 1 includes a glucose sensor 31, an insulin indwelling hose 32, a puncture needle 33, and a mounting device 34.
  • the glucose sensor 31 is used for real-time monitoring of changes in blood glucose in the human body, and generates a blood glucose available signal according to changes in blood glucose in the human body, and outputs a blood glucose usable signal.
  • the glucose sensor employs an electrode sensor 35, and/or an optical fiber sensor 36.
  • the glucose sensor is implanted into the subcutaneous tissue of the human body when measuring blood sugar of the human body.
  • the glucose sensor 31 can be used to monitor the blood glucose concentration in the human body through a current signal.
  • the glucose electrode sensor consists essentially of an enzyme membrane and a Clark oxygen electrode or a hydrogen peroxide electrode.
  • Glucose oxidizes under the catalysis of glucose oxidase, consuming oxygen to form gluconolactone and hydrogen peroxide.
  • Glucose oxidase is immobilized on the surface close to the platinum electrode by a physical adsorption method by a semipermeable membrane, and its activity depends on the oxygen concentration around it. Glucose reacts with glucose oxidase to produce two electrons and two protons.
  • the reduced glucose oxidase surrounded by oxygen and electron protons reacts to form hydrogen peroxide and oxidized glucose oxidase, which returns to the original state and reacts with more glucose.
  • the higher the glucose concentration the more oxygen is consumed and the more hydrogen peroxide is produced.
  • the lower the glucose concentration the opposite. Therefore, oxygen consumption and hydrogen peroxide production can be detected by the platinum electrode and can be used as a method of measuring glucose.
  • the electrode sensor can be divided into a three-electrode system and a two-electrode system, wherein the three-electrode system refers to a counter electrode, a reference electrode, and at least one working electrode. According to the invention, the number of working electrodes can be divided into two cases:
  • Double working electrode two working electrodes, one for electro-oxidation and reduction of the substance to be detected
  • the electrical signal called the "working electrode”
  • the other is usually responsible for detecting the response signal of the interferer or background solution, called the "auxiliary electrode”.
  • the reference electrode of the three-electrode system is used to effectively control the detection potential and prevent potential drift.
  • the two-electrode system is simpler in construction and less expensive to manufacture.
  • the structure of the glucose sensor is an electrode sensor.
  • the electrode sensor 35 is a three-electrode system, including a counter electrode 351 , a working electrode 352 , a reference electrode 353 , and Sensor electrode contact point (PAD) 354.
  • PAD Sensor electrode contact point
  • the electrode coating structure of the electrode sensor in the glucose sensor comprises: (1) the sensor coating structure is an anti-interference layer, an enzyme layer, an adjustment layer, a protective layer; (2) the sensor coating structure is an enzyme layer, an adjustment layer, and protection (3) The sensor coating structure is an anti-interference layer, an adhesive layer, an enzyme layer, an adhesive layer, an adjustment layer, and a protective layer.
  • the use of such a sensor coating structure can improve the accuracy and specificity of glucose detection and has good stability both in vitro and in vivo.
  • the fiber sensor 31 which may also be employed by the glucose sensor 31, monitors blood glucose concentrations in the human body by optical signals, including the use of fluorescence-based fiber optic biosensors.
  • Glucose fiber optic sensors generate fluorescence by irradiation of specific wavelengths of light transmitted by semiconductor quantum dots on microfibers. Hydrogen peroxide generated by glucose oxidase oxidizing glucose can reduce fluorescence intensity, even quenching, and decrease the intensity of fluorescent signal and glucose concentration. A linear relationship is established by which the glucose concentration can be determined.
  • the structure shown as a glucose sensor is a fiber sensor.
  • the fiber sensor 36 includes a fiber signal acquisition area 361 and a fiber signal transmission area 362.
  • the insulin indwelling hose 32 is for delivering insulin stored in the drug storage unit 1.
  • the insulin retention hose 32 is connected to the drug storage unit 1.
  • the puncture needle 33 is used to puncture a patient's skin.
  • the puncture needle 33 may be a pierced steel needle 331 or a split puncture needle 332.
  • the mounting device 34 is configured to simultaneously embed the glucose sensor 31 and the insulin indwelling hose 32 at the same subcutaneous tissue of the patient with the aid of the puncture needle 33.
  • the mounting device 34 can simultaneously embed the glucose sensor 31 and the insulin indwelling hose 32 at the same position of the subcutaneous tissue of the human body, which is easy to install and reduces the chance of infection of the diabetic patient.
  • the puncture needle 33 employs a puncture steel needle 331 or a split puncture needle 332; that is, the insulin indwelling hose 32 and integrated in the insulin
  • the glucose sensor 31 on the outer surface of the indwelling hose 32 passes through the puncture needle 331 or the split needle in the hose of the insulin indwelling hose 32 332 is implanted into the subcutaneous tissue of the human body.
  • the puncture needle 33 employs a split puncture needle 332.
  • the glucose sensor 31 and the insulin indwelling hose 32 are simultaneously implanted into the subcutaneous tissue of the human body in the following ways:
  • the first implementation manner is as follows: Referring to FIG. 4, the structure is shown in the insulin indwelling hose tube integrated with the glucose sensor.
  • the glucose sensor 31 adopts the electrode sensor 35.
  • the puncture needle 33 is a puncture steel needle 331. At this time, the puncture steel needle 331 is located inside the tube of the insulin indwelling hose 32.
  • the electrode sensor 35 is integrated on the outer surface of the insulin indwelling hose 32, which is annular or fan-shaped, and the contact points of the electrode sensor are annular or fan-shaped.
  • the electrode of the electrode sensor 35 is annular or fan-shaped. Referring to FIG. 5, the electrode of the electrode sensor integrated on the outer surface of the insulin indwelling hose is annular; as shown in FIG.
  • the electrode of the electrode sensor on the outer surface has a fan-shaped structure; the electrode contact point 354 (PAD) of the electrode sensor is annular or fan-shaped, see Fig. 7, which shows the sector electrode contact point of the electrode sensor integrated on the outer surface of the insulin indwelling hose. Structure; Referring to Figure 8, the structure of the ring electrode contact point of the electrode sensor integrated on the outer surface of the insulin indwelling hose is shown.
  • the integrated insulin indwelling hose 32 and glucose sensor 31 can be implanted into the subcutaneous tissue of the human body through a puncture needle 331 in the hose.
  • the end of the insulin indwelling hose adopts a tip shape.
  • the second implementation manner Referring to FIG. 9, the structure of the insulin indwelling hose and the glucose sensor integrated on the outer surface of the insulin indwelling hose is located in the puncture needle.
  • the glucose sensor 31 An electrode sensor 35 is employed, and the puncture needle 33 is a split puncture needle 332.
  • the glucose sensor 31 and the insulin indwelling hose 32 are placed in the recesses of the split puncture needle 332, and they are implanted into the subcutaneous tissue of the human body through the split puncture needle 332.
  • the electrodes of the electrode sensor 35 are ring-shaped or fan-shaped, and the electrode contact points 354 of the electrode sensor 35 are annular or fan-shaped.
  • the end of the insulin indwelling hose 32 is between 1 and 8 mm from the end of the glucose sensor 31.
  • the insulin indwelling hose The distance between the end of 32 and the end of the glucose sensor 31 is preferably 2-4 mm.
  • a third implementation Referring to FIG. 10, the glucose sensor 31 and the insulin indwelling hose 32, which are discharged side by side, are shown in the structure of the puncture needle.
  • the glucose sensor 31 uses an electrode sensor. 35.
  • the electrode sensor 35 adopts a three-electrode system: a counter electrode 351, a working electrode 352, a reference electrode 353, and an electrode contact point 354.
  • the puncture needle 33 is cut by a puncture The needle 332, at this time, the glucose sensor 31 and the insulin indwelling hose 32 are discharged side by side in the recess of the split needle 332, and they are implanted into the subcutaneous tissue of the human body through the split needle 332.
  • the ends of the insulin indwelling hose and the glucose sensor are in the shape of a tip. And in order to eliminate the effect of insulin infusion on blood glucose monitoring, the end of the insulin indwelling hose 32 is between 1 and 8 mm from the end of the glucose sensor 31. In the present embodiment, the end of the insulin indwelling hose 32 and the electrode sensor 35 The distance between the ends is preferably 2-4 mm.
  • the fourth implementation manner Referring to FIG. 11, the optical fiber sensor 36 and the insulin indwelling hose 32 which are discharged side by side are arranged in the puncture needle 33.
  • the glucose sensor uses the optical fiber.
  • the optical fiber sensor 36 has a fiber optic signal acquisition area 361 and a fiber optic signal transmission area 362.
  • the puncture needle 33 employs a puncture needle 332.
  • the optical fiber sensor 36 and the insulin indwelling hose 32 are discharged side by side in the recess of the split puncture needle 332.
  • the distance between the end of the insulin indwelling hose 32 and the end of the fiber optic sensor 36 is preferably 2-4.
  • the fifth implementation see Figures 12 and 13, shown as glucose sensors that are juxtaposed together.
  • the glucose sensor 31 and the insulin indwelling hose 32 are located in the puncture needle 33.
  • the glucose sensor 31 employs an electrode sensor 35 and a fiber optic sensor 36
  • the puncture needle 33 employs a puncture needle 332.
  • the electrode sensor 35 and the optical fiber sensor 36 are discharged in parallel with the insulin indwelling hose 32 in the recess of the split needle 332.
  • a special algorithm can be used to improve the reliability and accuracy of blood glucose monitoring.
  • the single-needle integrated artificial pancreas mounting device 34 includes an automatic ejection mounting device or a manual mounting device.
  • the mounting device 34 has two mounting modes, the first one being in the artificial pancreas.
  • the built-in automatic ejection mounting device, the glucose sensor 31 and the insulin indwelling hose 32 are automatically implanted in the subcutaneous tissue of the human body by the automatic ejection mounting device with the aid of the puncture needle 33; the second is the glucose sensor 31 and
  • the insulin indwelling hose 32 is simultaneously implanted in the subcutaneous tissue of the human body by a manual mounting device with the aid of the puncture needle 33.
  • the mounting device 34 completes the task of installing the glucose sensor 31 and the insulin indwelling hose 32, the puncture needle 33 is pulled out from the subcutaneous tissue of the human body.
  • the blood glucose monitoring and insulin administration control unit 4 respectively connected to the drug storage unit 1, the drug delivery unit 2, and the retention unit 3 is configured to process the blood glucose available signal output by the glucose sensor 31 and control the drug storage unit 1.
  • Blood glucose monitoring and insulin administration control unit 4 The blood sugar level of the human body can be monitored and measured in real time, so that patients and caregivers can grasp the changes of the blood sugar level of the human body at any time, and respond to this.
  • the skin temperature automatic regulating device 5 is for heating and burying the skin tissue at the glucose sensor 31 and the insulin indwelling hose 32.
  • the skin temperature automatic regulating device 5 is attached to the skin surface of the human subcutaneous tissue of the implanted glucose sensor 31 and the insulin indwelling hose 32.
  • the skin temperature automatic regulating device 5 generates a desired temperature after being energized to reduce the influence of temperature changes on blood glucose monitoring and the time delay for reducing the peak effect of insulin.
  • FIG. 14a and FIG. 14b the principle structure of the skin temperature automatic regulating device 5 is shown.
  • the skin temperature automatic regulating device 5 comprises: a skin heating film 51, a temperature rising module 52, a temperature control module 53, a heat preservation module 54, and a temperature. Detection module 55.
  • the temperature rising module 52 is built in the skin heating film 51 for heating the skin at the glucose sensor 31 and the insulin indwelling hose 32 to between 32 and 45 degrees Celsius; in this embodiment, the temperature increasing module 52 is A rapid heating integrated circuit, a fast heating integrated circuit can be composed of a heating element, a power supply, a temperature sampling element, a switching element, and the like.
  • the temperature control module 53 is connected to the temperature heating module 51 and is used to adjust the heating parameter to control the heating range.
  • the temperature control module 53 is a temperature control circuit.
  • the temperature control circuit can be composed of a temperature sensor, a relay, a temperature adjustment circuit, etc., and the temperature of the skin tissue is controlled between 32 and 45 degrees Celsius.
  • the heat preservation module 54 connected to the temperature control module 53 and built in the skin heating film 51 is used to maintain the temperature of the skin tissue implanted in the glucose sensor and the insulin indwelling hose between 32 and 45 degrees Celsius.
  • the thermal insulation module 54 is a thermal insulation circuit, and the temperature is set between 32 and 45 degrees Celsius in the circuit. Therefore, the thermal insulation circuit can be composed of a temperature sensor, an operational amplifier, a comparator, and a heating module. And so on.
  • the temperature detecting module 55 is for detecting the temperature of the skin tissue at which the glucose sensor 31 and the insulin indwelling hose 32 are implanted.
  • the temperature detecting module 55 is a temperature detecting circuit, and the circuit can be composed of a temperature sensor, a single chip microcomputer, a temperature detecting circuit, and the like.
  • the temperature rising module 52, the temperature control module 53, the heat preservation module 54, and the temperature detecting module 55 may be built in the skin heating film 51 to form the skin temperature automatic regulating device 5, and the temperature detecting module 55 is at the temperature.
  • the control module 53 is connected.
  • the temperature rising module 52, the temperature control module 53, and the heat preservation module 54 may be built in the skin heating unit 51, and the temperature detecting module is
  • the block 55 is connected to the skin heating film 51 to constitute an automatic skin temperature control device 5.
  • the skin temperature automatic control device 5 of the present invention cooperates with the drug storage unit 1, the drug delivery unit 2, the retention unit 3, and the blood glucose monitoring and insulin administration control unit 4 to complete blood glucose monitoring and insulin infusion, in the process.
  • Heating the skin through the automatic skin temperature control device can control the temperature of the human skin to resolve the delay between the target blood glucose concentration and the peak insulin action time, and reduce the effect of temperature changes on blood glucose monitoring.
  • the single-needle integrated artificial pancreas according to the present invention provides a mounting device capable of simultaneously implanting an insulin indwelling hose and a glucose sensor in the same part of the human subcutaneous tissue with the aid of a puncture needle, thus reducing The possibility that the diabetic patient is infected, and the single-needle integrated artificial pancreas is simple and convenient to install; meanwhile, the single-needle integrated artificial pancreas according to the present invention further provides an automatic skin temperature regulating device, and the skin temperature is automatically regulated The device can heat the skin, which can control the temperature of the human skin to resolve the delay between the target blood glucose concentration and the peak insulin action time, and reduce the effect of temperature changes on blood glucose monitoring.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
  • the above-described embodiments are merely illustrative of the principles of the invention and its advantages, and are not intended to limit the invention. Any of the above-described embodiments may be modified or altered without departing from the spirit and scope of the invention. Therefore, all equivalent modifications and changes may be made by those skilled in the art without departing from the spirit and scope of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Diabetes (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种单针集成型人工胰腺,所述单针集成型人工胰腺包括:储药单元(1);与所述储药单元(1)连接的给药驱动单元(2);与所述储药单元(1)连接的,包括葡萄糖传感器(31)、胰岛素留置软管(32)、穿刺针(33)和安装装置(34)的留置单元(3);其中,所述葡萄糖传感器(31)和所述胰岛素留置软管(32)在穿刺针(33)的辅助下经由安装装置(34)同时植埋于患者同一皮下组织处;所述穿刺针(33)为穿刺钢针或剖口穿刺针;及分别与所述储药单元(1)、给药驱动单元(2)、和留置单元(3)连接的血糖监测及胰岛素给药控制单元(4)。本单针集成型人工胰腺可以同时将所述人工胰腺中的胰岛素留置软管(32)和葡萄糖传感器(31)植入到人体皮下组织的同一部位,减少了糖尿病患者被感染的几率;且安装简单,使用方便。

Description

单针集成型人工胰腺
技术领域
本发明属于医药器械领域, 涉及一种人工胰腺, 特别是涉及一种单针集成型 人工胰腺。 背景技术
众所周知, 糖尿病患者主要是人体胰腺功能异常导致的代谢类疾病, 糖尿病 为终身疾病, 目前医疗技术尚无法根治糖尿病, 只能通过稳定血糖来控制糖尿病 及其并发症的发生和发展。 正常的人体胰腺可自动监测人体的血液葡萄糖含量的 变化, 并自动分泌所需的胰岛素。 通过植入人体皮下组织的葡萄糖传感器, 能够 实时动态监测人体血糖变化的装置为 "实时动态血糖监测***" ; 通过植入人体 皮下组织的留置软管, 可连续 24 小时向人体皮下组织精确输注胰岛素的装置为 "胰岛素泵"。能够实时动态监测人体血糖变化, 并同时实现连续 24小时向人体 皮下组织精确输注胰岛素的装置为 "人工胰腺" 。 目前传统的人工胰腺通常由两 套装置共同组成, 分别为 "实时动态血糖监测***"和 "胰岛素泵***" 。 糖尿 病患者在接受传统的人工胰腺治疗的时候,身上至少需要同时佩戴两个分立部件: 葡萄糖传感器和留置软管。 考虑到患者在佩戴使用时的舒适程度, 这两个部分都 采用了细长而柔软的医用高分子材料。正因为这两个部件的材料和形状的特殊性, 它们都需要借助具有一定刚度的穿刺针刺破患者的皮肤并连带将它们送入皮下, 而后将穿刺针抽回, 同时将它们留置于皮下组织。 为了佩戴上述部件, 糖尿病患 者必须在两个部位的皮下组织穿刺, 显然, 需要穿刺的部位越多, 安装也越复杂, 相应的患者被感染的几率也就越大, 而且患者还必须另外使用体积较大的葡萄糖 传感器安装弹射器和留置软管安装弹射器等辅助安装装置。 对于葡萄糖传感器和 留置软管来说,这一穿刺留置过程和实现这一过程的机械结构都是相似的。此外, 葡萄糖传感器和留置软管在人体身上的作用区域, 以及两者对于一次性可抛式使 用和无菌生产等方面的要求都是相同的。
同时, 由于人体皮肤表面的温度会极大影响胰岛素的高峰作用时间, 胰岛素 的高峰作用时间越长, 胰岛素对人体血糖浓度的实时调节功能就越差, 人体皮肤 的表面温度通常在 32-37度之间, 在此温度范围内胰岛素的高峰作用时间较长, 温度越低时间越长, 目前传统的人工胰腺***无法解决目标血糖浓度和胰岛素高 峰作用时间之间的延迟问题, 因此无法实现人体血糖浓度的实时迅速调节。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种单针集成型人工 胰腺, 用于解决现有技术中由于患者使用人工胰腺时, 需要将葡萄糖传感器和胰 岛素留置软管植入患者皮下组织, 所以穿刺的部位越多安装越复杂, 患者被感染 的几率越大的问题。
为实现上述目的及其他相关目的, 本发明提供一种单针集成型人工胰腺, 所 述单针集成型人工胰腺包括: 用于储存胰岛素的储药单元; 与所述储药单元连接 的, 用于将所述储药单元中储存的胰岛素推送至患者皮下组织的给药驱动单元; 与所述储药单元连接的, 包括葡萄糖传感器、 胰岛素留置软管、 穿刺针和安装装 置的留置单元; 其中, 所述葡萄糖传感器和所述胰岛素留置软管在所述穿刺针的 辅助下经由所述安装装置同时植埋于患者同一皮下组织处; 所述穿刺针为穿刺钢 针或剖口穿刺针; 及分别与所述储药单元、 给药驱动单元、 和留置单元连接的, 用于处理所述葡萄糖传感器输出的血糖可用信号及控制所述储药单元、 给药驱动 单元和留置单元的血糖监测及胰岛素给药控制单元。
优选地, 所述葡萄糖传感器包括电极传感器、 和 /或光纤传感器。
优选地, 所述电极传感器集成在胰岛素留置软管的外表面, 所述穿刺钢针位 于所述胰岛素留置软管的管内。
优选地, 所述电极传感器集成在胰岛素留置软管的外表面, 所述电极传感器 和所述胰岛素留置软管位于所述剖口穿刺针的凹槽内。
优选地, 所述电极传感器的电极为环形或扇形, 所述电极传感器的电极接触 点为环形或扇形。
优选地, 所述电极传感器的电极涂层结构包括抗干扰层、 酶层、 调节层、 及 保护层。
优选地, 所述电极传感器的电极涂层结构包括酶层、 调节层、 及保护层。 优选地, 所述电极传感器的电极涂层结构还包括抗干扰层、 粘合层、 酶层、 粘合层、 调节层、 及保护层。
优选地, 所述葡萄糖传感器和所述胰岛素留置软管并列排放, 所述葡萄糖传 感器和所述胰岛素留置软管位于所述剖口穿刺针的凹槽内。
优选地, 所述胰岛素留置软管末端与所述葡萄糖传感器末端的距离在 1毫米 至 8毫米之间。
优选地, 所述胰岛素留置软管末端与所述葡萄糖传感器末端均为尖端形状。 优选地, 所述单针集成型人工胰腺还包括用于加热植埋所述葡萄糖传感器和 胰岛素留置软管处皮肤组织的皮肤温度自动调控装置。
优选地, 所述皮肤温度自动调控装置包括皮肤发热膜、 升温模块、 温度控制 模块、 保温模块、 以及温度检测模块。
优选地, 所述单针集成型人工胰腺中安装装置为自动弹射安装装置或手动安 衣衣且。
优选地, 所述单针集成型人工胰腺还可以包括泵体和与所述泵体连接的控制 器; 所述泵体包括储药单元、 给药驱动单元和留置单元; 所述控制器包括血糖监 测及胰岛素给药控制单元。
如上所述, 本发明所述的单针集成型人工胰腺, 具有以下有益效果:
1、 本发明可以同时将所述人工胰腺中的留置软管和葡萄糖传感器植入到人 体皮下组织的同一部位, 减少了糖尿病患者被感染的几率;
2、 本发明安装简单, 使用方便;
3、 本发明解决了目标血糖浓度和胰岛素高峰作用时间之间的延迟问题, 实 现了人体血糖浓度的实时迅速调节, 同时减少温度变化对血糖监测的影响。 附图说明
图 1显示为本发明的单针集成型人工胰腺的原理结构示意图。
图 2显示本发明的单针集成型人工胰腺中葡萄糖传感器采用电极传感器的结 构示意图。
图 3显示本发明的单针集成型人工胰腺中葡萄糖传感器采用光纤传感器的结 构示意图。
图 4显示为本发明的单针集成型人工胰腺中穿刺针位于在与电极传感器集成 在一起的胰岛素留置软管管内的结构示意图。
图 5显示为本发明的单针集成型人工胰腺中集成在胰岛素留置软管外表面的 电极传感器的电极结构示意图。 图 6显示为本发明的单针集成型人工胰腺中集成在胰岛素留置软管外表面的 电极传感器的电极结构示意图。
图 7显示为本发明的单针集成型人工胰腺中集成在胰岛素留置软管外表面的 电极传感器的电极接触点结构示意图。
图 8显示为本发明的单针集成型人工胰腺中集成在胰岛素留置软管外表面的 电极传感器的电极接触点结构示意图。
图 9显示为本发明的单针集成型人工胰腺中胰岛素留置软管和集成在胰岛素 留置软管外表面的电极传感器位于在穿刺针中的另一结构示意图。
图 10 显示为本发明的单针集成型人工胰腺中并列排放在一起的电极传感器 与胰岛素留置软管位于在穿刺针中的结构示意图。
图 11 显示为本发明的单针集成型人工胰腺中并列排放在一起的光纤传感器 与胰岛素留置软管位于在穿刺针中的结构示意图。
图 12 显示为本发明的单针集成型人工胰腺中并列排放在一起的电极传感器 和光纤传感器与胰岛素留置软管位于在穿刺针中的结构示意图。
图 13 显示为本发明的单针集成型人工胰腺中并列排放在一起的电极传感器 和光纤传感器与胰岛素留置软管位于在穿刺针中的结构示意图。
图 14a显示为本发明的单针集成型人工胰腺中皮肤温度自动调控装置的原理 结构示意图。
图 14b显示为本发明的单针集成型人工胰腺中皮肤温度自动调控装置的原理 结构示意图。 元件标号说明
1 储药单元
2 给药驱动单元
3 留置单元
4 血糖监测及胰岛素给药控制单元
5 皮肤温度自动调控装置
31 葡萄糖传感器
32 胰岛素留置软管 33 穿刺针
34 安装装置
35 电极传感器
36 光纤传感器
51 皮肤发热膜
52 升温模块
53 温度控制模块
54 保温模块
55 温度检测模块
331 穿刺钢针
332 剖口穿刺针
351 对电极
352 工作电极
353 参比电极
354 电极接触点
361 光纤信号采集区
362 光纤信号传输区 具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说 明书所揭露的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外 不同的具体实施方式加以实施或应用, 本说明书中的各项细节也可以基于不同观 点与应用, 在没有背离本发明的精神下进行各种修饰或改变。
请参阅附图。 需要说明的是, 本实施例中所提供的图示仅以示意方式说明本 发明的基本构想, 遂图式中仅显示与本发明中有关的组件而非按照实际实施时的 组件数目、 形状及尺寸绘制, 其实际实施时各组件的型态、 数量及比例可为一种 随意的改变, 且其组件布局型态也可能更为复杂。
下面结合实施例和附图对本发明进行详细说明。 本实施例提供一种单针集成型人工胰腺, 请参阅图 1, 显示为所述单针集成 型人工胰腺的原理结构, 所述单针集成型人工胰腺包括: 储药单元 1、 给药驱动 单元 2、 留置单元 3、 血糖监测及胰岛素给药控制单元 4、 和皮肤温度自动调控装 置 5。所述留置单元 3包括葡萄糖传感器 31、胰岛素留置软管 32、 穿刺针 33、和 安装装置 34。所述穿刺针 33包括穿刺钢针 331或剖口穿刺针 332。所述安装装置 34包括自动弹射安装装置或手动安装装置。所述单针集成型人工胰腺还可以包括 泵体和与所述泵体连接的控制器, 所述泵体包括储药单元、 给药驱动单元和留置 单元; 所述控制器包括血糖监测及胰岛素给药控制单元。
储药单元 1用于储存胰岛素;
与所述储药单元 1连接的给药驱动单元 2用于将所述储药单元 1中储存的胰 岛素推送至患者皮下组织;
分别与所述储药单元 1连接的留置单元 3包括葡萄糖传感器 31、胰岛素留置 软管 32、 及穿刺针 33、 和安装装置 34。
葡萄糖传感器 31用于实时监测人体内血糖的变化,根据人体内血糖变化产生 血糖可用信号, 输出血糖可用信号。 本实施例中, 所述葡萄糖传感器采用电极传 感器 35、 和 /或光纤传感器 36。 所述葡萄糖传感器在测量人体血糖时植入人体皮 下组织。
葡萄糖传感器 31 可采用的电极传感器是通过电流信号来监测人体内的血糖 浓度, 葡萄糖电极传感器基本由酶膜和 Clark氧电极或过氧化氢电极组成。 葡萄 糖在葡萄糖氧化酶的催化作用下会发生氧化反应, 消耗氧气, 生成葡萄糖酸内酯 和过氧化氢。 葡萄糖氧化酶被半透膜通过物理吸附的方法固定在靠近铂电极的表 面, 其活性依赖于其周围的氧浓度。 葡萄糖与葡萄糖氧化酶反应, 生成两个电子 和两个质子。 被氧及电子质子包围的还原态葡萄糖氧化酶经过反应后, 生成过氧 化氢及氧化态葡萄糖氧化酶, 葡萄糖氧化酶回到最初的状态并可与更多的葡萄糖 反应。 葡萄糖浓度越高, 消耗的氧越多, 生成的过氧化氢越多。葡萄糖浓度越低, 则相反。 因此, 氧的消耗及过氧化氢的生成都可以被铂电极所检测, 并可以作为 测量葡萄糖的方法。 所述电极传感器可分为三电极体系和两电极体系, 其中三电 极体系是指一根对电极、 一根参比电极、 及至少一根工作电极。 本发明按照工作 电极的数量, 可以分为两种情况:
1 ) 单工作电极, 工作电极只有一根;
2) 双工作电极, 工作电极有两根, 一根为待检测物质发生电氧化还原, 产生 电信号, 称为 "工作电极"; 另一根则通常负责检测干扰物或者背景溶液 的响应信号, 称之为 "辅助电极" 。
三电极体系多出的参比电极用于有效的控制检测电位, 防止出现电位漂移的 情况。 两电极体系则结构更简单, 制作成本更低。 请参阅图 2, 显示为葡萄糖传 感器为电极传感器的结构,在本实施例中采用电极传感器 35时,其中电极传感器 35为三电极体系, 包括对电极 351、 工作电极 352、参比电极 353、及传感器电极 接触点 (PAD) 354。
所述葡萄糖传感器中电极传感器的电极涂层结构包括: (1 )传感器涂层结构 为抗干扰层、 酶层、 调节层、 保护层; (2)传感器涂层结构为酶层、 调节层、 保 护层; (3 )传感器涂层结构为抗干扰层、 粘合层、 酶层、 粘合层、 调节层、 保护 层。 采用这样的传感器涂层结构能提高葡萄糖检测的准确度及特异性, 并且在体 外或体内都具有很好的稳定性。
所述葡萄糖传感器 31也可采用的光纤传感器 36是通过光信号监测人体内的 血糖浓度, 其中包括基于荧光的光纤生物传感器的使用。 葡萄糖光纤传感器是通 过半导体量子点在微光纤传输的特定波长光的照射下产生荧光, 葡萄糖氧化酶氧 化葡萄糖产生的过氧化氢能够使荧光强度降低, 甚至淬灭, 荧光信号强度下降程 度与葡萄糖浓度成一定的线性关系, 通过这个关系, 可以测定葡萄糖浓度。 请参 阅图 3, 显示为葡萄糖传感器为光纤传感器的结构, 在本实施例中采用光纤传感 器 36时, 光纤传感器 36包括光纤信号采集区 361和光纤信号传输区 362。 所述 胰岛素留置软管 32用于输送所述储药单元 1中存储的胰岛素。所述胰岛素留置软 管 32与所述储药单元 1连接。
所述穿刺针 33用于穿刺患者皮肤。 在本实施例中, 所述穿刺针 33可以为穿 刺钢针 331或剖口穿刺针 332。
所述安装装置 34用于将所述葡萄糖传感器 31和胰岛素留置软管 32在所述穿 刺针 33的辅助下同时植埋于患者同一皮下组织处。 所述安装装置 34是可以同时 将葡萄糖传感器 31和胰岛素留置软管 32植埋在人体皮下组织的同一位置处, 这 样安装简便并减小了糖尿病患者被感染的几率。当所述葡萄糖传感器 31和所述胰 岛素留置软管 32集成在一起时, 所述穿刺针 33采用穿刺钢针 331或剖口穿刺针 332;即所述胰岛素留置软管 32和集成在所述胰岛素留置软管 32外表面上所述葡 萄糖传感器 31通过所述胰岛素留置软管 32软管内的穿刺钢针 331或剖口穿刺针 332植入到人体皮下组织。 当所述葡萄糖传感器 31和所述胰岛素留置软管 32并 列排放在一起时, 所述穿刺针 33采用剖口穿刺针 332。
在本实施例中, 所述葡萄糖传感器 31和所述胰岛素留置软管 32被同时植入 人体皮下组织可以有以下几种实现方式:
第一种实现方式: 请参阅图 4, 显示为穿刺针位于在与葡萄糖传感器集成在 一起的胰岛素留置软管管内的结构, 在第一种实现方式中, 所述葡萄糖传感器 31 采用电极传感器 35, 所述穿刺针 33采用穿刺钢针 331。 此时, 所述穿刺钢针 331 位于所述胰岛素留置软管 32管内。 所述电极传感器 35集成在所述胰岛素留置软 管 32的外表面上,所述电极传感器电极为环形或者扇形, 电极传感器的接触点为 环形或者扇形。 所述电极传感器 35的电极为环形或扇形, 请参阅图 5, 显示为集 成在胰岛素留置软管外表面的电极传感器的电极呈环形的结构; 请参阅图 6, 显 示为集成在胰岛素留置软管外表面的电极传感器的电极呈扇形的结构; 电极传感 器的电极接触点 354 (PAD) 为环形或扇形, 请参阅图 7, 显示为集成在胰岛素 留置软管外表面的电极传感器的扇形电极接触点的结构; 请参阅图 8, 显示为集 成在胰岛素留置软管外表面的电极传感器的环形电极接触点的结构。 集成后的胰 岛素留置软管 32和葡萄糖传感器 31可通过软管内的穿刺钢针 331植入人体皮下 组织。 为了减小植入人体皮下组织穿刺的阻力, 胰岛素留置软管的末端采用尖端 形状。 第二种实现方式: 请参阅图 9, 显示为胰岛素留置软管和集成在胰岛素留 置软管外表面的葡萄糖传感器位于在穿刺针中的结构, 在第二种实现方式中, 所 述葡萄糖传感器 31采用电极传感器 35, 所述穿刺针 33采用剖口穿刺针 332。 此 时, 所述葡萄糖传感器 31与所述胰岛素留置软管 32放置在剖口穿刺针 332的凹 槽内,通过剖口穿刺针 332将它们植入人体皮下组织。电极传感器 35的电极为环 形或扇形, 电极传感器 35的电极接触点 354为环形或扇形。为了消除胰岛素输注 对血糖监测产生影响, 胰岛素留置软管 32的末端距离葡萄糖传感器 31的末端在 1-8毫米之间, 本第一种实现方式和第二种实现方式中, 胰岛素留置软管 32的末 端与葡萄糖传感器 31的末端之间的距离优选为 2-4毫米。
第三种实现方式: 请参阅图 10, 显示为并列排放在一起的葡萄糖传感器 31 与胰岛素留置软管 32位于在穿刺针中的结构,在这种实现方式中,所述葡萄糖传 感器 31采用电极传感器 35, 所述电极传感器 35采用三电极体系: 对电极 351、 工作电极 352、 参比电极 353, 及电极接触点 354。 所述穿刺针 33采用剖口穿刺 针 332, 此时, 所述葡萄糖传感器 31与所述胰岛素留置软管 32并列排放在剖口 穿刺针 332的凹槽内, 通过剖口穿刺针 332将它们植入人体皮下组织。 所述葡萄 糖传感器 31和胰岛素留置软管 32并列排放时, 为了减小植入人体皮下组织穿刺 的阻力, 胰岛素留置软管和葡萄糖传感器的末端均采用尖端形状。 并且为了消除 胰岛素输注对血糖监测产生影响, 胰岛素留置软管 32 的末端距离葡萄糖传感器 31的末端在 1-8毫米之间, 本实现方式中, 胰岛素留置软管 32的末端与电极传 感器 35的末端之间的距离优选为 2-4毫米。
第四种实现方式: 请参阅图 11, 显示为并列排放在一起的光纤传感器 36与 胰岛素留置软管 32位于在穿刺针 33中的结构, 在第四种实现方式中, 所述葡萄 糖传感器采用光纤传感器 36, 所述光纤传感器 36具有光纤信号采集区 361和光 纤信号传输区 362。 所述穿刺针 33采用剖口穿刺针 332。 此时, 所述光纤传感器 36与所述胰岛素留置软管 32并列排放在剖口穿刺针 332的凹槽内。 在本实现方 式中, 胰岛素留置软管 32的末端与光纤传感器 36的末端之间的距离优选为 2-4 第五种实现方式, 请参阅图 12和 13, 显示为并列排放在一起的葡萄糖传感 器 31与胰岛素留置软管 32位于在穿刺针 33中的结构,在第五种实现方式中,所 述葡萄糖传感器 31采用电极传感器 35和光纤传感器 36, 所述穿刺针 33采用剖 口穿刺针 332。所述电极传感器 35和光纤传感器 36与所述胰岛素留置软管 32并 列排放在剖口穿刺针 332的凹槽内。 同时采用电极传感器 35和光纤传感器 36监 测血糖时, 采用特殊的算法可以提高血糖监测的可靠性及准确性。
在本实施例中,所述单针集成型人工胰腺的安装装置 34包括自动弹射安装装 置或手动安装装置,本实施例中安装装置 34有两种安装方式,第一种是在所述人 工胰腺内置自动弹射安装装置, 所述葡萄糖传感器 31和所述胰岛素留置软管 32 在穿刺针 33的辅助下通过自动弹射安装装置同时自动植埋于人体皮下组织;第二 种是所述葡萄糖传感器 31和所述胰岛素留置软管 32在穿刺针 33的辅助下通过手 动安装装置同时植埋于人体皮下组织。 当安装装置 34完成安装葡萄糖传感器 31 和胰岛素留置软管 32的任务后, 将穿刺针 33从人体皮下组织中拔出。
分别与所述储药单元 1、给药驱动单元 2、和留置单元 3连接的血糖监测及胰 岛素给药控制单元 4用于处理所述葡萄糖传感器 31输出的血糖可用信号及控制所 述储药单元 1、给药驱动单元 2和留置单元 3。血糖监测及胰岛素给药控制单元 4 可以实时监测和测量人体的血糖值, 这样使患者和护理人员能够随时掌握人体血 糖值的变动情况, 就此做出应对措施。
皮肤温度自动调控装置 5,用于加热植埋所述葡萄糖传感器 31和胰岛素留置 软管 32处皮肤组织。 所述皮肤温度自动调控装置 5粘贴在植埋葡萄糖传感器 31 和胰岛素留置软管 32的人体皮下组织处的皮肤表面。所述皮肤温度自动调控装置 5 在通电后产生所需温度可减少温度变化对血糖监测的影响以及减小胰岛素高峰 作用的时间的延迟。 请参阅图 14a和图 14b, 显示为皮肤温度自动调控装置 5的 原理结构, 所述皮肤温度自动调控装置 5包括: 皮肤发热膜 51、 升温模块 52、温 度控制模块 53、 保温模块 54、 以及温度检测模块 55。
皮肤发热膜 51 ;
内置于所述皮肤发热膜 51 中的升温模块 52用于加热植入葡萄糖传感器 31 和胰岛素留置软管 32处的皮肤至 32〜45摄氏度之间; 在本实施例中, 所述升温 模块 52为一个快速升温集成电路, 快速升温集成电路可以由发热元件, 电源、温 度采样元件、 开关元件等组成。
与所述升温模块 52连接的内置于所述皮肤发热膜 51 中的温度控制模块 53 用于调节加热参数以控制加热范围;在本实施例中,所述温度控制模块 53为一个 温度控制电路, 该温度控制电路可以由温度传感器、 继电器、 温度调节电路等组 成, 将皮肤组织的温度控制在 32〜45摄氏度之间。
与所述温度控制模块 53连接的、内置于所述皮肤发热膜 51中的保温模块 54 用于将植入所述葡萄糖传感器和胰岛素留置软管处皮肤组织的温度保持在 32〜 45摄氏度之间; 在本实施例中, 保温模块 54为一个保温电路, 在该电路中将温 度设定在 32〜45摄氏度之间, 因此, 所述保温电路可以由温度传感器、运算放大 器、 比较器、 加热模块等组成。
温度检测模块 55用于检测植埋所述葡萄糖传感器 31和胰岛素留置软管 32 处皮肤组织的温度。 在本实施例中, 所述温度检测模块 55为一个温度检测电路, 该电路可以由温度传感器、 单片机、 温度检测电路等组成。
在本实施例中可以将升温模块 52、 温度控制模块 53、 保温模块 54、 以及温 度检测模块 55内置于皮肤发热膜 51中组成皮肤温度自动调控装置 5, 所述温度 检测模块 55于所述温度控制模块 53连接。或者在本实施例中可以将升温模块 52、 温度控制模块 53、及保温模块 54内置于皮肤发热单元 51中, 将所述温度检测模 块 55与所述皮肤加热膜 51连接组成皮肤温度自动调控装置 5。
本发明所述皮肤温度自动控制装置 5与储药单元 1、给药驱动单元 2、留置单 元 3、 和血糖监测及胰岛素给药控制单元 4配合完成血糖监测和胰岛素的输注, 在这过程中, 通过皮肤温度自动控制装置对皮肤的加热可以控制人体皮肤的温度 解决目标血糖浓度和胰岛素高峰作用时间之间的延迟问题, 并且减小温度变化对 血糖监测的影响。
本发明所述的单针集成型人工胰腺提供一种安装装置, 所述安装装置能够在 穿刺针的辅助下将胰岛素留置软管和葡萄糖传感器同时植入在人体皮下组织的同 一部位, 这样就减少了糖尿病患者被感染的几率、 并且所述单针集成型人工胰腺 安装简单方便; 同时本发明所述的单针集成型人工胰腺还提供了一种皮肤温度自 动调控装置, 所述皮肤温度自动调控装置可以对皮肤加热, 这样可以控制人体皮 肤的温度解决目标血糖浓度和胰岛素高峰作用时间之间的延迟问题, 并且减小温 度变化对血糖监测的影响。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任 何熟悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修 饰或改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的 精神与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求所涵 。

Claims

权利要求书
1、 一种单针集成型人工胰腺, 其特征在于, 所述单针集成型人工胰腺包括:
用于储存胰岛素的储药单元;
与所述储药单元连接的, 用于将所述储药单元中储存的胰岛素推送至患者皮下组织 的给药驱动单元;
与所述储药单元连接的, 包括葡萄糖传感器、 胰岛素留置软管、 穿刺针和安装装置 的留置单元; 其中, 所述葡萄糖传感器和所述胰岛素留置软管在所述穿刺针的辅助下经由所 述安装装置同时植埋于患者同一皮下组织处; 所述穿刺针为穿刺钢针或剖口穿刺针; 及 分别与所述储药单元、 给药驱动单元、 和留置单元连接的, 用于处理所述葡萄糖传感 器输出的血糖可用信号及控制所述储药单元、 给药驱动单元和留置单元的血糖监测及胰岛素 给药控制单元。
2、 根据权利要求 1 所述的单针集成型人工胰腺, 其特征在于: 所述葡萄糖传感器包括电极 传感器、 和 /或光纤传感器。
3、 根据权利要求 2 所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器集成在胰岛 素留置软管的外表面, 所述穿刺钢针位于所述胰岛素留置软管的管内。
4、 根据权利要求 2 所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器集成在胰岛 素留置软管的外表面, 所述电极传感器和所述胰岛素留置软管位于所述剖口穿刺针的凹槽 内。
5、 根据权利要求 3或 4所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器的电极 为环形或扇形, 所述电极传感器的电极接触点为环形或扇形。
6、 根据权利要求 2所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器的电极涂层 结构包括抗干扰层、 酶层、 调节层、 及保护层。
7、 根据权利要求 2所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器的电极涂层 结构包括酶层、 调节层、 及保护层。
8、 根据权利要求 2 所述的单针集成型人工胰腺, 其特征在于: 所述电极传感器的电极涂层 结构还包括抗干扰层、 粘合层、 酶层、 粘合层、 调节层、 及保护层。
9、 根据权利要求 1 所述的单针集成型人工胰腺, 其特征在于: 所述葡萄糖传感器和所述胰 岛素留置软管并列排放, 所述葡萄糖传感器和所述胰岛素留置软管位于所述剖口穿刺针的凹 槽内。
10、 根据权利要求 1所述的单针集成型人工胰腺, 其特征在于: 所述胰岛素留置软管末端与 所述葡萄糖传感器末端的距离在 1毫米至 8毫米之间。
11、 根据权利要求 1所述的单针集成型人工胰腺, 其特征在于: 所述胰岛素留置软管末端与 所述葡萄糖传感器末端均为尖端形状。
12、 根据权利要求 1所述的单针集成型人工胰腺, 其特征在于: 所述单针集成型人工胰腺还 包括用于加热植埋所述葡萄糖传感器和胰岛素留置软管处皮肤组织的皮肤温度自动调控装 置。
13、 根据权利要求 12 所述的单针集成型人工胰腺, 其特征在于: 所述皮肤温度自动调控装 置包括皮肤发热膜、 升温模块、 温度控制模块、 保温模块、 以及温度检测模块。
14、 根据权利要求 1 所述的单针集成型人工胰腺, 其特征在于: 所述单针集成型人工胰 腺中安装装置为自动弹射安装装置或手动安装装置。
15、 根据权利要求 1 所述的单针集成型人工胰腺, 其特征在于: 所述单针集成型人工胰 腺还可以包括泵体和与所述泵体连接的控制器; 所述泵体包括储药单元、 给药驱动单元和留 置单元; 所述控制器包括血糖监测及胰岛素给药控制单元。
PCT/CN2014/071526 2013-11-12 2014-01-27 单针集成型人工胰腺 WO2015070543A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES14861997T ES2703373T3 (es) 2013-11-12 2014-01-27 Páncreas artificial integrado con aguja individual
US14/897,685 US20160136357A1 (en) 2013-11-12 2014-01-27 Single needle integrated artificial pancreas
EP14861997.6A EP2997988B1 (en) 2013-11-12 2014-01-27 Single needle integrated artificial pancreas
DK14861997.6T DK2997988T3 (en) 2013-11-12 2014-01-27 Single needle integrated artificial pancreas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310560946.9 2013-11-12
CN201310560946.9A CN104622480B (zh) 2013-11-12 2013-11-12 单针集成型人工胰腺

Publications (1)

Publication Number Publication Date
WO2015070543A1 true WO2015070543A1 (zh) 2015-05-21

Family

ID=53056686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071526 WO2015070543A1 (zh) 2013-11-12 2014-01-27 单针集成型人工胰腺

Country Status (7)

Country Link
US (1) US20160136357A1 (zh)
EP (1) EP2997988B1 (zh)
CN (1) CN104622480B (zh)
DK (1) DK2997988T3 (zh)
ES (1) ES2703373T3 (zh)
HK (1) HK1209302A1 (zh)
WO (1) WO2015070543A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758606B2 (ja) * 2010-09-30 2015-08-05 テルモ株式会社 成分測定装置、及び成分測定装置の製造方法
US10279106B1 (en) 2014-05-08 2019-05-07 Tandem Diabetes Care, Inc. Insulin patch pump
US9993595B2 (en) 2015-05-18 2018-06-12 Tandem Diabetes Care, Inc. Patch pump cartridge attachment
US10780222B2 (en) 2015-06-03 2020-09-22 Pacific Diabetes Technologies Inc Measurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
CN108348677B (zh) 2015-08-20 2020-10-27 坦德姆糖尿病护理股份有限公司 用于灌注泵的驱动机构
EP3562395A4 (en) * 2016-12-30 2020-07-22 Medtrum Technologies Inc. SYSTEM AND METHOD FOR A CLOSED CONTROL CIRCUIT IN AN ARTIFICIAL LEAKAGE
EP3398558A1 (en) 2017-05-02 2018-11-07 Carlo Andretta In body perfusion system
CN111936182B (zh) 2018-02-05 2022-08-23 坦德姆糖尿病护理股份有限公司 用于检测输液泵状况的方法和***
CN108578840A (zh) * 2018-05-03 2018-09-28 苏州高新区建金建智能科技有限公司 一种具有激光器照射功能的医用光纤注射针
CN108578841A (zh) * 2018-05-03 2018-09-28 苏州高新区建金建智能科技有限公司 一种具有药液加热功能的医用光纤注射针
CN110051365A (zh) * 2019-04-23 2019-07-26 重庆大学 一种用于长期持续监测的植入式电极
CN112237658B (zh) * 2019-07-19 2022-10-04 上海移宇科技股份有限公司 集成型药物输注装置
EP3999144A4 (en) * 2019-07-19 2023-03-29 Medtrum Technologies Inc. INTEGRATED MEDICATION INFUSION DEVICE
EP3977929A4 (en) 2019-08-02 2022-08-10 TERUMO Kabushiki Kaisha INTRODUCER AND NEEDLE ELEMENT
EP4093460A4 (en) * 2020-01-21 2023-09-27 Medtrum Technologies Inc. MEDICAL DEVICE WITH SAFETY VERIFICATION AND METHOD FOR SAFETY VERIFICATION THEREOF
WO2022081829A1 (en) * 2020-10-14 2022-04-21 Pacific Diabetes Technologies, Inc. Drug delivery cannula with continuous glucose monitoring capability
CN112642018B (zh) * 2020-12-18 2023-05-23 河南科技大学第一附属医院 一种与静脉留置针配合的血糖检测装置及其检测方法
CN113017624B (zh) * 2021-05-24 2021-09-24 广州新诚生物科技有限公司 一种持续葡萄糖监测与调节装置
CN113456071A (zh) * 2021-08-08 2021-10-01 江苏英诺麦德科技有限公司 血糖检测及激素输注集成装置、制备方法及人工胰腺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859943A (zh) * 2002-10-11 2006-11-08 贝克顿·迪金森公司 利用和单针或多针真皮内 ( i d )传送器件耦合的反馈式或基于模型的控制器启动并保持患者体内某物质浓度的连续、长期控制的***和方法
CN1973768A (zh) * 2005-11-28 2007-06-06 中国科学院电子学研究所 用于闭环胰岛素注射的无创血糖仪
US20080221509A1 (en) * 2002-03-01 2008-09-11 Medtronic Minimed, Inc. Multilumen catheter
US20080275384A1 (en) * 2007-04-25 2008-11-06 Mastrototaro John J Closed loop/semi-closed loop therapy modification system
CN101925372A (zh) * 2007-11-21 2010-12-22 梅丁格有限公司 分析物监测和流体分配***
CN202682463U (zh) * 2012-08-02 2013-01-23 刘春英 胰岛素泵
CN102946923A (zh) * 2010-06-22 2013-02-27 美敦力迷你迈德公司 用于将葡萄糖控制在治疗范围的闭环控制的方法和/或***
CN102970927A (zh) * 2010-07-06 2013-03-13 美敦力迷你迈德公司 用于确定血糖参考样本时间的方法和/或***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
JP3614943B2 (ja) * 1994-09-29 2005-01-26 オリンパス株式会社 内視鏡用穿刺針
US8532730B2 (en) * 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US7725148B2 (en) * 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
DK2328636T3 (da) * 2008-08-28 2013-09-02 Medingo Ltd Anordning til forbedret subkutan insulinabsorption
US8795230B2 (en) * 2010-11-30 2014-08-05 Becton, Dickinson And Company Adjustable height needle infusion device
GB201117539D0 (en) * 2011-10-11 2011-11-23 Univ Graz Med Medical apparatus having infusion and detection capabilities
EP2829289B1 (en) * 2012-03-22 2017-11-29 Terumo Kabushiki Kaisha Puncture device and drug solution administration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221509A1 (en) * 2002-03-01 2008-09-11 Medtronic Minimed, Inc. Multilumen catheter
CN1859943A (zh) * 2002-10-11 2006-11-08 贝克顿·迪金森公司 利用和单针或多针真皮内 ( i d )传送器件耦合的反馈式或基于模型的控制器启动并保持患者体内某物质浓度的连续、长期控制的***和方法
CN1973768A (zh) * 2005-11-28 2007-06-06 中国科学院电子学研究所 用于闭环胰岛素注射的无创血糖仪
US20080275384A1 (en) * 2007-04-25 2008-11-06 Mastrototaro John J Closed loop/semi-closed loop therapy modification system
CN101925372A (zh) * 2007-11-21 2010-12-22 梅丁格有限公司 分析物监测和流体分配***
CN102946923A (zh) * 2010-06-22 2013-02-27 美敦力迷你迈德公司 用于将葡萄糖控制在治疗范围的闭环控制的方法和/或***
CN102970927A (zh) * 2010-07-06 2013-03-13 美敦力迷你迈德公司 用于确定血糖参考样本时间的方法和/或***
CN202682463U (zh) * 2012-08-02 2013-01-23 刘春英 胰岛素泵

Also Published As

Publication number Publication date
CN104622480A (zh) 2015-05-20
US20160136357A1 (en) 2016-05-19
ES2703373T3 (es) 2019-03-08
EP2997988A4 (en) 2017-03-29
CN104622480B (zh) 2017-12-05
EP2997988B1 (en) 2018-09-26
HK1209302A1 (zh) 2016-04-01
DK2997988T3 (en) 2018-10-15
EP2997988A1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2015070543A1 (zh) 单针集成型人工胰腺
US20230346993A1 (en) Ultraviolet sterilization for minimally invasive systems
US9028409B2 (en) Fluid delivery with in vivo electrochemical analyte sensing
US8814822B2 (en) Reciprocating delivery of fluids to the body with analyte concentration monitoring
DK2190502T3 (en) Combined sensor and infusion set with separate locations
US7018336B2 (en) Implantable sensor flush sleeve
US20080051764A1 (en) Physiological Monitoring With Continuous Treatment
US20060253085A1 (en) Dual insertion set
US20050197554A1 (en) Composite thin-film glucose sensor
US20090312622A1 (en) Device And Method For Determining A Value Of A Physiological Parameter Of A Body Fluid
JP2008545460A (ja) 一体的な薬剤送達及び被分析物センサ器具
JP5715160B2 (ja) 膵臓β細胞又はランゲルハンス島のアクティビティを測定するセンサ、係るセンサの製造及び使用
KR102031669B1 (ko) 생체신호 측정 및 약물 전달이 동시에 가능한 바이오센서 및 그 제조방법
Renard et al. Closed loop insulin delivery using implanted insulin pumps and sensors in type 1 diabetic patients
Tschaikner et al. Development of a single-site device for conjoined glucose sensing and insulin delivery in type-1 diabetes patients
CN103550843A (zh) 皮肤加热型人工胰腺
CN105902276A (zh) 检测元件及其检测方法、测定装置以及胰岛素供给装置
CN113546294A (zh) 一种微针自助检测治疗装置
ES2642541T3 (es) Estructuras sensoras electroquímicas y luminiscentes integradas en substrato común
CN203619988U (zh) 闭环药物释放***
US9950111B2 (en) Device for the transcutaneous, in vivo measurement of the concentration of at least one analyte in a living organism
WO2005102441A1 (en) Physiological monitoring with continuous treatment
US20170074817A1 (en) Analysis device and analysis method
CN203619979U (zh) 闭环药物释放***
KR101571782B1 (ko) 정맥 삽입형 인공 췌장

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014861997

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE