WO2015068463A1 - Method for joining different materials - Google Patents

Method for joining different materials Download PDF

Info

Publication number
WO2015068463A1
WO2015068463A1 PCT/JP2014/073939 JP2014073939W WO2015068463A1 WO 2015068463 A1 WO2015068463 A1 WO 2015068463A1 JP 2014073939 W JP2014073939 W JP 2014073939W WO 2015068463 A1 WO2015068463 A1 WO 2015068463A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoulder portion
gap
joining
probe
soft
Prior art date
Application number
PCT/JP2014/073939
Other languages
French (fr)
Japanese (ja)
Inventor
智行 藤田
利明 安井
Original Assignee
武蔵精密工業株式会社
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社, 国立大学法人豊橋技術科学大学 filed Critical 武蔵精密工業株式会社
Publication of WO2015068463A1 publication Critical patent/WO2015068463A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • B23K20/2275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer the other layer being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to a dissimilar material joining method using a friction stir welding method.
  • a joining method for joining two members As a joining method for joining two members, a wide variety of techniques such as a welding method, a brazing method, and a diffusion joining method have been put into practical use. Various technologies include special welding methods called friction stir welding methods.
  • a joining method for joining aluminum to copper is called a dissimilar material joining method. It is known to apply a friction stir welding method to this dissimilar material joining method (see, for example, Patent Document 1).
  • FIG. 6 is a plan view for explaining a conventional friction stir welding method disclosed in Patent Document 1, in which a low melting point material 102 is abutted against a high melting point material 101, and a mating surface 103 is joined by a joining tool 110. .
  • FIG. 7 is a cross-sectional view illustrating a conventional friction stir welding method disclosed in Patent Document 1, and a welding tool 110 includes a main body 111 and a probe 112 that protrudes from the main body 111 in the axial direction. Yes.
  • the probe 112 has a smaller diameter than the main body 111.
  • the end surface on the probe 112 side of the main body 111 is an annular surface. This annular surface is called a shoulder portion 113.
  • the main body 111 and the probe 112 are rotated at high speed.
  • the high melting point material 101 and the low melting point material 102 are stationary.
  • frictional heat is generated between the high melting point material 101 and the low melting point material, and the main body 102 and the probe 112. This frictional heat softens and activates part of the high melting point material 101 and the low melting point material 102. It joins from this softening and activation.
  • a gas such as air may be caught in the softened fluid material 104. This gas remains in the fluid material 104 in the form of bubbles when left unattended. Residual gas causes bonding defects.
  • the shoulder portion 113 is configured to rise forward and rearward, and the fluid material 104 is crushed by the shoulder portion 113 that moves forward. By this crushing, the joining portion can be densified while the gas is expelled.
  • the probe 112 and the shoulder portion 113 are in contact with the high melting point material 101 and the low melting point material 102.
  • the high melting point material 101 is an iron-based material
  • the iron-based material is hard, so that a large load torque is applied to the welding tool 110 and a large amount of frictional heat is generated.
  • the life of the joining tool 110 is remarkably shortened, and the procurement cost and replacement work cost of the tool increase.
  • This invention makes it a subject to provide the dissimilar material joining method which can prolong the lifetime of a joining tool and can aim at the soundness of a junction part.
  • a joining tool including a shoulder portion and a probe protruding from the shoulder portion is used, a soft material having a melting point lower than that of the hard material is abutted against the hard material, and friction stir welding is performed.
  • a dissimilar material joining method is provided in which the friction stir welding method is performed in a state where a gap is maintained between the shoulder portion and the hard material and a gap is maintained between the shoulder portion and the soft material.
  • the gap is preferably set in the range of 0.05 to 1.0 mm.
  • a groove for collecting the fluid material interposed in the gap at the center of rotation is formed in the shoulder portion.
  • the hard material is an iron-based material and the soft material is an aluminum-based material.
  • the friction stir welding method is performed in a state where a gap is maintained between the shoulder portion and the soft / hard material.
  • the shoulder portion contacts the fluid material (soft material), but does not contact the material before flowing. Since there is no contact, the load torque applied to the welding tool is reduced, and the life of the welding tool can be greatly extended.
  • the gap is 0.05 to 1.0 mm. If the gap is less than 0.05 mm, the place where the fluid material flows becomes too small, and the load torque applied to the welding tool increases. On the other hand, if the gap exceeds 1.0 mm, the fluid material is less likely to hit the shoulder portion, the stirring action by the shoulder portion is reduced, and gas discharge becomes insufficient. Therefore, the gap is set to 0.05 to 1.0 mm.
  • the shoulder portion is provided with a groove for collecting the fluid material at the rotation center.
  • the hard material is an iron-based material
  • the soft material is an aluminum-based material. It is possible to manufacture a dissimilar material part in which an iron-based material is disposed at a site where strength is required and an aluminum-based material is disposed at a site where strength is not required. This dissimilar material part is suitable for automobile parts.
  • FIG. 2 is a view taken along arrow 2-2 in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 2.
  • FIG. 4 is a view on arrow 4-4 in FIG. 1. It is a figure which shows the example of a change of a shoulder part. It is a top view explaining the conventional friction stir welding method. It is sectional drawing explaining the conventional friction stir welding method.
  • the joining tool 10 includes a columnar main body 11 and a probe 12 protruding from the main body 11.
  • the probe 12 is sufficiently smaller in diameter than the main body 11.
  • An end face on the probe 12 side of the main body 11 is an annular shoulder portion 13. Hence, the probe 12 protrudes from the shoulder portion 13.
  • the soft material 22 is abutted against the hard material 21.
  • the horizontal position of the probe 12 is determined so that the probe 12 bites into the hard material 21 from the mating surface 23 by a distance ⁇ .
  • the height position of the joining tool 10 is determined so that a gap c can be secured between the upper surfaces of the hard material 21 and the soft material 22 and the shoulder portion 13.
  • the distance ⁇ is, for example, 0.05 mm
  • the gap c is, for example, 0.5 mm.
  • the hard material 21 is, for example, an iron-based material.
  • the iron-based material may have any composition as long as the main component is Fe.
  • S45C a carbon steel material for machine structure defined by JIS G 4051
  • the soft material 22 may be of any type as long as it has a lower melting point than the hard material 21.
  • the soft material 22 is, for example, an aluminum material, the main component may be Al, and the composition is arbitrary. Examples of the aluminum-based material include ADC12 (12 types of aluminum alloy die castings defined by JIS H 5302) and A6061 (JIS H 4040 aluminum alloy rod).
  • Vehicle parts are required to have rigidity (strength and the like) that can withstand road surface reaction force and deformation of the vehicle body.
  • rigidity stress and the like
  • the weight reduction of the vehicle is required, and the weight reduction of the vehicle parts is required. Therefore, in a vehicle component, an iron-based material is disposed at a portion where strength is required, and a light aluminum-based material is disposed at a portion where relatively high strength is not required. Thereby, securing of strength and weight reduction can be achieved. Therefore, this invention is suitable for the joining method of vehicle components.
  • the probe 12 made of WC-Co is recommended.
  • the dimensions of the joining tool 10 are determined by the target material. For example, the outer diameter of the main body 11 is set to 20 mm, and the outer diameter of the probe 12 is set to 5 mm.
  • the probe 12 is advanced along the mating surface 23 as indicated by an arrow while rotating at a high speed. As a result, a bead 24 is generated behind the probe 12. As shown in FIG. 3, the probe 12 is advanced at a speed of 220 mm / min while rotating at a speed of 1500 times / min, for example. Frictional heat is generated between the probe 12 and the soft material 22. With this frictional heat, the soft material 22 is heated to a temperature below the melting point.
  • the soft material 22 becomes soft and easily flows. That is, a part of the soft material 22 becomes the fluid material 25. Since the fluid material 25 is pushed by the probe 12, the fluid material 25 swells toward the shoulder portion 13. The upper end of the fluid material 25 comes into contact with the shoulder portion 13 and is fluidly stirred. Even if a gas (such as ambient air) is mixed into the fluid material 25, the gas is discharged by fluid agitation. After the probe 12 passes, the fluid material 25 is cooled and becomes a bead 24.
  • a gas such as ambient air
  • the size of the gap c is examined.
  • the clearance c is less than 0.05 mm, the place where the fluid material flows becomes too small, and the load torque applied to the joining tool increases.
  • the gap c is more than 1.0 mm, the fluid material 25 is sufficiently accommodated in the gap c, but the fluid material 25 is not sufficiently in contact with the shoulder portion 13. Then, there is a concern that fluid agitation becomes insufficient and gas discharge becomes insufficient. Therefore, it is recommended that the gap c be set to 0.05 mm or more and 1.0 mm or less.
  • the shoulder portion 13 may be a flat surface, but it is recommended to provide a groove described below. That is, as shown in FIG. 4, a spiral groove 27 called a scroll groove or a spiral groove is provided in the shoulder portion 13.
  • a spiral groove 27 called a scroll groove or a spiral groove is provided in the shoulder portion 13.
  • the formation of the spiral groove 27 requires a high level of processing technology and increases the processing cost.
  • FIG. 5A a plurality (eight in this example) of curved grooves 29 are formed in the shoulder portion 13. The processing becomes easier than in FIG. 4, and the processing cost can be reduced.
  • FIG. 5B a plurality (four in this example) of oblique grooves 29 are formed in the shoulder portion 13. The processing becomes easier than in FIG. 5A, and the processing cost can be further reduced.
  • the joining method according to the present invention is suitable for manufacturing vehicle parts, but may be applied to different parts other than vehicle parts.
  • the welding tool 10 is arranged vertically so that the shoulder portion 13 is parallel to the upper surface of the hard material 21 or the soft material 22, but the gap is within 0.05 mm to 1.0 mm. It is possible to slightly tilt the axis of the welding tool 10 depending on the conditions.
  • the present invention is suitable for manufacturing vehicle parts made of different materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The purpose of the present invention is to provide a method for joining different materials, the method capable of prolonging the life of a joining tool and achieving soundness of a joined portion. This method for joining different materials using a joining tool (10) provided with a shoulder portion (13) and a probe (12) protruding from the shoulder portion is configured to butt a soft material (22) having a lower melting point than a hard material (21) against the hard material, and implement a friction stir joining method while maintaining a gap (c) between the shoulder portion and the hard material and maintaining a gap between the shoulder portion and the soft material.

Description

異材接合方法Dissimilar material joining method
 本発明は、摩擦撹拌接合法を利用した異材接合方法に関する。 The present invention relates to a dissimilar material joining method using a friction stir welding method.
 2つの部材を接合する接合法として、溶接法、ろう付け法、拡散接合法など多種多様の技術が実用に供されている。多様な技術に、摩擦撹拌接合法と呼ばれる特殊な接合法が含まれる。 As a joining method for joining two members, a wide variety of techniques such as a welding method, a brazing method, and a diffusion joining method have been put into practical use. Various technologies include special welding methods called friction stir welding methods.
 また、例えば銅にアルミニウムを接合する接合法は異材接合法と呼ばれる。この異材接合法に摩擦撹拌接合法を適用することが知られている(例えば、特許文献1参照)。 Also, for example, a joining method for joining aluminum to copper is called a dissimilar material joining method. It is known to apply a friction stir welding method to this dissimilar material joining method (see, for example, Patent Document 1).
 図6は、特許文献1に開示されている従来の摩擦撹拌接合法を説明する平面図であり、高融点材料101に低融点材料102が突合わされ、合わせ面103が接合ツール110で接合される。 FIG. 6 is a plan view for explaining a conventional friction stir welding method disclosed in Patent Document 1, in which a low melting point material 102 is abutted against a high melting point material 101, and a mating surface 103 is joined by a joining tool 110. .
 図7は、特許文献1に開示されている従来の摩擦撹拌接合法を説明する断面図であり、接合ツール110は、本体111と、この本体111から軸方向に突出するプローブ112とを備えている。
 このプローブ112は、本体111より小径である。本体111のプローブ112側端面が、環状面となっている。この環状面はショルダー部113と呼ばれる。
FIG. 7 is a cross-sectional view illustrating a conventional friction stir welding method disclosed in Patent Document 1, and a welding tool 110 includes a main body 111 and a probe 112 that protrudes from the main body 111 in the axial direction. Yes.
The probe 112 has a smaller diameter than the main body 111. The end surface on the probe 112 side of the main body 111 is an annular surface. This annular surface is called a shoulder portion 113.
 本体111及びプローブ112が高速で回される。高融点材料101及び低融点材料102は静止している。すると高融点材料101及び低融点材料と、102本体111及びプローブ112との間で摩擦熱が発生する。この摩擦熱で高融点材料101及び低融点材料102の一部が軟化し、活性化する。この軟化、活性化より接合される。 The main body 111 and the probe 112 are rotated at high speed. The high melting point material 101 and the low melting point material 102 are stationary. Then, frictional heat is generated between the high melting point material 101 and the low melting point material, and the main body 102 and the probe 112. This frictional heat softens and activates part of the high melting point material 101 and the low melting point material 102. It joins from this softening and activation.
 軟化した流動材料104に、空気などのガスが巻き込まれることがある。このガスは放置すると気泡の形態で流動材料104に残留する。残留ガスは接合欠陥の原因となる。
 特許文献1では、ショルダー部113が前上がり、後下がりの形態とされ、前進するショルダー部113で流動材料104を押し潰す。この押し潰しにより、ガスを追い出しつつ接合部の緻密化を図ることができる。
A gas such as air may be caught in the softened fluid material 104. This gas remains in the fluid material 104 in the form of bubbles when left unattended. Residual gas causes bonding defects.
In Patent Document 1, the shoulder portion 113 is configured to rise forward and rearward, and the fluid material 104 is crushed by the shoulder portion 113 that moves forward. By this crushing, the joining portion can be densified while the gas is expelled.
 ところで、高融点材料101や低融点材料102に、プローブ112やショルダー部113が接触する。高融点材料101が鉄系材料であれば、鉄系材料は硬いため接合ツール110に大きな負荷トルクが加わると共に多量の摩擦熱が発生する。
 結果、接合ツール110の寿命が著しく短くなり、工具の調達費用及び交換工事費用が嵩む。
Incidentally, the probe 112 and the shoulder portion 113 are in contact with the high melting point material 101 and the low melting point material 102. If the high melting point material 101 is an iron-based material, the iron-based material is hard, so that a large load torque is applied to the welding tool 110 and a large amount of frictional heat is generated.
As a result, the life of the joining tool 110 is remarkably shortened, and the procurement cost and replacement work cost of the tool increase.
特開2002-66765公報JP 2002-66765 A
 本発明は、接合ツールの寿命を延ばすことができると共に接合部の健全化を図ることができる異材接合方法を提供することを課題とする。 This invention makes it a subject to provide the dissimilar material joining method which can prolong the lifetime of a joining tool and can aim at the soundness of a junction part.
 請求項1に係る発明によれば、ショルダー部を備えると共にこのショルダー部から突出するプローブを備える接合ツールを用い、硬質材に該硬質材よりも融点が低い軟質材を突合わせて、摩擦撹拌接合法により接合する異材接合方法において、
 前記ショルダー部と前記硬質材の間に隙間を保つと共に前記ショルダー部と前記軟質材の間に隙間を保った状態で前記摩擦撹拌接合法を実施する異材接合方法が提供される。
According to the first aspect of the present invention, a joining tool including a shoulder portion and a probe protruding from the shoulder portion is used, a soft material having a melting point lower than that of the hard material is abutted against the hard material, and friction stir welding is performed. In dissimilar material joining method that joins by law,
A dissimilar material joining method is provided in which the friction stir welding method is performed in a state where a gap is maintained between the shoulder portion and the hard material and a gap is maintained between the shoulder portion and the soft material.
 請求項2に係る発明では、好ましくは、隙間を、0.05~1.0mmの範囲に設定する。 In the invention according to claim 2, the gap is preferably set in the range of 0.05 to 1.0 mm.
 請求項3に係る発明では、好ましくは、隙間に介在する流動材料を回転中心に集める溝が、ショルダー部に形成されている。 In the invention according to claim 3, preferably, a groove for collecting the fluid material interposed in the gap at the center of rotation is formed in the shoulder portion.
 請求項4に係る発明では、好ましくは、硬質材は鉄系材料であり、軟質材はアルミニウム系材料である。 In the invention according to claim 4, preferably, the hard material is an iron-based material and the soft material is an aluminum-based material.
 請求項1に係る発明では、ショルダー部と軟・硬質材の間に隙間を保った状態で摩擦撹拌接合法を実施する。ショルダー部は流動材料(軟質材)とは接触するものの、流動前の材料には接触しない。接触しないので、接合ツールに加わる負荷トルクは小さくなり、接合ツールの寿命を大幅に延ばすことができる。また、ショルダー部と硬質材との間に隙間がある。ショルダー部直下では、軟質材が隙間を通って流動する。軟質材は硬質材に遮られることなく流動するため、軟質材の撹拌量が大きくなり、健全な接合部が得られる。 In the invention according to claim 1, the friction stir welding method is performed in a state where a gap is maintained between the shoulder portion and the soft / hard material. The shoulder portion contacts the fluid material (soft material), but does not contact the material before flowing. Since there is no contact, the load torque applied to the welding tool is reduced, and the life of the welding tool can be greatly extended. There is a gap between the shoulder portion and the hard material. Just below the shoulder, the soft material flows through the gap. Since the soft material flows without being blocked by the hard material, the amount of stirring of the soft material is increased, and a sound joint portion is obtained.
 請求項2に係る発明では、隙間は、0.05~1.0mmである。
 隙間が0.05mm未満では流動材料の流れる場所が過小になり、接合ツールに加わる負荷トルクが増大する。また、隙間が1.0mmを超えると、流動材料がショルダー部に当たりにくくなり、ショルダー部による撹拌作用が低下し、ガスの排出も不十分になる。よって、隙間は、0.05~1.0mmとする。
In the invention according to claim 2, the gap is 0.05 to 1.0 mm.
If the gap is less than 0.05 mm, the place where the fluid material flows becomes too small, and the load torque applied to the welding tool increases. On the other hand, if the gap exceeds 1.0 mm, the fluid material is less likely to hit the shoulder portion, the stirring action by the shoulder portion is reduced, and gas discharge becomes insufficient. Therefore, the gap is set to 0.05 to 1.0 mm.
 請求項3に係る発明では、ショルダー部に、流動材料を回転中心に集める溝が設けられている。流動材料を中央に集める形状にすることで、攪拌作用が増加し、ガスの排出が促される。加えて接合界面及びその付近に大きな流動を造りだし、接合界面の酸化膜を破壊することができる。酸化膜が破壊されると新生面が現れる。結果、酸化物が含まれない健全な接合状態が得られる。 In the invention according to claim 3, the shoulder portion is provided with a groove for collecting the fluid material at the rotation center. By making the fluid material into a shape that collects it in the center, the agitation action is increased and gas discharge is promoted. In addition, a large flow can be created at and near the bonding interface, and the oxide film at the bonding interface can be destroyed. When the oxide film is destroyed, a new surface appears. As a result, a healthy bonded state containing no oxide is obtained.
 請求項4に係る発明では、硬質材は鉄系材料であり、軟質材はアルミニウム系材料である。強度が要求される部位に鉄系材料を配置し、強度が要求されない部位にアルミニウム系材料を配置した異材部品を製造することができる。この異材部品は自動車部品に好適である。 In the invention according to claim 4, the hard material is an iron-based material, and the soft material is an aluminum-based material. It is possible to manufacture a dissimilar material part in which an iron-based material is disposed at a site where strength is required and an aluminum-based material is disposed at a site where strength is not required. This dissimilar material part is suitable for automobile parts.
本発明に係る接合ツールの形状を説明する図である。It is a figure explaining the shape of the joining tool which concerns on this invention. 図1の2-2矢視図である。FIG. 2 is a view taken along arrow 2-2 in FIG. 1. 図2の3-3線断面図である。FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 2. 図1の4-4矢視図である。FIG. 4 is a view on arrow 4-4 in FIG. 1. ショルダー部の変更例を示す図である。It is a figure which shows the example of a change of a shoulder part. 従来の摩擦撹拌接合法を説明する平面図である。It is a top view explaining the conventional friction stir welding method. 従来の摩擦撹拌接合法を説明する断面図である。It is sectional drawing explaining the conventional friction stir welding method.
 以下、本発明の好ましい実施例を、添付図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1に示されるように、接合ツール10は、円柱状の本体11と、この本体11から突出するプローブ12とを備えている。プローブ12は本体11より十分に小径である。本体11のプローブ12側の端面が、円環状のショルダー部13となっている。見かけ上、ショルダー部13からプローブ12が突出している。 As shown in FIG. 1, the joining tool 10 includes a columnar main body 11 and a probe 12 protruding from the main body 11. The probe 12 is sufficiently smaller in diameter than the main body 11. An end face on the probe 12 side of the main body 11 is an annular shoulder portion 13. Apparently, the probe 12 protrudes from the shoulder portion 13.
 硬質材21に軟質材22を突合わせる。プローブ12は、合わせ面23から硬質材21へ距離δだけ食い込むように、水平位置が定められている。
 また、硬質材21及び軟質材22の上面とショルダー部13との間に隙間cが確保できるように、接合ツール10の高さ位置が定められている。距離δは例えば0.05mmであり、隙間cは例えば0.5mmである。
The soft material 22 is abutted against the hard material 21. The horizontal position of the probe 12 is determined so that the probe 12 bites into the hard material 21 from the mating surface 23 by a distance δ.
Further, the height position of the joining tool 10 is determined so that a gap c can be secured between the upper surfaces of the hard material 21 and the soft material 22 and the shoulder portion 13. The distance δ is, for example, 0.05 mm, and the gap c is, for example, 0.5 mm.
 硬質材21は、例えば、鉄系材料である。鉄系材料は、主成分がFeであればよく、組成は任意である。鉄系材料の一例として、S45C(JIS G 4051で規定される機械構造用炭素鋼鋼材)が挙げられる。
 軟質材22は、硬質材21より融点が低い材料であれば、種類は問わない。軟質材22は、例えば、アルミニウム系材料であり、主成分がAlであればよく、組成は任意である。アルミニウム系材料の例として、ADC12(JIS H 5302で規定されるアルミニウム合金ダイカスト12種)、A6061(JIS H 4040アルミニウム合金棒)が挙げられる。
The hard material 21 is, for example, an iron-based material. The iron-based material may have any composition as long as the main component is Fe. As an example of the iron-based material, S45C (a carbon steel material for machine structure defined by JIS G 4051) can be given.
The soft material 22 may be of any type as long as it has a lower melting point than the hard material 21. The soft material 22 is, for example, an aluminum material, the main component may be Al, and the composition is arbitrary. Examples of the aluminum-based material include ADC12 (12 types of aluminum alloy die castings defined by JIS H 5302) and A6061 (JIS H 4040 aluminum alloy rod).
 車両部品は、路面反力や車体の変形に耐えるような剛性(強度など)が要求される。一方、省エネルギーの観点から車両の軽量化が求められ、車両部品の軽量化が求められる。
 そこで、車両部品において、強度が要求される部位に鉄系材料を配置し、比較的強度が要求されない部位に軽量なアルミニウム系材料を配置する。これにより、強度確保と軽量化とが達成できる。よって、本発明は、車両部品の接合方法に好適である。
Vehicle parts are required to have rigidity (strength and the like) that can withstand road surface reaction force and deformation of the vehicle body. On the other hand, from the viewpoint of energy saving, the weight reduction of the vehicle is required, and the weight reduction of the vehicle parts is required.
Therefore, in a vehicle component, an iron-based material is disposed at a portion where strength is required, and a light aluminum-based material is disposed at a portion where relatively high strength is not required. Thereby, securing of strength and weight reduction can be achieved. Therefore, this invention is suitable for the joining method of vehicle components.
 硬質材21がS45Cで、軟質材22がA6061又はADC12の場合、WC-Co製のプローブ12が推奨される。接合ツール10の寸法は、対象材料により決定されるが、例えば本体11の外径が20mmで、プローブ12の外径が5mmに設定される。 When the hard material 21 is S45C and the soft material 22 is A6061 or ADC12, the probe 12 made of WC-Co is recommended. The dimensions of the joining tool 10 are determined by the target material. For example, the outer diameter of the main body 11 is set to 20 mm, and the outer diameter of the probe 12 is set to 5 mm.
 図2に示されるように、プローブ12を高速で回しながら、矢印のように合わせ面23に沿って前進させる。結果、プローブ12の後方にビード24が生成される。
 図3に示されるように、プローブ12を、例えば毎分1500回の速度で回転させつつ、毎分220mmの速度で前進させる。プローブ12と軟質材22との間で摩擦熱が発生する。この摩擦熱で軟質材22は融点未満の温度まで加熱される。
As shown in FIG. 2, the probe 12 is advanced along the mating surface 23 as indicated by an arrow while rotating at a high speed. As a result, a bead 24 is generated behind the probe 12.
As shown in FIG. 3, the probe 12 is advanced at a speed of 220 mm / min while rotating at a speed of 1500 times / min, for example. Frictional heat is generated between the probe 12 and the soft material 22. With this frictional heat, the soft material 22 is heated to a temperature below the melting point.
 すると、軟質材22が軟らかくなり、流動し易くなる。すなわち軟質材22の一部が流動材料25となる。この流動材料25がプローブ12で押されるため、流動材料25はショルダー部13側へ盛り上がる。
 流動材料25の上端がショルダー部13に接触し、流動撹拌される。仮に、流動材料25にガス(周囲の空気など)が混入されたとしてもこのガスは流動撹拌により排出される。流動材料25はプローブ12が通過した後は、冷却されてビード24となる。
Then, the soft material 22 becomes soft and easily flows. That is, a part of the soft material 22 becomes the fluid material 25. Since the fluid material 25 is pushed by the probe 12, the fluid material 25 swells toward the shoulder portion 13.
The upper end of the fluid material 25 comes into contact with the shoulder portion 13 and is fluidly stirred. Even if a gas (such as ambient air) is mixed into the fluid material 25, the gas is discharged by fluid agitation. After the probe 12 passes, the fluid material 25 is cooled and becomes a bead 24.
 ここで隙間cの大きさを検討する。
 隙間cを0.05mm未満にすると、流動材料の流れる場所が過小になり、接合ツールに加わる負荷トルクが増大する。
 また、隙間cを1.0mm超にすると、流動材料25が隙間cに十分に収まるものの、流動材料25が十分にショルダー部13に接触しなくなる。すると、流動撹拌が不十分となり、ガスの排出が不十分になる心配がある。
 よって、隙間cは、0.05mm以上で1.0mm以下に設定することが推奨される。
Here, the size of the gap c is examined.
When the clearance c is less than 0.05 mm, the place where the fluid material flows becomes too small, and the load torque applied to the joining tool increases.
Further, when the gap c is more than 1.0 mm, the fluid material 25 is sufficiently accommodated in the gap c, but the fluid material 25 is not sufficiently in contact with the shoulder portion 13. Then, there is a concern that fluid agitation becomes insufficient and gas discharge becomes insufficient.
Therefore, it is recommended that the gap c be set to 0.05 mm or more and 1.0 mm or less.
 ショルダー部13は平坦面であっても差し支えないが、次に説明する溝を設けることが推奨される。
 すなわち、図4に示されるように、ショルダー部13に、スクロール溝やスパイラル溝と呼ばれる渦巻き溝27を設ける。ショルダー部13を、図面で反時計回りに回転させると、流動材料が渦巻き溝27に案内されて中央に集まる。流動材料を中央に集める形状にすることで、接合界面及びその付近に大きな流動を造りだし、接合界面の酸化膜を破壊することができる。酸化膜が破壊されると新生面が現れる。結果、酸化物が含まれない健全な接合状態が得られる。
The shoulder portion 13 may be a flat surface, but it is recommended to provide a groove described below.
That is, as shown in FIG. 4, a spiral groove 27 called a scroll groove or a spiral groove is provided in the shoulder portion 13. When the shoulder portion 13 is rotated counterclockwise in the drawing, the fluid material is guided by the spiral groove 27 and collected in the center. By forming the fluid material into a shape that collects it at the center, a large flow can be created at and near the bonding interface, and the oxide film at the bonding interface can be destroyed. When the oxide film is destroyed, a new surface appears. As a result, a healthy bonded state containing no oxide is obtained.
 ただし、渦巻き溝27の形成には高度な加工技術が要求され、加工費が嵩む。加工が比較的容易な別の例を図5で説明する。
 図5(a)に示されるように、複数(この例では8本)の湾曲溝29をショルダー部13に形成する。図4よりは加工が容易になり、加工費用の低減が図れる。
 また、図5(b)に示されるように、複数(この例では4本)の斜め溝29をショルダー部13に形成する。図5(a)よりは加工が容易になり、加工費用のさらなる低減が図れる。
However, the formation of the spiral groove 27 requires a high level of processing technology and increases the processing cost. Another example that is relatively easy to process will be described with reference to FIG.
As shown in FIG. 5A, a plurality (eight in this example) of curved grooves 29 are formed in the shoulder portion 13. The processing becomes easier than in FIG. 4, and the processing cost can be reduced.
Further, as shown in FIG. 5B, a plurality (four in this example) of oblique grooves 29 are formed in the shoulder portion 13. The processing becomes easier than in FIG. 5A, and the processing cost can be further reduced.
 尚、本発明に係る接合方法は、車両部品の製造に好適であるが、車両部品以外の異材部品に適用することは差し支えない。 The joining method according to the present invention is suitable for manufacturing vehicle parts, but may be applied to different parts other than vehicle parts.
 また、ショルダー部13が硬質材21や軟質材22の上面に平行になるように、接合ツール10を鉛直に配置することを原則とするが、隙間が0.05mm~1.0mmに収まることを条件に接合ツール10の軸を若干傾けることは差し支えない。 Further, in principle, the welding tool 10 is arranged vertically so that the shoulder portion 13 is parallel to the upper surface of the hard material 21 or the soft material 22, but the gap is within 0.05 mm to 1.0 mm. It is possible to slightly tilt the axis of the welding tool 10 depending on the conditions.
 本発明は、異材からなる車両部品の製造に好適である。 The present invention is suitable for manufacturing vehicle parts made of different materials.
 10…接合ツール、11…本体、12…プローブ、13…ショルダー部、21…硬質材、22…軟質材、23…合わせ面、24…ビード、25…流動材料、27…中心に集める溝(渦巻き溝)、28…中心に集める溝(湾曲溝)、29…中心に集める溝(斜め溝)、c…隙間、δ…距離。 DESCRIPTION OF SYMBOLS 10 ... Joining tool, 11 ... Main body, 12 ... Probe, 13 ... Shoulder part, 21 ... Hard material, 22 ... Soft material, 23 ... Mating surface, 24 ... Bead, 25 ... Fluid material, 27 ... Groove collected in the center (vortex) Groove), 28... Groove collected at the center (curved groove), 29... Groove collected at the center (oblique groove), c.

Claims (4)

  1.  ショルダー部を備えると共にこのショルダー部から突出するプローブを備える接合ツールを用い、硬質材に該硬質材よりも融点が低い軟質材を突合わせて、摩擦撹拌接合法により接合する異材接合方法において、
     前記ショルダー部と前記硬質材の間に隙間を保つと共に前記ショルダー部と前記軟質材の間に隙間を保った状態で前記摩擦撹拌接合法を実施する異材接合方法。
    In a dissimilar material joining method in which a soft material having a melting point lower than that of a hard material is abutted with a hard material using a joining tool including a shoulder portion and a probe protruding from the shoulder portion, and joined by a friction stir welding method,
    The dissimilar material joining method which implements the said friction stir welding method in the state which maintained the clearance gap between the said shoulder part and the said soft material while maintaining the clearance gap between the said shoulder part and the said hard material.
  2.  前記隙間は、0.05~1.0mmの範囲に設定する請求項1記載の異材接合方法。 The dissimilar material joining method according to claim 1, wherein the gap is set in a range of 0.05 to 1.0 mm.
  3.  前記隙間に介在する流動材料を回転中心に集める溝が、前記ショルダー部に形成されている請求項1記載の異材接合方法。 The dissimilar material joining method according to claim 1, wherein a groove for collecting the fluid material interposed in the gap at the center of rotation is formed in the shoulder portion.
  4.  前記硬質材は鉄系材料であり、前記軟質材はアルミニウム系材料である請求項1記載の異材接合方法。 The dissimilar material joining method according to claim 1, wherein the hard material is an iron-based material and the soft material is an aluminum-based material.
PCT/JP2014/073939 2013-11-05 2014-09-10 Method for joining different materials WO2015068463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013229082A JP2015089550A (en) 2013-11-05 2013-11-05 Method for joining different materials
JP2013-229082 2013-11-05

Publications (1)

Publication Number Publication Date
WO2015068463A1 true WO2015068463A1 (en) 2015-05-14

Family

ID=53041246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073939 WO2015068463A1 (en) 2013-11-05 2014-09-10 Method for joining different materials

Country Status (2)

Country Link
JP (1) JP2015089550A (en)
WO (1) WO2015068463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127881A (en) * 2016-01-18 2017-07-27 東芝機械株式会社 Frictional agitation joining method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170129930A (en) * 2015-05-18 2017-11-27 가부시키가이샤 아이에이치아이 Friction stir welding device and friction stir welding method
CN107848064A (en) * 2015-07-23 2018-03-27 日本轻金属株式会社 The manufacture method of joint method and radiator
JP6578800B2 (en) * 2015-08-07 2019-09-25 日本軽金属株式会社 Joining method
JP6578782B2 (en) * 2015-07-23 2019-09-25 日本軽金属株式会社 Joining method
JP2017042861A (en) * 2015-08-26 2017-03-02 日本軽金属株式会社 Manufacturing method of heat sink
WO2020072196A1 (en) * 2018-10-03 2020-04-09 Lam Research Corporation Friction stir welding for ceramic applications

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971247A (en) * 1998-03-09 1999-10-26 Lockheed Martin Corporation Friction stir welding with roller stops for controlling weld depth
JP2001269779A (en) * 2000-03-24 2001-10-02 Nippon Light Metal Co Ltd Welding method, tailored blank metal plate and welding tool
JP2002144053A (en) * 2000-11-09 2002-05-21 Nippon Light Metal Co Ltd Friction-stir tool and welding method using this, and method for removing fine gap on cast surface
US20020190100A1 (en) * 2001-06-15 2002-12-19 Duncan Frank Gordon Friction stir heating/welding with pin tool having rough distal region
US20030111515A1 (en) * 2000-07-20 2003-06-19 Gerhard Scheglmann Method and device for friction stir welding with simultaneous cooling
JP2007222899A (en) * 2006-02-22 2007-09-06 Hitachi Metals Ltd Friction stirring and joining method of dissimilar metallic members
US20100282822A1 (en) * 2006-03-16 2010-11-11 Showa Denko K.K. Friction stir welding tool and friction stir welding method
WO2011135892A1 (en) * 2010-04-28 2011-11-03 本田技研工業株式会社 Tool for friction stir welding
EP2561947A1 (en) * 2011-08-24 2013-02-27 Wartmann Technologie AG Device for and method of friction stir welding rotation symmetric bodies ; Pressurised gas-tight assembly
WO2013027532A1 (en) * 2011-08-19 2013-02-28 日本軽金属株式会社 Friction stir welding method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971247A (en) * 1998-03-09 1999-10-26 Lockheed Martin Corporation Friction stir welding with roller stops for controlling weld depth
JP2001269779A (en) * 2000-03-24 2001-10-02 Nippon Light Metal Co Ltd Welding method, tailored blank metal plate and welding tool
US20030111515A1 (en) * 2000-07-20 2003-06-19 Gerhard Scheglmann Method and device for friction stir welding with simultaneous cooling
JP2002144053A (en) * 2000-11-09 2002-05-21 Nippon Light Metal Co Ltd Friction-stir tool and welding method using this, and method for removing fine gap on cast surface
US20020190100A1 (en) * 2001-06-15 2002-12-19 Duncan Frank Gordon Friction stir heating/welding with pin tool having rough distal region
JP2007222899A (en) * 2006-02-22 2007-09-06 Hitachi Metals Ltd Friction stirring and joining method of dissimilar metallic members
US20100282822A1 (en) * 2006-03-16 2010-11-11 Showa Denko K.K. Friction stir welding tool and friction stir welding method
WO2011135892A1 (en) * 2010-04-28 2011-11-03 本田技研工業株式会社 Tool for friction stir welding
WO2013027532A1 (en) * 2011-08-19 2013-02-28 日本軽金属株式会社 Friction stir welding method
EP2561947A1 (en) * 2011-08-24 2013-02-27 Wartmann Technologie AG Device for and method of friction stir welding rotation symmetric bodies ; Pressurised gas-tight assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127881A (en) * 2016-01-18 2017-07-27 東芝機械株式会社 Frictional agitation joining method

Also Published As

Publication number Publication date
JP2015089550A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2015068463A1 (en) Method for joining different materials
Rajakumar et al. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints
Indira Rani et al. A study of process parameters of friction stir welded AA 6061 aluminum alloy in O and T6 conditions
Li et al. Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B
Meilinger et al. The importance of friction stir welding tool
JP6500317B2 (en) Friction bonding method
Elangovan et al. Developing an empirical relationship to predict tensile strength of friction stir welded AA2219 aluminum alloy
Fei et al. Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys
JP2007301579A (en) Friction stirring and working tool, and manufacturing method of friction stirred and worked product using the same
Pankaj et al. Experimental studies on controlling of process parameters in dissimilar friction stir welding of DH36 shipbuilding steel–AISI 1008 steel
JP2017070994A (en) Tool for friction stir welding and friction stir welding method
Jeon et al. Mechanical properties of graphite/aluminum metal matrix composite joints by friction stir spot welding
Sathari et al. Mechanical strength of dissimilar AA7075 and AA6061 aluminum alloys using friction stir welding
CN106001896A (en) Aluminum/steel dissimilar material friction spot welding method based on surface roughing
US10151351B2 (en) Friction weed
KR101047877B1 (en) Dissimilar welding method using hybrid friction stir welding system
JP2008006451A (en) Friction stir spot-welded body
Yuvaraj et al. Effect of friction stir welding parameters on mechanical and micro structural behaviour of AA7075-T651 and AA6061 dissimilar alloy joint
Widener et al. High-rotational speed friction stir welding with a fixed shoulder
JP2006205190A (en) Method of joining dissimilar metals
진영윤 et al. Effect of circumferential tool path control on friction stir spot welding of Al/Fe Dissimilar metal joint
Ahmed et al. On increasing productivity of micro-friction stir welding with aid of tool shoulder micro-features
Yasui et al. Characteristics of High Speed Welding between 6063 and S 45 C by Means of Friction Stirring-Study on Welding in Dissimilar Metals by Means of Friction Stirring(1 st Report)-
Singh et al. Optimization of Friction Crush Welding of Two Dissimilar Metals: Aluminium 6061 T-6 and Stainless Steel AISI 304
JP6688755B2 (en) Metal thin plate joining method and metal thin plate joining structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860489

Country of ref document: EP

Kind code of ref document: A1