WO2015063912A1 - Positioning precision setting method, positioning precision setting device, and positioning precision setting program - Google Patents

Positioning precision setting method, positioning precision setting device, and positioning precision setting program Download PDF

Info

Publication number
WO2015063912A1
WO2015063912A1 PCT/JP2013/079521 JP2013079521W WO2015063912A1 WO 2015063912 A1 WO2015063912 A1 WO 2015063912A1 JP 2013079521 W JP2013079521 W JP 2013079521W WO 2015063912 A1 WO2015063912 A1 WO 2015063912A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction value
value
error
correction
error value
Prior art date
Application number
PCT/JP2013/079521
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 平野
達典 佐藤
Original Assignee
エンシュウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エンシュウ株式会社 filed Critical エンシュウ株式会社
Priority to PCT/JP2013/079521 priority Critical patent/WO2015063912A1/en
Priority to CN201380002907.5A priority patent/CN104781739A/en
Publication of WO2015063912A1 publication Critical patent/WO2015063912A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37297Two measurements, on driving motor and on slide or on both sides of motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37304Combined position measurement, encoder and separate laser, two different sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49181Calculation, estimation, creation of error model using measured error values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49194Structure error, in slide or screw

Definitions

  • the present invention relates to a method for setting the positioning accuracy of a feed mechanism that changes the relative positional relationship between a table for holding a workpiece to be machined and a machining head for machining the workpiece in a machine tool that performs machining on a workpiece.
  • the present invention relates to a positioning accuracy setting device and a positioning accuracy setting program.
  • Patent Documents 1 and 2 while setting a correction value for measuring a positioning error for each of a plurality of correction sections set within a feed range of a table or a machining head by a feed mechanism, A positioning accuracy setting method is disclosed in which a positioning accuracy lower than a desired positioning accuracy is maintained by adding an adjustment value equal to the positioning error required by the customer to these correction values.
  • the present invention has been made to cope with the above-described problems, and its purpose is to maintain a positioning accuracy of the feeding mechanism that is well below the desired positioning accuracy regardless of the expansion / contraction change of the feeding mechanism.
  • the present invention is characterized in that at least one of a table for holding a workpiece and a machining head for machining the workpiece is displaced relative to the other as a displacement object, and the operation of the feeding mechanism.
  • the positioning error is measured for each of at least three measurement positions in the movable range of the object to be displaced by the feed mechanism.
  • An error value acquisition step for acquiring an error value directly or indirectly, and an error value at an inner measurement position existing inside two measurement positions at both ends of at least three measurement positions and a preset desired value The difference from the desired error value that directly or indirectly represents the error is used as the correction value at the inner measurement position and
  • a correction value setting information generation step for generating correction value setting information in which a correction value at a measurement position other than the measurement position is at least a correction value smaller than the correction value at the inner measurement position, and is set within the movable range of the displacement object by the feed mechanism
  • a correction value table generation step for generating a correction value table in which correction values corresponding to each measurement position are set in each correction section corresponding to each measurement position using the correction value setting information for the plurality of correction sections It is in including.
  • the positioning accuracy setting method exists inside the correction sections at both ends when setting correction values in the plurality of correction sections set within the movable range of the displacement object.
  • the largest correction value is set in the correction section to be performed.
  • the correction values are in ascending order and descending order with the correction section where the maximum correction value is set as a boundary. For this reason, there is a region where the current state is maintained or enlarged without any positioning error being canceled at any position in the correction section, regardless of whether the mechanical parts constituting the feed mechanism are expanded or contracted. To come.
  • the positioning accuracy of the feed mechanism can be maintained well below the desired positioning accuracy regardless of the expansion / contraction change of the feed mechanism.
  • the correction value setting information generation step sets each correction value corresponding to each of the two measurement positions at both ends to 0, and the inner measurement value.
  • the correction value setting information is generated by setting each correction value between the two measurement positions at both ends by linear interpolation, and the correction value table setting step is performed for a correction section other than the correction section in which the correction value is set.
  • the correction value table is generated by setting the correction value by linear interpolation using the correction value in the correction section in which the correction value is set.
  • the correction value setting information is set by linear interpolation from the measurement positions at both ends toward the inner measurement positions, respectively. Based on this correction value setting information, correction values for correction sections that do not exist in the correction value setting information in the correction value table are set by linear interpolation. As a result, correction values for a large number of correction sections can be easily and quickly set with correction values at a small number of measurement positions.
  • the error value acquisition step acquires an error value at a substantially central position in the movable range of the object to be displaced and moves the movable range around the substantially central position.
  • the error value is acquired at the same number of measurement positions in each of the both end regions in the correction value setting information generation step, and the measurement position at which the error value is acquired at the substantially central position in the movable range of the displacement object is defined as the inner measurement position. There is to do.
  • the positioning accuracy setting method obtains an error value at a substantially central position in the movable range of the object to be displaced, and both ends of the movable range around the substantially central position. Since error values are acquired at the same number of measurement positions in the region on the side, the distribution of correction values within the movable range of the object to be displaced is symmetrical about the substantially central portion of the movable range. As a result, correction values that approximate each other are set in the central area of the movable range of the table and the central area of the movable range of the machining head, which are most frequently used as the workpiece placement position and the workpiece machining position. It is possible to perform processing with stable accuracy while suppressing variations in positioning accuracy.
  • the error value acquisition step includes a standard deviation calculated using a plurality of positioning errors obtained by performing a plurality of measurements at the same measurement position.
  • each correction value for each measurement position in the correction value setting information is added to each positioning error for each measurement position measured in the error value acquisition step.
  • a temporary error value acquisition step for acquiring a standard deviation of a plurality of positioning temporary errors as a temporary error value, and a maximum temporary error value and a minimum temporary error value among a plurality of temporary error values acquired in the temporary error value acquisition step.
  • a provisional error value comparison step for comparing a desired error value with a maximum provisional error width that is a difference between the correction value setting information generation step and the provisional error value comparison step.
  • the correction value table generation step is executed again using a new desired error value obtained by adding a predetermined value to the desired error value. It is to be executed only when it is determined that it is equal to or greater than the desired error value.
  • the positioning accuracy setting method uses an error value in which the correction value generated in the correction value setting information generation step includes a standard deviation based on a plurality of positioning errors.
  • the correction value setting information generation step is repeatedly executed while increasing the desired error value so that the correction value is equal to or less than the desired positioning accuracy, and correction is performed before the correction value table generation step. The validity of the value is verified.
  • the positioning accuracy setting method according to the present invention prevents an incorrect correction value from being calculated due to a measurement error of the positioning error acquired in the error value acquisition step in the correction value setting information generation step. It is possible to improve the reliability of the correction value setting information and the correction value table generated using the correction value setting information.
  • the positioning accuracy setting method further includes an access right determination step of determining presence / absence of an access right for setting the correction value before executing the correction value table generation step,
  • the correction value table generation step is executed only when it is determined in the access right determination step that there is an access right.
  • the positioning accuracy setting method determines whether or not there is an access right for setting a correction value before executing the correction value table generation step. It is possible to prevent the correction value table from being set by a person who does not have
  • the present invention can be implemented not only as an invention of a positioning accuracy setting method but also as an invention of a positioning accuracy setting device and a positioning accuracy setting program in this machine tool.
  • a feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object, and an operation of the feed mechanism.
  • a positioning accuracy setting device for a feed mechanism in a machine tool having a control means for controlling, a positioning error is measured at each of at least three measurement positions in a movable range of an object to be displaced by the feed mechanism, and the positioning error is directly measured.
  • an error value acquisition unit that acquires an error value that is indirectly represented, and an error value at an inner measurement position that exists inside two measurement positions at both ends of at least three measurement positions and a preset desired error.
  • Correction value setting information generating means for generating correction value setting information in which the correction value at the measurement position is at least smaller than the correction value at the inner measurement position, and a plurality of corrections set within the movable range of the displacement object by the feed mechanism
  • Correction value table generating means for generating a correction value table in which correction values corresponding to the respective measurement positions are set in the respective correction sections corresponding to the respective measurement positions using the correction value setting information for the sections. It is in.
  • the correction value setting information generation means sets 0 for each correction value corresponding to each of the two measurement positions at both ends, and 2 at both ends with respect to the inner measurement value.
  • Correction value setting information is generated by setting each correction value between two measurement positions by linear interpolation, and the correction value table setting means sets the correction value for a correction section other than the correction section in which the correction value is set.
  • the correction value table may be generated by setting the correction values by linear interpolation using the correction values in the set correction section.
  • the error value acquisition means acquires the error value at a substantially central position in the movable range of the displacement object, and at both ends of the movable range around the substantially central position.
  • the error value is acquired at the same number of measurement positions, and the correction value setting information generation means may set the measurement position at which the error value is acquired at the approximate center position in the movable range of the displacement object as the inner measurement position.
  • the error value acquisition means acquires, as an error value, a standard deviation calculated using a plurality of positioning errors obtained by performing a plurality of measurements at the same measurement position. After generating the correction value setting information, a plurality of positioning temporary errors obtained by adding each correction value for each measurement position in the correction value setting information to each positioning error for each measurement position measured by the error value acquisition unit.
  • Temporary error value acquisition means for acquiring a standard deviation as a temporary error value, and a maximum that is a difference between a maximum temporary error value and a minimum temporary error value among a plurality of temporary error values acquired by the temporary error value acquisition means
  • Provisional error value comparison means for comparing the provisional error width with the desired error value
  • the correction value setting information generation means determines that the maximum provisional error width is smaller than the desired error value by the provisional error value comparison means.
  • Desired error The correction value setting information is generated again using a new desired error value obtained by adding a predetermined value to the correction value table, and the correction value table generation means determines that the maximum temporary error width is greater than or equal to the desired error value by the temporary error value comparison means.
  • the correction value table should be generated only when
  • the positioning accuracy setting device further includes an access right determination unit that determines whether or not to have an access right for setting the correction value before generating the correction value table.
  • the correction value table may be generated only when it is determined by the right determination means that the access right is present. Also by these, the same effect as the positioning accuracy setting method can be expected.
  • a feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object, and an operation of the feed mechanism.
  • a program for setting positioning accuracy of a feed mechanism used in a machine tool having a control means for controlling, wherein a positioning error is measured at each of at least three measurement positions in a movable range of an object to be displaced by the feed mechanism.
  • an error value acquisition step for acquiring an error value directly or indirectly representing the positioning error, and an error at an inner measurement position existing inside two measurement positions at both ends of the at least three measurement positions The difference between the value and the desired error value directly or indirectly representing the preset desired error is compensated for at the inner measurement position.
  • a correction value setting information generating step for generating correction value setting information with a correction value at a measurement position other than the inner measurement position as a correction value smaller than the correction value at the inner measurement position, and a displacement object by the feed mechanism A correction value table in which correction values corresponding to each measurement position are set in each correction section corresponding to each measurement position using correction value setting information for a plurality of correction sections set within the movable range of The correction value table generation step to be generated may be executed.
  • (A) (B) is a table
  • (A) is the case where the feed mechanism of a machine tool is extended. The positioning error is shown in relation to the correction value
  • FIG. 1 is a block diagram schematically showing a configuration of a positioning accuracy setting device 100 used for carrying out a positioning accuracy setting method according to the present invention.
  • the positioning accuracy setting device 100 is a positioning in which the positioning accuracy of the table 201 and the machining head 203 in the machine tool 200 that machine the surface of the workpiece WK that is a workpiece is high by computer control (NC control) is higher than a predetermined positioning accuracy. This is for setting a correction value for positioning accuracy so as not to be accurate, and is used mainly when the machine tool 200 is manufactured by a machine tool manufacturer.
  • NC control computer control
  • the positioning accuracy setting device 100 mainly includes a machine tool 200 and an external computer device 300.
  • a table 201 that holds a workpiece WK and a machining head 203 that holds a tool 202 that performs machining (for example, cutting, drilling, milling, boring, etc.) on the workpiece WK are orthogonal to each other.
  • This is a mechanical device that performs machining on the workpiece WK by relatively displacing in the directions of three orthogonal axes.
  • the table 201 is a mounting table that detachably holds a workpiece WK that is an object to be processed, and is supported by a feed mechanism 204.
  • the feed mechanism 204 is a mechanical device for displacing the table 201 in one axial direction (the X-axis direction in the left-right direction in the drawing) of the three orthogonal axes, and the feed screw shaft 205 on which a male screw is formed is a table.
  • a female screw (not shown) formed in a state penetrating the lower part of 201 is engaged with a large number of small balls (not shown).
  • a feed motor 206 is connected to one end (left side in the figure) of the feed screw shaft 205.
  • the feed motor 206 is an electric motor for rotating the feed screw shaft 205 in the forward rotation direction and the reverse rotation direction.
  • the motor drive unit 210 is disposed in a steel frame (not shown) in the machine tool 200. The operation is controlled by.
  • the feed motor 206 is constituted by a servo motor.
  • the feed motor 206 includes a rotary encoder 207.
  • the rotary encoder 207 is a rotation detector that outputs detection signals composed of pulse signals corresponding to the number of rotations of the feed motor 206 to the motor drive unit 210 and the general control unit 213, respectively.
  • the motor drive unit 210 is an electric circuit for controlling the rotation drive of the feed motor 206, and is electrically connected to the rotary encoder 207 and the movement amount calculation unit 211 in the control panel (not shown) in the machine tool 200. Is provided.
  • the motor drive unit 210 controls the rotational drive of the feed motor 206 using the correction drive command signal output from the movement amount calculation unit 211 and the detection signal output from the rotary encoder 207.
  • the correction drive command signal represents the displacement direction, displacement amount, and displacement speed of the table 201, and is a control signal for instructing the rotation direction, rotation speed, and rotation speed of the feed motor 206, respectively.
  • the motor drive unit 210 monitors the rotation direction, the rotation speed, and the rotation speed of the feed motor 206 based on the detection signal output from the rotary encoder 207, and the rotation direction, the rotation speed, and the rotation represented by the correction drive command signal. The operation of the feed motor 206 is controlled so that the speed is reached.
  • the movement amount calculation unit 211 generates a correction drive command signal obtained by correcting the drive command signal output from the general control unit 213 using the correction value table stored in the correction value table storage unit 212 to generate a motor drive unit 210. And is provided in a control panel (not shown) of the machine tool 200 in a state of being electrically connected to the correction value table storage unit 212 and the general control unit 213, respectively.
  • the drive command signal output from the general control unit 213 represents the displacement direction, displacement amount, and displacement speed of the table 201, and indicates the rotation direction, rotation speed, and rotation speed of the feed motor 206, respectively. Control signal.
  • the correction value table stored in the correction value table storage unit 212 divides the movable range (so-called stroke) of the table 201 displaced by the feed mechanism 204 into predetermined distances (for example, intervals of 10 mm to 50 mm). It is a set of correction values (the number of rotations of the feed motor 206) for adjusting the displacement amount (the number of rotations of the feed motor 206) of the table 201 that is displaced within the correction section for each of a plurality of correction sections. Therefore, the movement amount calculation unit 211 calculates the correction value for each correction section stored in the correction value table storage unit 212 as the displacement amount of the table 201 represented by the drive command signal output from the general control unit 213. By adding each time, a corrected drive command signal is generated and output to the motor drive unit 210.
  • the correction value table storage unit 212 is a readable / writable storage device for storing a correction table that defines the correction values for each of the plurality of correction sections, and is electrically connected to the general control unit 213. Are provided in a control panel (not shown) of the machine tool 200. In the correction value table storage unit 212, the correction value for each correction section is written by the general control unit 213.
  • the comprehensive control unit 213 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and comprehensively controls the entire operation of the machine tool 200, and is a machining program (not shown) prepared by an operator (a so-called NC).
  • NC a machining program prepared by an operator
  • the machining of the workpiece WK is controlled by relatively displacing the table 201 and the machining head 203 while rotating the tool 202 in accordance with the (Numerical Control) program).
  • the overall control unit 213 generates a correction value table by executing the correction value table generation program shown in FIG. 4 and stores the correction value table in the correction value table storage unit 212.
  • the comprehensive control unit 213 displays an operation panel 214 including an operation switch group for accepting an operation from the worker with respect to the comprehensive control unit 213 and an operation status of the comprehensive control unit 213 to the worker. And an interface 216 for connecting an external device such as the external computer device 300 to the general control unit 213.
  • the machine tool 200 is mechanical and electrical for displacing the machining head 203 in the other two axial directions in the orthogonal three-axis directions (the Y-axis direction in the illustrated depth direction and the Z-axis direction in the illustrated vertical direction). Although the structure is also provided, since it is the same structure as the table 201, its description is omitted.
  • the machine tool 200 also includes a mechanical and electrical configuration that rotationally drives a tool 202 that is detachably held by the machining head 203, and a power supply unit that supplies electricity to other electrical components. The description of these configurations not directly related to the present invention will be omitted.
  • the external computer device 300 is constituted by a microcomputer composed of a CPU, ROM, RAM, hard disk, etc., and a personal computer (so-called personal computer) including an input device 301 composed of a keyboard and a mouse and a display device 302 composed of a liquid crystal display. It is.
  • the external computer apparatus 300 measures a positioning error of the table 201 in the machine tool 200 by executing a positioning error measurement program (not shown), and executes a correction value setting information generation program shown in FIG. Generate configuration information.
  • the positioning error measurement program and the correction value setting information generation program are stored in advance in the hard disk by an operator described later.
  • the external computer device 300 may be any type of computer device as long as it can be electrically connected to the general control unit 213 of the machine tool 200.
  • a displacement measuring device 303 is connected to the external computer device 300.
  • the displacement measuring device 303 is an optical measuring device whose operation is controlled by the external computer device 300 to optically measure the displacement amount of the table 201. More specifically, the displacement measuring device 303 irradiates a laser beam L Z (indicated by a broken line) toward the reflection plate 304 temporarily arranged on the table 201 and reflects the reflected laser beam by the reflection plate 304. LZ is received, the displacement amount of the table 201 is measured using the principle of triangulation, and an electric signal representing the displacement amount is output.
  • an operator who sets the positioning accuracy of the feed mechanism 204 in the machine tool 200 measures the current positioning error in the feed mechanism 204. Specifically, the operator turns on and starts the machine tool 200 and the external computer device 300 and connects the external computer device 300 to the general control unit 213 via the interface 216. Further, the operator, after placing the reflector 304 on the table 201 of the machine tool 200, the displacement measuring devices with arranging the displacement measuring device 303 with the laser beam L Z in can be radiated at this reflector 304 303 Is connected to the external computer device 300. Then, the operator causes the external computer device 300 to execute a positioning error measurement program (not shown).
  • the positioning error measurement program causes the external computer device 300 to measure each displacement amount when the table 201 of the machine tool 200 is positioned at at least three positions in the movable range of the table 201 via the displacement measuring device 303.
  • This is a computer program for calculating positioning errors for each of the three or more measurement positions of the table 201 using the same displacement amount.
  • the positioning error measurement program acquires positioning errors at five or more measurement positions in the movable range of the table 201. Therefore, first, the operator drives the feed motor 206 by operating the general control unit 213 in the machine tool 200 in a state where the external computer device 300 executes the positioning error measurement program, so that the table 201 is stored in the table 201. Position at five measurement positions in the movable range.
  • the general control device 213 includes an outward path that is displaced from one end (for example, the feed motor 206 side) toward the other end (for example, the front end side of the feed screw shaft 205), and the other end.
  • a program is set for positioning at the same five positions, which are randomly determined by the overall control unit 213, with the return path displaced from the unit toward one end. Therefore, the general control unit 213 positions the five measurement positions in the movable range of the table 201 in the forward path and the return path, respectively, in accordance with an instruction from the operator.
  • the five measurement positions at which the overall control unit 213 positions the table 201 are randomly determined by the overall control unit 213, but at least one of the five positions is within the movable range of the table 201. It is set to be approximately the center position.
  • the correction value table storage unit 212 is preliminarily set with correction tables in which all correction amounts are zero. That is, in this positioning error measurement, positioning is performed without correcting the positioning error for each measurement position.
  • the external computer device 300 displays the information regarding the displacement status of the table 201, specifically, the displacement direction, the displacement amount, and the displacement speed. Then, the displacement measuring device 303 is controlled to acquire the displacement amounts at the five positions of the table 201. The external computer apparatus 300 then detects the displacement amount of the table 201 (command value to the feed motor 206) acquired from the total control unit 213 at the five measurement positions of the table 201 and the displacement of the table 201 acquired from the displacement measuring device 303. The difference from the quantity (measured value) is acquired as a positioning error for each of the five positioning positions.
  • the external computer apparatus 300 acquires two positioning errors for the forward path and the backward path for each of the five measurement positions.
  • acquisition of the positioning error for each of the five measurement positions is performed five times. Therefore, the external computer device 300 acquires five sets of two positioning errors for the forward path and the backward path for each of the five measurement positions.
  • work which acquires this positioning error comprises a part of error value acquisition step which concerns on this invention.
  • the operator operates the input device 301 of the external computer device 300 to cause the external computer device 300 to generate correction value setting information.
  • the correction value setting information is a group of information that defines correction values for adjusting the positioning error of the table 201 for each of the five measurement positions, and is stored in the correction value table storage unit 212. It is an information group that is a base for generating a value table. Specifically, the operator instructs the external computer device 300 to execute the correction value setting information generation program.
  • the external computer apparatus 300 starts execution of the correction value setting information generation program in step S100 as shown in FIG. 2, and inputs the desired error value from the operator in step S102. Wait for.
  • the desired error value in the process of step S102 defines an upper limit of the positioning accuracy of the table 201 in the machine tool 200. More specifically, the table 201 is positioned via a certain amount of error. It is expressed by a so-called shift amount for making it so. Therefore, the operator inputs a desired error value that is an upper limit value of positioning accuracy in the machine tool 200 to the external computer device 300 via the input device 301. For example, when it is desired to position the table 201 of the machine tool 200 through an error of at least 8 ⁇ m, the operator inputs 8 ⁇ m as a desired error value.
  • step S104 the external computer device 300 calculates each error value in the forward path and the return path for each measurement position. Specifically, the external computer apparatus 300 calculates the standard deviation as an error value for the forward positioning error and the backward positioning error for each measurement position acquired by executing the positioning error measurement program. That is, the external computer apparatus 300 uses the five positioning errors in the forward path and the five positioning errors in the return path obtained at the execution of the positioning error measurement program in the forward path for each measurement position. And the so-called third standard deviation which is ⁇ 3 ⁇ are calculated respectively. Thereby, the standard deviation of each positioning error in the forward path and the backward path is calculated as an error value for each of the five measurement positions. That is, the error value calculation process in step S104 constitutes another part of the error value acquisition step according to the present invention.
  • step S106 the external computer device 300 determines whether or not a desired error value is secured for the positioning error in the table 201. Specifically, the external computer device 300 determines the maximum difference between the maximum error value and the minimum error value of the forward error value and the return error value for each measurement value acquired in step S104. It is determined whether the error value width is equal to or greater than the desired error value. Accordingly, when the maximum error value width is equal to or larger than the desired error value, the external computer device 300 determines “Yes” in the determination process in step S106 and proceeds to step S124, and the correction value in step S200. Ends the execution of the setting information generation program.
  • the case where the maximum error value width is greater than or equal to the desired error value is a case where the current positioning error of the table 201 in the machine tool 200 has already become a low positioning accuracy that is less than or equal to the desired error value. Therefore, in such a case, the machine tool 200 does not need to set the correction table, so the external computer device 300 ends the execution of the correction value setting information generation program in step S124.
  • the external computer device 300 determines “No” in the determination process in step S106 and proceeds to step S108. That is, the case where the maximum error value width is less than the desired error value is a case where the current positioning error of the table 201 in the machine tool 200 is smaller than the desired error value and has high positioning accuracy.
  • the external computer device 300 specifies the central measurement position in the measurement position of the positioning error. Specifically, the external computer device 130 specifies the measurement position of the number of measurement times that is the same value as the value obtained by dividing the total number of measurement positions of positioning errors by 2 or the same value rounded off as the central measurement value.
  • the third measurement position is specified as the center specific position. In this case, the third measurement position is a substantially central portion in the movable range of the table 201.
  • the center measurement position may specify the measurement position closest to the center portion in the movable range of the table 201 based on the machine coordinate value of each measurement position.
  • the external computer device 300 calculates the maximum error value width at the specified central measurement position. Specifically, the external computer apparatus 300 determines the four error values in the central measurement value identified in step S108, specifically, the positive third standard deviation in the forward path, and the negative third in the forward path. The smallest error among the four third standard deviations of the standard deviation, the positive third standard deviation on the return path, and the negative third standard deviation on the return path, and each error value (third standard deviation) at each measurement position The four differences with the value are calculated, and the maximum value of these four differences is calculated as the maximum error value width.
  • the external computer device 300 calculates the maximum correction value at the central measurement position in step S112. Specifically, the external computer device 300 calculates the difference between the maximum error value width calculated in step S110 and the desired error value as the maximum correction value.
  • step S114 the external computer device 300 calculates a correction value for each measurement position other than the central measurement position. Specifically, the external computer device 300 sets each correction value at two measurement positions on both ends in the movable range of the table 201 to 0, and between the two measurement positions on both ends and the central measurement position. Each correction value at two measurement positions is set to a value obtained by linear interpolation between 0 and the maximum correction value. For example, as shown in FIG. 3, when the maximum correction value that is the correction value at the measurement position 3 that is the center measurement position is 8 ⁇ m, two measurement positions 1 and 5 at both ends and the measurement position 3 Each correction value at the measurement positions 2 and 4 is 4 ⁇ m. That is, the correction value calculation processing in steps S112 and S114 constitutes a part of the correction value setting information generation step according to the present invention.
  • the external computer device 300 calculates a temporary error value in step S116.
  • the temporary error value is the validity of the correction value for each measurement position calculated in step S112 and step S114 on the premise of the positioning error for each measurement position acquired by executing the positioning error measurement program. That is, an error value is predicted when the displacement instruction amount in the table 201 is corrected with the same correction value.
  • the calculation process of the provisional error value in step S116 includes the following processes of sub-steps 1 and 2.
  • Sub-step 1 First, the external computer apparatus 300 determines the positioning error for each of the five measurement positions obtained by executing the positioning error measurement program, that is, five positioning errors in the forward path and five positioning errors in the backward path. By adding the correction values for the respective measurement positions calculated in step S112 and step S114, the five positioning temporary errors in the forward path and the five positioning temporary errors in the return path are added for each of the five measurement positions. Calculate the error.
  • Sub-step 2 Next, the external computer device 300 calculates the temporary error value by calculating the third standard deviation in the same manner as in step S104 with respect to the positioning temporary error for each measurement position calculated in the sub-step 1. Calculate Since the calculation of the third standard deviation using this positioning temporary error is the same as the third standard deviation in step S104, description thereof is omitted. As a result, the standard deviation of the positioning temporary error, which is the positioning error predicted for each of the five measurement positions on the forward path and the return path, is calculated as a temporary error value. That is, the error value calculation process in step S116 constitutes a provisional error value acquisition step according to the present invention.
  • step S118 the external computer apparatus 300 determines whether or not a desired error value is secured for the positioning error of the table 201 based on the correction values calculated in step S112 and step S114. Specifically, the external computer apparatus 300 calculates the difference between the maximum error value and the minimum error value of the forward temporary error value and the return temporary error value for each measurement value acquired in step S116. It is determined whether a certain maximum provisional error value width is equal to or greater than the desired error value. That is, the determination process with the desired error value in step S118 corresponds to the provisional error value determination step according to the present invention.
  • the external computer device 300 determines “Yes” in the determination process in step S118 and proceeds to step S122. That is, the case where the maximum temporary error value width is equal to or larger than the desired error value means that the positioning accuracy of the table 201 in the machine tool 200 employs the correction value for each measurement position calculated in Step S112 and Step S114. This is a case where it is predicted that the positioning accuracy will be lower than the desired error value.
  • the external computer device 300 determines “No” in the determination process in step S118 and proceeds to step S120. That is, when the maximum temporary error value width is less than the desired error value, the positioning accuracy of the table 201 in the machine tool 200 employs the correction value for each measurement position calculated in Step S112 and Step S114. In this case, the positioning accuracy is predicted to be smaller than the desired error value and higher.
  • the external computer device 300 increases the desired error value by adding a predetermined amount of correction value to the desired error value in step S120, and then returns to step S112 to perform the same step.
  • Each process of S112 is performed again. That is, the external computer device 300 increases the desired error value while calculating the correction value that is predicted to be a positioning accuracy of the table 201 of the machine tool 200 that is lower than the desired error value.
  • the correction value calculation process in step S114 is repeatedly executed.
  • step S122 the correction value for each measurement position calculated in step S112 and step S114 is determined and stored as correction value setting information, and then the correction value is set in step S124. Terminates execution of the information generation program. That is, the process of determining the correction value for each measurement position in step S122 as correction value setting information forms another part of the correction value setting information generation step according to the present invention.
  • the operator sets the correction value table in the correction value table storage unit 212 in the machine tool 200. Specifically, the operator instructs the general control unit 213 in the machine tool 200 to set the correction value table. In response to this instruction, the overall control unit 213 starts executing a correction value table generation program that generates a correction value table based on the correction value setting information.
  • the overall control unit 213 starts the execution of the correction value table generation program at step 200 and waits for an access right input at step S202.
  • the operator is prompted to input an access right that permits setting of the correction value table via the display device 215. Therefore, the operator inputs an access right that permits setting of the correction value table to the general control unit 213 via the operation panel 214.
  • the general control unit 213 executes an access right presence / absence determination process in step S204. Specifically, the overall control unit 213 determines whether or not the access right set in advance in the overall control unit 213 matches the access right input by the operator in step S202. Therefore, if the access right input by the operator in step S202 matches the access right set in advance in the overall control unit 213, the overall control unit 213 determines “ It determines with "Yes” and progresses to step S206.
  • the overall control unit 213 determines that the determination process in step S202 “ After determining that the access rights do not match and cannot set the correction value table in step S210, the correction value table setting program is executed in step S214. finish. That is, the correction value table is allowed to be set only by a person who has access right by the processes of step S202 and step S204, and is prevented from being falsified by a person who does not have the access right. And the determination process of the presence or absence of the access right by this step S204 corresponds to the access right determination step according to the present invention.
  • the general control unit 213 waits for input of correction value setting information in step S206.
  • the input process of the correction value setting information in this step S206 prompts the operator to input the correction value setting information generated by executing the correction value setting information generation program via the display device 215. Therefore, the operator inputs correction value setting information to the general control unit 213 by manual input via the operation panel 214 or online from the external computer device 300.
  • the comprehensive control unit 213 that has received the input of the correction value setting information generates a correction value table in step S208. Specifically, the overall control unit 213 automatically calculates and sets a correction value table using the correction value setting information acquired in step S206.
  • the correction value table setting process in step S208 includes the following sub-steps 1 and 2.
  • Sub-step 1 First, the overall control unit 213 includes a correction section in the correction value table corresponding to each measurement position in which each correction value is specified in the correction value setting information, specifically, each measurement position or The respective correction values set for the respective measurement positions are set in the correction section in the nearest correction value table at the respective measurement positions.
  • Sub-step 2 Next, the overall control unit 213 performs linear interpolation using the correction values of the correction sections for which correction values are set in the correction value table, for correction sections other than the correction section for which the correction values are set. Set as a correction value. As a result, a correction value table is generated in which correction values are set in all the correction sections obtained by dividing the movable range of the table 201 of the machine tool 200 for each predetermined distance.
  • step S210 the general control unit 213 stores the correction value table generated in step S208 in the correction amount storage unit 212, and ends the execution of the correction value table setting program in step S214. That is, each process of generating and storing the correction value table in step S208 and step S210 corresponds to a correction value table generating step according to the present invention.
  • the displacement amount is corrected when the table 201 is displaced.
  • the movement amount calculation unit 211 specifies the displacement range of the table 201 based on the displacement amount of the table 201 represented by the drive command signal output from the general control unit 213, and a correction value corresponding to the displacement range.
  • a correction drive command signal is generated by adding the correction value set in the correction section in the table to the displacement amount.
  • the positioning accuracy of the table 201 is less than a desired error value even when the feed screw shaft 205 constituting the feed mechanism 204 that displaces the table 201 due to environmental changes such as temperature changes inside and outside the machine tool 200 is expanded and contracted. A low positioning accuracy is maintained.
  • the feed screw shaft 205 is In the case of extending by 8 ⁇ m, the positioning error for each measurement value is 0 ⁇ m, 6 ⁇ m, 12 ⁇ m, 10 ⁇ m, and 8 ⁇ m. Accordingly, the positioning error width of the table 201 in this case is 12 ⁇ m, and low positioning accuracy that is equal to or less than the desired error value is maintained.
  • the feed screw shaft When 205 contracts by 8 ⁇ m, the positioning error for each measurement value is 0 ⁇ m, 2 ⁇ m, 4 ⁇ m, ⁇ 2 ⁇ m, and ⁇ 8 ⁇ m. Accordingly, the positioning error width of the table 201 in this case is 8 ⁇ m, and a low positioning accuracy equal to or less than the desired error value is maintained.
  • the positioning accuracy setting method sets the correction value in each of the plurality of correction sections set within the movable range of the table 201 that is the displacement object.
  • the largest correction value is set in the correction section existing inside the correction sections at both ends.
  • the correction values are in ascending order and descending order with the correction section where the maximum correction value is set as a boundary. For this reason, there is a region in which the current state is maintained or expanded without canceling the positioning error at any position in the correction section regardless of whether the mechanical parts constituting the feed mechanism 204 are expanded or contracted. It comes to exist.
  • the positioning accuracy in the feeding mechanism 204 can be maintained well below the desired positioning accuracy regardless of the expansion / contraction change of the feeding mechanism 204.
  • the positioning accuracy setting method can also be employed for setting the positioning accuracy of the feed mechanism that displaces the machining head 203 in the above embodiment in the Y-axis direction and the Z-axis direction.
  • the third standard deviation of the positioning error measured five times at each measurement position is used as the error value representing the positioning error of the table 201, so that the error value indirectly represents the positioning error.
  • the third standard deviation it is not always necessary to use the third standard deviation as the error value representing the positioning error of the table 201 as long as it directly or indirectly represents the positioning error of the table 201.
  • the second (2 ⁇ ) standard deviation is used.
  • Other standard deviations may be used, the average value of the positioning errors may be used, or the positioning errors themselves may be directly expressed.
  • another standard deviation such as the second (2 ⁇ ) standard deviation may be used, and the average value of the positioning error may be used. It may also be a positioning error itself.
  • the process of calculating the standard deviation in step S104 in the correction value setting information generation program is unnecessary.
  • the positioning error was measured using five measurement values.
  • the number of positioning error measurement positions is at least 3 or more in the movable range of the table 201, it may be 4 or less or 6 or more.
  • the reason why at least three or more measurement positions are required in the movable range of the table 201 is that a measurement value that exists between both ends of the correction value set for each measurement position rather than the correction value of the measurement values at both ends. This is to maximize the correction value at.
  • the maximum correction value is set with the central measurement position, which is the third measurement position of the positioning error, as the inner measurement position according to the present invention.
  • the inner measurement position may be a measurement position inside the measurement positions at both ends of each measurement position, and is not necessarily the central measurement position.
  • the second measurement position or the fourth measurement position can be set as the inner measurement position. In this case, there may be two or more inner measurement positions.
  • the correction values of the two measurement positions at both ends of the five measurement positions are set to 0.
  • the correction value set for each measurement position does not necessarily have to be set to 0 if the correction set for the inner measurement position is the maximum value.
  • the correction values of the two measurement positions existing between the two measurement positions on both sides with respect to the inner measurement position are set by linear interpolation.
  • these two correction values may also be set to a method other than linear interpolation, for example, a parabolic shape, or the amount within the range between the correction value of the set inner measurement value and the correction values of the measurement positions at both ends may be omitted. You may make it set for the purpose.
  • each correction value for each correction section in the correction table may be set by a method other than linear interpolation.
  • the center measurement position among the five measurement positions of the positioning error is set to the substantially center position in the movable range of the table 201.
  • correction values that are approximate to each other are set in the most frequently used central regions in the movable range of the table 201 of the machine tool 200. Therefore, variations in positioning accuracy in these central regions are suppressed, and the accuracy is stabilized. Processing can be performed.
  • the inner measurement position does not necessarily have to exist in the central region of the movable range of the table 201. Moreover, it is not necessary to secure the same number of measurement positions at both ends with respect to the inner measurement position as a boundary other than the inner measurement position, and it is sufficient that at least one measurement position exists adjacent to the inner measurement position.
  • each correction value for each correction section in the correction table in a parabolic shape centering on the inner measurement value, it is possible to perform processing with stable accuracy while suppressing variation in positioning accuracy in the central region. .
  • the external computer device 300 determines the positioning accuracy of the table 201 of the machine tool 200 to the desired error.
  • the correction value calculation process in steps S112 and S114 is repeatedly executed while increasing the desired error value until the correction value predicted to have a low positioning accuracy below the value is calculated.
  • the correction value setting information generation program simulates the positioning error due to the correction value set based on the error value, so that the positioning error when this correction value is adopted can be measured without performing the positioning error measurement operation by the actual machine. Predict.
  • the positioning error simulation step is not necessary. That is, the correction value setting information generation program can be configured by omitting the steps S116 to S120.
  • the correction value table generation program requires an access right for the setting process of the correction value table to the correction value table storage unit 212. However, if there is no need for the person who sets the correction value table, the steps related to checking the access right, that is, step S202, step S204, and step S212 are unnecessary.
  • the external computer device 300 is caused to execute the positioning error measurement program and the correction value setting information generation program, and the general control unit 213 of the machine tool 200 is caused to execute the correction value table generation program.
  • these positioning error measurement program, correction value setting information generation program, and correction value table generation program can be executed by either the general control unit 213 or the external computer device 300 as long as the execution purpose of each program can be achieved. It may be configured. That is, for example, if the general control unit 213 executes all of the positioning error measurement program, the correction value setting information generation program, and the correction value table generation program, the external computer device 300 is not necessary.
  • the correction value table generation program may be executed by the external computer device 300 so that the correction value table is stored in the correction value table storage unit 212 of the machine tool 200 from the external computer device 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

Provided are a positioning precision setting method and a positioning precision setting device that make it possible to satisfactorily maintain the positioning precision of a feed mechanism at a level of precision that is equal to or less than a desired positioning precision regardless of expansion/contraction of the feed mechanism. A worker uses a machine tool (200) and an external computer device (300) to measure errors in positioning precision a plurality of times at five positions within the range of movement of a table (201) that is displaced by a feed mechanism (204). Next, the worker uses the external computer device (300) to set the standard deviation of the measured positioning errors as an error value, subsequently sets the difference between the range of the error value and a desired error value as a correction value for an inner measurement position at each of the measurement positions, and creates correction value setting information in which a correction value that is smaller than the correction value of the inner measurement position is set as a correction value for the other four measurement positions. Next, the worker uses the machine tool (200) to create a correction value table in which correction values are set on the basis of the correction value setting information in a plurality of correction segments that are set within the range of movement of the table (201).

Description

位置決め精度の設定方法、位置決め精度設定装置および位置決め精度の設定プログラムPositioning accuracy setting method, positioning accuracy setting device, and positioning accuracy setting program
 本発明は、ワークに対して機械加工を行う工作機械において、加工対象であるワークを保持するテーブルとワークを加工する加工ヘッドとの相対的な位置関係を変化させる送り機構の位置決め精度の設定方法、位置決め精度設定装置、位置決め精度の設定プログラムに関する。 The present invention relates to a method for setting the positioning accuracy of a feed mechanism that changes the relative positional relationship between a table for holding a workpiece to be machined and a machining head for machining the workpiece in a machine tool that performs machining on a workpiece. The present invention relates to a positioning accuracy setting device and a positioning accuracy setting program.
 従来から、被加工対象物であるワークを保持するテーブルと機械加工を行う加工ヘッドとを数値制御によって相対変位させながらワークに機械加工を行う工作機械が知られている。このような工作機械においては、テーブルと加工ヘッドとを相対変位させる送り機構に位置決め誤差が不可避的に生じる。このため、工作機械メーカは、工作機械を製造する過程において送り機構の作動を制御する制御装置内に送り機構の位置決め誤差を解消するための補正値を予め設定している。この場合、近年においては、客先が要求する位置決め精度以上の高い位置決め精度とならないように位置決め精度の補正値を調整して工作機械を製造することが行われている。 2. Description of the Related Art Conventionally, a machine tool that performs machining on a workpiece while relatively displacing a table that holds a workpiece that is a workpiece and a machining head that performs machining by numerical control is known. In such a machine tool, a positioning error inevitably occurs in the feed mechanism that relatively displaces the table and the machining head. For this reason, machine tool manufacturers set in advance correction values for eliminating positioning errors of the feed mechanism in a control device that controls the operation of the feed mechanism in the process of manufacturing the machine tool. In this case, in recent years, a machine tool is manufactured by adjusting a correction value of the positioning accuracy so that the positioning accuracy is not higher than the positioning accuracy required by the customer.
 例えば、下記特許文献1,2には、送り機構によるテーブルや加工ヘッドの送り範囲内に設定した複数の補正区間ごとに位置決め誤差を測定してこの位置決め誤差を解消する補正値を設定するとともに、これらの補正値に対して客先が要求する位置決め誤差と同値の調整値を加算することによって所望の位置決め精度以下の低い位置決め精度を維持するようにした位置決め精度の設定方法が開示されている。 For example, in Patent Documents 1 and 2 below, while setting a correction value for measuring a positioning error for each of a plurality of correction sections set within a feed range of a table or a machining head by a feed mechanism, A positioning accuracy setting method is disclosed in which a positioning accuracy lower than a desired positioning accuracy is maintained by adding an adjustment value equal to the positioning error required by the customer to these correction values.
特開2010-99753号公報JP 2010-99753 A 特開2010-26997号公報JP 2010-26997 A
 しかしながら、上記各特許文献1,2に示された位置決め精度の設定方法においては、補正区間ごとの各補正値に対してそれぞれ一律の調整値を加算しているため、温度変化などの環境変化によって送り機構を構成する機械部品(例えば、ボールねじ)に伸縮が生じた場合、加算した調整値が相殺されて送り機構の位置決め精度が所望する位置決め精度以上の高い位置決め精度に変化してしまうことがあるという問題があった。 However, in the positioning accuracy setting methods shown in the above Patent Documents 1 and 2, since a uniform adjustment value is added to each correction value for each correction section, it is caused by environmental changes such as temperature changes. When a mechanical part (for example, a ball screw) constituting the feed mechanism expands or contracts, the added adjustment value is canceled and the positioning accuracy of the feed mechanism changes to a higher positioning accuracy than the desired positioning accuracy. There was a problem that there was.
 本発明は上記問題に対処するためなされたもので、その目的は、送り機構の伸縮変化に寄らず送り機構の位置決め精度を所望する位置決め精度以下の精度に良好に維持することができる位置決め精度の設定方法、位置決め精度設定装置および位置決め精度の設定プログラムを提供することにある。 The present invention has been made to cope with the above-described problems, and its purpose is to maintain a positioning accuracy of the feeding mechanism that is well below the desired positioning accuracy regardless of the expansion / contraction change of the feeding mechanism. To provide a setting method, a positioning accuracy setting device, and a positioning accuracy setting program.
 上記目的を達成するため、本発明の特徴は、ワークを保持するテーブルおよびワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、送り機構の作動を制御する制御手段とを備えた工作機械における送り機構の位置決め精度の設定方法において、送り機構による変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得ステップと、少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を内側測定位置における補正値とするとともに同内側測定位置以外の測定位置における補正値を少なくとも内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成ステップと、送り機構による変位対象物の可動範囲内に設定した複数の補正区間に対して、補正値設定情報を用いて各測定位置に対応する各補正区間に同各測定位置に対応する補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成ステップとを含むことにある。 In order to achieve the above object, the present invention is characterized in that at least one of a table for holding a workpiece and a machining head for machining the workpiece is displaced relative to the other as a displacement object, and the operation of the feeding mechanism. In the method of setting the positioning accuracy of the feed mechanism in a machine tool provided with a control means for controlling the positioning mechanism, the positioning error is measured for each of at least three measurement positions in the movable range of the object to be displaced by the feed mechanism. An error value acquisition step for acquiring an error value directly or indirectly, and an error value at an inner measurement position existing inside two measurement positions at both ends of at least three measurement positions and a preset desired value The difference from the desired error value that directly or indirectly represents the error is used as the correction value at the inner measurement position and A correction value setting information generation step for generating correction value setting information in which a correction value at a measurement position other than the measurement position is at least a correction value smaller than the correction value at the inner measurement position, and is set within the movable range of the displacement object by the feed mechanism A correction value table generation step for generating a correction value table in which correction values corresponding to each measurement position are set in each correction section corresponding to each measurement position using the correction value setting information for the plurality of correction sections It is in including.
 このように構成した本発明の特徴によれば、位置決め精度設定方法は、変位対象物の可動範囲内に設定した複数の補正区間にそれぞれ補正値を設定するに際して、両端の補正区間より内側に存在する補正区間に最も大きな値の補正値を設定している。これにより、変位対象物の可動範囲内に設定した複数の補正区間においては、前記最大の補正値を設定した補正区間を境として補正値が昇順および降順となる。このため、送り機構を構成する機械部品が伸長した場合および収縮した場合のいずれの場合であっても補正区間のいずれかの位置において位置決め誤差が相殺されることなく現状維持または拡大する領域が存在するようになる。この結果、送り機構の伸縮変化に寄らず送り機構における位置決め精度を所望する位置決め精度以下の精度に良好に維持することができる。 According to the feature of the present invention configured as described above, the positioning accuracy setting method exists inside the correction sections at both ends when setting correction values in the plurality of correction sections set within the movable range of the displacement object. The largest correction value is set in the correction section to be performed. Thereby, in the plurality of correction sections set within the movable range of the displacement object, the correction values are in ascending order and descending order with the correction section where the maximum correction value is set as a boundary. For this reason, there is a region where the current state is maintained or enlarged without any positioning error being canceled at any position in the correction section, regardless of whether the mechanical parts constituting the feed mechanism are expanded or contracted. To come. As a result, the positioning accuracy of the feed mechanism can be maintained well below the desired positioning accuracy regardless of the expansion / contraction change of the feed mechanism.
 また、本発明の他の特徴は、前記位置決め精度の設定方法において、補正値設定情報生成ステップは、両端の2つの測定位置にそれぞれ対応する各補正値にそれぞれ0を設定するとともに、内側測定値に対して両端の2つの測定位置間における各補正値を直線補間により設定して補正値設定情報を生成し、補正値テーブル設定ステップは、補正値が設定された補正区間以外の補正区間に対して同補正値が設定された補正区間における補正値を用いて直線補間により補正値をそれぞれ設定して補正値テーブルを生成することにある。 According to another feature of the present invention, in the positioning accuracy setting method, the correction value setting information generation step sets each correction value corresponding to each of the two measurement positions at both ends to 0, and the inner measurement value. The correction value setting information is generated by setting each correction value between the two measurement positions at both ends by linear interpolation, and the correction value table setting step is performed for a correction section other than the correction section in which the correction value is set. The correction value table is generated by setting the correction value by linear interpolation using the correction value in the correction section in which the correction value is set.
 このように構成した本発明の他の特徴によれば、位置決め精度の設定方法は、補正値設定情報が両端の測定位置からそれぞれ内側測定位置に向かって補正値が直線補間によって設定されるとともに、この補正値設定情報に基づいて補正値テーブルにおける補正値設定情報に存在しない補正区間の補正値が直線補間によって設定される。これにより、少ない測定位置における補正値によって多数の補正区間の補正値を簡単かつ迅速に設定することができる。 According to another feature of the present invention configured as described above, in the positioning accuracy setting method, the correction value setting information is set by linear interpolation from the measurement positions at both ends toward the inner measurement positions, respectively. Based on this correction value setting information, correction values for correction sections that do not exist in the correction value setting information in the correction value table are set by linear interpolation. As a result, correction values for a large number of correction sections can be easily and quickly set with correction values at a small number of measurement positions.
 また、本発明の他の特徴は、前記位置決め精度の設定方法において、誤差値取得ステップは、変位対象物の可動範囲における略中央位置で誤差値を取得するとともに同略中央位置を中心として可動範囲における両端側の領域に互いに同数の測定位置でそれぞれ誤差値を取得し、補正値設定情報生成ステップは、変位対象物の可動範囲における略中央位置で誤差値を取得した測定位置を内側測定位置とすることにある。 According to another aspect of the present invention, in the positioning accuracy setting method, the error value acquisition step acquires an error value at a substantially central position in the movable range of the object to be displaced and moves the movable range around the substantially central position. The error value is acquired at the same number of measurement positions in each of the both end regions in the correction value setting information generation step, and the measurement position at which the error value is acquired at the substantially central position in the movable range of the displacement object is defined as the inner measurement position. There is to do.
 このように構成した本発明の他の特徴によれば、位置決め精度の設定方法は、変位対象物の可動範囲における略中央位置で誤差値を取得するとともに同略中央位置を中心として可動範囲における両端側の領域にて互いに同数の測定位置でそれぞれ誤差値を取得しているため、変位対象物の可動範囲内における補正値の分布は同可動範囲の略中央部を中心として対称となる。これにより、ワークの配置位置やワークの加工位置として最も多用されるテーブルの可動範囲の中央領域や加工ヘッドの可動範囲における中央領域にそれぞれ互いに近似する補正値が設定されるため、これらの中央領域内における位置決め精度のバラツキを抑えて精度の安定した加工を行うことができる。 According to another feature of the present invention configured as described above, the positioning accuracy setting method obtains an error value at a substantially central position in the movable range of the object to be displaced, and both ends of the movable range around the substantially central position. Since error values are acquired at the same number of measurement positions in the region on the side, the distribution of correction values within the movable range of the object to be displaced is symmetrical about the substantially central portion of the movable range. As a result, correction values that approximate each other are set in the central area of the movable range of the table and the central area of the movable range of the machining head, which are most frequently used as the workpiece placement position and the workpiece machining position. It is possible to perform processing with stable accuracy while suppressing variations in positioning accuracy.
 また、本発明の他の特徴は、前記位置決め精度の設定方法において、誤差値取得ステップは、同一の測定位置で複数回の測定を行うことにより得た複数の位置決め誤差を用いて計算した標準偏差を誤差値として取得し、補正値設定情報生成ステップの後に、さらに、補正値設定情報における各測定位置ごとの各補正値を誤差値取得ステップで測定した各測定位置ごとの各位置決め誤差に加算した複数の位置決め仮誤差の標準偏差を仮誤差値として取得する仮誤差値取得ステップと、仮誤差値取得ステップにて取得した複数の仮誤差値のうちの最大の仮誤差値と最少の仮誤差値との差である最大仮誤差幅と所望誤差値とを比較する仮誤差値比較ステップとを含み、補正値設定情報生成ステップは、仮誤差値比較ステップにて最大仮誤差幅が所望誤差値より小さいと判定されたとき、所望誤差値に所定値を加算した新たな所望誤差値を用いて再度実行され、補正値テーブル生成ステップは、仮誤差値比較ステップにて最大仮誤差幅が所望誤差値以上と判定されたときのみ実行されることにある。 According to another aspect of the present invention, in the positioning accuracy setting method, the error value acquisition step includes a standard deviation calculated using a plurality of positioning errors obtained by performing a plurality of measurements at the same measurement position. After the correction value setting information generation step, each correction value for each measurement position in the correction value setting information is added to each positioning error for each measurement position measured in the error value acquisition step. A temporary error value acquisition step for acquiring a standard deviation of a plurality of positioning temporary errors as a temporary error value, and a maximum temporary error value and a minimum temporary error value among a plurality of temporary error values acquired in the temporary error value acquisition step. And a provisional error value comparison step for comparing a desired error value with a maximum provisional error width that is a difference between the correction value setting information generation step and the provisional error value comparison step. When it is determined that the error value is smaller than the error value, the correction value table generation step is executed again using a new desired error value obtained by adding a predetermined value to the desired error value. It is to be executed only when it is determined that it is equal to or greater than the desired error value.
 このように構成した本発明の他の特徴によれば、位置決め精度の設定方法は、補正値設定情報生成ステップにて生成される補正値が複数の位置決め誤差に基づく標準偏差からなる誤差値を用いて計算されるとともに、この補正値が所望する位置決め精度以下の精度となるように所望誤差値を増加させながら補正値設定情報生成ステップが繰り返し実行して補正値テーブル生成ステップの実行の前に補正値の妥当性を検証している。これにより、本発明に係る位置決め精度の設定方法は、補正値設定情報生成ステップにおいて誤差値取得ステップで取得した位置決め誤差の測定誤差などに起因して不正確な補正値が計算されることを防止することができ、補正値設定情報およびこの補正値設定情報を用いて生成される補正値テーブルの信頼度を向上させることができる。 According to another feature of the present invention configured as described above, the positioning accuracy setting method uses an error value in which the correction value generated in the correction value setting information generation step includes a standard deviation based on a plurality of positioning errors. The correction value setting information generation step is repeatedly executed while increasing the desired error value so that the correction value is equal to or less than the desired positioning accuracy, and correction is performed before the correction value table generation step. The validity of the value is verified. Thereby, the positioning accuracy setting method according to the present invention prevents an incorrect correction value from being calculated due to a measurement error of the positioning error acquired in the error value acquisition step in the correction value setting information generation step. It is possible to improve the reliability of the correction value setting information and the correction value table generated using the correction value setting information.
 また、本発明の他の特徴は、前記位置決め精度の設定方法において、さらに、補正値テーブル生成ステップを実行する前に、補正値の設定のアクセス権の有無を判定するアクセス権判定ステップを含み、補正値テーブル生成ステップは、アクセス権判定ステップにてアクセス権が有ると判定されたときのみ実行されることにある。 According to another aspect of the present invention, the positioning accuracy setting method further includes an access right determination step of determining presence / absence of an access right for setting the correction value before executing the correction value table generation step, The correction value table generation step is executed only when it is determined in the access right determination step that there is an access right.
 このように構成した本発明の他の特徴によれば、位置決め精度の設定方法は、補正値テーブル生成ステップを実行する前に補正値の設定のアクセス権の有無を判定しているため、アクセス権を有さない者によって補正値テーブルが設定されることを防止することができる。 According to another feature of the present invention configured as described above, the positioning accuracy setting method determines whether or not there is an access right for setting a correction value before executing the correction value table generation step. It is possible to prevent the correction value table from being set by a person who does not have
 また、本発明は位置決め精度の設定方法の発明として実施できるばかりでなく、この工作機械における位置決め精度設定装置および位置決め精度の設定プログラムの発明としても実施できるものである。 The present invention can be implemented not only as an invention of a positioning accuracy setting method but also as an invention of a positioning accuracy setting device and a positioning accuracy setting program in this machine tool.
 具体的には、請求項に示すように、ワークを保持するテーブルおよびワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、送り機構の作動を制御する制御手段とを備えた工作機械における送り機構の位置決め精度設定装置において、送り機構による変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得手段と、少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を内側測定位置における補正値とするとともに同内側測定位置以外の測定位置における補正値を少なくとも内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成手段と、送り機構による変位対象物の可動範囲内に設定した複数の補正区間に対して、補正値設定情報を用いて各測定位置に対応する各補正区間に同各測定位置に対応する補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成手段とを備えることにある。 Specifically, as shown in the claims, a feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object, and an operation of the feed mechanism. In a positioning accuracy setting device for a feed mechanism in a machine tool having a control means for controlling, a positioning error is measured at each of at least three measurement positions in a movable range of an object to be displaced by the feed mechanism, and the positioning error is directly measured. Alternatively, an error value acquisition unit that acquires an error value that is indirectly represented, and an error value at an inner measurement position that exists inside two measurement positions at both ends of at least three measurement positions and a preset desired error. The difference from the desired error value expressed directly or indirectly is used as the correction value at the inner measurement position and other than the inner measurement position. Correction value setting information generating means for generating correction value setting information in which the correction value at the measurement position is at least smaller than the correction value at the inner measurement position, and a plurality of corrections set within the movable range of the displacement object by the feed mechanism Correction value table generating means for generating a correction value table in which correction values corresponding to the respective measurement positions are set in the respective correction sections corresponding to the respective measurement positions using the correction value setting information for the sections. It is in.
 また、この場合、前記位置決め精度設定装置において、補正値設定情報生成手段は、両端の2つの測定位置にそれぞれ対応する各補正値にそれぞれ0を設定するとともに、内側測定値に対して両端の2つの測定位置間における各補正値を直線補間により設定して補正値設定情報を生成し、補正値テーブル設定手段は、補正値が設定された前記補正区間以外の補正区間に対して同補正値が設定された補正区間における補正値を用いて直線補間により補正値をそれぞれ設定して補正値テーブルを生成するとよい。 In this case, in the positioning accuracy setting device, the correction value setting information generation means sets 0 for each correction value corresponding to each of the two measurement positions at both ends, and 2 at both ends with respect to the inner measurement value. Correction value setting information is generated by setting each correction value between two measurement positions by linear interpolation, and the correction value table setting means sets the correction value for a correction section other than the correction section in which the correction value is set. The correction value table may be generated by setting the correction values by linear interpolation using the correction values in the set correction section.
 また、この場合、前記位置決め精度設定装置において、誤差値取得手段は、変位対象物の可動範囲における略中央位置で誤差値を取得するとともに同略中央位置を中心として可動範囲における両端側の領域に互いに同数の測定位置でそれぞれ誤差値を取得し、補正値設定情報生成手段は、変位対象物の可動範囲における略中央位置で誤差値を取得した測定位置を内側測定位置とするとよい。 Further, in this case, in the positioning accuracy setting device, the error value acquisition means acquires the error value at a substantially central position in the movable range of the displacement object, and at both ends of the movable range around the substantially central position. The error value is acquired at the same number of measurement positions, and the correction value setting information generation means may set the measurement position at which the error value is acquired at the approximate center position in the movable range of the displacement object as the inner measurement position.
 また、この場合、前記位置決め精度設定装置において、誤差値取得手段は、同一の測定位置で複数回の測定を行うことにより得た複数の位置決め誤差を用いて計算した標準偏差を誤差値として取得し、補正値設定情報を生成した後に、さらに、補正値設定情報における各測定位置ごとの各補正値を誤差値取得手段で測定した各測定位置ごとの各位置決め誤差に加算した複数の位置決め仮誤差の標準偏差を仮誤差値として取得する仮誤差値取得手段と、仮誤差値取得手段にて取得した複数の仮誤差値のうちの最大の仮誤差値と最少の仮誤差値との差である最大仮誤差幅と所望誤差値とを比較する仮誤差値比較手段とを含み、補正値設定情報生成手段は、仮誤差値比較手段にて最大仮誤差幅が所望誤差値より小さいと判定されたとき、所望誤差値に所定値を加算した新たな所望誤差値を用いて再度前記補正値設定情報を生成し、補正値テーブル生成手段は、仮誤差値比較手段にて最大仮誤差幅が所望誤差値以上と判定されたときのみ補正値テーブルを生成するとよい。 In this case, in the positioning accuracy setting device, the error value acquisition means acquires, as an error value, a standard deviation calculated using a plurality of positioning errors obtained by performing a plurality of measurements at the same measurement position. After generating the correction value setting information, a plurality of positioning temporary errors obtained by adding each correction value for each measurement position in the correction value setting information to each positioning error for each measurement position measured by the error value acquisition unit. Temporary error value acquisition means for acquiring a standard deviation as a temporary error value, and a maximum that is a difference between a maximum temporary error value and a minimum temporary error value among a plurality of temporary error values acquired by the temporary error value acquisition means Provisional error value comparison means for comparing the provisional error width with the desired error value, and the correction value setting information generation means determines that the maximum provisional error width is smaller than the desired error value by the provisional error value comparison means. Desired error The correction value setting information is generated again using a new desired error value obtained by adding a predetermined value to the correction value table, and the correction value table generation means determines that the maximum temporary error width is greater than or equal to the desired error value by the temporary error value comparison means. The correction value table should be generated only when
 また、この場合、前記位置決め精度設定装置において、さらに、補正値テーブルを生成する前に、補正値の設定のアクセス権の有無を判定するアクセス権判定手段を含み、補正値テーブル生成手段は、アクセス権判定手段によってアクセス権が有ると判定されたときのみ補正値テーブルを生成するとよい。これらによっても、上記位置決め精度の設定方法と同様の作用効果を期待できる。 In this case, the positioning accuracy setting device further includes an access right determination unit that determines whether or not to have an access right for setting the correction value before generating the correction value table. The correction value table may be generated only when it is determined by the right determination means that the access right is present. Also by these, the same effect as the positioning accuracy setting method can be expected.
 具体的には、請求項に示すように、ワークを保持するテーブルおよびワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、送り機構の作動を制御する制御手段とを備えた工作機械に用いられる送り機構の位置決め精度の設定プログラムであって、コンピュータに、送り機構による変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得ステップと、前記少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を内側測定位置における補正値とするとともに同内側測定位置以外の測定位置における補正値を少なくとも内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成ステップと、送り機構による変位対象物の可動範囲内に設定した複数の補正区間に対して、補正値設定情報を用いて各測定位置に対応する前記各補正区間に同各測定位置に対応する補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成ステップとを実行させるようにすればよい。 Specifically, as shown in the claims, a feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object, and an operation of the feed mechanism. A program for setting positioning accuracy of a feed mechanism used in a machine tool having a control means for controlling, wherein a positioning error is measured at each of at least three measurement positions in a movable range of an object to be displaced by the feed mechanism. Then, an error value acquisition step for acquiring an error value directly or indirectly representing the positioning error, and an error at an inner measurement position existing inside two measurement positions at both ends of the at least three measurement positions The difference between the value and the desired error value directly or indirectly representing the preset desired error is compensated for at the inner measurement position. A correction value setting information generating step for generating correction value setting information with a correction value at a measurement position other than the inner measurement position as a correction value smaller than the correction value at the inner measurement position, and a displacement object by the feed mechanism A correction value table in which correction values corresponding to each measurement position are set in each correction section corresponding to each measurement position using correction value setting information for a plurality of correction sections set within the movable range of The correction value table generation step to be generated may be executed.
本発明の一実施形態に係る位置決め精度の設定方法の実施に用いる位置決め精度設定装置の構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the positioning accuracy setting apparatus used for implementation of the setting method of the positioning accuracy which concerns on one Embodiment of this invention. 図1に示す位置決め精度設定装置を構成する外部コンピュータ装置が実行する補正値設定情報生成プログラムのフローチャートである。It is a flowchart of the correction value setting information generation program which the external computer apparatus which comprises the positioning accuracy setting apparatus shown in FIG. 1 performs. 図2に示す補正値設定情報生成プログラムの実行によって生成される補正値設定情報における位置決め誤差の測定位置と補正値との関係を示す説明図である。It is explanatory drawing which shows the relationship between the measurement position of a positioning error in the correction value setting information produced | generated by execution of the correction value setting information production | generation program shown in FIG. 2, and a correction value. 図1に示す位置決め精度設定装置を構成する総合制御部が実行する補正値テーブル生成プログラムのフローチャートである。It is a flowchart of the correction value table production | generation program which the comprehensive control part which comprises the positioning accuracy setting apparatus shown in FIG. 1 performs. (A)(B)は、工作機械の送り機構に伸縮が生じた際における送り機構の位置決め精度の状態を説明するための表であり、(A)は工作機械の送り機構が伸長した場合における位置決め誤差を補正値との関係で示しており、(B)は工作機械の送り機構が収縮した場合における位置決め誤差を補正値との関係で示している。(A) (B) is a table | surface for demonstrating the state of the positioning accuracy of a feed mechanism at the time of expansion-contraction to the feed mechanism of a machine tool, (A) is the case where the feed mechanism of a machine tool is extended. The positioning error is shown in relation to the correction value, and (B) shows the positioning error in relation to the correction value when the feed mechanism of the machine tool contracts. 本発明の効果を明確にするために測定位置ごとの補正値を昇順に設定した場合における位置決め誤差を補正値との関係で示した表である。It is the table | surface which showed the positioning error at the time of setting the correction value for every measurement position in an ascending order in order to clarify the effect of this invention with the correction value.
(位置決め精度設定装置100の構成)
 以下、本発明に係る位置決め精度の設定方法の一実施形態について図面を参照しながら説明する。図1は、本発明に係る位置決め精度の設定方法の実施に用いる位置決め精度設定装置100の構成を模式的に示したブロック図である。なお、本明細書において参照する図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。この位置決め精度設定装置100は、コンピュータ制御(NC制御)によって加工対象物であるワークWKの表面を機械加工する工作機械200におけるテーブル201および加工ヘッド203の位置決め精度が所定の位置決め精度以上の高い位置決め精度にならないように位置決め精度に対する補正値を設定するためのものであり、主として工作機械メーカにおける工作機械200の製造時に使用されるものである。
(Configuration of positioning accuracy setting device 100)
Hereinafter, an embodiment of a positioning accuracy setting method according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing a configuration of a positioning accuracy setting device 100 used for carrying out a positioning accuracy setting method according to the present invention. Note that the drawings referred to in this specification are schematically shown by exaggerating some of the components in order to facilitate understanding of the present invention. For this reason, the dimension, ratio, etc. between each component may differ. The positioning accuracy setting device 100 is a positioning in which the positioning accuracy of the table 201 and the machining head 203 in the machine tool 200 that machine the surface of the workpiece WK that is a workpiece is high by computer control (NC control) is higher than a predetermined positioning accuracy. This is for setting a correction value for positioning accuracy so as not to be accurate, and is used mainly when the machine tool 200 is manufactured by a machine tool manufacturer.
 位置決め精度設定装置100は、主として工作機械200と外部コンピュータ装置300とを備えて構成されている。工作機械200は、ワークWKを保持するテーブル201とワークWKに対して機械加工(例えば、切削、穴開け、フライス削り、中ぐりなど)を施す工具202を保持する加工ヘッド203とを互いに直交する直交3軸方向にそれぞれ相対変位させることによりワークWKに対して機械加工を行う機械装置である。テーブル201は、加工対象物であるワークWKを着脱自在に保持する載置台であり、送り機構204によって支持されている。 The positioning accuracy setting device 100 mainly includes a machine tool 200 and an external computer device 300. In the machine tool 200, a table 201 that holds a workpiece WK and a machining head 203 that holds a tool 202 that performs machining (for example, cutting, drilling, milling, boring, etc.) on the workpiece WK are orthogonal to each other. This is a mechanical device that performs machining on the workpiece WK by relatively displacing in the directions of three orthogonal axes. The table 201 is a mounting table that detachably holds a workpiece WK that is an object to be processed, and is supported by a feed mechanism 204.
 送り機構204は、テーブル201を前記直交3軸方向のうちの1つの軸方向(図示左右方向のX軸方向)に変位させるための機械装置であり、雄ねじが形成された送りねじ軸205をテーブル201の下部に貫通した状態で形成された雌ねじ(図示せず)に多数の小球(図示せず)を介して噛合わせて構成されている。この送りねじ軸205における一方(図示左側)の端部には、送りモータ206が接続されている。 The feed mechanism 204 is a mechanical device for displacing the table 201 in one axial direction (the X-axis direction in the left-right direction in the drawing) of the three orthogonal axes, and the feed screw shaft 205 on which a male screw is formed is a table. A female screw (not shown) formed in a state penetrating the lower part of 201 is engaged with a large number of small balls (not shown). A feed motor 206 is connected to one end (left side in the figure) of the feed screw shaft 205.
 送りモータ206は、送りねじ軸205を正回転方向および逆回転方向にそれぞれ回転駆動させるための電動モータであり、工作機械200における図示しない鋼鉄製のフレーム内に配置された状態でモータ駆動部210によって作動が制御される。本実施形態においては、送りモータ206は、サーボモータによって構成されている。この送りモータ206は、ロータリエンコーダ207を備えている。ロータリエンコーダ207は、送りモータ206の回転数に応じたパルス信号からなる検出信号をモータ駆動部210および総合制御部213にそれぞれ出力する回転検出器である。 The feed motor 206 is an electric motor for rotating the feed screw shaft 205 in the forward rotation direction and the reverse rotation direction. The motor drive unit 210 is disposed in a steel frame (not shown) in the machine tool 200. The operation is controlled by. In the present embodiment, the feed motor 206 is constituted by a servo motor. The feed motor 206 includes a rotary encoder 207. The rotary encoder 207 is a rotation detector that outputs detection signals composed of pulse signals corresponding to the number of rotations of the feed motor 206 to the motor drive unit 210 and the general control unit 213, respectively.
 モータ駆動部210は、送りモータ206の回転駆動を制御するための電気回路であり、ロータリエンコーダ207および移動量計算部211にそれぞれ電気的に接続された状態で工作機械200における図示しない制御盤内に設けられている。このモータ駆動部210は、移動量計算部211から出力される補正駆動指令信号およびロータリエンコーダ207から出力される検出信号を用いて送りモータ206の回転駆動を制御する。この場合、補正駆動指令信号は、テーブル201の変位方向、変位量および変位速度をそれぞれ表しており、送りモータ206の回転方向、回転数および回転速度をそれぞれ指示するための制御信号である。したがって、モータ駆動部210は、ロータリエンコーダ207から出力される検出信号によって送りモータ206の回転方向、回転数および回転速度を監視しながら、補正駆動指令信号によって表された回転方向、回転数および回転速度となるように送りモータ206の作動を制御する。 The motor drive unit 210 is an electric circuit for controlling the rotation drive of the feed motor 206, and is electrically connected to the rotary encoder 207 and the movement amount calculation unit 211 in the control panel (not shown) in the machine tool 200. Is provided. The motor drive unit 210 controls the rotational drive of the feed motor 206 using the correction drive command signal output from the movement amount calculation unit 211 and the detection signal output from the rotary encoder 207. In this case, the correction drive command signal represents the displacement direction, displacement amount, and displacement speed of the table 201, and is a control signal for instructing the rotation direction, rotation speed, and rotation speed of the feed motor 206, respectively. Therefore, the motor drive unit 210 monitors the rotation direction, the rotation speed, and the rotation speed of the feed motor 206 based on the detection signal output from the rotary encoder 207, and the rotation direction, the rotation speed, and the rotation represented by the correction drive command signal. The operation of the feed motor 206 is controlled so that the speed is reached.
 移動量計算部211は、総合制御部213から出力される駆動指令信号を補正値テーブル記憶部212に記憶されている補正値テーブルを用いて補正した補正駆動指令信号を生成してモータ駆動部210に出力する電気回路であり、補正値テーブル記憶部212および総合制御部213にそれぞれ電気的に接続された状態で工作機械200における図示しない制御盤内に設けられている。この場合、総合制御部213から出力される駆動指令信号は、テーブル201の変位方向、変位量および変位速度をそれぞれ表しており、送りモータ206の回転方向、回転数および回転速度をそれぞれ指示するための制御信号である。 The movement amount calculation unit 211 generates a correction drive command signal obtained by correcting the drive command signal output from the general control unit 213 using the correction value table stored in the correction value table storage unit 212 to generate a motor drive unit 210. And is provided in a control panel (not shown) of the machine tool 200 in a state of being electrically connected to the correction value table storage unit 212 and the general control unit 213, respectively. In this case, the drive command signal output from the general control unit 213 represents the displacement direction, displacement amount, and displacement speed of the table 201, and indicates the rotation direction, rotation speed, and rotation speed of the feed motor 206, respectively. Control signal.
 また、補正値テーブル記憶部212に記憶されている補正値テーブルとは、送り機構204によって変位するテーブル201の可動範囲(所謂ストローク)内を所定の距離(例えば、10mm~50mm間隔)ごとに区切った複数の補正区間ごとに同補正区間内を変位するテーブル201の変位量(送りモータ206の回転数)を調整するための補正値(送りモータ206の回転数)の集合である。したがって、移動量計算部211は、総合制御部213から出力される駆動指令信号によって表されたテーブル201の変位量に補正値テーブル記憶部212に記憶されている補正区間ごとの補正値を補正区間ごとに加算することにより補正駆動指令信号を生成してモータ駆動部210に出力する。 In addition, the correction value table stored in the correction value table storage unit 212 divides the movable range (so-called stroke) of the table 201 displaced by the feed mechanism 204 into predetermined distances (for example, intervals of 10 mm to 50 mm). It is a set of correction values (the number of rotations of the feed motor 206) for adjusting the displacement amount (the number of rotations of the feed motor 206) of the table 201 that is displaced within the correction section for each of a plurality of correction sections. Therefore, the movement amount calculation unit 211 calculates the correction value for each correction section stored in the correction value table storage unit 212 as the displacement amount of the table 201 represented by the drive command signal output from the general control unit 213. By adding each time, a corrected drive command signal is generated and output to the motor drive unit 210.
 補正値テーブル記憶部212は、前記した複数の補正区間ごとの補正値をそれぞれ規定した補正テーブルを記憶するための読み書き可能型の記憶装置であり、総合制御部213に電気的に接続された状態で工作機械200における図示しない制御盤内に設けられている。この補正値テーブル記憶部212には、総合制御部213によって前記補正区間ごとの補正値がそれぞれ書き込まれる。 The correction value table storage unit 212 is a readable / writable storage device for storing a correction table that defines the correction values for each of the plurality of correction sections, and is electrically connected to the general control unit 213. Are provided in a control panel (not shown) of the machine tool 200. In the correction value table storage unit 212, the correction value for each correction section is written by the general control unit 213.
 総合制御部213は、CPU、ROM、RAMなどからなるマイクロコンピュータによって構成されており、工作機械200の全体の作動を総合的に制御するとともに、作業者によって用意される図示しない加工プログラム(所謂NC(Numerical Control)プログラム)に従って工具202を回転駆動しながらテーブル201と加工ヘッド203とを相対変位させることによりワークWKの機械加工を制御する。また、この総合制御部213は、図4に示す補正値テーブル生成プログラムを実行することにより補正値テーブルを生成して補正値テーブル記憶部212に記憶させる。 The comprehensive control unit 213 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and comprehensively controls the entire operation of the machine tool 200, and is a machining program (not shown) prepared by an operator (a so-called NC). The machining of the workpiece WK is controlled by relatively displacing the table 201 and the machining head 203 while rotating the tool 202 in accordance with the (Numerical Control) program). Further, the overall control unit 213 generates a correction value table by executing the correction value table generation program shown in FIG. 4 and stores the correction value table in the correction value table storage unit 212.
 また、この総合制御部213は、総合制御部213に対して作業者からの操作を受付けるための操作スイッチ群からなる操作盤214、作業者に対して総合制御部213の作動状況を表示するための液晶ディスプレイからなる表示装置215、および総合制御部213に対して外部コンピュータ装置300などの外部機器を接続するためのインターフェース216をそれぞれ備えている。 In addition, the comprehensive control unit 213 displays an operation panel 214 including an operation switch group for accepting an operation from the worker with respect to the comprehensive control unit 213 and an operation status of the comprehensive control unit 213 to the worker. And an interface 216 for connecting an external device such as the external computer device 300 to the general control unit 213.
 なお、この工作機械200は、加工ヘッド203を前記直交3軸方向における他の2軸方向(図示奥行き方向のY軸方向および図示上下方向のZ軸方向)に変位させるための機械的および電気的構成も備えているが、前記テーブル201と同様の構成のためその説明は省略する。また、この工作機械200は、加工ヘッド203によって着脱自在保持される工具202を回転駆動する機械的および電気的構成やその他の電気的構成部分に電気を供給する電源部なども備えているが、これらの本発明に直接関わらない構成については、その説明は省略する。 The machine tool 200 is mechanical and electrical for displacing the machining head 203 in the other two axial directions in the orthogonal three-axis directions (the Y-axis direction in the illustrated depth direction and the Z-axis direction in the illustrated vertical direction). Although the structure is also provided, since it is the same structure as the table 201, its description is omitted. The machine tool 200 also includes a mechanical and electrical configuration that rotationally drives a tool 202 that is detachably held by the machining head 203, and a power supply unit that supplies electricity to other electrical components. The description of these configurations not directly related to the present invention will be omitted.
 一方、外部コンピュータ装置300は、CPU、ROM、RAM、ハードディスクなどからなるマイクロコンピュータによって構成されており、キーボードおよびマウスからなる入力装置301および液晶ディスプレイからなる表示装置302を備えるパーソナルコンピュータ(所謂パソコン)である。この外部コンピュータ装置300は、図示しない位置決め誤差測定プログラムを実行することにより、工作機械200におけるテーブル201の位置決め誤差を測定するとともに、図2に示す補正値設定情報生成プログラムを実行することにより補正値設定情報を生成する。この場合、位置決め誤差測定プログラムおよび補正値設定情報生成プログラムは、後述する作業者により予め前記ハードディスクに記憶されている。なお、外部コンピュータ装置300は、工作機械200の総合制御部213と電気的に接続可能であれば、どのような形式のコンピュータ装置であってもよい。 On the other hand, the external computer device 300 is constituted by a microcomputer composed of a CPU, ROM, RAM, hard disk, etc., and a personal computer (so-called personal computer) including an input device 301 composed of a keyboard and a mouse and a display device 302 composed of a liquid crystal display. It is. The external computer apparatus 300 measures a positioning error of the table 201 in the machine tool 200 by executing a positioning error measurement program (not shown), and executes a correction value setting information generation program shown in FIG. Generate configuration information. In this case, the positioning error measurement program and the correction value setting information generation program are stored in advance in the hard disk by an operator described later. The external computer device 300 may be any type of computer device as long as it can be electrically connected to the general control unit 213 of the machine tool 200.
 また、この外部コンピュータ装置300には、変位測定器303が接続されている。変位測定器303は、外部コンピュータ装置300によって作動が制御されてテーブル201の変位量を光学的に測定する光学式測定装置である。より具体的には、変位測定器303は、テーブル201に一時的に配置した反射板304に向けてレーザ光L(破線で示す)を照射するとともにこの反射板304にて反射した反射レーザ光Lを受光して三角測量法の原理を用いてテーブル201の変位量を測定して同変位量を表す電気信号を出力する。 Further, a displacement measuring device 303 is connected to the external computer device 300. The displacement measuring device 303 is an optical measuring device whose operation is controlled by the external computer device 300 to optically measure the displacement amount of the table 201. More specifically, the displacement measuring device 303 irradiates a laser beam L Z (indicated by a broken line) toward the reflection plate 304 temporarily arranged on the table 201 and reflects the reflected laser beam by the reflection plate 304. LZ is received, the displacement amount of the table 201 is measured using the principle of triangulation, and an electric signal representing the displacement amount is output.
(位置決め精度設定装置100の作動)
 次に、上記のように構成した位置決め精度設定装置100の作動について説明する。まず、工作機械200における送り機構204の位置決め精度を設定する作業者は、送り機構204における現状の位置決め誤差を測定する。具体的には、作業者は、工作機械200および外部コンピュータ装置300の電源を入れて始動させるとともに外部コンピュータ装置300をインターフェース216を介して総合制御部213に接続する。また、作業者は、工作機械200のテーブル201上に反射板304を配置した後、この反射板304にレーザ光Lを照射可能な位置に変位測定器303を配置するとともにこの変位測定器303を外部コンピュータ装置300に接続する。そして、作業者は、図示しない位置決め誤差測定プログラムを外部コンピュータ装置300に実行させる。
(Operation of positioning accuracy setting device 100)
Next, the operation of the positioning accuracy setting device 100 configured as described above will be described. First, an operator who sets the positioning accuracy of the feed mechanism 204 in the machine tool 200 measures the current positioning error in the feed mechanism 204. Specifically, the operator turns on and starts the machine tool 200 and the external computer device 300 and connects the external computer device 300 to the general control unit 213 via the interface 216. Further, the operator, after placing the reflector 304 on the table 201 of the machine tool 200, the displacement measuring devices with arranging the displacement measuring device 303 with the laser beam L Z in can be radiated at this reflector 304 303 Is connected to the external computer device 300. Then, the operator causes the external computer device 300 to execute a positioning error measurement program (not shown).
 この位置決め誤差測定プログラムは、工作機械200のテーブル201をテーブル201の可動範囲における少なくとも3ヵ所以上の位置で位置決めした際における各変位量を変位測定器303を介して外部コンピュータ装置300に測定させるとともに同変位量を用いてテーブル201の前記3ヵ所以上の各測定位置ごとの位置決め誤差をそれぞれ計算させるコンピュータプログラムである。本実施形態においては、位置決め誤差測定プログラムは、テーブル201の可動範囲における5ヵ所以上の測定位置で位置決め誤差を取得する。したがって、まず、作業者は、外部コンピュータ装置300に位置決め誤差測定プログラムを実行させた状態で、工作機械200における総合制御部213を操作することにより送りモータ206を駆動させてテーブル201をテーブル201の可動範囲における5ヵ所の測定位置で位置決めさせる。 The positioning error measurement program causes the external computer device 300 to measure each displacement amount when the table 201 of the machine tool 200 is positioned at at least three positions in the movable range of the table 201 via the displacement measuring device 303. This is a computer program for calculating positioning errors for each of the three or more measurement positions of the table 201 using the same displacement amount. In the present embodiment, the positioning error measurement program acquires positioning errors at five or more measurement positions in the movable range of the table 201. Therefore, first, the operator drives the feed motor 206 by operating the general control unit 213 in the machine tool 200 in a state where the external computer device 300 executes the positioning error measurement program, so that the table 201 is stored in the table 201. Position at five measurement positions in the movable range.
 この場合、総合制御装置213には、一方(例えば、送りモータ206側)の端部から他方(例えば、送りねじ軸205の先端側)の端部に向かって変位させる往路と、この他方の端部から一方の端部に向かって変位させる復路とで総合制御部213によって無作為に決定されるそれぞれ同一の5ヵ所の位置で位置決めするプログラムが設定されている。したがって、総合制御部213は、作業者からの指示に応じてテーブル201の可動範囲における5ヵ所の測定位置に対して往路と復路でそれぞれ位置決めを行う。 In this case, the general control device 213 includes an outward path that is displaced from one end (for example, the feed motor 206 side) toward the other end (for example, the front end side of the feed screw shaft 205), and the other end. A program is set for positioning at the same five positions, which are randomly determined by the overall control unit 213, with the return path displaced from the unit toward one end. Therefore, the general control unit 213 positions the five measurement positions in the movable range of the table 201 in the forward path and the return path, respectively, in accordance with an instruction from the operator.
 この場合、総合制御部213がテーブル201の位置決めを行う前記5ヵ所の測定位置は、総合制御部213によって無作為に決定されるが5ヵ所の位置のうち少なくとも1ヵ所がテーブル201の可動範囲における略中央位置になるように設定される。なお、このテーブル201の前記5ヵ所での位置決め動作時においては、補正値テーブル記憶部212にはすべての補正量が0の補正テーブルが予め設定されている。すなわち、この位置決め誤差の測定においては、各測定位置に対して位置決め誤差の補正を行わずに位置決めが行われる。 In this case, the five measurement positions at which the overall control unit 213 positions the table 201 are randomly determined by the overall control unit 213, but at least one of the five positions is within the movable range of the table 201. It is set to be approximately the center position. During the positioning operation of the table 201 at the five locations, the correction value table storage unit 212 is preliminarily set with correction tables in which all correction amounts are zero. That is, in this positioning error measurement, positioning is performed without correcting the positioning error for each measurement position.
 このテーブル201の5ヵ所の測定位置での位置決め動作の間において、外部コンピュータ装置300は、テーブル201の変位状況、具体的には、変位方向、変位量および変位速度に関する各情報を総合制御部213から取得しながら変位測定器303の作動を制御してテーブル201の前記5ヵ所での変位量をそれぞれ取得する。そして、外部コンピュータ装置300は、テーブル201の5ヵ所の測定位置において総合制御部213から取得したテーブル201の変位量(送りモータ206への指令値)と変位測定器303から取得したテーブル201の変位量(測定値)との差を前記5ヵ所の位置決め位置ごとに位置決め誤差として取得する。 During the positioning operation at the five measurement positions of the table 201, the external computer device 300 displays the information regarding the displacement status of the table 201, specifically, the displacement direction, the displacement amount, and the displacement speed. Then, the displacement measuring device 303 is controlled to acquire the displacement amounts at the five positions of the table 201. The external computer apparatus 300 then detects the displacement amount of the table 201 (command value to the feed motor 206) acquired from the total control unit 213 at the five measurement positions of the table 201 and the displacement of the table 201 acquired from the displacement measuring device 303. The difference from the quantity (measured value) is acquired as a positioning error for each of the five positioning positions.
 これにより、外部コンピュータ装置300は、前記5ヵ所の測定位置ごとに往路と復路との各2つの位置決め誤差をそれぞれ取得する。この前記5ヵ所の測定位置ごとの位置決め誤差の取得は、本実施形態においては5回行われる。したがって、外部コンピュータ装置300は、前記5ヵ所の測定位置ごとに往路と復路の2つの位置決め誤差をそれぞれ5組ずつ取得する。そして、この位置決め誤差を取得する作業が、本発明に係る誤差値取得ステップの一部を構成する。 Thereby, the external computer apparatus 300 acquires two positioning errors for the forward path and the backward path for each of the five measurement positions. In this embodiment, acquisition of the positioning error for each of the five measurement positions is performed five times. Therefore, the external computer device 300 acquires five sets of two positioning errors for the forward path and the backward path for each of the five measurement positions. And the operation | work which acquires this positioning error comprises a part of error value acquisition step which concerns on this invention.
 次に、作業者は、外部コンピュータ装置300の入力装置301を操作することにより外部コンピュータ装置300に補正値設定情報を生成させる。この場合、補正値設定情報とは、前記5ヵ所の測定位置ごとにテーブル201の位置決め誤差を調整するための補正値を規定した情報群であって、補正値テーブル記憶部212に記憶される補正値テーブルを生成するベースとなる情報群である。具体的には、作業者は、外部コンピュータ装置300に補正値設定情報生成プログラムの実行を指示する。 Next, the operator operates the input device 301 of the external computer device 300 to cause the external computer device 300 to generate correction value setting information. In this case, the correction value setting information is a group of information that defines correction values for adjusting the positioning error of the table 201 for each of the five measurement positions, and is stored in the correction value table storage unit 212. It is an information group that is a base for generating a value table. Specifically, the operator instructs the external computer device 300 to execute the correction value setting information generation program.
 この指示に応答して外部コンピュータ装置300は、図2に示すように、ステップS100にて補正値設定情報生成プログラムの実行を開始して、ステップS102にて、作業者からの所望誤差値の入力を待つ。このステップS102の処理における所望誤差値とは、工作機械200におけるテーブル201の位置決め精度の上限を規定するものであり、より具体的には、テーブル201を位置決めをある所定量の誤差を介して行うようにするための所謂ずらし量で表したものである。したがって、作業者は、工作機械200における位置決め精度の上限値となる所望誤差値を外部コンピュータ装置300に入力装置301を介して入力する。例えば、工作機械200のテーブル201を少なくとも8μmの誤差を介して位置決めすることを希望する場合には、作業者は所望誤差値として8μmを入力する。 In response to this instruction, the external computer apparatus 300 starts execution of the correction value setting information generation program in step S100 as shown in FIG. 2, and inputs the desired error value from the operator in step S102. Wait for. The desired error value in the process of step S102 defines an upper limit of the positioning accuracy of the table 201 in the machine tool 200. More specifically, the table 201 is positioned via a certain amount of error. It is expressed by a so-called shift amount for making it so. Therefore, the operator inputs a desired error value that is an upper limit value of positioning accuracy in the machine tool 200 to the external computer device 300 via the input device 301. For example, when it is desired to position the table 201 of the machine tool 200 through an error of at least 8 μm, the operator inputs 8 μm as a desired error value.
 次に、外部コンピュータ装置300は、ステップS104にて、各測定位置ごとに往路および復路でのそれぞれの各誤差値を計算する。具体的には、外部コンピュータ装置300は、前記位置決め誤差測定プログラムの実行により取得した各測定位置ごとの往路の位置決め誤差および復路の位置決め誤差についてそれぞれ標準偏差を誤差値として計算する。すなわち、外部コンピュータ装置300は、前記位置決め誤差測定プログラムの実行によって取得した5ヵ所の各測定位置における往路での5つの位置決め誤差および復路での5つの位置決め誤差を用いて各測定位置ごとの往路での標準偏差および復路での標準編偏差を±3σである所謂第3標準偏差でそれぞれ計算する。これにより、前記5ヵ所の測定位置ごとに往路および復路での各位置決め誤差の標準偏差が誤差値として計算される。すなわち、このステップS104による誤差値の計算処理が、本発明に係る誤差値取得ステップの他の一部を構成する。 Next, in step S104, the external computer device 300 calculates each error value in the forward path and the return path for each measurement position. Specifically, the external computer apparatus 300 calculates the standard deviation as an error value for the forward positioning error and the backward positioning error for each measurement position acquired by executing the positioning error measurement program. That is, the external computer apparatus 300 uses the five positioning errors in the forward path and the five positioning errors in the return path obtained at the execution of the positioning error measurement program in the forward path for each measurement position. And the so-called third standard deviation which is ± 3σ are calculated respectively. Thereby, the standard deviation of each positioning error in the forward path and the backward path is calculated as an error value for each of the five measurement positions. That is, the error value calculation process in step S104 constitutes another part of the error value acquisition step according to the present invention.
 次に、外部コンピュータ装置300は、ステップS106にて、テーブル201の位決め誤差について所望誤差値が確保されているか否かを判定する。具体的には、外部コンピュータ装置300は、前記ステップS104にて取得した各測定値ごとの往路の誤差値および復路の誤差値のうちの最大の誤差値と最小の誤差値との差である最大誤差値幅が前記所望誤差値以上であるか否かを判定する。したがって、外部コンピュータ装置300は、前記最大誤差値幅が所望誤差値以上である場合には、このステップS106における判定処理において「Yes」と判定してステップS124に進み、同ステップS200にてこの補正値設定情報生成プログラムの実行を終了する。 Next, in step S106, the external computer device 300 determines whether or not a desired error value is secured for the positioning error in the table 201. Specifically, the external computer device 300 determines the maximum difference between the maximum error value and the minimum error value of the forward error value and the return error value for each measurement value acquired in step S104. It is determined whether the error value width is equal to or greater than the desired error value. Accordingly, when the maximum error value width is equal to or larger than the desired error value, the external computer device 300 determines “Yes” in the determination process in step S106 and proceeds to step S124, and the correction value in step S200. Ends the execution of the setting information generation program.
 すなわち、最大誤差値幅が所望誤差値以上である場合とは、工作機械200におけるテーブル201の現状での位置決め誤差が既に所望誤差値以下の低い位置決め精度になっている場合である。したがって、このような場合においては、工作機械200は補正テーブルを敢えて設定する必要性がないため、外部コンピュータ装置300は、ステップS124にて補正値設定情報生成プログラムの実行を終了する。 That is, the case where the maximum error value width is greater than or equal to the desired error value is a case where the current positioning error of the table 201 in the machine tool 200 has already become a low positioning accuracy that is less than or equal to the desired error value. Therefore, in such a case, the machine tool 200 does not need to set the correction table, so the external computer device 300 ends the execution of the correction value setting information generation program in step S124.
 一方、外部コンピュータ装置300は、最大誤差値幅が所望誤差値未満である場合には、このステップS106における判定処理において「No」と判定してステップS108に進む。すなわち、最大誤差値幅が所望誤差値未満である場合とは、工作機械200におけるテーブル201の現状での位置決め誤差が所望誤差値よりも小さく高い位置決め精度になっている場合である。 On the other hand, when the maximum error value width is less than the desired error value, the external computer device 300 determines “No” in the determination process in step S106 and proceeds to step S108. That is, the case where the maximum error value width is less than the desired error value is a case where the current positioning error of the table 201 in the machine tool 200 is smaller than the desired error value and has high positioning accuracy.
 次に、外部コンピュータ装置300は、ステップS108にて、位置決め誤差の測定位置における中央測定位置を特定する。具体的には、外部コンピュータ装置130は、位置決め誤差の測定位置の総数を2で除した値または同値を四捨五入した値と同じ値となる測定回数の測定位置を中央測定値として特定する。本実施形態においては、位置決め誤差の測定位置が5ヵ所であるため、3ヶ所目の測定位置が中央特定位置として特定される。この場合、3ヶ所目の測定位置は、テーブル201の可動範囲における略中央部分となる。なお、中央測定位置は、各測定位置の機械座標値に基づいてテーブル201の可動範囲における中央部分に最も近い測定位置を特定するようにしてもよい。 Next, in step S108, the external computer device 300 specifies the central measurement position in the measurement position of the positioning error. Specifically, the external computer device 130 specifies the measurement position of the number of measurement times that is the same value as the value obtained by dividing the total number of measurement positions of positioning errors by 2 or the same value rounded off as the central measurement value. In the present embodiment, since there are five measurement positions for positioning error, the third measurement position is specified as the center specific position. In this case, the third measurement position is a substantially central portion in the movable range of the table 201. Note that the center measurement position may specify the measurement position closest to the center portion in the movable range of the table 201 based on the machine coordinate value of each measurement position.
 次に、外部コンピュータ装置300は、ステップS110にて、前記特定した中央測定位置における最大誤差値幅を計算する。具体的には、外部コンピュータ装置300は、前記ステップS108にて特定した中央測定値における4つの誤差値、具体的には、往路における正側の第3次標準偏差、往路における負側の第3標準偏差、復路における正側の第3次標準偏差および復路における負側の第3標準偏差の4つの第3標準偏差と各測定位置における各誤差値(第3標準偏差)のうちで最小の誤差値との4つの差を計算するとともに、これら4つの差のうちの最大値を最大誤差値幅として計算する。 Next, in step S110, the external computer device 300 calculates the maximum error value width at the specified central measurement position. Specifically, the external computer apparatus 300 determines the four error values in the central measurement value identified in step S108, specifically, the positive third standard deviation in the forward path, and the negative third in the forward path. The smallest error among the four third standard deviations of the standard deviation, the positive third standard deviation on the return path, and the negative third standard deviation on the return path, and each error value (third standard deviation) at each measurement position The four differences with the value are calculated, and the maximum value of these four differences is calculated as the maximum error value width.
 次に、外部コンピュータ装置300は、ステップS112にて、中央測定位置における最大補正値を計算する。具体的には、外部コンピュータ装置300は、前記ステップS110にて計算した最大誤差値幅と所望誤差値との差を最大補正値として計算する。 Next, the external computer device 300 calculates the maximum correction value at the central measurement position in step S112. Specifically, the external computer device 300 calculates the difference between the maximum error value width calculated in step S110 and the desired error value as the maximum correction value.
 次に、外部コンピュータ装置300は、ステップS114にて、中央測定位置以外の他の各測定位置の補正値を計算する。具体的には、外部コンピュータ装置300は、テーブル201の可動範囲における両端側の2つの測定位置における各補正値を0に設定するとともに、これら両端の2つの測定位置と中央測定位置との間の2つの測定位置における各補正値を0と最大補正値との間を直線補間した値をそれぞれ設定する。例えば、図3に示すように、中央測定位置である測定位置3での補正値である最大補正値が8μmの場合、両端の2つの測定位置1,5と測定位置3との間の2つの測定位置2,4における各補正値は、それぞれ4μmとなる。すなわち、このステップS112およびステップS114による補正値の計算処理が、本発明に係る補正値設定情報生成ステップの一部を構成する。 Next, in step S114, the external computer device 300 calculates a correction value for each measurement position other than the central measurement position. Specifically, the external computer device 300 sets each correction value at two measurement positions on both ends in the movable range of the table 201 to 0, and between the two measurement positions on both ends and the central measurement position. Each correction value at two measurement positions is set to a value obtained by linear interpolation between 0 and the maximum correction value. For example, as shown in FIG. 3, when the maximum correction value that is the correction value at the measurement position 3 that is the center measurement position is 8 μm, two measurement positions 1 and 5 at both ends and the measurement position 3 Each correction value at the measurement positions 2 and 4 is 4 μm. That is, the correction value calculation processing in steps S112 and S114 constitutes a part of the correction value setting information generation step according to the present invention.
 次に、外部コンピュータ装置300は、ステップS116にて、仮誤差値を計算する。この場合、仮誤差値とは、前記位置決め誤差測定プログラムの実行によって取得した各測定位置ごとの位置決め誤差を前提として前記ステップS112および前記ステップS114にて計算した各測定位置ごとの補正値の妥当性、すなわち、同補正値でテーブル201の変位指示量を補正した場合における誤差値を予測したものである。このステップS116における仮誤差値の計算処理は、次のサブステップ1,2の各処理によって構成されている。 Next, the external computer device 300 calculates a temporary error value in step S116. In this case, the temporary error value is the validity of the correction value for each measurement position calculated in step S112 and step S114 on the premise of the positioning error for each measurement position acquired by executing the positioning error measurement program. That is, an error value is predicted when the displacement instruction amount in the table 201 is corrected with the same correction value. The calculation process of the provisional error value in step S116 includes the following processes of sub-steps 1 and 2.
 サブステップ1:まず、外部コンピュータ装置300は、前記位置決め誤差測定プログラムの実行によって取得した5ヵ所の各測定位置ごとの位置決め誤差、すなわち、往路での5つの位置決め誤差および復路での5つの位置決め誤差に前記ステップS112および前記ステップS114にて算出した各測定位置ごとの補正値をそれぞれ加算することにより、5ヵ所の各測定位置ごとに往路での5つの位置決め仮誤差および復路での5つの位置決め仮誤差を計算する。 Sub-step 1: First, the external computer apparatus 300 determines the positioning error for each of the five measurement positions obtained by executing the positioning error measurement program, that is, five positioning errors in the forward path and five positioning errors in the backward path. By adding the correction values for the respective measurement positions calculated in step S112 and step S114, the five positioning temporary errors in the forward path and the five positioning temporary errors in the return path are added for each of the five measurement positions. Calculate the error.
 サブステップ2:次に、外部コンピュータ装置300は、前記サブステップ1にて計算した各測定位置ごとの位置決め仮誤差に対して前記ステップS104と同様に第3標準偏差を計算することにより仮誤差値を計算する。この位置決め仮誤差を用いた第3標準偏差の計算は前記ステップS104における第3標準偏差と同様であるため、説明は省略する。
これらにより、前記5ヵ所の測定位置ごとに往路および復路でそれぞれ予測した位置決め誤差である位置決め仮誤差の標準偏差が仮誤差値として計算される。すなわち、このステップS116による誤差値の計算処理が、本発明に係る仮誤差値取得ステップを構成する。
Sub-step 2: Next, the external computer device 300 calculates the temporary error value by calculating the third standard deviation in the same manner as in step S104 with respect to the positioning temporary error for each measurement position calculated in the sub-step 1. Calculate Since the calculation of the third standard deviation using this positioning temporary error is the same as the third standard deviation in step S104, description thereof is omitted.
As a result, the standard deviation of the positioning temporary error, which is the positioning error predicted for each of the five measurement positions on the forward path and the return path, is calculated as a temporary error value. That is, the error value calculation process in step S116 constitutes a provisional error value acquisition step according to the present invention.
 次に、外部コンピュータ装置300は、ステップS118にて、前記ステップS112および前記ステップS114にて計算した補正値によるテーブル201の位決め誤差について所望誤差値が確保されているか否かを判定する。具体的には、外部コンピュータ装置300は、前記ステップS116にて取得した各測定値ごとの往路の仮誤差値および復路の仮誤差値のうちの最大の誤差値と最小の誤差値との差である最大仮誤差値幅が前記所望誤差値以上であるか否かを判定する。すなわち、このステップS118による所望誤差値との判定処理が、本発明に係る仮誤差値判定ステップに相当する。 Next, in step S118, the external computer apparatus 300 determines whether or not a desired error value is secured for the positioning error of the table 201 based on the correction values calculated in step S112 and step S114. Specifically, the external computer apparatus 300 calculates the difference between the maximum error value and the minimum error value of the forward temporary error value and the return temporary error value for each measurement value acquired in step S116. It is determined whether a certain maximum provisional error value width is equal to or greater than the desired error value. That is, the determination process with the desired error value in step S118 corresponds to the provisional error value determination step according to the present invention.
 そして、この場合、外部コンピュータ装置300は、前記最大仮誤差値幅が所望誤差値以上である場合には、このステップS118における判定処理において「Yes」と判定してステップS122に進む。すなわち、最大仮誤差値幅が所望誤差値以上である場合とは、工作機械200におけるテーブル201の位置決め精度が、前記ステップS112および前記ステップS114にて算出した各測定位置ごとの補正値を採用することによって所望誤差値以下の低い位置決め精度になると予測される場合である。 In this case, if the maximum temporary error value width is equal to or greater than the desired error value, the external computer device 300 determines “Yes” in the determination process in step S118 and proceeds to step S122. That is, the case where the maximum temporary error value width is equal to or larger than the desired error value means that the positioning accuracy of the table 201 in the machine tool 200 employs the correction value for each measurement position calculated in Step S112 and Step S114. This is a case where it is predicted that the positioning accuracy will be lower than the desired error value.
 一方、外部コンピュータ装置300は、前記最大仮誤差値幅が所望誤差値未満である場合には、このステップS118における判定処理において「No」と判定してステップS120に進む。すなわち、この最大仮誤差値幅が所望誤差値未満である場合とは、工作機械200におけるテーブル201の位置決め精度が、前記ステップS112および前記ステップS114にて算出した各測定位置ごとの補正値を採用したとしても所望誤差値よりも小さく高い位置決め精度になると予測される場合である。 On the other hand, when the maximum temporary error value width is less than the desired error value, the external computer device 300 determines “No” in the determination process in step S118 and proceeds to step S120. That is, when the maximum temporary error value width is less than the desired error value, the positioning accuracy of the table 201 in the machine tool 200 employs the correction value for each measurement position calculated in Step S112 and Step S114. In this case, the positioning accuracy is predicted to be smaller than the desired error value and higher.
 したがって、このような場合においては、外部コンピュータ装置300は、ステップS120にて、所望誤差値に所定量の修正値を加算することにより所望誤差値を増加させた後、ステップS112に戻って同ステップS112の各処理を再度実行する。すなわち、外部コンピュータ装置300は、工作機械200のテーブル201の位置決め精度が所望誤差値以下の低い位置決め精度になると予測される補正値を計算するまでの間、所望誤差値を増加させながらステップS112およびステップS114による補正値の計算処理を繰り返し実行する。 Therefore, in such a case, the external computer device 300 increases the desired error value by adding a predetermined amount of correction value to the desired error value in step S120, and then returns to step S112 to perform the same step. Each process of S112 is performed again. That is, the external computer device 300 increases the desired error value while calculating the correction value that is predicted to be a positioning accuracy of the table 201 of the machine tool 200 that is lower than the desired error value. The correction value calculation process in step S114 is repeatedly executed.
 そして、外部コンピュータ装置300は、ステップS112およびステップS114にて算出した各測定位置ごとの補正値が工作機械200のテーブル201の位置決め精度を所望誤差値以下の低い位置決め精度にすることが予測されるに至った場合には、ステップS122にて、前記ステップS112および前記ステップS114にて算出した各測定位置ごとの補正値を補正値設定情報として確定して記憶した後、ステップS124にて補正値設定情報生成プログラムの実行を終了する。すなわち、このステップS122による各測定位置ごとの補正値を補正値設定情報として確定する処理が、本発明に係る補正値設定情報生成ステップの他の一部を構成する。 Then, the external computer device 300 is predicted that the correction value for each measurement position calculated in step S112 and step S114 makes the positioning accuracy of the table 201 of the machine tool 200 a low positioning accuracy equal to or less than a desired error value. In step S122, the correction value for each measurement position calculated in step S112 and step S114 is determined and stored as correction value setting information, and then the correction value is set in step S124. Terminates execution of the information generation program. That is, the process of determining the correction value for each measurement position in step S122 as correction value setting information forms another part of the correction value setting information generation step according to the present invention.
 次に、作業者は、補正値設定情報生成プログラムの実行によって補正値設定情報が生成した場合においては、工作機械200における補正値テーブル記憶部212に補正値テーブルの設定を行う。具体的には、作業者は、工作機械200における総合制御部213に対して補正値テーブルの設定を指示する。この指示に応答して、総合制御部213は、補正値設定情報に基づいて補正値テーブルを生成する補正値テーブル生成プログラムの実行を開始する。 Next, when the correction value setting information is generated by executing the correction value setting information generation program, the operator sets the correction value table in the correction value table storage unit 212 in the machine tool 200. Specifically, the operator instructs the general control unit 213 in the machine tool 200 to set the correction value table. In response to this instruction, the overall control unit 213 starts executing a correction value table generation program that generates a correction value table based on the correction value setting information.
 具体的には、総合制御部213は、図4に示すように、補正値テーブル生成プログラムの実行をステップ200にて開始するとともに、ステップS202にて、アクセス権の入力を待つ。このステップS202におけるアクセス権の入力処理は、補正値テーブルの設定を許可するアクセス権の入力を表示装置215を介して作業者に促すものである。したがって、作業者は、補正値テーブルの設定を許可するアクセス権を操作盤214を介して総合制御部213に入力する。 Specifically, as shown in FIG. 4, the overall control unit 213 starts the execution of the correction value table generation program at step 200 and waits for an access right input at step S202. In the access right input process in step S202, the operator is prompted to input an access right that permits setting of the correction value table via the display device 215. Therefore, the operator inputs an access right that permits setting of the correction value table to the general control unit 213 via the operation panel 214.
 次に、総合制御部213は、ステップS204にて、アクセス権の有無の判定処理を実行する。具体的には、総合制御部213は、総合制御部213内に予め設定されたアクセス権と前記ステップS202にて作業者から入力されたアクセス権とが一致しているか否かを判定する。したがって、総合制御部213は、前記ステップS202にて作業者から入力されたアクセス権が総合制御部213内に予め設定されたアクセス権と一致する場合には、このステップS202における判定処理にて「Yes」と判定してステップS206に進む。 Next, the general control unit 213 executes an access right presence / absence determination process in step S204. Specifically, the overall control unit 213 determines whether or not the access right set in advance in the overall control unit 213 matches the access right input by the operator in step S202. Therefore, if the access right input by the operator in step S202 matches the access right set in advance in the overall control unit 213, the overall control unit 213 determines “ It determines with "Yes" and progresses to step S206.
 一方、総合制御部213は、前記ステップS202にて作業者から入力されたアクセス権が総合制御部213内に予め設定されたアクセス権と一致しない場合には、このステップS202における判定処理にて「No」と判定してステップS212に進み、同ステップS210にてアクセス権が一致せず補正値テーブルを設定することができない旨を表示した後、ステップS214にてこの補正値テーブル設定プログラムの実行を終了する。すなわち、補正値テーブルは、ステップS202およびステップS204の各処理によってアクセス権を有する者にのみ設定が許されるものであり、アクセス権を有さない者による改ざんが防止されている。そして、このステップS204によるアクセス権の有無の判定処理が、本発明に係るアクセス権判定ステップに相当する。 On the other hand, if the access right input by the operator in step S202 does not match the access right set in advance in the general control unit 213, the overall control unit 213 determines that the determination process in step S202 “ After determining that the access rights do not match and cannot set the correction value table in step S210, the correction value table setting program is executed in step S214. finish. That is, the correction value table is allowed to be set only by a person who has access right by the processes of step S202 and step S204, and is prevented from being falsified by a person who does not have the access right. And the determination process of the presence or absence of the access right by this step S204 corresponds to the access right determination step according to the present invention.
 次に、総合制御部213は、ステップS206にて、補正値設定情報を入力を待つ。このステップS206における補正値設定情報の入力処理は、前記補正値設定情報生成プログラムの実行によって生成された補正値設定情報の入力を表示装置215を介して作業者に促すものである。したがって、作業者は、補正値設定情報を操作盤214を介した手入力または外部コンピュータ装置300からのオンラインによって総合制御部213に入力する。 Next, the general control unit 213 waits for input of correction value setting information in step S206. The input process of the correction value setting information in this step S206 prompts the operator to input the correction value setting information generated by executing the correction value setting information generation program via the display device 215. Therefore, the operator inputs correction value setting information to the general control unit 213 by manual input via the operation panel 214 or online from the external computer device 300.
 補正値設定情報の入力を受け付けた総合制御部213は、ステップS208にて、補正値テーブルを生成する。具体的には、総合制御部213は、前記ステップS206にて取得した補正値設定情報を用いて補正値テーブルを自動的に計算して設定する。このステップS208における補正値テーブルの設定処理は、次のサブステップ1,2の各処理によって構成されている。 The comprehensive control unit 213 that has received the input of the correction value setting information generates a correction value table in step S208. Specifically, the overall control unit 213 automatically calculates and sets a correction value table using the correction value setting information acquired in step S206. The correction value table setting process in step S208 includes the following sub-steps 1 and 2.
 サブステップ1:まず、総合制御部213は、補正値設定情報において各補正値がそれぞれ規定された各測定位置に対応する補正値テーブル内における補正区間、具体的には、各測定位置を含むまたは同各測定位置に最寄の補正値テーブル内における補正区間に各測定位置ごとに設定された前記各補正値を設定する。 Sub-step 1: First, the overall control unit 213 includes a correction section in the correction value table corresponding to each measurement position in which each correction value is specified in the correction value setting information, specifically, each measurement position or The respective correction values set for the respective measurement positions are set in the correction section in the nearest correction value table at the respective measurement positions.
 サブステップ2:次いで、総合制御部213は、補正値テーブルにおいて補正値が設定された補正区間同士の補正値を用いて直線補間した値を前記補正値が設定された補正区間以外の補正区間の補正値として設定する。これにより、工作機械200のテーブル201の可動範囲内を所定の距離ごとに区切ったすべての補正区間にそれぞれ補正値が設定された補正値テーブルが生成される。 Sub-step 2: Next, the overall control unit 213 performs linear interpolation using the correction values of the correction sections for which correction values are set in the correction value table, for correction sections other than the correction section for which the correction values are set. Set as a correction value. As a result, a correction value table is generated in which correction values are set in all the correction sections obtained by dividing the movable range of the table 201 of the machine tool 200 for each predetermined distance.
 そして、総合制御部213は、ステップS210にて、前記ステップS208にて生成した補正値テーブルを補正量記憶部212に記憶して、ステップS214にてこの補正値テーブル設定プログラムの実行を終了する。すなわち、これらステップS208およびステップS210における補正値テーブルの生成および記憶の各処理が、本発明に係る補正値テーブル生成ステップに相当する。 Then, in step S210, the general control unit 213 stores the correction value table generated in step S208 in the correction amount storage unit 212, and ends the execution of the correction value table setting program in step S214. That is, each process of generating and storing the correction value table in step S208 and step S210 corresponds to a correction value table generating step according to the present invention.
 このような補正値テーブルが設定された工作機械200がワークWKに対して機械加工を行う場合においては、テーブル201の変位に際して変位量の補正が行われる。具体的には、移動量計算部211は、総合制御部213から出力される駆動指令信号によって表されるテーブル201の変位量によってテーブル201の変位範囲を特定するとともに同変位範囲に対応する補正値テーブルにおける補正区間に設定された補正値を変位量に加算して補正駆動指令信号を生成する。これにより、工作機械200におけるテーブル201は、所望誤差値以下の低い位置決め精度によって位置決めが行われる。 When the machine tool 200 in which such a correction value table is set performs machining on the workpiece WK, the displacement amount is corrected when the table 201 is displaced. Specifically, the movement amount calculation unit 211 specifies the displacement range of the table 201 based on the displacement amount of the table 201 represented by the drive command signal output from the general control unit 213, and a correction value corresponding to the displacement range. A correction drive command signal is generated by adding the correction value set in the correction section in the table to the displacement amount. As a result, the table 201 in the machine tool 200 is positioned with a low positioning accuracy equal to or less than a desired error value.
 そして、このテーブル201の位置決め精度は、工作機械200の内外の温度変化などの環境変化によってテーブル201を変位させる送り機構204を構成する送りねじ軸205が伸縮した場合であっても所望誤差値以下の低い位置決め精度に維持される。 The positioning accuracy of the table 201 is less than a desired error value even when the feed screw shaft 205 constituting the feed mechanism 204 that displaces the table 201 due to environmental changes such as temperature changes inside and outside the machine tool 200 is expanded and contracted. A low positioning accuracy is maintained.
 例えば、図5(A)に示すように、所望誤差値が6μm、5ヵ所の測定位置ごとにそれぞれ0μm,4μm,8μm,4μm,0μmの補正値が設定されている場合において送りねじ軸205が8μmだけ伸長した場合においては、各測定値ごとの位置決め誤差は0μm,6μm,12μm,10μm,8μmとなる。したがって、この場合におけるテーブル201の位置決め誤差の幅は12μmとなり、所望誤差値以下の低い位置決め精度が維持される。 For example, as shown in FIG. 5A, when the desired error value is 6 μm, and correction values of 0 μm, 4 μm, 8 μm, 4 μm, and 0 μm are set for each of five measurement positions, the feed screw shaft 205 is In the case of extending by 8 μm, the positioning error for each measurement value is 0 μm, 6 μm, 12 μm, 10 μm, and 8 μm. Accordingly, the positioning error width of the table 201 in this case is 12 μm, and low positioning accuracy that is equal to or less than the desired error value is maintained.
 一方、例えば、図5(B)に示すように、所望誤差値が6μm、5ヵ所の測定位置ごとにそれぞれ0μm,4μm,8μm,4μm,0μmの補正値が設定されている場合において送りねじ軸205が8μmだけ収縮した場合においては、各測定値ごとの位置決め誤差は0μm,2μm,4μm,-2μm,-8μmとなる。したがって、この場合におけるテーブル201の位置決め誤差の幅は8μmとなり、所望誤差値以下の低い位置決め精度が維持される。 On the other hand, for example, as shown in FIG. 5B, when the desired error value is 6 μm, and correction values of 0 μm, 4 μm, 8 μm, 4 μm, and 0 μm are set for each of the five measurement positions, the feed screw shaft When 205 contracts by 8 μm, the positioning error for each measurement value is 0 μm, 2 μm, 4 μm, −2 μm, and −8 μm. Accordingly, the positioning error width of the table 201 in this case is 8 μm, and a low positioning accuracy equal to or less than the desired error value is maintained.
 なお、例えば、図6に示すように、5ヵ所の測定値に対して前記8μmの補正値を単に昇順で振り分けた場合、すなわち、0μm,2μm,4μm,6μm,8μmの補正値を設定した場合において送りねじ軸205が8μmだけ収縮した場合においては、各測定値ごとの位置決め誤差はすべて0μmとなる。したがって、この場合におけるテーブル201の位置決め誤差の幅は0μmとなり、所望誤差値以下の低い位置決め精度を維持することができなくなる。 For example, as shown in FIG. 6, when the correction values of 8 μm are simply assigned in ascending order to the five measured values, that is, when correction values of 0 μm, 2 μm, 4 μm, 6 μm, and 8 μm are set. When the feed screw shaft 205 contracts by 8 μm, the positioning error for each measurement value is all 0 μm. Therefore, the positioning error width of the table 201 in this case is 0 μm, and it is impossible to maintain a low positioning accuracy equal to or less than the desired error value.
 上記作動説明からも理解できるように、上記実施形態によれば、位置決め精度設定方法は、変位対象物であるテーブル201の可動範囲内に設定した複数の補正区間にそれぞれ補正値を設定するに際して、両端の補正区間より内側に存在する補正区間に最も大きな値の補正値を設定している。これにより、変位対象物の可動範囲内に設定した複数の補正区間においては、前記最大の補正値を設定した補正区間を境として補正値が昇順および降順となる。このため、送り機構204を構成する機械部品が伸長した場合および収縮した場合のいずれの場合であっても補正区間のいずれかの位置において位置決め誤差が相殺されることなく現状維持または拡大する領域が存在するようになる。この結果、送り機構204の伸縮変化に寄らず送り機構204における位置決め精度を所望する位置決め精度以下の精度に良好に維持することができる。 As can be understood from the above operation description, according to the above embodiment, the positioning accuracy setting method sets the correction value in each of the plurality of correction sections set within the movable range of the table 201 that is the displacement object. The largest correction value is set in the correction section existing inside the correction sections at both ends. Thereby, in the plurality of correction sections set within the movable range of the displacement object, the correction values are in ascending order and descending order with the correction section where the maximum correction value is set as a boundary. For this reason, there is a region in which the current state is maintained or expanded without canceling the positioning error at any position in the correction section regardless of whether the mechanical parts constituting the feed mechanism 204 are expanded or contracted. It comes to exist. As a result, the positioning accuracy in the feeding mechanism 204 can be maintained well below the desired positioning accuracy regardless of the expansion / contraction change of the feeding mechanism 204.
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Furthermore, the implementation of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the object of the present invention.
 例えば、上記実施形態においては、テーブル201を直交3軸方向のうちの1つの軸方向に変位させる際における位置決め精度の設定について説明した。しかし、本発明は、テーブル201と加工ヘッド203とを相対変位させる送り機構における位置決め精度の設定方法として広く利用できるものである。したがって、例えば、本発明に係る位置決め精度の設定方法は、上記実施形態における加工ヘッド203をY軸方向およびZ軸方向に変位させる送り機構の位置決め精度の設定に採用することもできる。 For example, in the above-described embodiment, the setting of the positioning accuracy when the table 201 is displaced in one of the three orthogonal directions is described. However, the present invention can be widely used as a positioning accuracy setting method in a feed mechanism that relatively displaces the table 201 and the machining head 203. Therefore, for example, the positioning accuracy setting method according to the present invention can also be employed for setting the positioning accuracy of the feed mechanism that displaces the machining head 203 in the above embodiment in the Y-axis direction and the Z-axis direction.
 また、上記実施形態においては、テーブル201の位置決め誤差を表す誤差値として各測定位置で5回測定した位置決め誤差の第3標準偏差を使用することにより位置決め誤差を間接的に表す誤差値とした。しかし、テーブル201の位置決め誤差を表す誤差値は、テーブル201の位置決め誤差を直接的または間接的に表していれば必ずしも第3標準偏差を用いる必要はなく、例えば、第2(2σ)標準偏差などの他の標準偏差であってもよいし、位置決め誤差の平均値であってもよいし、位置決め誤差自体を用いて直接的に表すようにしてもよい。これらの場合、所望誤差値についても必ずしも第3標準偏差を用いる必要はなく、例えば、第2(2σ)標準偏差などの他の標準偏差であってもよいし、位置決め誤差の平均値であってもよいし、位置決め誤差自体であってもよい。なお、テーブル201の位置決め誤差を表す誤差値として位置決め誤差自体を採用する場合には、補正値設定情報生成プログラムにおけるステップS104による標準偏差を計算する処理は不要である。 In the above embodiment, the third standard deviation of the positioning error measured five times at each measurement position is used as the error value representing the positioning error of the table 201, so that the error value indirectly represents the positioning error. However, it is not always necessary to use the third standard deviation as the error value representing the positioning error of the table 201 as long as it directly or indirectly represents the positioning error of the table 201. For example, the second (2σ) standard deviation is used. Other standard deviations may be used, the average value of the positioning errors may be used, or the positioning errors themselves may be directly expressed. In these cases, it is not always necessary to use the third standard deviation for the desired error value. For example, another standard deviation such as the second (2σ) standard deviation may be used, and the average value of the positioning error may be used. It may also be a positioning error itself. When the positioning error itself is adopted as the error value representing the positioning error in the table 201, the process of calculating the standard deviation in step S104 in the correction value setting information generation program is unnecessary.
 また、上記実施形態においては、テーブル201の位置決め誤差を表す誤差値を特定するために、5ヵ所の測定値で位置決め誤差の測定を行った。しかし、位置決め誤差の測定位置の数は、テーブル201の可動範囲において少なくとも3つ以上であれば、4つ以下または6つ以上であってもよい。この場合、テーブル201の可動範囲において少なくとも3つ以上の測定位置を必要とする理由は、各測定位置ごとに設定する補正値において両端の測定値の補正値よりもこれら両端間に存在する測定位置における補正値を最大とするためである。 In the above embodiment, in order to specify an error value representing the positioning error of the table 201, the positioning error was measured using five measurement values. However, if the number of positioning error measurement positions is at least 3 or more in the movable range of the table 201, it may be 4 or less or 6 or more. In this case, the reason why at least three or more measurement positions are required in the movable range of the table 201 is that a measurement value that exists between both ends of the correction value set for each measurement position rather than the correction value of the measurement values at both ends. This is to maximize the correction value at.
 また、上記実施形態においては、位置決め誤差の3つ目の測定位置である中央測定位置を本発明に係る内側測定位置として最大の補正値を設定した。しかし、内側測定位置は、各測定位置のうちの両端の測定位置より内側の測定位置であればよく必ずしも中央測定位置である必要はない。例えば、内側測定位置は、上記実施形態における中央測定位置に代えてまたは加えて2つ目または4つ目の測定位置を内側測定位置とすることもできる。この場合、内側測定位置は、2つ以上であっても構わない。 In the above embodiment, the maximum correction value is set with the central measurement position, which is the third measurement position of the positioning error, as the inner measurement position according to the present invention. However, the inner measurement position may be a measurement position inside the measurement positions at both ends of each measurement position, and is not necessarily the central measurement position. For example, instead of or in addition to the central measurement position in the above embodiment, the second measurement position or the fourth measurement position can be set as the inner measurement position. In this case, there may be two or more inner measurement positions.
 また、上記実施形態においては、5ヵ所の測定位置のうちの両端の2つの測定位置の補正値を0とした。しかし、各測定位置に設定する補正値は、内側測定位置に設定する補正が最大値であれば必ずしも0に設定する必要はない。また、上記実施形態においては、内側測定位置に対して両側2つの測定位置間にそれぞれ存在する2つの測定位置の各補正値を直線補間により設定した。しかし、これら2つの補正値についても直線補間以外の方法、例えば、放物線状に設定してもよいし、設定内側測定値の補正値と両端の測定位置の補正値との範囲内の量を無作為に設定するようにしてもよい。また、補正テーブルにおける各補正区間ごとの各補正値についても、同様に直線補間以外の方法によって設定するようにしてもよい。 Further, in the above embodiment, the correction values of the two measurement positions at both ends of the five measurement positions are set to 0. However, the correction value set for each measurement position does not necessarily have to be set to 0 if the correction set for the inner measurement position is the maximum value. In the above embodiment, the correction values of the two measurement positions existing between the two measurement positions on both sides with respect to the inner measurement position are set by linear interpolation. However, these two correction values may also be set to a method other than linear interpolation, for example, a parabolic shape, or the amount within the range between the correction value of the set inner measurement value and the correction values of the measurement positions at both ends may be omitted. You may make it set for the purpose. Similarly, each correction value for each correction section in the correction table may be set by a method other than linear interpolation.
 また、上記実施形態においては、5ヵ所の位置決め誤差の測定位置のうち中央測定位置をテーブル201の可動範囲における略中央位置とした。これにより、工作機械200のテーブル201の可動範囲のなかで最も多用する中央領域にそれぞれ互いに近似する補正値が設定されるため、これらの中央領域内における位置決め精度のバラツキを抑えて精度の安定した加工を行うことができる。しかし、内側測定位置は、必ずしもテーブル201の可動範囲の中央領域に存在させる必要はない。また、内側測定位置以外の測定位置も内側測定位置を境として両端側に同数の測定位置を確保する必要はなく、内側測定位置に隣接して少なくとも1つの測定位置が存在していればよい。なお、補正テーブルにおける各補正区間ごとの各補正値を内側測定値を中心とする放物線状に設定することによってより中央領域内における位置決め精度のバラツキを抑えて精度の安定した加工を行うことができる。 In the above embodiment, the center measurement position among the five measurement positions of the positioning error is set to the substantially center position in the movable range of the table 201. As a result, correction values that are approximate to each other are set in the most frequently used central regions in the movable range of the table 201 of the machine tool 200. Therefore, variations in positioning accuracy in these central regions are suppressed, and the accuracy is stabilized. Processing can be performed. However, the inner measurement position does not necessarily have to exist in the central region of the movable range of the table 201. Moreover, it is not necessary to secure the same number of measurement positions at both ends with respect to the inner measurement position as a boundary other than the inner measurement position, and it is sufficient that at least one measurement position exists adjacent to the inner measurement position. In addition, by setting each correction value for each correction section in the correction table in a parabolic shape centering on the inner measurement value, it is possible to perform processing with stable accuracy while suppressing variation in positioning accuracy in the central region. .
 また、上記実施形態においては、補正値設定情報生成プログラムにおいて、仮誤差値取得ステップおよび仮誤差値比較ステップを実行することによって、外部コンピュータ装置300が工作機械200のテーブル201の位置決め精度が所望誤差値以下の低い位置決め精度になると予測される補正値を計算するまでの間、所望誤差値を増加させながらステップS112およびステップS114による補正値の計算処理を繰り返し実行するようにした。すなわち、補正値設定情報生成プログラムは、誤差値に基づいて設定した補正値による位置決め誤差をシミュレーションすることにより、この補正値を採用した場合における位置決め誤差を実機による位置決め誤差の測定作業を行くことなく予測している。しかし、補正値の妥当性の確認をする必要がない場合には、位置決め誤差のシミュレーション工程は不要である。すなわち、補正値設定情報生成プログラムは、ステップS116ないしステップS120の各ステップを省略して構成することもできる。 Further, in the above-described embodiment, by executing the temporary error value acquisition step and the temporary error value comparison step in the correction value setting information generation program, the external computer device 300 determines the positioning accuracy of the table 201 of the machine tool 200 to the desired error. The correction value calculation process in steps S112 and S114 is repeatedly executed while increasing the desired error value until the correction value predicted to have a low positioning accuracy below the value is calculated. In other words, the correction value setting information generation program simulates the positioning error due to the correction value set based on the error value, so that the positioning error when this correction value is adopted can be measured without performing the positioning error measurement operation by the actual machine. Predict. However, if it is not necessary to check the validity of the correction value, the positioning error simulation step is not necessary. That is, the correction value setting information generation program can be configured by omitting the steps S116 to S120.
 また、上記実施形態においては、補正値テーブル生成プログラムにおいて、補正値テーブルの補正値テーブル記憶部212への設定処理にアクセス権を必要とした。しかし、補正値テーブルの設定者に制限が不要の場合には、アクセス権を確認に関する工程、すなわち、ステップS202、ステップS204およびステップS212は不要である。 In the above embodiment, the correction value table generation program requires an access right for the setting process of the correction value table to the correction value table storage unit 212. However, if there is no need for the person who sets the correction value table, the steps related to checking the access right, that is, step S202, step S204, and step S212 are unnecessary.
 また、上記実施形態においては、位置決め誤差測定プログラムおよび補正値設定情報生成プログラムを外部コンピュータ装置300に実行させるとともに、補正値テーブル生成プログラムを工作機械200の総合制御部213に実行させるようにした。しかし、これらの位置決め誤差測定プログラム、補正値設定情報生成プログラムおよび補正値テーブル生成プログラムは、各プログラムの実行目的を果たすことができれば、総合制御部213および外部コンピュータ装置300のいずれが実行するように構成されていてもよい。すなわち、例えば、位置決め誤差測定プログラム、補正値設定情報生成プログラムおよび補正値テーブル生成プログラムのすべてを総合制御部213が実行するように構成すれば、外部コンピュータ装置300は、不要となる。また、補正値テーブル生成プログラムを外部コンピュータ装置300が実行することにより、外部コンピュータ装置300から工作機械200の補正値テーブル記憶部212に補正値テーブルを記憶させるように構成することもできる。 In the above embodiment, the external computer device 300 is caused to execute the positioning error measurement program and the correction value setting information generation program, and the general control unit 213 of the machine tool 200 is caused to execute the correction value table generation program. However, these positioning error measurement program, correction value setting information generation program, and correction value table generation program can be executed by either the general control unit 213 or the external computer device 300 as long as the execution purpose of each program can be achieved. It may be configured. That is, for example, if the general control unit 213 executes all of the positioning error measurement program, the correction value setting information generation program, and the correction value table generation program, the external computer device 300 is not necessary. The correction value table generation program may be executed by the external computer device 300 so that the correction value table is stored in the correction value table storage unit 212 of the machine tool 200 from the external computer device 300.
WK…ワーク、L…レーザ光、
100…位置決め精度設定装置、
200…工作機械、201…テーブル、202…工具、203…加工ヘッド、204…送り機構、205…送りねじ軸、206…送りモータ、207…ロータリエンコーダ、
210…モータ駆動部、211…移動量計算部、212…補正値テーブル記憶部、213…総合制御部、214…操作盤、215…表示装置、216…インターフェース、
300…外部コンピュータ装置、301…入力装置、302…表示装置、303…変位測定器、304…反射板。
WK ... work, L Z ... laser light,
100: Positioning accuracy setting device,
DESCRIPTION OF SYMBOLS 200 ... Machine tool, 201 ... Table, 202 ... Tool, 203 ... Processing head, 204 ... Feed mechanism, 205 ... Feed screw shaft, 206 ... Feed motor, 207 ... Rotary encoder,
210: motor drive unit, 211: movement amount calculation unit, 212 ... correction value table storage unit, 213 ... general control unit, 214 ... operation panel, 215 ... display device, 216 ... interface,
300 ... external computer device 301 ... input device 302 ... display device 303 ... displacement measuring device 304 ... reflecting plate

Claims (11)

  1.  ワークを保持するテーブルおよび前記ワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、
     前記送り機構の作動を制御する制御手段とを備えた工作機械における前記送り機構の位置決め精度の設定方法において、
     前記送り機構による前記変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得ステップと、
     前記少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における前記誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を前記内側測定位置における補正値とするとともに同内側測定位置以外の前記測定位置における補正値を少なくとも前記内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成ステップと、
     前記送り機構による前記変位対象物の可動範囲内に設定した複数の補正区間に対して、前記補正値設定情報を用いて前記各測定位置に対応する前記各補正区間に同各測定位置に対応する前記補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成ステップとを含むことを特徴とする位置決め精度の設定方法。
    A feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object;
    In the method for setting the positioning accuracy of the feed mechanism in a machine tool comprising control means for controlling the operation of the feed mechanism,
    An error value acquisition step of measuring a positioning error for each of at least three measurement positions in the movable range of the displacement object by the feeding mechanism and acquiring an error value directly or indirectly representing the positioning error;
    A difference between the error value at an inner measurement position existing inside two measurement positions at both ends of the at least three measurement positions and a desired error value directly or indirectly representing a preset desired error is calculated. A correction value setting information generation step for generating correction value setting information that is a correction value at the inner measurement position and a correction value at the measurement position other than the inner measurement position is at least smaller than the correction value at the inner measurement position. When,
    For a plurality of correction sections set within the movable range of the displacement object by the feed mechanism, the correction value setting information is used to correspond to the respective correction positions corresponding to the respective measurement positions. And a correction value table generation step of generating a correction value table in which the correction values are respectively set.
  2.  請求項1に記載した位置決め精度の設定方法において、
     前記補正値設定情報生成ステップは、
     前記両端の2つの測定位置にそれぞれ対応する各補正値にそれぞれ0を設定するとともに、前記内側測定値に対して前記両端の2つの測定位置間における各補正値を直線補間により設定して前記補正値設定情報を生成し、
     前記補正値テーブル設定ステップは、
     前記補正値が設定された前記補正区間以外の補正区間に対して同補正値が設定された補正区間における補正値を用いて直線補間により補正値をそれぞれ設定して前記補正値テーブルを生成することを特徴とする位置決め精度の設定方法。
    In the positioning accuracy setting method according to claim 1,
    The correction value setting information generation step includes
    Each correction value corresponding to each of the two measurement positions at both ends is set to 0, and each correction value between the two measurement positions at both ends is set by linear interpolation for the inner measurement value. Generate value setting information,
    The correction value table setting step includes:
    The correction value table is generated by setting each correction value by linear interpolation using the correction value in the correction section in which the correction value is set for the correction section other than the correction section in which the correction value is set. Positioning accuracy setting method characterized by
  3.  請求項1または請求項2に記載した位置決め精度の設定方法において、
     前記誤差値取得ステップは、
     前記変位対象物の可動範囲における略中央位置で前記誤差値を取得するとともに同略中央位置を中心として前記可動範囲における両端側の領域に互いに同数の前記測定位置でそれぞれ前記誤差値を取得し、
     前記補正値設定情報生成ステップは、
     前記変位対象物の可動範囲における略中央位置で前記誤差値を取得した前記測定位置を前記内側測定位置とすることを特徴とする位置決め精度の設定方法。
    In the positioning accuracy setting method according to claim 1 or 2,
    The error value acquisition step includes
    Obtaining the error value at a substantially central position in the movable range of the displacement object and obtaining the error value at the same number of measurement positions in the regions on both ends of the movable range around the substantially central position;
    The correction value setting information generation step includes
    A positioning accuracy setting method, characterized in that the measurement position at which the error value is acquired at a substantially central position in the movable range of the displacement object is set as the inner measurement position.
  4.  請求項1ないし請求項3のうちのいずれか1つに記載した位置決め精度の設定方法において、
     前記誤差値取得ステップは、
     同一の前記測定位置で複数回の測定を行うことにより得た複数の前記位置決め誤差を用いて計算した標準偏差を前記誤差値として取得し、
     前記補正値設定情報生成ステップの後に、さらに、
     前記補正値設定情報における前記各測定位置ごとの前記各補正値を前記誤差値取得ステップで測定した前記各測定位置ごとの前記各位置決め誤差に加算した複数の位置決め仮誤差の標準偏差を仮誤差値として取得する仮誤差値取得ステップと、
     前記仮誤差値取得ステップにて取得した前記複数の仮誤差値のうちの最大の仮誤差値と最少の仮誤差値との差である最大仮誤差幅と前記所望誤差値とを比較する仮誤差値比較ステップとを含み、
     前記補正値設定情報生成ステップは、
     前記仮誤差値比較ステップにて前記最大仮誤差幅が前記所望誤差値より小さいと判定されたとき、前記所望誤差値に所定値を加算した新たな前記所望誤差値を用いて再度実行され、
     前記補正値テーブル生成ステップは、
     前記仮誤差値比較ステップにて前記最大仮誤差幅が前記所望誤差値以上と判定されたときのみ実行されることを特徴とする位置決め精度の設定方法。
    In the positioning accuracy setting method according to any one of claims 1 to 3,
    The error value acquisition step includes
    A standard deviation calculated using a plurality of the positioning errors obtained by performing a plurality of measurements at the same measurement position is obtained as the error value,
    After the correction value setting information generation step,
    A standard deviation of a plurality of positioning temporary errors obtained by adding each correction value for each measurement position in the correction value setting information to each positioning error for each measurement position measured in the error value acquisition step is a temporary error value. A provisional error value acquisition step acquired as
    A temporary error for comparing the desired error value with a maximum temporary error width that is a difference between the maximum temporary error value and the minimum temporary error value among the plurality of temporary error values acquired in the temporary error value acquiring step. A value comparison step,
    The correction value setting information generation step includes
    When it is determined in the temporary error value comparison step that the maximum temporary error width is smaller than the desired error value, the process is executed again using the new desired error value obtained by adding a predetermined value to the desired error value,
    The correction value table generation step includes:
    The positioning accuracy setting method, which is executed only when it is determined in the temporary error value comparison step that the maximum temporary error width is equal to or greater than the desired error value.
  5.  請求項1ないし請求項4のうちのいずれか1つに記載した位置決め精度の設定方法において、さらに、
     前記補正値テーブル生成ステップを実行する前に、前記補正値の設定のアクセス権の有無を判定するアクセス権判定ステップを含み、
     前記補正値テーブル生成ステップは、
     前記アクセス権判定ステップにてアクセス権が有ると判定されたときのみ実行されることを特徴とする位置決め精度の設定方法。
    The positioning accuracy setting method according to any one of claims 1 to 4, further comprising:
    Before executing the correction value table generation step, including an access right determination step of determining presence / absence of an access right for setting the correction value;
    The correction value table generation step includes:
    The positioning accuracy setting method is executed only when it is determined in the access right determination step that the access right is present.
  6.  ワークを保持するテーブルおよび前記ワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、
     前記送り機構の作動を制御する制御手段とを備えた工作機械における前記送り機構の位置決め精度設定装置において、
     前記送り機構による前記変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得手段と、
     前記少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における前記誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を前記内側測定位置における補正値とするとともに同内側測定位置以外の前記測定位置における補正値を少なくとも前記内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成手段と、
     前記送り機構による前記変位対象物の可動範囲内に設定した複数の補正区間に対して、前記補正値設定情報を用いて前記各測定位置に対応する前記各補正区間に同各測定位置に対応する前記補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成手段とを備えることを特徴とする位置決め精度設定装置。
    A feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object;
    In the positioning accuracy setting device for the feed mechanism in a machine tool provided with a control means for controlling the operation of the feed mechanism,
    Error value acquisition means for measuring a positioning error for each of at least three measurement positions in the movable range of the displacement object by the feed mechanism and acquiring an error value directly or indirectly representing the positioning error;
    A difference between the error value at an inner measurement position existing inside two measurement positions at both ends of the at least three measurement positions and a desired error value directly or indirectly representing a preset desired error is calculated. Correction value setting information generating means for generating correction value setting information that uses the correction value at the inner measurement position and the correction value at the measurement position other than the inner measurement position as a correction value smaller than the correction value at the inner measurement position. When,
    For a plurality of correction sections set within the movable range of the displacement object by the feed mechanism, the correction value setting information is used to correspond to the respective correction positions corresponding to the respective measurement positions. A positioning accuracy setting device comprising correction value table generation means for generating a correction value table in which the correction values are respectively set.
  7.  請求項6に記載した位置決め精度設定装置において、
     前記補正値設定情報生成手段は、
     前記両端の2つの測定位置にそれぞれ対応する各補正値にそれぞれ0を設定するとともに、前記内側測定値に対して前記両端の2つの測定位置間における各補正値を直線補間により設定して前記補正値設定情報を生成し、
     前記補正値テーブル設定手段は、
     前記補正値が設定された前記補正区間以外の補正区間に対して同補正値が設定された補正区間における補正値を用いて直線補間により補正値をそれぞれ設定して前記補正値テーブルを生成することを特徴とする位置決め精度設定装置。
    In the positioning accuracy setting device according to claim 6,
    The correction value setting information generation means includes
    Each correction value corresponding to each of the two measurement positions at both ends is set to 0, and each correction value between the two measurement positions at both ends is set by linear interpolation for the inner measurement value. Generate value setting information,
    The correction value table setting means includes:
    The correction value table is generated by setting each correction value by linear interpolation using the correction value in the correction section in which the correction value is set for the correction section other than the correction section in which the correction value is set. A positioning accuracy setting device.
  8.  請求項6または請求項7に記載した位置決め精度設定装置において、
     前記誤差値取得手段は、
     前記変位対象物の可動範囲における略中央位置で前記誤差値を取得するとともに同略中央位置を中心として前記可動範囲における両端側の領域に互いに同数の前記測定位置でそれぞれ前記誤差値を取得し、
     前記補正値設定情報生成手段は、
     前記変位対象物の可動範囲における略中央位置で前記誤差値を取得した前記測定位置を前記内側測定位置とすることを特徴とする位置決め精度設定装置。
    In the positioning accuracy setting device according to claim 6 or 7,
    The error value acquisition means includes
    Obtaining the error value at a substantially central position in the movable range of the displacement object and obtaining the error value at the same number of measurement positions in the regions on both ends of the movable range around the substantially central position;
    The correction value setting information generation means includes
    A positioning accuracy setting device, wherein the measurement position at which the error value is acquired at a substantially central position in the movable range of the displacement object is set as the inner measurement position.
  9.  請求項6ないし請求項8のうちのいずれか1つに記載した位置決め精度設定装置において、
     前記誤差値取得手段は、
     同一の前記測定位置で複数回の測定を行うことにより得た複数の前記位置決め誤差を用いて計算した標準偏差を前記誤差値として取得し、
     前記補正値設定情報を生成した後に、さらに、
     前記補正値設定情報における前記各測定位置ごとの前記各補正値を前記誤差値取得手段で測定した前記各測定位置ごとの前記各位置決め誤差に加算した複数の位置決め仮誤差の標準偏差を仮誤差値として取得する仮誤差値取得手段と、
     前記仮誤差値取得手段にて取得した前記複数の仮誤差値のうちの最大の仮誤差値と最少の仮誤差値との差である最大仮誤差幅と前記所望誤差値とを比較する仮誤差値比較手段とを含み、
     前記補正値設定情報生成手段は、
     前記仮誤差値比較手段にて前記最大仮誤差幅が前記所望誤差値より小さいと判定されたとき、前記所望誤差値に所定値を加算した新たな前記所望誤差値を用いて再度前記補正値設定情報を生成し、
     前記補正値テーブル生成手段は、
     前記仮誤差値比較手段にて前記最大仮誤差幅が前記所望誤差値以上と判定されたときのみ前記補正値テーブルを生成することを特徴とする位置決め精度設定装置。
    In the positioning accuracy setting device according to any one of claims 6 to 8,
    The error value acquisition means includes
    A standard deviation calculated using a plurality of the positioning errors obtained by performing a plurality of measurements at the same measurement position is obtained as the error value,
    After generating the correction value setting information,
    A standard deviation of a plurality of positioning temporary errors obtained by adding each correction value for each measurement position in the correction value setting information to each positioning error for each measurement position measured by the error value acquisition means is a temporary error value. Provisional error value acquisition means for acquiring
    A temporary error for comparing the desired error value with a maximum temporary error width that is a difference between a maximum temporary error value and a minimum temporary error value among the plurality of temporary error values acquired by the temporary error value acquiring unit. Value comparison means,
    The correction value setting information generation means includes
    When the provisional error value comparison means determines that the maximum provisional error width is smaller than the desired error value, the correction value is set again using the new desired error value obtained by adding a predetermined value to the desired error value. Generate information,
    The correction value table generating means includes
    The positioning accuracy setting device, wherein the correction value table is generated only when the maximum temporary error width is determined to be equal to or larger than the desired error value by the temporary error value comparison means.
  10.  請求項6ないし請求項9のうちのいずれか1つに記載した位置決め精度設定装置において、さらに、
     前記補正値テーブルを生成する前に、前記補正値の設定のアクセス権の有無を判定するアクセス権判定手段を含み、
     前記補正値テーブル生成手段は、
     前記アクセス権判定手段によってアクセス権が有ると判定されたときのみ前記補正値テーブルを生成することを特徴とする位置決め精度設定装置。
    The positioning accuracy setting device according to any one of claims 6 to 9, further comprising:
    Before generating the correction value table, including access right determination means for determining presence or absence of access right for setting the correction value;
    The correction value table generating means includes
    The positioning accuracy setting device, wherein the correction value table is generated only when it is determined by the access right determination means that there is an access right.
  11.  ワークを保持するテーブルおよび前記ワークを加工する加工ヘッドのうちの少なくとも一方を変位対象物として他方に対して相対変位させる送り機構と、
     前記送り機構の作動を制御する制御手段とを備えた工作機械に用いられる前記送り機構の位置決め精度の設定プログラムであって、
     コンピュータに、
     前記送り機構による前記変位対象物の可動範囲における少なくとも3つの測定位置ごとに位置決め誤差をそれぞれ測定して同位置決め誤差を直接的または間接的に表す誤差値を取得する誤差値取得ステップと、
     前記少なくとも3つの測定位置のうちの両端の2つの測定位置よりも内側に存在する内側測定位置における前記誤差値と予め設定された所望誤差を直接的または間接的に表す所望誤差値との差を前記内側測定位置における補正値とするとともに同内側測定位置以外の前記測定位置における補正値を少なくとも前記内側測定位置の補正値より小さい補正値とした補正値設定情報を生成する補正値設定情報生成ステップと、
     前記送り機構による前記変位対象物の可動範囲内に設定した複数の補正区間に対して、前記補正値設定情報を用いて前記各測定位置に対応する前記各補正区間に同各測定位置に対応する前記補正値をそれぞれ設定した補正値テーブルを生成する補正値テーブル生成ステップとを実行させることを特徴とする位置決め精度の設定プログラム。
     
    A feed mechanism that relatively displaces at least one of a table for holding the workpiece and a machining head for machining the workpiece as a displacement object;
    A setting program for positioning accuracy of the feed mechanism used in a machine tool provided with a control means for controlling the operation of the feed mechanism,
    On the computer,
    An error value acquisition step of measuring a positioning error for each of at least three measurement positions in the movable range of the displacement object by the feeding mechanism and acquiring an error value directly or indirectly representing the positioning error;
    A difference between the error value at an inner measurement position existing inside two measurement positions at both ends of the at least three measurement positions and a desired error value directly or indirectly representing a preset desired error is calculated. A correction value setting information generation step for generating correction value setting information that is a correction value at the inner measurement position and a correction value at the measurement position other than the inner measurement position is at least smaller than the correction value at the inner measurement position. When,
    For a plurality of correction sections set within the movable range of the displacement object by the feed mechanism, the correction value setting information is used to correspond to the respective correction positions corresponding to the respective measurement positions. A positioning accuracy setting program for executing a correction value table generation step for generating a correction value table in which the correction values are set.
PCT/JP2013/079521 2013-10-31 2013-10-31 Positioning precision setting method, positioning precision setting device, and positioning precision setting program WO2015063912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/079521 WO2015063912A1 (en) 2013-10-31 2013-10-31 Positioning precision setting method, positioning precision setting device, and positioning precision setting program
CN201380002907.5A CN104781739A (en) 2013-10-31 2013-10-31 Positioning precision setting method, positioning precision setting device, and positioning precision setting program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079521 WO2015063912A1 (en) 2013-10-31 2013-10-31 Positioning precision setting method, positioning precision setting device, and positioning precision setting program

Publications (1)

Publication Number Publication Date
WO2015063912A1 true WO2015063912A1 (en) 2015-05-07

Family

ID=53003557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079521 WO2015063912A1 (en) 2013-10-31 2013-10-31 Positioning precision setting method, positioning precision setting device, and positioning precision setting program

Country Status (2)

Country Link
CN (1) CN104781739A (en)
WO (1) WO2015063912A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188975A1 (en) * 2015-05-26 2016-12-01 Robert Bosch Gmbh Method for determining operating parameters of an actuator, control device, and actuator comprising a positionable element
EP3446828A4 (en) * 2016-05-24 2019-12-25 Doosan Machine Tools Co., Ltd. Machining center
CN114442555A (en) * 2022-01-04 2022-05-06 广东海思智能装备有限公司 Electrical control system of numerical control machine tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198902A (en) * 1986-02-27 1987-09-02 Mitsubishi Electric Corp Correction for numerical controller
JPH04174005A (en) * 1990-11-02 1992-06-22 Seiko Instr Inc Robot controller
JPH08263118A (en) * 1995-03-27 1996-10-11 Fanuc Ltd Positional error correction system
JPH10111706A (en) * 1996-10-08 1998-04-28 Tokyo Seimitsu Co Ltd Automatic measuring instrument for numerically controlled machine tool
JP2002192540A (en) * 2000-12-22 2002-07-10 Mitsubishi Rayon Co Ltd Transfer roll, working process therefor, and manufacturing method for optical sheet using transfer roll
JP2010026997A (en) * 2008-07-24 2010-02-04 Mitsubishi Heavy Ind Ltd Machine tool
JP2010099753A (en) * 2008-10-21 2010-05-06 Brother Ind Ltd Pitch error correction method and pitch error correction device of machine tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198902A (en) * 1986-02-27 1987-09-02 Mitsubishi Electric Corp Correction for numerical controller
JPH04174005A (en) * 1990-11-02 1992-06-22 Seiko Instr Inc Robot controller
JPH08263118A (en) * 1995-03-27 1996-10-11 Fanuc Ltd Positional error correction system
JPH10111706A (en) * 1996-10-08 1998-04-28 Tokyo Seimitsu Co Ltd Automatic measuring instrument for numerically controlled machine tool
JP2002192540A (en) * 2000-12-22 2002-07-10 Mitsubishi Rayon Co Ltd Transfer roll, working process therefor, and manufacturing method for optical sheet using transfer roll
JP2010026997A (en) * 2008-07-24 2010-02-04 Mitsubishi Heavy Ind Ltd Machine tool
JP2010099753A (en) * 2008-10-21 2010-05-06 Brother Ind Ltd Pitch error correction method and pitch error correction device of machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188975A1 (en) * 2015-05-26 2016-12-01 Robert Bosch Gmbh Method for determining operating parameters of an actuator, control device, and actuator comprising a positionable element
EP3446828A4 (en) * 2016-05-24 2019-12-25 Doosan Machine Tools Co., Ltd. Machining center
US11000928B2 (en) 2016-05-24 2021-05-11 Doosan Machine Tools Co., Ltd. Machining center
CN114442555A (en) * 2022-01-04 2022-05-06 广东海思智能装备有限公司 Electrical control system of numerical control machine tool
CN114442555B (en) * 2022-01-04 2022-10-11 广东海思智能装备有限公司 Electrical control system of numerical control machine tool

Also Published As

Publication number Publication date
CN104781739A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US9448552B2 (en) Numerically-controlled machine tool and spindle error compensating method thereof
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
JP4803491B2 (en) Position correction device for machine tool
US20140222189A1 (en) Computing device and method for measuring probe of computer numerical control machine
JP2016083729A (en) Geometric error identification system, and geometric error identification method
CA2912589A1 (en) Automated machining head with vision and procedure
US8970156B2 (en) Path display apparatus considering correction data
JP6130242B2 (en) Machine tool with measuring device
JP2011214931A (en) Probe mounting position calculation method of on-machine measuring device
JP5984630B2 (en) Interface system for machine tools
EP3611583B1 (en) Machining error compensation
WO2015063912A1 (en) Positioning precision setting method, positioning precision setting device, and positioning precision setting program
US20130030758A1 (en) Shape measurement device for machine tool workpiece
Moylan et al. Powder bed fusion machine performance testing
JP2017037460A (en) Machining system and machining method
JP2021060673A (en) Adjustment method allowing for improved accuracy of machine tool
JP2008268118A (en) Method and device for measuring shape
US10955238B1 (en) In-process automatic recalibration
JP5400190B2 (en) Positioning accuracy setting method, positioning accuracy setting device, and positioning accuracy setting program
KR102053465B1 (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
JP7009326B2 (en) Numerical control device for machine tools
TWI645274B (en) Work piece processing method and processing system thereof
JP6623061B2 (en) Machine tool and control method of machine tool
KR20140092078A (en) Thermal deformation correction method for ball screw of machining centers
JP2010099753A (en) Pitch error correction method and pitch error correction device of machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP