WO2015063354A1 - Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos - Google Patents

Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos Download PDF

Info

Publication number
WO2015063354A1
WO2015063354A1 PCT/ES2014/070774 ES2014070774W WO2015063354A1 WO 2015063354 A1 WO2015063354 A1 WO 2015063354A1 ES 2014070774 W ES2014070774 W ES 2014070774W WO 2015063354 A1 WO2015063354 A1 WO 2015063354A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
blades
wind
horizontal axis
rotation
Prior art date
Application number
PCT/ES2014/070774
Other languages
English (en)
French (fr)
Inventor
Ricardo Morcillo Molina
Original Assignee
Ricardo Morcillo Molina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricardo Morcillo Molina filed Critical Ricardo Morcillo Molina
Priority to EP14857250.6A priority Critical patent/EP3064769B1/en
Priority to PCT/ES2014/070774 priority patent/WO2015063354A1/es
Priority to RU2016120668A priority patent/RU2016120668A/ru
Priority to CA2929299A priority patent/CA2929299A1/en
Priority to MX2016005430A priority patent/MX2016005430A/es
Priority to AU2014343570A priority patent/AU2014343570A1/en
Priority to CN201480059083.XA priority patent/CN105705784A/zh
Publication of WO2015063354A1 publication Critical patent/WO2015063354A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/21Geometry three-dimensional pyramidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention falls within the technical sector of electrical energy production processes from wind turbines.
  • the present invention provides a wind turbine that overcomes the aforementioned drawbacks.
  • the wind turbine of the invention essentially comprises blades constituted by a plurality of blades that are connected at one of its ends to a horizontal axis of rotation of the wind turbine with the ends of said horizontal axis resting on a hollow proto-pyramidal prism or other suitable closed configuration. for all its lateral faces.
  • the blades are distributed according to essentially symmetrical planes (blade planes) with respect to the axis of rotation of the wind turbine, so that each plane has several blades parallel to each other and each one of said blades is individually orientable by rotation around a blade axis that It is perpendicular to the horizontal axis of rotation of the wind turbine.
  • the number, length and dimensions of both the blades and their blades depends on the power to be obtained.
  • the horizontal axis of rotation of the wind turbine rests at its ends on two closed sides of the four-sided truncated pyramid vessel through two structural elements. Housed in one of the structural elements will be arranged the mechanical elements (transmissions, multipliers, brake system) necessary for the production of energy and the control and operation of the wind turbine.
  • a structure with metal beams and pillars, placed on a reinforced concrete foundation To give stability to the truncated pyramid vessel, a structure with metal beams and pillars, placed on a reinforced concrete foundation.
  • the blades of the wind turbine blades may be braced together to guarantee, if necessary, the solidarity movement of all of them.
  • the troncopiramidal vessel is closed on all its lateral faces . Therefore, the truncated pyramid vessel completely covers the wind turbine blades from the horizontal axis of the wind turbine downwards, that is, covers the blades that are in the lower half of the wind turbine, so that when the force of the wind hits the blades that They are located in the upper half of the wind turbine, it begins to rotate around its horizontal axis, as this wind force is not compensated by the lower part of the wind turbine. Consequently, the present invention provides a wind turbine that does not require electrical energy to initiate its turning movement.
  • the blades attached to the horizontal axis of the wind turbine will maintain their rotation until the wind stops exerting its force against the blades, or until it is decided to stop the rotation, being able to stand with a mechanical braking system that is incorporated into the rotation mechanism or allowing the individual blades to rotate 90 ° with respect to the wind direction, thus offering a minimum wind uptake surface and thus reducing the speed of rotation, thus achieving and function of the angle turned to control the speed of rotation and, combined with the mechanical braking system, its total stop.
  • the horizontal axis of rotation of the wind turbine can be of circular or prismatic section with a suitable number of faces to allow different combinations of blades to be arranged on the same according to the power requirements and the wind exposure parameters.
  • the wind turbine of the invention for its safety and stability, allows several wind turbines to be attached in the wind direction, without affecting its performance and without needing to keep a safe distance between them, so that in Little space can be installed several wind turbines of the invention for electric power production, thus multiplying the use of soil and natural resources.
  • Figure 1 shows a schematic perspective of the wind turbine of the invention in which several blades (3) arranged in a wind turbine blade (4) and attached to the horizontal axis (5) of the wind turbine are observed which is supported at its ends on structural elements (2) located in the laterals of the truncated pyramidal vessel (1).
  • Figures 2.1 and 2.2 show simplified versions of the wind turbine of Figure 1 where two possible configurations are shown.
  • Figure 2.1 shows a model with 4 blades (3) narrow and long for each blade (4), and in figure 2.2 the same wind turbine with three blades (3) shorter and wider.
  • the rest of the elements: vessel (1), turning mechanism (6), structural support elements (2), and horizontal axis (5) of the wind turbine can be the same.
  • Figure 3 shows a detail of the horizontal axis of wind turbine (5) of 6-sided prismatic section where the double gear (6, 7) that allows the rotation of each blade is also shown.
  • Figure 4 shows an arrangement on the horizontal axis (5) of the wind turbine formed by three blades (4), each with 4 blades (3), on three faces of the hexagonal prismatic axis (5).
  • Figure 5 shows an arrangement on the horizontal axis (5) of the wind turbine formed by 6 blades (4) each with 4 blades (3), on the six faces of the hexagonal axis (5).
  • Figure 6 schematically shows an arrangement of three attached wind turbines (1).
  • the wind turbine comprises four blades (4) each consisting of four blades (3) parallel to each other that are connected at one end to a horizontal axis of rotation (5) of the wind turbine being the ends of said horizontal axis (5) supported on two opposite sides of a hollow glass (1) truncated pyramid closed by all its lateral faces.
  • the blades (3) are distributed according to essentially symmetrical blade planes (4) with respect to the axis of rotation (5) of the wind turbine, so that each plane (4) has several blades (3) parallel to each other and each one of said blades (3) It is individually adjustable by rotation, through double gear (6) and (7) around a longitudinal axis of the blade that is perpendicular to the horizontal axis (5) of rotation of the wind turbine.
  • the number, length and dimensions of both the blades (4) and their blades (3) depend on the power to be obtained.
  • the horizontal axis (5) of rotation of the wind turbine rests at its ends on two opposite closed sides of the four-sided troncopiramidal vessel (1) through two structural elements (2), preferably located at the midpoint of said two sides. Housed in one of the structural elements (2) the mechanical elements (transmissions, multipliers, brake system) necessary for the production of energy and the control and operation of the wind turbine will be arranged.
  • a structure with metal beams and pillars can be placed, placed on a reinforced concrete foundation.
  • the truncated pyramid vessel (1) covers with its sides the blades (3) of the wind turbine from the horizontal axis (5) of the wind turbine down, that is, covers the blades (3) that are in the lower half of the wind turbine, that is inside the hollow space of the truncated pyramid vessel (1) so that when the force of the wind hits the blades (3) that are in the upper half of the wind turbine, it begins to rotate around its horizontal axis (5), at find this wind force compensated by the bottom of the wind turbine.
  • the blades (3) attached to the horizontal axis (5) of the wind turbine will maintain its rotation around said axis (5) until the wind stops exerting its force against the blades (3), or until it is decided to stop the rotation, being able to stop with a mechanical braking system that is incorporated into the mechanism of rotation or allowing the individual blades (3) to rotate 90 ° in relation to the wind direction, thus offering a minimum wind uptake surface and thus reducing the speed of rotation, thus achieving and depending on the angle turned control the speed of rotation and, in combination with the mechanical braking system, its total stop.
  • the horizontal axis (5) of rotation of the wind turbine can be of circular or prismatic section with a suitable number of faces to allow different combinations of blades (3) to be disposed thereon according to the power requirements and the wind exposure parameters.
  • a structure with metal beams and pillars can be placed, placed on a reinforced concrete foundation.
  • the invention for its safety and stability, allows several wind turbines to be attached in the wind direction, without affecting their performance and without needing to keep a safe distance between them, so that in a short space Several wind turbines of the invention can be installed for the production of electric energy, thus multiplying the use of soil and natural resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Sistema de aerogenerador mejorado por el inventor para la producción de energía eléctrica que consiste en un eje apoyado en dos extremos sobre dos torres de hormigón o acero u otro material, cuya mitad inferior del aerogenerador está cerrada con una forma troncopiramidal para que el viento no pase y haga efecto colina y solo empuje la parte superior del sistema. Con aspas compuestas por palas en forma de alabe (doble arco) que giran sobre sí mismas para aprovechar el 100% de las diferentes velocidades del viento y una posible parada del sistema de aerogenerador. Los álabes de las palas del aerogenerador podrán estar arriostrados entre sí para garantizar, en caso necesario, el movimiento solidario de todos ellos. El aerogenerador, por su seguridad y estabilidad, permite que se puedan adosar varios aerogeneradores en la dirección del viento.

Description

AEROGENERADOR MEJORADO PARA PRODUCCION DE ENERGIA ELÉCTRICA CON PALAS DE ALABES MÚLTIPLES Y EJE HORIZONTAL
APOYADO SOBRE LOS EXTREMOS
D E S C R I P C I O N
OBJETO DE LA INVENCIÓN
Aerogenerador para producción de energía eléctrica con eje horizontal y palas de álabes múltiples giratorios orientables individualmente.
SECTOR DE LA TÉCNICA
La invención se encuadra en el sector técnico de procesos de producción de energía eléctrica a partir de aerogeneradores.
ESTADO DE LA TÉCNICA
Existen en la técnica anterior diversos modelos de aerogeneradores que, en general, precisan de aportación de energía distinta de la eólica para iniciar su rotación. Por otra parte, dichos aerogeneradores se instalan como unidades individuales (sobre torres, por ejemplo) de forma que cada unidad ocupa una superficie importante de suelo y, dado que no es posible adosar unidades individuales, es muy elevada la ocupación de suelo en instalaciones de gran potencia de generación.
Sería deseable disponer de aerogeneradores, para generar energía eléctrica, que no precisasen de aportación de energía distinta de la eólica para iniciar su rotación, y que fuesen lo suficientemente seguros y estables como para poderse adosar unos a otros, aprovechando al máximo la superficie de suelo de la que se disponga, obteniendo así un mejor aprovechamiento de los recursos naturales.
En la patente ES 2387373 del mismo inventor se proporciona un aerogenerador que intenta solucionar los inconvenientes citados. Sin embargo, la forma y fijación de las palas y la configuración del soporte en el que se alojan dichas palas y el eje común a ellas presenta características que suponen una deficiencia de rendimiento que puede ser objeto de mejora.
La presente invención proporciona un aerogenerador que supera los inconvenientes citados.
DESCRIPCIÓN DE LA INVENCIÓN
El aerogenerador de la invención comprende esencialmente unas palas constituidas por una pluralidad de álabes que están unidos por uno de sus extremos a un eje horizontal de giro del aerogenerador estando los extremos de dicho eje horizontal apoyados sobre un prisma hueco troncopiramidal o de otra configuración adecuada cerrado por todas sus caras laterales. Los álabes se distribuyen según planos esencialmente simétricos (planos de palas) respecto al eje de giro del aerogenerador, de manera que cada plano presenta varios álabes paralelos entre sí y cada uno de dichos álabes es orientable individualmente mediante rotación alrededor de un eje de álabe que es perpendicular al eje horizontal de giro del aerogenerador. El número, longitud y dimensiones tanto de las palas como de sus álabes depende de la potencia que se pretenda obtener. El eje horizontal de giro del aerogenerador se apoya en sus extremos sobre dos laterales cerrados del vaso troncopiramidal de cuatro lados a través de sendos elementos estructurales. Alojado en uno de los elementos estructurales se dispondrán los elementos mecánicos (transmisiones, multiplicadores, sistema de freno) necesarios para la producción de energía y el control y operación del aerogenerador. Para dar estabilidad al vaso troncopiramidal se puede colocar una estructura con vigas y pilares metálicos, colocada sobre una cimentación de hormigón armado.
Los álabes de las palas del aerogenerador podrán estar arriostrados entre sí para garantizar, en caso necesario, el movimiento solidario de todos ellos.
Otra disposición posible, si las condiciones del emplazamiento así lo aconsejan, es que los álabes estén totalmente fijos, suprimiéndose el sistema de giro alrededor de los ejes de álabes.
Para aprovechar al máximo la acción del viento que incide directamente sobre los álabes y evitar la pérdida de potencia que podría suponer la exposición al viento de los álabes situados bajo el eje horizontal de giro del aerogenerador, el vaso troncopiramidal está cerrado en todas sus caras laterales. Por ello, el vaso troncopiramidal cubre completamente los álabes del aerogenerador desde el eje horizontal del aerogenerador hacia abajo, esto es, cubre los álabes que se encuentren en la mitad inferior del aerogenerador, de modo que cuando la fuerza del viento incide sobre los álabes que se encuentran en la mitad superior del aerogenerador, éste comienza a girar alrededor de su eje horizontal, al no encontrarse esta fuerza de viento compensada por la parte inferior del aerogenerador. En consecuencia, la presente invención proporciona un aerogenerador que no precisa energía eléctrica para iniciar su movimiento de giro. De este modo, los álabes unidos al eje horizontal del aerogenerador mantendrán su rotación hasta que el viento deje de ejercer su fuerza contra los álabes, o hasta que se decida parar la rotación, pudiendo pararse con un sistema de frenado mecánico que se incorpora en el mecanismo de giro o bien permitiendo que los álabes individuales giren 90° respecto de la dirección del viento ofreciendo de esta manera una mínima superficie de captación de viento y reduciendo por tanto la velocidad de giro, consiguiendo de esta manera y en función del ángulo girado controlar la velocidad de giro y, combinado con el sistema mecánico de frenado, la parada total del mismo.
Para posibilitar el giro individualizado de los álabes, éstos disponen de un doble engranaje en su parte de unión al horizontal de giro del aerogenerador.
El eje horizontal de giro del aerogenerador puede ser de sección circular o prismática con un número de caras adecuado para permitir disponer sobre el mismo diferentes combinaciones de álabes según las necesidades de potencia y los parámetros de exposición al viento.
El aerogenerador de la invención, por su seguridad y estabilidad, permite que se puedan adosar varios aerogeneradores en la dirección del viento, sin que ello afecte a su rendimiento y sin necesidad de guardar una distancia de seguridad entre unos y otros, de modo que en poco espacio se pueden instalar varios aerogeneradores de la invención para producción de energía eléctrica, multiplicando así el aprovechamiento del suelo y de los recursos naturales.
DESCRIPCIÓN DE LOS DIBUJOS
Se procederá a continuación a describir, a título de ejemplo y sin carácter limitativo, una realización preferente de la invención, para una mejor comprensión del aerogenerador para producción de energía eléctrica con álabes giratorios orientables individualmente, con eje horizontal de aerogenerador apoyado en sus extremos sobre elementos estructurales de un vaso troncopiramidal cerrado.
La Figura 1 muestra una perspectiva esquemática del aerogenerador de la invención en la que se observan varios álabes (3) dispuestos en una pala (4) de aerogenerador y unidos al eje horizontal (5) del aerogenerador que está apoyado en sus extremos sobre elementos estructurales (2) situados en los laterales del vaso troncopiramidal (1).
Las Figuras 2.1 y 2.2 muestran versiones simplificadas del aerogenerador de la Figura 1 donde se muestran dos posible configuraciones. La figura 2.1 muestra un modelo con 4 álabes (3) estrechos y largos por cada pala (4), y en la figura 2.2 el mismo aerogenerador con tres álabes (3) más cortos y anchos. En los dos casos, el resto de elementos: vaso (1), mecanismo de giro (6), elementos estructurales de apoyo (2), y eje horizontal (5) de aerogenerador pueden ser los mismos.
La Figura 3 muestra un detalle del eje horizontal de aerogenerador (5) de sección prismática de 6 caras donde se muestra también el doble engranaje (6, 7) que permite el giro de cada álabe. La Figura 4 se muestra una disposición sobre el eje horizontal (5) de aerogenerador formada por tres palas (4), cada una con 4 álabes (3), sobre tres caras del eje prismático hexagonal (5).
La Figura 5 se muestra una disposición sobre el eje horizontal (5) de aerogenerador formada por 6 palas (4) cada una con 4 álabes (3), sobre las seis caras del eje hexagonal (5).
La figura 6 muestra esquemáticamente una disposición de tres aerogeneradores (1) adosados.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En una realización preferente de la invención mostrada en las Figs. 1, 2.1 y 3, el aerogenerador comprende cuatro palas (4) constituida cada una por cuatro álabes (3) paralelos entre sí que están unidos por uno de sus extremos a un eje horizontal de giro (5) del aerogenerador estando los extremos de dicho eje horizontal (5) apoyados sobre dos lados opuestos de un vaso hueco (1) troncopiramidal cerrado por todas sus caras laterales. Los álabes (3) se distribuyen según planos de palas (4) esencialmente simétricos respecto al eje de giro (5) del aerogenerador, de manera que cada plano (4) presenta varios álabes (3) paralelos entre sí y cada uno de dichos álabes (3) es orientable individualmente mediante rotación, a través de doble engranaje (6) y (7) alrededor de un eje longitudinal de álabe que es perpendicular al eje horizontal (5) de giro del aerogenerador. El número, longitud y dimensiones tanto de las palas (4) como de sus álabes (3) depende de la potencia que se pretenda obtener.
El eje horizontal (5) de giro del aerogenerador se apoya en sus extremos sobre dos lados opuestos cerrados del vaso troncopiramidal (1) de cuatro lados a través de sendos elementos estructurales (2), preferentemente situados en el punto medio de dichos dos lados. Alojados en uno de los elementos estructurales (2) se dispondrán los elementos mecánicos (transmisiones, multiplicadores, sistema de freno) necesarios para la producción de energía y el control y operación del aerogenerador. Para dar estabilidad al vaso troncopiramidal (1) se puede colocar una estructura con vigas y pilares metálicos, colocada sobre una cimentación de hormigón armado.
El vaso troncopiramidal (1) cubre con sus lados los álabes (3) del aerogenerador desde el eje horizontal (5) del aerogenerador hacia abajo, esto es, cubre los álabes (3) que se encuentren en la mitad inferior del aerogenerador, es decir dentro del espacio hueco del vaso troncopiramidal (1) de modo que cuando la fuerza del viento incide sobre los álabes (3) que se encuentran en la mitad superior del aerogenerador, éste comienza a girar alrededor de su eje horizontal (5), al no encontrarse esta fuerza de viento compensada por la parte inferior del aerogenerador.
De este modo, los álabes (3) unidos al eje horizontal (5) del aerogenerador mantendrán su rotación alrededor de dicho eje (5) hasta que el viento deje de ejercer su fuerza contra los álabes (3), o hasta que se decida parar la rotación, pudiendo pararse con un sistema de frenado mecánico que se incorpora en el mecanismo de giro o bien permitiendo que los álabes (3) individuales giren 90° respecto de la dirección del viento ofreciendo de esta manera una mínima superficie de captación de viento y reduciendo por tanto la velocidad de giro, consiguiendo de esta manera y en función del ángulo girado controlar la velocidad de giro y, en combinación con el sistema mecánico de frenado, la parada total del mismo.
Para posibilitar el giro individualizado de los álabes, éstos disponen de un doble engranaje (6, 7) en su parte de unión al eje horizontal (5) de giro del aerogenerador. El eje horizontal (5) de giro del aerogenerador puede ser de sección circular o prismática con un número de caras adecuado para permitir disponer sobre el mismo diferentes combinaciones de álabes (3) según las necesidades de potencia y los parámetros de exposición al viento. Para dar estabilidad al vaso troncopiramidal (1) se puede colocar una estructura con vigas y pilares metálicos, colocada sobre una cimentación de hormigón armado.
La invención, por su seguridad y estabilidad, permite que se puedan adosar varios aerogeneradores en la dirección del viento, sin que ello afecte a su rendimiento y sin necesidad de guardar una distancia de seguridad entre unos y otros, de modo que en poco espacio se pueden instalar varios aerogeneradores de la invención para producción de energía eléctrica, multiplicando así el aprovechamiento del suelo y de los recursos naturales.
Una vez descrita la invención, así como una realización preferente de la misma, sólo debe añadirse que son posibles modificaciones respecto a las características indicadas sin apartarse del ámbito de la invención que se define por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Aerogenerador para producción de energía eléctrica que comprende:
- un vaso hueco (1) de forma troncopiramidal cerrado por todas sus caras laterales;
- una pluralidad de palas (4) constituida cada una por varios álabes (3) paralelos entre sí;
- un eje horizontal de giro (5) del aerogenerador que tiene una
sección prismática y está apoyado en sus extremos sobre dos lados opuestos de dicho vaso hueco (1) troncopiramidal a través de elementos estructurales (2); en donde
cada uno de dichos álabes (3) se une por uno de sus extremos a dicho eje horizontal de giro (5) del aerogenerador a través de doble engranaje (6, 7) lo que permite orientar individualmente mediante rotación cada uno de dichos álabes (3) alrededor de un eje longitudinal de dicho álabe que es perpendicular a dicho eje horizontal (5) de giro; en donde
dicho vaso troncopiramidal (1) cubre con sus lados los álabes (3) del aerogenerador situados desde dicho eje horizontal (5) hacia abajo cubriendo así los álabes (3) que se encuentren dentro del espacio hueco del vaso troncopiramidal (1), de modo que cuando la fuerza del viento incide sobre los álabes (3) que se encuentran en la mitad superior del aerogenerador, éste comienza a girar alrededor de su eje horizontal (5), al no encontrarse esta fuerza de viento compensada por la parte inferior del aerogenerador.
2. El aerogenerador de las reivindicaciones anteriores, en el que la rotación de cada uno de dichos álabes (3) alrededor de un eje longitudinal de cada álabe puede ser de hasta 90°.
3. El aerogenerador de las reivindicaciones anteriores, en el que el número, superficie unitaria y dimensiones de dichos álabes y la disposición de dichos álabes sobre dicho eje horizontal (5) pueden variarse para obtener un amplio campo de aplicación y rango de potencias.
4. El aerogenerador de las reivindicaciones anteriores, en el que dicho apoyo de dicho eje horizontal (5) por sus extremos sobre dos lados opuestos de dicho vaso hueco (1) troncopiramidal a través de elementos estructurales (2) se realiza en los puntos medios de dichos dos lados opuestos.
5. El aerogenerador de las reivindicaciones anteriores, en el que dicho vaso troncopiramidal (1) se coloca sobre una estructura con vigas y pilares metálicos colocada sobre una cimentación de hormigón armado.
PCT/ES2014/070774 2013-10-30 2014-10-13 Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos WO2015063354A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14857250.6A EP3064769B1 (en) 2013-10-30 2014-10-13 Improved wind turbine for production of electrical power with multiple-blade vanes and horizontal shaft supported at the ends
PCT/ES2014/070774 WO2015063354A1 (es) 2013-10-30 2014-10-13 Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos
RU2016120668A RU2016120668A (ru) 2013-10-30 2014-10-13 Усовершенствованная ветряная турбина для производства электрической энергии с лопастями, состоящими из множества лопаток, и горизонтальным валом, поддерживаемым на концах
CA2929299A CA2929299A1 (en) 2013-10-30 2014-10-13 Improved wind turbine for production of electric power with multiple-blade vanes and horizontal shaft supported at the ends
MX2016005430A MX2016005430A (es) 2013-10-30 2014-10-13 Aerogenerador mejorado para produccion de energia electrica con palas de alabes multiples y eje horizontal apoyado sobre los extremos.
AU2014343570A AU2014343570A1 (en) 2013-10-30 2014-10-13 Improved wind turbine for production of electrical power with multiple-blade vanes and horizontal shaft supported at the ends
CN201480059083.XA CN105705784A (zh) 2013-10-30 2014-10-13 具有多块叶片构成的多块平板、支撑横向轴端部、并且用于发电的改良风力涡轮机

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES201300927U ES1096780Y (es) 2013-10-30 2013-10-30 Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos
ESU201300927 2013-10-30
PCT/ES2014/070774 WO2015063354A1 (es) 2013-10-30 2014-10-13 Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos

Publications (1)

Publication Number Publication Date
WO2015063354A1 true WO2015063354A1 (es) 2015-05-07

Family

ID=49727280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070774 WO2015063354A1 (es) 2013-10-30 2014-10-13 Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos

Country Status (10)

Country Link
EP (1) EP3064769B1 (es)
CN (1) CN105705784A (es)
AU (1) AU2014343570A1 (es)
CA (1) CA2929299A1 (es)
CL (1) CL2016001018A1 (es)
ES (1) ES1096780Y (es)
MX (1) MX2016005430A (es)
PT (1) PT3064769T (es)
RU (1) RU2016120668A (es)
WO (1) WO2015063354A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264754A (en) * 1992-03-04 1993-09-08 Zoysa Garumuni Newton De A wind turbine.
GB2444334A (en) * 2006-12-02 2008-06-04 Benjamin Christopher Collins Shrouded wind turbine
ES2387373A1 (es) 2009-02-13 2012-09-20 Ricardo Morcillo Molina Molino eólico para producción de energía eléctrica con aspas, y eje horizontal apoyado sobre los extremos.
WO2012172443A1 (en) * 2011-06-15 2012-12-20 Bosello Marco Wind plant with horizontal or vertical main axis
US20130033043A1 (en) * 2011-08-02 2013-02-07 Ching Yuan Huang Wind turbine generator set

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB110850A (en) * 1917-01-26 1917-11-08 Jesse Clements New or Improved Wind Operated Motive Power Apparatus.
US2409439A (en) * 1944-09-19 1946-10-15 Thomas E Law Wind power plant
CN2095949U (zh) * 1991-04-28 1992-02-12 徐子瑜 开收式帆轮机
ITMC20120074A1 (it) * 2012-09-06 2012-12-06 Ambrosio Giuseppe D Turbina multi pale con nucleo centrale a sezione poligonale.
CN202900534U (zh) * 2012-11-17 2013-04-24 大连天力风能开发有限公司 多叶式卧式海上风力发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264754A (en) * 1992-03-04 1993-09-08 Zoysa Garumuni Newton De A wind turbine.
GB2444334A (en) * 2006-12-02 2008-06-04 Benjamin Christopher Collins Shrouded wind turbine
ES2387373A1 (es) 2009-02-13 2012-09-20 Ricardo Morcillo Molina Molino eólico para producción de energía eléctrica con aspas, y eje horizontal apoyado sobre los extremos.
WO2012172443A1 (en) * 2011-06-15 2012-12-20 Bosello Marco Wind plant with horizontal or vertical main axis
US20130033043A1 (en) * 2011-08-02 2013-02-07 Ching Yuan Huang Wind turbine generator set

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064769A4

Also Published As

Publication number Publication date
MX2016005430A (es) 2017-04-27
ES1096780Y (es) 2014-03-21
CN105705784A (zh) 2016-06-22
EP3064769B1 (en) 2019-08-21
EP3064769A4 (en) 2017-08-02
RU2016120668A (ru) 2017-11-30
CL2016001018A1 (es) 2017-06-23
CA2929299A1 (en) 2015-05-07
EP3064769A1 (en) 2016-09-07
ES1096780U (es) 2013-12-26
AU2014343570A1 (en) 2016-06-16
PT3064769T (pt) 2019-06-05

Similar Documents

Publication Publication Date Title
ES2715108T3 (es) Estructura de soporte flotante en mar abierto y conectada a anclajes a través de medios de refuerzo para aerogeneradores, estaciones de servicio o estaciones de conversión
ES2632643T3 (es) Turbina eólica
AR038493A1 (es) Planta de energia eolica y procedimiento para la ereccion de una planta de energia eolica
US20180010574A1 (en) Wind Turbine System
WO2015009175A1 (es) Generador eólico con palas de ángulo diedro psp
ES2285912B1 (es) Generador eolico de palas verticales moviles, que giran alrededor del mastil y a su vez sobre si mismas.
ES2381080B1 (es) Dispositivo de iluminacion de rayos solares de tipo con reflector-receptor ("beam-down")
WO2015063354A1 (es) Aerogenerador mejorado para producción de energía eléctrica con palas de álabes múltiples y eje horizontal apoyado sobre los extremos
US20170306924A1 (en) Wind turbine for the production of electric power with multiple-blade vanes and horizontal shaft supperted at the ends
WO2017068225A1 (es) Torre eolica multi-plataforma
WO2009121977A1 (es) Seguidor solar
KR20110094833A (ko) 집수기를 갖는 파 력 발전기와 집 풍기를 갖는 풍력 발전기와 태양 광 발전기의 하이브리드 방식
ES2345242B1 (es) Pala concava para aerogenerador.
WO2014136597A1 (ja) 発電用の風車
ES2387373B1 (es) Molino eólico para producción de energía eléctrica con aspas, y eje horizontal apoyado sobre los extremos.
ES2624727B1 (es) Aerogenerador eje doble sistema de captación
ES2477115A1 (es) Generador eólico de eje vertical
ES1226375U (es) Aerogenerador para la producción de energía eléctrica con álabes en forma de cruz gamada
RU143619U1 (ru) Ветроэнергетическая установка трансформерного типа
ES2373597B1 (es) Dispositivo aerogenerador vertical.
RU2504686C1 (ru) Поливиндроторный энергокомплекс материкового назначения
ES2392067B1 (es) Central marina braceante.
RU2008122319A (ru) Ветроэнергетическая установка
ES2316254B1 (es) Estructura para seguidor solar espacial de captacion de energia solar.
ES2879293T3 (es) Central de energía eólica con un rotor vertical y una construcción de superficie de ingreso

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005430

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2929299

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009292

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014857250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016120668

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 16140409

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: IDP00201603624

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014343570

Country of ref document: AU

Date of ref document: 20141013

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016009292

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160426