WO2015062157A1 - 一种利用微藻处理油田污水和固定co2的方法 - Google Patents

一种利用微藻处理油田污水和固定co2的方法 Download PDF

Info

Publication number
WO2015062157A1
WO2015062157A1 PCT/CN2014/000327 CN2014000327W WO2015062157A1 WO 2015062157 A1 WO2015062157 A1 WO 2015062157A1 CN 2014000327 W CN2014000327 W CN 2014000327W WO 2015062157 A1 WO2015062157 A1 WO 2015062157A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
sewage
oil
oilfield sewage
oilfield
Prior art date
Application number
PCT/CN2014/000327
Other languages
English (en)
French (fr)
Inventor
张建
王海峰
丁慧
邓波
孙广领
黄文升
Original Assignee
中石化石油工程设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中石化石油工程设计有限公司 filed Critical 中石化石油工程设计有限公司
Publication of WO2015062157A1 publication Critical patent/WO2015062157A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention belongs to the field of oilfield sewage treatment and new material energy, and particularly relates to a method for treating oil field sewage and fixing CO 2 by using microalgae.
  • BACKGROUND OF THE INVENTION The greenhouse effect is the biggest environmental problem facing all centuries in the 21st century. Industrial development has led to a large number of (0 2 emissions into the atmosphere, only the maximum absorption of C0 2 can coordinate economic development and environmental issues.
  • C0 2 fixed emission reduction technology can be divided into physical processing, chemical processing and biological fixation three.
  • the method wherein the biological fixation, photosynthesis may microalgae can be synthesized by using a large amount of C0 2 biological substances such as proteins, starch, vitamins, and lipids.
  • microalgae and having a high photosynthetic rate, fast reproduction, environmental adaptation It has strong advantages, high processing efficiency and easy integration with other engineering technologies. It can be applied to (0 2 fixed. In order to realize the industrialized microalgae co 2 fixation, many domestic and foreign enterprises and research institutions have made many beneficial attempts. As early as 199 Q, the Ministry of International Trade and Industry of Japan had funded a project called the Earth Research Update Technology Program, which uses microalgae to absorb carbon dioxide from the flue gas of thermal power plants to produce biomass energy. A total of more than 20 private companies and government research institutes participated in the investment of about 2.5 billion US dollars in 10 years. Screening, photosynthetic bioreactor development, microalgae biomass energy production, etc.
  • the system will capture C0 2 from the flue gas emitted by Honeywell's manufacturing facility in Hopewell, Virginia, and then extract biofuel from the cultured microalgae, which is converted to pyrolysis oil. Used for power regeneration; industrial gas giant Linde Group and Algenol Biofuels LLC of the United States also collaborated in 2010 to develop a technology for capturing, storing, transporting and supplying carbon dioxide for Algenol production of third generation (3G) biofuels.
  • 3G third generation
  • the company's patented technology uses biofuels from carbon dioxide, seawater and algae.
  • AlgaeLink NV is one of the leaders in the European alternative fuel industry.
  • the object of the present invention is a method for treating oil field sewage and solid carbon dioxide by using microalgae, combining microalgae carbon-fixing biodiesel with oil field sewage re-injection treatment, and adopting micro-algae cultured by biological de-oil treatment
  • the microfiltration method is used to realize the micro-algae harvesting and the oilfield sewage deep treatment.
  • the method utilizes biological and algae to treat oil field sewage, absorb fixed C 0 2 and prepare biodiesel coupling treatment, and proceeds according to the following steps: a. using dissolved air flotation to the oil field The sewage from the sewage combined station oil field is subjected to biological deoiling pretreatment.
  • the oil field sewage after removing most of the crude oil by air flotation enters the aerobic biological degreasing treatment system to further remove the crude oil, and the N, P nutrient salt is added during the aerobic biological degreasing process.
  • the crude oil contained in the oil field sewage is less than 2mg/L;
  • the oil field sewage grows to a microalgae with a density of 107 ml or more and a grease ratio of 20% or more, further purifying the pollutants; c.
  • the oil field sewage after the step b is treated by the track microalgae culture system
  • the microfiltration system is sent, and the micro-algae is collected by the micro-filtration membrane to filter the sewage while the micro-algae is collected by the micro-filtration membrane.
  • the algae is crushed by a filter press to form a algae cake.
  • the micro-filter produces clean water and is re-injected after sterilization and deoxidation. Drive oil into low-permeability or low-permeability reservoirs.
  • the screening rate of the bactericide is 5%-25% based on the volume ratio of the microalgae concentrate, and the clean water is 75°/. -95%; that is, the volume ratio microalgae concentrate accounts for 5%-25%, and the clean water accounts for 75%-95%,
  • the “Regulations for the Purification of Fungicides for Oilfield Water Injection Treatment” was carried out by SY/T6007-94, and the evaluation of fungicides was carried out according to the test method specified in “Fungicide Performance Evaluation Method” SY/T5890-93.
  • FIG. 1 is a schematic flow chart of an embodiment of the present invention.
  • the method is a method for treating oil field sewage, absorbing fixed co 2 and preparing biodiesel by biological method and algae.
  • Example 1 a. Using the dissolved air flotation method to carry out biological deoiling pretreatment of oilfield sewage in the oilfield sewage combined station, and the oilfield sewage after removing most of the crude oil by air flotation enters the aerobic biological degreasing treatment system to further remove crude oil, aerobic biological degreasing
  • N: P 100: 5: 1 by weight, the addition of ⁇ P nutrient salt, after the aerobic biological treatment, the oil contained in the oil field sewage 4 ⁇ 2mg / L;
  • b a step after treatment
  • the oil field sewage directly flows into the track-type microalgae culture system, and then the flue gas with a C0 2 content of 3% is directly charged into the track-type microalgae culture system through the aeration system to provide a carbon
  • the oil field sewage grows to density. 107ml or more, and containing more than 20% fat rate algal strains; strains of water remaining in the oil by using N, P nutrients and C0 2 in the flue gas for growth, purification and sewage field to achieve a fixed C0 2; C, of b Step by track
  • the oil field sewage treated by the algae culture system is sent to the microfiltration system, using a ceramic microfiltration membrane with a cross-flow microfiltration method with a cross-flow rate of 25% (ie, a volume ratio of 5% of the microalgae concentrate and 95% of the clean water).
  • the microalgae is collected while filtering the sewage.
  • a step of the treated oil field sewage directly into the track-type algae cultivation system, and then the flue gas with a C0 2 content of 15% is directly charged into the track-type microalgae culture system through the aeration system to grow the microalgae
  • a carbon source adding a high-fat, high-resistance algae plant that can grow well in oil field sewage after biological degreasing, and has a seeding density of 10 5 /ml, after 5 Growing in the sky, the oil field sewage grows to a density of 107ml or more, and the oil content contains more than 20% of the algae strain; the algae strain uses the residual N, P nutrient salt in the oil field sewage and C0 2 in the flue gas to grow, realizing oil field sewage purification Fixed with C0 2 ; c.
  • the oil field sewage treated by the track microalgae culture system in step b is sent to the microfiltration system, and the ceramic microfiltration membrane is used at a cross flow rate of 5% (ie, the volume ratio microalgae concentrate accounts for 25°). /., Separate clean water accounted for 75%).
  • the cross-flow microfiltration method collects the microalgae while filtering the sewage.
  • the algae is crushed by a filter press to form a algae cake.
  • the microfiltration produces clean water and is resterilized and deoxygenated.
  • Driving oil into low-permeability or low-permeability reservoirs Example 3:
  • b a step of the treated oil field sewage directly into the track microalgae culture system, and then the flue gas with C0 2 content of 10% is directly charged into the track microalgae through the inflation system.
  • Nutrient system providing carbon source for microalgae growth, adding algae strain which can grow well in oil field sewage after biological degreasing, has high oil content and high resistance, and has a seeding density of 10 5 At /ml, after 10 days of growth, the oil field sewage grows to a density of 107ml or more, and the oil content is more than 20% of the algae strain; the algae strain utilizes residual N, P nutrient salts in the oil field sewage and C0 2 in the flue gas Carrying out growth, realizing oil field sewage purification and C0 2 fixation; c, sending the oil field sewage treated by the track microalgae culture system to the microfiltration system, using a ceramic microfiltration membrane with a cross flow rate of 15% (ie volume ratio) Microalgae concentrate accounts
  • Example 4 a. Using the dissolved air flotation method to carry out biological deoiling pretreatment of the oilfield sewage in the oilfield sewage combined station, and the oilfield sewage after removing most of the crude oil by air flotation enters the aerobic biological degreasing treatment system to further remove the crude oil.
  • the nutrient salt is added, and the crude oil contained in the oil field sewage after aerobic biological treatment is at 2 mg/L; b, a step
  • the treated oil field sewage directly flows into the track-type microalgae culture system, and then the flue gas with a C0 2 content of 9% is directly charged into the track-type microalgae culture system through the inflation system to provide a carbon source for the microalgae growth.
  • the channel type microalgae culture system is added with an algae strain which can grow well in oil field sewage after biological degreasing, and has high oil content and high resistance.
  • the inoculation density is 10 5 /ml
  • oil field sewage It grows to a density of 107ml or more and has a grease ratio of 20°/.
  • the b-stage oil field sewage treated by the track microalgae culture system is sent to the microfiltration system, using ceramics
  • the microfiltration membrane collects microalgae while collecting the micro-algae at a cross-flow microfiltration method with a cross-flow rate of 15% (ie, 15% by volume of microalgae concentrate and 85% of clean water).
  • the algae is pressed by a filter press. After being filtered, the algae cake is prepared, and the micro-filter produces clean water, which is sterilized, deoxidized, and then injected back into the low-permeability or medium-low permeability reservoir to drive the oil.
  • the embodiment realizes the comprehensive utilization of oil field sewage treatment, C0 2 fixation and biodiesel coupling, and the social and economic benefits are more prominent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供一种利用微藻处理油田污水和固定CO2的方法,该方法按如下步骤进行:a、利用溶气气浮对油田污水联合站油田污水进行生物除油预处理,经气浮去除大部分原油后的油田污水进入好氧生物除油处理***进一步去除原油,好氧生物除油过程中加入N、P营养盐,好氧生物处理后油田污水中含有的原油低于2mg/L;b、a步骤经处理后的油田污水中直接流入赛道式微藻培养***,然后通入CO2含量为3%-15%的烟道气,赛道式微藻培养***中加入微藻藻种,经过5-15天生长;c、将b步骤经赛道式微藻培养***处理后的油田污水送微滤***,采用陶瓷微滤膜以错流微滤方式收集微藻的同时过滤污水,藻泥用压滤机压滤后制成藻饼,微滤产干净水经杀菌、脱氧后回注到低渗透或中低渗透油藏地层驱油。

Description

一种利用微藻处理油田污水和固定 C02的方法
技术领域: 本发明属于油田污水处理与新生物质能源领域, 特别涉及一种 利用微藻处理油田污水和固定 C02的方法。 背景技术: 温室效应是 21 世纪全人类所面临的最大环境问题。 工业发展 导致大量(:02排放到大气中, 只有最大限度的吸收转化 C02才能协调 好经济发展与环境间问题。 目前 C02的固定减排技术可以分为物理 处理、 化学处理及生物固定三类。 其中生物固定方法中, 微藻可在 光合作用下, 可利用 C02合成大量的生物物质, 如蛋白质、 淀粉、 维 生素及脂质。 且微藻具有光合速率高、 繁殖快、 环境适应性强、 处 理效率高以及易与其它工程技术集成等优点, 可应用于(02的固定。 为了实现产业化的微藻 co2固定,国内外众多企业和研究机构进 行了许多有益的尝试。 早在 199 Q年, 日本国际贸易和工业部就曾资 助一项名为 "地球研究更新技术计划" 的项目, 利用微藻吸收火力 发电厂烟气中的二氧化碳来生产生物质能源。 该项计划共有大约 20 多个私人公司和政府的研究机构参与, 10年间共投资约 25亿美元, 在减排藻种筛选、 光合生物反应器开发、 微藻生物质能源生产等方 面的工作都卓有成效; 美国绿色燃料技术公司 (GreenFuel)和亚利桑 那公共服务公司于 2007年 12月在西班牙西南部开展的微藻减排项 目,利用水泥厂工业废气中的 C02进行微藻培养并开发高附加值的食 品、 饲料和燃料, 目前已建立 100m2的培养温室以垂直薄膜光生物反 应器进行微藻培养,并计划扩大到 1000m2规模;美国 U0P公司于 2010 年 3月获美国能源部 150万美元的资助, 开展通过微藻生长捕集 C02 及用于生产生物燃料和能源的***验证, 该***将从霍尼韦尔公司 位于弗吉尼亚州 Hopewell 的制造装置排放的烟气中捕集 C02, 然后 从培养的微藻中提取生物燃料, 微藻残渣则转化成热解油用于电力 再生; 工业气体巨头德国林德集团与美国 Algenol Biofuels LLC 公司也于 2010年合作发展一种捕获、 存储、 运输及供给二氧化碳的 技术, 应用于 Algenol生产第三代(3G)生物燃料。 该公司所拥有的 这项专利技术是利用二氧化碳、 海水以及藻类生物中提取生物燃料。 AlgaeLink NV公司是欧洲可替代燃料业界的领头羊之一, 2007年底, 宣布开发出世界上第一个不用预制管制造、 而是用特制 UV防护透明 薄片做成的专利海藻光生物反应器*** ( photobioreactor systems for algae ) 。 此光反应***可以 4艮容易地自动折叠收入一个坚固耐 用、 直径为 64cm的圆形管中, 这个管子能自动将水封紧。 应用这一 技术, 运费成本将减少 90%。 AlgaeLink NV公司在开发此项技术的 三年中, 在藻类科学的研究、 微藻生产***设计操作等方面也都取 得了极大的进展。 利用微藻进行 C02气体固定减排虽然在理论上已日趋成熟,也有 众多企业和机构也都进行了有益的尝试, 但要真正实现规模化应用 仍有不少困难, 原因之一在于成本太高。 所以微藻 C02气体固定减排 技术的发展趋势是微藻 C02气体固定减排和生物柴油、废水处理等其 他技术偶合起来进行综合利用, 在获得其他高附加值产品的同时减 少成本。 发明内容: 本发明的目的是一种利用微藻处理油田污水和固二氧化碳的方 法, 把微藻固碳制生物柴油与油田污水回注处理结合起来, 通过利 用生物除油处理后的污水养殖微藻, 通过采用微滤方法实现微藻的 采收和油田污水深度处理, 再经杀菌、 脱氧后为低渗透和中低渗透 油藏驱油提供合格的回注水, 实现油田污水处理、 co2固定和制取生 物柴油耦合综合利用。 本发明的目的可通过如下技术措施来实现: 该方法利用生物和 1藻处理油田污水、吸收固定 C 02和制取生物 柴油耦合处理, 按如下步驟进行: a、 利用溶气气浮对油田污水联合站油田污水进行生物除油预处 理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理系 统进一步去除原油, 好氧生物除油过程中加入 N、 P营养盐, 好氧生 物处理后油田污水中含有的原油低于 2mg/L;
b、 a步骤经处理后的油田污水中直接流入赛道式微藻培养***, 然后通入 C02含量为 3%-15%的烟道气, 赛道式微藻培养***中加入 微藻藻种, 经过 5-15天生长, 油田污水中长到密度 107ml以上、 且含油脂率 20%以上的微藻, 进一步净化污染物; ; c、将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 微滤产干净水经杀菌、 脱氧后回注到 低渗透或中低渗透油藏地层驱油。 杀菌剂的筛选根据即体积比微藻浓缩液占 5%-25%, 分离干净水 占 75°/。-95%;即体积比微藻浓缩液占 5%-25%,分离干净水占 75%-95%、 《油田注水水质处理用杀菌剂采购规定》 SY/T6007- 94进行, 杀菌 剂的评价根据 《杀菌剂性能评价方法》 SY/T5890-93中规定的试验 方法进行。 按照 《油田注水脱氧设计规范标准》 S/T0 46-1999的规 定进行脱氧处理。 。 本发明的目的还可通过如下技术措施来实现: 上述 c步骤所述的错流率为 5%- 25%, 即体积比微藻浓缩液占 5%-25%, 分离干净水占 75%- 95%; a步骤所述的生物除油过程中按 TOC: N: P = 100: 5-10 : 1重量份配比加入 ^ P营养盐; 当 a步骤 所述的生物除油过程中按 TOC: N: P = 100: 7-8 : 1重量份配比加入 N、 P营养盐, 效果更好, 更经济。 本发明把 藻固碳制生物柴油与油田污水回注处理有机的结合 起来, 通过利用生物除油处理后的污水养殖微藻, 通过采用微滤方 法实现微藻的采收和油田污水深度处理, 再经杀菌、 脱氧后为低渗 透和中低渗透油藏驱油提供合格的回注水, 实现油田污水处理、 C02 固定和制取生物柴油耦合综合利用, 具有很好的社会效益和经济效 益。 附图说明: 图 1为本发明实施例的流程示意图。 具体实施方式: 该方法是利用生物法和敖藻处理油田污水、吸收固定 co2和制取 生物柴油耦合处理的方法。 实施例 1: a、 利用溶气气浮法对油田污水联合站油田污水进行生物除油预 处理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理 ***进一步去除原油, 好氧生物除油过程中按 TOC: N: P = 100: 5: 1 重量份配比加入 ^ P营养盐, 好氧生物处理后油田污水中含有的原 油 4氐于 2mg/L; b、 a步骤经处理后的油田污水中直接流入赛道式微藻培养***, 然后将 C02含量为 3%的烟道气通过充气***直接充入赛道式微藻培 养***, 为微藻生长提供碳源, 在赛道式微藻培养***中加入能够 在生物除油后油田污水中生长良好, 具有高含油脂、 高抗逆性的藻 株, 接种密度为 105个 /ml 时, 经过 15天生长, 油田污水中长到密 度 107ml 以上、 且含油脂率 20%以上的藻株; 藻株利用油田污水中 残余的 N、 P营养盐和烟道气中 C02进行生长, 实现油田污水净化与 C02固定; c、 将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流率为 25% (即体积比微藻浓缩液占 5%, 分离干净水占 95% ) 的错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 敖滤产干净水经杀菌、 脱氧后回注到 低渗透或中低渗透油藏地层驱油。 实施例 2: a、 利用溶气气浮法对油田污水联合站油田污水进行生物除油预 处理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理 ***进一步去除原油, 好氧生物除油过程中按 TOC: N: P = 100: 10 : 1重量份配比加入 ^ P营养盐, 好氧生物处理后油田污水中含有的 原油低于 2mg/L;
b、 a步骤经处理后的油田污水中直接流入赛道式 ^藻培养***, 然后将 C02含量为 15%的烟道气通过充气***直接充入赛道式微藻培 养***, 为微藻生长提供碳源, 在赛道式微藻培养***中加入能够 在生物除油后油田污水中生长良好, 具有高含油脂、 高抗逆性的藻 株, 接种密度为 105个 /ml 时, 经过 5天生长, 油田污水中长到密度 107ml以上、 且含油脂率 20%以上的藻株; 藻株利用油田污水中残 余的 N、 P营养盐和烟道气中 C02进行生长, 实现油田污水净化与 C02 固定; c、 将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流率为 5% (即体积比微藻浓缩液占 25°/。, 分离干净水占 75% ) 的错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 微滤产干净水经杀菌、 脱氧后回注到 低渗透或中低渗透油藏地层驱油。 实施例 3:
a、 利用溶气气浮法对油田污水联合站油田污水进行生物除油预 处理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理 ***进一步去除原油, 好氧生物除油过程中按 TOC: N: P = 100: 8: 1 重量份配比加入 ^ P营养盐, 好氧生物处理后油田污水中含有的原 油 氐于 2mg/L;
b、 a步骤经处理后的油田污水中直接流入赛道式微藻培养***, 然后将 C02含量为 10%的烟道气通过充气***直接充入赛道式微藻培 养***, 为微藻生长提供碳源, 在赛道式微藻培养***中加入能够 在生物除油后油田污水中生长良好, 具有高含油脂、 高抗逆性的藻 株, 接种密度为 105个 /ml 时, 经过 10天生长, 油田污水中长到密 度 107ml 以上、 且含油脂率 20%以上的藻株; 藻株利用油田污水中 残余的 N、 P营养盐和烟道气中 C02进行生长, 实现油田污水净化与 C02固定; c、 将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流率为 15% (即体积比微藻浓缩液占 15%, 分离干净水占 85% ) 的错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 微滤产干净水经杀菌、 脱氧后回注到 低渗透或中低渗透油藏地层驱油。 实施例 4: a、 利用溶气气浮法对油田污水联合站油田污水进行生物除油预 处理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理 ***进一步去除原油, 好氧生物除油过程中按 TOC: N: P = 100: 7: 1 重量份配比加入 ^ P营养盐, 好氧生物处理后油田污水中含有的原 油 氐于 2mg/L; b、 a步骤经处理后的油田污水中直接流入赛道式微藻培养***, 然后将 C02含量为 9%的烟道气通过充气***直接充入赛道式微藻培 养***, 为微藻生长提供碳源, 在赛道式微藻培养***中加入能够 在生物除油后油田污水中生长良好, 具有高含油脂、 高抗逆性的藻 株, 接种密度为 105个 /ml 时, 经过 10天生长, 油田污水中长到密 度 107ml 以上、 且含油脂率 20°/。以上的藻株; 藻株利用油田污水中 残余的 N、 P营养盐和烟道气中 C02进行生长, 实现油田污水净化与 C02固定; c、 将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流率为 15% (即体积比微藻浓缩液占 15%, 分离干净水占 85% ) 的错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 微滤产干净水经杀菌、 脱氧后回注到 低渗透或中低渗透油藏地层驱油。 该实施例在实现油田污水处理、 C02固定和制取生物柴油耦合综 合利用发明, 社会效益和经济效益更突出。

Claims

WO 2015/062157 权 利 要 求 书 PCT/CN2014/000327
1、 一种利用微藻处理油田污水和固定(02的方法, 其特征在于 该方法按如下步骤进行: a、 利用溶气气浮对油田污水联合站油田污水进行生物除油预处 理, 经气浮去除大部分原油后的油田污水进入好氧生物除油处理系 统进一步去除原油, 好氧生物除油过程中加入 N、 P营养盐, 好氧生 物处理后油田污水中含有的原油低于 2mg/L; b、 a步骤经处理后的油田污水中直接流入赛道式 :藻培养***, 然后通入 C02含量为 3%-15°/。的烟道气, 赛道式微藻培养***中加入 微藻藻种, 经过 5- 15 天生长, 油田污水中长到密度 107/ml 以上、 且含油脂率 20%以上的微藻; c、将 b步骤经赛道式微藻培养***处理后的油田污水送微滤系 统, 采用陶瓷微滤膜以错流微滤方式收集微藻的同时过滤污水, 藻 泥用压滤机压滤后制成藻饼, 微滤产干净水经杀菌、 脱氧后回注到 低渗透或中^ ί氐渗透油藏地层驱油。
2、 根据权利 1所述的一种利用微藻处理油田污水和固定 C02的 方法, 其特征在于 c步骤所述的错流率为 5%- 25°/。。
3、 根据权利 1所述的一种利用微藻处理油田污水和固定 C02的 方法, 其特征在于 a步骤所述的生物除油过程中按 TOC: N: P = 100: 5-10 : 1重量份配比加入 ^ P营养盐。
4、 根据权利 1所述的一种利用微藻处理油田污水和固定 C02的 方法, 其特征在于 a步驟所述的生物除油过程中按 TOC: N: P = 100: 7-8 : 1重量份配比加入 P营养盐。
PCT/CN2014/000327 2013-10-29 2014-03-26 一种利用微藻处理油田污水和固定co2的方法 WO2015062157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310519233.8A CN104556547A (zh) 2013-10-29 2013-10-29 一种利用微藻处理油田污水和固定co2的方法
CN201310519233.8 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015062157A1 true WO2015062157A1 (zh) 2015-05-07

Family

ID=53003218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000327 WO2015062157A1 (zh) 2013-10-29 2014-03-26 一种利用微藻处理油田污水和固定co2的方法

Country Status (2)

Country Link
CN (1) CN104556547A (zh)
WO (1) WO2015062157A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162497A1 (it) * 2016-03-23 2017-09-23 Maurizio Giannotti Tecnologia per la produzione intensiva di alghe per biocarburanti e la contestuale depurazione dei liquami
CN113371929A (zh) * 2021-05-28 2021-09-10 河海大学 一种厨房污水资源化处理装置
CN114455785A (zh) * 2022-04-13 2022-05-10 中建八局发展建设有限公司 一种海洋平台生活污水处理装置与方法
CN115638820A (zh) * 2022-10-17 2023-01-24 安徽省金鼎安全科技股份有限公司 火力发电厂废气处理的微藻固碳工艺
WO2023200581A1 (en) * 2022-04-12 2023-10-19 Saudi Arabian Oil Company Using water ponds for capturing carbon dioxide and growing algae

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107651811B (zh) * 2017-10-05 2020-07-14 深水海纳水务集团股份有限公司 一种市政污水处理工艺
CN114100361B (zh) * 2021-11-03 2022-09-23 中国科学院武汉岩土力学研究所 一种污水处理厂曝气池co2捕集利用***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056408A (ja) * 2007-08-31 2009-03-19 Shimizu Corp 二酸化炭素固定兼淡水製造方法及び二酸化炭素固定兼淡水製造装置
CN101654313A (zh) * 2009-09-15 2010-02-24 哈尔滨工业大学水资源国家工程研究中心有限公司 利用高级氧化对污水进行预处理培养工程微藻进行污水深度处理和二氧化碳减排的方法
CN101898854A (zh) * 2010-07-09 2010-12-01 胜利油田胜利勘察设计研究院有限公司 一种高含硫低渗透油藏采出污水处理方法及装置
CN101955846A (zh) * 2010-10-15 2011-01-26 哈尔滨工业大学 基于生活污水低碳排放资源化的微藻油脂生产方法
US20110266215A1 (en) * 2010-06-23 2011-11-03 AlgEvolve, LLC Advanced biologic water treatment using algae
CN103043851A (zh) * 2012-12-14 2013-04-17 新昌县冠阳技术开发有限公司 一种串联微藻培养-絮凝澄清-过滤的水处理方法
US20130102055A1 (en) * 2011-10-20 2013-04-25 Board Of Regents, The University Of Texas System Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions
CN103112993A (zh) * 2013-01-31 2013-05-22 胜利油田胜利勘察设计研究院有限公司 一种利用微藻处理油田污水和固定co2的方法
CN103304093A (zh) * 2013-05-22 2013-09-18 北京工业大学 一种市政污水深度脱氮除磷的装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056408A (ja) * 2007-08-31 2009-03-19 Shimizu Corp 二酸化炭素固定兼淡水製造方法及び二酸化炭素固定兼淡水製造装置
CN101654313A (zh) * 2009-09-15 2010-02-24 哈尔滨工业大学水资源国家工程研究中心有限公司 利用高级氧化对污水进行预处理培养工程微藻进行污水深度处理和二氧化碳减排的方法
US20110266215A1 (en) * 2010-06-23 2011-11-03 AlgEvolve, LLC Advanced biologic water treatment using algae
CN101898854A (zh) * 2010-07-09 2010-12-01 胜利油田胜利勘察设计研究院有限公司 一种高含硫低渗透油藏采出污水处理方法及装置
CN101955846A (zh) * 2010-10-15 2011-01-26 哈尔滨工业大学 基于生活污水低碳排放资源化的微藻油脂生产方法
US20130102055A1 (en) * 2011-10-20 2013-04-25 Board Of Regents, The University Of Texas System Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions
CN103043851A (zh) * 2012-12-14 2013-04-17 新昌县冠阳技术开发有限公司 一种串联微藻培养-絮凝澄清-过滤的水处理方法
CN103112993A (zh) * 2013-01-31 2013-05-22 胜利油田胜利勘察设计研究院有限公司 一种利用微藻处理油田污水和固定co2的方法
CN103304093A (zh) * 2013-05-22 2013-09-18 北京工业大学 一种市政污水深度脱氮除磷的装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162497A1 (it) * 2016-03-23 2017-09-23 Maurizio Giannotti Tecnologia per la produzione intensiva di alghe per biocarburanti e la contestuale depurazione dei liquami
CN113371929A (zh) * 2021-05-28 2021-09-10 河海大学 一种厨房污水资源化处理装置
WO2023200581A1 (en) * 2022-04-12 2023-10-19 Saudi Arabian Oil Company Using water ponds for capturing carbon dioxide and growing algae
CN114455785A (zh) * 2022-04-13 2022-05-10 中建八局发展建设有限公司 一种海洋平台生活污水处理装置与方法
CN115638820A (zh) * 2022-10-17 2023-01-24 安徽省金鼎安全科技股份有限公司 火力发电厂废气处理的微藻固碳工艺
CN115638820B (zh) * 2022-10-17 2024-06-11 安徽省金鼎安全科技股份有限公司 火力发电厂废气处理的微藻固碳工艺

Also Published As

Publication number Publication date
CN104556547A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2015062157A1 (zh) 一种利用微藻处理油田污水和固定co2的方法
Molazadeh et al. The use of microalgae for coupling wastewater treatment with CO2 biofixation
Wang et al. Microalgae cultivation and culture medium recycling by a two-stage cultivation system
Heubeck et al. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond
CN101767893B (zh) 利用微藻深度处理污水耦合生产生物油的装置及方法
Tsai et al. Growth condition study of algae function in ecosystem for CO2 bio-fixation
CN103112993B (zh) 一种利用微藻处理油田污水和固定co2的方法
CN106399109B (zh) 一株用于废水废气联合处理同步实现固碳脱硝的小球藻
JP2019524152A (ja) 微細藻類の高密度培養のための滅菌培地、および空気圧縮、空気冷却、二酸化炭素自動供給、密封式垂直型フォトバイオリアクター、収集、乾燥用の装置、ならびにこれらを使用した、二酸化炭素のバイオマス変換固定を提供することを特徴とする空気および水の浄化方法
CN108587915B (zh) 能去除高重金属含量水体中的重金属的小球藻w5及应用
Arata et al. Spirulina platensis culture with flue gas feeding as a cyanobacteria‐based carbon sequestration option
CN108546649B (zh) 能去除高重金属含量水体中的重金属的小球藻w2及应用
CN108546648A (zh) 一种环保型微藻培养方法
JP5899100B2 (ja) 微細藻類の培養装置及び微細藻類の培養方法
CN109576159B (zh) 一种能去除高重金属含量水体中的重金属的小球藻w4及其应用
CN107473384B (zh) 一种利用微藻处理氨氮废水的装置及方法
CN110589978A (zh) 一种淡水藻驯化方法及利于该淡水藻处理污水的工艺
CN109576160B (zh) 一种能去除高重金属含量水体中的重金属的小球藻w3及其应用
CN104556544A (zh) 一种利用微藻处理油田污水及固定co2制生物柴油的方法
HU et al. Domestic wastewater reclamation coupled with biofuel/biomass production based on microalgae: a novel wastewater treatment process in the future
CN104556545A (zh) 一种微藻固定co2及处理油田污水的方法
CN103898088A (zh) 核辐射诱变微藻生物质固定烟气高浓度co2的方法
CN109576161B (zh) 一种能去除高重金属含量水体中的重金属的小球藻w1及其应用
CN101280273A (zh) 一种光合自氧微生物的工业化培养的方法和装置
CN101275117B (zh) 一种利用co2使藻类快速增殖直接用于生物制氢的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857622

Country of ref document: EP

Kind code of ref document: A1