WO2015059864A1 - Particulate fertilizer and method for producing same - Google Patents

Particulate fertilizer and method for producing same Download PDF

Info

Publication number
WO2015059864A1
WO2015059864A1 PCT/JP2014/004623 JP2014004623W WO2015059864A1 WO 2015059864 A1 WO2015059864 A1 WO 2015059864A1 JP 2014004623 W JP2014004623 W JP 2014004623W WO 2015059864 A1 WO2015059864 A1 WO 2015059864A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelling agent
shell
solution
core
fertilizer
Prior art date
Application number
PCT/JP2014/004623
Other languages
French (fr)
Japanese (ja)
Inventor
雅晴 白石
希志臣 田村
平岡 三郎
雄也 久保
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015543693A priority Critical patent/JPWO2015059864A1/en
Publication of WO2015059864A1 publication Critical patent/WO2015059864A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/003Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic followed by coating of the granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • C05G5/37Layered or coated, e.g. dust-preventing coatings layered or coated with a polymer

Definitions

  • the present invention relates to a particulate fertilizer having a core-shell structure in which a water-soluble fertilizer component is encapsulated in core particles, and a method for producing the particulate fertilizer.
  • liquid composite fertilizers containing nitrogen, phosphoric acid, and potassium which are the three major elements of fertilizers, in appropriate ratios are often used. Since the active ingredient (also referred to as “fertilizer ingredient”) is water-soluble, the complex fertilizer is easily absorbed by plants and has a rapid effect. As an attempt to gradually release the composite fertilizer, a jelly-like fertilizer obtained by gelling a liquid fertilizer with a gelling agent is known (for example, see Patent Document 1).
  • the jelly-like fertilizer can retain the fertilizer component longer than the liquid composite fertilizer.
  • the release period of the fertilizer component in the jelly-like fertilizer is shorter than that of the solid fertilizer, and further extension of the release period is desired from a practical viewpoint.
  • the said jelly-like fertilizer is soft and wet, when it accommodates and stores in a container, it is easy to collapse and it is easy to gather.
  • the jelly-like fertilizer has room for improvement from the viewpoints of storage and sustained release.
  • the present invention provides a particulate fertilizer that contains a water-soluble fertilizer component that has storability and sustained release.
  • the particulate fertilizer according to the present invention is composed of core particles containing a first gelling agent xerogel that retains a water-soluble fertilizer component, and a second gelling agent xerogel that covers the core particles.
  • a shell having at least a surface layer side region substantially not holding the water-soluble fertilizer component.
  • the method for producing the particulate fertilizer according to the present invention includes a step of producing droplets of the core solution containing the fertilizer component, the first gelling agent, and the first aqueous medium, or the core particles. Forming a liquid film covering the surface of the droplet or the core particle of the solution for shell containing the second gelling agent and the second aqueous medium, and the droplet covered with the liquid film Or a step of drying the core particles.
  • a particulate fertilizer containing a water-soluble fertilizer component and having storage properties and sustained release properties.
  • the particulate fertilizer according to the present embodiment is shown in FIG.
  • the particulate fertilizer 10 is comprised by the core particle 12 and the shell 14 which covers the core particle 12, as FIG. 1 shows.
  • the core particles include a first gelling agent xerogel.
  • the xerogel retains a water-soluble fertilizer component.
  • the fertilizer component is an inorganic or organic component that can effectively act on the growth of plants as a fertilizer.
  • the fertilizer component has water solubility.
  • One or more fertilizer components may be used.
  • a known fertilizer component can be used as the fertilizer component.
  • fertilizer components include various elements such as N, P, K, Ca, Mg, S, B, Fe, Mn, Cu, Zn, Mo, Cl, Si and Na, or inorganic substances serving as a source of ions thereof, and Contains organic matter.
  • the fertilizer component is preferably an inorganic substance or an organic substance serving as a supply source of N, P, K, Ca, Mg, and ions thereof.
  • the inorganic substances include ammonium nitrate, potassium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, sodium nitrate, urea, ammonium carbonate, potassium phosphate, superphosphate lime, molten phosphorus fertilizer (3MgO ⁇ CaO ⁇ P 2 O 5 3CaSiO 2 ), potassium sulfate, potassium chloride, lime nitrate, slaked lime, carbonated lime, magnesium sulfate, magnesium hydroxide and magnesium carbonate.
  • An example of the organic substance includes an anti-stress component.
  • Examples of the anti-stress component include saccharides and amino acids.
  • saccharide examples include glycerol, erythritol, erythrulose, erythrose, threose, xylose, ribose, arabinose, lyxose, deoxyribose, ribulose, arabitol, fructose, inositol, rhamnose, mannitol, sorbitol, glucose, gluconic acid, mannose, alto Loose, idose, galactose, quinobose, glucaric acid, gulose, digitalose, digitoxose, cimarose, sorbose, tagalose, talose, fucose, psicose, galactitol, iduronic acid, galacturonic acid, glucuronic acid, mannuronic acid, galactosamine, glucosamine, fucosamine, Mannosamine, muramic acid, curd
  • amino acids examples include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, and Dimers of these amino acids are included. Examples of such dimers include cystine.
  • the content of the fertilizer component in the core particles can be appropriately determined based on, for example, the type of fertilizer component and the sustained release property of the particulate fertilizer. For example, it is possible to increase the content (concentration) of the fertilizer component in the liquid fertilizer as the sustained release period of the particulate fertilizer is longer.
  • the xerogel of the first gelling agent (hereinafter also referred to as “first xerogel”) is a jelly (for example, a core solution described later) containing an aqueous medium described later and a first gelling agent described below. ) Is an object having a structure when dried. That is, the first xerogel has a network structure including voids due to evaporation of the solvent.
  • the first xerogel holds the fertilizer component.
  • the first xerogel may carry the fertilizer component on the outer surface of the first xerogel, or may enclose the fertilizer component (carrying on the inner surface of the gap).
  • the shape of the first xerogel is preferably a particle because it constitutes the core particle in the particulate fertilizer, but may be another shape.
  • the shape of the first xerogel may be a powder, and the core particle may be a particle formed by collecting the powder.
  • the first xerogel may contain moisture as long as the fertilizer component is not released.
  • the first xerogel may contain about 10% by mass of water.
  • the water content in the first xerogel is preferably 10% by mass or less, more preferably 8% by mass or less, and 5% by mass or less. More preferably it is.
  • the shell is composed of the following second gelling agent xerogel that covers the core particles.
  • the xerogel of the second gelling agent (hereinafter also referred to as “second xerogel”) is a jelly (for example, a shell solution described later) containing an aqueous medium described later and a second gelling agent.
  • second xerogel is a jelly (for example, a shell solution described later) containing an aqueous medium described later and a second gelling agent.
  • the second xerogel may contain moisture as long as the particulate fertilizer does not aggregate during storage.
  • the water content in the second xerogel is preferably 10% by mass or less, more preferably 6% by mass or less from the viewpoint of preventing aggregation due to moisture absorption during storage of the particulate fertilizer. More preferably, it is 3 mass% or less.
  • the first gelling agent and the second gelling agent can be selected from known gelling agents capable of forming a xerogel from the aqueous jelly.
  • the first gelling agent and the second gelling agent may be the same or different, and may be one kind or more.
  • first gelling agent and the second gelling agent examples include agar, gellan gum, native gellan gum, gelatin, ⁇ -carrageenan, ⁇ -carrageenan, ⁇ -carrageenan, locust bean gum, pectin, and tamarind seeds. Saccharides, alginic acid, alginate, guar gum, tara gum, fur celerane, glucomannan, ethyl cellulose and curdlan are included.
  • the gelling agent has biodegradability and is preferable from this viewpoint.
  • the first gelling agent and the second gelling agent are independently one or more selected from the group consisting of gelatin, glucomannan, agar, and ethylcellulose, from the viewpoint of controlling the Bloom value. preferable.
  • the shell containing the second xerogel does not substantially contain a water-soluble fertilizer component at least in the region on the surface layer side.
  • the “surface layer side region” means, for example, the second xerogel that includes the surface of the shell and has a thickness less than the thickness of the shell, for example, a portion of the shell from the surface to a depth of 0.10 mm. It is a layered portion included in That is, the particulate fertilizer is configured such that the fertilizer component is mainly distributed in the core particles and is not exposed on the surface of the particulate fertilizer.
  • the second xerogel does not substantially hold the water-soluble fertilizer component at least in the region on the surface layer side.
  • “substantially does not hold” means, for example, that the xerogel is a fertilizer component so that the fertilizer component is sustainedly released, that is, a source of fertilizer components for sustained release. Say that you do not hold.
  • the fact that the xerogel contains a fertilizer component released from the core particles corresponds to a “not substantially retained” state. That is, the water-soluble fertilizer component may not be substantially (or at all) contained in the entire shell, or may be dispersed in a region other than the region on the surface layer side of the shell.
  • a portion where the content of the fertilizer component with respect to the entire shell is 1% by mass or less can be regarded as a portion that does not substantially hold the fertilizer component.
  • At least the region on the surface layer side of the shell does not contain any water-soluble fertilizer component, or contains it in an amount range that can be regarded as not containing any water-soluble fertilizer component. Configure not to hold.
  • the portion substantially holding the fertilizer component contains the fertilizer component at a higher concentration over a longer period of time, and can be confirmed from the concentration distribution of the fertilizer component in the particulate fertilizer.
  • the kind of the second gelling agent is different from the kind of the first gelling agent, and the bloom value of the second gelling agent is larger than the bloom value of the first gelling agent. From the viewpoint of constituting a region on the surface layer side that does not substantially retain the water-soluble fertilizer component.
  • the Bloom value is also referred to as jelly strength, and is a load (g) required to push down the surface of the jelly of the first or second gelling agent 4 mm at 10 ° C. with a plunger having a diameter of 12.7 mm.
  • the Bloom value is defined in JIS K6503 as jelly strength.
  • the Bloom value is a value measured by the following method according to JIS K6503.
  • a jelly having a gelling agent concentration of 12.5% by mass, mixed with a gelling agent and 105 mL of water, is placed in a jelly cup and left in a constant temperature bath of 10.0 ⁇ 0.1 ° C.
  • a container having an inner diameter of 59 ⁇ 1 mm and a height of 85 mm is used for the jelly cup.
  • a jelly cup containing the jelly is placed on a table of a physical property measuring instrument such as a texture analyzer or a rheometer.
  • a cylindrical probe having a diameter of 12.7 ⁇ 0.1 mm is used for the plunger of the physical property measuring instrument.
  • the Bloom value can be adjusted by the molecular weight of the first gelling agent and the second gelling agent, for example.
  • the Bloom value of gelatin can be controlled by changing the degree of crosslinking of gelatin, and can be increased by, for example, cross-linking gelatin.
  • the Bloom value is prepared, for example, by preparing a jelly having the above-mentioned concentration of core particles or shells, analyzing the composition of the jelly as necessary, and preparing the jelly for measurement. It is possible to obtain
  • the difference obtained by subtracting the Bloom value of the first gelling agent from the Bloom value of the second gelling agent is The viewpoint of ensuring sufficient sustained release, the viewpoint of increasing the mechanical strength (storability) of the shell, and the viewpoint of preventing the collapse of the liquid film when producing the particulate fertilizer by the double pipe dropping method described later Therefore, it is preferably 80 g or more, more preferably 100 g or more, and further preferably 150 g or more. Moreover, when the said difference is too large, the productivity of particulate fertilizer (the handling property of jelly at the time of manufacture of a particulate fertilizer) may be caused to fall. From such a viewpoint, the difference is preferably 1500 g or less, more preferably 1000 g or less, and further preferably 750 g or less.
  • the Bloom value of the first gelling agent facilitates the production of core particles having a desired particle size, in terms of maintaining the particle shape of the core particles when using the particulate fertilizer (at the time of water absorption). Therefore, from the viewpoint of imparting the necessary viscosity, it is preferably 50 g or more, more preferably 75 g or more, and further preferably 100 g or more.
  • the bloom value of the first gelling agent is preferably 1000 g or less from the viewpoint of ensuring sufficient sustained release and from the viewpoint of easily producing core particles having an intended particle size. 500 g or less, more preferably 300 g or less.
  • the bloom value of the second gelling agent is preferably 100 g or more from the viewpoint of maintaining the shape of the shell when using the particulate fertilizer (at the time of water absorption) and maintaining the function of covering the core particles. 150 g or more, more preferably 200 g or more.
  • the bloom value of the second gelling agent is preferably 2000 g or less, and preferably 1500 g or less from the viewpoint of productivity of the particulate fertilizer and the desired sustained release property. Is more preferable, and it is still more preferable that it is 1000 g or less.
  • the particulate fertilizer may further contain other components (additives) other than the first gelling agent, the second gelling agent, and the fertilizer component as long as the effects of the present invention are obtained.
  • the additive may be one kind or more.
  • examples of the additive include a pH adjuster, an agrochemical active ingredient, and a pigment. These additives may be added to either the core particle or the shell, but it is preferable to add the pesticidal active ingredient to the core particle from the viewpoint of exhibiting a medicinal effect for a long period of time.
  • dye to a shell from a viewpoint of coloring a particulate fertilizer into the color intended.
  • pesticidal active ingredients include all active ingredients generally used as pesticidal active ingredients.
  • examples of the agrochemical active ingredients include substances for controlling agricultural and horticultural pests and substances for regulating plant growth, and more specifically, herbicides, plant growth regulation. Agents, insecticides / acaricides, and fungicides / fungicides.
  • herbicide examples include pyraclonyl, propyrisulfuron, benzobicyclone, pyrazolate, tefryltrione, mesotrione, topramesone, sulcotrione, oxadiclomephone, benzophenap, pyrazoxifene, pyributicalbu, butamifos, mefenacet, bensulfuron methyl, anilophos , Butachlor, pretilachlor, thiobencarb, chloronitrophene, chloromethoxyphene, diimron, biphenox, naproanilide, oxadiazon, oxadialgyl, bentazone, molinate, piperophos, dimethylpiperate, esprocarb, dithiopyr, benfriseto, quinoclamin, cinmethyrin-2, MCPA Phenoxyacetic acid) or its sodium salt, potassium salt, etc.
  • Salts or esters 2,4-D (2,4-dichlorophenoxyacetic acid) or its sodium salt, salts or esters such as potassium salt, MCPB (2-methyl-4-chlorophenoxybutyric acid) or its sodium salt, Salts or esters such as potassium salts, quinchlorac, pyrazosulfuron ethyl, pentoxazone, tenyl chlor, indanophan, cumyluron, clomeprop, synosulfuron, cimetrin, dimetamethrin, cihalohop butyl, etobenzanide, fenfentrol, ethoxysulfuron, azimusulfuron, cyclo Sulfamlone, imazosulfuron, flucetosulfuron, orthosulfamlone, halosulfuronmethyl, bispyribac, bispyribac sodium salt, pyriminobacmethyl, Rifutarido, fentrazamide, type F
  • plant growth regulators examples include inabenfide, mepiquat chloride, chlormequat, flurprimidol, bispyribac sodium salt, paclobutrazole, prohexadione calcium salt, trinexapac ethyl, daminogit, uniconazole P and Triapentenol is included.
  • insecticide / acaricide examples include isoxathione, diazinon, disulfone, marathon, propofos, trichlorfone, formothione, dimethoate, monocrotophos, acephate, carbofuran, carbosulfan, thiocyclam, cartap, bensultap, benfracarb, Furothiocarb, buprofezin, fenobucarb, metholcarb, propoxure, imidacloprid, nitenpyram, acetamiprid, chlorpyrifosmethyl, dimethylvinphos, pyridafenthion, thiodicarb, dinotefuran, clothianidin, thiacloprid, thiamethoxam, chromofenodido, Spinosad, Pymetroge Include flonicamid, chlorantraniliprole, cyan tiger Niri Prowl, spinetoram, cyclo
  • bactericides and fungicides examples include probenazole, isoprothiolane, iprobenfos, tricyclazole, pyroxylone, carpropamide, azoxystrobin, flutolanil, mepronil, tifluzamide, flametopyr, teclophthalam, benomyl, diclocimet, phenoxanil, fusaride, metminost Robin, orissatrobin, kasugamycin, validamycin, oxytetracycline, streptomycin, ferimzone, cimeconazole, copper, thiophanate methyl, EDDP (edifenphos), IBP (iprobenphos), metalaxyl, iprodione, hydroxyisoxazole, oxolinic acid, pentiopyrad, dichromedene, thiazinyl, prozinil , Acibenzoral S methyl and isotianil It is included.
  • Examples of the pigment include dyes, pigments and synthetic pigments.
  • examples of the additive include perfumes such as essential oils extracted from plants and synthetic perfumes; catalysts for controlling the reaction, color formers used in combination with dyes, color erasers, flame retardants, and antifoaming agents. And functional substances such as antistatic agents; pharmaceuticals such as antibacterial agents and disinfectants; enzymes such as diastase, protease, cellulase and lipase; physiologically active substances such as water-soluble vitamins and fat-soluble vitamins. Examples of water-soluble vitamins include vitamin B1, vitamin B2, vitamin B6, vitamin B12 and vitamin C, and examples of fat-soluble vitamins include vitamin A, vitamin D and vitamin E.
  • the particle shape of the particulate fertilizer may be spherical, substantially spherical, or indefinite.
  • the particle diameter of the particulate fertilizer is, for example, a long diameter (maximum diameter).
  • the average primary particle size of the particulate fertilizer is appropriately determined according to the desired sustained release period of the fertilizer component from the particulate fertilizer, the desired sustained release amount, the desired content of the fertilizer component in the particulate fertilizer, etc. It is possible to decide on.
  • the average primary particle size of the particulate fertilizer is, for example, 1.0 to 10 mm when dried (not used) and 5 to 30 mm when absorbed (used).
  • the average primary particle size when the core particles are dried is 0.50 to 6.0 mm, and the thickness when the shell is dried is 0.20 to 2.0 mm.
  • the particulate fertilizer can be produced by a method including the following first step, second step and third step.
  • the first step is a step of producing droplets of the core solution or the core particles.
  • the core solution droplets can be produced by, for example, a coacervation method in which the core solution is dropped into a liquid in which the core solution is insoluble.
  • the core solution contains the fertilizer component, the first gelling agent, and the first aqueous medium.
  • the fertilizer component the above-described compounds and the components themselves may be used.
  • Compound fertilizers such as commercially available liquid fertilizers such as Menedale Co., Ltd. (registered trademark of the company) may be used.
  • the first aqueous medium is a liquid mainly composed of water.
  • the first aqueous medium may be water alone or may contain a water-soluble component other than water.
  • the water-soluble component may be one kind or more. Examples of the water-soluble component include components such as alcohols, ketones, and esters that have water solubility.
  • the water content in the first aqueous medium is, for example, 80 to 99% by mass.
  • the content of the fertilizer component in the core solution can be appropriately determined as long as the desired amount of fertilizer component can be contained in the core particles.
  • the content of the fertilizer component in the core solution is preferably 1 to 90% by mass.
  • the core solution can be prepared by dissolving or dispersing any fertilizer component and the first gelling agent in the aqueous medium.
  • the core solution can be prepared by dissolving or dispersing the first gelling agent in a commercially available liquid fertilizer or a diluted solution of the liquid fertilizer in an aqueous medium.
  • the core solution may further contain other components as long as the effects of the present invention are obtained.
  • the other components include the aforementioned additive for the core particles and the additive for the core solution.
  • the additive for the core solution is, for example, an additive suitable for forming droplets of the core solution, and may be one kind or more.
  • the core particles can be produced by a method including a step of forming droplets of the core solution and a step of drying the droplets. This method is preferable from the viewpoint of producing core particles having a substantially constant particle shape.
  • the step of drying the droplet can be performed by removing moisture from the droplet at a temperature at which the first gelling agent in the droplet does not dissolve.
  • the step of drying the droplets can be performed by a known drying method such as ventilation drying, reduced pressure drying, and freeze drying.
  • ventilation drying is preferable from the viewpoint of easily and efficiently drying the droplets.
  • the droplets When drying the droplets, the droplets may be solidified as necessary.
  • the solidification of the droplet can be performed by heating or cooling the droplet, which causes a change in the state of the first gelling agent such as denaturation or curing.
  • the core particles may be produced by a dry granulation method in which powder materials such as the aforementioned xerogel powder are agglomerated to form particles, or from a temperature-adjustable rotor having a discharge port on the peripheral surface to form a small amount of droplets on the substrate It can also be manufactured by a rotary method or the like that discharges each one.
  • the second step is a step of forming a liquid film covering the surface of the core solution droplets or the core particles of the shell solution.
  • the second step may be performed in parallel with the first step, or may be performed after the first step.
  • the shell solution contains the second gelling agent and the second aqueous medium.
  • the “aqueous medium” in the second aqueous medium has the same meaning as that in the first aqueous medium described above.
  • the second aqueous medium may be the same as or different from the first aqueous medium.
  • the step of forming the liquid film covering the surface of the droplet includes, for example, simultaneously discharging the core solution from the inner tube of the double tube and the shell solution from the outer tube of the double tube. It is possible to carry out by a double tube dropping method for producing drops. According to the double-tube dropping method, a droplet having a core-shell structure composed of the droplet and the liquid film covering the surface of the droplet is produced.
  • the double-tube dropping method can form the droplet and the liquid film at one time (perform the first step and the second step in one step), and can improve the productivity of the particulate fertilizer. From the viewpoint of obtaining a particulate fertilizer having a substantially constant particle shape.
  • the step of forming the liquid film covering the surface of the droplet can also be produced by a secondary emulsification method.
  • a suspension having a core solution as a dispersoid is dispersed in a liquid medium having affinity for the dispersoid, and the liquid film of the dispersion medium of the suspension covers the liquid droplets.
  • This is a method of forming droplets.
  • the secondary emulsification method is preferable from the above viewpoint, and is advantageous for producing a particulate fertilizer having a smaller particle diameter.
  • the step of forming a liquid film covering the surface of the core particles includes spraying the shell solution onto the flowing core particles, such as spray drying and rotary pan granulation, and drying the shell solution. It is possible to carry out by the method of making it.
  • the spray drying method is preferable from the viewpoint of being suitable for mass production of particulate fertilizer.
  • the core-shell structure droplets When drying the core-shell structure droplets, the core-shell structure droplets may be solidified as necessary.
  • the solidification of the core-shell structure droplets causes a change in the state of denaturation or curing of at least the second gelling agent, preferably both the first gelling agent and the second gelling agent. This can be done by heating or cooling the resulting droplets of the core-shell structure.
  • a shell substantially free of water-soluble fertilizer components can be formed in the surface layer side region of the shell.
  • the fertilizer component may diffuse to the shell side at the interface with the core particles, but at least the surface layer region of the shell is configured not to substantially retain the water-soluble fertilizer component. be able to.
  • the shell may be multilayered.
  • a water-soluble fertilizer component may be dispersed in the inner shell layer, and the outer shell layer may not include the fertilizer component.
  • the third step is a step of drying the droplets or the core particles covered with the liquid film.
  • the step of drying the droplet or the core particle can be performed in the same manner as the drying of the droplet of the core solution described above.
  • drying the droplets having the core-shell structure is preferable from the viewpoint of reducing the number of drying steps and improving productivity.
  • the above method may further include other steps other than the first step, the second step, and the third step described above as long as the effects of the present invention are obtained.
  • the other steps include a sieving step for making the particle size of the particulate fertilizer more uniform.
  • the particulate fertilizer according to the present embodiment is sprayed on a cultivation floor such as soil where plants are grown.
  • the particulate fertilizer includes core particles containing a first xerogel that retains a water-soluble fertilizer component, and a shell made of the second xerogel that covers the core particles. Since both the core particles and the shell are made of xerogel, they can be handled as a dry particulate fertilizer on the surface, and as long as they are stored in an appropriate low-humidity environment, they have good storage properties.
  • the second xerogel does not substantially retain a water-soluble fertilizer component, stickiness due to moisture absorption hardly occurs, and good storage properties are exhibited. This is presumed that the second gelling agent not containing the fertilizer component makes it easier for the shell to be configured more densely than the core particles. Therefore, the particulate fertilizer is easily and satisfactorily spread on the cultivation floor.
  • the particulate fertilizer sprayed on the cultivation floor absorbs water in the cultivation floor and swells.
  • the fertilizer component in the core particle is dissolved in water absorbed by the core particle. Since the fertilizer component is held in the first gelling agent xerogel constituting the core particle, the fertilizer component dissolved in the water becomes movable and moves in the core particle.
  • the core particles are covered with a shell, and at least the surface layer side region of the xerogel constituting the shell does not substantially hold the water-soluble fertilizer component. Therefore, the fertilizer component that attempts to move beyond the core particles passes through the interface between the core particles and the shell and the inside of the shell. Therefore, the path
  • the bloom value of the second gelling agent which is the constituent material of the shell
  • the bloom value of the first gelling agent which is the constituent material of the core particle
  • the said fertilizer component when comprised with the gel of the 2nd gelatinizer which has a bigger Bloom value than a 1st gelatinizer, after being spread on the said cultivation bed, the said fertilizer component will move in a core particle. Moves through the shell at a slower speed than. Moreover, since the swollen shell is harder than the swollen core particles, the particle shape of the swollen particulate fertilizer is easily maintained. Therefore, the particulate fertilizer exhibits better sustained release properties, and the fertilizer component is released from the particulate fertilizer in small amounts over a longer period.
  • the difference between the bloom value of the second gelling agent and the bloom value of the first gelling agent is 80 g or more. It is more effective that the difference is 1000 g or less.
  • the bloom value of the second gelling agent is 100 g or more, and it is more effective that the bloom value of the second gelling agent is 2000 g or less. It is.
  • the bloom value of the first gelling agent is 50 g or more. It is more effective that the Bloom value of the gelling agent is 1000 g or less.
  • the first gelling agent and the second gelling agent are independently one or more selected from the group consisting of gelatin, glucomannan, agar and ethyl cellulose. From the viewpoint of realizing the desired bloom value of the gelling agent 2, it is more effective.
  • the particulate fertilizer is more effective when the average primary particle size is 1.0 to 10 mm from the viewpoint of realizing more suitable characteristics as the particulate fertilizer. It is more effective that the particle size is 0.50 to 6.0 mm, and it is more effective that the thickness of the shell is 0.20 to 2.0 mm.
  • the manufacturing method of the particulate fertilizer which concerns on this Embodiment contains the 1st process, 2nd process, and 3rd process which were mentioned above, the said fertilizer component is included, and storage property and sustained release are included.
  • a particulate fertilizer having properties can be provided.
  • the step of producing the core particles includes a step of forming droplets of the core solution and a step of drying the droplets, so as to obtain a particulate fertilizer having a substantially constant particle shape. Is even more effective.
  • the core solution is discharged from the inner tube of the double tube, and the shell solution is simultaneously discharged from the outer tube of the double tube, so that the droplets of the core solution and the shell solution covering the droplets Producing and drying droplets having a core-shell structure constituted by a liquid film is more effective from the viewpoint of producing a particulate fertilizer having a substantially constant particle shape with higher productivity.
  • Example 1 200 mL of olive oil was placed in the dropping tank, and a double tube dispenser having an inner diameter of 1 mm and an outer diameter of 3 mm was installed so that the discharge port of the dispenser did not adhere to the olive oil.
  • the core solution 1 swells 15 parts by mass of gelatin (Gel) having a Bloom value (jelly strength) of 100 g in 35 parts by mass of pure water at 25 ° C. (hereinafter also simply referred to as “pure water”) for 30 minutes, It was prepared by dissolving at 40 to 50 ° C. while heating for about 1 hour, and adding 12.5 parts by mass of aqueous liquid fertilizer to the aqueous solution after defoaming the resulting aqueous solution.
  • the solution 1 for shell is obtained by swelling 15 parts by weight of gelatin having a Bloom value of 200 g in 35 parts by weight of pure water for 30 minutes and dissolving it while heating at 40 to 50 ° C. for about 1 hour. It was made by foaming.
  • the Bloom value (jelly strength) is measured by the procedure according to JIS K6503 as described above, and is adjusted by the molecular weight of gelatin.
  • the core solution 1 is sent into the inner pipe of the double pipe dispenser, the shell solution 1 is sent into the outer pipe of the double pipe dispenser, and the inside of the valve is pressurized with 1000 Pa of pressurized air, respectively.
  • Solution 1 and shell solution 1 from the outer tube are simultaneously discharged from the discharge port, and a core-shell droplet (core-shell droplet 1) having a structure in which a droplet of the core solution 1 is wrapped in the shell solution 1 is contained in olive oil. Dispersed. By cooling the olive oil from the surroundings with pure water, the core-shell droplets 1 formed in the olive oil were cooled and solidified. The solidified core-shell droplet 1 was taken out from the olive oil and dried for 24 hours. Thus, the particulate fertilizer 1 having a core-shell structure was produced.
  • Example 2 A particulate fertilizer 2 was produced in the same manner as in Example 1 except that the shell solution 2 was used instead of the shell solution 1.
  • the shell solution 2 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 1000 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 3 A particulate fertilizer 3 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1 and the shell solution 3 was used instead of the shell solution 1.
  • the core solution 2 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 200 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 3 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 4 A particulate fertilizer 4 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1 and the shell solution 4 was used instead of the shell solution 1.
  • the shell solution 4 instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water, 3 parts by mass of glucomannan (Glu) having a Bloom value of 640 g is dissolved in 47 parts by mass of pure water. It was produced in the same manner as the shell solution 1 except that
  • Example 5 A particulate fertilizer 5 was produced in the same manner as in Example 1 except that the core solution 3 was used instead of the core solution 1 and the shell solution 5 was used instead of the shell solution 1.
  • the core solution 3 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 100 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 5 dissolves 3 parts by mass of agar (Aga) having a Bloom value of 600 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. Except for the above, it was produced in the same manner as the solution 1 for shell.
  • Example 6 A particulate fertilizer 6 was produced in the same manner as in Example 1 except that the core solution 4 was used instead of the core solution 1 and the shell solution 6 was used instead of the shell solution 1.
  • the core solution 4 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 6 instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water, 3 parts by mass of ethyl cellulose (Eth) having a Bloom value of 570 g is dissolved in 47 parts by mass of pure water. Except for the above, it was produced in the same manner as the solution 1 for shell.
  • Example 7 A particulate fertilizer 7 was produced in the same manner as in Example 1, except that the core solution 5 was used instead of the core solution 1 and the shell solution 7 was used instead of the shell solution 1.
  • the core solution 5 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 250 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1.
  • the shell solution 7 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 800 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 8 A particulate fertilizer 8 was produced in the same manner as in Example 1 except that the core solution 6 was used instead of the core solution 1 and the shell solution 8 was used instead of the shell solution 1.
  • the core solution 6 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 130 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1.
  • the shell solution 8 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 650 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
  • Example 9 A particulate fertilizer 9 was prepared in the same manner as in Example 1 except that the core solution 7 was used instead of the core solution 1 and the shell solution 9 was used instead of the shell solution 1.
  • the core solution 7 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 270 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1.
  • the shell solution 9 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 567 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 10 A particulate fertilizer 10 was produced in the same manner as in Example 1 except that the core solution 8 was used instead of the core solution 1 and the shell solution 10 was used instead of the shell solution 1.
  • the core solution 8 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 120 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1.
  • the shell solution 10 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a Bloom value of 288 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 11 A particulate fertilizer 11 was produced in the same manner as in Example 1 except that the core solution 9 was used instead of the core solution 1 and the shell solution 11 was used instead of the shell solution 1.
  • the core solution 9 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 180 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 11 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 378 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 12 A particulate fertilizer 12 was produced in the same manner as in Example 1 except that the core solution 10 was used instead of the core solution 1 and the shell solution 12 was used instead of the shell solution 1.
  • the core solution 10 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 200 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 12 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 360 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
  • Example 13 A particulate fertilizer 11 was produced in the same manner as in Example 1 except that the core solution 11 was used instead of the core solution 1 and the shell solution 13 was used instead of the shell solution 1.
  • the core solution 11 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 13 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 690 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 14 A particulate fertilizer 14 was produced in the same manner as in Example 1 except that the core solution 12 was used instead of the core solution 1 and the shell solution 14 was used instead of the shell solution 1.
  • the core solution 12 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 140 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 14 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a bloom value of 434 g was used instead of gelatin having a bloom value of 200 g.
  • Example 15 A particulate fertilizer 15 was produced in the same manner as in Example 1 except that the core solution 13 was used instead of the core solution 1 and the shell solution 15 was used instead of the shell solution 1.
  • the core solution 13 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a Bloom value of 100 g was used instead of gelatin having a Bloom value of 100 g.
  • the shell solution 15 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 400 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 16 A particulate fertilizer 16 was produced in the same manner as in Example 1 except that the core solution 14 was used instead of the core solution 1 and the shell solution 16 was used instead of the shell solution 1.
  • the core solution 14 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a bloom value of 110 g was used instead of gelatin having a bloom value of 100 g.
  • the shell solution 16 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 473 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
  • Example 17 A particulate fertilizer 17 was produced in the same manner as in Example 1 except that the core solution 13 was used instead of the core solution 1 and the shell solution 17 was used instead of the shell solution 1.
  • the shell solution 17 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 500 g was used instead of gelatin having a Bloom value of 200 g.
  • Example 18 A particulate fertilizer 18 was produced in the same manner as in Example 1 except that the core solution 15 was used instead of the core solution 1 and the shell solution 18 was used instead of the shell solution 1.
  • the core solution 15 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a bloom value of 220 g was used instead of gelatin having a bloom value of 100 g.
  • the shell solution 18 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a bloom value of 374 g was used instead of gelatin having a bloom value of 200 g.
  • a core solution 16 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 110 g was used instead of gelatin having a Bloom value of 100 g.
  • a shell solution 19 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 550 g was used instead of gelatin having a Bloom value of 200 g.
  • a single tube dispenser having an inner diameter of 3 mm is used, and as in Example 1, a droplet of the core solution 16 is prepared in olive oil, and the droplet is cooled and solidified to form core particles. 19 was produced.
  • the shell solution 19 is sprayed onto the core particles 19 to form a 1 mm thick layer of gelatin having a Bloom value of 550 g on the surface of the core particles 19.
  • a Bloom value of 550 g on the surface of the core particles 19.
  • Example 20 A particulate fertilizer 20 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1.
  • Example 21 A particulate fertilizer 21 was produced in the same manner as in Example 1 except that the core solution 15 was used instead of the core solution 1.
  • Example 1 Using a single-tube dispenser having an inner diameter of 3 mm instead of the double-tube dispenser, the core solution 2 is dropped into olive oil under the same conditions as in Example 1 to produce droplets, and the droplets are cooled and solidified. Thus, a particulate fertilizer C1 was produced.
  • the average primary particle size of the particulate fertilizer obtained in each Example and Comparative Example was determined by measuring the number average particle size of the particles that were not united, both were 3 mm.
  • the thickness of the shell of the particulate fertilizer obtained in each Example was calculated
  • required all were 0.5 mm.
  • the thickness of the shell is an average value of the measured values obtained by randomly selecting and cutting five of the particulate fertilizers obtained in each example and measuring the thickness of the coating layer with an optical microscope. .
  • Table 1 shows the types and Bloom values of gelling agents for the core and shell of each particulate fertilizer, evaluation results of storage properties and sustained release properties, and the number of days required until the concentration is sufficiently lowered.
  • “Gel” represents gelatin
  • “Glu” represents glucomannan
  • “Aga” represents agar
  • “Eth” represents ethylcellulose.
  • each of the particulate fertilizers 1 to 21 has both storage properties and sustained release properties. This is because (1) both the core particles and the shell are composed of a gelling agent, so that the particulate fertilizer sprayed on the soil absorbs water, so that the water-soluble matter trapped in the core particle gelling agent Since the fertilizer components are dissolved and released, (2) the xerogel that does not contain water-soluble fertilizer components exists as a shell, and the path to reach the surface of the particulate fertilizer is longer than when there is no shell. Since the fertilizer component is gradually released from the particulate fertilizer, (3) Since the core particles and the shell are both xerogel, it can be handled as a dry particulate fertilizer on the surface. (4) Shell It is presumed that it does not contain water-soluble fertilizer components and is more easily composed than the core particles by the gelling agent. For is less likely to occur, it is considered.
  • the blooming value of the gelling agent constituting the shell is larger than the blooming value of the gelling agent constituting the core particle, and both the storage property and the sustained release property are good.
  • the shell is stronger and more difficult to disintegrate than the core particles, so the fertilizer components released from the core particles continue to pass through the shell more slowly than through the core particles This is considered to be because it is gradually released and more difficult to absorb moisture or discolor.
  • the particulate fertilizers C1 and C2 were insufficient in both storage and sustained release properties. This is because the particulate fertilizers C1 and C2 do not have the shell, so that the mechanical strength is insufficient, and when the particulate fertilizers C1 and C2 absorb moisture, the particulate fertilizers C1 and C2 are exposed to the surface. This is probably because the exudation (release) of fertilizer components is not suppressed.
  • various organic and inorganic water-soluble fertilizer components can be stably trapped in the particles, and the fertilizer components are gradually released when the fertilizer is used. Therefore, the fertilizer component is supplied quantitatively and more easily to the plant on the cultivation floor in the expected amount over a long period of time. Therefore, according to the present invention, realization and spread of more efficient plant cultivation is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Fertilizers (AREA)
  • Glanulating (AREA)

Abstract

A particulate fertilizer is so configured that each of core particles is composed of a xerogel that is a first gelling agent and carries a water-soluble fertilizer component thereon and each of the core particles is coated with a shell composed of a xerogel that is a second gelling agent. At least the surface layer-side region of the shell does not carry the water-soluble fertilizer component substantially.

Description

粒子状肥料およびその製造方法Particulate fertilizer and method for producing the same
 本発明は、水溶性の肥料成分がコア粒子に内包されているコアシェル構造の粒子状肥料および当該粒子状肥料の製造方法に関する。 The present invention relates to a particulate fertilizer having a core-shell structure in which a water-soluble fertilizer component is encapsulated in core particles, and a method for producing the particulate fertilizer.
 近年、肥料の3大要素である窒素、リン酸、カリウムを適当な割合で含有する液状の複合肥料が多く使用されている。当該複合肥料は、その有効成分(「肥料成分」とも言う)が水溶性なので、植物に吸収されやすく、速効性を有する。当該複合肥料を徐放する試みとして、液状肥料をゲル化剤によりゲル化してなるゼリー状肥料が知られている(例えば、特許文献1参照)。 In recent years, liquid composite fertilizers containing nitrogen, phosphoric acid, and potassium, which are the three major elements of fertilizers, in appropriate ratios are often used. Since the active ingredient (also referred to as “fertilizer ingredient”) is water-soluble, the complex fertilizer is easily absorbed by plants and has a rapid effect. As an attempt to gradually release the composite fertilizer, a jelly-like fertilizer obtained by gelling a liquid fertilizer with a gelling agent is known (for example, see Patent Document 1).
特開平2-204383号公報JP-A-2-204383
 上記ゼリー状肥料は、液状の複合肥料に比べれば、肥料成分をより長く保持することが可能である。しかしながら、上記ゼリー状肥料における肥料成分の放出期間は、固体肥料のそれに比べて短く、実用上の観点から、当該放出期間のさらなる長期化が望まれている。また、上記ゼリー状肥料は、軟らかく、また濡れているため、容器に収容して保管する場合に、崩れやすく、また集合しやすい。このように、上記ゼリー状肥料は、保管性および徐放性の観点から改善の余地が残されている。 The jelly-like fertilizer can retain the fertilizer component longer than the liquid composite fertilizer. However, the release period of the fertilizer component in the jelly-like fertilizer is shorter than that of the solid fertilizer, and further extension of the release period is desired from a practical viewpoint. Moreover, since the said jelly-like fertilizer is soft and wet, when it accommodates and stores in a container, it is easy to collapse and it is easy to gather. Thus, the jelly-like fertilizer has room for improvement from the viewpoints of storage and sustained release.
 本発明は、保管性および徐放性を有する、水溶性の肥料成分を内包する粒子状肥料を提供する。 The present invention provides a particulate fertilizer that contains a water-soluble fertilizer component that has storability and sustained release.
 本発明に係る粒子状肥料は、水溶性の肥料成分を保持する、第1のゲル化剤のキセロゲルを含むコア粒子と、当該コア粒子を覆う、第2のゲル化剤のキセロゲルにより構成されたシェルであって、その少なくとも表層側の領域が実質的に前記水溶性の肥料成分を保持していないシェルと、を有する。 The particulate fertilizer according to the present invention is composed of core particles containing a first gelling agent xerogel that retains a water-soluble fertilizer component, and a second gelling agent xerogel that covers the core particles. A shell having at least a surface layer side region substantially not holding the water-soluble fertilizer component.
 また、本発明に係る粒子状肥料の製造方法は、上記肥料成分、上記第1のゲル化剤および第1の水系媒体を含有するコア用溶液の液滴または上記コア粒子を作製する工程と、上記第2のゲル化剤および第2の水系媒体を含有するシェル用溶液の、上記液滴または上記コア粒子の表面を覆う液膜を形成する工程と、上記液膜で覆われた上記液滴または上記コア粒子を乾燥させる工程と、を含む。 Moreover, the method for producing the particulate fertilizer according to the present invention includes a step of producing droplets of the core solution containing the fertilizer component, the first gelling agent, and the first aqueous medium, or the core particles. Forming a liquid film covering the surface of the droplet or the core particle of the solution for shell containing the second gelling agent and the second aqueous medium, and the droplet covered with the liquid film Or a step of drying the core particles.
 本発明によれば、水溶性の肥料成分を内包し、かつ保管性および徐放性を有する粒子状肥料を提供することができる。 According to the present invention, it is possible to provide a particulate fertilizer containing a water-soluble fertilizer component and having storage properties and sustained release properties.
本発明の一実施形態に係る粒子状肥料の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the particulate fertilizer which concerns on one Embodiment of this invention.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 [粒子状肥料]
 本実施の形態に係る粒子状肥料を図1に示す。粒子状肥料10は、図1に示されるように、コア粒子12と、コア粒子12を覆うシェル14とによって構成される。
[Particulate fertilizer]
The particulate fertilizer according to the present embodiment is shown in FIG. The particulate fertilizer 10 is comprised by the core particle 12 and the shell 14 which covers the core particle 12, as FIG. 1 shows.
 (コア粒子)
 上記コア粒子は、第1のゲル化剤のキセロゲルを含む。当該キセロゲルは、水溶性の肥料成分を保持する。
(Core particles)
The core particles include a first gelling agent xerogel. The xerogel retains a water-soluble fertilizer component.
 上記肥料成分は、肥料として植物の生育に有効に作用しうる無機または有機の成分である。当該肥料成分は、水溶性を有する。肥料成分は一種でもそれ以上でもよい。当該肥料成分には、公知の肥料成分を利用することができる。肥料成分の例には、N、P、K、Ca、Mg、S、B、Fe、Mn、Cu、Zn、Mo、Cl、SiおよびNaなどの各種元素またはそのイオンの供給源となる無機物および有機物が含まれる。上記肥料成分は、N、P、K、Ca、Mgおよびそのイオンの供給源となる無機物および有機物であることが好ましい。 The fertilizer component is an inorganic or organic component that can effectively act on the growth of plants as a fertilizer. The fertilizer component has water solubility. One or more fertilizer components may be used. A known fertilizer component can be used as the fertilizer component. Examples of fertilizer components include various elements such as N, P, K, Ca, Mg, S, B, Fe, Mn, Cu, Zn, Mo, Cl, Si and Na, or inorganic substances serving as a source of ions thereof, and Contains organic matter. The fertilizer component is preferably an inorganic substance or an organic substance serving as a supply source of N, P, K, Ca, Mg, and ions thereof.
 上記無機物の例には、硝酸アンモニウム、硝酸カリウム、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、硝酸ソーダ、尿素、炭酸アンモニウム、リン酸カリウム、過リン酸石灰、熔成リン肥(3MgO・CaO・P・3CaSiO)、硫酸カリウム、塩化カリウム、硝酸石灰、消石灰、炭酸石灰、硫酸マグネシウム、水酸化マグネシウムおよび炭酸マグネシウムが含まれる。 Examples of the inorganic substances include ammonium nitrate, potassium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, sodium nitrate, urea, ammonium carbonate, potassium phosphate, superphosphate lime, molten phosphorus fertilizer (3MgO · CaO · P 2 O 5 3CaSiO 2 ), potassium sulfate, potassium chloride, lime nitrate, slaked lime, carbonated lime, magnesium sulfate, magnesium hydroxide and magnesium carbonate.
 上記有機物の例には、抗ストレス性成分が含まれる。当該抗ストレス性成分の例には、糖類およびアミノ酸が含まれる。 An example of the organic substance includes an anti-stress component. Examples of the anti-stress component include saccharides and amino acids.
 上記糖類の例には、グリセロール、エリトリトール、エリトルロース、エリトロース、トレオース、キシロース、リボース、アラビノース、リキソース、デオキシリボース、リブロース、アラビトール、フルクトース、イノシトール、ラムノース、マンニトール、ソルビトール、グルコース、グルコン酸、マンノース、アルトロース、イドース、ガラクトース、キノボース、グルカル酸、グロース、ジギタロース、ジギトキソース、シマロース、ソルボース、タガロース、タロース、フコース、プシコース、ガラクチトール、イズロン酸、ガラクツロン酸、グルクロン酸、マンヌロン酸、ガラクトサミン、グルコサミン、フコサミン、マンノサミン、ムラミン酸、カードラン、マルチトール、トレハロース、メリビオース、スクロース、ラクトース、パラチノース、アガロビオース、イソマルトース、キシロビオース、ゲンチオビオース、コージオビオース、コンドロイシン、セロビオース、ソホロース、ニゲロース、ヒアロビウロン酸、マルトース、ラクツロース、ラミナリビオース、ルチノース、グルコシルスクロース、ラフィノース、ゲンチアノース、セロトリオース、マルトトリオース、メレンジトース、スタキオース、キシロオリゴ糖、イソマルトオリゴ糖、ゲンチオオリゴ糖、フルクトオリゴ糖、キトサンオリゴ糖、キチンオリゴ糖、セロオリゴ糖、シクロデキストリン、ペクチン、デンプン、アガロース、アミロース、アミロペクチン、アラビナン、アラビノガラクタン、アルギン酸、イヌリン、ガラクタン、キシラン、キチン、キトサン、グリコーゲン、グルコマンナン、ケラタン硫酸、コロミン酸、コンドロイチン、コンドロイチン硫酸、セルロース、デキストラン、ヒアルロン酸、ペクチン、ペクチン酸、ヘパラン硫酸、ヘパリン、マンナン、リケナン、レバンおよびレンチナンが含まれる。 Examples of the saccharide include glycerol, erythritol, erythrulose, erythrose, threose, xylose, ribose, arabinose, lyxose, deoxyribose, ribulose, arabitol, fructose, inositol, rhamnose, mannitol, sorbitol, glucose, gluconic acid, mannose, alto Loose, idose, galactose, quinobose, glucaric acid, gulose, digitalose, digitoxose, cimarose, sorbose, tagalose, talose, fucose, psicose, galactitol, iduronic acid, galacturonic acid, glucuronic acid, mannuronic acid, galactosamine, glucosamine, fucosamine, Mannosamine, muramic acid, curdlan, maltitol, trehalose, melibiose, sucrose, la Toose, palatinose, agarobiose, isomaltose, xylobiose, gentiobiose, cordiobiose, chondroucine, cellobiose, sophorose, nigerose, hyalobiuronic acid, maltose, lactulose, laminaribiose, lutinose, glucosyl sucrose, raffinose, gentianose, tritoose Aose, merentoose, stachyose, xylo-oligosaccharide, isomaltoligosaccharide, gentiooligosaccharide, fructooligosaccharide, chitosan oligosaccharide, chitin oligosaccharide, cellooligosaccharide, cyclodextrin, pectin, starch, agarose, amylose, amylopectin, arabinan, arabinogalactan, alginic acid , Inulin, galactan, xylan, chitin, chitosan, glycogen, gluco N'nan, keratan sulfate, colominic acid, chondroitin, chondroitin sulfate, cellulose, dextran, hyaluronic acid, pectin, pectic acid, heparan sulfate, heparin, mannan, lichenan, include levan and lentinan.
 上記アミノ酸の例には、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、および、これらのアミノ酸の二量体が含まれる。当該二量体の例には、シスチンが含まれる。 Examples of the amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, and Dimers of these amino acids are included. Examples of such dimers include cystine.
 上記コア粒子における肥料成分の含有量は、例えば、肥料成分の種類と粒子状肥料の徐放性とに基づいて適宜に決めることが可能である。たとえば、粒子状肥料の徐放期間が長いほど、上記液体肥料中の肥料成分の含有量(濃度)を多くすることが可能である。 The content of the fertilizer component in the core particles can be appropriately determined based on, for example, the type of fertilizer component and the sustained release property of the particulate fertilizer. For example, it is possible to increase the content (concentration) of the fertilizer component in the liquid fertilizer as the sustained release period of the particulate fertilizer is longer.
 上記第1のゲル化剤のキセロゲル(以下、「第1のキセロゲル」とも言う)とは、後述する水系媒体と下記の第1のゲル化剤とを含有するゼリー(例えば、後述のコア用溶液)を乾燥させたときの構造を有する物体である。すなわち、上記第1のキセロゲルは、溶媒の蒸発による空隙を含む網目構造を有する。 The xerogel of the first gelling agent (hereinafter also referred to as “first xerogel”) is a jelly (for example, a core solution described later) containing an aqueous medium described later and a first gelling agent described below. ) Is an object having a structure when dried. That is, the first xerogel has a network structure including voids due to evaporation of the solvent.
 上記第1のキセロゲルは、上記肥料成分を保持する。上記第1のキセロゲルは、上記肥料成分を当該第1のキセロゲルの外表面に担持していてもよいし、上記肥料成分を内包(上記空隙の内表面上に担持)していてもよい。 The first xerogel holds the fertilizer component. The first xerogel may carry the fertilizer component on the outer surface of the first xerogel, or may enclose the fertilizer component (carrying on the inner surface of the gap).
 上記第1のキセロゲルの形状は、粒子状肥料におけるコア粒子を構成することから、粒子であることが好ましいが、他の形状であってもよい。たとえば、当該第1のキセロゲルの形状は、粉体であり、上記コア粒子は、当該粉体を集合させてなる粒子であってもよい。 The shape of the first xerogel is preferably a particle because it constitutes the core particle in the particulate fertilizer, but may be another shape. For example, the shape of the first xerogel may be a powder, and the core particle may be a particle formed by collecting the powder.
 上記第1のキセロゲルは、上記肥料成分の放出が生じない範囲において、水分を含有していてもよい。たとえば、上記第1のキセロゲルは、10質量%程度の水を含有していてもよい。上記第1のキセロゲル中の水分の含有量は、上記肥料成分の放出を防止する観点から、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。 The first xerogel may contain moisture as long as the fertilizer component is not released. For example, the first xerogel may contain about 10% by mass of water. From the viewpoint of preventing the release of the fertilizer component, the water content in the first xerogel is preferably 10% by mass or less, more preferably 8% by mass or less, and 5% by mass or less. More preferably it is.
 (シェル)
 上記シェルは、上記コア粒子を覆う、下記の第2のゲル化剤のキセロゲルにより構成される。上記第2のゲル化剤のキセロゲル(以下、「第2のキセロゲル」とも言う)とは、後述する水系媒体と第2のゲル化剤とを含有するゼリー(例えば、後述のシェル用溶液)を乾燥させたときの構造を有する物体である。すなわち、上記第2のキセロゲルは、溶媒の蒸発による空隙を含む網目構造を有する。
(shell)
The shell is composed of the following second gelling agent xerogel that covers the core particles. The xerogel of the second gelling agent (hereinafter also referred to as “second xerogel”) is a jelly (for example, a shell solution described later) containing an aqueous medium described later and a second gelling agent. An object having a structure when dried. That is, the second xerogel has a network structure including voids due to evaporation of the solvent.
 上記第2のキセロゲルは、保管時における粒子状肥料の凝集が生じない範囲において、水分を含有していてもよい。上記第2のキセロゲル中の水分の含有量は、粒子状肥料の保管時の吸湿による凝集を防止する観点から、10質量%以下であることが好ましく、6質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。 The second xerogel may contain moisture as long as the particulate fertilizer does not aggregate during storage. The water content in the second xerogel is preferably 10% by mass or less, more preferably 6% by mass or less from the viewpoint of preventing aggregation due to moisture absorption during storage of the particulate fertilizer. More preferably, it is 3 mass% or less.
 上記第1のゲル化剤および上記第2のゲル化剤は、上記の水性のゼリーからキセロゲルを形成可能な公知のゲル化剤から選択することが可能である。上記第1のゲル化剤および上記第2のゲル化剤は、それぞれ、同じでも異なっていてもよく、一種でもそれ以上でもよい。 The first gelling agent and the second gelling agent can be selected from known gelling agents capable of forming a xerogel from the aqueous jelly. The first gelling agent and the second gelling agent may be the same or different, and may be one kind or more.
 上記第1のゲル化剤および上記第2のゲル化剤の例には、寒天、ジェランガム、ネイティブジェランガム、ゼラチン、κ-カラギナン、λ-カラギナン、ι-カラギナン、ローカストビーンガム、ペクチン、タマリンド種子多糖類、アルギン酸、アルギン酸塩、グアガム、タラガム、ファーセレラン、グルコマンナン、エチルセルロースおよびカードランが含まれる。上記のゲル化剤は、生分解性を有しており、この観点からも好ましい。 Examples of the first gelling agent and the second gelling agent include agar, gellan gum, native gellan gum, gelatin, κ-carrageenan, λ-carrageenan, ι-carrageenan, locust bean gum, pectin, and tamarind seeds. Saccharides, alginic acid, alginate, guar gum, tara gum, fur celerane, glucomannan, ethyl cellulose and curdlan are included. The gelling agent has biodegradability and is preferable from this viewpoint.
 上記第1のゲル化剤および上記第2のゲル化剤は、ブルーム値の制御の観点から、独立して、ゼラチン、グルコマンナン、寒天およびエチルセルロースからなる群から選ばれる一以上であることがより好ましい。 The first gelling agent and the second gelling agent are independently one or more selected from the group consisting of gelatin, glucomannan, agar, and ethylcellulose, from the viewpoint of controlling the Bloom value. preferable.
 第2のキセロゲルを含むシェルは、少なくともその表層側の領域が、水溶性の肥料成分を実質的に含んでいない。「表層側の領域」とは、例えば、当該シェルの表面を含み、当該シェルの厚さ未満の厚さ、例えばシェルにおける表面から深さ0.10mmまでの部分、を有する、上記第2のキセロゲルに含まれる層状の部分である。つまり、上記粒子状肥料は、肥料成分が主としてコア粒子に偏在しており、粒子状肥料の表面に露出しないように構成されている。 The shell containing the second xerogel does not substantially contain a water-soluble fertilizer component at least in the region on the surface layer side. The “surface layer side region” means, for example, the second xerogel that includes the surface of the shell and has a thickness less than the thickness of the shell, for example, a portion of the shell from the surface to a depth of 0.10 mm. It is a layered portion included in That is, the particulate fertilizer is configured such that the fertilizer component is mainly distributed in the core particles and is not exposed on the surface of the particulate fertilizer.
 また、上記第2のキセロゲルは、その少なくとも表層側の領域において、上記水溶性の肥料成分を実質的には保持していない。ここで、「実質的には保持していない」とは、例えば、肥料成分を徐放するように、すなわち徐放のための肥料成分の供給源となるようには、肥料成分を上記キセロゲルが保持していないことを言う。たとえば、上記キセロゲルがコア粒子から放出された肥料成分を含有することは、「実質的に保持していない」状態に該当する。すなわち、水溶性の肥料成分は、シェル全体に実質的に(あるいは全く)含まれていなくてもよいし、シェルの表層側の領域以外の部位に分散していてもよい。たとえば、本発明では、シェル全体に対する肥料成分の含有量が1質量%以下である部分は、肥料成分を実質的に保持していない部分とみなすことができる。 Further, the second xerogel does not substantially hold the water-soluble fertilizer component at least in the region on the surface layer side. Here, “substantially does not hold” means, for example, that the xerogel is a fertilizer component so that the fertilizer component is sustainedly released, that is, a source of fertilizer components for sustained release. Say that you do not hold. For example, the fact that the xerogel contains a fertilizer component released from the core particles corresponds to a “not substantially retained” state. That is, the water-soluble fertilizer component may not be substantially (or at all) contained in the entire shell, or may be dispersed in a region other than the region on the surface layer side of the shell. For example, in the present invention, a portion where the content of the fertilizer component with respect to the entire shell is 1% by mass or less can be regarded as a portion that does not substantially hold the fertilizer component.
 いずれにしても、少なくともシェルの表層側の領域には、水溶性の肥料成分を全く含ませないか、含有していないとみなせる量の範囲内で含有させ、実質的に水溶性の肥料成分を保持しないように構成する。肥料成分を実質的に保持している部分は、より長期にわたってより高い濃度で肥料成分を含有するので、粒子状肥料中の肥料成分の濃度分布から確認することが可能である。 In any case, at least the region on the surface layer side of the shell does not contain any water-soluble fertilizer component, or contains it in an amount range that can be regarded as not containing any water-soluble fertilizer component. Configure not to hold. The portion substantially holding the fertilizer component contains the fertilizer component at a higher concentration over a longer period of time, and can be confirmed from the concentration distribution of the fertilizer component in the particulate fertilizer.
 上記第2のゲル化剤の種類は、上記第1のゲル化剤の種類とは異なり、第2のゲル化剤のブルーム値が、上記第1のゲル化剤のブルーム値よりも大きいことが、上記水溶性の肥料成分を実質的に保持しない上記表層側の領域を構成する観点から好ましい。ブルーム値は、ゼリー強度とも言われ、第1または第2のゲル化剤のゼリーの表面を10℃において、径12.7mmのプランジャーで4mm押し下げるのに必要な荷重(g)である。ブルーム値は、ゼリー強度として、JIS K6503に規定されている。 The kind of the second gelling agent is different from the kind of the first gelling agent, and the bloom value of the second gelling agent is larger than the bloom value of the first gelling agent. From the viewpoint of constituting a region on the surface layer side that does not substantially retain the water-soluble fertilizer component. The Bloom value is also referred to as jelly strength, and is a load (g) required to push down the surface of the jelly of the first or second gelling agent 4 mm at 10 ° C. with a plunger having a diameter of 12.7 mm. The Bloom value is defined in JIS K6503 as jelly strength.
 本件明細書においては、各種ゲル化剤についての共通の指標とするため、上記ブルーム値として、JIS K6503に準じた以下の方法によって測定した値とする。 In this specification, in order to use it as a common index for various gelling agents, the Bloom value is a value measured by the following method according to JIS K6503.
 まず、ゲル化剤と水105mLを混合してなる、ゲル化剤の濃度が12.5質量%のゼリーをゼリーカップに入れ、10.0±0.1℃の恒温槽中で静置する。ゼリーカップには、内径59±1mm、高さ85mmの容器を用いる。次いで、ゼリーを収容するゼリーカップを、テクスチャーアナライザやレオメータなどの物性測定器のテーブルの上に置く。当該物性測定器のプランジャーには、直径12.7±0.1mmの円筒形のプローブを用いる。プランジャーの先端がゼリーの表面の中央部でゼリーと接触するように、カップの位置を調整した後、10℃において、侵入距離4mm、侵入速度毎秒1mmで試験を行い、当該試験において表示された値をブルーム値とする。 First, a jelly having a gelling agent concentration of 12.5% by mass, mixed with a gelling agent and 105 mL of water, is placed in a jelly cup and left in a constant temperature bath of 10.0 ± 0.1 ° C. For the jelly cup, a container having an inner diameter of 59 ± 1 mm and a height of 85 mm is used. Next, a jelly cup containing the jelly is placed on a table of a physical property measuring instrument such as a texture analyzer or a rheometer. A cylindrical probe having a diameter of 12.7 ± 0.1 mm is used for the plunger of the physical property measuring instrument. After adjusting the position of the cup so that the tip of the plunger was in contact with the jelly at the center of the surface of the jelly, a test was conducted at 10 ° C. with an penetration distance of 4 mm and an penetration speed of 1 mm per second. Let the value be the Bloom value.
 上記ブルーム値は、例えば、上記第1のゲル化剤および上記第2のゲル化剤の分子量によって調整することが可能である。また、ゼラチンのブルーム値は、ゼラチンの架橋度合いを変化させることで制御することができ、例えば、ゼラチンを架橋することによって大きくすることが可能である。 The Bloom value can be adjusted by the molecular weight of the first gelling agent and the second gelling agent, for example. The Bloom value of gelatin can be controlled by changing the degree of crosslinking of gelatin, and can be increased by, for example, cross-linking gelatin.
 また、上記ブルーム値は、例えば、コア粒子またはシェルの上記濃度のゼリーを作製し、必要に応じて当該ゼリーの組成を分析して上記ゼリーを測定用に作製し、当該ゼリーのブルーム値を前述のように測定することによって、粒子状肥料から求めることが可能である。 In addition, the Bloom value is prepared, for example, by preparing a jelly having the above-mentioned concentration of core particles or shells, analyzing the composition of the jelly as necessary, and preparing the jelly for measurement. It is possible to obtain | require from a particulate fertilizer by measuring like this.
 第2のゲル化剤のブルーム値を第1のゲル化剤のブルーム値より大きくする場合、上記第2のゲル化剤のブルーム値から上記第1のゲル化剤のブルーム値を引いた差は、十分な徐放性を確保する観点、シェルの機械的強度(保管性)を高める観点、および、後述の二重管滴下法で粒子状肥料を製造するときの液膜の崩れを防止する観点から、80g以上であることが好ましく、100g以上であることがより好ましく、150g以上であることがさらに好ましい。また、上記差は、大きすぎると、粒子状肥料の生産性(粒子状肥料の製造時におけるゼリーの取り扱い性)の低下を招くことがある。このような観点から、上記差は、1500g以下であることが好ましく、1000g以下であることがより好ましく、750g以下であることがさらに好ましい。 When the Bloom value of the second gelling agent is made larger than the Bloom value of the first gelling agent, the difference obtained by subtracting the Bloom value of the first gelling agent from the Bloom value of the second gelling agent is The viewpoint of ensuring sufficient sustained release, the viewpoint of increasing the mechanical strength (storability) of the shell, and the viewpoint of preventing the collapse of the liquid film when producing the particulate fertilizer by the double pipe dropping method described later Therefore, it is preferably 80 g or more, more preferably 100 g or more, and further preferably 150 g or more. Moreover, when the said difference is too large, the productivity of particulate fertilizer (the handling property of jelly at the time of manufacture of a particulate fertilizer) may be caused to fall. From such a viewpoint, the difference is preferably 1500 g or less, more preferably 1000 g or less, and further preferably 750 g or less.
 上記第1のゲル化剤のブルーム値は、粒子状肥料の使用時(吸水時)におけるコア粒子の粒子形状を維持する観点、および、所期の粒径を有するコア粒子の製造を容易にするために必要な粘性を付与する観点から、50g以上であることが好ましく、75g以上であることがより好ましく、100g以上であることがさらに好ましい。また、上記第1のゲル化剤のブルーム値は、十分な徐放性を確保する観点、および、所期の粒径を有するコア粒子を容易に製造する観点から、1000g以下であることが好ましく、500g以下であることがより好ましく、300g以下であることがさらに好ましい。 The Bloom value of the first gelling agent facilitates the production of core particles having a desired particle size, in terms of maintaining the particle shape of the core particles when using the particulate fertilizer (at the time of water absorption). Therefore, from the viewpoint of imparting the necessary viscosity, it is preferably 50 g or more, more preferably 75 g or more, and further preferably 100 g or more. In addition, the bloom value of the first gelling agent is preferably 1000 g or less from the viewpoint of ensuring sufficient sustained release and from the viewpoint of easily producing core particles having an intended particle size. 500 g or less, more preferably 300 g or less.
 上記第2のゲル化剤のブルーム値は、粒子状肥料の使用時(吸水時)におけるシェルの形状を維持し、またコア粒子を被覆する機能を維持する観点から、100g以上であることが好ましく、150g以上であることがより好ましく、200g以上であることがさらに好ましい。また、上記第2のゲル化剤のブルーム値は、粒子状肥料の生産性の観点、および、所期の徐放性を確保する観点から、2000g以下であることが好ましく、1500g以下であることがより好ましく、1000g以下であることがさらに好ましい。 The bloom value of the second gelling agent is preferably 100 g or more from the viewpoint of maintaining the shape of the shell when using the particulate fertilizer (at the time of water absorption) and maintaining the function of covering the core particles. 150 g or more, more preferably 200 g or more. In addition, the bloom value of the second gelling agent is preferably 2000 g or less, and preferably 1500 g or less from the viewpoint of productivity of the particulate fertilizer and the desired sustained release property. Is more preferable, and it is still more preferable that it is 1000 g or less.
 上記粒子状肥料は、本発明の効果が得られる範囲において、第1のゲル化剤、第2のゲル化剤および肥料成分以外の他の成分(添加剤)をさらに含有していてもよい。当該添加剤は、一種でもそれ以上でもよい。当該添加剤の例には、pH調整剤、農薬活性成分および色素が含まれる。これらの添加剤は、コア粒子とシェルのどちらに添加してもよいが、薬効を長期間発現させるという観点からは、農薬活性成分はコア粒子へ添加することが好ましい。また、粒子状肥料を意図した色に着色するという観点からは、色素をシェルへ添加することが好ましい。 The particulate fertilizer may further contain other components (additives) other than the first gelling agent, the second gelling agent, and the fertilizer component as long as the effects of the present invention are obtained. The additive may be one kind or more. Examples of the additive include a pH adjuster, an agrochemical active ingredient, and a pigment. These additives may be added to either the core particle or the shell, but it is preferable to add the pesticidal active ingredient to the core particle from the viewpoint of exhibiting a medicinal effect for a long period of time. Moreover, it is preferable to add a pigment | dye to a shell from a viewpoint of coloring a particulate fertilizer into the color intended.
 上記農薬活性成分には、一般に農薬の活性成分として使用されるすべての活性成分が包含される。当該農薬活性成分の例には、農園芸用の有害生物を防除するための物質、および、植物の成長を調節するための物質、が含まれ、より具体的には、除草剤、植物成長調節剤、殺虫・殺ダニ剤、および、殺菌・殺カビ剤が含まれる。 The above-mentioned pesticidal active ingredients include all active ingredients generally used as pesticidal active ingredients. Examples of the agrochemical active ingredients include substances for controlling agricultural and horticultural pests and substances for regulating plant growth, and more specifically, herbicides, plant growth regulation. Agents, insecticides / acaricides, and fungicides / fungicides.
 上記除草剤としては、例えば、ピラクロニル、プロピリスルフロン、ベンゾビシクロン、ピラゾレート、テフリルトリオン、メソトリオン、トプラメゾン、スルコトリオン、オキサジクロメホン、ベンゾフェナップ、ピラゾキシフェン、ピリブチカルブ、ブタミホス、メフェナセット、ベンスルフロンメチル、アニロホス、ブタクロール、プレチラクロール、チオベンカルブ、クロルニトロフェン、クロメトキシフェン、ダイムロン、ビフェノックス、ナプロアニリド、オキサジアゾン、オキサジアルギル、ベンタゾン、モリネート、ピペロホス、ジメピペレート、エスプロカルブ、ジチオピル、ベンフレセート、キノクラミン、シンメチリン、MCPA(4-クロロ-2-メチルフェノキシ酢酸)またはそのナトリウム塩、カリウム塩等の塩類もしくはエステル類、2,4-D(2,4-ジクロロフェノキシ酢酸)もしくはそのナトリウム塩、カリウム塩等の塩類またはエステル類、MCPB(2-メチル-4-クロロフェノキシ酪酸)またはそのナトリウム塩、カリウム塩等の塩類もしくはエステル類、キンクロラック、ピラゾスルフロンエチル、ペントキサゾン、テニルクロール、インダノファン、クミルロン、クロメプロップ、シノスルフロン、シメトリン、ジメタメトリン、シハロホップブチル、エトベンザニド、カフェンストロール、エトキシスルフロン、アジムスルフロン、シクロスルファムロン、イマゾスルフロン、フルセトスルフロン、オルソスルファムロン、ハロスルフロンメチル、ビスピリバック、ビスピリバックナトリウム塩、ピリミノバックメチル、ピリフタリド、フェントラザミド、イプフェンカルバゾン、メタゾスルホン、ピリミスルファン、ペノキススラムおよびフェノキサスルホンが含まれる。 Examples of the herbicide include pyraclonyl, propyrisulfuron, benzobicyclone, pyrazolate, tefryltrione, mesotrione, topramesone, sulcotrione, oxadiclomephone, benzophenap, pyrazoxifene, pyributicalbu, butamifos, mefenacet, bensulfuron methyl, anilophos , Butachlor, pretilachlor, thiobencarb, chloronitrophene, chloromethoxyphene, diimron, biphenox, naproanilide, oxadiazon, oxadialgyl, bentazone, molinate, piperophos, dimethylpiperate, esprocarb, dithiopyr, benfriseto, quinoclamin, cinmethyrin-2, MCPA Phenoxyacetic acid) or its sodium salt, potassium salt, etc. Salts or esters, 2,4-D (2,4-dichlorophenoxyacetic acid) or its sodium salt, salts or esters such as potassium salt, MCPB (2-methyl-4-chlorophenoxybutyric acid) or its sodium salt, Salts or esters such as potassium salts, quinchlorac, pyrazosulfuron ethyl, pentoxazone, tenyl chlor, indanophan, cumyluron, clomeprop, synosulfuron, cimetrin, dimetamethrin, cihalohop butyl, etobenzanide, fenfentrol, ethoxysulfuron, azimusulfuron, cyclo Sulfamlone, imazosulfuron, flucetosulfuron, orthosulfamlone, halosulfuronmethyl, bispyribac, bispyribac sodium salt, pyriminobacmethyl, Rifutarido, fentrazamide, type Fen carbazone, Metazosuruhon, pyridinium miss Le fan, include penoxsulam and phenoxazine sulfone.
 上記植物生長調節剤の例には、イナベンフィド、メピコートクロリド、クロルメコート、フルルプリミドール、ビスピリバックナトリウム塩、パクロブトラゾール、プロヘキサジオンカルシウム塩、トリネキサパックエチル、ダミノジット、ウニコナゾールPおよびトリアペンテノールが含まれる。 Examples of the above plant growth regulators include inabenfide, mepiquat chloride, chlormequat, flurprimidol, bispyribac sodium salt, paclobutrazole, prohexadione calcium salt, trinexapac ethyl, daminogit, uniconazole P and Triapentenol is included.
 上記殺虫・殺ダニ剤の例には、イソキサチオン、ダイアジノン、ダイスルフォトン、マラソン、プロパホス、トリクロルフォン、ホルモチオン、ジメトエート、モノクロトフォス、アセフェート、カルボフラン、カルボスルファン、チオシクラム、カルタップ、ベンスルタップ、ベンフラカルブ、フラチオカルブ、ブプロフェジン、フェノブカルブ、メトールカルブ、プロポクシュア、イミダクロプリド、ニテンピラム、アセタミプリド、クロルピリホスメチル、ジメチルビンホス、ピリダフェンチオン、チオジカルブ、ジノテフラン、クロチアニジン、チアクロプリド、チアメトキサム、クロマフェノジド、ハロフェノジド、テブフェノジド、メトキシフェノジド、フィプロニル、エチプロール、硫酸ニコチン、スピノサド、ピメトロジン、フロニカミド、クロラントラニリプロール、シアントラニリプロール、スピネトラム、シクロプロトリン、エトフェンプロックス、シラフルオフェン、フルベンジアミドおよびピリフルキナゾンが含まれる。 Examples of the insecticide / acaricide include isoxathione, diazinon, disulfone, marathon, propofos, trichlorfone, formothione, dimethoate, monocrotophos, acephate, carbofuran, carbosulfan, thiocyclam, cartap, bensultap, benfracarb, Furothiocarb, buprofezin, fenobucarb, metholcarb, propoxure, imidacloprid, nitenpyram, acetamiprid, chlorpyrifosmethyl, dimethylvinphos, pyridafenthion, thiodicarb, dinotefuran, clothianidin, thiacloprid, thiamethoxam, chromofenodido, Spinosad, Pymetroge Include flonicamid, chlorantraniliprole, cyan tiger Niri Prowl, spinetoram, cycloprothrin [pi] n, etofenprox, silafluofen and flubendiamide and pyrifluquinazon.
 上記殺菌・殺カビ剤の例には、プロベナゾール、イソプロチオラン、イプロベンフォス、トリシクラゾール、ピロキロン、カルプロパミド、アゾキシストロビン、フルトラニル、メプロニル、チフルザミド、フラメトピル、テクロフタラム、ベノミル、ジクロシメット、フェノキサニル、フサライド、メトミノストロビン、オリサストロビン、カスガマイシン、バリダマイシン、オキシテトラサイクリン、ストレプトマイシン、フェリムゾン、シメコナゾール、銅、チオファネートメチル、EDDP(エジフェンホス)、IBP(イプロベンホス)、メタラキシル、イプロジオン、ヒドロキシイソキサゾール、オキソリニック酸、ペンチオピラド、ジクロメジン、チアジニル、プロベナゾール、アシベンゾラルSメチルおよびイソチアニルが含まれる。 Examples of the bactericides and fungicides include probenazole, isoprothiolane, iprobenfos, tricyclazole, pyroxylone, carpropamide, azoxystrobin, flutolanil, mepronil, tifluzamide, flametopyr, teclophthalam, benomyl, diclocimet, phenoxanil, fusaride, metminost Robin, orissatrobin, kasugamycin, validamycin, oxytetracycline, streptomycin, ferimzone, cimeconazole, copper, thiophanate methyl, EDDP (edifenphos), IBP (iprobenphos), metalaxyl, iprodione, hydroxyisoxazole, oxolinic acid, pentiopyrad, dichromedene, thiazinyl, prozinil , Acibenzoral S methyl and isotianil It is included.
 上記色素の例には、染料、顔料および合成色素が含まれる。 Examples of the pigment include dyes, pigments and synthetic pigments.
 さらに、上記添加物の例には、植物から抽出される精油および合成香料などの香料;反応を制御するための触媒、染料と組み合わせて使用する発色剤、消色剤、難燃剤、消泡剤および帯電防止剤などの機能性物質;抗菌剤および消毒剤などの医薬;ジアスターゼ、プロテアーゼ、セルラーゼおよびリパーゼなどの酵素;水溶性ビタミン類および脂溶性ビタミン類などの生理活性物質;が含まれる。水溶性ビタミン類の例には、ビタミンB1、ビタミンB2、ビタミンB6、ビタミンB12およびビタミンCが含まれ、脂溶性ビタミン類の例には、ビタミンA、ビタミンDおよびビタミンEが含まれる。 Furthermore, examples of the additive include perfumes such as essential oils extracted from plants and synthetic perfumes; catalysts for controlling the reaction, color formers used in combination with dyes, color erasers, flame retardants, and antifoaming agents. And functional substances such as antistatic agents; pharmaceuticals such as antibacterial agents and disinfectants; enzymes such as diastase, protease, cellulase and lipase; physiologically active substances such as water-soluble vitamins and fat-soluble vitamins. Examples of water-soluble vitamins include vitamin B1, vitamin B2, vitamin B6, vitamin B12 and vitamin C, and examples of fat-soluble vitamins include vitamin A, vitamin D and vitamin E.
 上記粒子状肥料の粒子形状は、球形、略球形、不定形のいずれでもよい。上記粒子状肥料の粒子径は、例えば長径(最大径)である。上記粒子状肥料の平均一次粒径は、粒子状肥料からの肥料成分の所期の徐放期間や、所期の徐放量、粒子状肥料における肥料成分の所期の含有量などに応じて適宜に決めることが可能である。上記粒子状肥料の平均一次粒径は、例えば、乾燥時(未使用時)では1.0~10mmであり、吸水時(使用時)では5~30mmである。また、コア粒子の乾燥時の平均一次粒径は、0.50~6.0mmであり、シェルの乾燥時の厚さは、0.20~2.0mmである。 The particle shape of the particulate fertilizer may be spherical, substantially spherical, or indefinite. The particle diameter of the particulate fertilizer is, for example, a long diameter (maximum diameter). The average primary particle size of the particulate fertilizer is appropriately determined according to the desired sustained release period of the fertilizer component from the particulate fertilizer, the desired sustained release amount, the desired content of the fertilizer component in the particulate fertilizer, etc. It is possible to decide on. The average primary particle size of the particulate fertilizer is, for example, 1.0 to 10 mm when dried (not used) and 5 to 30 mm when absorbed (used). The average primary particle size when the core particles are dried is 0.50 to 6.0 mm, and the thickness when the shell is dried is 0.20 to 2.0 mm.
 [粒子状肥料の製造方法]
 上記粒子状肥料は、下記の第1の工程、第2の工程および第3の工程を含む方法によって製造することが可能である。
[Production method of particulate fertilizer]
The particulate fertilizer can be produced by a method including the following first step, second step and third step.
 (第1の工程)
 上記第1の工程は、コア用溶液の液滴または上記コア粒子を作製する工程である。
(First step)
The first step is a step of producing droplets of the core solution or the core particles.
 上記コア用溶液の液滴は、例えば、コア用溶液が不溶な液体中にコア用溶液を滴下するコアセルベーション法によって、作製することが可能である。 The core solution droplets can be produced by, for example, a coacervation method in which the core solution is dropped into a liquid in which the core solution is insoluble.
 上記コア用溶液は、上記肥料成分、上記第1のゲル化剤および第1の水系媒体を含有する。当該肥料成分には、前述した化合物や成分そのものを用いてもよいし、ハイポニカ(協和株式会社製、同社の登録商標)、万田アミノアルファ(万田酵素株式会社製、同社の登録商標)、メネデール(メネデール株式会社製、同社の登録商標)などの市販の液体肥料のような配合肥料を利用してもよい。 The core solution contains the fertilizer component, the first gelling agent, and the first aqueous medium. As the fertilizer component, the above-described compounds and the components themselves may be used. Compound fertilizers such as commercially available liquid fertilizers such as Menedale Co., Ltd. (registered trademark of the company) may be used.
 上記第1の水系媒体は、水を主成分とする液体である。上記第1の水系媒体は、水のみであってもよいし、水以外の水溶性成分を含有していてもよい。当該水溶性成分は、一種でもそれ以上でもよい。当該水溶性成分の例には、アルコール類、ケトン類、エステル類などの成分であって水溶性を有する成分が含まれる。上記第1の水系媒体中の水の含有率は、例えば、80~99質量%である。 The first aqueous medium is a liquid mainly composed of water. The first aqueous medium may be water alone or may contain a water-soluble component other than water. The water-soluble component may be one kind or more. Examples of the water-soluble component include components such as alcohols, ketones, and esters that have water solubility. The water content in the first aqueous medium is, for example, 80 to 99% by mass.
 上記コア用溶液中の上記肥料成分の含有量は、所期の量の肥料成分を上記コア粒子に含有させることが可能な範囲において、適宜に決めることが可能である。たとえば、上記コア用溶液中の上記肥料成分の含有量は、1~90質量%であることが好ましい。 The content of the fertilizer component in the core solution can be appropriately determined as long as the desired amount of fertilizer component can be contained in the core particles. For example, the content of the fertilizer component in the core solution is preferably 1 to 90% by mass.
 上記コア用溶液は、任意の肥料成分および上記第1のゲル化剤を上記水系媒体に溶解または分散させることによって調製することが可能である。あるいは、上記コア用溶液は、市販の液体肥料または当該液体肥料の水系媒体による希釈液に、上記第1のゲル化剤溶解または分散することによって調製することが可能である。 The core solution can be prepared by dissolving or dispersing any fertilizer component and the first gelling agent in the aqueous medium. Alternatively, the core solution can be prepared by dissolving or dispersing the first gelling agent in a commercially available liquid fertilizer or a diluted solution of the liquid fertilizer in an aqueous medium.
 上記コア用溶液は、本発明の効果が得られる範囲において、他の成分をさらに含有していてもよい。当該他の成分の例には、前述したコア粒子用の添加剤、および、コア用溶液用の添加剤が含まれる。コア用溶液用の添加剤は、例えば、コア用溶液の液滴を形成するのに好適な添加剤であり、一種でもそれ以上でもよい。 The core solution may further contain other components as long as the effects of the present invention are obtained. Examples of the other components include the aforementioned additive for the core particles and the additive for the core solution. The additive for the core solution is, for example, an additive suitable for forming droplets of the core solution, and may be one kind or more.
 上記コア粒子は、上記コア用溶液の液滴を形成する工程と、上記液滴を乾燥させる工程とを含む方法によって作製することが可能である。当該方法は、粒子形状が略一定なコア粒子を作製する観点から好ましい。 The core particles can be produced by a method including a step of forming droplets of the core solution and a step of drying the droplets. This method is preferable from the viewpoint of producing core particles having a substantially constant particle shape.
 上記液滴を乾燥させる工程は、上記液滴中の第1のゲル化剤が溶解しない温度にて、上記液滴から水分を除去することによって行うことが可能である。たとえば、上記液滴を乾燥させる工程は、通風乾燥、減圧乾燥および凍結乾燥などの公知の乾燥方法によって行うことが可能である。特に、当該液滴を簡易に効率よく乾燥させる観点から、通風乾燥が好ましい。 The step of drying the droplet can be performed by removing moisture from the droplet at a temperature at which the first gelling agent in the droplet does not dissolve. For example, the step of drying the droplets can be performed by a known drying method such as ventilation drying, reduced pressure drying, and freeze drying. In particular, ventilation drying is preferable from the viewpoint of easily and efficiently drying the droplets.
 上記液滴の乾燥に際しては、必要に応じて上記液滴を固化させてもよい。当該液滴の固化は、上記第1のゲル化剤の、変性や硬化などの状態の変化をもたらす、当該液滴の加熱または冷却によって行うことが可能である。 When drying the droplets, the droplets may be solidified as necessary. The solidification of the droplet can be performed by heating or cooling the droplet, which causes a change in the state of the first gelling agent such as denaturation or curing.
 なお、上記コア粒子は、前述のキセロゲルの粉体などの粉末材料を凝集させて粒子を形成する乾式造粒法や、周面に吐出口を有する温度調整可能なロータから基体に液滴を少量ずつ吐出するロータリー法などによっても、作製することが可能である。 The core particles may be produced by a dry granulation method in which powder materials such as the aforementioned xerogel powder are agglomerated to form particles, or from a temperature-adjustable rotor having a discharge port on the peripheral surface to form a small amount of droplets on the substrate It can also be manufactured by a rotary method or the like that discharges each one.
 (第2の工程)
 上記第2の工程は、シェル用溶液の、上記コア用溶液の液滴または上記コア粒子の表面を覆う液膜を形成する工程である。第2の工程は、第1の工程と並行されてもよいし、第1の工程の後に実行されてもよい。
(Second step)
The second step is a step of forming a liquid film covering the surface of the core solution droplets or the core particles of the shell solution. The second step may be performed in parallel with the first step, or may be performed after the first step.
 上記シェル用溶液は、上記第2のゲル化剤および第2の水系媒体を含有する。当該第2の水系媒体における「水系媒体」とは、前述した第1の水系媒体におけるそれと同じ意味である。当該第2の水系媒体は、上記第1の水系媒体と同じであってもよいし、異なっていてもよい。 The shell solution contains the second gelling agent and the second aqueous medium. The “aqueous medium” in the second aqueous medium has the same meaning as that in the first aqueous medium described above. The second aqueous medium may be the same as or different from the first aqueous medium.
 上記液滴の表面を覆う上記液膜を形成する工程は、例えば、二重管の内管から上記コア用溶液を、当該二重管の外管から上記シェル用溶液を、同時に吐出して液滴を作製する二重管滴下法によって行うことが可能である。二重管滴下法によれば、上記液滴と、当該液滴の表面を覆う上記液膜とによって構成されるコアシェル構造の液滴が作製される。上記二重管滴下法は、上記液滴および上記液膜の形成を一度に行う(上記第1の工程および第2の工程を一工程で行う)ことができ、粒子状肥料の生産性の観点から好ましく、また、略一定の粒子形状の粒子状肥料を得る観点から好ましい。 The step of forming the liquid film covering the surface of the droplet includes, for example, simultaneously discharging the core solution from the inner tube of the double tube and the shell solution from the outer tube of the double tube. It is possible to carry out by a double tube dropping method for producing drops. According to the double-tube dropping method, a droplet having a core-shell structure composed of the droplet and the liquid film covering the surface of the droplet is produced. The double-tube dropping method can form the droplet and the liquid film at one time (perform the first step and the second step in one step), and can improve the productivity of the particulate fertilizer. From the viewpoint of obtaining a particulate fertilizer having a substantially constant particle shape.
 上記液滴の表面を覆う上記液膜を形成する工程は、二次乳化法によっても作製することが可能である。二次乳化法は、コア用溶液を分散質とする懸濁液を当該分散質に親和性を有する液媒中に分散して、当該液滴を当該懸濁液の分散媒の液膜が覆う液滴を形成する方法である。二次乳化法は、上記の観点から好ましく、さらに小さな粒径の粒子状肥料を作製するのに有利である。 The step of forming the liquid film covering the surface of the droplet can also be produced by a secondary emulsification method. In the secondary emulsification method, a suspension having a core solution as a dispersoid is dispersed in a liquid medium having affinity for the dispersoid, and the liquid film of the dispersion medium of the suspension covers the liquid droplets. This is a method of forming droplets. The secondary emulsification method is preferable from the above viewpoint, and is advantageous for producing a particulate fertilizer having a smaller particle diameter.
 上記コア粒子の表面を覆う液膜を形成する工程は、例えば、噴霧乾燥法や回転パン式造粒法などの、流動するコア粒子に上記シェル用溶液を噴霧し、かつ当該シェル用溶液を乾燥させる方法によって行うことが可能である。特に、上記噴霧乾燥法は、粒子状肥料の大量生産に適している観点から好ましい。 The step of forming a liquid film covering the surface of the core particles includes spraying the shell solution onto the flowing core particles, such as spray drying and rotary pan granulation, and drying the shell solution. It is possible to carry out by the method of making it. In particular, the spray drying method is preferable from the viewpoint of being suitable for mass production of particulate fertilizer.
 上記コアシェル構造の液滴の乾燥に際しては、必要に応じて上記コアシェル構造の液滴を固化させてもよい。当該コアシェル構造の液滴の固化は、少なくとも上記第2のゲル化剤の、好ましくは上記第1のゲル化剤および上記第2のゲル化剤の両方の、変性や硬化などの状態の変化をもたらす、当該コアシェル構造の液滴の加熱または冷却によって行うことが可能である。 When drying the core-shell structure droplets, the core-shell structure droplets may be solidified as necessary. The solidification of the core-shell structure droplets causes a change in the state of denaturation or curing of at least the second gelling agent, preferably both the first gelling agent and the second gelling agent. This can be done by heating or cooling the resulting droplets of the core-shell structure.
 このように、第2の工程を実行することにより、上記シェルの表層側の領域に実質的に水溶性の肥料成分を含まないシェルを形成できる。第2の工程を行う過程で、コア粒子との界面において肥料成分がシェル側に拡散する可能性もあるが、少なくともシェルの表層領域は実質的に水溶性の肥料成分を保持しないように構成することができる。 Thus, by executing the second step, a shell substantially free of water-soluble fertilizer components can be formed in the surface layer side region of the shell. In the process of performing the second step, the fertilizer component may diffuse to the shell side at the interface with the core particles, but at least the surface layer region of the shell is configured not to substantially retain the water-soluble fertilizer component. be able to.
 また、第2の工程において、シェルを多層化するようにしてもよい。この場合、内側のシェル層に水溶性の肥料成分を分散させ、外側のシェル層に肥料成分を含まないように構成してもよい。 In the second step, the shell may be multilayered. In this case, a water-soluble fertilizer component may be dispersed in the inner shell layer, and the outer shell layer may not include the fertilizer component.
 (第3の工程)
 上記第3の工程は、上記液膜で覆われた上記液滴または上記コア粒子を乾燥させる工程である。上記液滴または上記コア粒子を乾燥させる工程は、前述したコア用溶液の液滴の乾燥と同様に行うことが可能である。第3の工程において、上記コアシェル構造の液滴を乾燥することは、乾燥工程数の削減および生産性の向上の観点から好ましい。
(Third step)
The third step is a step of drying the droplets or the core particles covered with the liquid film. The step of drying the droplet or the core particle can be performed in the same manner as the drying of the droplet of the core solution described above. In the third step, drying the droplets having the core-shell structure is preferable from the viewpoint of reducing the number of drying steps and improving productivity.
 (その他の工程)
 上記方法は、本発明の効果が得られる範囲において、前述した第1の工程、第2の工程および第3の工程以外の他の工程をさらに含んでもよい。当該他の工程の例には、粒子状肥料の粒径をより均一にするためのふるい工程が含まれる。
(Other processes)
The above method may further include other steps other than the first step, the second step, and the third step described above as long as the effects of the present invention are obtained. Examples of the other steps include a sieving step for making the particle size of the particulate fertilizer more uniform.
 (作用、効果)
 本実施の形態に係る粒子状肥料は、植物が栽培されている土壌など栽培床に散布される。当該粒子状肥料は、水溶性の肥料成分を保持する、第1のキセロゲルを含むコア粒子と、コア粒子を覆う、第2のキセロゲルにより構成されたシェルと、を有する。コア粒子およびシェルがいずれもキセロゲルとされているため、表面の乾燥した粒子状肥料として取り扱うことができ、適度な低湿環境下に保存されている限り、保管性も良好である。また、第2のキセロゲルが水溶性の肥料成分を実質的に保持しないことから、吸湿によるべたつきが生じにくく、良好な保管性を示す。これは、上記肥料成分を含有しない第2のゲル化剤によって、シェルがコア粒子よりもより密に構成されやすくなるため、と推測される。よって、当該粒子状肥料は、当該栽培床に容易にかつ良好に散布される。
(Function, effect)
The particulate fertilizer according to the present embodiment is sprayed on a cultivation floor such as soil where plants are grown. The particulate fertilizer includes core particles containing a first xerogel that retains a water-soluble fertilizer component, and a shell made of the second xerogel that covers the core particles. Since both the core particles and the shell are made of xerogel, they can be handled as a dry particulate fertilizer on the surface, and as long as they are stored in an appropriate low-humidity environment, they have good storage properties. In addition, since the second xerogel does not substantially retain a water-soluble fertilizer component, stickiness due to moisture absorption hardly occurs, and good storage properties are exhibited. This is presumed that the second gelling agent not containing the fertilizer component makes it easier for the shell to be configured more densely than the core particles. Therefore, the particulate fertilizer is easily and satisfactorily spread on the cultivation floor.
 上記栽培床に散布された粒子状肥料は、当該栽培床中の水を吸収し、膨潤する。上記コア粒子中の肥料成分は、コア粒子に吸収された水に溶解する。肥料成分は、上記コア粒子を構成する第1のゲル化剤のキセロゲルに保持されていることから、上記水に溶解した肥料成分は、移動自在となり、コア粒子内を移動する。 The particulate fertilizer sprayed on the cultivation floor absorbs water in the cultivation floor and swells. The fertilizer component in the core particle is dissolved in water absorbed by the core particle. Since the fertilizer component is held in the first gelling agent xerogel constituting the core particle, the fertilizer component dissolved in the water becomes movable and moves in the core particle.
 上記コア粒子は、シェルによって覆われており、シェルを構成するキセロゲルの少なくとも表層側の領域は、実質的に前記水溶性の肥料成分を保持していない。このため、コア粒子を越えて移動しようとする上記肥料成分は、コア粒子とシェルとの界面およびシェルの内部を通過する。したがって、シェルがない場合に比べて、粒子状肥料の表面に到達するまでの経路がより長くなる。よって、上記肥料成分が、長期にわたって少量ずつ、粒子状肥料から放出される。シェルを通過した肥料成分は、上記栽培床に到達し、植物に作用する。 The core particles are covered with a shell, and at least the surface layer side region of the xerogel constituting the shell does not substantially hold the water-soluble fertilizer component. Therefore, the fertilizer component that attempts to move beyond the core particles passes through the interface between the core particles and the shell and the inside of the shell. Therefore, the path | route until it reaches | attains the surface of a particulate fertilizer becomes longer compared with the case where there is no shell. Therefore, the fertilizer component is released from the particulate fertilizer in small amounts over a long period of time. The fertilizer component that has passed through the shell reaches the cultivation floor and acts on the plant.
 上記シェルの構成材料である第2のゲル化剤のブルーム値が、上記コア粒子の構成材料である第1のゲル化剤のブルーム値よりも大きいと、空気中の水分によるシェルの膨潤がより生じにくくなり、当該シェルの表面がよりべとつきにくくなる。このため、当該粒子状肥料は、さらに良好な保管性を有し、保管時の当該粒子状肥料の凝集が防止される。よって、当該粒子状肥料は、当該栽培床にさらに容易にかつ良好に散布される。 When the bloom value of the second gelling agent, which is the constituent material of the shell, is larger than the bloom value of the first gelling agent, which is the constituent material of the core particle, the swelling of the shell due to moisture in the air is more The surface of the shell becomes less sticky. For this reason, the said particulate fertilizer has further favorable storage property, and aggregation of the said particulate fertilizer at the time of storage is prevented. Therefore, the particulate fertilizer is more easily and well dispersed on the cultivation floor.
 また、第1のゲル化剤よりも大きなブルーム値を有する第2のゲル化剤のゲルで構成されると、上記栽培床に散布された後、上記肥料成分は、コア粒子中を移動する速度に比べてより遅い速度でシェル内を移動する。また、膨潤した上記シェルは、膨潤したコア粒子よりも硬いことから、膨潤した粒子状肥料の粒子形状が維持されやすい。よって、上記粒子状肥料は、より良好な徐放性を呈し、上記肥料成分が、さらに長期にわたって少量ずつ、粒子状肥料から放出される。 Moreover, when comprised with the gel of the 2nd gelatinizer which has a bigger Bloom value than a 1st gelatinizer, after being spread on the said cultivation bed, the said fertilizer component will move in a core particle. Moves through the shell at a slower speed than. Moreover, since the swollen shell is harder than the swollen core particles, the particle shape of the swollen particulate fertilizer is easily maintained. Therefore, the particulate fertilizer exhibits better sustained release properties, and the fertilizer component is released from the particulate fertilizer in small amounts over a longer period.
 また、粒子状肥料の保管性および製造性を高める観点から、上記第2のゲル化剤のブルーム値と上記第1のゲル化剤のブルーム値との差が80g以上であることがより効果的であり、当該差が1000g以下であることがより効果的である。 Further, from the viewpoint of improving the storage property and productivity of the particulate fertilizer, it is more effective that the difference between the bloom value of the second gelling agent and the bloom value of the first gelling agent is 80 g or more. It is more effective that the difference is 1000 g or less.
 また、上記の観点から、上記第2のゲル化剤のブルーム値が100g以上であることがより効果的であり、当該第2のゲル化剤のブルーム値が2000g以下であることがより効果的である。 From the above viewpoint, it is more effective that the bloom value of the second gelling agent is 100 g or more, and it is more effective that the bloom value of the second gelling agent is 2000 g or less. It is.
 また、上記コア粒子の形状を維持するための保形性および製造性を高める観点から、上記第1のゲル化剤のブルーム値が50g以上であることがより効果的であり、当該第1のゲル化剤のブルーム値が1000g以下であることがより効果的である。 In addition, from the viewpoint of enhancing the shape retention property and productivity for maintaining the shape of the core particles, it is more effective that the bloom value of the first gelling agent is 50 g or more. It is more effective that the Bloom value of the gelling agent is 1000 g or less.
 上記第1のゲル化剤および上記第2のゲル化剤が、独立して、ゼラチン、グルコマンナン、寒天およびエチルセルロースからなる群から選ばれる一以上であることは、第1のゲル化剤および第2のゲル化剤の所期のブルーム値を実現する観点から、より一層効果的である。 The first gelling agent and the second gelling agent are independently one or more selected from the group consisting of gelatin, glucomannan, agar and ethyl cellulose. From the viewpoint of realizing the desired bloom value of the gelling agent 2, it is more effective.
 また、上記粒子状肥料は、粒子状肥料としてのより好適な特性を実現させる観点から、その平均一次粒径が1.0~10mmであることがより効果的であり、上記コア粒子の平均一次粒径が0.50~6.0mmであることがより効果的であり、上記シェルの厚さが0.20~2.0mmであることがより効果的である。 The particulate fertilizer is more effective when the average primary particle size is 1.0 to 10 mm from the viewpoint of realizing more suitable characteristics as the particulate fertilizer. It is more effective that the particle size is 0.50 to 6.0 mm, and it is more effective that the thickness of the shell is 0.20 to 2.0 mm.
 また、本実施の形態に係る粒子状肥料の製造方法は、前述した第1の工程、第2の工程および第3の工程を含むことから、上記肥料成分を内包し、かつ保管性および徐放性を有する粒子状肥料を提供することができる。 Moreover, since the manufacturing method of the particulate fertilizer which concerns on this Embodiment contains the 1st process, 2nd process, and 3rd process which were mentioned above, the said fertilizer component is included, and storage property and sustained release are included. A particulate fertilizer having properties can be provided.
 また、上記コア粒子を作製する工程は、上記コア用溶液の液滴を形成する工程と、上記液滴を乾燥させる工程とを含むことは、略一定の粒子形状を有する粒子状肥料を得る観点からより一層効果的である。 In addition, the step of producing the core particles includes a step of forming droplets of the core solution and a step of drying the droplets, so as to obtain a particulate fertilizer having a substantially constant particle shape. Is even more effective.
 特に、二重管の内管から上記コア用溶液を、当該二重管の外管から上記シェル用溶液を、同時に吐出し、コア用溶液の液滴と、当該液滴を覆うシェル用溶液の液膜とによって構成されるコアシェル構造の液滴を作製し、乾燥させることは、略一定の粒子形状を有する粒子状肥料をより高い生産性で製造する観点からより一層効果的である。 In particular, the core solution is discharged from the inner tube of the double tube, and the shell solution is simultaneously discharged from the outer tube of the double tube, so that the droplets of the core solution and the shell solution covering the droplets Producing and drying droplets having a core-shell structure constituted by a liquid film is more effective from the viewpoint of producing a particulate fertilizer having a substantially constant particle shape with higher productivity.
 以下、本発明について、実施例を挙げてさらに具体的に説明する。なお、本発明は実施例の記載により限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited by description of an Example.
 [実施例1]
 滴下槽中に200mLのオリーブ油を入れ、内径1mmで外径が3mmの二重管ディスペンサーを、当該ディスペンサーの吐出口がオリーブ油に付かないように設置した。
[Example 1]
200 mL of olive oil was placed in the dropping tank, and a double tube dispenser having an inner diameter of 1 mm and an outer diameter of 3 mm was installed so that the discharge port of the dispenser did not adhere to the olive oil.
 一方で、コア用溶液1とシェル用溶液1をそれぞれ作製した。コア用溶液1は、ブルーム値(ゼリー強度)が100gであるゼラチン(Gel)15質量部を25℃の純水(以下、単に「純水」とも言う)35質量部中で30分間膨潤させ、40~50℃で約1時間加温しながら溶解し、得られた水溶液を脱泡処理後、水性液体肥料12.5質量部を当該水溶液にさらに添加することによって作製された。シェル用溶液1は、ブルーム値が200gであるゼラチン15質量部を純水35質量部中で30分間膨潤させ、40~50℃で約1時間加温しながら溶解し、得られた水溶液を脱泡処理することによって作製された。 Meanwhile, a core solution 1 and a shell solution 1 were prepared. The core solution 1 swells 15 parts by mass of gelatin (Gel) having a Bloom value (jelly strength) of 100 g in 35 parts by mass of pure water at 25 ° C. (hereinafter also simply referred to as “pure water”) for 30 minutes, It was prepared by dissolving at 40 to 50 ° C. while heating for about 1 hour, and adding 12.5 parts by mass of aqueous liquid fertilizer to the aqueous solution after defoaming the resulting aqueous solution. The solution 1 for shell is obtained by swelling 15 parts by weight of gelatin having a Bloom value of 200 g in 35 parts by weight of pure water for 30 minutes and dissolving it while heating at 40 to 50 ° C. for about 1 hour. It was made by foaming.
 なお、上記ブルーム値(ゼリー強度)は、上述したようにJIS K6503に準拠した手順で測定されており、ゼラチンの分子量によって調整されている。 The Bloom value (jelly strength) is measured by the procedure according to JIS K6503 as described above, and is adjusted by the molecular weight of gelatin.
 また、上記水性液体肥料としては、万田アミノアルファ(万田発酵株式会社製)を使用した。 Moreover, Manda Amino Alpha (manufactured by Manda Fermentation Co., Ltd.) was used as the aqueous liquid fertilizer.
 コア用溶液1を二重管ディスペンサーの内管内に送り、シェル用溶液1を、二重管ディスペンサーの外管内に送り、それぞれ、1000Paの加圧エアーでバルブ内を加圧し、内管からコア用溶液1、外管からシェル用溶液1を同時に上記吐出口から吐出し、コア用溶液1の液滴をシェル用溶液1が包んだ構造のコアシェル構造の液滴(コアシェル液滴1)をオリーブ油中に分散した。オリーブ油を周りから純水で冷却することで、オリーブ油中に形成されたコアシェル液滴1を冷却して固化させた。固化したコアシェル液滴1をオリーブ油中から取り出し、24時間乾燥した。こうして、コアシェル構造を有する粒子状肥料1を作製した。 The core solution 1 is sent into the inner pipe of the double pipe dispenser, the shell solution 1 is sent into the outer pipe of the double pipe dispenser, and the inside of the valve is pressurized with 1000 Pa of pressurized air, respectively. Solution 1 and shell solution 1 from the outer tube are simultaneously discharged from the discharge port, and a core-shell droplet (core-shell droplet 1) having a structure in which a droplet of the core solution 1 is wrapped in the shell solution 1 is contained in olive oil. Dispersed. By cooling the olive oil from the surroundings with pure water, the core-shell droplets 1 formed in the olive oil were cooled and solidified. The solidified core-shell droplet 1 was taken out from the olive oil and dried for 24 hours. Thus, the particulate fertilizer 1 having a core-shell structure was produced.
 [実施例2]
 シェル用溶液1に代えてシェル用溶液2を用いる以外は、実施例1と同様にして、粒子状肥料2を作製した。シェル用溶液2は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が1000gであるゼラチンを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 2]
A particulate fertilizer 2 was produced in the same manner as in Example 1 except that the shell solution 2 was used instead of the shell solution 1. The shell solution 2 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 1000 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例3]
 コア用溶液1に代えてコア用溶液2を用い、シェル用溶液1に代えてシェル用溶液3を用いる以外は、実施例1と同様にして、粒子状肥料3を作製した。コア用溶液2は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が200gであるゼラチンを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液3は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が300gであるゼラチンを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 3]
A particulate fertilizer 3 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1 and the shell solution 3 was used instead of the shell solution 1. The core solution 2 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 200 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 3 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例4]
 コア用溶液1に代えてコア用溶液2を用い、シェル用溶液1に代えてシェル用溶液4を用いる以外は、実施例1と同様にして、粒子状肥料4を作製した。シェル用溶液4は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が640gであるグルコマンナン(Glu)3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして作製された。
[Example 4]
A particulate fertilizer 4 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1 and the shell solution 4 was used instead of the shell solution 1. In the shell solution 4, instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water, 3 parts by mass of glucomannan (Glu) having a Bloom value of 640 g is dissolved in 47 parts by mass of pure water. It was produced in the same manner as the shell solution 1 except that
 [実施例5]
 コア用溶液1に代えてコア用溶液3を用い、シェル用溶液1に代えてシェル用溶液5を用いる以外は、実施例1と同様にして、粒子状肥料5を作製した。コア用溶液3は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が150gであるゼラチンを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液5は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が600gである寒天(Aga)3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして作製された。
[Example 5]
A particulate fertilizer 5 was produced in the same manner as in Example 1 except that the core solution 3 was used instead of the core solution 1 and the shell solution 5 was used instead of the shell solution 1. The core solution 3 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 100 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 5 dissolves 3 parts by mass of agar (Aga) having a Bloom value of 600 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. Except for the above, it was produced in the same manner as the solution 1 for shell.
 [実施例6]
 コア用溶液1に代えてコア用溶液4を用い、シェル用溶液1に代えてシェル用溶液6を用いる以外は、実施例1と同様にして、粒子状肥料6を作製した。コア用溶液4は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が300gであるゼラチンを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液6は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が570gであるエチルセルロース(Eth)3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして作製された。
[Example 6]
A particulate fertilizer 6 was produced in the same manner as in Example 1 except that the core solution 4 was used instead of the core solution 1 and the shell solution 6 was used instead of the shell solution 1. The core solution 4 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 100 g. In the shell solution 6, instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water, 3 parts by mass of ethyl cellulose (Eth) having a Bloom value of 570 g is dissolved in 47 parts by mass of pure water. Except for the above, it was produced in the same manner as the solution 1 for shell.
 [実施例7]
 コア用溶液1に代えてコア用溶液5を用い、シェル用溶液1に代えてシェル用溶液7を用いる以外は、実施例1と同様にして、粒子状肥料7を作製した。コア用溶液5は、ブルーム値が100gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が250gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、コア用溶液1と同様にして作製された。シェル用溶液7は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が800gであるゼラチンを用いる以外は、シェル用溶液1と同様にして、作製された。
[Example 7]
A particulate fertilizer 7 was produced in the same manner as in Example 1, except that the core solution 5 was used instead of the core solution 1 and the shell solution 7 was used instead of the shell solution 1. The core solution 5 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 250 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1. The shell solution 7 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 800 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例8]
 コア用溶液1に代えてコア用溶液6を用い、シェル用溶液1に代えてシェル用溶液8を用いる以外は、実施例1と同様にして、粒子状肥料8を作製した。コア用溶液6は、ブルーム値が100gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が130gであるグルコマンナン3質量部を純水47質量部溶解させる以外は、コア用溶液1と同様にして作製された。シェル用溶液8は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が650gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして、作製された。
[Example 8]
A particulate fertilizer 8 was produced in the same manner as in Example 1 except that the core solution 6 was used instead of the core solution 1 and the shell solution 8 was used instead of the shell solution 1. The core solution 6 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 130 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1. The shell solution 8 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 650 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
 [実施例9]
 コア用溶液1に代えてコア用溶液7を用い、シェル用溶液1に代えてシェル用溶液9を用いる以外は、実施例1と同様にして、粒子状肥料9を作製した。コア用溶液7は、ブルーム値が100gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が270gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、コア用溶液1と同様にして作製された。シェル用溶液9は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が567gである寒天を用いる以外は、シェル用溶液1と同様にして、作製された。
[Example 9]
A particulate fertilizer 9 was prepared in the same manner as in Example 1 except that the core solution 7 was used instead of the core solution 1 and the shell solution 9 was used instead of the shell solution 1. The core solution 7 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 270 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1. The shell solution 9 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 567 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例10]
 コア用溶液1に代えてコア用溶液8を用い、シェル用溶液1に代えてシェル用溶液10を用いる以外は、実施例1と同様にして、粒子状肥料10を作製した。コア用溶液8は、ブルーム値が100gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が120gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、コア用溶液1と同様にして作製された。シェル用溶液10は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が288gであるエチルセルロースを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 10]
A particulate fertilizer 10 was produced in the same manner as in Example 1 except that the core solution 8 was used instead of the core solution 1 and the shell solution 10 was used instead of the shell solution 1. The core solution 8 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 120 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 100 g in 35 parts by mass of pure water. It was produced in the same manner as the core solution 1. The shell solution 10 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a Bloom value of 288 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例11]
 コア用溶液1に代えてコア用溶液9を用い、シェル用溶液1に代えてシェル用溶液11を用いる以外は、実施例1と同様にして、粒子状肥料11を作製した。コア用溶液9は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が180gである寒天を用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液11は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が378gであるゼラチンを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 11]
A particulate fertilizer 11 was produced in the same manner as in Example 1 except that the core solution 9 was used instead of the core solution 1 and the shell solution 11 was used instead of the shell solution 1. The core solution 9 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 180 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 11 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 378 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例12]
 コア用溶液1に代えてコア用溶液10を用い、シェル用溶液1に代えてシェル用溶液12を用いる以外は、実施例1と同様にして、粒子状肥料12を作製した。コア用溶液10は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が200gである寒天を用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液12は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が360gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして作製された。
[Example 12]
A particulate fertilizer 12 was produced in the same manner as in Example 1 except that the core solution 10 was used instead of the core solution 1 and the shell solution 12 was used instead of the shell solution 1. The core solution 10 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 200 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 12 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 360 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
 [実施例13]
 コア用溶液1に代えてコア用溶液11を用い、シェル用溶液1に代えてシェル用溶液13を用いる以外は、実施例1と同様にして、粒子状肥料11を作製した。コア用溶液11は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が300gである寒天を用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液13は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が690gである寒天を用いる以外は、シェル用溶液1と同様にして作製された。
[Example 13]
A particulate fertilizer 11 was produced in the same manner as in Example 1 except that the core solution 11 was used instead of the core solution 1 and the shell solution 13 was used instead of the shell solution 1. The core solution 11 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 300 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 13 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 690 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例14]
 コア用溶液1に代えてコア用溶液12を用い、シェル用溶液1に代えてシェル用溶液14を用いる以外は、実施例1と同様にして、粒子状肥料14を作製した。コア用溶液12は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が140gである寒天を用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液14は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が434gであるエチルセルロースを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 14]
A particulate fertilizer 14 was produced in the same manner as in Example 1 except that the core solution 12 was used instead of the core solution 1 and the shell solution 14 was used instead of the shell solution 1. The core solution 12 was prepared in the same manner as the core solution 1 except that agar having a Bloom value of 140 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 14 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a bloom value of 434 g was used instead of gelatin having a bloom value of 200 g.
 [実施例15]
 コア用溶液1に代えてコア用溶液13を用い、シェル用溶液1に代えてシェル用溶液15を用いる以外は、実施例1と同様にして、粒子状肥料15を作製した。コア用溶液13は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が100gであるエチルセルロースを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液15は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が400gであるゼラチン用いる以外は、シェル用溶液1と同様にして作製された。
[Example 15]
A particulate fertilizer 15 was produced in the same manner as in Example 1 except that the core solution 13 was used instead of the core solution 1 and the shell solution 15 was used instead of the shell solution 1. The core solution 13 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a Bloom value of 100 g was used instead of gelatin having a Bloom value of 100 g. The shell solution 15 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 400 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例16]
 コア用溶液1に代えてコア用溶液14を用い、シェル用溶液1に代えてシェル用溶液16を用いる以外は、実施例1と同様にして、粒子状肥料16を作製した。コア用溶液14は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が110gであるエチルセルロースを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液16は、ブルーム値が200gであるゼラチン15質量部を純水35質量部に溶解させる代わりに、ブルーム値が473gであるグルコマンナン3質量部を純水47質量部に溶解させる以外は、シェル用溶液1と同様にして作製された。
[Example 16]
A particulate fertilizer 16 was produced in the same manner as in Example 1 except that the core solution 14 was used instead of the core solution 1 and the shell solution 16 was used instead of the shell solution 1. The core solution 14 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a bloom value of 110 g was used instead of gelatin having a bloom value of 100 g. The shell solution 16 was prepared by dissolving 3 parts by mass of glucomannan having a Bloom value of 473 g in 47 parts by mass of pure water instead of dissolving 15 parts by mass of gelatin having a Bloom value of 200 g in 35 parts by mass of pure water. This was prepared in the same manner as in Shell Solution 1.
 [実施例17]
 コア用溶液1に代えてコア用溶液13を用い、シェル用溶液1に代えてシェル用溶液17を用いる以外は、実施例1と同様にして、粒子状肥料17を作製した。シェル用溶液17は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が500gである寒天を用いる以外は、シェル用溶液1と同様にして作製された。
[Example 17]
A particulate fertilizer 17 was produced in the same manner as in Example 1 except that the core solution 13 was used instead of the core solution 1 and the shell solution 17 was used instead of the shell solution 1. The shell solution 17 was prepared in the same manner as the shell solution 1 except that agar having a Bloom value of 500 g was used instead of gelatin having a Bloom value of 200 g.
 [実施例18]
 コア用溶液1に代えてコア用溶液15を用い、シェル用溶液1に代えてシェル用溶液18を用いる以外は、実施例1と同様にして、粒子状肥料18を作製した。コア用溶液15は、ブルーム値が100gであるゼラチンに代えて、ブルーム値が220gであるエチルセルロースを用いる以外は、コア用溶液1と同様にして作製された。シェル用溶液18は、ブルーム値が200gであるゼラチンに代えて、ブルーム値が374gであるエチルセルロースを用いる以外は、シェル用溶液1と同様にして作製された。
[Example 18]
A particulate fertilizer 18 was produced in the same manner as in Example 1 except that the core solution 15 was used instead of the core solution 1 and the shell solution 18 was used instead of the shell solution 1. The core solution 15 was prepared in the same manner as the core solution 1 except that ethyl cellulose having a bloom value of 220 g was used instead of gelatin having a bloom value of 100 g. The shell solution 18 was prepared in the same manner as the shell solution 1 except that ethyl cellulose having a bloom value of 374 g was used instead of gelatin having a bloom value of 200 g.
 [実施例19]
 ブルーム値が100gであるゼラチンに代えて、ブルーム値が110gであるゼラチンを用いる以外は、コア用溶液1と同様にしてコア用溶液16を作製した。また、ブルーム値が200gであるゼラチンに代えて、ブルーム値が550gであるゼラチンを用いる以外は、シェル用溶液1と同様にしてシェル用溶液19を作製した。
[Example 19]
A core solution 16 was prepared in the same manner as the core solution 1 except that gelatin having a Bloom value of 110 g was used instead of gelatin having a Bloom value of 100 g. A shell solution 19 was prepared in the same manner as the shell solution 1 except that gelatin having a Bloom value of 550 g was used instead of gelatin having a Bloom value of 200 g.
 二重管ディスペンサーに代えて、内径3mmの単管ディスペンサーを用い、実施例1と同様に、コア用溶液16の液滴をオリーブオイル中に作製し、当該液滴を冷却、固化してコア粒子19を作製した。 In place of the double tube dispenser, a single tube dispenser having an inner diameter of 3 mm is used, and as in Example 1, a droplet of the core solution 16 is prepared in olive oil, and the droplet is cooled and solidified to form core particles. 19 was produced.
 回転パン型造粒機を用いて、コア粒子19にシェル用溶液19を吹き付けて、ブルーム値が550gであるゼラチンの厚さ1mmの層をコア粒子19の表面に作製してなる粒子状肥料19を作製した。 Using a rotary pan granulator, the shell solution 19 is sprayed onto the core particles 19 to form a 1 mm thick layer of gelatin having a Bloom value of 550 g on the surface of the core particles 19. Was made.
 [実施例20]
 コア用溶液1に代えてコア用溶液2を用いる以外は、実施例1と同様にして、粒子状肥料20を作製した。
[Example 20]
A particulate fertilizer 20 was produced in the same manner as in Example 1 except that the core solution 2 was used instead of the core solution 1.
 [実施例21]
 コア用溶液1に代えてコア用溶液15を用いる以外は、実施例1と同様にして、粒子状肥料21を作製した。
[Example 21]
A particulate fertilizer 21 was produced in the same manner as in Example 1 except that the core solution 15 was used instead of the core solution 1.
 [比較例1]
 二重管ディスペンサーに代えて内径3mmの単管ディスペンサーを用いて、実施例1と同じ条件でコア用溶液2をオリーブオイル中に滴下して液滴を作製し、当該液滴を冷却、固化して粒子状肥料C1を作製した。
[Comparative Example 1]
Using a single-tube dispenser having an inner diameter of 3 mm instead of the double-tube dispenser, the core solution 2 is dropped into olive oil under the same conditions as in Example 1 to produce droplets, and the droplets are cooled and solidified. Thus, a particulate fertilizer C1 was produced.
 [比較例2]
 二重管ディスペンサーに代えて内径3mmの単管ディスペンサーを用いて、実施例1と同じ条件でコア用溶液4をオリーブオイル中に滴下して液滴を作製し、当該液滴を冷却、固化して粒子状肥料C2を作製した。
[Comparative Example 2]
Using a single pipe dispenser having an inner diameter of 3 mm instead of the double pipe dispenser, the core solution 4 is dropped into olive oil under the same conditions as in Example 1 to produce a liquid drop, and the liquid drop is cooled and solidified. Thus, a particulate fertilizer C2 was produced.
 [評価]
 (1)保管性
 内容積100mLのガラス管に粒子状肥料1~21、C1およびC2のそれぞれを2/3程度収容し、35℃、湿度50%の環境下に3日間静置した。そして、収容されている粒子状肥料を目視で観察し、以下の基準により評価した。
 A:3日間の静置による粒子状肥料の形状および色の変化が認められない。
 B:3日間の静置によって粒子状肥料に凝集と色の変化が認められるが、実使用上許容できるレベルである。
 C:3日間の静置によって粒子状肥料が凝集または崩壊している。
[Evaluation]
(1) Storage property About 2/3 of each of the particulate fertilizers 1 to 21, C1 and C2 were accommodated in a glass tube having an internal volume of 100 mL, and left to stand in an environment of 35 ° C. and 50% humidity for 3 days. And the accommodated particulate fertilizer was observed visually, and the following references | standards evaluated.
A: No change in the shape and color of the particulate fertilizer after standing for 3 days.
B: Although agglomeration and color change are observed in the particulate fertilizer after standing for 3 days, it is an acceptable level for practical use.
C: The particulate fertilizer is aggregated or disintegrated by standing for 3 days.
 (2)徐放性
 100質量部の土壌に対して粒子状肥料1~21、C1およびC2のそれぞれを10質量部の割合で散布し、散布の1日後から、1日おきに、当該土壌を1gずつ採取し、採取した土壌中のカリウムの濃度およびアミノ酸の濃度を計測した。これらの濃度が十分低下するまで測定を続け、経時に対する各成分の濃度の変化から、粒子状肥料の徐放性能を以下の基準により評価した。
 A:20日後まで各成分の濃度が単調に上昇し、少なくとも20日間に渡って徐放性が継続する。
 B:10日後まで各成分の濃度が単調に上昇し、10~19日間に渡って徐放性が継続する。
 C:1日で各成分の放出が終了している、もしくは30日経ても各成分を全く放出しない。
(2) Sustained release properties Particulate fertilizers 1 to 21, C1 and C2 are sprayed at a rate of 10 parts by weight per 100 parts by weight of the soil, and the soil is removed every other day from one day after spraying. 1 g was sampled and the concentration of potassium and amino acid in the collected soil was measured. The measurement was continued until these concentrations were sufficiently lowered, and the sustained release performance of the particulate fertilizer was evaluated according to the following criteria from the change in the concentration of each component over time.
A: The concentration of each component increases monotonically until 20 days later, and sustained release continues for at least 20 days.
B: The concentration of each component increases monotonously until 10 days later, and sustained release continues for 10 to 19 days.
C: Release of each component is completed in 1 day, or each component is not released at all even after 30 days.
 なお、各実施例、比較例で得られた粒子状肥料の平均一次粒径を、合一していない粒子の数平均粒径を測定することにより求めたところ、いずれも3mmであった。また、各実施例で得られた粒子状肥料のシェルの厚みを求めたところ、いずれも0.5mmであった。当該シェルの厚みは、各実施例で得られた粒子状肥料の5つを無作為に選んで切断し、被覆層の厚みを光学顕微鏡にて測定し、得られた測定値の平均値である。 In addition, when the average primary particle size of the particulate fertilizer obtained in each Example and Comparative Example was determined by measuring the number average particle size of the particles that were not united, both were 3 mm. Moreover, when the thickness of the shell of the particulate fertilizer obtained in each Example was calculated | required, all were 0.5 mm. The thickness of the shell is an average value of the measured values obtained by randomly selecting and cutting five of the particulate fertilizers obtained in each example and measuring the thickness of the coating layer with an optical microscope. .
 各粒子状肥料のコアおよびシェルのゲル化剤の種類およびブルーム値、保管性および徐放性の評価結果、および、濃度が十分低下するまでに要した日数、を表1に示す。表1中、「Gel」はゼラチンを、「Glu」はグルコマンナンを、「Aga」は寒天を、「Eth」はエチルセルロースを、それぞれ表す。 Table 1 shows the types and Bloom values of gelling agents for the core and shell of each particulate fertilizer, evaluation results of storage properties and sustained release properties, and the number of days required until the concentration is sufficiently lowered. In Table 1, “Gel” represents gelatin, “Glu” represents glucomannan, “Aga” represents agar, and “Eth” represents ethylcellulose.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、粒子状肥料1~21は、いずれも、保管性および徐放性の両方を有する。これは、(1)コア粒子、シェルともにゲル化剤で構成されているため、土壌に散布された粒子状肥料が水分を吸収することにより、コア粒子のゲル化剤に閉じ込められた水溶性の肥料成分が溶け出し、放出されるため、(2)水溶性の肥料成分を含有しないキセロゲルがシェルとして存在し、シェルがない場合に比べて粒子状肥料の表面に到達するまでの経路が長くなり、肥料成分が粒子状肥料から徐々に放出されるため、(3)コア粒子およびシェルがいずれもキセロゲルとされているため、表面の乾燥した粒子状肥料として取り扱うことができるため、(4)シェルは、水溶性の肥料成分を含有せず、ゲル化剤によってコア粒子よりもより密に構成されやすくなるものと推測され、吸湿によるべたつきおよび溶出した肥料成分による変色が生じにくいため、と考えられる。 As is clear from Table 1, each of the particulate fertilizers 1 to 21 has both storage properties and sustained release properties. This is because (1) both the core particles and the shell are composed of a gelling agent, so that the particulate fertilizer sprayed on the soil absorbs water, so that the water-soluble matter trapped in the core particle gelling agent Since the fertilizer components are dissolved and released, (2) the xerogel that does not contain water-soluble fertilizer components exists as a shell, and the path to reach the surface of the particulate fertilizer is longer than when there is no shell. Since the fertilizer component is gradually released from the particulate fertilizer, (3) Since the core particles and the shell are both xerogel, it can be handled as a dry particulate fertilizer on the surface. (4) Shell It is presumed that it does not contain water-soluble fertilizer components and is more easily composed than the core particles by the gelling agent. For is less likely to occur, it is considered.
 特に、粒子状肥料1~19においては、シェルを構成するゲル化剤のブルーム値が、コア粒子を構成するゲル化剤のブルーム値よりも大きく、保管性および徐放性のいずれも良好である。これは、シェルは、コア粒子に比べてより強固でより崩壊しにくくなっていることから、コア粒子から放出される肥料成分は、コア粒子を通過するよりもシェルをよりゆっくりと通過して継続的に徐放されるため、また、吸湿や変色などをより生じにくいため、と考えられる。 In particular, in the particulate fertilizers 1 to 19, the blooming value of the gelling agent constituting the shell is larger than the blooming value of the gelling agent constituting the core particle, and both the storage property and the sustained release property are good. . This is because the shell is stronger and more difficult to disintegrate than the core particles, so the fertilizer components released from the core particles continue to pass through the shell more slowly than through the core particles This is considered to be because it is gradually released and more difficult to absorb moisture or discolor.
 一方、粒子状肥料C1、C2は、保管性および徐放性のいずれも不十分であった。これは、粒子状肥料C1、C2は、上記シェルを有さないことから、機械的強度が不足し、また粒子状肥料C1、C2が吸湿したときに、粒子状肥料C1、C2の表面への肥料成分の染み出し(放出)が抑制されないため、と考えられる。 On the other hand, the particulate fertilizers C1 and C2 were insufficient in both storage and sustained release properties. This is because the particulate fertilizers C1 and C2 do not have the shell, so that the mechanical strength is insufficient, and when the particulate fertilizers C1 and C2 absorb moisture, the particulate fertilizers C1 and C2 are exposed to the surface. This is probably because the exudation (release) of fertilizer components is not suppressed.
 2013年10月25日出願の特願2013-222492の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2013-222492 filed on Oct. 25, 2013 is incorporated herein by reference.
 本発明によれば、有機、無機の種々の水溶性肥料成分を安定して粒子に閉じ込めることができ、かつ当該肥料成分は、肥料の使用時には徐放される。したがって、肥料成分は、長期に渡り所期の量で定量的かつより容易に、栽培床の植物に供給される。よって、本発明によれば、より効率のよい植物の栽培の実現および普及が期待される。 According to the present invention, various organic and inorganic water-soluble fertilizer components can be stably trapped in the particles, and the fertilizer components are gradually released when the fertilizer is used. Therefore, the fertilizer component is supplied quantitatively and more easily to the plant on the cultivation floor in the expected amount over a long period of time. Therefore, according to the present invention, realization and spread of more efficient plant cultivation is expected.
 10 粒子状肥料
 12 コア粒子
 14 シェル
 
10 Particulate fertilizer 12 Core particles 14 Shell

Claims (16)

  1.  水溶性の肥料成分を保持する、第1のゲル化剤のキセロゲルを含むコア粒子と、
     前記コア粒子を覆う、第2のゲル化剤のキセロゲルにより構成されたシェルであって、その少なくとも表層側の領域が実質的に前記水溶性の肥料成分を保持していないシェルと、を有する粒子状肥料。
    Core particles comprising a first gelling agent xerogel that retains a water-soluble fertilizer component;
    Particles comprising a shell made of xerogel of a second gelling agent that covers the core particles, and at least a surface layer side of the shell does not substantially hold the water-soluble fertilizer component. Fertilizer.
  2.  前記第2のゲル化剤のブルーム値は、前記第1のゲル化剤のブルーム値よりも大きい、請求項1に記載の粒子状肥料。 The particulate fertilizer according to claim 1, wherein a bloom value of the second gelling agent is larger than a bloom value of the first gelling agent.
  3.  前記第2のゲル化剤のブルーム値と前記第1のゲル化剤のブルーム値との差が80g以上である請求項2に記載の粒子状肥料。 The particulate fertilizer according to claim 2, wherein the difference between the bloom value of the second gelling agent and the bloom value of the first gelling agent is 80 g or more.
  4.  前記第2のゲル化剤のブルーム値と前記第1のゲル化剤のブルーム値との差が1000g以下である請求項3に記載の粒子状肥料。 The particulate fertilizer according to claim 3, wherein the difference between the bloom value of the second gelling agent and the bloom value of the first gelling agent is 1000 g or less.
  5.  前記第2のゲル化剤のブルーム値が100g以上である請求項2~4のいずれか一項に記載の粒子状肥料。 The particulate fertilizer according to any one of claims 2 to 4, wherein a bloom value of the second gelling agent is 100 g or more.
  6.  前記第2のゲル化剤のブルーム値が2000g以下である請求項5に記載の粒子状肥料。 The particulate fertilizer according to claim 5, wherein the second gelling agent has a Bloom value of 2000 g or less.
  7.  前記第1のゲル化剤のブルーム値が50g以上である請求項2~6のいずれか一項に記載の粒子状肥料。 The particulate fertilizer according to any one of claims 2 to 6, wherein the Bloom value of the first gelling agent is 50 g or more.
  8.  前記第1のゲル化剤のブルーム値が1000g以下である請求項7に記載の粒子状肥料。 The particulate fertilizer according to claim 7, wherein a bloom value of the first gelling agent is 1000 g or less.
  9.  前記第1のゲル化剤および前記第2のゲル化剤は、独立して、ゼラチン、グルコマンナン、寒天およびエチルセルロースからなる群から選ばれる一以上である、請求項1~8のいずれか一項に記載の粒子状肥料。 The first gelling agent and the second gelling agent are each independently one or more selected from the group consisting of gelatin, glucomannan, agar, and ethylcellulose. The particulate fertilizer described in 1.
  10.  平均一次粒径が1.0~10mmである請求項1~9のいずれか一項に記載の粒子状肥料。 The particulate fertilizer according to any one of claims 1 to 9, wherein the average primary particle size is 1.0 to 10 mm.
  11.  前記コア粒子の平均一次粒径が0.50~6.0mmである請求項10に記載の粒子状肥料。 The particulate fertilizer according to claim 10, wherein the average primary particle size of the core particles is 0.50 to 6.0 mm.
  12.  前記シェルの厚さが0.20~2.0mmである請求項10または11に記載の粒子状肥料。 The particulate fertilizer according to claim 10 or 11, wherein the shell has a thickness of 0.20 to 2.0 mm.
  13.  水溶性の肥料成分、第1のゲル化剤および第1の水系媒体を含有するコア用溶液の液滴、または、前記肥料成分を保持する前記第1のゲル化剤のキセロゲルを含むコア粒子、を作製する工程と、
     第2のゲル化剤および第2の水系媒体を含有するシェル用溶液の、前記液滴または前記コア粒子の表面を覆う液膜を形成する工程と、
     前記液膜で覆われた前記液滴または前記コア粒子を乾燥させる工程と、を含む、粒子状肥料の製造方法。
    Core particles containing a droplet of a core solution containing a water-soluble fertilizer component, a first gelling agent and a first aqueous medium, or a xerogel of the first gelling agent that holds the fertilizer component, A step of producing
    Forming a liquid film covering the surface of the droplet or the core particle of the solution for shell containing the second gelling agent and the second aqueous medium;
    Drying the droplets or the core particles covered with the liquid film. A method for producing particulate fertilizer.
  14.  前記第2のゲル化剤は、前記第1のゲル化剤のブルーム値よりも大きいブルーム値を有する、請求項13に記載の粒子状肥料の製造方法。 The method for producing particulate fertilizer according to claim 13, wherein the second gelling agent has a Bloom value larger than the Bloom value of the first gelling agent.
  15.  前記コア粒子を作製する工程は、前記コア用溶液の液滴を形成する工程と、前記液滴を乾燥させる工程とを含む、請求項13または14に記載の粒子状肥料の製造方法。 The method for producing particulate fertilizer according to claim 13 or 14, wherein the step of producing the core particles includes a step of forming droplets of the core solution and a step of drying the droplets.
  16.  二重管の内管から前記コア用溶液を、前記二重管の外管から前記シェル用溶液を、同時に吐出し、前記コア用溶液の液滴と、当該液滴の表面を覆う前記シェル用溶液の液膜とによって構成されるコアシェル構造の液滴を作製し、乾燥させる、請求項13または14に記載の粒子状肥料の製造方法。
     
     
    The core solution is discharged from the inner tube of the double tube, and the shell solution is simultaneously discharged from the outer tube of the double tube. The manufacturing method of the particulate fertilizer of Claim 13 or 14 which produces the droplet of the core shell structure comprised with the liquid film of a solution, and is made to dry.

PCT/JP2014/004623 2013-10-25 2014-09-09 Particulate fertilizer and method for producing same WO2015059864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543693A JPWO2015059864A1 (en) 2013-10-25 2014-09-09 Particulate fertilizer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222492 2013-10-25
JP2013222492 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015059864A1 true WO2015059864A1 (en) 2015-04-30

Family

ID=52992488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004623 WO2015059864A1 (en) 2013-10-25 2014-09-09 Particulate fertilizer and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2015059864A1 (en)
WO (1) WO2015059864A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198601A (en) * 2015-09-29 2015-12-30 安徽向荣农林生态产业有限公司 Water-retaining controlled-release fertilizer synergist
JP2019063794A (en) * 2017-10-02 2019-04-25 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for the production of granules containing dipeptide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232787A (en) * 1990-02-06 1991-10-16 Dia Chem Kk Coated granular fertilizer and production thereof
JPH1017389A (en) * 1996-06-28 1998-01-20 Chisso Corp Accurately controlled delayed-elution type coated potassium fertilizer
JPH1072272A (en) * 1996-08-29 1998-03-17 Chisso Corp Coated granular fertilizer and its production
JPH10167864A (en) * 1996-10-07 1998-06-23 Onoda Kagaku Kogyo Kk Quick-acting and slow-release fertilizer and its production
JP2006232666A (en) * 2006-03-31 2006-09-07 Fuji Silysia Chemical Ltd Fertilizer and its using method
JP2008519075A (en) * 2004-11-08 2008-06-05 アール.ピー. シェーラー テクノロジーズ インコーポレイテッド Non-gelatin soft capsule system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232787A (en) * 1990-02-06 1991-10-16 Dia Chem Kk Coated granular fertilizer and production thereof
JPH1017389A (en) * 1996-06-28 1998-01-20 Chisso Corp Accurately controlled delayed-elution type coated potassium fertilizer
JPH1072272A (en) * 1996-08-29 1998-03-17 Chisso Corp Coated granular fertilizer and its production
JPH10167864A (en) * 1996-10-07 1998-06-23 Onoda Kagaku Kogyo Kk Quick-acting and slow-release fertilizer and its production
JP2008519075A (en) * 2004-11-08 2008-06-05 アール.ピー. シェーラー テクノロジーズ インコーポレイテッド Non-gelatin soft capsule system
JP2006232666A (en) * 2006-03-31 2006-09-07 Fuji Silysia Chemical Ltd Fertilizer and its using method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198601A (en) * 2015-09-29 2015-12-30 安徽向荣农林生态产业有限公司 Water-retaining controlled-release fertilizer synergist
JP2019063794A (en) * 2017-10-02 2019-04-25 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for the production of granules containing dipeptide

Also Published As

Publication number Publication date
JPWO2015059864A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
Campos et al. Polysaccharides as safer release systems for agrochemicals
Xu et al. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity
CA2726760C (en) Low use rate agricultural compositions and methods for use
RU2635570C2 (en) Joint compositions of bifenthrin with capsulated protection means of agricultural plants for use with liquid fertilizers
TWI380776B (en) Stabilized and suspended pest control composition
US9301454B2 (en) Wettable, non-leachable peat moss, method of preparation, and method of use
EP2921043A1 (en) Artificial soil medium
US20140100111A1 (en) Seed Coating Hydrogels
CN101262761A (en) Use of lactate esters for improving the activity of crop protection compositions
JP2013532642A (en) Gel-like bait for combating dwarf pests
WO2015059864A1 (en) Particulate fertilizer and method for producing same
US20150320033A1 (en) Pre-Emergent Seed Coatings and Growth Stimulator Compositions
JP5237932B2 (en) Adjuvant composition, pesticide spray solution containing the same, and control method using the same
NL1036979C2 (en) Water dispersible granule.
Sharifi et al. Formulation and agricultural application of bacterial volatile compounds
JP4426119B2 (en) Microencapsulated pesticides
JP4971081B2 (en) Artificial soil
KR20210018425A (en) Hydrating pesticide composition
JP2021532194A (en) Agricultural chemicals and how to use them
JP5285388B2 (en) Fine-grained agricultural chemical composition and method for producing the same
WO2019008341A1 (en) Encapsulated pesticide
JP7153073B2 (en) Food grade coated particles containing polycarboxylic acid
KR100780970B1 (en) Soil-fumigant-containing solid material
DE102009022893A1 (en) Powder formulations with adsorbent particles
JP2011144112A (en) Agrochemical granule for paddy field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855497

Country of ref document: EP

Kind code of ref document: A1