WO2015059766A1 - Electroosmotic flow pump - Google Patents

Electroosmotic flow pump Download PDF

Info

Publication number
WO2015059766A1
WO2015059766A1 PCT/JP2013/078574 JP2013078574W WO2015059766A1 WO 2015059766 A1 WO2015059766 A1 WO 2015059766A1 JP 2013078574 W JP2013078574 W JP 2013078574W WO 2015059766 A1 WO2015059766 A1 WO 2015059766A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric porous
permeable electrode
porous film
dielectric
water permeable
Prior art date
Application number
PCT/JP2013/078574
Other languages
French (fr)
Japanese (ja)
Inventor
泰志 奥村
菊池 裕嗣
博紀 樋口
学 谷口
山本 一喜
Original Assignee
積水化学工業株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 国立大学法人九州大学 filed Critical 積水化学工業株式会社
Priority to PCT/JP2013/078574 priority Critical patent/WO2015059766A1/en
Priority to JP2014536812A priority patent/JP6166268B2/en
Priority to US14/390,543 priority patent/US20160252082A1/en
Publication of WO2015059766A1 publication Critical patent/WO2015059766A1/en
Priority to US15/655,100 priority patent/US20170335836A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/04Pumps for special use

Definitions

  • the present invention relates to an electroosmotic pump.
  • micropump which are a type of microfluidic device
  • a micropump Conventionally, a mechanical micropump is known as a micropump.
  • the mechanical micro pump is composed of precision parts. For this reason, there is a limit to cost reduction and miniaturization in the mechanical micropump. From such a background, an electroosmotic pump is attracting attention as a micro pump that replaces a mechanical pump (see, for example, Patent Document 1).
  • the electroosmotic flow is a flow of liquid that is generated when a voltage is applied to the electric double layer where the liquid and the solid are in contact. Electroosmotic flow was discovered with electrophoresis by physicist Royce in the early 19th century. In contrast to electrophoresis in which solutes and charged particles move in a liquid, solids are fixed in electroosmotic flow. For this reason, the bulk liquid moves when electroosmotic flow occurs. The electroosmotic flow is observed in a liquid or ionic liquid composed of polarizable molecules including a protic solvent such as water or alcohol. A pump for feeding liquid using this electroosmotic flow is an electroosmotic flow pump.
  • Patent Document 1 describes an example of an electroosmotic flow pump.
  • a conventional electroosmotic pump such as the electroosmotic pump described in Patent Document 1
  • the main object of the present invention is to provide a novel electroosmotic pump capable of AC drive.
  • the first electroosmotic pump according to the present invention includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode.
  • the first water permeable electrode is disposed on one side of the dielectric porous film.
  • the second water permeable electrode is disposed on the other side of the dielectric porous film.
  • the hydrophilicity of the main surface on the first water permeable electrode side of the dielectric porous membrane is different from the hydrophilicity of the main surface on the second water permeable electrode side.
  • each of the first water permeable electrode and the second water permeable electrode includes a conductive porous film, a conductive mesh, a conductive fine particle sintered film formed on the surface of the dielectric porous film, Or it is preferable that it is a pattern electrode printed on the porous insulating film.
  • the dielectric porous film may have a hydrophilic layer on one main surface.
  • the second electroosmotic pump according to the present invention includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode.
  • the first water permeable electrode is disposed on one side of the dielectric porous film.
  • the second water permeable electrode is disposed on the other side of the dielectric porous film.
  • the zeta potential on one side of the dielectric porous film and the zeta potential on the other side are different from each other, or the streaming potential on one side of the dielectric porous film is different from the streaming potential on the other side.
  • a third electroosmotic pump includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode.
  • the first water permeable electrode is disposed on one side of the dielectric porous film.
  • the second water permeable electrode is disposed on the other side of the dielectric porous film.
  • the dielectric porous membrane is formed so that when an alternating voltage is applied between the first water permeable electrode and the second water permeable electrode, the liquid in the dielectric porous membrane is changed to the first water permeable electrode side. It is comprised so that the force to selectively move from one side of the 2nd water-permeable electrode side to the other may be provided.
  • the dielectric porous film includes the laminated first dielectric porous film and second dielectric porous film, and one principal surface is It may be configured by the first dielectric porous film, and the other main surface may be configured by the second dielectric porous film.
  • the first to third electroosmotic pumps according to the present invention may further include a power source that applies an AC voltage between the first permeable electrode and the second permeable electrode.
  • the power source preferably applies an AC voltage having a frequency of 1 MHz or less.
  • the thickness of the dielectric porous film is preferably in the range of 5 ⁇ m to 100 ⁇ m.
  • the ratio of the area of the first and second water permeable electrodes to the square of the thickness of the dielectric porous membrane is preferably larger than 100.
  • the average pore diameter in the dielectric porous membrane is preferably in the range of 10 nm to 50 ⁇ m.
  • each of the first and second water permeable electrodes preferably has a through hole penetrating in the thickness direction.
  • the dielectric porous film preferably has a through-hole penetrating in the thickness direction.
  • the hydrophilicity of the main surface on the first water permeable electrode side of the dielectric porous membrane is different from the hydrophilicity of the main surface on the second water permeable electrode side.
  • the first permeable electrode preferably has a hydrophilic layer on the surface layer opposite to the dielectric porous membrane.
  • FIG. 1 is a schematic cross-sectional view of a liquid delivery module including an electroosmotic flow pump according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a part of the liquid-feeding film in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of a part of the liquid feeding film in the second embodiment.
  • FIG. 4 is a schematic diagram of the hydrophilic layer of the liquid-feeding film in the second embodiment.
  • FIG. 5 is a schematic cross-sectional view of a part of the liquid feeding film in the third embodiment.
  • FIG. 6 is a fracture cross-sectional photograph of the track-etched film used in Example 1.
  • FIG. 7 is a graph showing the relationship between the applied voltage and the flow rate in Example 1.
  • FIG. 8 is a graph showing the relationship between applied voltage and flow rate in Examples 1 to 3.
  • FIG. 1 is a schematic cross-sectional view of an electroosmotic flow pump according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of a part of the liquid feeding film in the present embodiment.
  • the liquid feeding module 1 includes a fixing jig 10 and 11 and an electroosmotic pump 2 attached to the fixing jig 10 and 11.
  • the electroosmotic pump 2 includes a liquid feeding film 20 sandwiched between a first water permeable electrode and a second water permeable electrode.
  • the electroosmotic pump 2 is supplied with AC power.
  • the liquid feeding film 20 partitions the first storage unit 12 and the second storage unit 13.
  • a liquid storage tank 30 is connected to the second storage unit 13. Liquid is supplied from the liquid reservoir 30 to the first reservoir 12.
  • the liquid supplied to the first storage unit 12 is supplied to the second storage unit 13 by the liquid transfer film 20 and is discharged from the discharge port 14 provided in the second storage unit 13.
  • the 1st storage part 12 and the 2nd storage part 13 are for guide
  • the first and second reservoirs 12 and 13 do not necessarily have a specific volume.
  • the first reservoir 12 and the second reservoir 13 may be part of any channel flow path of the microfluidic device.
  • the 1st storage part 12 and the 2nd storage part 13 may each be satisfy
  • the liquid feeding film 20 may have a flat plate shape, a bent structure, a structure having a plurality of irregularities, or a folded structure. In that case, the ratio of the actual surface area to the area of the liquid delivery film 20 in plan view ((actual area of the surface of the liquid delivery film 20) / (area of the liquid delivery film 20 in plan view)) may be increased. it can. Therefore, the liquid feeding capability of the electroosmotic flow pump 2 can be improved.
  • the liquid feeding film 20 has a dielectric porous film 21.
  • the dielectric porous film 21 is made of an appropriate dielectric.
  • the dielectric porous film 21 is, for example, a polymer film made of polycarbonate (PC), polyester (PET), polyimide (PI) or the like, ceramic, silicon, glass, aluminum oxide sintered body, aluminum nitride sintered body. Further, it may be composed of an inorganic film made of a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, a glass ceramic sintered body, or the like.
  • the dielectric porous film 21 may be, for example, a monolithic porous body.
  • the dielectric porous film 21 is preferably a track-etched film.
  • the track-etched film means a track-etched film.
  • Track etching is chemical etching that forms a linear track by irradiating a film with strong heavy ions.
  • the dielectric porous film 21 is a polymer film or an inorganic film, pores can be formed by laser light irradiation.
  • the dielectric porous film 21 is preferably a film having open cells, and is preferably a film having a plurality of through holes penetrating in the thickness direction.
  • the track-etched film has many through holes penetrating in the thickness direction.
  • the thickness of the dielectric porous film 21 is not particularly limited, but is preferably about 5 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 60 ⁇ m. By setting the thickness of the dielectric porous film 21 to such a thickness, it is possible to antagonize the thickness of the dielectric porous film 21 and the thickness of the electric double layer to be formed. Therefore, the operation of the electroosmotic flow pump 2 is suitable.
  • the average pore diameter in the dielectric porous film 21 is preferably 10 nm to 50 ⁇ m, more preferably 20 nm to 10 ⁇ m, and further preferably 50 nm to 2 ⁇ m. If the average pore diameter in the dielectric porous film 21 is too small, the flow resistance may be large and the liquid feeding amount may be small. If the average pore size in the dielectric porous film 21 is too large, the water pressure of the liquid feeding is lowered, and the energy efficiency of the electroosmotic flow may be deteriorated.
  • the aperture ratio of the dielectric porous film 21 is preferably 1% to 50%, and more preferably 3% to 30%. If the aperture ratio of the dielectric porous film 21 is too high, adjacent holes are likely to be fused, and a problem may occur in the self-supporting property of the film. If the aperture ratio of the dielectric porous film 21 is too low, the liquid feeding amount may be small.
  • Pore density of the dielectric porous film 21, 4 E2 / c is preferably m is 2 ⁇ 5E 13 / c m 2 , 3E 4 / cm 2 ⁇ 7.5 E1 0 / cm 2 and it is further preferable. If the pore density of the dielectric porous film 21 is too high, the aperture ratio may be too high or the average pore size may be too small. If the pore density of the dielectric porous film 21 is too low, the energy efficiency of the electroosmotic flow may be deteriorated.
  • a first water permeable electrode 22 is provided on the second reservoir 13 side of the dielectric porous film 21.
  • a second water permeable electrode 23 is provided on the first reservoir 12 side of the dielectric porous film 21.
  • the first and second water permeable electrodes 22 and 23 may be provided so that an electric double layer is formed on the surface of the dielectric porous film 21 when the liquid is supplied.
  • Each of the first and second permeable electrodes 22 and 23 is not necessarily in contact with the dielectric porous film 21.
  • a conductive rubber having a high elastic modulus may be interposed between each of the first and second water permeable electrodes 22 and 23 and the dielectric porous film 21.
  • the first and second permeable electrodes 22 and 23 are provided so that liquid can pass in the thickness direction.
  • Each of the first and second water permeable electrodes 22 and 23 preferably has a through-hole penetrating in the thickness direction.
  • the through holes of the first and second permeable electrodes 22 and 23 and the through holes of the dielectric porous film 21 are preferably connected.
  • the first and second water permeable electrodes 22 and 23 are each made of, for example, a conductive material such as metal on the dielectric porous film 21 so that the pores of the dielectric porous film 21 are not completely closed. It can be formed by forming a film. Moreover, the 1st and 2nd water-permeable electrodes 22 and 23 may be comprised by patterned electrodes, such as a mesh electrode, a comb-shaped electrode, a staggered electrode, and a fractal pattern electrode, respectively.
  • the material of the first and second water permeable electrodes 22 and 23 is not particularly limited as long as it is a conductive material, but the first and second water permeable electrodes 22 and 23 are made of a highly conductive material. Is preferred. Specifically, each of the first and second permeable electrodes 22 and 23 is composed of at least one metal of gold, silver and copper, a composite material mainly composed of carbon such as carbon nanotube, indium tin oxide (ITO). ) Or other transparent conductive oxide (Transparent Conductive Oxide) or the like.
  • ITO indium tin oxide
  • Transparent Conductive Oxide Transparent Conductive Oxide
  • the electroosmotic flow pump 2 includes an AC power source 40.
  • An AC voltage is applied between the first and second permeable electrodes 22 and 23 by the AC power source 40.
  • the AC power supply 40 preferably applies an AC voltage having a frequency of 1 MHz or less between the first and second permeable electrodes 22 and 23, and more preferably applies an AC voltage of 0.5 Hz to 20 kHz. More preferably, an alternating voltage of 1 Hz to 100 Hz is applied. If the frequency of the AC voltage applied between the first and second permeable electrodes 22 and 23 is too high, the electroosmotic pump 2 may not operate properly.
  • the dielectric porous membrane 21 has a hydrophilic layer 21a on the main surface on the first water permeable electrode 22 side.
  • a hydrophilic layer 21a on the main surface on the first water permeable electrode 22 side.
  • one surface layer of the dielectric porous film 21 is a hydrophilic layer 21a.
  • one surface of the dielectric porous film 21 has a hydrophilic treatment or a hydrophilic functional group typified by plasma treatment such as atmospheric pressure plasma chemical treatment.
  • the hydrophilic layer 21a can be formed by chemically modifying with molecules.
  • a polyurethaneurea containing a phosphorylcholine group is preferably used as the polymer containing a hydrophilic functional group.
  • polylysine, polyallylamine, etc. which have many amino groups in a molecular chain can also be used as a polymer containing a hydrophilic functional group.
  • the method of chemically modifying the surface of the dielectric porous film 21 with a molecule having a hydrophilic functional group is not limited to these, and a chemical modification hydrophilization technique known to those skilled in the art can be applied.
  • the hydrophilicity of the surface of the hydrophilic layer 21a is higher than the hydrophilicity of the main surface of the dielectric porous film 21 on the second water permeable electrode 23 side. Therefore, the zeta potential of the main surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side and the zeta potential of the main surface on the second water permeable electrode 23 side are different from each other, or the dielectric
  • the streaming potential of the main surface of the body porous membrane 21 on the first permeable electrode 22 side is different from the streaming potential of the main surface on the second permeable electrode 23 side.
  • the magnitude of the zeta potential on the main surface of the dielectric porous film 21 on the first water permeable electrode 22 side is larger than the zeta potential on the main surface on the second water permeable electrode 23 side.
  • the flow potential on the main surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side is larger than the flow potential on the main surface on the second water permeable electrode 23 side. Therefore, when an AC voltage is applied between the first water permeable electrode 22 and the second water permeable electrode 23, the liquid is transferred from the first reservoir 12 to the second reservoir 13. Thereby, the electroosmotic flow pump 2 operates.
  • the dielectric porous film 21 when the dielectric porous film 21 is applied with an alternating voltage between the first water permeable electrode 22 and the second water permeable electrode 23, the dielectric porous film 21.
  • a force for moving the liquid from the first water-permeable electrode 22 side to the second water-permeable electrode 23 side is applied to the liquid inside.
  • the electroosmotic flow pump 2 can be driven by an alternating voltage. Therefore, unlike the case where a DC voltage is applied to the electroosmotic pump, the liquid is electrolyzed when the electroosmotic pump 2 is driven, and the pH of the liquid is not easily changed and bubbles are not easily changed.
  • Ratio of the area of the first and second permeable electrodes 22, 23 to the square of the thickness of the dielectric porous film 21 ((area of the first and second permeable electrodes 22, 23) / (dielectric)
  • the thickness ( 2 ) of the porous membrane 21 is preferably greater than 100. If the ratio ((area of the first and second permeable electrodes 22 and 23) / (thickness of the dielectric porous film 21) 2 ) is too small, the efficiency of liquid feeding is deteriorated. There is no restriction for this large ratio.
  • the hydrophilicity can be measured with an automatic contact angle meter (Kyowa Interface Science Co., Ltd., DM-300).
  • Zeta potential A solid or liquid interface in contact with a protic solvent typified by an aqueous solution is charged except in special cases.
  • the electric field due to this electric charge attracts ions (counter ions) of opposite signs from the solution side to form an ion atmosphere (electric double layer) near the surface.
  • ions counter ions
  • a diffusion electric double layer is present.
  • the zeta potential is a potential at a “sliding surface” (also referred to as a shear surface) at the boundary between the Stern layer and the diffusion electric double layer.
  • the zeta potential on the surface of the membrane can be measured by, for example, a membrane zeta potential measurement device (Otsuka Electronics Co., Ltd. ELSZ-1).
  • the zeta potential in the pores can be measured by, for example, a solid zeta potential measuring device (Anton Paar Japan, SurPASS).
  • Streaming potential can be measured with a solid zeta potential measuring device (Anton Paar Japan, SurPASS).
  • the electroosmotic flow pump of this invention operate
  • the electroosmotic pump of the present invention operates not only when an AC voltage is applied but also when a DC voltage is applied.
  • FIG. 3 is a schematic cross-sectional view of a part of the liquid feeding film in the second embodiment.
  • the electroosmotic pump according to the present embodiment is different from the electroosmotic flow pump according to the first embodiment in that the first water permeable electrode 22 has a hydrophilic layer 22a on the surface layer opposite to the dielectric porous membrane 21. Different from pump 2.
  • the liquid feeding performance can be improved by providing the hydrophilic layer 22a.
  • the hydrophilic layer 22a can be formed, for example, by performing a surface treatment with a self-assembling reagent capable of gold-thiol bonding when the first permeable electrode 22 contains gold.
  • the self-assembling reagent preferably used is a molecule having a main chain including one terminal constituted by a sulfur atom and another terminal constituted by a hydrophilic group.
  • a self-assembling reagent for example, HS- (CH 2 ) n —COOH (1) HOOC- (CH 2) n -S- S- (CH 2) n-COOH .
  • FIG. 4 shows a schematic diagram of the hydrophilic layer 22a formed using the above-described self-assembling reagent (specifically, 1,1-mercaptodecanoic acid).
  • degreasing treatment supercritical CO 2 cleaning, plasma treatment, corona discharge treatment, and the like may be additionally performed before the hydrophilic treatment with the self-assembling reagent.
  • FIG. 5 is a schematic cross-sectional view of a part of the liquid feeding film in the third embodiment.
  • the dielectric porous film 21 includes a first dielectric porous film 21A and a second dielectric porous film 21B.
  • the first dielectric porous film 21A and the second dielectric porous film 21B are laminated.
  • the first dielectric porous film 21A is located on the first water permeable electrode 22 side, and the second dielectric porous film 21B is located on the second water permeable electrode 23 side.
  • the first dielectric porous film 21A is made of a material having higher hydrophilicity than the second dielectric porous film 21B.
  • the hydrophilicity of the surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side is higher than the hydrophilicity of the surface on the second water permeable electrode 23 side. Therefore, the electroosmotic pump of this embodiment also operates by applying an alternating voltage.
  • the ratio between the thickness of the first dielectric porous film 21A and the thickness of the second dielectric porous film 21B is preferably 1: 100 to 100: 1, and more preferably 1:10 to 10: 1.
  • Example 1 An electroosmotic pump having a configuration substantially similar to that of the electroosmotic pump 2 according to the first embodiment was produced in the following manner.
  • a 20 nm thick gold film using a magnetron sputtering apparatus (vacuum device, MSP-1S) on both sides of a track etched film (Millipore, isopore membrane filters HTTP04700) having a thickness of 20 ⁇ m and an average pore diameter of 400 nm was deposited to form a liquid delivery film.
  • MSP-1S magnetron sputtering apparatus
  • MSP-1S magnetron sputtering apparatus
  • a track etched film Millipore, isopore membrane filters HTTP04700
  • the first and second permeable electrodes made of gold were connected to an AC power source via a conductive rubber electrode.
  • the distance between the first water permeable electrode and the second water permeable electrode was 20 ⁇ m, which is equal to the thickness of the track etched film.
  • FIG. 6 shows a
  • the zeta potential of the surface of the track-etched film was measured using a film zeta potential measuring device (Otsuka Electronics ELSZ-1). Specifically, the velocity of electroosmotic flow induced by applying an electric field in parallel to the track-etched film was observed as the motion velocity of polystyrene latex (500 nm) that was not charged by modification of hydroxypropylcellulose. The zeta potential was measured from the movement speed. As the liquid, a 10 mM NaCl aqueous solution was used. The results are shown in Table 1 below.
  • the zeta potential in the pores of the track-etched membrane was measured by the streaming potential method using a solid zeta potential measuring device (Anton Paar Japan, SurPASS).
  • a solid zeta potential measuring device Anton Paar Japan, SurPASS.
  • the zeta potential calculated from the flow potential from the first permeable electrode side to the second permeable electrode side is ⁇ 36.01 mV
  • the zeta potential calculated from the flow potential from the second permeable electrode side to the first permeable electrode side was ⁇ 40.11 mV.
  • the zeta potential inside the pores was much lower than the zeta potential on the membrane surface.
  • bubbles were not substantially generated even when the AC voltage was continuously applied for 10 minutes.
  • Example 2 The electroosmotic flow was the same as in Example 1 except that the surface of the first water permeable electrode opposite to the dielectric porous membrane was treated with 1,1-mercaptodecanoic acid to form a hydrophilic layer. A pump was made.
  • Example 3 An electroosmotic pump was produced in the same manner as in Example 1 except that the surface of the first porous electrode on the dielectric porous membrane side was treated with 1,1-mercaptodecanoic acid to form a hydrophilic layer. did.
  • the liquid feeding ability can be improved by forming a hydrophilic layer on the surface of the first water permeable electrode opposite to the dielectric porous film.
  • Example 4 A liquid prepared by dissolving a pH indicator in deionized water was supplied to the apparatus prepared in Example 1, and an AC voltage of 9.34 Vrms at 25 Hz was applied between the first and second permeable electrodes for 15 minutes. Then, when the color tone of the 1st and 2nd storage part was observed, the color tone of the 1st and 2nd storage part was the same as that before voltage application, pH did not change, and the gas by electrolysis did not generate
  • Liquid feeding module 2 Electroosmotic flow pump 10: Fixing jig 11: Fixing jig 12: First reservoir 13: Second reservoir 14: Discharge port 20: Liquid feeding membrane 21: Dielectric porous Membrane 21A: first dielectric porous membrane 21B: second dielectric porous membrane 21a: hydrophilic layer 22: first water permeable electrode 22a: hydrophilic layer 23: second water permeable electrode 30: liquid reservoir 40: AC power supply

Abstract

Provided is a novel electroosmotic flow pump that can be driven by an alternating current. An electroosmotic flow pump (2) is provided with a dielectric porous film (21), a first water-permeable electrode (22), and a second water-permeable electrode (23). The first water-permeable electrode (22) is disposed on one side of the dielectric porous film (21). The second water-permeable electrode (23) is disposed on the other side of the dielectric porous film (21). Hydrophilicity of a dielectric porous film (21) main surface on the first water-permeable electrode (22) side, and hydrophilicity of a dielectric porous film main surface on the second water-permeable electrode (23) side are different from each other.

Description

電気浸透流ポンプElectroosmotic pump
 本発明は、電気浸透流ポンプに関する。 The present invention relates to an electroosmotic pump.
 近年、マイクロ流体デバイスの1種であるマイクロポンプの需要が高まってきている。マイクロポンプの用途はマイクロリアクター、携帯型医療機器、燃料電池の燃料送液など様々である。従来、マイクロポンプとしては、機械式マイクロポンプが知られている。しかしながら、機械式マイクロポンプは、精密部品で構成されている。このため、機械式マイクロポンプでは、低コスト化と小型化に限界がある。こうした背景から、機械式ポンプに代わるマイクロポンプとして電気浸透流ポンプが注目を集めている(例えば、特許文献1を参照)。 In recent years, the demand for micropumps, which are a type of microfluidic device, has increased. There are various uses of the micropump, such as a microreactor, a portable medical device, and a fuel feed for a fuel cell. Conventionally, a mechanical micropump is known as a micropump. However, the mechanical micro pump is composed of precision parts. For this reason, there is a limit to cost reduction and miniaturization in the mechanical micropump. From such a background, an electroosmotic pump is attracting attention as a micro pump that replaces a mechanical pump (see, for example, Patent Document 1).
 電気浸透流とは、液体と固体が接している電気二重層に電圧が印加されたときに生じる液体の流れである。電気浸透流は、19世紀初めの物理学者ロイスにより電気泳動と共に発見された。液体の中にある溶質や荷電粒子が動く電気泳動と対照的に、電気浸透流では固体が固定されている。このため、電気浸透流が生じるとバルクの液体が動く。電気浸透流は、水やアルコールのようなプロトン性溶媒を始めとする分極性の分子からなる液体またはイオン液体等で観測される。この電気浸透流を用いて送液するポンプが電気浸透流ポンプである。 The electroosmotic flow is a flow of liquid that is generated when a voltage is applied to the electric double layer where the liquid and the solid are in contact. Electroosmotic flow was discovered with electrophoresis by physicist Royce in the early 19th century. In contrast to electrophoresis in which solutes and charged particles move in a liquid, solids are fixed in electroosmotic flow. For this reason, the bulk liquid moves when electroosmotic flow occurs. The electroosmotic flow is observed in a liquid or ionic liquid composed of polarizable molecules including a protic solvent such as water or alcohol. A pump for feeding liquid using this electroosmotic flow is an electroosmotic flow pump.
特開2010-216902号公報JP 2010-216902 A
 特許文献1には、電気浸透流ポンプの一例が記載されている。特許文献1に記載の電気浸透流ポンプのように、従来の電気浸透流ポンプを駆動させるためには、直流電圧を印加する必要がある。 Patent Document 1 describes an example of an electroosmotic flow pump. In order to drive a conventional electroosmotic pump such as the electroosmotic pump described in Patent Document 1, it is necessary to apply a DC voltage.
 電気浸透流ポンプを作動させるために直流電圧を印加すると、並行的に液体の電気分解反応が起きる。液体の電気分解反応が進行すると、液体のpHが変化したり、液体中に気泡が発生するという問題が生じる。特に液体として水を用いると水素や酸素が発生して危険である。従って、これらの問題が発生しない新たな電気浸透流ポンプが強く求められている。 ¡When a DC voltage is applied to operate the electroosmotic pump, a liquid electrolysis reaction occurs in parallel. When the electrolysis reaction of the liquid proceeds, there arises a problem that the pH of the liquid changes or bubbles are generated in the liquid. In particular, when water is used as a liquid, hydrogen and oxygen are generated, which is dangerous. Therefore, there is a strong demand for a new electroosmotic flow pump that does not cause these problems.
 本発明の主な目的は、新規な交流駆動可能な電気浸透流ポンプを提供することにある。 The main object of the present invention is to provide a novel electroosmotic pump capable of AC drive.
 本発明に係る第1の電気浸透流ポンプは、誘電体多孔質膜と、第1の透水性透水性電極と、第2の透水性電極とを備える。第1の透水性電極は、誘電体多孔質膜の一方側に配されている。第2の透水性電極は、誘電体多孔質膜の他方側に配されている。誘電体多孔質膜の第1の透水性電極側の主面の親水性と、第2の透水性電極側の主面の親水性とが相互に異なる。 The first electroosmotic pump according to the present invention includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode. The first water permeable electrode is disposed on one side of the dielectric porous film. The second water permeable electrode is disposed on the other side of the dielectric porous film. The hydrophilicity of the main surface on the first water permeable electrode side of the dielectric porous membrane is different from the hydrophilicity of the main surface on the second water permeable electrode side.
 本発明に係る電気浸透流ポンプでは、第1の透水性電極及び第2の透水性電極は、それぞれ、誘電体多孔質膜表面に成膜された導電多孔膜、導電メッシュ、導電微粒子焼結膜、又は多孔質絶縁フイルムに印刷されたパターン電極であることが好ましい。 In the electroosmotic pump according to the present invention, each of the first water permeable electrode and the second water permeable electrode includes a conductive porous film, a conductive mesh, a conductive fine particle sintered film formed on the surface of the dielectric porous film, Or it is preferable that it is a pattern electrode printed on the porous insulating film.
 本発明に係る第1の電気浸透流ポンプは、誘電体多孔質膜は、一主面に親水層を有していてもよい。 In the first electroosmotic pump according to the present invention, the dielectric porous film may have a hydrophilic layer on one main surface.
 本発明に係る第2の電気浸透流ポンプは、誘電体多孔質膜と、第1の透水性電極と、第2の透水性電極とを備える。第1の透水性電極は、誘電体多孔質膜の一方側に配されている。第2の透水性電極は、誘電体多孔質膜の他方側に配されている。誘電体多孔質膜の一方面のゼータ電位と、他方面のゼータ電位とが相互に異なるか、または誘電体多孔質膜の一方面の流動電位と、他方面の流動電位とが相互に異なる。 The second electroosmotic pump according to the present invention includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode. The first water permeable electrode is disposed on one side of the dielectric porous film. The second water permeable electrode is disposed on the other side of the dielectric porous film. The zeta potential on one side of the dielectric porous film and the zeta potential on the other side are different from each other, or the streaming potential on one side of the dielectric porous film is different from the streaming potential on the other side.
 本発明に係る第3の電気浸透流ポンプは、誘電体多孔質膜と、第1の透水性電極と、第2の透水性電極とを備える。第1の透水性電極は、誘電体多孔質膜の一方側に配されている。第2の透水性電極は、誘電体多孔質膜の他方側に配されている。誘電体多孔質膜は、第1の透水性電極と第2の透水性電極との間に交流電圧が印加されたときに誘電体多孔質膜内の液体に、第1の透水性電極側と第2の透水性電極側の一方から他方へ選択的に移動させる力を付与するように構成されている。 A third electroosmotic pump according to the present invention includes a dielectric porous membrane, a first water permeable electrode, and a second water permeable electrode. The first water permeable electrode is disposed on one side of the dielectric porous film. The second water permeable electrode is disposed on the other side of the dielectric porous film. The dielectric porous membrane is formed so that when an alternating voltage is applied between the first water permeable electrode and the second water permeable electrode, the liquid in the dielectric porous membrane is changed to the first water permeable electrode side. It is comprised so that the force to selectively move from one side of the 2nd water-permeable electrode side to the other may be provided.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜は、積層された第1の誘電体多孔質膜及び第2の誘電体多孔質膜を含み、一主面が第1の誘電体多孔質膜により構成されており、他主面が第2の誘電体多孔質膜により構成されていてもよい。 In the first to third electroosmotic pumps according to the present invention, the dielectric porous film includes the laminated first dielectric porous film and second dielectric porous film, and one principal surface is It may be configured by the first dielectric porous film, and the other main surface may be configured by the second dielectric porous film.
 本発明に係る第1~第3の電気浸透流ポンプは、第1の透水性電極と第2の透水性電極との間に交流電圧を印加する電源をさらに備えていてもよい。その場合は、電源は、1MHz以下の周波数の交流電圧を印加するものであることが好ましい。 The first to third electroosmotic pumps according to the present invention may further include a power source that applies an AC voltage between the first permeable electrode and the second permeable electrode. In that case, the power source preferably applies an AC voltage having a frequency of 1 MHz or less.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜の厚みが5μm~100μmの範囲内にあることが好ましい。 In the first to third electroosmotic pumps according to the present invention, the thickness of the dielectric porous film is preferably in the range of 5 μm to 100 μm.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜の厚さの自乗に対する、第1及び第2の透水性電極の面積の比((第1及び第2の透水性電極の面積)/(誘電体多孔質膜の厚さ))が100より大きいことが好ましい。 In the first to third electroosmotic pumps according to the present invention, the ratio of the area of the first and second water permeable electrodes to the square of the thickness of the dielectric porous membrane ((first and second water permeable electrodes The area of the conductive electrode) / (thickness of the dielectric porous film) 2 ) is preferably larger than 100.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜における平均孔径が10nm~50μmの範囲内にあることが好ましい。 In the first to third electroosmotic pumps according to the present invention, the average pore diameter in the dielectric porous membrane is preferably in the range of 10 nm to 50 μm.
 本発明に係る第1~第3の電気浸透流ポンプでは、第1及び第2の透水性電極は、それぞれ、厚み方向に貫通する貫通孔を有することが好ましい。 In the first to third electroosmotic pumps according to the present invention, each of the first and second water permeable electrodes preferably has a through hole penetrating in the thickness direction.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜は、厚み方向に貫通する貫通孔を有することが好ましい。 In the first to third electroosmotic pumps according to the present invention, the dielectric porous film preferably has a through-hole penetrating in the thickness direction.
 本発明に係る第1~第3の電気浸透流ポンプでは、誘電体多孔質膜の第1の透水性電極側の主面の親水性が、第2の透水性電極側の主面の親水性よりも高い場合に、第1の透水性電極が、誘電体多孔質膜とは反対側の表層に親水層を有することが好ましい。 In the first to third electroosmotic pumps according to the present invention, the hydrophilicity of the main surface on the first water permeable electrode side of the dielectric porous membrane is different from the hydrophilicity of the main surface on the second water permeable electrode side. Is higher, the first permeable electrode preferably has a hydrophilic layer on the surface layer opposite to the dielectric porous membrane.
 本発明によれば、新規な交流駆動可能な電気浸透流ポンプを提供することができる。 According to the present invention, it is possible to provide a novel electroosmotic pump capable of AC drive.
図1は、第1の実施形態に係る電気浸透流ポンプを備える送液モジュールの模式的断面図である。FIG. 1 is a schematic cross-sectional view of a liquid delivery module including an electroosmotic flow pump according to the first embodiment. 図2は、第1の実施形態における送液膜の一部分の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a part of the liquid-feeding film in the first embodiment. 図3は、第2の実施形態における送液膜の一部分の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a part of the liquid feeding film in the second embodiment. 図4は、第2の実施形態における送液膜の親水層の模式図である。FIG. 4 is a schematic diagram of the hydrophilic layer of the liquid-feeding film in the second embodiment. 図5は、第3の実施形態における送液膜の一部分の模式的断面図である。FIG. 5 is a schematic cross-sectional view of a part of the liquid feeding film in the third embodiment. 図6は、実施例1において使用したトラックエッチド膜の破壊断面写真である。FIG. 6 is a fracture cross-sectional photograph of the track-etched film used in Example 1. 図7は、実施例1における印加電圧と流量との関係を表すグラフである。FIG. 7 is a graph showing the relationship between the applied voltage and the flow rate in Example 1. 図8は、実施例1~3における印加電圧と流量との関係を表すグラフである。FIG. 8 is a graph showing the relationship between applied voltage and flow rate in Examples 1 to 3.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1は、本実施形態に係る電気浸透流ポンプの模式的断面図である。図2は、本実施形態における送液膜の一部分の模式的断面図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of an electroosmotic flow pump according to the present embodiment. FIG. 2 is a schematic cross-sectional view of a part of the liquid feeding film in the present embodiment.
 図1に示される送液モジュール1は、固定治具10,11と、固定治具10,11に取り付けられた電気浸透流ポンプ2とを備えている。電気浸透流ポンプ2は、第1の透水性電極と第2の透水性電極に挟まれた送液膜20を含む。電気浸透流ポンプ2には、交流電力が供給される。送液膜20は第1の貯留部12と、第2の貯留部13とを区画している。第2の貯留部13には、液体貯留槽30が接続されている。この液体貯留槽30から液体が第1の貯留部12に供給される。第1の貯留部12に供給された液体は、送液膜20によって第2の貯留部13に送液され、第2の貯留部13に設けられた排出口14から排出される。 1 includes a fixing jig 10 and 11 and an electroosmotic pump 2 attached to the fixing jig 10 and 11. The liquid feeding module 1 shown in FIG. The electroosmotic pump 2 includes a liquid feeding film 20 sandwiched between a first water permeable electrode and a second water permeable electrode. The electroosmotic pump 2 is supplied with AC power. The liquid feeding film 20 partitions the first storage unit 12 and the second storage unit 13. A liquid storage tank 30 is connected to the second storage unit 13. Liquid is supplied from the liquid reservoir 30 to the first reservoir 12. The liquid supplied to the first storage unit 12 is supplied to the second storage unit 13 by the liquid transfer film 20 and is discharged from the discharge port 14 provided in the second storage unit 13.
 なお、第1の貯留部12と、第2の貯留部13とは、電気浸透流ポンプ2の一面と他面に液体を導くためのものであり、液体が輸送される経路となるものであればよい。第1及び第2の貯留部12,13には、特定の体積は必ずしも必要ない。第1の貯留部12と、第2の貯留部13とは、マイクロ流体デバイスの任意のチャネル流路の一部であってもよい。また、第1の貯留部12と、第2の貯留部13とは、それぞれ、透水性の多孔体やゲルで満たされていてもよい。 In addition, the 1st storage part 12 and the 2nd storage part 13 are for guide | inducing a liquid to the one surface and other surface of the electroosmotic flow pump 2, and will become a path | route through which a liquid is conveyed. That's fine. The first and second reservoirs 12 and 13 do not necessarily have a specific volume. The first reservoir 12 and the second reservoir 13 may be part of any channel flow path of the microfluidic device. Moreover, the 1st storage part 12 and the 2nd storage part 13 may each be satisfy | filled with the water-permeable porous body and the gel.
 送液膜20は、平板状であってもよいし、たわんだ構造、複数の凹凸を有する構造、折り畳まれた構造を有していてもよい。その場合、送液膜20の平面視における面積に対する、表面の実面積の比((送液膜20の表面の実面積)/(送液膜20の平面視における面積))を大きくすることができる。従って、電気浸透流ポンプ2の送液能力を向上することができる。 The liquid feeding film 20 may have a flat plate shape, a bent structure, a structure having a plurality of irregularities, or a folded structure. In that case, the ratio of the actual surface area to the area of the liquid delivery film 20 in plan view ((actual area of the surface of the liquid delivery film 20) / (area of the liquid delivery film 20 in plan view)) may be increased. it can. Therefore, the liquid feeding capability of the electroosmotic flow pump 2 can be improved.
 送液膜20は、誘電体多孔質膜21を有する。誘電体多孔質膜21は、適宜の誘電体により構成されている。誘電体多孔質膜21は、例えば、ポリカーボネート(PC)、ポリエステル(PET)、ポリイミド(PI)等からなるポリマー膜や、セラミックス、シリコン、ガラス、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、ガラスセラミックス焼結体等からなる無機膜により構成されていてもよい。また、誘電体多孔質膜21は、例えば、モノリシック多孔体であってもよい。 The liquid feeding film 20 has a dielectric porous film 21. The dielectric porous film 21 is made of an appropriate dielectric. The dielectric porous film 21 is, for example, a polymer film made of polycarbonate (PC), polyester (PET), polyimide (PI) or the like, ceramic, silicon, glass, aluminum oxide sintered body, aluminum nitride sintered body. Further, it may be composed of an inorganic film made of a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, a glass ceramic sintered body, or the like. The dielectric porous film 21 may be, for example, a monolithic porous body.
 誘電体多孔質膜21は、トラックエッチド膜であることが好ましい。ここで、トラックエッチド膜とは、トラックエッチングされた膜を意味する。トラックエッチングとは、膜に強力な重イオンを照射することにより直線トラックを形成するケミカルエッチングのことである。 The dielectric porous film 21 is preferably a track-etched film. Here, the track-etched film means a track-etched film. Track etching is chemical etching that forms a linear track by irradiating a film with strong heavy ions.
 なお、誘電体多孔質膜21がポリマー膜や無機膜である場合は、レーザー光の照射により細孔を形成することができる。 When the dielectric porous film 21 is a polymer film or an inorganic film, pores can be formed by laser light irradiation.
 誘電体多孔質膜21は、連続気泡を有する膜であることが好ましく、厚み方向に貫通する貫通孔を複数有する膜であることが好ましい。通常、トラックエッチド膜は、厚み方向に貫通する貫通孔を多数有している。 The dielectric porous film 21 is preferably a film having open cells, and is preferably a film having a plurality of through holes penetrating in the thickness direction. Usually, the track-etched film has many through holes penetrating in the thickness direction.
 誘電体多孔質膜21の厚みは、特に限定されないが、5μm~100μm程度であることが好ましく、10μm~60μmであることがより好ましい。誘電体多孔質膜21の厚みをこのような厚みとすることにより、誘電体多孔質膜21の厚みと、形成される電気二重層の厚みとを拮抗させることができる。従って、電気浸透流ポンプ2の作動が好適になる。 The thickness of the dielectric porous film 21 is not particularly limited, but is preferably about 5 μm to 100 μm, and more preferably 10 μm to 60 μm. By setting the thickness of the dielectric porous film 21 to such a thickness, it is possible to antagonize the thickness of the dielectric porous film 21 and the thickness of the electric double layer to be formed. Therefore, the operation of the electroosmotic flow pump 2 is suitable.
 誘電体多孔質膜21における平均孔径は、10nm~50μmであることが好ましく、20nm~10μmであることがより好ましく、50nm~2μmであることがさらに好ましい。誘電体多孔質膜21における平均孔径が小さすぎると、流動抵抗が大きく送液量が小さくなる場合がある。誘電体多孔質膜21における平均孔径が大きすぎると、送液の水圧が低下し、電気浸透流のエネルギー効率が悪くなる場合がある。 The average pore diameter in the dielectric porous film 21 is preferably 10 nm to 50 μm, more preferably 20 nm to 10 μm, and further preferably 50 nm to 2 μm. If the average pore diameter in the dielectric porous film 21 is too small, the flow resistance may be large and the liquid feeding amount may be small. If the average pore size in the dielectric porous film 21 is too large, the water pressure of the liquid feeding is lowered, and the energy efficiency of the electroosmotic flow may be deteriorated.
 誘電体多孔質膜21の開口率は、1%~50%であることが好ましく、3%~30%であることがより好ましい。誘電体多孔質膜21の開口率が高すぎると、隣り合う孔が融合しやすく膜としての自立性に問題がでる場合がある。誘電体多孔質膜21の開口率が低すぎると、送液量が小さくなる場合がある。 The aperture ratio of the dielectric porous film 21 is preferably 1% to 50%, and more preferably 3% to 30%. If the aperture ratio of the dielectric porous film 21 is too high, adjacent holes are likely to be fused, and a problem may occur in the self-supporting property of the film. If the aperture ratio of the dielectric porous film 21 is too low, the liquid feeding amount may be small.
 誘電体多孔質膜21の細孔密度は、4 E2 /c m 2~ 5E 13 /c m 2であることが好ましく、3E 4/ cm 2~ 7.5 E1 0/ cm 2であることがさらに好ましい。誘電体多孔質膜21の細孔密度が高すぎると、開口率が高くなりすぎるか平均孔径が小さくなりすぎる場合がある。誘電体多孔質膜21の細孔密度が低すぎると、電気浸透流のエネルギー効率が悪くなる場合がある。 Pore density of the dielectric porous film 21, 4 E2 / c is preferably m is 2 ~ 5E 13 / c m 2 , 3E 4 / cm 2 ~ 7.5 E1 0 / cm 2 and it is further preferable. If the pore density of the dielectric porous film 21 is too high, the aperture ratio may be too high or the average pore size may be too small. If the pore density of the dielectric porous film 21 is too low, the energy efficiency of the electroosmotic flow may be deteriorated.
 誘電体多孔質膜21の第2の貯留部13側には、第1の透水性電極22が設けられている。誘電体多孔質膜21の第1の貯留部12側には、第2の透水性電極23が設けられている。第1及び第2の透水性電極22,23は、液体が供給された際に、誘電体多孔質膜21の表面上に電気二重層が形成されるように設けられていればよい。第1及び第2の透水性電極22,23のそれぞれが誘電体多孔質膜21に接触している必要は必ずしもない。例えば、第1及び第2の透水性電極22,23のそれぞれと誘電体多孔質膜21との間に、高い弾性率を有する導電性ラバーを介在させてもよい。 A first water permeable electrode 22 is provided on the second reservoir 13 side of the dielectric porous film 21. A second water permeable electrode 23 is provided on the first reservoir 12 side of the dielectric porous film 21. The first and second water permeable electrodes 22 and 23 may be provided so that an electric double layer is formed on the surface of the dielectric porous film 21 when the liquid is supplied. Each of the first and second permeable electrodes 22 and 23 is not necessarily in contact with the dielectric porous film 21. For example, a conductive rubber having a high elastic modulus may be interposed between each of the first and second water permeable electrodes 22 and 23 and the dielectric porous film 21.
 第1及び第2の透水性電極22,23は、液体が厚み方向に通過可能に設けられている。第1及び第2の透水性電極22,23は、それぞれ、厚み方向に貫通する貫通孔を有することが好ましい。この第1及び第2の透水性電極22,23の貫通孔と誘電体多孔質膜21の貫通孔とが接続されていることが好ましい。 The first and second permeable electrodes 22 and 23 are provided so that liquid can pass in the thickness direction. Each of the first and second water permeable electrodes 22 and 23 preferably has a through-hole penetrating in the thickness direction. The through holes of the first and second permeable electrodes 22 and 23 and the through holes of the dielectric porous film 21 are preferably connected.
 第1及び第2の透水性電極22,23は、それぞれ、例えば、誘電体多孔質膜21の上に金属などの導電物質を、誘電体多孔質膜21の細孔が完全に閉鎖されないように成膜させることにより形成することができる。また、第1及び第2の透水性電極22,23は、それぞれ、例えば、網状電極、くし型電極、千鳥状電極、フラクタル状パターン電極などのパターニングされた電極により構成されていてもよい。 The first and second water permeable electrodes 22 and 23 are each made of, for example, a conductive material such as metal on the dielectric porous film 21 so that the pores of the dielectric porous film 21 are not completely closed. It can be formed by forming a film. Moreover, the 1st and 2nd water- permeable electrodes 22 and 23 may be comprised by patterned electrodes, such as a mesh electrode, a comb-shaped electrode, a staggered electrode, and a fractal pattern electrode, respectively.
 第1及び第2の透水性電極22,23の材質は、導電材料である限りにおいて特に限定されないが、第1及び第2の透水性電極22,23は、良導電材料により構成されていることが好ましい。具体的には、第1及び第2の透水性電極22,23は、それぞれ、金、銀及び銅の少なくとも一種の金属、カーボンナノチューブ等のカーボンを主体とする複合材、インジウムスズ酸化物(ITO)等の透明導電性酸化物(Transparent Conductive Oxide)等により構成されていてもよい。 The material of the first and second water permeable electrodes 22 and 23 is not particularly limited as long as it is a conductive material, but the first and second water permeable electrodes 22 and 23 are made of a highly conductive material. Is preferred. Specifically, each of the first and second permeable electrodes 22 and 23 is composed of at least one metal of gold, silver and copper, a composite material mainly composed of carbon such as carbon nanotube, indium tin oxide (ITO). ) Or other transparent conductive oxide (Transparent Conductive Oxide) or the like.
 電気浸透流ポンプ2は、交流電源40を備えている。この交流電源40により第1及び第2の透水性電極22,23の間に交流電圧が印加される。交流電源40は、第1及び第2の透水性電極22,23の間に1MHz以下の周波数の交流電圧を印加することが好ましく、0.5Hz~20kHzの交流電圧を印加することがより好ましく、1Hz~100Hzの交流電圧を印加することがさらに好ましい。第1及び第2の透水性電極22,23の間に印加される交流電圧の周波数が高すぎると、電気浸透流ポンプ2が好適に作動しなくなる場合がある。 The electroosmotic flow pump 2 includes an AC power source 40. An AC voltage is applied between the first and second permeable electrodes 22 and 23 by the AC power source 40. The AC power supply 40 preferably applies an AC voltage having a frequency of 1 MHz or less between the first and second permeable electrodes 22 and 23, and more preferably applies an AC voltage of 0.5 Hz to 20 kHz. More preferably, an alternating voltage of 1 Hz to 100 Hz is applied. If the frequency of the AC voltage applied between the first and second permeable electrodes 22 and 23 is too high, the electroosmotic pump 2 may not operate properly.
 図2に示されるように、電気浸透流ポンプ2では、誘電体多孔質膜21は、第1の透水性電極22側の主面に親水層21aを有する。例えば、誘電体多孔質膜21がトラックエッチド膜である場合は、誘電体多孔質膜21の一方の表層が親水層21aとなっている。誘電体多孔質膜21がトラックエッチド膜ではない場合は、誘電体多孔質膜21の一方の表面に、常圧プラズマ化学処理等のプラズマ処理に代表される親水処理や親水性官能基をもつ分子で化学修飾を施すことにより親水層21aを形成することができる。親水性官能基を含むポリマーとしては、ホスホリルコリン基を含有するポリウレタンウレアが好適に用いられる。また、親水性官能基を含むポリマーとして、アミノ基を分子鎖中に多数有するポリリシンやポリアリルアミン等も用いることができる。誘電体多孔質膜21の表面を親水性官能基をもつ分子で化学修飾する方法はこれらに限られるわけではなく、当業者の知りうる化学修飾親水化技術を適用しうる。 2, in the electroosmotic flow pump 2, the dielectric porous membrane 21 has a hydrophilic layer 21a on the main surface on the first water permeable electrode 22 side. For example, when the dielectric porous film 21 is a track-etched film, one surface layer of the dielectric porous film 21 is a hydrophilic layer 21a. When the dielectric porous film 21 is not a track-etched film, one surface of the dielectric porous film 21 has a hydrophilic treatment or a hydrophilic functional group typified by plasma treatment such as atmospheric pressure plasma chemical treatment. The hydrophilic layer 21a can be formed by chemically modifying with molecules. As the polymer containing a hydrophilic functional group, a polyurethaneurea containing a phosphorylcholine group is preferably used. Moreover, polylysine, polyallylamine, etc. which have many amino groups in a molecular chain can also be used as a polymer containing a hydrophilic functional group. The method of chemically modifying the surface of the dielectric porous film 21 with a molecule having a hydrophilic functional group is not limited to these, and a chemical modification hydrophilization technique known to those skilled in the art can be applied.
 親水層21aの表面の親水性は、誘電体多孔質膜21の第2の透水性電極23側の主面の親水性よりも高い。このため、誘電体多孔質膜21の第1の透水性電極22側の主面のゼータ電位と、第2の透水性電極23側の主面のゼータ電位とが相互に異なるか、または、誘電体多孔質膜21の第1の透水性電極22側の主面の流動電位と、第2の透水性電極23側の主面の流動電位とが相互に異なる。具体的には、誘電体多孔質膜21の第1の透水性電極22側の主面のゼータ電位の大きさが、第2の透水性電極23側の主面のゼータ電位の大きさよりも大きいか、または、誘電体多孔質膜21の第1の透水性電極22側の主面の流動電位の大きさが、第2の透水性電極23側の主面の流動電位の大きさよりも大きい。よって、第1の透水性電極22と第2の透水性電極23との間に交流電圧を印加すると、液体が第1の貯留部12から第2の貯留部13に移送される。これにより、電気浸透流ポンプ2が作動する。 The hydrophilicity of the surface of the hydrophilic layer 21a is higher than the hydrophilicity of the main surface of the dielectric porous film 21 on the second water permeable electrode 23 side. Therefore, the zeta potential of the main surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side and the zeta potential of the main surface on the second water permeable electrode 23 side are different from each other, or the dielectric The streaming potential of the main surface of the body porous membrane 21 on the first permeable electrode 22 side is different from the streaming potential of the main surface on the second permeable electrode 23 side. Specifically, the magnitude of the zeta potential on the main surface of the dielectric porous film 21 on the first water permeable electrode 22 side is larger than the zeta potential on the main surface on the second water permeable electrode 23 side. Alternatively, the flow potential on the main surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side is larger than the flow potential on the main surface on the second water permeable electrode 23 side. Therefore, when an AC voltage is applied between the first water permeable electrode 22 and the second water permeable electrode 23, the liquid is transferred from the first reservoir 12 to the second reservoir 13. Thereby, the electroosmotic flow pump 2 operates.
 このように、本実施形態では、誘電体多孔質膜21が、第1の透水性電極22と第2の透水性電極23との間に交流電圧が印加されたときに誘電体多孔質膜21内の液体に、第1の透水性電極22側から第2の透水性電極23側に移動させる力が付与されるように構成されている。このため、電気浸透流ポンプ2は、交流電圧により駆動可能である。従って、電気浸透流ポンプに直流電圧を印加する場合とは異なり、電気浸透流ポンプ2の駆動時に、液体が電気分解され、液体のpHが変化したり、気泡が変化したりしにくい。 Thus, in this embodiment, when the dielectric porous film 21 is applied with an alternating voltage between the first water permeable electrode 22 and the second water permeable electrode 23, the dielectric porous film 21. A force for moving the liquid from the first water-permeable electrode 22 side to the second water-permeable electrode 23 side is applied to the liquid inside. For this reason, the electroosmotic flow pump 2 can be driven by an alternating voltage. Therefore, unlike the case where a DC voltage is applied to the electroosmotic pump, the liquid is electrolyzed when the electroosmotic pump 2 is driven, and the pH of the liquid is not easily changed and bubbles are not easily changed.
 誘電体多孔質膜21の厚さの自乗に対する、第1及び第2の透水性電極22,23の面積の比((第1及び第2の透水性電極22,23の面積)/(誘電体多孔質膜21の厚さ))が100より大きいことが好ましい。比((第1及び第2の透水性電極22,23の面積)/(誘電体多孔質膜21の厚さ))が小さすぎると、送液の効率が悪くなる。この比が大きい分には制約はない。 Ratio of the area of the first and second permeable electrodes 22, 23 to the square of the thickness of the dielectric porous film 21 ((area of the first and second permeable electrodes 22, 23) / (dielectric) The thickness ( 2 ) of the porous membrane 21 is preferably greater than 100. If the ratio ((area of the first and second permeable electrodes 22 and 23) / (thickness of the dielectric porous film 21) 2 ) is too small, the efficiency of liquid feeding is deteriorated. There is no restriction for this large ratio.
 なお、親水性は、自動接触角計(協和界面科学社、DM-300)により測定することができる。 The hydrophilicity can be measured with an automatic contact angle meter (Kyowa Interface Science Co., Ltd., DM-300).
 ゼータ電位:水溶液に代表されるプロトン性溶媒と接する固体または液体の界面は、特別の場合を除き電荷を帯びている。この電荷による電場は,溶液側から反対符号のイオン(対イオン)を引き寄せ,表面近傍にイオン雰囲気(電気二重層)を形成する。固体表面には特に強く吸着したイオンであるカウンターイオンがあり、カウンターイオンが殆ど動かないシュテルン層(Stern layer)と固体表面から離れるほどに薄くなってカウンターイオンが移動可能な状態で拡散した構造になっている拡散電気二重層とが存在する。ゼータ電位は、シュテルン層と拡散電気二重層との境界の“滑り面”(ずり面とも言う)での電位である。膜の表面におけるゼータ電位は、例えば、膜ゼータ電位測定装置(大塚電子株式会社ELSZ-1)により測定することができる。細孔内におけるゼータ電位は、例えば、固体ゼータ電位測定装置(アントンパール・ジャパン、SurPASS)により測定することができる。 Zeta potential: A solid or liquid interface in contact with a protic solvent typified by an aqueous solution is charged except in special cases. The electric field due to this electric charge attracts ions (counter ions) of opposite signs from the solution side to form an ion atmosphere (electric double layer) near the surface. There is a counter ion which is a particularly strongly adsorbed ion on the surface of the solid, and a structure in which the counter ion is diffused in such a state that it becomes thin enough to move away from the solid surface and the counter ion can move because the counter ion hardly moves. A diffusion electric double layer is present. The zeta potential is a potential at a “sliding surface” (also referred to as a shear surface) at the boundary between the Stern layer and the diffusion electric double layer. The zeta potential on the surface of the membrane can be measured by, for example, a membrane zeta potential measurement device (Otsuka Electronics Co., Ltd. ELSZ-1). The zeta potential in the pores can be measured by, for example, a solid zeta potential measuring device (Anton Paar Japan, SurPASS).
 流動電位は、固体ゼータ電位測定装置(アントンパール・ジャパン、SurPASS)により測定することができる。 Streaming potential can be measured with a solid zeta potential measuring device (Anton Paar Japan, SurPASS).
 なお、本発明の電気浸透流ポンプは、交流電圧を印加することに作動するものであるが、直流電圧を印加した際に作動しないものである必要は必ずしもない。通常、本発明の電気浸透流ポンプは、交流電圧印加時に加え、直流電圧印加時にも作動するものである。 In addition, although the electroosmotic flow pump of this invention operate | moves when an alternating voltage is applied, it does not necessarily need to be a thing which does not operate | move when a direct current voltage is applied. Usually, the electroosmotic pump of the present invention operates not only when an AC voltage is applied but also when a DC voltage is applied.
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2の実施形態)
 図3は、第2の実施形態における送液膜の一部分の模式的断面図である。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view of a part of the liquid feeding film in the second embodiment.
 本実施形態に係る電気浸透流ポンプは、第1の透水性電極22が誘電体多孔質膜21とは反対側の表層に親水層22aを有する点で、第1の実施形態に係る電気浸透流ポンプ2と異なる。 The electroosmotic pump according to the present embodiment is different from the electroosmotic flow pump according to the first embodiment in that the first water permeable electrode 22 has a hydrophilic layer 22a on the surface layer opposite to the dielectric porous membrane 21. Different from pump 2.
 本実施形態のように、親水層22aを設けることにより、送液性能を向上することができる。 As in the present embodiment, the liquid feeding performance can be improved by providing the hydrophilic layer 22a.
 なお、親水層22aは、例えば第1の透水性電極22が金を含む場合は、金-チオール結合しうる自己組織化試薬等により表面処理を行うことにより形成することができる。好ましく用いられる自己組織化試薬としては、硫黄原子により構成された一端末と、親水基により構成された他端末とを含む主鎖を有する分子である。このような自己組織化試薬の具体例としては、例えば、
 HS-(CH-COOH  ………  (1)
 HOOC-(CH-S-S-(CH)n-COOH  ………  (2)
 HS-(CH-OH  ………  (3)
 HS-(CH-(OCH-CH-(CH-OCH-COOH  ………  (4)
 HS-(CH-NHCl  ………  (5)
 HS-(CH-(OCH-CH-NHCl  ………  (6)
などが挙げられる。
The hydrophilic layer 22a can be formed, for example, by performing a surface treatment with a self-assembling reagent capable of gold-thiol bonding when the first permeable electrode 22 contains gold. The self-assembling reagent preferably used is a molecule having a main chain including one terminal constituted by a sulfur atom and another terminal constituted by a hydrophilic group. As a specific example of such a self-assembling reagent, for example,
HS- (CH 2 ) n —COOH (1)
HOOC- (CH 2) n -S- S- (CH 2) n-COOH ......... (2)
HS- (CH 2 ) n —OH (3)
HS— (CH 2 ) n — (OCH 2 —CH 2 ) 6 — (CH 2 ) n —OCH 2 —COOH (4)
HS- (CH 2 ) n —NH 3 Cl (5)
HS— (CH 2 ) n — (OCH 2 —CH 2 ) 6 —NH 3 Cl (6)
Etc.
 図4に、上述のような自己組織化試薬(具体的には、1,1-メルカプトウデカン酸)を用いて形成した親水層22aの模式図を示す。 FIG. 4 shows a schematic diagram of the hydrophilic layer 22a formed using the above-described self-assembling reagent (specifically, 1,1-mercaptodecanoic acid).
 なお、自己組織化試薬による親水化処理を行う前に、脱脂処理、超臨界CO洗浄、プラズマ処理やコロナ放電処理などを追加的に行ってもよい。 Note that degreasing treatment, supercritical CO 2 cleaning, plasma treatment, corona discharge treatment, and the like may be additionally performed before the hydrophilic treatment with the self-assembling reagent.
 (第3の実施形態)
 図5は、第3の実施形態における送液膜の一部分の模式的断面図である。図5に示されるように、本実施形態では、誘電体多孔質膜21は、第1の誘電体多孔質膜21Aと、第2の誘電体多孔質膜21Bとを備えている。第1の誘電体多孔質膜21Aと、第2の誘電体多孔質膜21Bとは積層されている。第1の誘電体多孔質膜21Aが第1の透水性電極22側に位置しており、第2の誘電体多孔質膜21Bが第2の透水性電極23側に位置している。第1の誘電体多孔質膜21Aは、第2の誘電体多孔質膜21Bよりも親水性が高い材料により構成されている。このため、本実施形態においても、誘電体多孔質膜21の第1の透水性電極22側の表面の親水性が、第2の透水性電極23側の表面の親水性よりも高い。従って、本実施形態の電気浸透流ポンプも、交流電圧を印加することにより作動する。
(Third embodiment)
FIG. 5 is a schematic cross-sectional view of a part of the liquid feeding film in the third embodiment. As shown in FIG. 5, in the present embodiment, the dielectric porous film 21 includes a first dielectric porous film 21A and a second dielectric porous film 21B. The first dielectric porous film 21A and the second dielectric porous film 21B are laminated. The first dielectric porous film 21A is located on the first water permeable electrode 22 side, and the second dielectric porous film 21B is located on the second water permeable electrode 23 side. The first dielectric porous film 21A is made of a material having higher hydrophilicity than the second dielectric porous film 21B. For this reason, also in this embodiment, the hydrophilicity of the surface of the dielectric porous membrane 21 on the first water permeable electrode 22 side is higher than the hydrophilicity of the surface on the second water permeable electrode 23 side. Therefore, the electroosmotic pump of this embodiment also operates by applying an alternating voltage.
 なお、第1の誘電体多孔質膜21Aの膜厚と、第2の誘電体多孔質膜21Bの膜厚との比(第1の誘電体多孔質膜21Aの膜厚:第2の誘電体多孔質膜21Bとの膜厚)は、1:100~100:1であることが好ましく、1:10~10:1であることがより好ましい。 Note that the ratio between the thickness of the first dielectric porous film 21A and the thickness of the second dielectric porous film 21B (the thickness of the first dielectric porous film 21A: the second dielectric) The film thickness with the porous membrane 21B) is preferably 1: 100 to 100: 1, and more preferably 1:10 to 10: 1.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 (実施例1)
 以下の要領で、第1の実施形態に係る電気浸透流ポンプ2と実質的に同様の構成を有する電気浸透流ポンプを作製した。厚さが20μmであり、平均孔径が400nmであるトラックエッチド膜(Millipore、isopore membrane filters HTTP04700)の両面にマグネトロンスパッタ装置(株式会社真空デバイス、MSP-1S)を用いて厚さ20nmの金膜を成膜させることにより、送液膜を形成した。このとき、膜の表裏は電気的に絶縁されていることを確認した。金からなる第1及び第2の透水性電極には、導電性ラバー電極を介して交流電源に接続した。第1の透水性電極と第2の透水性電極との間の距離は、トラックエッチド膜の厚みと等しく、20μmであった。図6に、実施例1において使用したトラックエッチド膜の破壊断面写真を示す。
Example 1
An electroosmotic pump having a configuration substantially similar to that of the electroosmotic pump 2 according to the first embodiment was produced in the following manner. A 20 nm thick gold film using a magnetron sputtering apparatus (vacuum device, MSP-1S) on both sides of a track etched film (Millipore, isopore membrane filters HTTP04700) having a thickness of 20 μm and an average pore diameter of 400 nm Was deposited to form a liquid delivery film. At this time, it was confirmed that the front and back of the film were electrically insulated. The first and second permeable electrodes made of gold were connected to an AC power source via a conductive rubber electrode. The distance between the first water permeable electrode and the second water permeable electrode was 20 μm, which is equal to the thickness of the track etched film. FIG. 6 shows a fracture cross-sectional photograph of the track-etched film used in Example 1.
 トラックエッチド膜の表面のゼータ電位を、膜ゼータ電位測定装置(大塚電子株式会社ELSZ-1)を用い測定した。具体的には、トラックエッチド膜に並行に電場を印加して誘起される電気浸透流の速度を、ヒドロキシプロピルセルロースの修飾によって帯電していないポリスチレンラテックス(500nm)の運動速度として観察し、その運動速度からゼータ電位を測定した。なお、液体としては、10mMのNaCl水溶液を用いた。結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
The zeta potential of the surface of the track-etched film was measured using a film zeta potential measuring device (Otsuka Electronics ELSZ-1). Specifically, the velocity of electroosmotic flow induced by applying an electric field in parallel to the track-etched film was observed as the motion velocity of polystyrene latex (500 nm) that was not charged by modification of hydroxypropylcellulose. The zeta potential was measured from the movement speed. As the liquid, a 10 mM NaCl aqueous solution was used. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 トラックエッチド膜の細孔内のゼータ電位を、固体ゼータ電位測定装置 (アントンパール・ジャパン、SurPASS)を用いて流動電位法により測定した。水圧の印加により生じる流動電位からゼータ電位を算出した結果、
 第1の透水性電極側から第2の透水性電極側への流動電位から計算されたゼータ電位は、-36.01mVであり、
 第2の透水性電極側から第1の透水性電極側への流動電位から計算されたゼータ電位は、-40.11mVであった。細孔内部のゼータ電位は、膜表面のゼータ電位よりずっと低かった。
The zeta potential in the pores of the track-etched membrane was measured by the streaming potential method using a solid zeta potential measuring device (Anton Paar Japan, SurPASS). As a result of calculating the zeta potential from the streaming potential generated by the application of water pressure,
The zeta potential calculated from the flow potential from the first permeable electrode side to the second permeable electrode side is −36.01 mV,
The zeta potential calculated from the flow potential from the second permeable electrode side to the first permeable electrode side was −40.11 mV. The zeta potential inside the pores was much lower than the zeta potential on the membrane surface.
 作製した電気浸透流ポンプに、液体(脱イオン水)の背圧をゼロに保ちながら、25Hzの交流電圧を印加した。結果を図7に示す。 An alternating voltage of 25 Hz was applied to the produced electroosmotic flow pump while keeping the back pressure of the liquid (deionized water) at zero. The results are shown in FIG.
 なお、本実施例では、交流電圧を10分印加し続けても気泡は実質的に発生しなかった。 In this example, bubbles were not substantially generated even when the AC voltage was continuously applied for 10 minutes.
 図7に示される結果から、本実施例において作製した電気浸透流ポンプは、交流電圧を印加した際に駆動することが分かる。また、印加する電圧を高めることにより、流量を増大できることが分かる。 From the results shown in FIG. 7, it can be seen that the electroosmotic pump produced in this example is driven when an AC voltage is applied. It can also be seen that the flow rate can be increased by increasing the applied voltage.
 (実験例2)
 第1の透水性電極の誘電体多孔質膜とは反対側の表面を1,1-メルカプトウデカン酸により処理し、親水層を形成したこと以外は、実施例1と同様にして電気浸透流ポンプを作製した。
(Experimental example 2)
The electroosmotic flow was the same as in Example 1 except that the surface of the first water permeable electrode opposite to the dielectric porous membrane was treated with 1,1-mercaptodecanoic acid to form a hydrophilic layer. A pump was made.
 (実験例3)
 第1の透水性電極の誘電体多孔質膜側の表面を1,1-メルカプトウデカン酸により処理し、親水層を形成したこと以外は、実施例1と同様にして電気浸透流ポンプを作製した。
(Experimental example 3)
An electroosmotic pump was produced in the same manner as in Example 1 except that the surface of the first porous electrode on the dielectric porous membrane side was treated with 1,1-mercaptodecanoic acid to form a hydrophilic layer. did.
 実施例2,3において作製した電気浸透流ポンプに、液体(水)の背圧をゼロに保ちながら、25Hzの交流電圧を印加した。結果を、実施例1の結果と共に、図8に示す。 An AC voltage of 25 Hz was applied to the electroosmotic flow pumps produced in Examples 2 and 3 while keeping the back pressure of the liquid (water) at zero. The results are shown in FIG. 8 together with the results of Example 1.
 図8に示される結果から、第1の透水性電極の誘電体多孔質膜とは反対側の表面に親水層を形成することにより、送液能力を向上できることが分かる。 From the results shown in FIG. 8, it can be seen that the liquid feeding ability can be improved by forming a hydrophilic layer on the surface of the first water permeable electrode opposite to the dielectric porous film.
 (実施例4)
 実施例1において作製した装置に、脱イオン水にpH指示薬を溶かした液体を供給し、第1及び第2の透水性電極間に15分間、25Hzで9.34Vrmsの交流電圧を印加した。その後、第1及び第2の貯留部の色調を観察したところ、第1及び第2の貯留部の色調は、電圧印加前と同様でpHは変化せず、電気分解によるガスは発生しなかった。また、溶媒として0.9質量%のNaCl水溶液を用いた場合も第1及び第2の貯留部はpH変化を示さず、電気分解によるガスは発生しなかった。
Example 4
A liquid prepared by dissolving a pH indicator in deionized water was supplied to the apparatus prepared in Example 1, and an AC voltage of 9.34 Vrms at 25 Hz was applied between the first and second permeable electrodes for 15 minutes. Then, when the color tone of the 1st and 2nd storage part was observed, the color tone of the 1st and 2nd storage part was the same as that before voltage application, pH did not change, and the gas by electrolysis did not generate | occur | produce. . In addition, even when a 0.9 mass% NaCl aqueous solution was used as the solvent, the first and second reservoirs did not show pH change, and no gas was generated due to electrolysis.
 一方、第1及び第2の透水性電極間に9.34Vの直流電圧を15分間印加したところ、第1の貯留部の色調が酸性色に変化し、第2の貯留部がアルカリ性色に変化し、電気分解によるガスが発生した。また、溶媒として0.9質量%のNaCl水溶液を用いた場合、第1の貯留部の色調が強酸性色に変化し、第2の貯留部が強アルカリ性色に変化し、電気分解によるガスが発生した。 On the other hand, when a DC voltage of 9.34 V is applied between the first and second permeable electrodes for 15 minutes, the color of the first reservoir changes to an acidic color, and the second reservoir changes to an alkaline color. Then, gas was generated by electrolysis. Moreover, when 0.9 mass% NaCl aqueous solution is used as a solvent, the color tone of the 1st storage part changes to a strongly acidic color, the 2nd storage part changes to a strong alkaline color, and the gas by electrolysis has changed. Occurred.
1:送液モジュール
2: 電気浸透流ポンプ
10:固定治具
11:固定治具
12:第1の貯留部
13:第2の貯留部
14:排出口
20:送液膜
21:誘電体多孔質膜
21A:第1の誘電体多孔質膜
21B:第2の誘電体多孔質膜
21a:親水層
22:第1の透水性電極
22a:親水層
23:第2の透水性電極
30:液体貯留槽
40:交流電源
 
1: Liquid feeding module 2: Electroosmotic flow pump 10: Fixing jig 11: Fixing jig 12: First reservoir 13: Second reservoir 14: Discharge port 20: Liquid feeding membrane 21: Dielectric porous Membrane 21A: first dielectric porous membrane 21B: second dielectric porous membrane 21a: hydrophilic layer 22: first water permeable electrode 22a: hydrophilic layer 23: second water permeable electrode 30: liquid reservoir 40: AC power supply

Claims (12)

  1.  誘電体多孔質膜と、
     前記誘電体多孔質膜の一方側に配された第1の透水性電極と、
     前記誘電体多孔質膜の他方側に配された第2の透水性電極と、
    を備え、
     前記誘電体多孔質膜の前記第1の透水性電極側の主面の親水性と、前記第2の透水性電極側の主面の親水性とが相互に異なる、電気浸透流ポンプ。
    A dielectric porous membrane;
    A first water permeable electrode disposed on one side of the dielectric porous membrane;
    A second water permeable electrode disposed on the other side of the dielectric porous membrane;
    With
    The electroosmotic pump, wherein the hydrophilic property of the main surface of the dielectric porous membrane on the first permeable electrode side and the hydrophilic property of the main surface of the second permeable electrode side are different from each other.
  2.  前記誘電体多孔質膜は、一主面に親水層を有する、請求項1に記載の電気浸透流ポンプ。 2. The electroosmotic pump according to claim 1, wherein the dielectric porous film has a hydrophilic layer on one main surface.
  3.  誘電体多孔質膜と、
     前記誘電体多孔質膜の一方側に配された第1の透水性電極と、
     前記誘電体多孔質膜の他方側に配された第2の透水性電極と、
    を備え、
     前記誘電体多孔質膜の一方面のゼータ電位と、他方面のゼータ電位とが相互に異なるか、または前記誘電体多孔質膜の一方面の流動電位と、他方面の流動電位とが相互に異なる、電気浸透流ポンプ。
    A dielectric porous membrane;
    A first water permeable electrode disposed on one side of the dielectric porous membrane;
    A second water permeable electrode disposed on the other side of the dielectric porous membrane;
    With
    The zeta potential on one side of the dielectric porous membrane is different from the zeta potential on the other side, or the streaming potential on one side of the dielectric porous membrane is different from the streaming potential on the other side. Different, electroosmotic flow pump.
  4.  誘電体多孔質膜と、
     前記誘電体多孔質膜の一方側に配された第1の透水性電極と、
     前記誘電体多孔質膜の他方側に配された第2の透水性電極と、
    を備え、
     前記誘電体多孔質膜は、前記第1の透水性電極と前記第2の透水性電極との間に交流電圧が印加されたときに前記誘電体多孔質膜内の液体に、前記第1の透水性電極側と前記第2の透水性電極側の一方から他方へ選択的にに移動させる力が付与されるように構成されている、電気浸透流ポンプ。
    A dielectric porous membrane;
    A first water permeable electrode disposed on one side of the dielectric porous membrane;
    A second water permeable electrode disposed on the other side of the dielectric porous membrane;
    With
    The dielectric porous film is formed in the liquid in the dielectric porous film when the AC voltage is applied between the first water permeable electrode and the second water permeable electrode. An electroosmotic flow pump configured to be provided with a force to selectively move from one of the permeable electrode side and the second permeable electrode side to the other.
  5.  前記誘電体多孔質膜は、積層された第1の誘電体多孔質膜及び第2の誘電体多孔質膜を含み、
     前記一主面が前記第1の誘電体多孔質膜により構成されており、
     前記他主面が前記第2の誘電体多孔質膜により構成されている、請求項1~4のいずれか一項に記載の電気浸透流ポンプ。
    The dielectric porous film includes a laminated first dielectric porous film and second dielectric porous film,
    The one principal surface is constituted by the first dielectric porous film;
    The electroosmotic pump according to any one of claims 1 to 4, wherein the other main surface is constituted by the second dielectric porous film.
  6.  前記第1の透水性電極と前記第2の透水性電極との間に交流電圧を印加する電源をさらに備え、
     前記電源は、1MHz以下の周波数の交流電圧を印加する、請求項1~5のいずれか一項に記載の電気浸透流ポンプ。
    A power source for applying an alternating voltage between the first permeable electrode and the second permeable electrode;
    The electroosmotic pump according to any one of claims 1 to 5, wherein the power source applies an AC voltage having a frequency of 1 MHz or less.
  7.  前記誘電体多孔質膜の厚みが5μm~100μmの範囲内にある、請求項1~6のいずれか一項に記載の電気浸透流ポンプ。 The electroosmotic pump according to any one of claims 1 to 6, wherein the thickness of the dielectric porous film is in the range of 5 to 100 µm.
  8.  前記誘電体多孔質膜の厚さの自乗に対する、前記透水性電極の面積の比((前記透水性電極の面積)/(前記誘電体多孔質膜の厚さ))が100より大きい、請求項1~7のいずれか一項に記載の電気浸透流ポンプ。 The ratio of the area of the water permeable electrode to the square of the thickness of the dielectric porous film ((area of the water permeable electrode) / (thickness of the dielectric porous film) 2 ) is greater than 100. Item 8. The electroosmotic pump according to any one of Items 1 to 7.
  9.  前記誘電体多孔質膜における平均孔径が10nm~50μmの範囲内にある、請求項1~8のいずれか一項に記載の電気浸透流ポンプ。 The electroosmotic pump according to any one of claims 1 to 8, wherein an average pore diameter in the dielectric porous membrane is in a range of 10 nm to 50 µm.
  10.  前記第1及び第2の透水性電極は、それぞれ、厚み方向に貫通する貫通孔を有する、請求項1~9のいずれか一項に記載の電気浸透流ポンプ。 The electroosmotic pump according to any one of claims 1 to 9, wherein each of the first and second permeable electrodes has a through hole penetrating in a thickness direction.
  11.  前記誘電体多孔質膜は、厚み方向に貫通する貫通孔を有する、請求項1~10のいずれか一項に記載の電気浸透流ポンプ。 The electroosmotic pump according to any one of claims 1 to 10, wherein the dielectric porous film has a through-hole penetrating in a thickness direction.
  12.  前記誘電体多孔質膜の前記第1の透水性電極側の主面の親水性が、前記第2の透水性電極側の主面の親水性よりも高く、
     前記第1の透水性電極は、前記誘電体多孔質膜とは反対側の表層に親水層を有する、請求項1~11のいずれか一項に記載の電気浸透流ポンプ。
     
    The hydrophilicity of the main surface of the dielectric porous membrane on the first water permeable electrode side is higher than the hydrophilicity of the main surface of the second water permeable electrode side,
    The electroosmotic pump according to any one of claims 1 to 11, wherein the first water-permeable electrode has a hydrophilic layer on a surface layer opposite to the dielectric porous membrane.
PCT/JP2013/078574 2013-10-22 2013-10-22 Electroosmotic flow pump WO2015059766A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/078574 WO2015059766A1 (en) 2013-10-22 2013-10-22 Electroosmotic flow pump
JP2014536812A JP6166268B2 (en) 2013-10-22 2013-10-22 Electroosmotic pump
US14/390,543 US20160252082A1 (en) 2013-10-22 2013-10-22 Electroosmotic pump
US15/655,100 US20170335836A1 (en) 2013-10-22 2017-07-20 Electroosmotic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078574 WO2015059766A1 (en) 2013-10-22 2013-10-22 Electroosmotic flow pump

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/390,543 A-371-Of-International US20160252082A1 (en) 2013-10-22 2013-10-22 Electroosmotic pump
US15/655,100 Division US20170335836A1 (en) 2013-10-22 2017-07-20 Electroosmotic pump

Publications (1)

Publication Number Publication Date
WO2015059766A1 true WO2015059766A1 (en) 2015-04-30

Family

ID=52992405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078574 WO2015059766A1 (en) 2013-10-22 2013-10-22 Electroosmotic flow pump

Country Status (3)

Country Link
US (2) US20160252082A1 (en)
JP (1) JP6166268B2 (en)
WO (1) WO2015059766A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194041A1 (en) * 2017-04-21 2018-10-25 ヨダカ技研株式会社 Portable compact infusion device
JP2021519394A (en) * 2018-03-21 2021-08-10 リンテック・オブ・アメリカ・インコーポレイテッド Carbon Nanotube Spinned Yarn Electroosmotic Pump
WO2021199454A1 (en) * 2020-04-01 2021-10-07 アットドウス株式会社 Liquid drug administration unit, liquid drug administration module, liquid drug administration device, and drug administration management system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006908B1 (en) * 2016-06-28 2019-08-02 이오플로우(주) Electroosmotic pump and system for pumping of fluid comprising thereof
US10695721B2 (en) * 2016-09-08 2020-06-30 Osmotex Ag Layered electroosmotic structure
GB201714645D0 (en) * 2017-09-12 2017-10-25 Osmotex Ag Method
JP6966007B2 (en) 2018-10-03 2021-11-10 株式会社村田製作所 Pump and cooling board
KR20210116750A (en) * 2020-03-13 2021-09-28 이오플로우(주) Membrane-electrode assembly for electroosmotic pump, electroosmotic pump and system for pumping of fluid comprising thereof
KR20210116751A (en) * 2020-03-13 2021-09-28 이오플로우(주) Electroosmotic pump, method for preparing thereof, and system for pumping of fluid comprising thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221978A (en) * 2008-03-17 2009-10-01 Casio Comput Co Ltd Fluid equipment
JP2010216902A (en) * 2009-03-16 2010-09-30 Kyocera Corp Electroosmotic flow pump and microchemical chip
JP4555597B2 (en) * 2004-03-19 2010-10-06 積水化学工業株式会社 Hydrogen pump for microtus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270882A1 (en) * 2002-09-23 2004-05-04 Cooligy, Inc. Micro-fabricated electrokinetic pump with on-frit electrode
US20110311372A1 (en) * 2010-06-17 2011-12-22 Henry Hess Pump Devices, Methods, and Systems
JP2012189498A (en) * 2011-03-11 2012-10-04 Sharp Corp Electric field generation device and electric field generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555597B2 (en) * 2004-03-19 2010-10-06 積水化学工業株式会社 Hydrogen pump for microtus
JP2009221978A (en) * 2008-03-17 2009-10-01 Casio Comput Co Ltd Fluid equipment
JP2010216902A (en) * 2009-03-16 2010-09-30 Kyocera Corp Electroosmotic flow pump and microchemical chip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194041A1 (en) * 2017-04-21 2018-10-25 ヨダカ技研株式会社 Portable compact infusion device
JPWO2018194041A1 (en) * 2017-04-21 2020-02-27 ヨダカ技研株式会社 Portable small infusion device
US11033675B2 (en) 2017-04-21 2021-06-15 atDose Co., Ltd. Portable compact infusion device
JP2021519394A (en) * 2018-03-21 2021-08-10 リンテック・オブ・アメリカ・インコーポレイテッド Carbon Nanotube Spinned Yarn Electroosmotic Pump
JP7339273B2 (en) 2018-03-21 2023-09-05 リンテック・オブ・アメリカ・インコーポレイテッド carbon nanotube spun yarn electroosmotic pump
WO2021199454A1 (en) * 2020-04-01 2021-10-07 アットドウス株式会社 Liquid drug administration unit, liquid drug administration module, liquid drug administration device, and drug administration management system
JP2021159443A (en) * 2020-04-01 2021-10-11 アットドウス株式会社 Drug solution administration unit, drug solution administration module, drug solution administration device, and medication management system

Also Published As

Publication number Publication date
US20160252082A1 (en) 2016-09-01
JPWO2015059766A1 (en) 2017-03-09
JP6166268B2 (en) 2017-07-19
US20170335836A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP6166268B2 (en) Electroosmotic pump
US7540717B2 (en) Membrane nanopumps based on porous alumina thin films, membranes therefor and a method of fabricating such membranes
US9932251B2 (en) Membraneless seawater desalination
CN109482248B (en) Low-pressure electroosmosis pump based on nano porous film
Ahualli et al. Use of soft electrodes in capacitive deionization of solutions
US9103331B2 (en) Electro-osmotic pump
JP6166269B2 (en) Electroosmotic flow pump, manufacturing method thereof, and microfluidic device
US20110097215A1 (en) Flexible Solid-State Pump Constructed of Surface-Modified Glass Fiber Filters and Metal Mesh Electrodes
WO2006106885A1 (en) Liquid-transport device and system
US9725340B2 (en) Method of building massively-parallel ion concentration polarization separation device
US20170232404A1 (en) Electroosmotic membrane
JP2022521228A (en) Micro delivery device
Wu et al. Fluidics for energy harvesting: from nano to milli scales
US8920621B2 (en) Pump
Liu et al. Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants
WO2009144620A1 (en) Supplying power for a micro system
US20100294652A1 (en) Liquid driver system
TWI299609B (en) Electro-kinetic micro pumps by using the nano porous membrane
Huang et al. Electrodes for Microfluidic Integrated Optoelectronic Tweezers.
KR101384416B1 (en) Apparatus and Method to generate and collect electric power based on evaporating droplet of complex fluid flow
Ahmed et al. Effect of pretreatment of Carbon based electrodes in their adsorption performance in capacitive deionization
WO2020071334A1 (en) Pump and cooling board
JP2005055320A (en) Electrophoresis chip
CN207918499U (en) A kind of membrane module for electrodialytic desalination
TW200523706A (en) Micro flow rate generator, pump and pump system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014536812

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390543

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895969

Country of ref document: EP

Kind code of ref document: A1