WO2015058477A1 - 水合硼酸钡深紫外非线性光学晶体及制备方法和用途 - Google Patents

水合硼酸钡深紫外非线性光学晶体及制备方法和用途 Download PDF

Info

Publication number
WO2015058477A1
WO2015058477A1 PCT/CN2014/071241 CN2014071241W WO2015058477A1 WO 2015058477 A1 WO2015058477 A1 WO 2015058477A1 CN 2014071241 W CN2014071241 W CN 2014071241W WO 2015058477 A1 WO2015058477 A1 WO 2015058477A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
nonlinear optical
deep ultraviolet
mixed solution
optical crystal
Prior art date
Application number
PCT/CN2014/071241
Other languages
English (en)
French (fr)
Inventor
潘世烈
蒋相站
韩健
Original Assignee
中国科学院新疆理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院新疆理化技术研究所 filed Critical 中国科学院新疆理化技术研究所
Priority to US14/902,232 priority Critical patent/US9638982B2/en
Publication of WO2015058477A1 publication Critical patent/WO2015058477A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/126Borates of alkaline-earth metals, beryllium, aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Definitions

  • the invention belongs to the field of material science and optics in the field of inorganic chemistry, and particularly relates to a hydrated barium borate deep ultraviolet nonlinear optical crystal with a chemical formula of B BUC ⁇ H, a preparation method and a use thereof. Background technique
  • lasers Due to its high energy density, high directionality and coherence, lasers have been widely used in many fields, and have been combined with many disciplines to form multiple application technologies, such as optoelectronic technology, laser medical and photonic biology. , laser processing technology, laser detection and metrology technology, laser holography, laser radar, laser guidance, laser separation isotope, laser controllable nuclear fusion, laser weapons and so on.
  • the laser band that can be directly obtained by using the laser crystal is limited, and the frequency conversion crystal can be used to convert the laser of the limited laser wavelength into a new wavelength laser, which is an important means for obtaining a new laser light source, and realizes high-efficiency conversion of the laser wavelength.
  • the key issue is the availability of high quality, high performance nonlinear optical crystals.
  • Nonlinear optical crystals have frequency conversion effects, electro-optical effects and photorefractive effects. They can be used in laser frequency conversion, electro-optic modulation, signal processing, etc. They are important basic materials for the increasingly developed optoelectronic industry, solid-state laser technology, infrared technology, and light. An important pillar in the development of communications and information processing plays an increasingly important role in research, industry, transportation, national defense and health care.
  • nonlinear optical crystals for blue/green light and ultraviolet (UV) and deep ultraviolet (DUV) bands have received widespread attention, these crystals have their own limitations and have been difficult to obtain more widely.
  • Applications such as P-BaB 2 0 4 (BBO) crystals have four times the frequency of photorefractive, which hinders the application of quadruple frequencies.
  • the BBO crystal has a small receiving angle and a large off-angle.
  • the pump laser beam is required to have good beam quality (small divergence angle and good mode).
  • BBO crystals also have a certain deliquescence, which also brings inconvenience to the use.
  • LiB 3 0 5 (LBO) crystals also have a certain deliquescence.
  • KBe 2 B0 3 F 2 (KBBF) crystal layer is connected to the layer by the ionic bond of K and F, and the bonding force between the layers is very weak. Because of this, it has a strong laminar growth habit, crystal It is difficult to be long and thick, and it is difficult to process, and it is easy to dissociate, so it is difficult to be practical. Therefore, all countries in the world are actively looking for the urgent need to develop new nonlinear optical crystals with better performance and shorter matching bands. In recent years, in the development of new nonlinear optical crystals, not only the optical properties and mechanical properties of crystals have been emphasized, but also the preparation characteristics of crystals have been paid more and more attention.
  • the object of the present invention is to provide a transparent hydrated barium borate Ba 2 Bdon0 22 H 7 deep ultraviolet nonlinear optical crystal in order to compensate for the blank spectral region of the laser wavelength emitted by various types of lasers;
  • Another object of the present invention is to provide a method for preparing a hydrated lanthanum borate B BUO ⁇ H deep ultraviolet nonlinear optical crystal by hydrothermal operation;
  • a further object of the present invention is to provide the use of 2 H 7 nonlinear optical device of Ba B "0 22 aspect of the present invention is as follows:
  • the preparation method of the hydrated strontium borate B BUC ⁇ H deep ultraviolet nonlinear optical crystal is prepared by hydrothermal method.
  • the specific steps are as follows:
  • the molar ratio of Ba 2+ and BO - in the step a is 1:0.3-6; the molar ratio of Ba 2+ and B 2 0 3 is 1:0.15-3; b, the mixed solution of the step a is added to the ore a mixture of lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia or ethylenediamine, the volume ratio of mineralizer to mixed solution is 1: 2-7;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and place it into a corresponding volume of the high pressure reactor to screw the reactor piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to a temperature of 120-210 ° C at a temperature of 20-60 ° C / h, a constant temperature of 3-25 days, and then a temperature of l-50 ° C / The cooling rate of h or naturally cooled to room temperature; e. Open the high pressure reaction kettle, filter the solution containing the crystal, and determine the transparent hydrated bismuth borate B BUC ⁇ H nonlinear optical crystal by X-ray single crystal diffractometer.
  • Step c Place the solution in a clean, non-polluting high pressure reactor.
  • the hydrated borohydrate borate B BUC ⁇ H deep ultraviolet nonlinear optical crystal according to the present invention is prepared by hydrothermal method according to the following chemical reaction formula:
  • the hydrated strontium borate B BUC ⁇ H deep ultraviolet nonlinear optical crystal provided by the invention has a UV cutoff edge below 175 nm, a nonlinear optical effect about twice that of KDP, and a space group of 3 ⁇ 4, which is simple in preparation and growth cycle. Short, the low toxicity of the starting materials used is less harmful to humans; it is prepared by mixing the starting materials in proportions.
  • a transparent hydrated bismuth borate B BUC ⁇ H deep ultraviolet nonlinear optical crystal can be obtained by a high temperature and high pressure reaction in a sealed reaction vessel in a temperature range by a program cooling or constant temperature method, and the process is simple and easy.
  • the prepared hydrated barium borate Ba 2 B can prepare a nonlinear optical device, and the nonlinear optical device includes a frequency multiplier, Upper frequency converter, lower frequency converter or optical parametric oscillator.
  • Figure 1 is an X-ray diffraction spectrum of the present invention
  • FIG. 2 is a schematic diagram showing the operation of a nonlinear optical device fabricated by the present invention, which comprises (1) a laser, (2) a full-poly lens, and (3) a hydrated barium borate Ba 2 B Cosmetic0 22 H 7 deep ultraviolet non- a linear optical crystal, (4) is a beam splitting prism, (5) is a filter, and ⁇ is a frequency of the refracted light equal to twice the frequency of the incident light or the frequency of the incident light.
  • the crystal was prepared by the chemical reaction formula 2BaCl 2 + I IH3BO3 ⁇ Ba2Bii0 22 H7 + 4C1- +11H 2 0 +4H + .
  • the specific steps are as follows:
  • BaCl 2 is added to the volume of 23mL high pressure reactor PTFE liner, add H 3 B0 3 , then add deionized water 10 mL, make it fully mixed to obtain a mixed solution;
  • step b the mixed solution of step a is added to a mineralizing agent concentration of 3 mol / L LiOH solution 1 mL, the volume ratio of the mineralizer to the mixed solution is 1:10;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 180 V at a temperature of 20 ° C / h, kept at a constant temperature for 3 days, and then lowered to room temperature at a temperature decrease rate of 2 ° C / h;
  • Example 2 The crystal was prepared by the chemical reaction formula 2Ba(CH 3 COO) 2 H 2 0 + 11H 3 B0 3 ⁇ Ba2Bii0 2 2H 7 +4 CH3COO + IIH2O + 4H + :
  • step b the mixed solution of step a is added to the mineralizer concentration of 3 mol / L NaOH solution 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:70;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c the high pressure reaction kettle in step c is placed in an incubator, heated to 200 V at a temperature of 30 ° C / h, constant temperature for 6 days, naturally cooled to room temperature;
  • step b the mixed solution of step a is added to a mineralizer concentration of 3 mol / L KOH solution 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:20;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c the high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 50 ° C / h, constant temperature for 10 days, and then reduced to room temperature at a temperature drop rate of 30 ° C / h;
  • step b the mixed solution of step a is added to the mineralizer ethylene diamine 5 mL, the volume ratio of the mineralizer to the mixed solution is 1:14;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 120 V at a temperature of 25 ° C / h, kept at a constant temperature for 25 days, and naturally cooled to room temperature;
  • step b the mixed solution of step a is added to the mineralizer ammonia 5 mL, the volume ratio of the mineralizer to the mixed solution is 1:2;
  • step b Screw the Teflon liner cover of the mixed solution in step b into a clean, non-contaminated high pressure reaction kettle of the corresponding volume, and screw the reaction vessel piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 40 ° C / h, kept at a constant temperature for 6 days, and then lowered to room temperature at a temperature drop rate of 25 ° C / h;
  • step b the mixed solution of step a is added to the mineralizer KOH 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:20;
  • step b Screw the Teflon liner cover of the mixed solution in step b into a clean, non-contaminated high pressure reaction kettle of the corresponding volume, and screw the reaction vessel piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 40 ° C / h, kept at a constant temperature for 6 days, and then lowered to room temperature at a temperature drop rate of 25 ° C / h;
  • the crystal is prepared by the chemical reaction formula 2BaCl 2 + 11/2 ⁇ 2 ⁇ 3 + 11/2 ⁇ 2 0 ⁇ ⁇ 2 ⁇ 22 ⁇ 7 + 4C1- +11 ⁇ 2 0 +4 ⁇ +, and the specific steps are as follows:
  • step b the mixed solution of step a is added to a mineralizing agent concentration of 3 mol / L LiOH solution 1 mL, the volume ratio of the mineralizer to the mixed solution is 1:10;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 180 V at a temperature of 20 ° C / h, kept at a constant temperature for 3 days, and then lowered to room temperature at a temperature decrease rate of 2 ° C / h;
  • the crystal was prepared by the chemical reaction formula 2Ba(CH 3 COO) 2 H 2 0 + 11/2B 2 0 3 + 11/2H 2 0 ⁇ ⁇ 2 ⁇ 22 ⁇ 7 +4 CH 3 COO -+I IH2O +4H+:
  • step b the mixed solution of step a is added to the mineralizer concentration of 3 mol / L NaOH solution 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:70;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c the high pressure reaction kettle in step c is placed in an incubator, heated to 200 V at a temperature of 30 ° C / h, constant temperature for 6 days, naturally cooled to room temperature;
  • the crystal was prepared by the chemical reaction formula 2BaS ⁇ 4 + 11/2 ⁇ 2 ⁇ 3 + 11/2H 2 0 ⁇ Ba2Bii0 2 2H 7 +2S04 2 - +11H 2 0 +4H+:
  • step b the mixed solution of step a is added to a mineralizer concentration of 3 mol / L KOH solution 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:20;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c the high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 50 ° C / h, constant temperature for 10 days, and then reduced to room temperature at a temperature drop rate of 30 ° C / h;
  • the crystal was prepared by the chemical reaction formula 2Ba(C104)2 +II/2B2O3 + 11/2H 2 0 ⁇ Ba 2 B 11 0 2 2H 7 + 4C1 ⁇ 4- +I IH2O +4H+ :
  • Ba (C10 4 ) 2 was added to the volume of 125 mL of the high pressure reactor PTFE lining, adding B 2 0 3 , add 70 mL of deionized water, mix it thoroughly, and get To the mixed solution;
  • step b the mixed solution of step a is added to the mineralizer ethylene diamine 5 mL, the volume ratio of the mineralizer to the mixed solution is 1:14;
  • step b screw the lid of the polytetrafluoroethylene liner containing the mixed solution in step b, and fill the corresponding volume of clean and non-contaminated high pressure reactor, and screw the reactor piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 120 V at a temperature of 25 ° C / h, kept at a constant temperature for 25 days, and naturally cooled to room temperature;
  • step b the mixed solution of step a is added to the mineralizer ammonia 5 mL, the volume ratio of the mineralizer to the mixed solution is 1:2;
  • step b Screw the Teflon liner cover of the mixed solution in step b into a clean, non-contaminated high pressure reaction kettle of the corresponding volume, and screw the reaction vessel piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 40 ° C / h, kept at a constant temperature for 6 days, and then lowered to room temperature at a temperature drop rate of 25 ° C / h;
  • Example 12 Open the high pressure reaction kettle, filter the solution containing the crystal, and analyze it by X-ray single crystal diffractometer to obtain a transparent B BUC ⁇ H nonlinear optical crystal.
  • Example 12 Open the high pressure reaction kettle, filter the solution containing the crystal, and analyze it by X-ray single crystal diffractometer to obtain a transparent B BUC ⁇ H nonlinear optical crystal.
  • the crystal was prepared by the chemical reaction formula 2Ba(N0 3 ) 2 + 11/2B 2 0 3 + 11/2H 2 0 ⁇ Ba 2 Bii0 2 2H 7 + 4N0 3 - +11 H 2 0+4H + :
  • the mixed solution of step a is added to the mineralizer KOH 0.5 mL, the volume ratio of the mineralizer to the mixed solution is 1:20;
  • step b Screw the Teflon liner cover of the mixed solution in step b into a clean, non-contaminated high pressure reaction kettle of the corresponding volume, and screw the reaction vessel piston;
  • step c The high pressure reaction kettle in step c is placed in an incubator, heated to 210 V at a temperature of 40 ° C / h, kept at a constant temperature for 6 days, and then lowered to room temperature at a temperature drop rate of 25 ° C / h;
  • any of the nonlinear optical crystals obtained in Examples 1-12 was placed at the position of 3 as shown in Fig. 2, and the 1064 nm output of the Q-switched Nd:YAG laser was used as a light source at room temperature, and observed.
  • the apparent 532 nm double-frequency green light output has an output intensity approximately twice that of the equivalent condition KDP;
  • Beam 4 contains infrared light with a wavelength of 1064 nm and green light of 532 nm, and is filtered by a filter 5 to obtain a frequency doubled light having a wavelength of 532 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种水合硼酸钡深紫外非线性光学晶体及制备方法和用途,该晶体的化学式为Βa2Β11O22Η7,属于单斜晶系,空间群为P21,其晶胞参数为a=6.7719(10)Å,b=21.1195(4)Å,c=6.8274(10)Å,β=119.3950(10)°,分子量为752.65;采用水热法,通过程序降温或自然降温的方法得到该硼酸盐非线性光学晶体;该晶体粉末倍频效应均约为KDP(KH2PO4)的2倍,其紫外截止边在175nm以下,可作为深紫外非线性光学晶体。该晶体的生长过程具有操作简单,成本低,原料毒性低,生长周期短,物化性质稳定等优点;本发明的水合硼酸钡Ba2B11O22H7深紫外非线性光学晶体在制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等非线性光学器件中得到广泛应用。

Description

水合硼酸钡深紫外非线性光学晶体及制备方法和用途 技术领域
本发明属于无机化学领域的材料科学领域和光学领域, 特别涉及化学式为 B BUC^H 的水合硼酸钡深紫外非线性光学晶体及制备方法和用途。 背景技术
激光的发现给人类文明社会带来巨大的变化, 1960年, Maiman成功地制造出世界 上第一台红宝石激光器。 由于激光具有高能量密度、 高度方向性和相干性的特点, 使之 在许多领域有广泛的应用, 已与多个学科相结合形成多个应用技术领域, 比如光电技术, 激光医疗与光子生物学, 激光加工技术, 激光检测与计量技术, 激光全息技术, 激光雷 达, 激光制导, 激光分离同位素, 激光可控核聚变, 激光武器等等。 直接利用激光晶体 所能获得的激光波段有限, 利用频率转换晶体, 可将有限激光波长的激光转换成新波段 的激光, 这是获得新激光光源的重要手段, 而实现激光波长的高效率转换的关键问题是 能否获得高质量、 性能优良的非线性光学晶体。
1961年, Franken等首次在石英晶体中观察到了倍频现象, 这不仅标志着非线性光 学学科的诞生, 而且强有力地推动了非线性光学材料科学的发展。 非线性光学晶体具有 频率转换效应、 电光效应和光折变效应等, 可用于激光变频, 电光调制, 信号处理等领 域, 是日益发展的光电子产业的重要基础材料, 是固体激光技术、 红外技术、 光通信与 信息处理等领域发展的重要支柱, 在科研、 工业、 交通、 国防和医疗卫生等方面发挥着 越来越重要的作用。近十年来, 虽然用于蓝 /绿光和紫外 (UV)、深紫外 (DUV) 波段的非线 性光学晶体得到了人们的广泛关注, 但这些晶体存在着各自的局限性, 一直难以获得更 加广泛的应用,如 P-BaB204(BBO)晶体四倍频有光折变现象,妨碍了四倍频的应用。另夕卜, BBO晶体接收角小、 走离角大, 为得到高的转换效率, 要求泵浦激光束具有好的光束质 量( 小发散角和好的模式) 。 BBO晶体还有一定的潮解, 也给使用带来了不便。 LiB305(LBO)晶体也有一定的潮解。 这两种晶体都不能通过直接倍频产生 200nm 以下的 光。 而 KBe2B03F2 (KBBF)晶体层与层之间通过 K与 F的离子键相联, 层与层之间的键 合力很弱, 正因为这样, 具有强烈的层状生长习性, 晶体很难长厚, 且不易加工, 易于 解离, 故难以实用化。 因此, 世界各国都在积极寻找, 迫切需要开发出性能更好、 匹配 波段更短的有实用性的新的非线性光学晶体。 近年来, 在发展新型非线性光学晶体时, 不仅注重晶体的光学性能和机械性能, 而 且越来越重视晶体的制备特性, 希望新晶体材料容易制备, 可以获得价格低廉的大尺寸 高质量的非线性光学晶体。 在硼氧框架中引入碱土金属阳离子以提高其性能的设计思想 指导下, 阴离子以硼氧功能基元为基础, 其带隙较大, 双光子吸收概率小; 激光损伤阈 值较高; 利于获得较强的非线性光学效应; B-0键利于宽波段光透过。 阳离子选择碱土 金属离子, 其在紫外区无 do电子的跃迁, 有利于紫外透过。 发明内容
本发明目的在于, 为了弥补各类激光器发射激光波长的空白光谱区, 从而提供一种 透明的水合硼酸钡 Ba2B„022H7深紫外非线性光学晶体;
本发明另一目的是提供一种使用水热法操作简便的制备水合硼酸钡 B BUO^H 深 紫外非线性光学晶体的方法;
本发明的再一目的是提供 Ba2B„022H7非线性光学器件的用途。 本发明的技术方案如下:
本发明提供的水合硼酸钡深紫外非线性光学晶体, 其分子式为 Ba2B„022H7, 属于单 斜晶系, 空间群为 ¾, 其晶胞参数为 a = 6.7719(10) A, b = 21.1195(4) A, c = 6.8274(10) A, β= 119.3950(10)°, 分子量为 752.65。
所述的水合硼酸钡 B BUC^H深紫外非线性光学晶体的制备方法,采用水热法制备 晶体。 具体操作按下列步骤进行:
a、 将 BaCl2、 Ba(CH3COO)2 H20、 BaS04 Ba(C104)2 BaC03或 Ba(N03)2加入到体 积为 23-125mL的高压反应釜的聚四氟乙烯内衬中, 加入 H3B03或 B203, 再加入去离子 水 8-70 mL, 使其充分混合均匀, 得到混合溶液;
所述步骤 a中 Ba2+和 BO -的摩尔比为 1 :0.3-6; Ba2+和 B203的摩尔比为 1 :0.15-3 ; b、 将步骤 a的混合溶液中加入矿化剂氢氧化锂、 氢氧化钠、 氢氧化钾、 氨水或乙二 胺混合, 矿化剂与混合溶液的体积比为 1 :2-70;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的高压反应 釜中, 将反应釜活塞旋紧;
d、将步骤 c中的高压反应釜放置在恒温箱内,以温度 20-60°C/h的速率升温至 120-210 °C, 恒温 3-25天, 再以温度 l-50°C/h的降温速率或自然冷却至室温; e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定得到 透明的水合硼酸钡 B BUC^H非线性光学晶体。
步骤 c将溶液放在干净无污染的高压反应釜。
本发明所述的水合硼酸钡 B BUC^H深紫外非线性光学晶体, 采用水热法按下列 化学反应式制备晶体:
( 1 ) 2BaCl2 + 1 IH3BO3→ Ba2Bii022H7 + 4C1- +11H20 +4H+
(2) 2Ba(CH3COO)2 H20 + I IH3BO3→ Ba2Bii022H7 +4 CH3COO +I IH2O +4H+ ( 3 ) 2BaS04 + 11Η3Β03→· Ba2Bii022H7 +2SO42- +11H20 +4H+
(4) 2Ba(Cl〇4)2 +I IH3BO3→ Ba2Bii022H7+ 4C1〇4— +IIH2O +4H+ ( 5 ) 2BaC03 + 1 IH3BO3→ Ba2Bii022H7 + 2C03 2- +11H20 +4H+
(6) 2Ba(N03)2 + I IH3BO3→ Ba2Bii022H7 + 4N03- +11 H20+4H+
(7) 2BaCl2 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 +4 C1 +4H+
(8) 2Ba(CH3COO)2 + 11/2B203 + 1 \ΙΊΆ2 → Ba2Bii022H7 + 4CH3COO - + 4H+
(9) 2BaS04 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 + 2S04 2 +4H+
( 10) 2Ba(Cl〇4)2 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 + 4C104 +4H+
( 11 ) 2BaC03 + 11/2B203 + 1 \ΙΊΆ2 → Ba2Bii022H7 +2 C03 2- +4Η+
( 12) 2Ba(N03)2 + 11/2B203 +11/2H20→ Ba2Bii022H7 + 4N03- +4H+ 本发明提供的水合硼酸钡 B BUC^H深紫外非线性光学晶体的用途, 该水合硼酸 钡 Ba2B„022H7非线性光学晶体用于制备非线性光学器件,所述非线性光学器件包括倍频 发生器、 上频率转换器、 下频率转换器或光参量振荡器, 即包含将透过至少一束入射基 波光产生至少一束频率不同于入射光的相干光。 本发明的优点在于:
本发明提供的水合硼酸钡 B BUC^H深紫外非线性光学晶体, 其紫外截止边在 175 nm以下, 非线性光学效应约为 KDP的 2倍, 空间群为 ¾, 此晶体制备简单, 生长周期 短, 所使用的起始原料毒性低对人体毒害小; 其制备方法是将起始原料按照比例混合后, 采用为水热法, 在温度范围内通过密封的反应釜中高温高压反应, 通过程序降温或恒温 的方法即可制得透明的水合硼酸钡 B BUC^H 深紫外非线性光学晶体, 工艺简单易操 作; 所制备的水合硼酸钡 Ba2B„022H7深紫外非线性光学晶体对光学加工精度无特殊要 求, 可以制备制备非线性光学器件, 所述非线性光学器件包括倍频发生器、 上频率转换 器、 下频率转换器或光参量振荡器。 附图说明
图 1为本发明的 X-射线衍射图谱;
图 2为本发明制作的非线性光学器件的工作原理图, 其中包括 (1 ) 为激光器, (2) 为全聚透镜, (3 )为水合硼酸钡 Ba2B„022H7深紫外非线性光学晶体, (4)为分光棱镜, ( 5 ) 为滤波片, ω为折射光的频率等于入射光频率或是入射光频率的 2倍。 具体实施方式
以下结合附图和实施例对本发明进行详细说明:
实施例 1 :
以化学反应式 2BaCl2 + I IH3BO3→ Ba2Bii022H7 + 4C1- +11H20 +4H+制备晶体, 具体 操作步骤如下:
a、 按摩尔比为 BaCl2 :H3B03 = 1 :4, 将 BaCl2加入到体积为 23mL的高压反应釜的 聚四氟乙烯内衬中, 加入 H3B03, 再加入去离子水 10 mL, 使其充分混合均匀, 得到混 合溶液;
b、将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L的 LiOH溶液 1 mL混合, 该矿 化剂与混合溶液的体积比为 1 :10;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 20°C/h的速率升温至 180 V, 恒温 3天, 再以温度 2°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液反复过滤, 经 X射线单晶衍射仪解析确定 即可得到较透明的 B BUC^H非线性光学晶体。 实施例 2: 以化学反应式 2Ba(CH3COO)2 H20 + 11H3B03→ Ba2Bii022H7 +4 CH3COO +IIH2O +4H+制备晶体:
a、按摩尔比为 Ba(CH3COO)2' 0: H3B03 = 1 :2, 将 Ba(CH3COO)2'H20加入到体积为 80mL的高压反应釜的聚四氟乙烯内衬中, 加入 H3B03, 再加入去离子水 35 mL, 使其充 分混合均匀, 得到混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L 的 NaOH溶液 0.5 mL混合, 该矿化剂与混合溶液的体积比为 1 :70;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 30°C/h的速率升温至 200 V, 恒温 6天, 自然冷却至室温;
e、 打开高压反应釜, 将含有晶体的溶液反复过滤, 经 X射线单晶衍射仪解析确定 即可得到较透明的 B BUC^H非线性光学晶体。 实施例 3:
以化学反应式 2BaS〇4 + 11Η3Β03→· Βα2Βιιθ22Η7 +2S042- +11Η20 +4Η+制备晶体: a、 按摩尔比为 BaSC : H3BO3 = 1 :6, 将 BaS04加入到体积为 23mL的高压反应釜的 聚四氟乙烯内衬中, 加入 H3B03, 再加入去离子水 10 mL, 使其充分混合均匀, 得到混 合溶液;
b、 将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L 的 KOH溶液 0.5 mL混合, 该 矿化剂与混合溶液的体积比为 1 :20;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 50°C/h的速率升温至 210 V, 恒温 10天, 再以温度 30°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 4:
以化学反应式 2Ba(C104)2 +IIH3BO3→ Βα2Βιιθ22Η7+ 4C1〇4- +I IH2O +4H+制备晶体: a、 按摩尔比为 Ba(C104)2: H3B03 = l :5, 将 Ba(C104)2加入到体积为 125mL的高压反 应釜的聚四氟乙烯内衬中, 加入 H3B03, 再加入去离子水 70 mL, 使其充分混合均匀, 得到混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂乙二胺 5 mL混合, 该矿化剂与混合溶液的体 积比为 1 :14;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 25°C/h的速率升温至 120 V, 恒温 25天, 自然冷却至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 5:
以化学反应式 2BaC03 + IIH3BO3→ Βα2Βιιθ22Η7 + 2C03 2- +11H20 +4H+制备晶体: a、 按摩尔比为 BaC03:H3B03 = 1 :6, 将 Ba(N03 加入到体积为 23mL的高压反应釜 的聚四氟乙烯内衬中, 加入 B03, 再加入去离子水 10 mL, 使其充分混合均匀, 得到 混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂氨水 5 mL混合, 该矿化剂与混合溶液的体积 比为 1 :2;
c、 将步骤 b中混合溶液所在的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 40°C/h的速率升温至 210 V, 恒温 6天, 再以温度 25°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 6:
以化学反应式 2Ba(N03)2 + IIH3BO3→ Ba2Bii022H7 + 4N03- +11 H20+4H+制备晶体: a、按摩尔比为 Ba(N03)2:H3B03 = 1 :0.3,将 Ba(N03)2加入到体积为 23mL的高压反应 釜的聚四氟乙烯内衬中, 加入 H3B03, 再加入去离子水 10 mL, 使其充分混合均匀, 得 到混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂 KOH 0.5 mL混合, 该矿化剂与混合溶液的体 积比为 1 :20;
c、 将步骤 b中混合溶液所在的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 40°C/h的速率升温至 210 V, 恒温 6天, 再以温度 25°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 7:
以化学反应式 2BaCl2 + 11/2Β2θ3 + 11/2Η20→ Βα2Βιιθ22Η7 + 4C1- +11Η20 +4Η+制备 晶体, 具体操作步骤如下:
a、按摩尔比为 BaCl2: B203 = 1 :2,将 BaCl2加入到体积为 23mL的高压反应釜的聚 四氟乙烯内衬中, 加入 B203, 再加入去离子水 10 mL, 使其充分混合均匀, 得到混合溶 液;
b、将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L的 LiOH溶液 1 mL混合, 该矿 化剂与混合溶液的体积比为 1 :10;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 20°C/h的速率升温至 180 V, 恒温 3天, 再以温度 2°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液反复过滤, 经 X射线单晶衍射仪解析确定 即可得到较透明的 B BUC^H非线性光学晶体。 实施例 8:
以化学反应式 2Ba(CH3COO)2 H20 + 11/2B203 + 11/2H20→· Βα2Βιιθ22Η7+4 CH3COO -+I IH2O +4H+制备晶体:
a、 按摩尔比为 Ba(CH3COO)2'H20: B203 = 1 :1 , 将 Ba(CH3COO)2'H20加入到体积为 80mL的高压反应釜的聚四氟乙烯内衬中, 加入 B203, 再加入去离子水 35 mL, 使其充 分混合均匀, 得到混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L 的 NaOH溶液 0.5 mL混合, 该矿化剂与混合溶液的体积比为 1 :70;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 30°C/h的速率升温至 200 V, 恒温 6天, 自然冷却至室温;
e、 打开高压反应釜, 将含有晶体的溶液反复过滤, 经 X射线单晶衍射仪解析确定 即可得到较透明的 B BUC^H非线性光学晶体。 实施例 9:
以化学反应式 2BaS〇4 + 11/2Β2θ3 + 11/2H20→ Ba2Bii022H7 +2S042- +11H20 +4H+制 备晶体:
a、按摩尔比为 BaS04: B203 = 1 :3, 将 BaS04加入到体积为 23mL的高压反应釜的聚 四氟乙烯内衬中, 加入 B203, 再加入去离子水 10 mL, 使其充分混合均匀, 得到混合溶 液;
b、 将步骤 a的混合溶液中加入矿化剂浓度为 3 mol/L 的 KOH溶液 0.5 mL混合, 该 矿化剂与混合溶液的体积比为 1 :20;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 50°C/h的速率升温至 210 V, 恒温 10天, 再以温度 30°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 10:
以化学反应式 2Ba(C104)2 +II/2B2O3 + 11/2H20→ Ba2B11022H7+ 4C1〇4- +I IH2O +4H+ 制备晶体:
a、 按摩尔比为 Ba(C104)2: B203 = 1 :2.5, 将 Ba(C104)2加入到体积为 125mL的高压反 应釜的聚四氟乙烯内衬中, 加入 B203, 再加入去离子水 70 mL, 使其充分混合均匀, 得 到混合溶液;
b、 将步骤 a的混合溶液中加入矿化剂乙二胺 5 mL混合, 该矿化剂与混合溶液的体 积比为 1 :14;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 25°C/h的速率升温至 120 V, 恒温 25天, 自然冷却至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 11 :
以化学反应式 2BaC03 + 11/2Β2θ3 + 11/2Η20→· Βα2Βιιθ22Η7 +2 C03 2- +4Η+制备晶体: a、按摩尔比为 BaC03: B203 = 1 :3, 将 Ba(N03 加入到体积为 23mL的高压反应釜的 聚四氟乙烯内衬中, 加入 B203, 再加入去离子水 10 mL, 使其充分混合均匀, 得到混合 溶液;
b、 将步骤 a的混合溶液中加入矿化剂氨水 5 mL混合, 该矿化剂与混合溶液的体积 比为 1 :2;
c、 将步骤 b中混合溶液所在的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 40°C/h的速率升温至 210 V, 恒温 6天, 再以温度 25°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 12:
以化学反应式 2Ba(N03)2 + 11/2B203 + 11/2H20→ Ba2Bii022H7 + 4N03- +11 H20+4H+ 制备晶体:
a、 按摩尔比为 Ba(N03)2: B203 = 1 :0.15, 将 Ba(N03)2加入到体积为 23mL的高压反 应釜的聚四氟乙烯内衬中, 加入 B203, 再加入去离子水 10 mL, 使其充分混合均匀, 得 到混合溶液; b、 将步骤 a的混合溶液中加入矿化剂 KOH 0.5 mL混合, 该矿化剂与混合溶液的体 积比为 1 :20;
c、 将步骤 b中混合溶液所在的聚四氟乙烯内衬盖子旋紧, 装入相应体积的干净无污 染的高压反应釜中, 将反应釜活塞旋紧;
d、 将步骤 c中的高压反应釜放置在恒温箱内, 以温度 40°C/h的速率升温至 210 V, 恒温 6天, 再以温度 25°C/h的降温速率降至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤, 经 X射线单晶衍射仪解析确定即可 得到透明的 B BUC^H非线性光学晶体。 实施例 13:
将实施例 1-12中所得的任意一种非线性光学晶体, 按附图 2所示安置在 3的位置 上, 在室温下, 用调 Q Nd:YAG激光器的 1064 nm输出作光源, 观察到明显的 532 nm 倍频绿光输出, 输出强度约为同等条件 KDP的 2倍;
图 2所示为, 由调 Q Nd:YAG激光器 1发出波长为 1064 nm的红外光束经全聚透 镜 2射入 B BUC^H非线性光学晶体, 产生波长为 532 nm的绿色倍频光, 出射光束 4 含有波长为 1064 nm的红外光和 532 nm的绿光, 经滤波片 5滤去后得到波长为 532 nm 的倍频光。

Claims

权 利 要 求
1、 一种水合硼酸钡深紫外非线性光学晶体, 其分子式为 Ba2B„022H7, 属于单斜晶 系, 空间群为 ¾, 其晶胞参数为 a = 6.7719(10) A, b = 21.1195(4) A, c = 6.8274(10) A, β= 119.3950(10)°, 分子量为 752.65。
2、一种权利要求 1所述水合硼酸钡深紫外非线性光学晶体的制备方法,其特征在于, 采用水热法制备; 具体操作按下列步骤进行:
a、 将 BaCl2、 Ba(CH3COO)2 H20、 BaS04 Ba(C104)2 BaC03或 Ba(N03)2加入到体 积为 23-125mL的高压反应釜的聚四氟乙烯内衬中, 加入 H3B03或 B203, 再加入去离子 水 8-70 mL, 使其充分混合均匀, 得到混合溶液;
所述步骤 a中 Ba2+和 BO -的摩尔比为 1 :0.3-6; Ba2+和 B203的摩尔比为 1 :0.15-3; b、 将步骤 a的混合溶液中加入矿化剂氢氧化锂、 氢氧化钠、 氢氧化钾、 氨水或乙二 胺混合, 矿化剂与混合溶液的体积比为 1 :2-70;
c、 将装有步骤 b中混合溶液的聚四氟乙烯内衬盖子旋紧, 装入相应体积的高压反应 釜中, 将反应釜活塞旋紧;
d、将步骤 c中的高压反应釜放置在恒温箱内,以温度 20-60°C/h的速率升温至 120-210 V , 恒温 3-25天, 再以温度 l-50°C/h的降温速率或自然冷却至室温;
e、 打开高压反应釜, 将含有晶体的溶液过滤得透明晶体, 经 X射线单晶衍射仪解 析确定为水合硼酸钡 B BUC^H深紫外非线性光学晶体。
3、 按权利要求 2所述的水合硼酸钡深紫外非线性光学晶体制备方法, 其特征在于, 所述步骤 c中的高压反应釜为干净无污染的高压反应釜。
4、 按权利要求 2所述的水合硼酸钡深紫外非线性光学晶体制备方法, 其特征在于, 按下列化学反应式采用水热法制备:
( 1 ) 2BaCl2 + 1 IH3BO3→ Ba2Bii022H7 + 4C1- +11H20 +4H+
(2) 2Ba(CH3COO)2 H20 + 11H3B03→ Ba2Bii022H7 +4 CH3COO +I IH2O +4H+ ( 3 ) 2BaS04 + 11Η3Β03→· Ba2Bii022H7 +2SO42- +11Η20 +4Η+
(4) 2Ba(Cl〇4)2 +I IH3BO3→ Ba2Bii022H7+ 4C1〇4— +IIH2O +4H+
( 5 ) 2BaC03 + 1 IH3BO3→ Ba2Bii022H7 + 2C03 2- +11H20 +4H+
(6) 2Ba(N03)2 + 11H3B03→ Ba2Bii022H7 + 4N03- +11 H20+4H+
(7) 2BaCl2 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 +4 C1 +4H+
(8) 2Ba(CH3COO)2 + 11/2B203 + 1 \ΙΊΆ2 → Ba2Bii022H7 + 4CH3COO - + 4H+
(9) 2BaS04 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 + 2S04 2 +4H+
( 10) 2Ba(Cl〇4)2 + 11/2B203 + 11/2Η20→· Ba2Bii022H7 + 4C104 +4H+
( 11 ) 2BaC03 + 11/2B203 + 1 \ΙΊΆ2 → Ba2Bii022H7 +2 C03 2- +4Η+
( 12) 2Ba(N03)2 + 11/2B203 +11/2H20→ Ba2Bii022H7 + 4N03- +4H+
5、 一种权利要求 1所述水合硼酸钡 Ba2B„022H7深紫外非线性光学晶体的用途,其 特征在于,该水合硼酸钡 Ba2B„022H7深紫外非线性光学晶体用于制备非线性光学晶体器 件, 所述非线性光学晶体包括倍频发生器、 上频率转换器、 下频率转换器或光参量振荡
PCT/CN2014/071241 2013-10-23 2014-01-23 水合硼酸钡深紫外非线性光学晶体及制备方法和用途 WO2015058477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/902,232 US9638982B2 (en) 2013-10-23 2014-01-23 Deep ultraviolet non-linear optical crystal of barium borate hydrate, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310504643.5 2013-10-23
CN201310504643.5A CN104562197A (zh) 2013-10-23 2013-10-23 化合物一水一硼酸二羟基十硼酸钡非线性光学晶体及制备方法和用途

Publications (1)

Publication Number Publication Date
WO2015058477A1 true WO2015058477A1 (zh) 2015-04-30

Family

ID=52992184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071241 WO2015058477A1 (zh) 2013-10-23 2014-01-23 水合硼酸钡深紫外非线性光学晶体及制备方法和用途

Country Status (3)

Country Link
US (1) US9638982B2 (zh)
CN (1) CN104562197A (zh)
WO (1) WO2015058477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341281A (zh) * 2022-08-30 2022-11-15 同济大学 一种一水合氟化锆二阶非线性光学晶体及其制备和应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176742B (zh) * 2013-05-24 2016-01-27 中国科学院新疆理化技术研究所 四硼酸钡和四硼酸钡非线性光学晶体及制备方法和用途
CN105133012B (zh) * 2015-10-09 2018-06-29 新疆大学 水合硼酸锂非线性光学晶体的制备方法和用途
CN109183154A (zh) * 2018-09-21 2019-01-11 中国科学院新疆理化技术研究所 化合物钾硼碳氧溴氢和钾硼碳氧溴氢非线性光学晶体及制备方法和用途
CN109112612A (zh) * 2018-09-21 2019-01-01 中国科学院新疆理化技术研究所 化合物钾硼碳氧氯氢和钾硼碳氧氯氢非线性光学晶体及制备方法和用途
CN110129877B (zh) * 2019-06-12 2021-09-10 中国科学院新疆理化技术研究所 碱式硼酸锌非线性光学晶体及其制备方法和用途
CN114032615B (zh) * 2021-10-13 2022-07-29 四川大学 一种非线性光学晶体钼酸碘酸铯的制备方法和应用
CN114084880B (zh) * 2021-10-19 2023-05-09 中国科学院福建物质结构研究所 K3Sc3(PO4)(PO3F)2F5化合物、非线性光学晶体及其制法和用途
CN114016132B (zh) * 2021-11-13 2023-07-25 中国科学院新疆理化技术研究所 五水合五羟基十三硼酸钡和五水合五羟基十三硼酸钡非线性光学晶体及制备方法和用途
CN114920257B (zh) * 2022-04-29 2024-03-19 中国科学院新疆理化技术研究所 化合物六羟基氯四硼酸铯和六羟基氯四硼酸铯双折射晶体及制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199600A (ja) * 1992-12-24 1994-07-19 Nec Corp ベータバリウムボレイト単結晶の育成方法
CN101050547A (zh) * 2006-04-07 2007-10-10 中国科学院理化技术研究所 一种水热法生长氟硼铍酸钾/钠单晶体的方法
CN101302647A (zh) * 2008-01-21 2008-11-12 中国科学院新疆理化技术研究所 大尺寸硼酸钡铋非线性光学晶体及其制备方法
JP2010150116A (ja) * 2008-11-26 2010-07-08 Ohara Inc 光学部材
CN101775653A (zh) * 2009-01-14 2010-07-14 中国科学院理化技术研究所 一种水合十一硼酸二锶单晶的水热生长方法
CN102839421A (zh) * 2011-06-21 2012-12-26 中国科学院理化技术研究所 可用于紫外深紫外的硼酸盐双折射晶体及生长方法和用途
CN103225107A (zh) * 2013-04-03 2013-07-31 福建福晶科技股份有限公司 一种高质量bbo晶体快速生长的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337586B (zh) * 2010-07-20 2013-11-27 中国科学院新疆理化技术研究所 化合物氟硼酸钡非线性光学晶体及其制备方法和用途
CN101914809B (zh) * 2010-08-11 2014-03-12 中国科学院新疆理化技术研究所 化合物氯硼酸钾非线性光学晶体及制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199600A (ja) * 1992-12-24 1994-07-19 Nec Corp ベータバリウムボレイト単結晶の育成方法
CN101050547A (zh) * 2006-04-07 2007-10-10 中国科学院理化技术研究所 一种水热法生长氟硼铍酸钾/钠单晶体的方法
CN101302647A (zh) * 2008-01-21 2008-11-12 中国科学院新疆理化技术研究所 大尺寸硼酸钡铋非线性光学晶体及其制备方法
JP2010150116A (ja) * 2008-11-26 2010-07-08 Ohara Inc 光学部材
CN101775653A (zh) * 2009-01-14 2010-07-14 中国科学院理化技术研究所 一种水合十一硼酸二锶单晶的水热生长方法
CN102839421A (zh) * 2011-06-21 2012-12-26 中国科学院理化技术研究所 可用于紫外深紫外的硼酸盐双折射晶体及生长方法和用途
CN103225107A (zh) * 2013-04-03 2013-07-31 福建福晶科技股份有限公司 一种高质量bbo晶体快速生长的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341281A (zh) * 2022-08-30 2022-11-15 同济大学 一种一水合氟化锆二阶非线性光学晶体及其制备和应用
CN115341281B (zh) * 2022-08-30 2024-02-27 同济大学 一种一水合氟化锆二阶非线性光学晶体及其制备和应用

Also Published As

Publication number Publication date
US20160145769A1 (en) 2016-05-26
CN104562197A (zh) 2015-04-29
US9638982B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2015058477A1 (zh) 水合硼酸钡深紫外非线性光学晶体及制备方法和用途
Tran et al. Deep ultraviolet nonlinear optical materials
Mutailipu et al. Toward the enhancement of critical performance for deep-ultraviolet frequency-doubling crystals utilizing covalent tetrahedra
Luo et al. Na8Lu2 (CO3) 6F2 and Na3Lu (CO3) 2F2: rare earth fluoride carbonates as deep-UV nonlinear optical materials
CN103696006B (zh) 水合羟基硼酸锶和水合羟基硼酸锶非线性光学晶体及制备方法和用途
CN103114334B (zh) 化合物四羟基硼酸钡和四羟基硼酸钡非线性光学晶体及制备方法和用途
CN103628136B (zh) 化合物硼磷酸铷铅和硼磷酸铷铅非线性光学晶体及制备方法和用途
CN104562196B (zh) 化合物水合硼酸铅非线性光学晶体及制备方法和用途
CN102031563B (zh) 高温相钼酸碲钡晶体及其制备方法与应用
CN103205811B (zh) 大尺寸氯氟硼酸钡非线性光学晶体及其制备方法和用途
Jianga et al. with nonlinear optical properties
CN106544727B (zh) 碘酸氟铋非线性光学晶体及其制备方法和用途
CN105133012B (zh) 水合硼酸锂非线性光学晶体的制备方法和用途
CN106011994B (zh) 深紫外区的非线性光学氟硼磷酸钾晶体及制备方法与应用
CN102828246B (zh) 一种氟硼铍酸锶钠非线性光学晶体及生长方法和用途
CN102828245B (zh) 一种氟硼铍酸钙钠非线性光学晶体及生长方法和用途
CN106192002B (zh) 铷硼碳氧碘氢和铷硼碳氧碘氢非线性光学晶体及制备方法和用途
CN103088423A (zh) 化合物钡硼氧氟和钡硼氧氟非线性光学晶体及制备方法和用途
CN104562208A (zh) 化合物一水一硼酸二羟基十硼酸钙非线性光学晶体及制备方法和用途
JP7212757B2 (ja) アルカリ金属シアヌル酸一水素塩化合物、その結晶並びにその製造方法と応用
CN102071465A (zh) 大尺寸非线性光学晶体水合硼酸钾、其制备方法及应用
US20160137515A1 (en) Li4Sr(BO3)2 Compound, Li4Sr(BO3)2 Nonlinear Optical Crystal, Preparation Method and Use Thereof
CN105316764B (zh) 化合物一水一羟基五硼酸钙非线性光学晶体及制备方法和用途
CN107299395A (zh) 水合钒酸钡非线性光学晶体的制备方法和用途
CN106868589A (zh) K3Sr3Li2Al4B6O20F化合物、非线性光学晶体及其制法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14902232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856734

Country of ref document: EP

Kind code of ref document: A1